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Survival Analysis for Credit Scoring: Incidence and
Latency

John Watkins, Andrey Vasnev and Richard Gerlach

November 29, 2009

Duration analysis is an analytical tool for time-to-event data that has been borrowed from medicine and
engineering to be applied by econometricians to investigate typical economic and �nance problems. In applications
to credit data, time to the pre-determined maturity events have been treated as censored observations for the events
with stochastic latency. A methodology, motivated by the cure rate model framework, is developed in this paper to
appropriately analyse a set of mutually exclusive terminal events where at least one event may have a predetermined
latency. The methodology is applied to a set of personal loan data provided by one of Australia's largest �nancial
services institutions. This is the �rst framework to simultaneously model prepayment, write off and maturity events
for loans. Furthermore, in the class of cure rate models it is the �rst fully parametric multinomial model and the �rst
to accommodate for an event with pre-determined latency. The simulation study found this model performed better
than the two most common applications of survival analysis to credit data. In addition, the result of the application
to personal loans data reveals particular explanatory variables can act in different directions upon incidence and
latency of an event and variables exist that may be statistically signi�cant in explaining only incidence or latency.

1 Introduction

Credit scoring and risk assessment of retail credit is dominated by logistic and probit
regression techniques. These models are most commonly employed to establish the
incidence of default over a twelve month time horizon [4, Altman & Saunders (1998)
pp. 1723] [23, Crook, Edelman & Thomas (2007) pp. 1448]. Bucay & Rosen (2000)
employ pseudo logistic and probit regression techniques to analyse revolving credit. More
recently, researchers have investigated the use of survival analysis as a model to assess credit
risk. Applications such as Andreeva (2006) and Stepanova & Thomas (2002) apply the
time-to-event analysis technique to the credit risks of prepayment and default separately.

The papers of Banasik, Crook & Thomas (1999), Stepanova & Thomas (2002), Andreeva
(2006) and Bellotti & Crook (2007) each examine prepayment and default individually. The
models treat all other failure times as censored observations for the event of interest. These
risks are examined simultaneously in the papers of Deng, Quigley & Van Order (2000),
Pavlov (2001) and Ciochetti, Deng, Gao & Yao (2002). Deng et al (2000) emphasise the
importance of the jointness of the decision to default or prepay on mortgages. The event of
loan maturity is incorrectly treated as a censored observation in all previous research. The
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framework common to these latter three papers used to simultaneously analyse the time to
prepayment and default is developed in the papers of Han & Hausman (1990), Sueyoshi
(1992) and McCall (1996) which has been coined HHSM. The work in the HHSM series
of papers develops a proportional hazards survival analysis framework for the examination
of labour market problems. The factors affecting the time to transition to non-terminal
employment states are assessed using this framework.

In credit data, the events of prepayment, maturity and write off are terminal. Although
the simultaneous estimation of the prepayment and write off risks is important, the treatment
of the maturity events has not been adequate. A class of mixture models, known as Cure
Rate models in the medical literature, provide motivation for the model developed in this
paper to address this issue. This class of survival analysis model mixes a binary distribution,
most commonly logistic, with a typical distribution used for the analysis of failure time data.
The methodology was pioneered as early as the 1950's in the papers of Boag (1949) and
Berkson & Gage (1952) for the analysis of the fraction of patients cured after experiencing
cancer therapies. The methodology has continued to be used in the papers of Farewell
(1982), Sy & Taylor (2000), Peng & Dear (2000) and Cancho, Bolfarine & Ortega (2008).
The use of such models in analysis of failure time data typical in medical research is
motivated by a biological possibility of cure and often evidenced by heavy censoring and
Kaplan-Meier (KM) non-parametric survival function estimates which plateau to values
strictly greater than zero [46, Sy & Taylor (2000) p. 22]. These papers add additional
complexities to the methodology and extend this class of models to the non-parameteric
sphere of analysis.

The paper of Hoggart & Grif�n (2001) uses the cure rate methodology to analyse the
problem of customer attrition in the banking industry. The authors adopt the Bayesian cure
rate methodology developed by Chen, Ibrahim, & Sinha (1999). In this framework there
are N independent and identically distributed (iid) risks which may cause the event under
study to occur. The risks follow a Poisson distribution with constant mean and a Bayesian
partition method is used to assess the binary cure rate model. The research in the paper of
Cancho, Bolfarine & Ortega (2008) uses the same framework in analysis of a clinical study
on cancer patients. Tsodikov, Ibrahim & Yakovlev (2003) extend this framework of Chen et
al (1999) to a multinomial non-parametric Bayesian cure rate methodology. In addition, the
authors argue that extending the cure rate model to a multinomial parametric methodology
would be theoretically and computationally cumbersome. However, the work in this paper
reveals this is not the case, at least in the case of credit data.

The methodolody developed in this paper contributes to the current literature in three
ways:
i.) the seminal work of Deng, Quigley & Van Order (2000) is extended to the simultaneous

estimation of prepayment, write off and maturity events;

ii.) the methodology is the �rst fully parametric multinomial model in the class of cure rate
models, and;

iii.) the model is the �rst in its class to allow for the simultaneous modelling of a set of
mutually exclusive events, where one of the event's duration times may be non-stochastic

3



or pre-determined.

The model is applied to a unique data set of over one million personal loan observations
provided by one of Australia's largest �nancial services organisations. The extent to
which the Option Theoretic and the Permanent Income Hypothesis in�uence the debtor's
loan termination decision in the Australian market are explored. The application of this
methodology simultaneously estimates parameters for both incidence and latency of credit
events, allowing the �exibility in framework to account for a variable that does not operate
in the same direction on an event's incidence and latency.

Through an empirical study we �nd that there are results where variables in�uence
the incidence and latency of an event in opposite directions. Furthermore, these results
are logically consistent with the expected behaviours of debtors. In addition, through
the simulation study we �nd that the methodology developed in this paper is superior at
estimating the true parameter values and does not suffer from biases caused by treating
maturity observations as censored prepayment and default events.

The rest of the paper is divided into the following sections: Section 2 examines survival
analysis methodologies and cure rate models in empirical applications; Section 3 develops
the model; Section 4 presents the results of the empirical and simulation study; and, Section
5 concludes.

2 Motivation, Development and Model

Loan terminations can be grouped into three broad categories of prepayment, maturity
and write off. Deng et al (2000) argue prepayment and default is a consequence of debtors
exercising "in-the-money" call and put options, respectively, on their debt facility. Their
empirical study examines data from the US market and found that unobserved heterogeneity,
including the degree of debtor's �nancial savvy, are important determinants of loan
termination. The authors also observe many non-optimal option exercises and attempt to
account for these events by including control variables such as national divorce rate �gures.

Exercising in-the-money put and call options of write off and prepayment, respectively,
are also reasons for debtors to terminate their personal loans in the Australian market.
However, the Australian market has signi�cant structural barriers to option exercise, not
present in the US market. These features include full recourse loans (liability is not limited
to the mortgaged asset), heavy penalties against future borrowing in the event of write
off and early repayment adjustments on �xed rate products in addition to early exit fees.
Despite these �nancial penalties prepayment and write off events are still observed. In
addition, interest rates were increasing over the period of data collection, meaning there
was no optimal point to exercise prepayment options in order to re�nance. It is believed
that consumption optimisation of the debtor is the main reason for observing prepayment
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events, whilst write off events are due to severe shocks to debtor income. The permanent
income hypothesis, pioneered by Milton Friedman, provides motivation to the observation
of prepayment and write off events through shocks to expected income paths and changes
to subjective intertemporal discount factors. The papers of Carroll (2001) and Browning &
Crossley (2001) provide a summary of research realted to the permanent income hypothesis
of Milton Friedman.

