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Abstract Supply function equilibria are used in the analysis of divisible good
auctions with a large number of identical objects to be sold or bought. An
important example occurs in wholesale electricity markets. Despite the sub-
stantial literature on supply function equilibria the existence of a pure strategy
Nash equilibria for a uniform price auction in asymmetric cases has not been
established in a general setting. In this paper we prove the existence of a sup-
ply function equilibrium for a duopoly with asymmetric �rms having convex
costs, with decreasing concave demand subject to an additive demand shock,
provided the second derivative of the demand function is small enough. The
proof is constructive and also gives insight into the structure of the equilibrium
solutions.
Keywords: Wholesale electricity markets; divisible good auctions; supply

functions; existence of equilibria.
MSC Codes: 91A80, 91B26

1 Introduction

We consider a market in which �rms o¤er to supply a homogeneous good
at prices that depend on the quantity required. The function linking price
and quantity is called a �supply function�. Such markets can be di¢ cult to
analyze: not only are supply function equilibrium hard to �nd, but there may
also be many di¤erent possible equilibria. Klemperer and Meyer[14] were the
�rst to explore supply function equilibria in a general context. The supply
function model can apply in a purchase context to the auctions of US treasury
securities [17], but the most important examples of supply function bidding
occur in electricity spot markets.
The usual pattern for wholesale electricity markets is a uniform price auc-

tion, in which the generation �rms submit supply function bids every hour
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2 Edward J. Anderson

or even every half hour and each generation �rm is paid the market clearing
price for all the electricity it supplies. Since electricity cannot be e¤ectively
stored it is necessary to vary the amount dispatched on a short time interval:
typically the market clears and a new price is established every 5 minutes.
Electricity markets are also characterized by transmission networks with both
the generation capacity and the demands distributed over di¤erent nodes of
the network. In this paper we will ignore transmission issues and assume that
all generation �rms supply power at the same node.
Each electricity market will have its own rules of operation. Many markets

only allow supply functions that are step functions with power o¤ered at a
limited number of di¤erent prices, while some operate with piecewise linear
o¤er curves. Markets all have some minimal �tick�size both for price increments
and for supply amounts, and there will also be a price cap on the maximum
price at which the market can clear. In the short-run electricity demand is very
inelastic. Nevertheless a model that incorporates demand elasticity is useful:
in practice this may arise not only from demand responsiveness, but also from
imports or from non-strategic generators.
A number of authors have studied supply function equilibria as a model

for generators�bidding behavior in spot markets for electricity. This work was
initiated by Green and Newbery[8] and Bolle[5] who showed that the concept
of supply function equilibria introduced by Klemperer and Meyer could be
applied to electricity markets. In special cases supply function equilibria can
be calculated analytically; for example if there are constant marginal costs
[15][9] or linear marginal costs and linear demand [7][4]. It is important to
understand equilibrium behavior in an oligopoly with a small number of players
since many electricity markets involve only a handful of large generation �rms.
Supply function equilibria play an important role in understanding the market
power possessed by dominant market participants. Recent investigation of the
behavior of the electricity market in Texas (ERCOT) has shown that supply
function models give a reasonable approximation of the behavior of the large
�rms in that market [13][16]. For a comprehensive review of the extensive
literature on supply function equilibria in an electricity market context the
reader is referred to Holmberg and Newbery[12].
A characteristic of many supply function equilibrium models is that there

are a range of possible equilibria. Usually the wider the range of possible de-
mand outcomes the more restricted the set of possible equilibria. In their orig-
inal work Klemperer and Meyer[14] showed that, when demand is unbounded,
then a single (linear) equilibrium solution can be identi�ed. In an electricity
market context it is important to correctly model capacity constraints: the in-
teraction of extreme demand scenarios with the capacity constraints will often
enable a unique equilibrium to be picked out [1][10].
This paper is closely connected to Anderson and Hu[1] (hereafter AH)

who investigated the structure of supply function equilibria in general asym-
metric cases. Alongside an improved understanding of the behavior of supply
functions in equilibria with capacity constraints, there has also been progress
on computational approaches for �nding SFE [1][11]. However, though supply



Supply Function Equilibria Always Exist 3

function equilibrium can be calculated for many examples, there are also many
cases where no supply function equilibria of the form considered by AH can
be found.
All previous research on SFE has concentrated on what AH call strong

supply function equilibria. These have the property that each player�s optimal
solution, given the other player�s supply function, is independent of the dis-
tribution of demand shocks (Holmberg and Newbery[12] use the terminology
ex-post optimality for this property). AH go so far as to claim that in normal
circumstances any (weaker) form of SFE in which the o¤er curves can vary
with changes in demand distribution are unlikely to exist. We show that this
conjecture is false.
We give an example of a duopoly in which both �rms have �xed marginal

costs, and with stochastic elastic demand having a range large enough to en-
sure that for low demand scenarios only the cheaper �rm is used, but for high
demand scenarios one �rm reaches its capacity limit. In this situation the pair
of ordinary di¤erential equations describing the equilibrium behavior can be
solved explicitly. This is helpful in showing that, given the right choice of pa-
rameters, there may be no strong supply function equilibrium. Moreover for
this particular example we show how an equilibrium involving a vertical seg-
ment can be constructed: the equilibrium will then depend on the distribution
of demand. An understanding of this form of SFE turns out to be critical in
resolving the existence question. Our discussion will show that in quite general
circumstances there will always exist an SFE in pure strategies for an asym-
metric duopoly with capacities. We will also give conditions under which an
SFE in pure strategies is unique.
In the next section we introduce the supply function model in detail and

characterize a supply function equilibrium. In section 3, as motivation for
our discussion, we give a particular duopoly example for which there is no
strong supply function equilibrium, but there is nevertheless a supply function
equilibrium in pure strategies which depends on the distribution of demand
shocks. Then in section 4 we prove our main result giving conditions under
which such an equilibrium always exists. In section 5 we show, under slightly
stronger conditions, that the equilibrium is unique.

2 Supply function equilibria in a duopoly

We consider a duopoly in which both �rms o¤er a supply function into the
market. These non-decreasing supply functions indicate the amount that a
�rm is prepared to supply at any given price. The market operates as a uni-
form price auction, so that there is a single clearing price that applies to all
�rms. At the time when supply function o¤ers are made demand is uncertain.
After the two �rms announce their supply functions, s1(p) and s2(p), demand
occurs and the spot market price p and supply amount for each �rm are de-
termined from the intersection of the aggregate market supply function and
the realized demand function. The demand D(p; ") is a function of the price p
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and a random variable ". So when demand occurs a particular value "0 of
the demand uncertainty " becomes known and the market clears at a price p
such that D(p; "0) = s1(p) + s2(p). If the market clears at price p then �rm i
supplies an amount si(p) and is paid a total of psi(p) for this amount.
Each �rm i has a cost function Ci(q), for q � 0 giving the cost of supplying

a quantity q, and each �rm also has a maximum supply capacity �qi, i = 1; 2.
We will assume that �rms have complete information in relation to the demand
function, as well as the costs and capacity of the other �rm.
We make the following set of assumptions in respect to the problem data

and the supply functions o¤ered:

Assumption 1
(a) Ci(�) is strictly increasing convex on [0; �qi] and twice continuously dif-

ferentiable.
(b) D(p; ") = D(p) + ", where D(�) is strictly decreasing, concave, and

smooth (i.e. continuously di¤erentiable). The probability density of the de-
mand shock has support ["; �"] and is well de�ned in that interval (i.e. no
atoms in the shock distribution). There is some price p with D(p)+�" < �q1+�q2
(so there is always a potential clearing price).
(c) si 2 S where S is the set of functions s : [0;1)! [0; �qi] which are non-

decreasing, left-continuous, piecewise-smooth with a �nite number of pieces
and for which there is a uniform bound U on s0 over each piece.

