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CONVERGENT LEARNING ALGORITHMS FOR POTENTIAL GAMES
WITH UNKNOWN NOISY REWARDS

ARCHIE C. CHAPMAN∗, DAVID S. LESLIE†, ALEX ROGERS‡, AND NICHOLAS R. JENNINGS§

Abstract. In this paper, we address the problem of convergence to Nash equilibria in games with rewards
that are initially unknown and which must be estimated over time from noisy observations. These games arise in
many real–world applications, whenever rewards for actions cannot be prespecified and must be learned on–line.
Standard results in game theory, however, do not consider such settings. Specifically, using results from stochastic
approximation and differential inclusions, we prove the convergence of variants of fictitious play and adaptive play
to Nash equilibria in potential games and weakly acyclic games, respectively. These variants all use a multi–agent
version ofQ–learning to estimate the reward functions and a novel form of the ε–greedy decision rule to select
an action. Furthermore, we deriveε–greedy decision rules that exploit the sparse interactionstructure encoded in
two compact graphical representations of games, known as graphical and hypergraphical normal form, to improve
the convergence rate of the learning algorithms. The structure captured in these representations naturally occurs in
many distributed optimisation and control applications. Finally, we demonstrate the efficacy of the algorithms in a
simulated ad hoc wireless sensor network management problem.
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1. Introduction. The design and control of large, distributed systems is a major engi-
neering challenge. In particular, in many scenarios, centralised control algorithms are not
applicable, because limits on the system’s computational and communication resources make
it impossible for a central authority to have complete knowledge of the environment and direct
communication with all of the components of the system. In response to these constraints,
researchers have focused on decentralised control mechanisms for such systems.

In this context, a class of non–cooperative games calledpotential games[Monderer and
Shapley, 1996b] have gained prominence as a design templatefor decentralised control in
the distributed optimisation and multi–agent systems research communities. Potential games
have long been used to model congestion problems on networks[Wardrop, 1952; Rosenthal,
1973]. However, more recently, they have been used to designdecentralised methods of solv-
ing large–scale distributed problems, such as power control, channel selection and schedul-
ing problems in ad hoc wireless networks [Scutari et al., 2006], target assignment problems
[Arslan et al., 2007], task allocation and scheduling problems [Marden and Wierman, 2008;
Chapman et al., 2010] and distributed constraint optimisation problems [Chapman et al., ress].
In more detail, a potential game is constructed from a globaltarget function by distributing the
system’s control variables among a set ofagents(or players). Each agent’s reward function
is derived so that it isalignedwith the system–wide goals. That is, an increase in an agent’s
reward corresponds to an increase in the global reward (as inWolpert and Tumer [2002]). If
the agents’ rewards are aligned with the global target function, then the global target function
is apotentialfor the game, and the game is a potential game. This, in turn, implies that the
(pure) Nash equilibria of the constructed game correspond to the local optima of the potential
function. This is a very useful property of potential games,because a Nash equilibrium is an
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action profiles that is robust to unilateral changes in agents’ strategies; and as a consequence,
the local optima of the potential function are stable in these games. One useful way to align
the agents rewards is to set each agent’s reward to the marginal contribution it makes to the
global target function. This often reduces the coupling between agents’ reward functions,
which facilitates significant reductions in the communication and computation requirements
facing each agent. Furthermore, under the common assumption that the global target function
is submodular in the agents’ contributions (i.e. each agenthas a decreasing marginal contri-
bution), then the ratio of the worst–case Nash equilibrium to the optimum can be bounded.
This ratio is known as theprice of anarchy, and Marden and Wierman [2008] show that in
submodular marginal contribution games it is at most1/2 (i.e. the value of the worst Nash
equilibrium solution (local maximum) is within1/2 of that of the global optimum). This is
effectively a bound on the cost of distributing the control of the problem among multiple
autonomous agents.

Given this framework for distributing an optimisation problem, the second problem a
designer of a decentralised optimisation method faces is specifying a distributed algorithm
for finding a Nash equilibrium. This is addressed by the literature onlearning in games;
the dynamics of learning processes in repeated games is a well investigated branch of game
theory (see Fudenberg and Levine [1998], for example). In particular, the results that are
relevant to this work are the guaranteed convergence offictitious playandadaptive play, and
their generalisations, to Nash equilibrium in potential games [Monderer and Shapley, 1996a;
Young, 1998; Leslie and Collins, 2006]. Using these algorithms, a decentralised method
for an optimisation problem can be found by, first, constructing a potential game from the
optimisation problem (via the method described above), andthen using fictitious play or
adaptive play to compute a Nash equilibrium.

There is, however, one major shortcoming to this model. As isstandard in game theory,
there is an assumption that the value of each configuration ofvariables, or the agents’ re-
wards for different joint strategy profiles, is known from the outset. Although this is a sound
assumption in some domains, in many of the large, distributed control application domains to
which the decentralised control methods described above are targeted, it is not realistic to as-
sume that the rewards for different variable configurationscan be prespecified. For example,
in many situational awareness problems, the system’s task is to learn about the phenomena
under observation, but the rewards earned by the agents in the system are a function of the
phenomena detected, so their rewards cannot be known beforethey are deployed.

Thus, against this background, in this paper, we address theproblem of distributed com-
putation of Nash equilibria in games with rewards that are initially unknown and which must
be estimated on–line from noisy observations. The primary objective is to derive learning
algorithms that provide convergence to both the true mean values of the reward functions and
to the Nash equilibria of the one–shot game in those true meanrewards. Now, as noted above,
learning in repeated games is well understood. Similarly, online learning of unknown noisy
reward functions is a well understood problem tackled effectively by techniques from rein-
forcement learning, and, in particular, here we considerQ–learning [Sutton and Barto, 1998].
However, the joint problem of learning the equilibria of games with unknown noisy reward
functions is less well understood, even though it is a commonly faced problem in real–world
applications. It is this shortcoming in the literature thatwe address in this article.

In more detail, a potential game with unknown noisy rewards is a game in which an
agent’s payoff for each outcome is drawn from a distributionwith bounded variance whose
mean is consistent with a potential function, in the sense ofthe standard definition of potential
games [Monderer and Shapley, 1996b]. In this paper we derivenew fictitious play and adap-
tive play processes for playing potential games with unknown noisy rewards, and provide
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conditions under which the agents’ actions converge to Nashequilibria and the reward esti-
mates converge to their true mean values. The adaptive processes we derive simultaneously
perform recursive estimation of reward function means using Q–learning and adaptation to
the strategies of others in the game. Our approach to these types of problems gives agents
the ability to effectively learn their reward functions, while coordinating on a pure strategy
Nash equilibrium. We choose to focus on fictitious play and adaptive play because their con-
vergence is guaranteed using two different analytic techniques. Moreover, because these are
the two main methods for proving convergence to Nash equilibrium in the learning in games
literature, the versions of these two algorithms that we derive are exemplars for many other
algorithms whose convergence to Nash equilibrium is provenusing these methods (or very
similar ones).

Furthermore, the typical application domains for these distributed optimisation methods
are very large, and since the number of joint actions in a gameis exponential in the number
of agents, estimating a reward for each joint action quicklybecomes an intractable problem
(e.g. if a swarm ofn autonomous vehicles each have four directions to move in, the resulting
game has 4n joint actions). In such settings, a typical technique for avoiding such compu-
tational difficulties is to find compact representations of the problem at hand. In this vein,
we consider two common compact graphical representations of games known asgraphical
normal formandhypergraphical normal form[Kearns et al., 2001; Gottlob et al., 2005; Pa-
padimitriou and Roughgarden, 2008]. These representations use a graph or hypergraph to
summarise reward dependencies, and can be exponentially more compact than the standard
normal form if the agents’ interaction structure is sufficiently sparse.1 We show how the struc-
ture that these representations encode can be exploited to derive efficient exploration policies
for Q–learning, such that the learning problem facing the agentsis significantly reduced.

Specifically, the main theoretic results of this paper are:
1. We derive multi–agent versions ofQ–learning withε–greedy exploration for which

reward estimates converge to their true mean value, for games in standard normal
form and two compact game representations (graphical and hypergraphical normal
form). We use these as components when analysing the two families of learning
algorithms below.

2. We prove that a novel variant of fictitious play usingQ–learned estimates and em-
ploying theε–greedy action selection rule converges to Nash equilibrium in repeated
potential games, zero–sum games and several smaller classes of games with the fic-
titious play property.

3. We prove that three novel versions of adaptive play, in which agents evaluate their
actions usingQ–learned estimates of the reward and playε–best responses to these
estimates, converge to Nash equilibrium in repeated weaklyacyclic games. These
are: Standard adaptive play;Payoff–basedadaptive play, a novel low–computation
variant in which agents do not model their opponents directly, but rather evaluate
their actions by their cumulativeQ–learned estimates; andSpatialadaptive play,
a low–memory variant in which agentsε–greedy respond to the last action profile
played according to theQ–learned estimates, with the restriction that only one agent
changes its strategy at a time.

As an example of a setting where potential games with unknownnoisy rewards offer
an effective framework for distributed optimisation, consider the ad hoc wireless sensor net-
work management problem described in Farinelli et al. [2008], which is a version of a wide–

1Following Gottlob et al. [2005], we use the term “representation” to make clear that we are not considering a
sub-class of games that do not fit the standard normal form forgames. Rather, we use the distinction only to identify
those games with useful (i.e. sparse) interaction structure.
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area surveillance problem. The authors of this paper consider the problem of maximising
the efficiency of a sensor network deployed for wide–area surveillance by coordinating the
sense/sleep schedules of power constrained energy-harvesting sensor nodes. A sensor’s daily
available battery charge is constrained, so they can only beactively sensing for a limited time
each day. For example, if this period is one third of the day, then the agent has to make a
decision on which of the three thirds it chooses to actively sense, and which it should sleep
for. In order to cover the entire field of observation, the sensors’ observation ranges over-
lap, which means that the usefulness of each sensor’s observations is coupled with that of its
neighbours’. Hence, the first part of the problem is to coordinate sense/sleep cycles of the
sensors so to maximise the expected number of events observed each day. However, these
events occur at random, and, at the outset, the mean frequency of events is unknown to the
sensors. This means that the sensors have to search the jointaction space in order to learn the
mean frequencies of events occurring, while also coordinating their sense/sleep cycles to re-
duce the likelihood to redundant event observations. Furthermore, the number of neighbours
each node has is bounded because they each have limited observation ranges. This can be
exploited by using one of the compact graphical representations introduced above to reduce
the nodes’ reward estimation task. We will come back to this example domain to demonstrate
the efficacy of the learning algorithms we derive for playingpotential games with unknown
noisy rewards.