In recent years focus has been placed on retail credit risk assessment techniques with the
advent of the Basel II Capital Accord, which is a set of guiding principles for Austhorised
Deposit-taking Instituations (ADIs) stipulating minimum standards and requirements for
in house risk assessment methodologies. Speci�c �loss characteristics� such as probability
of default (PD), exposure at default (EAD) and loss given default (LGD) are de�ned with
speci�c measurement techniques. The criteria of the Basel II Capital Accord are met most
commonly by methodologies such as logistic and probit regression. Survival analysis
techniques also meet the requirements for measuring PD, however, as succintly explained in
Bansik et al (1999) they "answer not only if, but when" these events will happen. This facet
of survival analysis ensures it is useful for pro�t scoring, measuring EADs and matching the
term of a banks funding with that of their asset protfolio.

The fundamental quantity under assessment is time to event data and from a risk
assessment perspective, the event of interest may be default or write off, where the failure
time would be measured from loan origination to loan closure. The set of observable failure
times exists in the set of non-negative reals, such that T = ft : t 2 R+g. Each observed
failure time, ti, is believed to be a random variable with a probability density function (pdf),
f (t). The cumulative density function (cdf), F (t), is used to de�ne the Survival Function,
such that S (t) = 1�F (t). The focus of many applications is to estimate the distribution for
the failure time variable, however, non-parametric estimation techniques are also frequently
used.

In the papers of Banasik et al (1999), Stepanova & Thomas (2002), Andreeva (2006)
and Bellotti & Crook (2007), the authors apply duration analysis to credit data, treating the
events of prepayment and default as indendepent. The observed maturity events have been
treated as censored prepayment and default event times. Under this independent competing
risks assumption the prepayment and default observations are analysed separately, treating
all other observed failure times as censored default or prepayment times, respectively. The
likelihood function across i = 1; :::; N observations is:

L (�) =
NY
i=1

f (t)
1��i S (t)

�i (1)

where �i takes the value of 1 or 0 if censored or uncensored, respectively.

Deng, Quigley & Van Order (2000) extend the framework to simultaneously model the
events of prepayment and default. This methodology was originally developed in the series
of seminal papers HHSM. The HHSM authors developed this framework speci�cally for the
time-to-event data typical in labour market economic problems, which is characterised by
transitional events and stochastic time processes for every event. Deng et al (2000) augment
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the methodology for the terminal event times of interest in credit market problems. The
framework developed in the Deng et al (2000) paper was applied in the research of Pavlov
(2001) and Ciochetti, Deng, Gao & Yao (2002). The data is split into the mutually exclusive
sets of prepayment, default, censoring and unkown event types. The set of censored events
contains all maturity observations. The log-likelihood function (L (�)) maximised across
the observations i = 1; :::; N can be written most simply as:

L (�) =
NX
i=1

f�Pi ln [FP (ti)] + �Di ln [FD (ti)] + �Ui ln [FU (ti)] + �Ci ln [FC (ti)]g (2)

where Fj (ti) for j = P;D;U;C are the probabilities of mortgage termination due to
(P)repayment, (D)efault, (U)nkown reason and (C)ensoring, respectively. The �ji for
j = P;D;U;C are indicator variables taking value of unity when the ith individual
experiences event j.

Current applications of survival analysis to credit data treat the terminal pre-determined
maturity event observations as censored prepayment and default events. As subsequently
shown, this treatment can lead to bias in the parameter estimates. The class of models
known as Cure Rate Models offers motivation for the solution developed in this paper. The
methodology was developed in response to the possibility of cure given the biology of the
disease under study, as evidenced by non-parametric survival function estimates that plateau
to non-sero values and heavy right censoring, as discussed in Sy & Taylor (2000). The
Cure Rate Models were pioneered in the work of Boag (1949) and Berkson & Gage (1952).
These models are a class of mixture models, where most frequently a binary distribution is
mixed with a typical failure time data distribution with support on R+.

The cure rate models are applied to time-to-event data where there are individuals
susceptible and insusceptible to the risks under study. In addition, it is not known ab initio
to which group an individual belongs. Tsodikov, Ibrahim & Yakovlev (2003) de�ne the
surviving proportion as the non-zero asymptoic value, p, of the survivor function, S (t), as t
tends to in�nity and T is the survival time with cdf S (t) = 1� S (t).

p = lim
t!1

S (t) = exp

�
�
Z 1

0

� (u) du

�
(3)

where � (u) = f (u)/S (u) is the hazard function.

This framework leads to what has largely been labelled as the two-component (binary)
mixture model and Tsodikov et al (2003) show it can be generalised as:

S (t) = E
n�
S ( tjM = 1)

�Mo
= (1� p) + pS ( tjM = 1) (4)

where M is a binary variable taking values 0 and 1 with probability (1� p) and p,
respectively. The surviving fraction is (1� p) and the incidence of susceptible individuals
is p with latency described by the conditional survival function, S ( tjM = 1).

Hoggart & Grif�n (2001) apply the cure rate methodology to the empirical study of time
to customer attrition from banks. The method used in this paper assumes there are N iid
poisson risks with mean �, resulting in the probability that an individual is insusceptible
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to attrition being parameterised as exp f��g. This method is also applied to clinical data
on patients suffering from cancer in Cancho, Bolfarine & Ortega (2008). Farewell (1982)
parameterises the incidence proportion using logistic regression and the latency distribution
using the Weibull density function. Sy & Taylor (2000) and Peng & Dear (2000) develop
semi-parametric techniques for the binary cure rate model. Tsodikov et al (2003) develop
non-parametric and semi-parametric Bayesian multinomial methods for cure rate models.
In the following section a fully-parametric model incorporating cure rate techniques is
developed.

3 Modle for Simultaneous Estimation of Prepayment,
Maturity and Default

There are three terminal and mutually exclusive events of maturity, write off and
prepayment. Let the set of labels for these observable permanent events be respectively:

M = f0; 1; 2g
The observed time to each event for an account is represented by eTij , where j = 0; 1; or

2 to indicate the event type and i = 1; :::; N indicates the ith individual. This variable is
calculated as the time from loan origination to the time the account experiences an event in
setM. The support for these variables is outlined below. First, let a ="days to maturity"
such that Pr

h eTi0 = a
i
= 1. Then we can de�ne:

eTi0 = a; eTi1 2 [0;1) and eTi2 2 [0; a) (5)
De�ne eq as the vector of labels for the N individuals under observation. The ith element

of eq, eqi for i = 1; : : : ; N , takes the label from setM corresponding to the observed terminal
event.

Three binary indicator variables are de�ned to signal when a failure time for the events
in setM is observed for individual i. Let:

yij =

�
1 if eqi = j
0 otherwise

�
; for j 2M (6)

The density of eq over the observed failures follows a multinomial distribution which can
be characterised as

YN

i=1

Y2

j=0
p
yij
ij .

The probability of incidence for each event is: Pr (yij = 1) = pij = Fj (xi;�); where
xi and � are (k � 1) column vectors of individual speci�c regressors and corresponding
coef�cients, respectively. The function, Fj , must satisfy the following conditions:
pij 2 [0; 1] and

X2

l=0
pil = 1. These restrictions ensure that the pij satisfy the properties

of probabilities for a set of mutually exclusive events.

The functional form of Fj will be chosen to be the alternative-invariant form of the
Multinomial Logit (MNL). The MNL is characterised as:
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Fj (xi;�) =
exp

�
xTi �j

�X2

l=0
exp

�
xTi �l

� (7)

In addition, the identi�cation restriction translates to setting the parameters for one
alternative (maturity) in the MNL to the null vector. The incidence of maturity becomes the
base category for comparison in relative risk assessments.