We will take the quantity q as the horizontal axis (so a vertical segment is an
interval (p1; p2) on which a supply function s(p) is constant and a horizontal
segment corresponds to a discontinuity in the supply function). At points
where the supply functions are discontinuous our assumption on left-continuity
implies that, when there is a jump at price p0, then we take the supply function
value at p0 as the lowest value possible. We write s(p+) for lim�&0 s(p + �)
which exists from our assumption.
When there is a supply function that has a discontinuity with a jump at

price p it indicates that the �rm is willing to supply a range of quantities at
that price. One consequence is that we need to revisit our de�nition of the
clearing price and the way that the demand is allocated to di¤erent �rms. We
let the clearing price be the lowest price at which demand is met, so that when
the demand shock takes the value "0 then the market clears at a price

p("0) = inffp : D(p) + "0 � s1(p) + s2(p)g: (1)

We de�ne pmin = inffp : D(p) + " � s1(p) + s2(p)g and pmax = inffp :
D(p) + �" � s1(p) + s2(p)g as the lowest and highest clearing prices that may
occur.
The existence of discontinuities means that �rm i may be dispatched at

any quantity between si(p) and si(p+) at clearing price p. We need to decide
what happens when both �rms have supply functions that jump at the same
price p. We shall assume that a sharing rule exists at a price p, so that excess
demand is distributed amongst the �rms in proportion to the size of the jump
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in quantity for each �rm. In this case when the demand shock is "0, then �rm
i is dispatched an amount

qi(s1; s2; "0) = si(p) +
(D(p) + "0 � s1(p)� s2(p)) (si(p+)� si(p))

s1(p+) + s2(p+)� s1(p)� s2(p)
: (2)

where p is the clearing price determined by (1): this clearing price is a function
of the supply functions o¤ered as well as the demand shock and we can write it
as p(s1; s2; "0). Notice that the amount dispatched lies between si(p(s1; s2; "0))
and si(p(s1; s2; "0)

+) and this de�nition collapses back to the simple form
qi = si(p) when supply functions are continuous.
The pro�t for �rm i from using a supply function si given the other supply

function sj and a particular demand shock "0, is

�i(s1; s2; "0) = p(s1; s2; "0)qi(s1; s2; "0)� Ci(qi(s1; s2; "0)):

We look for a Nash equilibrium in supply functions. Using an expected pro�t
framework, this is a pair of supply functions �1; �2 with the property that

E(�1(�1; �2; ")) = max
si2S

E(�1(si; �2; ")); (3)

E(�2(�1; �2; ")) = max
si2S

E(�2(�1; si; ")): (4)

The expectations here are taken with respect to the demand shock ".
A fundamental observation is that the choice of an optimal supply function

can often be made in a way that is independent of the demand distribution.
Following AH we call this a strongly optimal supply function. We consider an
optimal choice for �rm i given a smooth supply function o¤er by �rm j. For
a �xed demand shock "0, �rm i faces residual demand D(p) + "0 � sj(p). The
market clears at the price where this decreasing function intersects the o¤er
curve si(p). Firm i will choose the intersection point to maximize its pro�t �i.
If we regard this as a problem of optimizing the price at which intersection
occurs then we choose p to maximize

p(D(p) + "0 � sj(p))� Ci(D(p) + "0 � sj(p));

giving �rst order conditions

(D(p) + "0 � sj(p)) + (p� C 0i(D(p) + "0 � sj(p)))(D0(p)� s0j(p)) = 0: (5)

Choosing a supply function that has

si(p) = (p� C 0i(si(p)))(s0j(p)�D0(p)) (6)

will guarantee that (5) is satis�ed at the intersection with the residual demand.
This supply function is independent of the demand shock "0. We require that
it is an increasing function for it to be a potential supply function, and we
also need to check the second order conditions for a maximum. But if these
requirements are satis�ed it will be optimal for any choice of demand shock,
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and hence for any distribution of demand shocks. We call this a strongly
optimal supply function.
Later we will need to make use of the market distribution function intro-

duced by Anderson and Philpott[2]. We de�ne this as follows for �rm i:

 i(q; p) = Pr(D(p) + "� sj(p) < q):

Anderson and Philpott also de�ne a function Z related to the Euler conditions
for the calculus of variations problem implicit in choosing a supply function
to maximize pro�t. We let Ri(q; p) = qp�Ci(q) be the pro�t obtained from a
dispatch of q at price p: then

Zi(q; p) =
@Ri
@q

@ i
@p

� @Ri
@p

@ i
@q

= f(q + sj(p)�D(p))[(p� C 0i(q))(s0j(p)�D0(p))� q]: (7)

In practice the solution of (6) is often monotonic and the second order
conditions will also usually hold. We can therefore consider the existence of a
Nash equilibrium in which each �rm has a strongly optimal supply function
given the o¤er of the other �rm (we call this a strong SFE). Now we give a
result describing the form of the supply function equilibria that can occur.
This is simply an application of the necessary optimality conditions �rst given
by Anderson and Philpott.

Lemma 1 Suppose the pair s1(p), s2(p) is a pure strategy Nash supply func-
tion equilibrium in a duopoly, Then:

(a) If p 2 (pmin; pmax) with si(p) 2 (0; �qi), s0i(p) > 0 and both s0i(p) and s0j(p)
are well-de�ned (so p is not at the boundary of one of the pieces for either si
or sj) then the �rst order condition (6) for si(p) is satis�ed;

(b) If p1; p2 2 (pmin; pmax) and si(p) = q0 2 (0; �qi) for p 2 (p1; p2) with p1
the start of this interval (i.e. if s0i(p) > 0 as p approaches p1 from below, or if
si(p

+
1 ) > si(p1)) thenZ p2

p1

f(q0 + sj(p)�D(p))
�
(p� C 0i(q0))(s0j(p)�D0(p))� q0

�
dp � 0

with equality if p2 is chosen as the end of the interval (i.e. if s0i(p) > 0 as p
approaches p2 from above, or if si(p

+
2 ) > si(p2)).

(c) If p0 2 (pmin; pmax) and si(p+0 ) > si(p0) then for q0 2 [si(p0); si(p+0 )]Z q0

si(p0)

f(q + sj(p0)�D(p0))
�
(p0 � C 0i(q))(s0j(p0)�D0(p0))� q

�
dq � 0

with equality if q0 = si(p
+
0 ).
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Proof:
Part (a) follows directly from the optimality conditions given in Anderson

and Philpott[2], who show (Lemma 4.2) that under these conditions, when
the derivatives involved are well-de�ned and the supply function is strictly
between its bounds, then an Euler equation holds and Z(si(p); p) = 0. As
p 2 (pmin; pmax) we have f(si(p) + sj(p) � D(p)) > 0 and the result follows
from (7).
Parts (b) and (c) also derive from optimality conditions given in [2], or can

be obtained by rewriting a result of Anderson and Xu[3] (Theorem 3.1) taking
account of the speci�c form of the Z function (7) and noting that the capacity
constraints do not play any role here. �

Now we derive a result establishing the key properties of a supply function
equilibria. This is very similar to a result of AH for strong supply function
equilibrium. But since we do not assume strong optimality for the solutions
our result is more general and requires a di¤erent proof.