The paper progresses as follows: In the next section we review some related work in the
area of algorithms for playing games with unknown and/or noisy rewards. We then introduce
non–cooperative games, potential games, and the graphicaland hypergraphical normal form
representations, and define games with unknown and noisy rewards. In Section 4 we review
Q–learning and theε–greedy action selection rule, and derive multi–agent versions of Q–
learning usingε–greedy action selection for which agents’ estimates of their rewards for joint
actions converge, for games in standard, graphical and hypergraphical normal form. We then
prove the convergence of the two families of algorithms. Specifically, in Section 5, we show
that if agents use fictitious play to adapt to their opponents’ strategies, then play converges
to a Nash equilibrium in potential games, and in Section 6 we show the same for different
variants of adaptive play in weakly–acyclic games. Following these theoretical results, in
Section 7 we compare the performance of the algorithms in twotest domains. The first
is a simple three–player game in which the performance of thealgorithms can be clearly
evaluated and compared to each other. The second is the ad hocwireless sensor network for
a wide–area surveillance problem, as described briefly above. This scenario also gives us
the opportunity to demonstrate how an optimisation problemis transformed into a potential
game using marginal contribution payoffs. Section 8 summarises the contributions of this
paper, and discusses how our results may be extended to further algorithms.

2. Related work. Several authors have previously tackled the problem of learning Nash
equilibria in games with unknown noisy rewards by applyingQ–learning based approaches.
Most closely related to our work is that of Claus and Boutilier [1998], who specify ajoint
action learnerprocess, in which each agent keeps track of the frequency of other agent’s
actions (as in fictitious play), while at each time updating the reward for the joint action
played. Although this does not substantially differ from the Q–learning fictitious play algo-
rithm we derive here, the authors do not provide convergenceconditions for their algorithm,
and rely instead on experimental evidence of convergence. Specifically, they do not inves-
tigate the exploration rates required to ensure that the reward function estimates converge,
nor do they make the link between the convergence of these estimates and convergence of
the actions played to Nash equilibrium. Furthermore, theirinvestigation is restricted to team
games (games with a common payoff function), whereas we consider several further classes
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of games, and they do not consider the generalised and/or weakened versions of fictitious
play or the adaptive play variants we consider in this paper.Additionally, several other au-
thors considerindependent action learners, in which agents use variants of theQ–learning
procedure independent of each other, oblivious of the effects of changes in other agents’ ac-
tions on their own payoffs. In particular, under the independent action learner algorithms
of Claus and Boutilier [1998] and Cominetti et al. [2010], the agents update their estimate
of the reward they receive for each of their actions, independent of the other agents, using
Q–learning. These algorithms both use a Boltzmann distribution to guide action selection
and sample the actions, but differ in the specific manner in which this is used, with Claus
and Boutilier [1998] specifying an annealing schedule for the temperature coefficient and
Cominetti et al. [2010] using a constant temperature. Neither authors prove convergence to
Nash equilibrium; as a consequence, neither can make use of the price of anarchy bound on
solution quality derived by Marden and Wierman [2008].

Single–agent learning in unknown noisy game environments has also been investigated
in the context of zero–sum games. Baños [1968] considers two–player zero–sum games,
in which one agent does not know the payoffs and receives onlya noisy observation of the
mean payoff for the action it plays each time a move is made. The author derives a class of
strategies for this player that perform as well aysmtotically as if the player had known the
mean payoffs of the games from the outset; that is, the player’s average payoff converges
to the maximin value of the game. Auer et al. [1995] consider an adversarial multi–armed
bandit (MAB) problem, in which an adversary has control of the payoffs of each of the MAB’s
arms and aims to minimise the player’s payoff (which containthe zero–sum games studied
by Baños [1968] as a subclass). The authors provide an algorithm for general multi–player
games that asymptotically guarantees a player its maximin value. Although for two–player
zero–sum games this is the same guarantee as the strategy derived by Baños, the authors also
show that their algorithm is more efficient than that of Baños. Both of these approaches,
however, converge to a Nash equilibrium only in 2–player zero–sum games (where the Nash
equilibrium, minimax, and maximin concepts give the same solution), so do not apply to our
problem of computing Nash equilibria in potential and/or weakly–acyclic games.

Several other algorithms have been proposed for games whereagents cannot observe
their opponents’ actions, so the payoffs that they receive may differ as the other player’s ac-
tions change.2 One such approach is that of Hart and Mas-Colell [2000], who introduceregret
matching. This algorithm converges to the set of correlated equilibria in all finite games, and
in particular, a variant of it converges even when the players do not know the game payoffs
and cannot observe their opponents’ actions, so they must belearned over the course of the
game. However, although the set of correlated equilibria include all Nash equilibria, cor-
related equilibria are not (necessarily) optimal in potential games in the same way as Nash
equilibria, in that they do not locally maximise the potential function of such games, so re-
gret matching is not directly applicable to our setting. A second relevant approach to games
with unknown rewards and unobserved opponent actions is given in Marden et al. [2009],
who provide three payoff–based dynamics that converge to pure–strategy Nash equilibria in
weakly acyclic games, one of which,sample experimentation dynamics, can admit pertur-
bations in agents’ rewards. This algorithm alternates between two phases — exploration
and exploitation. However, its main drawback is that it requires several parameters to be

2Note that this is a different scenario to the situation we consider: here, agents’ payoffs are corrupted by noise
that is induced by their opponents’ switching actions unobserved, whereas our work considers noise in rewards that
is caused by some exogenous random perturbation under the assumption that opponents’ actions can be observed.
The first case can be thought of as model–free setting, while in the second (our setting), each agent has a model of
their opponents.
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set, which control the exploration phase length, exploration rates, and tolerances on payoff
difference and switching rates for deciding when to change strategies. Now, because these
parameters are integral to the algorithm’s convergence guarantees, a user of these algorithms
must have sufficienta priori knowledge of the problem at hand to set the parameters in a
way that ensures that the algorithms do indeed converge. Moreover, the sample experimen-
tation dynamics is designed for games where agents cannot observe their opponents’ actions,
whereas our work does not address scenarios with this restriction.

Finally, the only algorithms proven to converge, in some sense, to Nash equilibrium in
all games are theregret–testingalgorithms of Young and Foster [Foster and Young, 2006;
Young, 2009]. These algorithms will stay near a Nash equilibrium for a long time once it
has been reached, but essentially perform a random exhaustive search to find an equilibrium
in the first place. We sacrifice this convergence in all games in order to improve the search
mechanism in the games we are interested in (i.e. classes of games directly associated with
distributed optimisation problems).

3. Background. In this section we review non–cooperative games, potentialgames,
and graphical and hypergraphical representations of games, and define games with unknown
noisy rewards.

3.1. Noncooperative games.A finite noncooperative game in standard normal form
(SNF), Γ = 〈N,{Ai , r i}i∈N〉, consists of a finite set of agentsN = {1, . . . ,n}, and for each
agenti ∈ N, a finite set of (pure)actions Ai , with joint action spaceA=×N

i=1Ai , and areward
function ri : A → R. An agent’s reward function specifies its ranking over all joint action
profiles,a∈ A, also calledoutcomesof the game. Agents can also choose to play an action
according to a lotteryπi , known as amixed strategy. This is a probability distribution over
the pure action setAi , so thatπi ∈ ∆i , the set of probability distributions overAi . The reward
functions of the mixed extension of the game are given by the expected value ofr i under all
agents’ joint independent lotteryπ ∈×i∈N∆i overA:

r i(π) = ∑
a∈A

(

∏
j∈N

π j(a j)

)

r i(a).

We will use the notationa= (ai ,a−i) wherea−i is the joint action chosen by all agents other
thani, andπ = (πi ,π−i) whereπ−i is the joint independent lottery of all agents other thani.

In this paper we assume, as is standard, that ther i are bounded, and consequently there
existsr such that maxi∈N,a∈A |r i(a)| ≤ r. An agent’s goal is to maximise its reward, and its
best response, bi(π−i), is the set ofi’s best strategies, given the strategies of the other agents:

bi(π−i) = {πi ∈ ∆i : r i(πi ,π−i) = max
π̃i∈∆i

r i(π̃i ,π−i)}

Stable points are characterised by the set ofNash equilibria, which are defined as those joint
strategy profiles,π∗, in which no individual agent has an incentive to change its action:

r i(π∗
i ,π∗

−i)− r i(πi ,π∗
−i)≥ 0 ∀ πi , ∀ i.

That is, in a Nash equilibrium,π∗
i ∈ bi(π∗

−i).
We can also define aδ–best response, and the associatedδ–Nash equilibrium, which will

be useful in the analysis of exploratory action selection inorder to estimate action values.
First, let theδ-best response correspondence, bδ

i (π−i) be the set of strategies that come within
δ of maximising an agent’s reward, conditional on other agents’ strategies:

bδ
i (π−i) = {πi ∈ ∆i : r i(πi ,π−i)≥ max

π̃i∈∆i
r i(π̃i ,π−i)− δ}. (3.1)

Then, a strategy profileπ∗ is anδ–Nash equilibrium ifπ∗
i ∈ bδ

i (π∗
−i) for all i ∈ N.
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3.2. Potential and weakly acyclic games.The exposition so far has considered general
classes of games. Of particular interest to the control community are identical interest games,
in which all individuals receive an identical reward so that

r i(a) = r(a) ∀i,

and their generalisation to potential games [Monderer and Shapley, 1996b]. Here the common
reward function, or the potential function, represents a system reward to be optimised through
action selection by independent agents.