The observed failures, eTij , are conditionally iid across i with pdf fj �t j xi; �j ; yij = 1�
for j = 0; 1; 2, where �j is the set of parameters for distribution fj , and xi and yij have
been de�ned above. In the case that j = 0, we �nd that Pr

h eTi0 = a
i
= 1. In the case that

j = 1 or 2, a density with support over the positive reals is used to de�ne the latency to these
events.

The methodology also deals with censored observations. Let Ci be the time to censoring
for the ith individual where i = 1; : : : ; N . The censoring time is measured from loan
origination to the time data collection ceased. Each individual in the sample will have a
censoring time, however, only a subset of individuals will have censoring times without an
observed failure time. The time to an event or censoring is de�ned as:

Ti = eTij ^ Ci (8)
Let T =(T1 � � �TN )0 be the vector of failure and censoring times for all individuals.

Correspondingly, a binary indicator variable is de�ned to signal if an event has an observed
event time or is still active. Let the indicator be:

�i =

(
1 if eTij � Ci
0 if eTij > Ci

(9)

Under this �right� censoring mechanism, the Ci for i = 1; : : : ; N , are iid random
variables across i with pdf and cdf of vi and Vi, respectively. Conditional on the observed
regressors for individual i, the data pairs (Ti; �i) are independent. The censoring mechanism
in this data set is consistent with de�nitions of non-informative censoring mechanisms
detailed in Kalb�eisch & Prentice (2002).

The uncensored events of the data set are observed with probability:
Pr
�
Ti 2 [t; t+ dt) ; �i = 1 j xi; �j

�
= Pr [Ci � t+ dt] Pr [yij = 1]Pr

h eTij 2 [t; t+ dt) j xi; �j ; yij = 1i
' [1� Vi (t)] pijfj

�
t j xi; �j ; yij = 1

�
dt for j = 1; 2 (10)

In the case where j = 0, we obtain for the maturity event:
Pr [yi0 = 1]Pr

�
Ti 2 [t; t+ dt) ; �i = 1 j xi; �j ; yi0 = 1

�
' Vi (t) pi0 (11)

Whilst the censored event time observations are observed with probability:
Pr
�
Ti 2 [t; t+ dt) ; �i = 0 j xi; �j

�
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= Pr [Ci 2 [t; t+ dt)]
X2

j=0
Pr [yij = 1]Pr

h eTij � t j xi; �j ; yij = 1
i

' vi (t)

�
p0 +

X2

j=1
pijSj

�
t j xi; �j ; yij = 1

��
dt for j = 1; 2 (12)

Note that for j = 0:

S0 (t j xi; �0; yi0 = 1) = Pr
h eTi0 � t = a j xi; �0; yi0 = 1

i
= 1� Pr

h eTi0 < t = a j xi; �0; yi0 = 1
i
= 1 (13)

since conditional on yi0 = 1, t is the maturity date.

If the censoring mechanism is noninformative then the terms relating to the pdf
and cdf of the censoring variables can be dropped as constants of proportionality. The
resulting likelihood for the set of parameters � =

�
�01;�

0
2; �

0
1; �

0
2

�0 with independent and
noninformative right censoring times is:

L (� j X; eq;T; �) / nY
i=1

8<:(p0)yi0
2Y
j=1

[pjfj (t)]
yij

9=;
�i8<:p0 +

2X
j=1

pjSj (t)

9=;
1��i

(14)

whereX = (x1 � � �xN )0; � has typical element �i as de�ned in equation 9. Where j = 1; 2,
fj (t) is fj

�
t j xi; �j ; yij = 1

�
and Sj (t) is the survival function Sj

�
t j xi; �j ; yij = 1

�
where the conditional statements have been dropped for notational ease. In addition, f0 (t)
and S0 (t) take values of unity as in 13.

There are three distributions applied to the latency events in this paper. The distirbutions
are the Gamma, Weibull and Log-Normal which are respectively represented by the labels:
Gj ;Wj ; and Nj , for j = 1; 2 corresponding to the events of write off and prepayment,
respectively. The distributions are characterised by their pdfs and survival functions outlined
below.

Gamma Distribution:

fj (t) =
exp

�
�xTi �LjLj

�
tLj�1 exp

�
� exp

�
ln (ti)� xTi �Lj

�	
�
�
Lj
� (15)

Sj (t) = 1� I
�
exp

�
ln (ti)� xTi �Lj

�
; Lj

�
(16)

where I (�; �) is the incomplete gamma function. Details on the gamma and incomplete
gamma functions are provided in the appendix to this paper.

Weibull Distribution:
fj (t) = Lj exp

�
�xTi �LjLj

�
tLj�1 exp

�
� exp

�
Lj

�
ln (ti)� xTi �Lj

��	
(17)

Sj (t) = exp
�
� exp

�
Lj

�
ln (ti)� xTi �Lj

��	
(18)
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Log-Normal Distribution:

fj (t) =
�p
2�Ljt

��1
exp

8<:
"
ln (ti)� xTi �Ljp

2Lj

#29=; (19)

Sj (t) = 1� �
�
�1Lj

�
ln (ti)� xTi �Lj

��
(20)

These three distributions are used to model time to the events of write off and
prepayment. There are nine combinations of these distributions, the simplex method was
used to �nd the minimum of the negative log-likelihood in each case. The results from the
simplex method of optimisation have been detailed in the following section. The score and
hessian functions are detailed in the appendix accompanying this paper.

4 Empricial Application

4.1 Data and Summaries

The data set of over one million observations contains information on personal loans which
originated between 01 March 2001 and 31 March 2008 provided by one of Australian's
largest �nancial services institutions. The loans can be contracted for terms of whole years
ranging from 1 to 7 years. In addition to application and performance data at the account
level, suf�cient information on opening and closing dates of accounts and the reason for
their terminations was provided to conduct the research within this paper. The list of
personal loan application data provided for this research is outlined in table 4.1.

Table 4.1: List of Application Data

Number of Applicants per Loan
Total Assets
Total Liabilities
Other Bank Home Loan
Other Bank Liabilities
House Value
Other Value
Accommodation Status
Gender
Age at application

Time with Current Employer
Time with Previous Employer
Current State
Time at Current Address
Time at Previous Address
Guarantor
Number of Installments
Total Loan Amount
Interest Rate at Application
Repayment Amount

Table 4.2 details the proportion of maturity, write off, prepayment and censoring
observations across each contracted loan term. There is a decreasing trend in the proportion
of maturity events within each loan term stratum, whilst the proportions of of write off
and prepayment events both increase. There is insuf�cient data to adequately identify the
maturity events in the 72 and 84 month personal loan strata. These accounts have been
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excluded from detailed analysis for this reason and focus placed on the 12 to 60 month
personal loans. Censored events are a dominant component of the available information
illustrated in table 4.2, particularly for the longer term loans.

Table 4.2: Count of Accounts Experiencing De�ned Permanent Events
and Censoring with Contracted Term as Stratum

TERM Full Term Write Off Prepayment Censored TOTAL
12 43:69% 1:63% 40:87% 13:79% 1:68%
24 20:04% 2:44% 63:37% 14:16% 8:20%
36 8:56% 3:10% 69:08% 19:27% 12:40%
48 3:41% 4:23% 70:55% 21:79% 10:10%
60 1:38% 5:28% 62:98% 30:37% 24:10%
72 0:54% 5:96% 63:99% 29:49% 4:03%
84 0:01% 6:70% 52:89% 40:38% 39:50%

TOTAL 4:14% 5:18% 60:20% 30:50% 100:00%

The variables pertaining to age, gender, time at current address and time with current
employer provide a picture of the demographic of personal loan holders. The mode of the
age distribution is around 18 to 22 years across the entire data set. The large frequency of
young adults taking out personal loans is consistent with the permanent income hypothesis.
Moreover, people in early adulthood have not reached their full income potential, however,
are able to form expectations of their future income path. Based on this expectation and
subjective intertemporal consumption discount factor, they may need to borrow in order to
�nance their optimised consumption path.