Theorem 1 Suppose that there is a duopoly with asymmetric �rms having
C 01(0) 6= C 02(0). If the pair s1(p), s2(p) is a pure strategy Nash equilibrium in
supply functions, then:

(a) si(p) = 0 if and only if p � C 0i(0);

(b) C 0i(si(p)) < p for all p > C 0i(0);

(c) If si(p) is discontinuous at p0 in the range (pmin; pmax) then p0 = C 0j(0))
( i.e. p0 is the other �rm�s marginal cost function at zero)

Proof:
(a) We suppose that there is some p with si(p) > 0 for pmin < p < C 0i(0). Thus
there is a non-zero probability of �rm i being dispatched at a price less than
C 0i(0), and we may suppose this happens for " 2 ("; "x). We replace si(p) with
a new supply function esi(p) = 0 for p � C 0i(0) and esi(p) = si(p) otherwise.
Consider a �xed "0 2 ("; "x): �rm i is dispatched a quantity eqi = qi(esi; sj ; "0)
which is less than qi = qi(si; sj ; "0) at a price ep = p(esi; sj ; "0) which is higher
than p0 = p(si; sj ; "0). Let � = qi � eqi > 0, then from the convexity of Ci,

Ci(qi) > Ci(eqi) + �C 0i(eqi) � Ci(eqi) + �C 0i(0):
So

�i(esi; sj ; "0) = eqiep� Ci(eqi) > qip0 � �p0 � Ci(qi) + �C 0i(0)
> �i(si; sj ; "0):

Since this inequality holds for all "0 2 ("; "x) this contradicts the optimality
of si. Thus si(p) = 0 for pmin < p < C 0i(0) and since si is left continuous we
also have si(C 0i(0)) = 0.
To establish the �only if�part we suppose that si(p0) = 0 with p0 > C 0i(0).

We may choose p0 < p1 := sup(p : si(p) = 0). Consider p approaching p1 from
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above. Then we can apply Lemma 1 part (a) to show

si(p) = (p� C 0i(si(p)))(s0j(p)�D0(p))

� (p� C 0i(si(p)))(�D0(0))

From this we deduce that si(p) does not approach zero as p approaches
p1 (since if this were the case then the right hand side has a limit (p1 �
C 0i(0))(�D0(0)) > 0 giving a contradiction). We take esi(p) = � for p 2 (p0; p1]
and esi(p) = si(p) otherwise. This will be monotonic for � small enough. Then
there is a �xed probability of " falling into the region E� where the dispatch is
increased from 0 to � together with an O(�2) probability of the dispatch being
increased, but by less than � (which can happen when p(si; sj ; ") = p1). For "
in E� the new price remains above p0, and we have

�i(esi; sj ; "0) = �ep� Ci(�)
� �p0 � Ci(0)� �C 0i(0)�O(�2)
= �i(si; sj ; "0) + �(p0 � C 0i(0))�O(�2)

It is clear that this gives an improvement in the expected pro�t of order �.
The other changes have only an order �2 impact on expected pro�t and this
contradicts the optimality of si for � chosen small enough. Hence si(p0) > 0
for p0 > C 0i(0).

(b) We begin by considering pz 2 (pmin; pmax) with si(pz) 2 (0; �qi) and s0i(pz) >
0 we note that for small enough � > 0 any choice of pw 2 (pz; pz + �) has the
property that both si and sj are continuous at pw and si(pw) 2 (0; �qi) and
s0i(pw) > 0. This follows because si and sj are discontinuous at only a �nite
number of points. Thus from Lemma 1 (a) we know that

si(pw) = (pw � C 0i(si(pw)))(s0j(pw)�D0(pw)):

Hence using the bound on s0j , the fact that si is non-decreasing, and the fact
that �D0 is non-decreasing, we have

pw � C 0i(si(pw)) >
si(pz)

(U �D0(pmax))
> 0; (8)

Since pw�C 0i(si(pw)) is bounded away from zero, we can deduce that the limit
pz � C 0i(si(pz)) > 0 as required.
Now consider a pz such that si(pz) = �qi. Then take px = inf(p : si(p) =

�qi) and apply the above argument to p approaching px from below. So px �
C 0i(si(px)) = px�C 0i(�qi) > 0. Thus pz�C 0i(�qi) > 0 . In the rather pathological
case that si(px) < �qi, so that the supply function has a corner between a
horizontal and a vertical segment, then we can apply Lemma 1 (c) which
implies that the Z value at the end of a horizontal segment cannot be negative.
This condition translates to (px � C 0i(si(p

+
x )))(s

0
j(px) � D0(px)) � si(p

+
x ) in

this case. Hence we have exactly the same inequality px � C 0i(�qi) > 0.
Finally a similar argument applies when s0i(pz) = 0. In this case set bqi =

si(pz) and de�ne py = inf(p : si(p) = bqi). Letting p approach py from below
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gives py � C 0i(si(py)) = py � C 0i(bqi) > 0. Thus pz � C 0i(bqi) > 0 . Thus we have
established the inequality for all pz with si(pz) > 0. i.e. (using part (a)) for
all pz > C 0i(0).

(c) We suppose that si(p0) has a discontinuity at p0 > pmin, so si(p0) < si(p
+
0 ).

Our approach is to show that in this case it is best for the other �rm to
o¤er a quantity slightly undercutting the price p0. Since the amount by which
the second �rm undercuts the price of the �rst is arbitrary we see that no
equilibrium is possible.
We need to �rst consider the case where �rm j also has a jump at p0, so

sj(p0) < sj(p
+
0 ). Reversing the roles of i and j if necessary we may assume

si(p
+
0 )�si(p0) � sj(p

+
0 )�sj(p0)). In this case consider a new solution esj(p) =

sj(p
+
0 ) for p 2 (p0 � �; p0] and esj(p) = sj(p) otherwise. Let

E0 = f" : si(p0) + sj(p0)�D(p0) � " � si(p
+
0 ) + sj(p

+
0 )�D(p0)g;

be the set of demand shocks such that the clearing price is p0. We consider a
subset eE0 of E0 to consist of the demand shocks in E0 where
3(sj(p

+
0 )� sj(p0))=4 � D(p0)� si(p0)� sj(p0) + " � (sj(p+0 )� sj(p0)):

From the de�nition of dispatch quantities (2), we can see that for " in eE0 �rm
j is dispatched a quantity at most

sj(p0) +
(sj(p

+
0 )� sj(p0))2

(si(p
+
0 ) + sj(p

+
0 )� si(p0)� sj(p0))

� sj(p0) +
1

2
(sj(p

+
0 )� sj(p0)):

Now consider what happens for " 2 eE0 with the o¤er esj . If the price is still
p0 then the new dispatch is s

+
j (p0) and if the price is reduced to p < p0 the

dispatch quantity is

D(p)� si(p) + " > D(p0)� si(p0) + " > sj(p0) +
3

4
(sj(p

+
0 )� sj(p0)):

Thus for �xed " in eE0, there is an increase in dispatch of more than � =
(sj(p

+
0 )�sj(p0))=4 if esj is used. Note from part (b) and (8) that C 0j(sj(p+0 )) �

p0 � �0 where
�0 =

sj(p0)

(U �D0(pmax))
:

Observe from part (a) that since sj(p
+
0 ) > 0 we must have p0 > C 0j(0), and

hence again using part (a), sj(p0) > 0. We write qj and eqj for the dispatch
given " under sj and esj respectively. Thus, using convexity, C 0j(q) < p0 � �0
for q 2 (qj ; eqj). So Cj(eqj) < Cj(qj) + (p0 � �0)(eqj � qj). Thus

�j(esj ; si; ") = eqjep� Cj(eqj)
> eqjep� Cj(qj)� (p0 � �0)(eqj � qj)
= p0qj � Cj(qj) + eqj(ep� p0) + �0(eqj � qj)
> �j(sj ; si; ") + eqj(ep� p0) + �0�:
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Since ep approaches p0 as � approaches zero we see that using esj increases pro�t
for j by at least �0�=2 for � small enough. Since prices drop by at most � and
dispatch quantities can never drop, the reduction in pro�t that may occur with
other demand shock values is of order �. Since the improvement for " in eE0 is
independent of �, for � chosen small enough we obtain an overall improvement
in expected pro�t if esj is used, which contradicts the optimality of sj .
Now consider the other case when there is no jump in sj at p0 so sj(p0) =

sj(p
+
0 ). Notice �rst that we exclude the case p0 = C 0j(0) since this is excluded

in the theorem statement. We can also exclude the possibility that p0 < C 0j(0).
For in this case sj(p) = 0 in an interval around p0. Since si(p

+
0 ) > 0 we can

deduce from part (a) that p0 > C 0i(0). But then using part (a) si(p) > 0 for
p approaching p0 from below. Thus the equation (6) de�nes si(p) both above
and below p0. But this implies continuity there and contradicts the fact that
si(p

+
0 ) > si(p0)
Hence we have established that if there is a jump in si at p0, but sj is

continuous at this price, then p0 > C 0j(0) and so (from part (a)) sj(p0) > 0:
We set esj(p) = sj(p0 + �1) for p 2 (p0 � �2; p0 + �1) and esj(p) = sj(p)

otherwise. We let E0 be the set of demand shocks such that the clearing price
is within �2 of p0, i.e.