The class of potential games is characterised as those gamesthat admit a function speci-
fying the participants’ joint preference over outcomes [Monderer and Shapley, 1996b]. This
function is known as a potential function and, generally, itis a real-valued function on the
joint action spaceA such that the difference in the potential induced by a unilateral deviation
of action equals the change in the deviator’s reward.

DEFINITION 3.1 (Potential games).A function P: A→R is apotentialfor a game if:

P(ai,a−i)−P(a′i,a−i) = r i(ai ,a−i)− r i(a
′
i ,a−i) ∀ ai , a′i ∈ Ai ∀a−i ∈ A−i ∀ i ∈ N.

A game is called apotential gameif it admits a potential.
A potential function has a natural interpretation as representing opportunities for im-

provement to an agent defecting from any given action profile. As the potential function
incorporates the strategic possibilities of all agents simultaneously, the local optima of the
potential function are Nash equilibria of the game; that is,the potential function is locally
maximised by self-interested agents in a system.

A useful property of potential games is the fact that the existence of a potential function
for a game implies a strict joint preference ordering over game outcomes. This, in turn,
ensures that the game possesses thefinite improvement property, or FIP. Astepin a gameΓ is
a change in one agent’s strategy. Animprovement stepin Γ is a change in one agent’s strategy
such that its reward is improved. Apath in Γ is a sequence of steps,φ = (a0,a1, . . . ,at . . .),
in which exactly one agent changes its strategy at each stept. A path has aninitial point,
a0, and if it is of finite lengthT, a terminal point aT . A pathφ is animprovement pathin Γ
if for all t, r i(at−1) < r i(at) for the deviating agenti at stept. A gameΓ is said to have the
finite improvement propertyif every improvement path is finite, and Monderer and Shapley
[1996b] prove that this is the case for every potential game.

Related to this is the concept of aweakly acyclicgame, which is needed to discuss the
convergence of the adaptive play processes in Section 6. A game isacyclic if there is no
improvement path witha0 = aT for T > 0. A game isweakly acyclicif, from any joint
strategy, there is an improvement path that reaches a pure strategy Nash equilibrium. Note
that an acyclic game is weakly acyclic, and any potential game in which no agent is indifferent
between distinct strategies is acyclic [Young, 1998]. In a weakly acyclic game, for each
a∈ A, let La be the length of the shortest improvement path froma to a pure strategy Nash
equilibrium, and letLΓ = maxa∈ALa; we will need this constant in Section 6.

3.3. Compact graphical representations of games.In this paper we investigate a sce-
nario where the individuals attempt to estimate their expected rewardr i(a) for each joint
actiona∈ A. In general games, however, the joint action spaceA grows exponentially with
the number of agents, so this estimation problem (as well as standard adaptive processes such
as fictitious play) becomes impractical, because the numberof joint actions to sample is so
large. However in systems with an inherent structure, such as those with a natural spatial
structure in which interaction only directly occurs between geographically close individu-
als, agents should only need to consider the actions of theirneighbours. If a game admits a
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compact representation, then this form of the game can be exploited to improve the agents’
learning rates, and in this paper we will show how two representations of sparse interaction
in games can be used in this way.

The first isgraphical normal form(GNF), a representation that can represent noncoop-
erative games in which some agents’ rewards are independentof others’ strategies [Kearns
et al., 2001]. In this form, the nodes of a graph correspond tothe set of agents, while edges
connect an agent to the others with which it shares a reward dependency, called its neigh-
bours. The neighbourhood ofi is the smallest setνi of players such that agenti’s reward is
entirely determined byai and{a j : j ∈ νi}. We say an undirected reward dependency exists
betweeni and j(6= i) if either j ∈ νi or i ∈ ν j .

DEFINITION 3.2. A game inGNF comprises a set of agents located on the nodes of a
graph. An agent is connected to those with which it shares an undirected reward dependency,
which make up its set of neighboursνi ⊆ N. Its reward function, ri(ai,νi ), is then given by an
array indexed by tuples from the set× j∈{i,νi}|A j |.

The second useful compact representation ishypergraphical normal form(HNF) [Gott-
lob et al., 2005; Papadimitriou and Roughgarden, 2008], which comprises hyperedges repre-
senting a set of local games that each contain several agents. An agent is typically involved
in more than one local game, and its neighbours are those it islinked to via any local game.

DEFINITION 3.3. A game inHNF comprises a set of agents located on the nodes
of a hypergraph. Each hyperedge represents a local game:Γ = {γ1,γ2, ...}, whereγ =
〈Nγ,{Ai , r i,γ}i∈Nγ〉, defined as in SNF. LetΓi = {γ : i ∈ Nγ} be the set of local games con-
taining agent i. Player i’s action set, Ai , is identical in allγ ∈ Γi , and it selects a single action
ai ∈Ai to play in all of its local games. Its neighbours inγ ∈ Γi areνi,γ =Nγ \ i, and its reward
from γ, ri,γ(aγ) is given by an array indexed by tuples from the set× j∈Nγ |A j |. Its full set of
neighbours is given byνi = ∪γ∈Γi Nγ \ i, and its reward is the sum of its rewards fromγ ∈ Γi :
r i(ai,ai,νi ) = ∑γ∈Γi

r i,γ(ai ,aνi,γ), where aνi,γ is the joint action of i′s neighbours inγ.
Note that, in both compact representations,r i(a) now only depends onai andaνi , where

aνi is the joint action of all the neighbours ofi. Subsequently, we shall writer i as a function
of the joint actions ofi and its neighbours, that is,r i(ai,νi ).

Finally, note that games in SNF can be represented in both GNF(with a complete graph)
and HNF (with a single, global, local gameγ). Hence for the rest of the paper we focus on
the classes GNF and HNF, and all results will apply directly to games in SNF.

3.4. Games with unknown noisy rewards.We now introduce the model of rewards
received in a repeated learning situation that will be studied in the rest of this article. Much
work on learning in games either assumes that the reward functionsr i are known in advance
[e.g. Hart and Mas-Colell, 2000], or that the observed rewards are deterministic functions of
the joint action selected [e.g Rosenthal, 1973; Cominetti et al., 2010]. However, as argued in
Section 1, a more realistic scenario is that the observed rewards are noisy, and comprise of
an expected value equal to the unknown underlying reward function r i(a) and a zero–mean
random perturbation. We call this scenariounknown noisy rewards. This situation therefore
requires the individuals to estimate their underlying reward functions, while also adapting
their strategies in response to the actions of other agents.

DEFINITION 3.4. A game with unknown noisy rewardsis a game in which, when the
joint action a∈ A is played, agent i receives the reward

Ri = r i(a)+ei (3.2)

where ri(a) is the true expected reward to agent i from joint action a∈ A, and ei is a random
variable with expected value 0 and bounded variance. Games in GNF with unknown noisy
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rewardsare defined similarly, with the difference being that when the joint action a∈ A is
played, agent i receives the reward

Ri = r i(ai ,aνi )+ei, (3.3)

where ri(ai ,aνi ) is the true expected reward to agent i for the joint action(ai ,aνi ), and ei
is a random variable with zero mean and bounded variance. Finally, for games inHNF
with unknown noisy rewards, when the joint action a∈ A is played, agent i receives the
(independently observable) rewards

Ri,γ = r i,γ(aγ)+ei,γ ∀γ ∈ Γi , (3.4)

where ri,γ(aγ) is the true expected reward to agent i from local gameγ for the joint action aγ,
and each ei,γ is a random variable with zero mean and bounded variance.

To avoid unnecessary over–complication in this article, weassume that each realisation
of eachei is independent of all other random variables.3 Note that a game with unknown
noisy rewards is a generalisation of the bandit problem discussed by Sutton and Barto [1998],
and we shall use similar reinforcement learning strategiesto estimate the values ofr i(ai,νi ).

3.5. Problem definition. We are now in a position to precisely describe the problem
which we address. We imagine a game with unknown noisy rewards which is repeated over
time. On each play of the game, the individuals select an action, and receive rewards as in
(3.3) or (3.4) for games in GNF and HNF, respectively (recalling that a game in SNF can be
captured by either representation). The individuals also observe the actions selected by their
neighbours (as defined for each representation). Based on this information, the individuals
update their estimates of the reward functions and adapt their strategies.

We are interested in the evolution of strategies under this scenario, and in particular
whether strategies converge to a Nash equilibrium. If the underlying game is a potential game
corresponding to a distributed optimisation problem, convergence to Nash equilibrium gives
us distributed convergence to a (locally) optimal joint strategy with only noisy evaluations of
the target function.

4. Convergence of reward function estimates usingQ–learning. In this section we
show that, in a game with unknown noisy rewards, agents can form estimates of the true re-
ward functions which are asymptotically accurate, provided that all joint actions are played
infinitely often. We also show how this condition can be guaranteed for games in GNF and
HNF. In particular, for each representation, we show that ifthe agents update their estimates
of the expected rewards for joint actions usingQ–learning, and select actions using an appro-
priateε–greedy action selection policy, then with probability 1 the reward function estimates
will converge to their true mean values.