The Kaplan-Meier (KM) survival curve estimates in panel (a) of �gure 1 are for the time
to the predetermined maturity date. As expected, whilst treating all other observations as
censored, the survival curve at the yearly marks drops away from unity toward zero for each
term. In contrast, once the survival curves in panel (c) reach the contracted term date they
plateau at a level equivalent to the proportion of uncensored accounts accounts that repaid as
contracted.

Hazard and pdf plots for the write off variable were created by focusing exclusively on
write off events. The hazard of write off is increasing initially, then decreases and becomes
more volatile with fewer observations at larger T , then after the maturity date the hazard
signi�cantly increases. In addition, this characteristic is further intensi�ed by the fact that
Australian banks have a policy of holding delinquent accounts up to 180 days past due.

The life-table estimates of the pdfs for each term are displayed in �gure 2. Without the
other observed events and treating only active accounts as censored, the time to write off pdf
estimates seem more reasonable than the KM survival curve estimates where all other events
were also treated as censored. The pdfs for all terms have a mode above the one year mark
then begin to decline. The rate of decline decreases as the term increases. This feature is
consistent with the statement in Banasik et al (1999) for a rule of thumb that states �if they
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1. Kaplan Meier survival function estimates on the full data set with 12 to 84 month loan
term stratum labels.

2. Life-Table pdf estimates for write off on the full sample
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[personal loans] go bad, they go bad early�. This general observation is not apparent in the
KM survival curve estimates where all other observations have been treated as censored.

4.2 Results of Model Fitting

A simulation study was conducted to assess the performance of the methodology developed
in this paper in evaluating the true parameter values and compared to that of previous
applications. The results of the simulation study have been included in the appendix
accompanying this paper. The simulation scenarios generated independent event times
for write off and prepayment. Write off events could occur at any time. The results
found that the model developed in this paper was far superior to the survival analysis
methodologies which examine prepayment and write off events separately, treating maturity
events as censored observations rather than terminal event times. In addition, the following
observations can be made from the simulation study:
� censoring enduces more errors in the parameter estimates for all methodologies;

� the error and variance in the estimation results for the methodology of separte treatment
of latency events increases as the proportion of maturity observations increases;

� the variance of the parameter estimates is around four times smaller in the methodology
developed in this paper than those of the separate treatment method, and;

� as the relative frequency of an event with stochastic latency increases, the variance of the
parameter estimates for the same latency decreases in both models.

Table 4.3: Variables used in empirical application

LVR ln (Loan Amount/ Total Assets) HV ln (House Value in 1000's)
TL ln (Total Liabilities in 1000's) Lamt Total Loan Amount
TA ln (Total Assets in 1000's) TCA Time at Current Address
TCE Time with Current Employer TPA Time at Previous Address
TPE Time with Previous Employer GEN 1 if Female, 0 otherwise
T_DL 1 if Period 57 prior to system change, else 0 NTA Net Assets = eTA � eTL

P_DL 1 if Period 58 after system change, else 0 ATL ln
�
eTA = e

TL
�

PCR 1 if Period 36 to 56 of low credit quality, else 0 AddYrs TCA + TPA
Guar 1 if guarantor on loan, 0 otherwise EmpYrs TCE + TPE
Int Interest Rate at Application Age Age in years

The results of the Maximum Likelihood Estimation (MLE) were obntained using the
Nelder-Mead method of simplexes. The chosen distributions are the Gamma, Log-Normal
and Weibull, which will be denoted by �Gj�, �Nj�, and �Wj�, respectively, where the
subscript j associates the distribution with event j = 1; 2. For example, the application of
the Gamma and Weibull distributions to write off and prepayment latencies, respectively,
will be denoted by �G1W2� in the presented results. The set of parameters for the k
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regressors can be charactised as � =
�
�0I1;�

0
I2; �

0
1; �

0
2

�0, where �j = ��0Lj ; j�0 and each
� vector is k� 1 and the 's are scalar, bringing the total number of parameters in the model
to (k � 4) + 2. Note that a subscript �I� on a parameter denotes �incidence�, whilst a sub
script �L� denotes �latency�.

Table 4.4: 36 month term data set parameter estimates
54 parameters; BIC = 1; 682; 327
Incidence Latency

.

.
Write Off Prepayment Write Off Prepayment

Constant
�0:7830a
(0.0084)

2:5279a

(0.0024)
5:0659a

(0.0004)
6:3545a

(0.0005)

LVR
0:0260b

(0.0122)
�0:0707a
(0.0027)

�0:0328a
(0.0006)

0:0270a

(0.0006)

TL
�0:0215a
(0.0008)

0:0128a

(0.0002)
�0:0005a
(0.0000)

�0:0042a
(0.0000)

HV
�0:0545a
(0.0004)

0:0010a

(0.0001)
0:0038a

(0.0000)
0:0006a

(0.0000)

EmpYrs
�0:0031
(0.0035)

�0:0005
(0.0009)

0:0003c

(0.0002)
0:0001
(0.0002)

AddYrs
�0:0031
(6.8344)

�0:0002
(2.4803)

0:0001
(0.3554)

0:0001
(0.4047)

Age
�0:0082
(0.1669)

�0:0194
(0.0377)

�0:0023
(0.0067)

0:0049
(0.0084)

Int
�0:1050
(0.0712)

�1:2405a
(0.0188)

0:1744a

(0.0033)
0:0915a

(0.0037)

Guar
0:0002
(0.2204)

0:1353b

(0.0687)
�0:0182c
(0.0104)

0:0250b

(0.0115)

GEN
�0:0895
(0.1578)

0:1281a

(0.0346)
�0:0064
(0.0069)

0:0362a

(0.0071)

T_DL
�0:0689
(0.0815)

�0:0886a
(0.0261)

�0:0270a
(0.0040)

�0:0835a
(0:0047)

P_DL
�0:0746
(0.2930)

�0:0659
(0.0422)

�0:1134b
(0.0486)

�0:0759a
(0.0187)

PCR
0:0234a

(0.0085)
0:0123a

(0.0011)
�0:0372a
(0.0018)

�0:0397a
(0.0062)

Lj
1:4784c

(0.8163)
2:0482a

(0.0252)
a; b; & c indicate the parameter estimates are sign�cant at the1%; 5% and 10% levels, respectively

The results of the MLE are displayed in table 4.4 to 4.9 in this section. An intensive
study exclusively focusing on personal loans of 36 month term was performed and the
results from the model with the lowest Bayesian Information Criteria (BIC) are displayed
in Table 4.4. Tables 4.5 to 4.9 display the results for personal loan terms from 12 to 60 of
the models with the lowest BIC and less than 40 parameters. These parameter estimates
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illustrate that regressors can act in opposite directions upon the incidence and latency of an
event. This is evident in the results for the Loan to Value Ratio (LVR) variable. Table
4.5 shows that increases in LVR lead to increases in the incidence of write off. This is
consistent with a priori expectation. In addition, the negative LVR coef�cient estimates in
table 4.7 show that conditional on experiencing write off, those accounts with a higher LVR
progressed more slowly to this event. This results is also seen in table 4.4. In the case of
LVR, this is consistent with the actions banks take to mitigate reputational risks surrounding
high LVR lending practices.