E0 = [si(p0��2)+sj(p0��2)�D(p0��2); si(p0+�2)+sj(p0+�2)�D(p0+�2)]:

We consider a subset eE0 of E0, consisting of the demand shocks in E0 such
that

" � si(p0 � �2) + sj(p0 � �2)�D(p0 � �2) + (si(p0 + �2)� si(p0 � �2))=2:

Now consider what happens for " 2 eE0 with the o¤er esj . If the price is greater
than p0 � �2 then the new dispatch is sj(p0 + �1) and if the price is reduced
to p0 � �2 the dispatch quantity is

D(p0 � �2)� si(p0 � �2) + " > sj(p0 � �2) + (si(p0 + �2)� si(p0))=2:

Thus for " in eE0, there is an increase in dispatch if es is used of at least�(�1; �2)
which we de�ne as

min(sj(p0+�1)�sj(p0+�2); sj(p0��2)�sj(p0+�2)+(si(p0+�2)�si(p0))=2):

From part (b) and (8) we have, for p 2 (p0 � �2; p0 + �1),

p� C 0j(sj(p)) �
sj(p0 � �2)
U �D0(pmax)

:

Notice that as �2 approaches zero the value of the right hand side increases
rather then decreasing. For small enough �2 we have

p� C 0j(sj(p)) � �0 =
sj(p0)

2(U �D0(pmax))
:

Hence C 0j(eqj) < p0 + �1 � �0 and so C 0j(q) < p0 + �1 � �0 for q 2 (qj ; eqj).
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So

�j(esj ; si; ") > eqjep� (p0 + �1 � �0)(eqj � qj)� Cj(qj)
> p0qj � Cj(qj) + eqj(ep� p0) + (�0 � �1)�(�1; �2):

Now ep approaches p0 as �2 ! 0 and we see that �j(esj ; si; ") > �j(sj ; si; ") +
�0�(�1; �2)=2 for �1 and �2 small enough. Because of the jump in si we know
that (si(p0+ �2)� si(p0))=2 is bounded below as �2 goes to zero. So �(�1; �2)
will be sj(p0+�1)�sj(p0+�2) > 0 for �1 and �2 small enough. If " is chosen so
that p(si; sj ; ") is in (p0+�2; p0+�1] then prices may drop by as much as �1+�2.
However the probability of this happening is given by the probability that "
falls in an interval of length sj(p0+ �1)+si(p0+ �1)�sj(p0+ �2)�si(p0+ �2).
Overall if we take �2 = �21 and allow both to approach zero then the maximum
decrease in expected pro�t from this component is of order �21, whereas the
probability of " in eE0 is bounded below by a constant and so the increase in
expected pro�t through this is of order �1. Hence we have an improvement in
moving to esj for �1 small enough, contradicting the optimality of sj . �

3 An example with no strong SFE

We consider a particular case of the duopoly problem when �rm i has �xed
marginal costs C 0i(x) = ci, i = 1; 2 and we label the �rms so that c1 < c2. We
also suppose that there is a linear demand function D(p) = A�bp so that total
demand is given by D = A � bp + ". Finally we will take the demand shock
" as uniformly distributed on [0; X]. As before we write �qi for the capacity
of �rm i. We consider a problem in which �q2 is smaller than �q1. In fact we
let �q1 be large enough that this capacity constraint is never reached. We will
also assume a large enough value of X, so that the demand shock can be high
enough for �rm 2 to reach its capacity.
In this case we can develop an analytical solution for the equilibrium. We

begin by assuming that there is a strong supply function equilibrium in order
to demonstrate that for some parameter choices no strong supply function
equilibrium exists. Then we will derive a supply function equilibrium which is
not a strong SFE for this example: it has a vertical segment for �rm 1 covering
the range of prices in which �rm 2 reaches its capacity.
Using the results of AH we know that, if there is a strong supply function

equilibrium in a duopoly where only �rm 2 has a capacity constraint that
applies, then this will have three regions:

A: p0 < p < c2 : �rm 1 supplying alone;
B: c2 < p < p2 : both �rms supplying;
C: p2 < p < p3 : �rm 2 at capacity, �rm 1 acts as a monopoly supplier.

We begin by characterizing the solution in Region B. In this case the equation
(6) for the supply functions becomes

s1(p) = (p� c1) (s02(p) + b) ; (9)

s2(p) = (p� c2) (s01(p) + b) : (10)
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Thus
s01(p) = (p� c1)s002(p) + s02(p) + b

and
s2(p) = (p� c2) ((p� c1)s002(p) + s02(p) + 2b) :

We can solve this second order ODE for s2 and from it derive s1. After some
manipulation we obtain

s1(p) = � (p� c1) b (log (p� c1)) + bc2 � bc1 +K1 (p� c1)
+K2 ((log (p� c1)) (p� c1)� (log (p� c2)) (p� c1) + c1 � c2) ;

s2(p) = � (p� c2) b ln (p� c1) +K1 (p� c2)
+K2 ((log (p� c1)) (p� c2)� (log (p� c2)) (p� c2) + c1 � c2) :

From Theorem 1 we know that s2(c2) = 0, and hence K2 = 0. Thus

s1(p) = � (p� c1) b log (p� c1) + b(c2 � c1) +K1 (p� c1) ; (11)

s2(p) = � (p� c2) b log (p� c1) +K1 (p� c2) : (12)

Note that with this structure of solution, the di¤erential equation for s1
shows that the monopoly solution s1(p) = b(p� c1) occurs in both region (A)
and region (C). As p approaches c2 from below s1(p) approaches (c2 � c1)b.
To ensure that s1 is an increasing function (and does not jump down at price
c2) we need

(c2 � c1) (K1 � b log (c2 � c1)) � 0 (13)

i.e. K1 � b log (c2 � c1) :
We also need to ensure monotonicity of s1 at the price p� where �rm 2

meets its capacity constraint. Considering (9) we can see that to avoid a jump
down in s1 at p� we must have s02(p) � 0 as p approaches p� from below. Since
s2 must be increasing this implies that limp!p� s

0
2(p) = 0 where the limit is

taken from below. This argument is given in more detail in AH. Now

s02(p) = �b
(p� c2)
(p� c1)

� b log (p� c1) +K1;

so the condition s02(p
�) = 0 implies

(K1 � b ln (p� � c1)) (p� � c1) = b (p� � c2) : (14)

Thus from (12)

s2(p
�) = (p� � c2) (K1 � b ln (p� � c1)) =

b (p� � c2)2

(p� � c1)
:

Since we know that s2 is continuous at p�, we have s2(p�) = �q2. This is a
quadratic equation with solution

p� = c2 +
�q2
2b
+
1

2b

q
�q22 + 4b(c2 � c1)�q2
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(the other root is smaller than c2). Putting this value into (14) gives the value
of K1 and hence the complete solution. Note that (13) will be automatically
satis�ed.
In general we have

s01(p) = �b� b log (p� c1) +K1;

s02(p) = �b
(p� c2)
(p� c1)

� b log (p� c1) +K1 > s01(p);

so that at the point where s02(p) = 0 we have already reached a part of the
s1 curve that is decreasing. As this is not possible we have ruled out the
possibility of a supply function equilibrium in pure strategies if the higher
price �rm reaches its capacity �rst and each of the regions (A), (B) and (C)
occurs.
At the lowest demand shock, the demand is given by A�bp. The condition

for region (A) to occur is that with this demand the market clears below price
c2. Since the supply function o¤er for �rm 1 below price c2 is s1(p) = b(p�c1),
the market clears at a price of p = (A+ bc1)=(2b) and the condition is