4.1. Review ofQ–learning. In noisy environments, reinforcement learning is often
used to estimate the mean value of a perturbed reward function [Sutton and Barto, 1998]. In
particular, we considerQ–learning for single–agent multi–armed bandit problems, in which
one learner selects actionsa and receives rewardsR. This algorithm operates by recursively
updating an estimate of the value of the action taken at timet, and in single state problems
analogous to repeated games takes the form:

Qt+1(a) = Qt(a)+λt I{at = a}
(

Rt −Qt(a)
)

, (4.1)

3This assumption can be significantly relaxed without comprising our results, but requires significant effort to
explain how estimation is adapted to handle correlated errors, which is beyond the scope of this paper.
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whereI{at =a} is an indicator function taking value 1 ifat =a and 0 otherwise andλt ∈ (0,1)
is a learning parameter.

In general,Qt(a)→ E[Rt |at = a] with probability 1 if the conditions

∞

∑
t=1

λt I{at = a}= ∞ and
∞

∑
t=1

(λt)2 < ∞

hold for eacha [Singh et al., 2000]. This can be achieved, under the condition that allQi(a)
are updated infinitely often, if

λt =
(

Cλ +#t(at)
)−ρλ

whereCλ > 0 is an arbitrary constant,ρλ ∈ (1/2,1] is a learning rate parameter, and #t(a) is
the number of times the actiona has been selected up to timet.

The condition that all actionsa are played infinitely often can be met with probability 1
by using a randomisedaction decision rule(or learning policy, in the terminology of Singh
et al. [2000]) in which the probability of playing each jointaction is bounded below by a
sequence that tends to zero sufficiently slowly ast becomes large. Furthermore, this action
decision rule can be chosen so that it is greedy in the limit, in that the probability with which
it selects maximal reward actions tends to 1 ast → ∞. Such policies are calledgreedy in the
limit with infinite exploration (GLIE)[Singh et al., 2000].

One common GLIE decision rule is known asε–greedy, and the results derived in this
paper depend on the use of this particular rule. Under this rule, an agent selects an action
with maximal expected reward at timet with probability(1− εt), and a random other action
with probabilityεt . In the single agent case, ifεt = c/t with 0< c< 1, then for anya,

∞

∑
t=1

Pr(at = a)≥
∞

∑
t=1

εt

|A|
= c×

∞

∑
t=1

1/t = ∞,

and so (by a generalised Borel–Cantelli lemma [Singh et al.,2000]) with probability 1 each
action is selected infinitely often.

We now state a lemma giving conditions for convergence ofQ-learning for general action
spaces. The proof of the lemma is a simple application of stochastic approximation theory,
as in Singh et al. [2000], and is not given here.

LEMMA 4.1. Let A be any action space, and let Qt(a) follow the recursion in (4.1) for
each a∈ A. Suppose, for each a∈ A, and for all t,

Pr(at = a)≥Cεt with
∞

∑
t=1

εt = ∞, (4.2)

where C> 0 is a constant. Then

lim
t→∞

Qt(a) = r(a) with probability 1.

In the next section we derive a new version ofQ–learning specifically for estimating reward
functions in multi–agent settings, which is the first of the contributions listed in Section 1,
and is used in the subsequent derivations of convergent fictitious play and adaptive play algo-
rithms.
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4.2. Estimating rewards in games in standard normal form (SNF). TheQ-learning
scheme above can be applied independently by each player of agame, who learns the ex-
pected reward for each actionai ∈ Ai , ignoring the actions selected by the other agents [Claus
and Boutilier, 1998; Leslie and Collins, 2005; Cominetti etal., 2010]. However this can re-
sult in very slow adaptation of strategies towards Nash equilibrium. Instead, in this paper, we
allow the learning of reward functions of joint actions, andsimultaneous explicit reasoning
about the action selection of the other agents. This is the joint action learning approach sug-
gested (without analysis) in the context of fictitious play by Claus and Boutilier [1998], and
furthermore we argue that the applicability of the technique relies on the compact represen-
tations introduced in Section 3.3.

To begin, we consider the convergence of thisQ–learning scheme in games in SNF with
unknown noisy rewards using anε–greedy decision rule (although note that we have not yet
defined what a greedy action should be in this context, since an optimal action will depend on
the assumed strategy of the other agents). After playing action at

i , observing actionsat , and
receiving rewardRt

i , each individuali updates estimatesQt
i using the equation

Qt+1
i (a) = Qt

i(a)+λt I{at = a}
(

Rt
i −Qt

i(a)
)

∀a∈ A. (4.3)

In contrast to single agent settings, in multi–player games, the choice of joint action is
made by the independent choices of more than one agent. As such, for eachQ value to be
updated infinitely often, the schedule that the explorationsequence{εt}t→∞ follows must
reflect the fact that the agents cannot explicitly coordinate to sample specific joint action
profiles.

LEMMA 4.2. In a game with unknown noisy rewards, if agents select their actions using
a policy in which, for all i∈ N, ai ∈ Ai and t≥ 1,

Pr(at
i = ai)≥ εt

i , with εt
i = cεt

−1/|N|,

where cε > 0 is a positive constant, then

lim
t→∞

|Qt
i (a)− r i(a)|= 0 ∀i ∈ N, ∀a∈ A. (4.4)

Proof. If the probability that agenti selects an action is bounded below byεt
i = cεt−

1/|N|,
then the probability that any joint actiona is played is bounded below by

(

t−1/|N|
)|N|

= (cε)
|N|t−1.

Hence we apply Lemma 4.1 toQi with action spaceA, and the result follows.
This may result in a practical learning procedure if|N| is sufficiently small. However, in large
games, visiting each joint action infinitely often is an impractical constraint — to achieve
sufficiently high experimentation rates through independent random sampling, as in theε–
greedy approach, would require the agents’ independentε sequences to decrease so slowly
that in any practical sense the agents will never move into anexploitation phase. On the other
hand, joint exploration requires a large degree of cooperation between the agents in order to
select and sample specific joint actions, to the point that itceases to be a truly decentralised
system.

However, if each agent interacts with only a few other agents, as is the case in a game
that can be succinctly represented in GNF or HNF, then the joint action space to be explored
by each agent, and the number of reward values each individual estimates, can be signifi-
cantly reduced. This allows the agents to use independentε–greedy strategies that succeed
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in sampling all the joint actionswithin each neighbourhoodwhile still becoming greedy over
a useful time frame. Indeed the GNF and HNF representations allow agent i to learn the
reward functions of the reduced joint action space given by the Cartesian product of it and its
neighbours’ action spaces only, which for large games is a much more feasible task than es-
timating the full reward function onA. In the following two sections, we formalise sufficient
conditions on theεt schedule for games that may be succinctly represented in GNFor HNF
that ensureQ–learning converges.

4.3. Estimating rewards in games in graphical normal form (GNF). For games in
GNF, each agent needs to learn only the reduced space of jointactions given by the Cartesian
product of it and its neighbours’ action spaces. As such, each individual i now updates its
estimatesQt

i using the equation

Qt+1
i (ai,νi ) = Qt

i (ai,νi )+λt I{at
i,νi

= ai,νi}
(

Rt
i −Qt

i(ai,νi )
)

∀ai,νi ∈ Ai,νi . (4.5)

In this case, the schedule that the sequence{εt}t→∞ follows in order to guarantee that eachQ
value is updated infinitely often can be altered to take advantage of the reduced size of each
agent’s joint action space.

LEMMA 4.3. In a game in GNF, let i’sneighbourhood sizebe the number of neighbours
of i plus 1 for i itself. Given this, let Ji be the size of the largest of the neighbourhoods of i
or any j in νi . In a game with unknown noisy rewards, if agents select theiractions using a
policy in which, for all i∈ N, ai ∈ Ai and t≥ 1,

Pr(at
i = ai)≥ εt

i , with εt
i = cεt

−1/Ji ,

where cε > 0 is a positive constant, then

lim
t→∞

|Qt
i (ai,νi )− r i(ai,νi )|= 0 ∀i ∈ N, ∀ai,νi ∈ Ai,νi . (4.6)

Proof. If the probability that agenti selects an action is bounded below byεt
i = cεt−

1/Ji ,
then the probability that any joint actionai,νi is played is bounded below by

∏
j∈{i}∪νi

cεt
−1/Jj ≥

(

cεt
−1/(|νi |+1)

)|νi |+1
= (cε)

|νi |+1t−1,

becauseJj ≥ |νi |+1. Hence we apply Lemma 4.1 toQi with action spaceAi,νi , and the result
follows.

4.4. Estimating rewards in games in hypergraphical normal form (HNF). In the
setting of a game in HNF, each agent can learn the payoffs for joint actions in each of its
local games independently. Hence, an individuali now updates its estimateQt

i,γ of its reward
function for eachγ using the equation

Qt+1
i,γ (aγ) = Qt

i,γ(aγ)+λt I{at
γ = aγ}

(

Rt
i,γ −Qt

i,γ(aγ)
)

∀aγ ∈ Aγ. (4.7)

For games in HNF, each joint action in each local game is guaranteed to be sampled infinitely
often by following the{εt}t→∞ schedule given in the following Lemma.

LEMMA 4.4. In a game in HNF, let Ji be the maximum number of participants in any
single local game inΓi (i.e. Ji = maxγ∈Γi |N

γ|). In a game with unknown noisy rewards, if
agents select their actions using a policy in which, for all i∈ N, ai ∈ Ai and t≥ 1,

Pr(at
i = ai)≥ εt

i , with εt
i = cεt

−1/Ji ,
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where cε > 0 is a positive constant, then

lim
t→∞

|Qt
i,γ(aγ)− r i,γ(aγ)|= 0 ∀i ∈ N, ∀γ ∈ Γi , ∀aγ ∈ Aγ. (4.8)

Proof. If the probability that agenti selects an action is bounded below byεt
i = cεt−

1/Ji ,
then the probability that any joint actionai,νi is played is bounded below by

∏
j∈Nγ

cεt
−1/Jj ≥

(

cεt
−1/|Nγ|

)|Nγ|
= (cε)

|Nγ|t−1,

becauseJj ≥ |Nγ| Again, the result follows from applying Lemma 4.1 toQi,γ with action
spaceAγ.