Table 4.5: Write off incidence parameter estimates f�I1g

:
:

12 N1W2 24 G1W2 36 G1W2 48 G1W2 60 G1W2

Constant
�2:7773a
(0.0180)

�1:3675a
(0.0124)

�0:3377a
(0.0083)

0:6039a

(0.0080)
1:2310a

(0.0052)

LVR
0:2108a

(0.0023)
0:1739a

(0.0013)
0:1291a

(0.0008)
0:1542a

(0.0007)
0:1643a

(0.0004)

TL
�0:0671a
(0.0009)

�0:0418a
(0.0005)

�0:0332a
(0.0004)

�0:0175a
(0.0004)

�0:0232a
(0.0002)

EmpYrs
�0:0048
(0.0079)

�0:0043
(0.0048)

�0:0029
(0.0034)

�0:0041
(0.0033)

�0:0031
(0.0021)

AddYrs
�0:0027
(1.9394)

�0:0032
(0.2976)

�0:0032
(0.1916)

�0:0032
(0.1847)

�0:0027
(0.1435)

Age
�0:0002
(0.1564)

�0:0028
(0.1056)

�0:0098
(0.0704)

�0:0058
(0.0675)

�0:0052
(0.0443)

Guar
�1:4361a
(0.0465)

�1:1311a
(0.0233)

�1:1199a
(0.0263)

�1:1441a
(0.0458)

�1:4184a
(0.0452)

GEN
0:0466a

(0.0111)
�0:1988a
(0.0060)

�0:1012a
(0.0068)

0:0008
(0.0119)

�0:0926a
(0.0117)

a; b; & c indicate the parameter estimates are sign�cant at the1%; 5% and 10% levels, respectively

The LVR variable in�uences the incidence and latency of prepayment in opposite
directions. A larger LVR relative to total assets is often correlated with a lower income
debtor and the results are consistent with this, parameter estimates in tables 4.4 and 4.6 show
a higher LVR leads to a lower incidence of prepayment. However, table 4.8 illustrates that
given the debtor prepays, a debtor with a higher LVR will progress faster to prepayment.
This results is still consistent with the previously mentioned correlation with income, since
those who can afford to repay early are likely to be those with a high LVR but have high
disposable income to repay their personal loan. In addition, this may be a re�nancing
decision where the debtor borrows at cheaper rates and repays their more expensive debt.

The Total Liabilities (TL) variable also works in opposite directions upon the incidence
and latency of an event, see tables 4.5 to 4.8. Moreover, the individuals with very large
liabilities can afford them through large servicing capacities and are less likely to experience
write off. However, conditional on experiencing write off, those with higher TL progressed
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faster to this event, see table 4.7 for terms greater than 24 months. In terms of 12 and 24
months the TL variable work in the same direction upon write off incidence and latency,
however, the coef�cient estimates are economically insigni�cant. This result is consistent
with table 4.4. In addition, TL works in the opposite direction on prepayment incidence and
latency, see table 4.4 and tables 4.6 and 4.8. This may be a result of debtors re�nancing this
more expensive consumer credit facility to a cheaper alternative. However, more data would
be required to appropriately determine if this is the case.

Table 4.6: Prepayment incidence parameter estimates f�I2g

:
:

12 N1W2 24 G1W2 36 G1W2 48 G1W2 60 G1W2

Constant
0:3850a

(0.0038)
1:6696a

(0.0021)
2:3822a

(0.0023)
3:2075a

(0.0041)
3:6645a

(0.0038)

LVR
�0:0544a
(0.0003)

�0:0733a
(0.0001)

�0:0621a
(0.0002)

�0:0469a
(0.0002)

0:0239a

(0.0002)

TL
0:0017a

(0.0001)
0:0124a

(0.0001)
0:0110a

(0.0001)
0:0046a

(0.0001)
0:0310a

(0.0001)

EmpYrs
0:0001
(0.0017)

�0:0001
(0.0008)

0:0000
(0.0009)

�0:0002
(0.0015)

�0:0003
(0.0015)

AddYrs
�0:0004
(0.1166)

�0:0003
(0.0374)

�0:0002
(0.0376)

�0:0003
(0.0583)

�0:0000
(0.0596)

Age
�0:0180
(0.0314)

�0:0214
(0.0167)

�0:0199
(0.0188)

�0:0224
(0.0319)

�0:0244
(0.0306)

Guar
�0:2471
(0.2552)

�0:1028a
(0.0043)

�0:0887a
(0.0049)

�0:1864a
(0.0070)

�0:0525a
(0.0055)

GEN
�0:0675a
(0.0021)

0:0564a

(0.0007)
0:1094a

(0.0010)
0:1615a

(0.0014)
0:1078a

(0.0014)
a; b; & c indicate the parameter estimates are sign�cant at the1%; 5% and 10% levels, respectively

The inclusion of a guarantor on a personal loan is statiscally and economically signi�cant
in decreasing the incidence of write off. This is consistent with a priori expectations,
however, given an individual does write off their loan facility, the existence of a guarantor
increases the rate of progression to this event as evidenced by the positive and highly
signi�cant parameter estimates in table 4.7. Prepayment incidence is less likely when a
guarantor is supporting the loan facility, which is consistent with the lower income group
whom require guarantor support to obtain access to credit, see table 4.6 results. Given a
debtor prepays their loan facility, the existence of a guarantor is not a statistically signi�cant
determinant of the latency of prepayment in table 4.8. In table 4.4, however, the coef�cient
on the guarantor latency variable is positive and signi�cant, suggesting that given a debtor
prepays, the presence of a guarantor increases the speed to prepayment. A more detailed
study examining the types of guarantor support would be required to decisively conclude
whether the effect of a guarantor upon the latency of an event is signi�cant.
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Table 4.7: Write off latency parameter estimates f�L1; L1g
.

12 N1W2 24 G1W2 36 G1W2 48 G1W2 60 G1W2

Constant
5:7465a

(0.0013)
4:4881a

(0.0003)
5:0458a

(0.0004)
5:3545a

(0.0005)
5:5759a

(0.0005)

LVR
0:0159a

(0.0002)
�0:0007a
(0.0000)

�0:0099a
(0.0000)

�0:0151a
(0.0001)

�0:0115a
(0.0001)

TL
�0:0001c
(0.0001)

�0:0011a
(0.0000)

0:0029a

(0.0000)
0:0035a

(0.0000)
0:0081a

(0.0000)

EmpYrs
0:0004
(0.0006)

0:0006a

(0.0001)
0:0003c

(0.0002)
0:0005b

(0.0002)
0:0005a

(0.0002)

AddYrs
�0:0002
(0.2644)

0:0001
(0.0081)

0:0002
(0.0091)

0:0003
(0.0137)

0:0001
(0.0153)

Age
0:0036
(0.0114)

�0:0008
(0.0029)

�0:0015
(0.0033)

�0:0004
(0.0047)

0:0000
(0.0037)

Guar
0:1307a

(0.0145)
0:0996a

(0.0060)
0:1779a

(0.0054)
0:2550a

(0.0068)
0:3292a

(0.0053)

GEN
0:1034a

(0.0036)
0:0489a

(0.0016)
0:0117a

(0.0014)
0:0290a

(0.0018)
0:0642a

(0.0014)

ln (L1)
�0:9542a
(0.3478)

1:7555a

(0.1549)
1:4760a

(0.1040)
1:2425a

(0.0990)
1:0702a

(0.0652)
a; b; & c indicate the parameter estimates are sign�cant at the1%; 5% and 10% levels, respectively

Table 4.8: Prepayment latency parameter estimates f�L2; L2g
.