A < b(2c2 � c1): (15)

Now consider the possibility that �rm 2 does not reach its capacity (or just
reaches its capacity at maximum demand). Thus region (C) does not occur.
In this case the highest price must be less than the price, say pH , at which s1
starts to decrease. From s01(p

H) = 0 we have

pH = exp

�
K1

b
� 1
�
+ c1:

At this price the amount supplied by �rm 2 is

s2(p
H) = �

�
pH � c2

�
(K1 � b) +K1

�
pH � c2

�
= b(exp(

K1

b
� 1) + c1 � c2):

Thus we need to have

�q2 � b(exp(
K1

b
� 1) + c1 � c2):

This equation puts a bound on K1 which in turn limits the total amount that
can be supplied at these prices. Note that

s1(p
H) = �

�
pH � c1

�
b log

�
pH � c1

�
+ b(c2 � c1) +K1

�
pH � c1

�
= b

�
exp(

K1

b
� 1) + c2 � c1

�
� �q2 + 2b(c2 � c1):
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At the maximum demand shock, the demand is A+X�pb � A+X�pHb.
On the other hand the maximum supply if region C does not occur is less than

s1(p
H) + s2(p

H) = b
�
pH + c2 � 2c1

�
+ b

�
pH � c2

�
� 3�q2 � 2bc1 + 3bc2 � pHb:

Hence every solution includes region C if the following condition holds:

A+X > 3�q2 � 2bc1 + 3bc: (16)

Now we consider a speci�c example by taking c1 = 20, c2 = 30, �q1 = 1500,
�q2 = 300, A = 300, b = 10, X = 1200 (the choice of �q1 is not important
provided it is large enough to ensure that �rm 1 does not exhaust its capacity).
We can con�rm that all three regions occur with these parameters (and so there
is no strong SFE) by checking (15) and (16). Notice that this scenario is not
unrealistic. We can suppose that prices are given in euros per megawatt hour.
There is a smaller and more expensive (gas) generator competing with a large
amount of coal �red generation. There is su¢ cient capacity here to ensure that
the market can always be supplied. The price elasticity might be derived from
a non-strategic fringe generator or from imports.
Now we show how to construct an equilibrium for this example. The equi-

librium supply function for �rm 1 includes a vertical segment. We let �1(p;K1),
�2(p;K1) be the pair of supply function solutions given by (11) and (12). These
must match the equilibrium when both supply functions are increasing. We
de�ne the supply functions

s1(p) = �1(p;K1) for c2 < p � 

= �1(;K1) for  < p � c1 + (�1(;K1)=b)

= (p� c1)b otherwise.

and

s2(p) = 0 for p � c2;

= �2(p;K1) for c2 < p � ;

= (p� c2)b for  < p � c2 + �q2=b);

= �q2 for p > c2 + �q2=b:

This solution has two free parameters: K1 and : K1 determines the length of
the horizontal segment at price c2 and  gives the point at which the verti-
cal segment starts. We will choose these parameters to satisfy two additional
conditions: �rst that s2 is continuous at  and second that the optimality con-
ditions (Lemma 1 (b)) are satis�ed over the vertical segment for s1. The �rst
condition implies

�2(;K1) = ( � c2)b:
The vertical section goes from  to c1 + s1()=b so the second condition can
be written Z c1+(s1()=b)



Z1(s1(); p)dp = 0 (17)
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Fig. 1 Equilibrium solution including a vertical segment

where, from (7),

Z1(q; p) = f(q + s2(p)�A+ bp)[(p� c1)(s02(p) + b)� q]:

Now f(x) = 1=X in the range (0; X), so provided dispatch can occur at point
(q; p) we have

Z1(q; p) =
1

X
(2(p� c1)b� q) for p 2 (; c2 + �q2=b);

Z1(q; p) =
1

X
((p� c1)b� q) for p > c2 + �q2=b:

Thus the integrand in (17) starts at (1=X)(2(�c1)b�s1()) (which is positive)
and increases to (1=X)(2(c2 + �q2=b � c1)b � s1()) then it jumps down to
(1=X)((c2+ �q2=b�c1)b�s1()) (which is negative) and then increases to zero.
To achieve the condition (17) we must have

(c2 + �q2=b� ) (2( � c1)b+ 2(c2 + �q2=b� c1)b� 2s1())
= (c1 + s1()=b� c2 � �q2=b) (s1()� (c2 + �q2=b� c1)b) :

Together with (11) and (12) this gives enough relationships to work out the
values of K1 and .
Now we can calculate the equilibrium solution for the example. We obtain

 = 58:730 (so s1() = 487:3) andK1 = 46:566. Figure 1 shows the equilibrium
solution with on the right an expanded version where the dashed line shows
the boundary between positive and negative values of Z1. The vertical segment
goes from the point marked A to the point marked B and in this section does
not follow the best response Z1 = 0 curve.
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4 Existence of a Supply Function Equilibrium

Now we return to a consideration of the more general asymmetric duopoly
using the assumptions of section 2. We assume that the range of demand
shocks is su¢ ciently wide that at low demand shocks just one �rm produces
and for high demand shocks at least one of the �rms is at its capacity.
From the di¤erential equations we can de�ne the monopoly solution s�i (p),

which solves the equation

s�i (p) = �[p� C 0i(s�i (p))]D0(p), i 6= j. (18)

Note that s�i takes the value zero at the price C
0
i(0). Moreover

s�0i (p) = �[p� C 0i(s�i (p))]D00(p)� [1� C 00i (s�i (p))s�0i (p)]D00(p) (19)

So

s�0i (p) =

�
�D00(p)

�D0(p)

�
s�i (p)�D0(p)

1� C 00i (s�i (p))D00(p)
> 0:

From now on, and without loss of generality we suppose that C 01(0) <
C 02(0). For convenience we write p2 = C 02(0). From Theorem 1 (a) we know
that s2(p) = 0 for p � p2 and hence �rm 1 makes an optimal response of
s1(p) = s�1(p) in this range. From part (c) there may be a jump in the s1 value
at p2 but there is no discontinuity in s2. Thus at p = p2 we expect the solution
to start to follow the unique solution to the ODEs with initial conditions
s1(p2) = � � s�1(p2) and s2(p2) = 0. It is useful to index the solutions to the
ODE system by �, the value that s1 jumps up to at price p2.

Lemma 2 The solutions to the ODEs (indexed by �) s(�)i (p) are continuous
increasing functions of � for each p.

Proof
AH show (Lemma 4) that the solutions to the ODE system are ordered, so

if 0 < �1 < �2, then since s
(�1)
i (C 02(0)) � s

(�2)
i (C 02(0)) and this inequality is

strict for i = 1, then s(�1)i (p) � s
(�2)
i (p) throughout the price range over which

the ODEs hold. Thus we have shown that the solutions can never decrease as
functions of �.
AH also show (Lemma 5) that the solutions to the ODEs are unique. This

is enough to show continuity as a function of �. For suppose that there is some
p0 and �0 with lim�&0 s

(�0��)
i (p0) 6= lim�&0 s

(�0+�)
i (p0) for i = 1 or i = 2. We

take s(A)i (p) = lim�&0 s
(�0��)
i (p), i = 1; 2 and s(B)i (p) = lim�&0 s

(�0+�)
i (p),

i = 1; 2. Then note that since all slopes are bounded the supply functions
s
(A)
i and s(B)i must also satisfy the ODE system. Moreover they have the same
initial conditions but di¤er at the price p0, which contradicts uniqueness. Thus
no such p0 and �0 can be found and continuity is established. �
We de�ne p�i = (s

�
i )
�1
(�qi) so that p�i is the price at which the monopoly

solution for �rm i hits the capacity bound. We let k be the �rm with the
smaller value for p�i and let h be the other �rm. So we have p