We have now derived techniques for estimating an agent’s reward functions that can
overcome the computational problems associated with learning rewards in large games by
exploiting structured interaction between the agents. When interleaved with a suitable strat-
egy adaptation process, these will result in an algorithm that converges to a Nash equilibrium
in potential games with unknown noisy rewards. The following two sections discuss two
families of such strategy adaptation processes, fictitiousplay and adaptive play. Although the
approaches to proving convergence of algorithms in these families differ, we can, nonethe-
less, use theQ–learning results just proven to derive convergence conditions for algorithms
in both families.

5. Fictitious play with learned reward functions. In this section, we show that if the
agents (i) update their estimates of the expected rewards for joint actions using theQ–learning
approach outlined above, (ii) update their beliefs over their opponents’ actions using a FP
process, and (iii) select a new action using an appropriately definedε–greedy action selection
policy, then their actions converge to a Nash equilibrium (in expected rewards) in potential
games with unknown noisy rewards.

5.1. Review of generalised weakened fictitious play.To begin, we describe the classi-
cal fictitious play (FP) process [Brown, 1951], and then consider the broader class of gener-
alised weakened fictitious play processes [Leslie and Collins, 2006]. Let agenti’s historical
frequencyof playingai , be defined as:

σt
i,ai

=
1
t

t−1

∑
τ=0

I{aτ
i = ai}. (5.1)

We write σt = {σt
i,ai

}i∈N,ai∈Ai for the vector of these beliefs, andσt
−i for the beliefs about

all agents other thani. In classical FP, the chosen action is a best–response to thehistorical
frequencies of all the other agents;at

i ∈ bi(σt
−i). Writing b(σ) = ×i∈Nbi(σ−i) for the set of

joint best responses, the FP recursion can be restated as therecursive inclusion:

σt+1 ∈

(

1−
1

t +1

)

σt +
1

t +1
b(σt).

Building on this, Leslie and Collins [2006] define the class of generalised weakened fictitious
play (GWFP) processes. These are processes that admit a moregeneral belief–updating pro-
cess and allowδ–best responses to be played by the agents. We writebδ(σ) = ×i∈Nbδ

i (σ−i)
for the set of jointδ-best responses. In a GWFP process, beliefs follow the inclusion:

σt+1 ∈ (1−αt+1)σt +αt+1(bδt
(σt )+Mt+1), (5.2)
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with αt → 0 andδt → 0 ast → ∞, ∑t≥1 αt = ∞, and{Mt}t≥ 1 a sequence of perturbations
satisfying conditions on tail behaviour. Throughout this section we assume that theMt are
martingale differences (with expected value 0 given the history up to timet and bounded
variance), which ensures that the tail conditions hold if∑∞

t=1(αt)2 < ∞. Leslie and Collins
[2006] show that trajectories of process given in (5.2) are stochastic approximations of the
differential inclusion:

d
dt

σt ∈ b(σt)−σt . (5.3)

Hence the limit set of a GWFP process (5.2) is a connected internally chain-recurrent set
of the differential inclusion (5.3), which in turn implies that the limit set of a GWFP pro-
cess consists of a connected set of Nash equilibria in potential games, two–player zero–sum
games, and generic 2×n games [Leslie and Collins, 2006]. We make use of this result in the
next section.

5.2. Q–learning fictitious play. We now show that if agents adapt their strategies by
playingε–greedy responses to their opponents’ historical frequencies of play, with these best
responses calculated with respect to learned reward functions, then not only do the reward
function estimates converge, but the agents’ strategies also converge to a Nash equilibrium
in the classes of games mentioned previously. In order to prove this, it suffices to show that
Q–learning FP is a GWFP process; that is, an agent’sε–greedy action selection policy with
respect to the estimatedQ values corresponds to aδt–best response to its opponents’ historical
frequency of play, withδt → 0 ast → ∞.

Our model is that the agents use the versions ofQ–learning described in (4.5) or (4.7)
for games in GNF or HNF, respectively, to estimate eachr i(ai,νi ), and update their beliefs
over opponents’ actionsσνi using the FP belief updating rule given in (5.1). For ease of
exposition, from here on we will use the uniform notationi,νi to refer to those agents whose
actions affecti’s payoff, as is used for GNF, with the understanding that this isN in SNF and
{i,∪γ∈Γi νi,γ} in HNF. For HNF we also use as shorthandQt

i to denote the set of independent
estimatesQt

i,γ.
Given this, in all representational forms, the agents’ estimated expected reward for se-

lecting actionai ∈ Ai is:

r̂ i(ai,σt
νi
,Qt

i ) = ∑
ai,νi∈Ai,νi

(

∏
j∈νi

σt
j ,a j

)

Qt
i (ai,νi ).

Note that agenti need only know the historical frequencies of agents inνi in order to calcu-
late r̂ i . The reward for a mixed strategyπi is then a linear combination of probabilities and
rewards:

r̂ i(πi ,σt
νi
,Qt

i ) = ∑
ai∈Ai

πt
i(ai)r̂ i(ai ,σt

νi
,Qt

i ).

Now consider the case in which agents employ an adaptation ofthe ε–greedy action
selection policy to choose an action based on their expectedrewards ˆr i . Specifically, we write
the best response set based on the estimatesQt

i as

Bi(σt
νi
,Qt

i ) = argmax
ai∈Ai

[

r̂ i(ai ,σt
νi
,Qt

i )
]

.

Note thatBi(σt
νi
,Qt

i ) is a set of actions, whereas the other best–response correspondences in
this section are all sets of mixed strategies. This allows usto define anε-greedy rule which
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places the following probability of selection on eachai:

B̃ε
i,ai

(σt
νi
,Qt

i ) =

{ 1−ε
|Bi(σt

νi
,Qt

i )|
if ai ∈ Bi(σt

νi
,Qt

i ),
ε

|Ai |−|Bi(σt
νi
,Qt

i )|
otherwise.

(5.4)

Agents will select actions according to the mixed strategyB̃εt

i (σt ,Qt
i ), with εt following a

suitably decreasing schedule, to ensure that allQ values are updated infinitely often, but that
ast → ∞ the strategy of agenti is close to being a best response according to ˆr i(·,σt

νi
,Qt

i ).
DEFINITION 5.1. A Q–learning FP process is a process{σt ,Qt}t→∞ such that

at
i ∼ B̃

εt
i

i (σ
t
νi
,Qt

i ) ∀i ∈ N,

σt+1
i,ai

= (1−αt+1)σt
i,ai

+αt+1I{at
i = ai} ∀i ∈ N, ∀ai ∈ Ai , and

Qt+1
i (ai,νi ) = Qt

i(ai,νi )+λt I{at
i,νi

= ai,νi}(R
t
i(ai,νi )−Qt

i(ai,νi )) ∀i ∈ N, ∀ai,νi ∈ Ai,νi .

THEOREM 5.2. Suppose that the agents’ beliefs and estimates follow a Q–learning FP
process{σ,Q} for which:

• αt = (cα + t)−ρα, where cα > 0 andρα ∈ (1/2,1],
• λt = (cλ +#t(ai ,aνi ))

−ρλ , where cλ > 0 andρλ ∈ (1/2,1],
• εt

i = cεt−
1/Ji , where cε > 0 and Ji is as defined in Lemmas 4.3 and 4.4, for the GNF

and HNF representations, respectively.
Then theσt follow a GWFP process.

Proof. We know by Lemmas 4.3 and 4.4 and the conditions onλt and εt , that with
probability 1:

lim
t→∞

|Qt
i (ai,νi )− r i(ai,νi )| → 0,

and there exists a sequenceηt → 0 such that

max
i∈N

max
ai,νi∈Ai,νi

|Qt
i (ai,νi )− r i(ai,νi )|< ηt ,

so the same can be said for any mixed strategy; specifically,

max
i∈N

|r̂t
i (πi ,σt

νi
,Qt

i )− r i(πi ,σt
−i)|< ηt

for anyπi ∈ ∆i .
Now, letB̃εt

i (σ
t ,Qt

i ) be the mixed strategy played byi at thetth time step to select action
at

i . Then (recalling that maxi∈N,a∈A |r i(a)|= r < ∞), for everyt andi:

r̂ i(B̃
εt

i (σ
t
νi
,Qt),σt

νi
,Qt

i )≥ (1− εt)max
ai∈Ai

r̂ i(ai ,σt
νi
,Qt

i )+ εt min
ai∈Ai

r̂ i(ai ,σt
νi
,Qt

i )

≥ (1− εt)(max
ai∈Ai

r i(ai ,σt
−i)−ηt)+ εt(−r −ηt)

≥ max
ai∈Ai

r i(ai ,σt
−i)− [ηt +2εtr].

HenceB̃εt

i (σt
νi
,Qt

i ) ∈ Bδt

i (σt
−i) for δt = ηt +2εtr andδt → 0 ast → ∞.

Now (αt+1)−1
[

σt+1
i − (1−αt+1)σt

i

]

is a unit vector with a 1 in the position correspond-
ing to actionat

i . Hence, conditional on the history up tot, the expected value of this unit
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vector is simplyB̃εt

i (σt
νi
,Qt

i ), and the variance is bounded. Therefore, definingMt
i to be the

martingale difference between the realised and expected value of this unit vector, we have
that

(αt+1)−1[σt+1
i − (1−αt+1)σt

i

]

= B̃εt

i (σ
t
νi
,Qt

i )+Mt
i ∈ Bδt

i (σ
t
−i)+Mt

i .

Noting also that∑∞
t=1(αt)2 < ∞, so that the tail conditions onMt hold, theσt therefore follow

a GWFP process.
The above result implies the following:

COROLLARY 5.3. The strategies in a Q–learning FP process, under the conditions on
αt , λt andεt specified in Theorem 5.2, converge to a connected subset of Nash equilibria in
potential games, two–player zero–sum games, and generic2×n games.