12 N1W2 24 G1W2 36 G1W2 48 G1W2 60 G1W2

Constant
5:4251a

(0.0012)
6:0404a

(0.0005)
6:3416a

(0.0005)
6:4742a

(0.0006)
6:5554a

(0.0005)

LVR
0:0102a

(0.0001)
0:0159a

(0.0000)
0:0258a

(0.0000)
0:0341a

(0.0000)
0:0577a

(0.0000)

TL
0:0005a

(0.0000)
�0:0015a
(0.0000)

�0:0041a
(0.0000)

�0:0063a
(0.0000)

�0:0069a
(0.0000)

EmpYrs
�0:0001
(0.0005)

0:0001
(0.0002)

0:0002
(0.0002)

0:0002
(0.0003)

0:0002
(0.0002)

AddYrs
0:0000
(0.0501)

0:0000
(0.0102)

0:0001
(0.0085)

0:0001
(0.0100)

0:0001
(0.0082)

Age
0:0001
(0.0099)

0:0032
(0.0042)

0:0050
(0.0037)

0:0066
(0.0045)

0:0081b

(0.0035)

Guar
0:0560
(0.0983)

0:0240b

(0.0111)
0:0293
(0.0183)

0:0333
(0.0211)

0:0650
(0.0119)

GEN
�0:0034
(0.0271)

0:0242a

(0.0087)
0:0357a

(0.0060)
0:0361a

(0.0058)
0:0493a

(0.0035)

L2
2:7903a

(0.0383)
2:4056a

(0.0272)
2:0529a

(0.0218)
1:8044a

(0.0218)
1:6060a

(0.0168)
a; b; & c indicate the parameter estimates are sign�cant at the1%; 5% and 10% levels, respectively
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Across the 24, 36 and 60 month term data sets, the results indicate that women were less
likely to experience write off on their personal loan facility, see table 4.4 and 4.5. In table
4.4, gender was not a signi�cant determinant of the speed to write off, however, in table 4.7
gender was found to statistically signi�cantly increase the speed to this event. In addition,
women were more likely to repay early, and would do so at a faster rate than men as seen
in tables 4.4, 4.6 and 4.8. The only exception to this being in the 12 month personal loans
data set representing 1.68% of the total sample. The gender variable results may be due to
women being relatively more risk averse than men.

The variables of EmpYrs, AddYrs, and Age were statistically insigni�cant across
all latencies and incidences. This is consistent with a priori expectations that given the
inclusion of �nancial variables, debtor age, housing and employment stability (measured in
years) are not as important factors as a debtors capacity to service their loan facility. The
only exception being statistical signi�cance showing that increases in the EmpYrs variable
increase the speed to write off conditional on experiencing that event. This result appears
counterintuitive, but is consistent across all studies and data sets. A possible explanation
could be a skilling problem, where an individual who has been in the one job for many
years loses it due to new technological innovation and adoption, leaving the individual
with a redundant skill set. Additional data on �nal employment status would be useful in
determining if the previous explanation is the primary in�uence of the observed result.

Table 4.9: Bayesian Information Criteria for distribution pairs

12 24 36 48 60
G1G2 130,550.09 999,829.49 1,691,494.65 1,457,727.29 3,233,059.25
G1N2 132,062.25 1,011,948.31 1,709,943.73 1,470,431.32 3,252,580.28
G1W2 129,316.02 T992,198.73 T1,683,291.80 T1,454,077.57 T3,230,943.09
N1G2 130,518.20 999,958.15 1,691,834.76 1,458,044.18 3,233,504.08
N1N2 132,029.61 1,012,086.80 xo1,710,278.91 xo1,470,751.17 xo3,253,084.87
N1W2 T129,285.01 992,336.37 1,683,622.32 1,454,381.49 3,231,329.38
W1G2 130,645.22 999,976.88 1,691,509.26 1,457,749.99 3,233,488.50
W1N2 xo132,155.98 xo1,012,089.73 1,709,957.94 1,470,447.48 3,252,984.85
W1W2 129,411.40 992,348.72 1,683,307.10 1,454,103.83 3,231,386.54

.

Note: T: minimum; and; xo:maximum for each term data set.

The BIC for each of the nine distribution combinations across the �ve data sets is
displayed in Table 4.9. The BIC indicate that the Weibull distribution for prepayment
consistently lead to the best �t, whilst the log-normal distribution for prepayment
consistently lead to the worst model �t. The Gamma and Weibull distributional mix for
write off and prepayment, respectively, resulted in the best model �t in the largest four of the
�ve data sets.
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4.3 Diagnostics

Pro�le log-likelihoods were examined across the parameter pairs. The surfaces reveal
clear maxima with clear features of uniformity, symmetry and concavity. The pro�le
log-likelihoods suggest that there is a clear global maximum for all distributional pairs. An
example of the pro�le log-likelihoods is illustrated in �gure 3.

Anderson-Darling and Kolmogorov-Smirnov tests were applied to write off and
prepayment latency residuals across the nine distribution assumptions. The tests
unanimously found suf�cient evidence to reject the null hypothesis that the appropriately
standardised residuals came from the standard normal distribution and the results have been
included in the appendix accompanying this paper. This suggests a misspeci�cation of
distributions. However, this may be mitigated fractionally given the increasing sensitivity of
these tests as the data set grows in size.

A graphical test for linearity can be performed to assess the appropriateness of the
Weibull distributional assumptions. Figure 4 plots the log negative log of the KM survival
function against log time and should have an intercept term of �b�LjbLj and a slope
coef�cient of bLj . The plots for the time to prepayment events in panel (b) of �gure 4
appear to be the most linear of the two plots. The plot of the write off variables in panel
(a) of �gure 4 do not illustrate a linear relationship. Overall, there is only a very weak
linear relationship for this variable and it casts doubt over the appropriateness of the Weibull
distributional assumption for the write off latency.

A regression was performed such that:
yi = b�a + b�b ln (ti) + ui (21)

where yi = ln
n
� ln

hbSKM (ti)io and was regressed on the natural logarithm of the
observed failure times (ti) separately for each event. Should the time to the particular event
be distributed Weibull then the estimates should hold the following relationship with the
optimised parameters of the parametric survival estimation:b�a = �bLjb�Lj and b�b = bLj (22)
A Wald test was performed to test the null hypothesis Ho : b� � � = 0 against the

alternative that it is not equal to zero, across all distribution pairs and the full set of results
has been included in the appendix accompanying this paper. In all except two instances,
the null hypotheses were rejected at the one percent signi�cance level. The two exceptions
were both for the prepayment event in the 48 Month Term data set for the Weibull Weibull
and Log-Normal Weibull distribution combintations.

Upon examination of the histogram plots in �gure 5 it is apparent that the Weibull
Weibull distribution assumption appears to match the EVM pdf plot in �gure 5 most
closely of the nine histograms. The Gamma Weibull (that is Gamma write offs and
Weibull prepayments) and the Log-Normal Weibull depart the most from the pdf plot of
the EVM distribution, characterised by an approximate ten fold decrease in the domain
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3. Pro�le log-likelihood over the gamma latency parameters

4. Plots for log negative log of the Kaplan-Meier survival function versus log time
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5. Time to prepayment residual histograms and EVM pdf plot

of the residuals. These plots also correspond to the estimates of Model I and II with the
lowest BIC across the nine distribution combinations. In addition, there may be correlation
between the write off and prepayment events that needs to be addressed.

5 Conclusion

Credit risk assessment has been dominated by logistic and probit regression techniques.
Research into the application of duration analysis to credit data has become increasingly
abundant in recent years. Typical applications examine the credit events of default and
prepayment individually. There have been applications treating the aforementioned
events as dependent competing risks and have simultaneously estimated their parameters.
However, all applications have failed to adequately treat credit maturity events which will
lead to biases in parameter estimation.