�
k � p�h.
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We will de�ne pXh (q) for q 2 [s�h(p�k); �qh] as the price at which a vertical
section may start for sh. We let p�h(�) be the inverse of s�h, so if there is a
vertical section it will end at the price p�h(q) where s

�
h(p

�
h(q)) = q. With this

notation p�h = p�h(�qh). Along the vertical segment at q we have

Zh(q; p) = f(q + s�k(p)�D(p)) [(p� C 0h(q)) (s�0k (p)�D0(p))� q] for p � p�k

= f(q + �qk �D(p)) [�(p� C 0h(q))D0(p)� q] for p > p�k

We require the integral
R p�h(q)
pXh (q)

Zh(q; p)dp = 0 which can be seen as a de�nition

of pXh (q): it is the value of p0 < p�k which makes
R p�h(q)
p0

Zh(q; p)dp = 0. Note that
the integral has two components. The integral between p0 and p�k is decreasing
as q�h(p0) increases.
For p < p�h(q) we will have s

�
h(p) < q. Now

s�h(p) = �[p� C 0h(s�h(p))]D0(p) > �[p� C 0h(q)]D0(p)

and so �(p � C 0h(q))D
0(p) � q < 0, and Zh(q; p) < 0 for p 2 (p�k; p�h(q)) (and

increases to zero at p�h(q) ).
Let qYh (p) be given by the solution to:

qYh (p) = (p� C 0h(qYh (p))) (s�0k (p)�D0(p)) : (20)

So we have Zh(qYh (p); p) = 0 and Zh > 0 between the line de�ned by q
Y
h (p) and

p�k. Note that q
Y
h (p) is simply the supply function that is an optimal response

to s�k(p):
Observe that when q = s�h(p

�
1), and p = p�k then

(p� C 0h(q)) (s�0k (p)�D0(p))� q = (p�k � C 0h(s�h(p�k))) (s�0k (p)�D0(p))� s�h(p�k)
= (p�k � C 0h(s�h(p�k)))s�0k (p) > 0;

from which we can deduce that qYh (p
�
k) > s�h(p

�
k).

To �nd pXh (q) we extend the integral downwards from p�k until either the
overall integral is zero or until qYh (p) is reached (when further extension will
make the overall integral larger rather than smaller.) We have pXh (s

�
h(p

�
k)) = p�k

and from continuity and the fact that qYh (p
�
k) > s�h(p

�
k), there is at least some

range of q values until either qYh (p) is reached, or q = �qh.
We will show that one of three di¤erent equilibrium solutions will occur.

The di¤erent cases are illustrated in Figure 2, which shows a situation where
k = 2 (i.e. p�2 < p�1), but the alternative with k = 1 is very similar.
We need to make additional assumptions in order to prove existence.

Assumption 2
(a) C 000i (x) � 0 and D000(p) � 0;
(b) �2D00(p)max(�q1; �q2) < (�D0(p))2 for all p.

First we establish a preliminary lemma that determines the direction in
which s(�)i may cross s�i .
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Fig. 2 Three di¤erent types of equilibrium

Lemma 3 Under Assumptions 1 and 2, if s(�)i (p) = s�i (p) for some p > p2

then s(�)i (p� �) > s�i (p� �) and s
(�)
i (pZ + �) < s�i (pZ + �) for � small enough.

Moreover if s(�)0j (p) = 0 then s(�)j (p) � qYj (p)

Proof:
We consider a price pQ at which s

(�)
i (pQ) = s�i (pQ). Suppose �rst that the

two derivatives match: s(�)0i (pQ) = s�0i (pQ). We will show that s(�)00i (pQ) <
s�00i (pQ), which is enough to rule out certain kinds of tangent behavior. Write
Q = s

(�)
i (pQ) and � = s

(�)0
i (pQ) and let j 6= i. Since s(�)i (pQ) = s�i (pQ), we

have

Q = �[pQ � C 0i(Q)]D0(pQ) = [pQ � C 0i(Q](s
(�)0
j (pQ)�D0(pQ));

and hence s(�)0j (pQ) = 0. From (19) we know that

� = �[pQ � C 0i(Q)]D00(pQ)� [1� C 00i (Q)�]D0(pQ):
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Similarly, as � = s
(�)0
i (pQ)

� = [pQ � C 0i(Q))](s
(�)00
j (p)�D00(p)) + [1� C 00i (Q)s

(�)0
i (pQ)](s

(�)0
j (pQ)�D0(pQ))

= [pQ � C 0i(Q))](s
(�)00
j (p)�D00(p))� [1� C 00i (Q)�]D0(pQ):

Comparing the two expressions for � shows that s(�)00j (pQ) = 0.
Di¤erentiating (6) we obtain

s
(�)00
j (p) =

[p� C 0i(s
(�)
i (p))]s

(�)0
i (p)� s(�)i (p)[1� C 00i (s

(�)
i (p))s

(�)0
i (p)]

[p� C 0i(s
(�)
i (p))]2

+D00(p):

(21)
Since this is zero at pQ we can deduce that

[1� C 00i (Q)�] = [pQ � C 0i(Q)]
� +D00(pQ)[pQ � C 0i(Q)]

Q
:

But Q = [pQ � C 0i(Q)](�D0(pQ)) so

[1� C 00i (Q)�] =
�

(�D0(pQ))
+

D00(pQ)Q

(�D0(pQ))2
: (22)

Now we use the equivalent expression to (21) for s(�)00i (p) and the observa-
tion that s(�)0j (pQ) = 0 to deduce

s
(�)00
i (pQ) = �

s
(�)
j (pQ)

[pQ � C 0j(Q)]2
+D00(pQ) < D00(pQ):

Now

s�00i (p) = �[p� C 0i(s�i (p))]D000(p)� 2[1� C 00i (s�i (p))s�0i (p)]D00(p)

+ [C 00i (s
�
i (p))s

�00
i (p) + C

000
i (s

�
i (p))(s

�0
i (p))

2]D0(p):

So

s�00i (pQ)(1� C 00i (Q)D0(pQ))

= �[pQ � C 0i(Q)]D000(pQ)� 2[1� C 00i (Q)�]D00(pQ)� C 000i (Q)�2D0(pQ)

> �2[1� C 00i (Q)�]D00(pQ)

using Assumption 2 (a). But from (22)

[1� C 00i (Q)�] >
D00(pQ)Q

(�D0(pQ))2
:

So

�2[1� C 00i (Q)�] < �2
D00(pQ)Q

(�D0(pQ))2
< 1 < (1� C 00i (Q)D0(pQ))
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from Assumption 2 (b). Hence

�2[1� C 00i (Q)�]D00(pQ) > (1� C 00i (Q)D0(pQ))D
00(pQ)

> (1� C 00i (Q)D0(pQ))s
(�)00
i (pQ)

and we have established that s(�)00i (pQ) < s�00i (pQ) as claimed.
We need to treat the cases i = 1 and i = 2 slightly di¤erently. We show

that there will be at least one value for � which achieves a crossing for s2 for
p close to p2. We do this by �nding values of �1, �2 such that s

(�1)
2 (p) < s�2(p)

and s(�2)2 (p) > s�2(p) will hold for p close enough to C
0
2(0).

Now

s
(�)0
2 (p2) = s

(�)
1 (p2)=(p2 � C 01(s

(�)
1 (p2)) +D

0(p2) = �=(p2 � C 01(�)) +D0(p2)

and
s�02 (p2) = �[p2 � C 02(0)]D00(p2)� [1� C 002 (0)s�02 (p2)]D0(p2):

The �rst term is zero, so

s�02 (p2) =
�D0(p2)

1� C 002 (0)D0(p2)
: (23)

Consider the equation

�

(p2 � C 01(�))
= �D0(p2)

�
1 +

1

1� C 002 (0)D0(p2)

�
(24)

The left hand side is increasing in � and so there is a single solution �0 which
makes s(�0)02 (p2) = s�02 (p2). Moreover for � > �0 we have s

(�)0
2 (p2) > s�02 (p2).