From the perspective of distributed optimisation, the mostimportant consequence of this
result is that it shows thatQ–learning FP can be used to compute pure strategy Nash equi-
libria in potential games in which the potential function corresponds to the global objective
function.

6. Adaptive play with learned reward functions. The second family of algorithm we
consider is adaptive play. This is a class of processes in which agents maintain a finite history
over their opponents’ actions, and construct an estimate oftheir mixed strategies by sam-
pling from this history [Young, 1993]. In this section we address the convergence properties
of Q–learning variants of Young’s standard adaptive play, analogous to theQ–learning FP
investigated in Section 5. Specifically, if agents (i) update their reward estimates using the
Q–learning approach outlined in Section 4.2, (ii) update their beliefs over their opponents’
actions using an appropriate adaptive play process, and (iii) select a new action using the
ε–greedy decision rule, then their actions converge to a Nashequilibrium in potential games
with unknown noisy rewards. In this section we first review standard adaptive play, then detail
two important versions of adaptive play — payoff–based adaptive and spatial adaptive play
— and finally characterise the conditions on the game and the agents’ memory and sample
sizes for which these and other variants of adaptive play converge.

6.1. Review of adaptive play.Adaptive play (AP) is a learning process in repeated nor-
mal form games. It is similar to FP, in that agents observe theactions of opponents and select
best responses (orδ-best responses). It differs in that each individual only has a finite mem-
ory, of lengthm, and recalls the previousm actions taken by its opponents. On each play of
the game, each individual takes a sample of sizek ≤ m from this memory, and plays either
a best response to the actions in the sample (with probability 1− ε) or otherwise selects a
random action. Ifε > 0 this results in an ergodic Markov chain on the state spaceM con-
sisting of all possible joint memories, and therefore thereis a unique stationary distribution
µ(ε) = {µM(ε)}M∈M . Call a memory configurationM ∈ M a stochastically stable state if
limε→0µM(ε) > 0. For this setting, Young [1993] shows that in a weakly acyclic gameΓ the
stochastically stable states are homogeneous joint memories each consisting entirely of one
pure strategy Nash equilibrium provided thatk ≤ m/(LΓ+2), whereLΓ is the constant defined
in Section 3.2.

However, Young is not entirely clear in which way the best response should be calculated,
in that it is only stated that the next action is a best response to the sample. This could mean at
least two things when there are more than two agents. Individualsi could, as in FP, estimate
the individual mixed strategies of all opponents (essentially, calculateσt

j independently for
each j 6= i) based on the finite sample (instead of the full history, as inFP). Alternatively,
individual i could calculate a joint mixed strategy over the other agents, as in Marden et al.
[2005], and play a best response to this joint mixed strategy. Young’s proofs of convergence
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are valid in both cases, since they rely entirely on best responses to pure strategies, which are
identical under both regimes.

6.2. Payoff–based adaptive play (PAP).Building on the last point of the previous sec-
tion, note that agents using AP need never actually estimatemixed strategies if the joint
strategy approach is to be used, as in Marden et al. [2005]. Indeed identical decisions will
be made by considering cumulative reward against the sampled actions, while reducing the
informational demands on the agents. This motivates the following definition:

DEFINITION 6.1. Payoff-based adaptive play (PAP)with memory size m> 0, sample
size k≤ m, and error rateε ∈ (0,1) is a process under which each individual i samples k
of the previous m plays of the game, then calculates the cumulative reward that each ai ∈ Ai

would have received against the joint actions selected by the other agents on those plays of
the game. With probability1− ε the action maximising that cumulative reward is selected.
Otherwise a random action is selected.

THEOREM 6.2. SupposeΓ is weakly acyclic and k≤ m/(LΓ+2). The stochastically stable
states of payoff-based adaptive play are homogeneous jointmemories each consisting entirely
of one pure strategy Nash equilibrium.

Proof. Since the proof of Young [1993] relies only on best responses to pure strategies,
which are the same for best response to both individual and joint mixed strategies, the proof
holds for both cases. Action selection under the cumulativereward paradigm is the same as
under the joint strategy paradigm [Marden et al., 2005] and hence the same result holds for
PAP as for AP.

6.3. Review of spatial adaptive play (SAP).The third variant of AP we consider is
spatial adaptive play [Young, 1998], a variation of AP in which not all individuals update
their strategy simultaneously. Now, if both the memorym and the sample sizek are 1, and
only one agent at a time updates their strategy, then the procedure reduces to log-linear learn-
ing [Blume, 1993]. The convergence of this scheme, and generalisations, has recently been
thoroughly investigated by Marden and Shamma [2008], showing that asε → 0 in a potential
game the stochastically stable states are maximisers of thepotential function.

Furthermore Arslan et al. [2007] suggest that ifε → 0 as play proceeds in log-linear
learning then the played joint strategy will converge to a globally optimal element of the set
of Nash equilibria. We here clarify the relationship with simulated annealing, and in particular
we indicate why the convergence proof of Geman and Geman [1984] will hold for log-linear
learning. In particular, individual agents select actionsaccording to a distribution under which
the probability of choosing any action is bounded below byεt . Hence Lemma 2 of Geman
and Geman [1984] continues to hold ifεt ≥ t−1/N. Furthermore, sinceεt → 0, Lemma 3
also continues to hold, and therefore their Theorem B holds,showing that strategies converge
to the global maximum of the potential function. Although the lower bound onεt looks
less strict than the logarithmically decreasing temperature of standard simulated annealing,
it has exactly the same effect on the sampling probabilitiesof actions, resulting in very slow
convergence. Indeed thist−1/N is precisely the rate of exploration that we introduced the GNF
and HNF game representations to avoid (see Section 4). Note that a similar phenomenon
is observed in the parameters for the multinomial logit action selection andε-greedy action
selection in Singh et al. [2000] — in the multinomial logit decision rule the temperature
decreases logarithmically, while for theε-greedy decision ruleε decreases ast−1, but the
action selection probabilities in the case of two actions are identical.

6.4. Q–learning adaptive play variants. As with FP, the adaptive play processes dis-
cussed above — AP, PAP and SAP — rely on knowledge of the rewardfunctionsr i , whereas
we are interested in situations where these reward functions are not known and can only
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be observed subject to stochastic perturbations. The synchronous varieties of adaptive play
(AP and PAP) both satisfyPr(at

i = ai) ≥ ε|N|, so Lemmas 4.3 and 4.4 apply for the GNF
and HNF representations, respectively, and theQ-learning approach will be useful. With the
asynchronous updates of SAP we need to be more careful, sincenot all agents’ actions are
updated simultaneously. With fixedε we have an ergodic Markov chain on the joint action
space, so all joint actions will be played infinitely often; with decreasingεt ≥ t−1/N, this
schedule was specifically chosen so that all actions are visited infinitely often, as in Lemma
2 of Geman and Geman [1984]; again theQ–learning approach will be successful. Hence
we can considerQ–learning variations of these adaptive play processes, in which the action
selection procedure is exactly as in the original process, but uses estimatedQ values instead
of the true reward functions.

THEOREM 6.3. Q–learning versions of AP, PAP and SAP have the same convergence
properties as the algorithms that use the true reward function.

Proof. Since the reward functions are bounded in absolute value, and the action spaces
and memory are finite, there exists anη > 0 such that if for alli ∈ N, and for allai,νi ∈ Ai,νi ,

|Qt
i (ai,νi )− rt

i (ai,νi )|< η. (6.1)

then the decisions made are the same whether the individualsuser i or Qt
i .

We know that (4.4) holds, so that, with probability 1, there exists aT such that for all
t ≥ T, (6.1) holds.

Since, afterT, the strategies of agents evolve exactly as if they were following the stan-
dard AP type process usingr i instead ofQt

i , the convergence properties are just the same.

The above results imply the following:
COROLLARY 6.4. For small but fixedε > 0, in weakly acyclic games, the stochasti-

cally stable states of Q–learning adaptive play, Q–learning payoff-based adaptive play, and
Q–learning spatial adaptive play (with k= m= 1) are homogeneous joint memories each
consisting entirely of one pure strategy Nash equilibrium.Under Q-learning spatial adaptive
play with k= m= 1 andεt = t−1/N in a potential game the joint action converges to the joint
action that globally maximises the potential.

Consequently, likeQ–learning FP, this result shows that theQ–learning AP algorithms
can be used to compute pure strategy Nash equilibria in potential games in which the potential
function corresponds to the global objective function.

7. Experimental evaluation. In this section we illustrate the efficacy of theQ–learning
FP, AP, PAP and SAP algorithms as distributed optimisation tools, using two sets of sim-
ulated problems (in what follows, we drop the commonQ–learning prefix and refer to the
algorithms by only their belief updating rule). This experimental evaluation is necessary be-
cause of the absence of analytic methods for rigorously comparing the learning performance
of the algorithms. In Section 7.1 we compare the algorithms in a simple game, so that their
differences can be clearly demonstrated. Specifically, themean values of the game form a
three–player potential game with two strict Nash equilibria, one with a higher social welfare
(sum of utilities) than the other. Then, in Section 7.2, the second set of simulated problems
we consider is a wireless sensor network coordination game,based on a real–world wide–area
surveillance problem. This is a large–scale distributed optimisation problem, and it allows us
to demonstrate the overall efficacy of the approaches we havederived.