This paper has developed the �rst integrated methodology for the analysis of a set of
mutually exclusive events, where the duration time to an event may be non-stochastic or
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pre-determined. It has been motivated by the Cure Rate methodologies in the medical
literature, augmenting these binary models to a fully parametric multinomial mixture model
framework, best applied to credit data. Incidence and latency of each event in the system
are estimated simultaneously.

The results from the model estimation with Australian retail credit data provide the
�rst evidence of regressors acting in opposite directions upon the incidence and latency of
an event. In particular, as the Loan to Value Ratio (LVR) at application of the personal
loans rises, the incidence of write off increases whilst the incidence of prepayment
decreases and the conditional latencies of write off and prepayment are progressed to more
slowly and faster, respectively. Similarly, for the Total Liabilities (TL) at application,
positive and negative coef�cients were estimated for the prepayment incidence and latency
effects, respectively. This suggests that the higher the TL at application the more likely
a loan facility is to progress to prepayment, but the slower this will occur, conditional on
experiencing prepayment.

The same set of results were also the �rst to provide evidence of regressors in credit data
which are signi�cant in explaining the conditional latency and insigni�cant in explaining the
incidence of the same event. The regressor for the number of months an applicant has been
working at their last two jobs (Emp Yrs) is not signi�cant in explaining the incidence of
write off whilst it is signi�cant in explaining the conditional latency of write off. However, it
is only of marginal economic signi�cance given the low magnitude of the positive coef�cient
estimate.

The results within this paper were unattainable using previous methodologies. This
aspect of the model allows for a deeper and more rigorous examination of credit data. In
addition, the results of the simulation study indicate that the methodology developed in
this paper was superior in predicting the parameter values compared to the previous two
general frameworks. The model corrects the biases that existed in previous studies die to
the treatment of maturity observations. There are far reaching applications of this model
ranging from pro�t scoring to portfolio funding optimisation. Future research can extend
this framework to explicitly examine the dependence structure between prepayment and
write off through either a copula or bivariate framework.
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Appendix A.

7 Gamma Function

The Gamma Function and Incomplete Gamma Function are de�ned below, respectively:
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8 Score Function

The incidence components for this model are given a Multinomial Logit (MNL)
functional form. Equation ?? details the expressions for pi0, pi1 and pi2, respectively. Now
let the expression 241 + 2X

j=1

ex
T
i �IjStj (t)

35 = �t1t2 (A-3)

for notational convenience. In addtion, let the indicator function be used such that
1(tj =Wj) takes the value of one when the statement inside is true, and zero otherwise. It
is used analogously for all other distribution labels.

Using this terminology we can de�ne the score functions for Model II, they are outlined
below for j = 1; 2:
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The digamma function is the derivative of the log Gamma function with respect to its
only argument. The expression is outlined below:
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Where C is Euler's Constant and is de�ned as:
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In addition, the Regularised Hypergeometic Function
�
2
eF2� is used in equation A-6

whenever the Gamma distribution is applied to any of the latencies. The Regularised
Hypergeometic Function is characterised as:
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where 2F2 is the Generalised Hypergeometric Function which characterised as:
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where the Pochammer Notation, (a1)k, represents:

(a)k �
� (a+ k)

� (a)

This information is available on the Wolfram MathWorld web pages.

The Hessian Matrix can be obtained as (i) @ lnL(
b�)

@�0@�T0
or (ii)

�
@ lnL(b�)
@�0

�
2
, where

a
2 = aa0. The Hessian for the Weibull Weibull case of this model was calculated using
the �rst method, whilst the second method was used for all other distribution combinations.

9 Simulation

The �rst three scenarios generate from the Log-Normal and Weibull distributions for
write off and prepayment events, respectively (�1W2), differing in parameter values and
�xed incidence proportions. The next two scenarios labelled 04 and 05, generate the
latencies for each event from two independent but identical Weibull distributions (W1W2).
These �rst �ve scenarios are generated with only an intercept term and thus occur in �xed
proportions. The �xed proportions are created using a uniform (0,1) random variable
labelled UI . A different and independently generated uniform (0,1) vector labelled U�
is used to simulate random noninformative right censoring. Models I and III are used to
estimate the parameters on sets of 1,000 observations generated 20,000 times.

Table 5.1: Parameter values used to generate simulation scenarios 01 to 05

Scenario p0 p1 p2 ln (�1) �1 2 �2
Sim01 �1W2 0.05 0.20 0.75 ln(0.6) 4.50 7.00 5.50
Sim02 �1W2 0.05 0.75 0.20 ln(0.6) 4.50 7.00 5.50
Sim03 �1W2 0.40 0.20 0.40 ln(0.6) 4.50 7.00 5.50
Sim04 W1W2 0.60 0.10 0.30 ln(0.6) 4.50 7.00 5.50
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Once an incidence of maturity, write off, or prepayment has been randomly assigned
to each of the 1,000 generated data points, a time vector, T, can be constructed. Each
element of T will correspond to the elements of the randomly and independently generated
(�1W2) and (W1W2) event times. This vector of event times and the corresponding event
and censoring indicator variables are then used in an optimisation routine to estimate
the parameters for Model i: developed in this paper; Model ii: same as model i except
treats maturity events as censored; Model iii: simulataneous estimation of prepayment
and default without separation of incidence and latency; Model iv: examines prepayment
individually treating all other events as censored observations; and Model v: examines write
off individually treating all other events as censored observations.

Table 5.2: All models parameter estimates with 10% random censoring Sim01

bp1 bp2 ln (b�1) b�1 b2 b�2
Sim01 Population 0.20 0.75 ln(0.6) 4.50 7.00 5.50
Model i Mean 0.1846 0.7480 -0.4914 4.5220 7.0952 5.5099

Std 0.0125 0.0143 0.0563 0.0467 0.2129 0.0057

Prct Err. -7.68% -0.26% -3.80% 0.49% 1.36% 0.18%

Model ii Mean 0.2576 0.0462 5.0747 7.0921 5.5096
Std 0.0148 0.0557 0.0846 0.2129 0.0057

Prct Err. 28.82% -109.04% 12.77% 1.32% 0.18%

Model iii Mean 0.0802 5.1720 7.0842 5.5059
Std 0.0532 0.0859 0.2127 0.0057

Prct Err. -115.70% 14.93% 1.20% 0.11%

Model iv Mean 4.3454 5.5711
Std 0.2784 0.0102

Prct Err. -37.92% 1.29%

Model v Mean 0.4791 6.7995
Std 0.0403 0.1105

Prct Err. -193.78% 51.10%
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Table 5.3: All models parameter estimates with 10% random censoring Sim02

bp1 bp2 ln (b�1) b�1 b2 b�2
Sim02 Population 0.75 0.20 ln(0.6) 4.50 7.00 5.50
Model i Mean 0.7199 0.2133 -0.4930 4.5340 7.1623 5.5067

Std 0.0150 0.0139 0.0284 0.0238 0.4183 0.0111

Prct Err. -4.01% 6.66% -3.48% 0.75% 2.32% 0.12%

Model ii Mean 0.7893 -0.2830 4.6852 7.1526 5.5066
Std 0.0138 0.0311 0.0298 0.4185 0.0111