We can also use the analysis above with pQ = p2 to show that s
(�0)00
2 (p2) <

s�002 (p2). This is enough (by continuity) to show the existence of the values �1,
�2 that we wanted with �1 = �0 and �2 slightly larger. Thus for p close enough
to p2 we will have s

(�0)
2 (p) < s�2(p) < s

(�2)
2 (p) which shows the existence of an

� > �0 with s
(�)
2 (p) = s�2(p)

The argument for i = 1 is simpler since for any � > s�1(p2) the solution
starts with s(�)1 (p) > s�1(p). It is possible that there is no crossing for any values
of � > s�1(p2) but if there is a crossing then the �rst one is in the direction we
wish.
So for both i = 1 and i = 2 we have crossings that occur in the right

direction. and from Lemma 2 above we know that there can be at most one such
crossing at each value of p. It remains to ensure that all such crossings (other
than at p = p2 ) take place in the same direction. The alternative we want to
rule out is that for higher values of p the functions may cross again. If this
were to happen there would (at the boundary between p values where crossing
takes place in di¤erent directions) be a price pQ at which s

(�)
i (pQ) = s�i (pQ),

s
(�)0
i (pQ) = s�0i (pQ) and s

(�)
i (p) > s�i (p) for p close but not equal to pQ. But

the result above that s(�)00i (pQ) < s�00i (pQ) rules out this possibility.
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The second statement in the lemma follows straightforwardly. If s(�)0j (p) =

0 then s(�)i (p) = s�i (p). Because of the result on the direction of crossings this
implies s(�)0i (p) � s�0i (p) and hence from the de�nition of qYj and the equation

(6) for sj we have established that s
(�)
j (p) � qYj (p). �

The idea behind our existence proof is to track what happens as � increases.
The lowest value of � is �0 given by the solution to (24). Comparing (20) and
(23) with (24) we can see that �0 = qY1 (p2). Observe that

s�1(p2) = (�D0(p2))[p2 � C 01(s�1(p2))]:

Since �0=(p2 � C 01(�0)) > �D0(p2) and the left hand side is increasing as a
function of �, this shows �0 > s�1(p2) which is a requirement for s

(�0)
1 to be

non-decreasing at p2. Moreover (using l�Hopital) we have

s
(�0)0
1 (p2) = s

(�0)
2 (p2)=(p2 � C 02(s

(�0)
2 (p2))) +D

0(p2)

= s
(�0)0
2 (p2)=(1� C 002 (0)s

(�0)0
2 (p2)) +D

0(p2)

= s�02 (p2)=(1� C 002 (0)s�02 (p2)) +D0(p2) = 0:

Choosing � > �0 leads to s
(�)0
1 (p2) > 0.

Theorem 2 Under Assumptions 1 and 2 there will be a pure strategy supply
function equilibrium for the duopoly.

Proof:
We start by dealing with a special case when �0 � �q1 or equivalently

�q1
(p2 � C 01(�q1))

� �D0(p2)

�
1 +

1

1� C 002 (0)D0(p2)

�
: (25)

In this case there will be an equilibrium with s1(p) = �q1 and s2(p) = s�2(p) for
p > p2. We can check that this solution is an equilibrium since the condition is
equivalent to qY1 (p2) � �q1 and so the optimal response to s�2(p) is s1(p) = �q1.
The result of Lemmas 2 and 3 is enough with continuity to show that

the crossing point increases with � in a continuous way. Now we let pW (�) =
min(p1W (�); p2W (�)) where piW (�) is the price (greater than p2) at which the
crossing occurs: thus s(�)i (piW (�)) = s�i (piW (�)) > 0. Our earlier discussion
shows that s(�0)2 (p) remains less than s�2(p): This is enough to show that either
p2W (�) is de�ned for all � > �0 or there is a range of � values so that p2W (�)
can take all values between p2 and p�2. So even if there is no crossing for s

(�)
1

and p1W (�) is not de�ned, we still have pW (�) well de�ned.
We will search for an equilibrium solution with one of three situations

occurring: (a) pW (�) = pkW (�), pkW (�) < pXh (�qh) and s
(�)
h (pkW (�)) = �qh; (b)

pW (�) = pkW (�) and pkW (�) = pXh (s
(�)
h (pkW (�))); or (c) pW (�) = phW (�)

and s(�)k (phW (�)) = �qk (these are the three cases shown in Figure 3)
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Case (b) involves a vertical section that has been constructed to satisfy
the required �rst order optimality conditions and this matches the example
of the previous section. We can check the sign of the Z function away from
the solution and see that this will indeed be a Nash equilibrium with global
optimality. Also it is not hard to check that the solution corresponding to case
(c) involves each �rm making an optimal response to the supply function of
the other.
Case (a) is more complex. The vertical section at �qh includes part with

p > p�h where the optimal response to �rm k is higher than �qh and so hav-
ing s(�)h (p) = �qh is certainly optimal. s

(�)
h also includes a section from p�k to

p�h where �rm k is at capacity and the optimal response is a supply func-
tion s�h(p) which is lower than �qh. Observe that for p 2 (pkW (�); p

�
k) we

must have qYh (p) > �qh. The reason is that we can increase � and track
s
(�)
h (pkW (�)). This increases with � and remains at �qh or higher, and hence

(using Lemma 3) qYh (pkW (�)) > s
(�)
h (pkW (�)) � �qh. Thus throughout this

region Zh > 0. Now since pkW (�) < pXh (�qh) we know from the de�nition

of pXh that
R p�h
pkW (�)

Zh(q; p)dp > 0, and so does not satisfy the optimality
condition of Lemma 1 (b):The implication of this inequality is that an im-
provement can be made by shifting the vertical segment to the right (in-
creasing s

(�)
h (p)) but this is impossible because the supply function is al-

ready at its capacity limit. The only feasible perturbations are those involv-
ing a shift to the left of the lower part of the vertical segment, but sinceR p
pkW (�)

Zh(q; p)dp >
R p�h
pkW (�)

Zh(q; p)dp > 0 for all p > p�k, and moreoverR p
pkW (�)

Zh(q; p)dp > 0 for p < p�k, then all such shifts will only make the
overall pro�t smaller. Using this argument we can see that this case will also
deliver a Nash equilibrium.
Notice that pW (�) is a continuous function of � and so s

(�)
i (pW (�)) is also

continuous as a function of � for i = 1; 2. When � = �0 (de�ned by (24)) then
s
(�)
k (pW (�)) < �qk and (except in two special cases) s

(�)
h (pW (�)); pW (�) is in

the region � de�ned in the (q; p) plane by

� = f(q; p) : q � �qh, p � pXh (q); and q � qYh (p)g;

and where the constraint involving pXh (q) only applies at q values for which
this function is de�ned. The �rst special case is when (25) holds and has been
discussed already. A second special case occurs when h = 1 and pX1 (q) = p2
for a value of q less than �0. In this case we have pX1 (qX) = p2 for qX � �0
and we construct an equilibrium solution by starting a vertical segment in the
supply function s1 at p2. We have s1(p) = qX and s2(p) = min(s�2(p); �q2) for
p 2 (p2; p�1(qX)). The optimality check for this equilibrium is similar to that
for case (b).
Excluding these special cases we let �� be the lowest value of � at which ei-

ther s(�)k (pW (�
�)) = �qk or the point (s

(�)
h (pW (�)); pW (�)) crosses the bound-

ary of the region � . (We use this �geometrical� de�nition to avoid having
to assume monotonicity in either of the functions pXh or qYh ). Note that
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s
(�)
1 (pW (�)) > � and so by taking � large enough we can guarantee that
there is a value of � with s(�)1 (pW (�)) > �q1 and so �� is well-de�ned.