The main metric of performance we consider in both sets of problems is the expected
value of the solution found by an algorithm. Given that the algorithms are guaranteed to con-
verge to a (locally optimal) Nash equilibrium, this measureaccounts for the respective prob-
abilities of converging to different Nash equilibria. We used the same learning parameters
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Matt
Colin Colin

Left Right Left Right
Rowena Up (5,5,5) (0,1,0) (0,0,1) (1,0,0)

Down (1,0,0) (0,0,1) (0,1,0) (2,2,2)

Fig. 1: Three–player potential game.

for the algorithms throughout all of the experiments. Specifically, theQ–learning parameters
andε–greedy parameter were constant across all four algorithmswith ρλ = 1, cλ = 0 and
cε = 1/10. We used standard FP, withρα = 1, cα = 0, and AP and PAP with memory size
m= 15 and sample sizek= 3 (for SAPm= k= 1 by definition). As benchmarks, we use two
independentQ–learning procedures. The first, CMS QL, is the algorithm by Cominetti et al.
[2010], which learns the values of independent actions via Equation (4.1) and uses Boltzmann
action selection:

Pr(at = a′) =
eQ(a′)/η

∑a∈AeQ(a)/η

with the temperature parameter fixed atη = 1/20. The second, CB QL, is the independent
action learner presented in Claus and Boutilier [1998], which also uses Boltzmann action
selection, but with the temperature parameter following the scheduleη = 16(0.9t) (as is used
in the author’s description of this algorithm).

7.1. A simple three–player game.In this section we compare the algorithms in a sim-
ple three–player two–action potential game, with mean rewards given in Figure 1, in which
Rowena selects the row, Colin the column and Matt the matrix,respectively. The agents re-
ceive rewards equal to these values plus uniform noisee∈ [−ζ,ζ], as in Equation 3.2, whereζ
itself is uniformly drawn from[5,10] at the beginning of each scenario. The game in mean re-
wards has two strict (pure) Nash equilibria and one mixed Nash equilibrium. The strict Nash
equilibrium located at (U, L, L) is globally optimal, or social welfare maximising, while the
other pure Nash equilibrium at (D, R, R) is sub–optimal. The strict Nash equilibria have
equal–sized basins of attraction, in that the same number and length best response paths lead
to each one.

We use this game to compare the algorithms’ learning performances in a transparent
setting. Furthermore, since the algorithms are only guaranteed to converge to one of the
strict Nash equilibria, and not necessarily to the optimum,we use this game to investigate the
quality of the solutions found by the algorithms, and to compare their behaviour to that of
the benchmarks. The value of an action profile is measured by the sum of the actual rewards
to the agents playing the game, i.e.∑i∈N Ri(at), and the mean values earned by each of the
algorithms were recorded for 50 repetitions of 50 scenariosgenerated randomly as described
above. We consider a duration of 1000 time–steps, not because all algorithms converge in
this time, but because most interesting behaviour occurs during this period and the clearest
differentiations can be made.

At a high level, Figure 2 shows that AP and PAP are the best performing algorithms in
this simple game. FP, SAP and CB QL tend to perform comparablyby the end of the simu-
lation, although the trajectory of their behaviour is quitedifferent, while CMS QL is signifi-
cantly outperformed by all algorithms. Note also that the two Q–learning algorithms’ solution
qualities increases very rapidly at the beginning of the games, but plateau quite early. In con-
trast, the game–theoretic learning algorithm’s average solutions increase in quality through
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Fig. 2: Average total reward earned by the players in the simple three–player game.

the simulation. A further difference between the algorithms is that theQ–learning algorithms
have much smoother mean trajectories than the game–theoretic algorithms.

To understand why this is the case, we look at the plots in Figure 3. The coloured areas
of the plots in this figure illustrate the proportion of runs in which the optimal equilibrium
(dark), sub-optimal equilibrium (light) or a non–equilibrium outcome (medium) is played.
The bold dashed or dotted lines on the plots show the same proportions for the agents’ in-
tended play, that is, the actions they would have played if they played pure best–responses
rather than sampling with probabilityε. The distance between the actual and intended play
of an equilibrium gives the proportion of non–equilibrium play that is due to the sampling
induced by theε–greedy rule.

The most noticeable feature of these plots is that, in a high proportion of simulations,
FP, AP, PAP and SAP converge towards a Nash equilibrium, whereas in CMS QL and CB
QL this is definitely not the case. Specifically, by the final time–step of the simulations,
the proportion of runs in which the intended play is not a Nashequilibrium is less than 3%
for AP and PAP, and approximately 8% for FP and 17% for SAP (this higher rate of non–
convergence is to be expected with a learning algorithm thateffectively replicates distributed
simulated annealing). Furthermore, these proportions tend down over the duration of the
game for all four algorithms. This indicates that, even whennoise in early observations causes
these algorithms to become temporarily stuck in low–payoffconfigurations, they continue to
sample other actions at a rate that is high enough to learn to play better actions, leading
them towards Nash equilibria. In contrast, at the termination of the simulations, CMS QL
intend to play non–equilibrium profiles in approximately 20% of runs, and a huge 50% of
CB QL runs, and these proportions are constant for a long period of play. That is, after 1000
time–steps, the best game–theoretic algorithms are almost5 times less likely to have failed to
converge to an equilibrium than the best naı̈veQ–learning approach. The explanation for this
is that theQ–learning algorithms are becoming stuck in non–equilibrium, low–payoff action
configurations. In particular, the annealing schedule of CBQL reduces the sampling rate
more quickly than the conditions on the multi–agent GLIE policy derived in Section 4 permit.
As such, it becomes mired with incorrect reward estimates innon–equilibrium outcomes,
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Fig. 3: Action profile time–series for the simple three–player game. The plots show pro-
portions of actions played corresponding to the optimal Nash equilibrium (dark), non–Nash
equilibrium (medium) and the sub–optimal Nash equilibrium(light), with intended play (i.e.
withoutε–greedy exploration) superimposed in bold dash or dotted lines.

and does not sample new actions frequently enough to learn that it is not playing a best
response. This effect is also reflected in theQ–learning algorithms’ relatively smooth global
utility curves plotted in Figure 2. Moreover, besides the obvious effects on the global reward,
because CMS QL and CB QL fail to converge a much greater proportion of the time, the
price of anarchy bounds put on marginal contribution games constructed from optimisation
problems cannot be validly applied to systems where the algorithms used do not have Nash
equilibrium convergence guarantees.
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The results in this section have illustrated the differences in the algorithms’ behaviour
and subsequent performance. Building on this, we now go on todemonstrate the usefulness
of these algorithms in a large–scale optimisation problem.

7.2. An ad hoc wireless sensor network management problem.In this section we aim
to demonstrate the usefulness of the learning algorithms derived in Sections 5 and 6 in large–
scale optimisation and control, and to also give an example of how an optimisation problem
can be transformed into a potential game using marginal contribution payoffs. The problem
we consider is that of maximising the efficiency of a sensor network deployed for wide–
area surveillance by coordinating the sense/sleep schedules of power constrained energy-
harvesting sensor nodes. Specifically, the domain is a deployment of sensors distributed in
an urban setting that can sense nearby traffic — these are acoustic and vibration sensors that
can be used to detect foot or vehicle traffic. The sensors run on energy harvested from the
environment, so are limited by their generation and storagecapacities. That is, they operate in
an “energy–neutral” mode, such that the energy that they expend is equal to that which they
can generate [Farinelli et al., 2008; Kansal et al., 2007]. Since the activation of the sensor
and the necessary signal–processing required to detect events is typically the most energy
intensive activity, the sensors cannot be permanently powered. Rather, they must adopt a
duty cycle and sensing schedule that maintains energy neutral operation. For example, if the
length of time that it can sense for is one third of the day, then the agent has to decide on
which third of the day it senses, and in which periods it sleeps. The sensors are assumed to be
placed randomly, so in order to cover the entire field of observation, they are dispersed densely
enough to ensure that nearby sensors’ observation ranges overlap. As such, the usefulness of
each sensor’s observations is coupled with that of its neighbours’, which are those sensors
that cover a common section of road under surveillance. Thisspatial structure allows us to
represent the problem as a game in GNF. An example of the simulation domain is given in
Figure 4, which shows the sensors’ locations and ranges and the underlying road network on
which traffic flows.

The problem of optimising the coverage of the sensor network(i.e. the number of events
observed) is divided into two parts. The first is to coordinate sense/sleep cycles of the sensors
so as to maximise the expected number of events observed eachday. However, these events
occur at random, and, at the outset, the mean frequency of events is unknown to the sensors
— below, we show that this makes the sensors’ rewards unknownand noisy. The second
part of the problem, then, is to learn the payoffs for different configurations of sensor cycles
(which are a function of the unknown mean frequencies of events in the different regions
under surveillance and the sleep/sense cycles of the sensors). To do this, the sensors have to
learn their payoffs while also coordinating their sense/sleep cycles to maximise the number of
event observed. The large number of sensor nodes (there may be hundreds in the system) and
the constraints on their computation and communication rules out a centralised optimisation
method, so a distributed method must be used. In particular,we use this problem domain
to demonstrate the efficacy of the learning algorithms we derive for playing potential games
with unknown noisy rewards.