Prct Err. 5.24% -44.61% 4.12% 2.18% 0.12%

Model iii Mean -0.2961 4.6575 7.1541 5.5145
Std 0.0349 0.0317 0.5273 0.0255

Prct Err. -42.04% 3.50% 2.20% 0.26%

Model iv Mean 3.4853 5.8049
Std 0.2636 0.0363

Prct Err. -50.21% 5.54%

Model v Mean -0.1351 4.8827
Std 0.0250 0.0302

Prct Err. -73.54% 8.51%

Table 5.4: All models parameter estimates with 10% random censoring Sim03

bp1 bp2 ln (b�1) b�1 b2 b�2
Sim03 Population 0.20 0.40 ln(0.6) 4.50 7.00 5.50
Model i Mean 0.1829 0.3789 -0.5062 4.5105 7.0732 5.5028

Std 0.0124 0.0158 0.0547 0.0451 0.2924 0.0079

Prct Err. -8.55% -5.28% -0.91% 0.23% 1.05% 0.05%

Model ii Mean 0.2673 -0.2494 5.0045 3.4154 5.9650
Std 0.1800 0.4460 0.9691 1.7145 0.2275

Prct Err. 33.67% -51.18% 11.21% -51.21% 8.45%

Model iii Mean 0.6531 6.9373 7.0832 5.5040
Std 0.0396 0.1428 0.3064 0.0108

Prct Err. -227.86% 54.16% 1.19% 0.07%

Model iv Mean 2.6689 6.0124
Std 0.0619 0.0231

Prct Err. -61.87% 9.32%

Model v Mean 0.6483 7.2475
Std 0.0366 0.1306

Prct Err. -226.91% 61.06%
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Table 5.5: All models parameter estimates with 10% random censoring Sim04

bp1 bp2 ln (b�1) b�1 b2 b�2
Sim04 Population 0.10 0.30 ln(0.6) 4.50 7.00 5.50
Model i Mean 0.0908 0.2778 -0.5142 4.5063 7.0630 5.5015

Std 0.0091 0.0144 0.0775 0.0646 0.3383 0.0091

Prct Err. -9.21% -7.39% 0.66% 0.14% 0.90% 0.03%

Model ii Mean 0.0870 -0.4724 4.5313 2.3566 6.3422
Std 0.0089 0.0963 0.0753 0.0574 0.0329

Prct Err. -13.00% -7.52% 0.70% -66.33% 15.31%

Model iii Mean 0.8487 8.2127 3.4140 5.8806
Std 0.0628 0.3786 1.6457 0.1644

Prct Err. -266.15% 82.50% -51.23% 6.92%

Model iv Mean 2.4096 6.2594
Std 0.0562 0.0296

Prct Err. -65.58% 13.81%

Model v Mean 0.8850 8.8388
Std 0.0481 0.2418

Prct Err. -273.24% 96.42%

The results for Models I & III are displayed above in tables 7.3 to 7.4 without random
censoring results. The tables display the average of the 20; 000 parameter estimates along
with the standard deviation for these estimates. The percent error (labelled �Prct Err.�)
is calculated as

�b� � ��. � and provides an indication of how well each of the models
performs in �nite samples.

10 Diagnostics Test Results

The following section details results for the Kolmogorov-Smirnov, Anderson-Darling and
Wald Tests summarised in section 4.3 of this paper. The Aderson Darling and Kilmogorov
Smirnov statistics are tests of distribution assumptions with the null hypothesis being that
the variables follow the standard normal distribution. In each case the tests are applied to
normalised residuals to determine if they follow the distribution assumptions speci�ed in this
paper. Results have been presented below for the Gamma-Weibull distribution assumptions.
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Table 6.1: Gamma-Weibull Models - Anderson Darling (AD) and
Kolmogorov-Smirnov (KS) Distributional Test Results

Term
12 24 36 48 60

Write Off (Gamma)
Sample Size 334 2446 4680 5229 15876

AD 6.42 3.09 13.03 11.72 17.67
AD Adj 6.43 3.09 13.04 11.72 17.67

AD P-Value 0.0000 0.0000 0.0000 0.0000 0.0000
KS 0.96 0.92 0.85 0.76 0.68

KS P-Value 0.0000 0.0000 0.0000 0.0000 0.0000
Critical Value 0.0665 0.0247 0.0179 0.0169 0.0097

Early Repayment (Weibull)
Sample Size 8398 63479 104296 87385 185408

AD 239.04 1643.16 1997.01 1057.99 1204.29
AD Adj 239.06 1643.18 1997.02 1058.00 1204.29

AD P-Value 0.0000 0.0000 0.0000 0.0000 0.0000
KS 0.75 0.73 0.70 0.67 0.64

KS P-Value 0.0000 0.0000 0.0000 0.0000 0.0000
Critical Value 0.0133 0.0049 0.0038 0.0041 0.0028

Note: "AD Adj" is the AD statistic with an adjustment for small sample sizes

The Wald test was conducted to assess if the parameter estimates of a regression of
the log negative log of the empircal survival function (dependent variable) on the log of
time (explanatory variable) were different from the optimised parameters of the model in
this paper. The results to test the hypotheses b�1 + bLjb�Lj = 0 and b�2 � bLj = 0
are presented in the tables 6.2 to 6.6 below. There were only two occasions when there
was insuf�cient evidence to reject the null hypothesis. Also see equations 21 and 22 for
regression speci�cations.

Table 6.2: Wald test results for 12 month term relevant models

Write Off Prepayment
12 Term W1W2 W1G2 W1�2 W1W2 G1W2 �1W2

�bLjb�Lj -12.852 -12.852 -12.851 -15.078 -15.077 -15.104b�1 -28.768 -28.768 -28.768 -12.932 -12.932 -12.932
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000bLj 2.1105 2.1106 2.1105 2.7883 2.7883 2.7931b�2 4.2315 4.2315 4.2315 2.1771 2.1771 2.1771
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 6.3: Wald test results for 24 month term relevant models

Write Off Prepayment
24 Term W1W2 W1G2 W1�2 W1W2 G1W2 �1W2

�bLjb�Lj -16.137 -16.145 -16.150 -14.705 -14.705 -14.705b�1 -24.368 -24.368 -24.368 -12.773 -12.773 -12.773
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000bLj 2.5228 2.5240 2.5248 2.3963 2.3962 2.3962b�2 3.3045 3.3045 3.3045 1.9885 1.9885 1.9885
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.4: Wald test results for 36 month term relevant models

Write Off Prepayment
36 Term W1W2 W1G2 W1�2 W1W2 G1W2 �1W2

�bLjb�Lj -15.547 -15.566 -15.586 -13.242 -13.242 -13.243b�1 -21.476 -21.476 -21.476 -12.235 -12.235 -12.235
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000bLj 2.3426 2.3456 2.3491 2.0385 2.0385 2.0386b�2 2.7725 2.7725 2.7725 1.8308 1.8308 1.8308
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.5: Wald test results for 48 month term relevant models

Write Off Prepayment
48 Term W1W2 W1G2 W1�2 W1W2 G1W2 �1W2

�bLjb�Lj -14.060 -14.092 -14.134 -11.947 -13.242 -11.950b�1 -18.572 -18.572 -18.572 -11.911 -11.911 -11.911
P-Value 0.0000 0.0000 0.0000 0.1437 0.0000 0.1131bLj 2.0786 2.0837 2.0911 1.7893 2.0385 1.7897b�2 2.3214 2.3214 2.3214 1.7518 1.7518 1.7518
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.6: Wald test results for 60 month term relevant models

Write Off Prepayment
60 Term W1W2 W1G2 W1�2 W1W2 G1W2 �1W2

�bLjb�Lj -12.776 -12.819 -12.908 -10.783 -10.786 -10.792b�1 -17.070 -17.070 -17.070 -11.217 -11.217 -11.217
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000bLj 1.8747 1.8815 1.8970 1.5911 1.5914 1.5925b�2 2.1172 2.1172 2.1172 1.6247 1.6247 1.6247
P-Value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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