Consider the case that s(�)k (pW (�
�)) = �qk. We look at the two possibilities

arising from the de�nition of pW . Suppose that pkW (��) < phW (�
�); then �qk =

s
(�)
k (pkW (�

�)) = s�k(pkW (�
�)) and so pkW (��) = p�k. But since pkW (�

�) <

phW (�
�), we have s(�)h (pkW (�

�)) > s�h(pkW (�
�)) = s�h(p

�
k) = q�h(p

�
k), which

contradicts the de�nition of ��. Thus our supposition is wrong and pkW (��) �
phW (�

�). So s(�)k (phW (�
�)) = �qk which establishes the condition we require

for case (c).
Now consider the case in which �� is de�ned by (s(�)h (pW (�)); pW (�))

leaving the region � . Note that the crossing cannot involve qYh (p) since if
s
(�)
h (pW (�)) = qYh (pW (�)) then s

(�)0
h (pW (�)) = 0 and we get a contradic-

tion from Lemma 3. So we have either s(�
�)

h (pW (�
�)) = �qh or pW (��) =

pXh (s
(��)
2 (pW (�

�))). Again there are two possibilities arising from the de�nition
of pW . Suppose that pkW (��) > phW (�

�) then s(�)h (p2W (�
�)) = s�h(p2W (�

�))
and either s�h(phW (�

�)) = �qh (which implies phW (��) = p�h) or pW (�
�) =

pXh (s
�
h(phW (�

�))) (which implies s�h(phW (�
�)) > s�h(p

�
k)). So in either case

phW (�
�) > p�k which is a contradiction and hence we must have pkW (�

�) �
phW (�

�) and so either s(�)h (pkW (�
�)) = �qh or pkW (��) = pXh (s

(�)
h (pkW (�

�)))
and in either case we have the appropriate condition for an equilibrium. �

5 Uniqueness of a Supply Function Equilibrium

In this section we ask whether there may be more than one supply function
equilibrium. The argument is in two parts: �rst we show that the only equilibria
are of the form we constructed, and then we establish that there can only be one
such equilibria. To establish uniqueness we need to make further assumptions.
As before we write p2 for C 02(0) > C 01(0).

Assumption 3
(a) The functions pXi (q) are monotonic decreasing for the range of q values

for which they are de�ned;
(b) The functions qYi (p) are strictly monotonic increasing in p
(c) D(p2) + " < s�1(p2), D(p

�
k) + �" > �q1 + �q2 and p�k < p�h.

Part (c) of this assumption is required in order to ensure that the range of
possible demand shocks is wide enough and the condition that p�k is strictly
less than p�h ensures that both �rms cannot reach their capacity at the same
price in equilibrium.

Theorem 3 Under Assumptions 1, 2 and 3 there is a unique supply function
equilibrium.

Proof.
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We begin by showing that any SFE has an initial monopoly segment, fol-
lowed (possibly) by a horizontal segment, followed by a segment in which both
price and quantity increase. The �nal segment has one �rm at its capacity
and the other �rm acting as a monopoly. However this may be preceded by a
penultimate segment in which one �rm�s supply function is vertical, while the
other �rm �rst acts as a monopoly and then reaches its capacity.

From Theorem 1 we know that there can only be a horizontal segment at
p2 and that at prices below p2 �rm 2 makes zero o¤er and so �rm 1 o¤ers its
monopoly supply function s�1(p). At prices higher than p2 there is a segment in
which the supply functions satisfy the �rst order conditions (6) unless perhaps
there is immediately a vertical segment.

We want to show there cannot be a vertical segment unless it takes place
over a range of prices at which the other �rm hits its capacity bound. Suppose
otherwise: then we have si(p) constant over a range p 2 (pa; pb) with si, sj
satisfying the �rst order conditions (6) for p just above pb or just below pa.
Since sj makes an optimal response to si we have sj(p) = s�j (p) for p 2 (pa; pb)
provided s�j (p) is less than �qj throughout this price range. Since neither �rm
has a horizontal segment si(p

+
b ) = si(pb) and sj(p

+
b ) = s�j (pb). This also

implies that s0j(p
+
b ) � s�0j (pb) as if sj becomes lower than s

�
j this leads to a

non-monotonic solution for si. Hence si(p
+
b ) � qYi (p

+
b ). In the same way we

can deduce that the limit as p approaches pa from below of s0j(p) is no greater
than s�0j (pa). Hence si(pa) � qYi (pa). But as si(pa) = si(p

+
b ) this contradicts

Assumption 3 (b).

This establishes that any SFE has to have the same form as the SFE shown
to exist in Theorem 2. Now consider the possibility that there are two such
equilibria corresponding to � values �A and �B with �A < �B . Using the AH
result on the ordering of SFE�s with di¤erent starting values we can deduce
that piW (�B) > piW (�A), i = 1; 2. Thus the di¤erent possibilities for the SFE
associated with �A all produce contradictions. If s(�A)2 (p1W (�A)) = �q2 then
s
(�B)
2 (p1W (�B)) > �q2; if s

(�A)
1 (p2W (�A)) = �q1 then s

(�B)
1 (p2W (�B)) > �q1;

and if there is a vertical segment with piW (�A) = pXj (s
(�A)
j (piW (�A))) then

s
(�B)
j (piW (�B)) > s

(�A)
j (piW (�A)) and so using Assumption 3 (a) piW (�B) >

pXj (s
(�B)
j (piW (�B))) and there can be no equivalent vertical segment for the

solution corresponding to �B .

Finally we consider the two special cases discussed in the proof of Theorem
2. Observe that a solution in which s1(p

+
2 ) = �q1 (so s1 jumps up to its capacity

at p2) can only occur when �0 � �q1. If not then qYi (p2) < �q1 so Z1(�q1; p2) < 0
and we get a contradiction from Lemma 1 (c) (there is an improving pertur-
bation that sets s1(p) = �q1� � for p 2 (p2; p2+ �)). In the same way a solution
in which there is a vertical section starting at price p2 (so pX1 (qX) = p2 ) can
only occur when qX � �0. If qX > �0 then Z1(qX ; p2) < 0 and again we have
a contradiction from Lemma 1 (c). �
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6 Discussion

In this paper we have focussed on pure strategy equilibrium. Recent work by
Escobar and Jofre [6] has demonstrated that for this type of problem there will
be a mixed strategy equilibrium even if a pure strategy equilibrium does not
exist. Our results show that, under very general conditions on the problem
parameters, such mixed strategy equilibria are not required in the duopoly
case.
In setting up this problem we make some restrictive assumptions on the

allowable supply functions S: we assume that supply functions have only a
�nite number of pieces and that the derivatives are bounded. Both these as-
sumptions will have the e¤ect of allowing a sequence of solutions in S with a
limit that is not in S. Thus S is not compact and we may be concerned about
existence of optimal solutions or equilibria in this setting. However our results
show that under the conditions given we can indeed �nd a SFE satisfying these
conditions. Nevertheless we have not ruled out such pathological solutions and
so our proof of uniqueness leaves open the possibility of other SFE occurring
with either an in�nite number of pieces or unbounded derivatives.
It is natural to ask what happens when there are more than two �rms. We

conjecture that there will exist a supply function equilibrium under the same
conditions that apply for a duopoly. At the start the solution is determined by
the length of the horizontal segment that is introduced at the second lowest
value of C 0i(0). This solution can be traced across prices at which one of the
�rms reaches its capacity limit and when just two �rms are left at quantities
less than their capacities then the analysis goes through in the same way as
for the duopoly case. However there are complications which can arise when
marginal costs for di¤erent �rms are very di¤erent. For example we might have
a group of �rms competing in one price range leaving only one monopoly �rm
at the highest price within this range, and then �nd another group of �rms
entering at a higher price range. And this pattern could be repeated many
times over. In such cases the sections in which there is just one �rm operating
between its capacity bounds (and hence o¤ering the monopoly solution) serve
to divide up the problem into independent subproblems in each of which a
unique SFE solution can be found using exactly the approach of this paper.
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