In more detail, at the system–wide level, during any particular day a setX of traffic events
occurs. The simulator generates several hundred potentialevent locations, and the probability
of an event occurring at a particular location in a particular period of the day is given by a
fixed probability (i.e. the probability of an event occurring varies across the periods of the day,
but is fixed from day to day). Furthermore, the probabilitiesof events at different locations
occurring at particular times are correlated, such that if the probability thatx1 occurs att is
high, then the likelihood of an event occurring atx2 at the same time is higher than it would
usually be. These correlations have their origins in the flowof traffic through the underlying
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Fig. 4: The ad hoc wireless sensor network with overlapping sensor regions and the under-
lying road network. Solid red numbered dots are sensors, opaque red circles indicate the
observation regions of active sensors, and white dots represent the vehicles causing events.

network. We define the value of a sensor observing an event,x∈ X as:

Vx(a) = 1−θ#x(a)

where #x(a) is the number of sensors that observex (it is observed if it occurs within the
sensing radius of a sensor at a time when the sensor is on), 0< θ < 1 is a parameter that
is used to differentiate between sensing cycle configurations that result in many redundant
observations of the same event. It does this by imposing diminishing contributions to the
global reward for each additional observation made of any single observation. Note thatVx

is 0 if x goes unobserved. The agents time–stamp the events that theysense, and at the end of
each day, they compare the lists of time–stamped events to evaluate their action (their choice
of sensing period) for that day. An agent’s reward for observing an event is the difference in
reward it earns for the system for observing or not observingthe event; that is, its marginal
contribution to the system’s performance:

Rx
i (ai ,aνi ) = θ−#x(ai ,aνi )−1−θ−#x(ai ,aνi )

Then, each day, its total reward from a sensing cycle is the sum of rewards for all events it
observes,x∈ Xi :

Ri(ai ,aνi ) = ∑
x∈Xi

Rx
i (ai ,aνi )

Note thati’s reward depends on the actions of only those agents whose sensing ranges over-
lap with its own. In this way, neighbouring agents’ payoffs are coupled, and the optimisa-
tion problem can be viewed as a game in GNF. This utility derivation results in a marginal–
contribution potential game, with a potential given by the total system value for all events:

V(a) = ∑
x∈X

1−θ#x(a),
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Fig. 5: Results of the sensor network simulations, plottingthe average ratio of the reward
earned to the global optimum for each scenario.

whose maxima correspond to the Nash equilibria of the associated game. By focusing on
high–reward event observations, which are those that are observed by fewer sensors, an agent
moves the system towards observing more events in total.

Given the daily rewards above, an agent usesQ-learning to estimate the reward it re-
ceives in a given time period (e.g. third of the day) and giventhe actions of its neighbours.
Importantly, because an agent does not know what portion of its sensing areas overlap with
its neighbours, it cannot use any observations they have made in the periods it was asleep to
update the Q-values of joint actions other than the one it made, because it does not know if
it would also have seen the events. The agent then uses FP or anAP variant to predict the
strategies of its neighbours. It combines these two values to compute its expected reward, in
terms of the expected number of unique event observations, it makes during each of the time
periods in the next day, and then chooses a time period using the ε–greedy action selection
rule. We recorded the ratio of the value of the solution foundby an algorithm at each time
step to the scenario optimum — that is, the proportion of the optimum,V(at)/V(a∗), where
a∗ is optimal joint action for that scenario — so that we can aggregate our simulation results
across scenarios with different payoff levels. We averagesthis measure over 30 runs each of
50 different scenarios.

The results of our simulations are given in Figure 5, which shows an overall good per-
formance by all of the algorithms: apart from PAP, the game theoretic algorithms outperform
the naı̈veQ–learning algorithms at a statistically significant level (standard error bars do not
overlap). Furthermore, note the flattening–out of theQ–learning algorithms from an early
point in time. The same regularity in the global reward earned by theQ–learning algorithms
was seen in the previous section in the simple game scenario.In that setting, the relatively
low payoffs to CMS QL and CB QL were due to the fact that they do not necessarily converge
to a Nash equilibrium (local optimum). We conclude that the low–payoffs to these algorithms
here is caused by the same effect. That is, these algorithms become stuck in low–value con-
figurations because they do not sample new actions with a sufficient frequency to learn that
this is the case. In contrast, the plots show that FP, AP and SAP, and to a lesser extent PAP,
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continue to improve their average performance over time, which matches with the guaranteed
convergence to Nash equilibrium we derived in Sections 5 and6.

We have now demonstrated that the FP, AP, PAP and SAP algorithms we derive in this
article provide effective methods for controlling large distributed systems, in which agents
initially have no knowledge of the value of their actions, somust learn their rewards on-
line. These algorithms, which we have shown to out–perform their Q–learning alternatives,
have the additional advantage over their alternatives of having bounds on their worst–case
convergence points, if the optimisation problem is transformed into a game using marginal
contribution payoffs.

8. Conclusions. In this article, we proved the convergence to Nash equilibria of variants
of fictitious play and adaptive play in potential games and weakly acyclic games, respectively,
with rewards that are initially unknown and which must be estimated over time from noisy
observations. Potential games capture many important cooperative control problems in multi–
agent systems, including the management of congested networks and task allocation and
scheduling problems, and the results contained in this paper are directly applicable to such
models with initially unknown reward functions, as we demonstrated via their instantiation
in a wireless sensor network domain exemplar.

There are a number of ways in which this work may be taken forward. First, it may be
possible to develop similar convergence proofs to cover other families of algorithms, such
as joint–strategy fictitious play or regret matching. Second, different frameworks for online
learning of noisy rewards may be employed to speed up estimating a game’s payoffs, and
consequently an algorithm’s convergence to Nash equilibrium, such as PAC learning or by
accurately learning only a best response path, rather than all of an agent’s payoffs. Third, it
may be possible to derive efficient sampling rate annealing schedules for other compact game
representations, such as action–graph games. Fourth, there is an opportunity to extend the
convergence of fictitious play and adaptive play variants ineven more complicated settings,
such as those where action observations are also perturbed,or where payoffs in the game
vary according to some (possibly partially observable) state variable, such as is addressed
for individual agents in the growing literature on contextual multi–armed bandits and multi–
armed bandits with covariates.

References.

Arslan, G., Marden, J. R., and Shamma, J. S. (2007). Autonomous vehicle-target assignment: A game
theoretical formulation.Journal of Dynamic Systems, Measurement, and Control, 129(5):584–596.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (1995). Gambling in a rigged casino: The ad-
versarial multi-armed bandit problem. InProceedings of the 36th Annual Symposium on Foundations
of Computer Science (FOCS ’95), pages 322–331, Washington, DC, USA. IEEE Computer Society.

Baños, A. (1968). On pseudo–games.The Annals of Mathematical Statistics, 39:1932–1945.
Blume, L. (1993). The statistical mechanics of strategic interaction. Games and Economic Behavior,

5:387–424.
Brown, G. W. (1951). Iterative solution of games by fictitious play. In Koopmans, T. C., editor,Activity

Analysis of Production and Allocation, pages 374–376. John Wiley & Sons, Inc., New York.
Chapman, A. C., Micillo, R. A., Kota, R., and Jennings, N. R. (2010). Decentralised dynamic task

allocation using overlapping potential games.The Computer Journal, 53(9):1462–1477.
Chapman, A. C., Rogers, A., Jennings, N. R., and Leslie, D. S.(in press). A unifying framework for

iterative approximate best response algorithms for distributed constraint optimisation problems.The
Knowledge Engineering Review.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative multiagent
systems. InIn Proceedings of the 15th AAAI National Conference on Artificial Intelligence, pages
746–752. AAAI Press.



26

Cominetti, R., Melo, E., and Sorin, S. (2010). A payoff-based learning procedure and its application to
traffic games.Games and Economic Behavior, 70(1):71–83. Special Issue In Honor of Ehud Kalai.

Farinelli, A., Rogers, A., and Jennings, N. R. (2008). Maximising sensor network efficiency through
agent–based coordination of sense/sleep schedules. InWorkshop on Energy in Wireless Sensor Net-
works in conjunction with DCOSS 2008, pages IV–43–IV–56, Marina Del Rey, CA, USA.

Foster, D. P. and Young, H. P. (2006). Regret testing: learning to play Nash equilibrium without knowing
you have an opponent.Theoretical Economics, 1:341–367.

Fudenberg, D. and Levine, D. K. (1998).The Theory of Learning in Games. MIT Press, Cambridge,
MA.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restora-
tion of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741.

Gottlob, G., Greco, G., and Scarcello, F. (2005). Pure Nash equilibria: Hard and easy games.Journal
of Artificial Intelligence Research, 24:357–406.

Hart, S. and Mas-Colell, A. (2000). A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68:1127–1150.

Kansal, A., Hsu, J., Zahedi, S., and Srivastava, M. B. (2007). Power management in energy harvesting
sensor networks.ACM Transactions on Embedded Computing Systems, 6(4):32:1–32:38.

Kearns, M., Littman, M., and Singh, S. (2001). Graphical models for game theory. InProceedings of
the 17th on Uncertainty in Artificial Intelligence (UAI–01), pages 253–260. Morgan Kaufmann.

Leslie, D. S. and Collins, E. J. (2005). IndividualQ-learning in normal form games.SIAM Journal on
Control and Optimization, 44:495–514.

Leslie, D. S. and Collins, E. J. (2006). Generalised weakened fictitious play. Games and Economic
Behavior, 56:285–298.

Marden, J. R., Arslan, G., and Shamma, J. S. (2005). Joint strategy fictitious play with inertia for
potential games.Proceedings of the 44th IEEE Conference on Decision and Control (CDC ‘05),
pages 6692–6697.

Marden, J. R. and Shamma, J. S. (2008). Revisiting log-linear learning: Asynchrony, completeness and
payoff-based implementation.Submitted to Games and Economic Behavior.

Marden, J. R. and Wierman, A. (2008). Distributed welfare games. InProceedings of the 47th IEEE
Conference on Decision and Control (CDC–08).

Marden, J. R., Young, H. P., Arslan, G., and Shamma, J. S. (2009). Payoff–based dynamics for multi–
player weakly acyclic games.SIAM Journal on Control and Optimization, 48:373–396.

Monderer, D. and Shapley, L. S. (1996a). Fictitious play property for games with identical interests.
Journal of Economic Theory, 68:258–265.

Monderer, D. and Shapley, L. S. (1996b). Potential games.Games and Economic Behavior, 14:124–
143.

Papadimitriou, C. H. and Roughgarden, T. (2008). Computingcorrelated equilibria in multi–player
games.Journal of the ACM, 55(3):14:1–14:29.

Rosenthal, R. W. (1973). A class of games possessing pure–strategy Nash equilibria.International
Journal of Game Theory, 2:65–67.

Scutari, G., Barbarossa, S., and Palomar, D. P. (2006). Potential games: A framework for vector power
control problems with coupled constraints. In31st IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’06), volume 4, pages 241–244.

Singh, S. P., Jaakkola, T., Littman, M. L., and C. Szepesvári (2000). Convergence results for single–step
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