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Abstract

Recently, Bayesian solutions to the quantile regression problem, via the likeli-

hood of a Skewed-Laplace distribution, have been proposed. These approaches are

extended and applied to a family of dynamic conditional autoregressive quantile

models. Popular Value at Risk models, used for risk management in finance, are

extended to this fully nonlinear family. An adaptive Markov chain Monte Carlo

sampling scheme is adapted for estimation and inference. Simulation studies illus-

trate favorable performance, compared to the standard numerical optimization of

the usual non-parametric quantile criterion function, in finite samples. An empir-

ical study generating Value at Risk forecasts for ten major financial stock indices

finds significant nonlinearity in dynamic quantiles and evidence favoring the pro-

posed model family, for lower level quantiles, compared to a range of standard para-

metric volatility models, a semi-parametric smoothly mixing regression and some

non-parametric risk measures, in the literature.

Keywords: CAViaR model; Asymmetric; Skew-Laplace distribution; Value-at-Risk;

GARCH; Regression quantile.



1 Introduction

The quantile regression problem was first proposed and solved by Koenker and Bassett

(1978). The problem involved estimating the parameters of a standard linear regression

model, whose aim was to specify the regression line for the response variable measured at a

specific quantile of the distribution, rather than at the mean of the response. Applications

of this method have been wide ranging and include: labour and wage economics (e.g.

Machado and Mata, 2005); medicine (e.g. Wei et al. 2006); ecology (e.g. Cade and Noon,

1996), among many others. The quantile regression solution involved the criterion function

that, when minimised, returned the ‘optimal’ quantile regression estimator. This criterion

required no distributional assumption, as such quantile regression is often regarded as a

non-parametric method, despite mostly parametric forms being assumed for the regression

relationship between the response and the regressors; most examples of its use thus make

it semi-parametric in nature.

Recently, various authors have noted that the quantile regression criterion function is

related to the likelihood for the Skewed-Laplace (SL) distribution; see e.g. Yu and Moyeed

(2001) and Tsionas (2003). This discovery allows likelihood estimation, which has moti-

vated Bayesian solutions to this problem. These proposals, see also Yu and Zhang (2005)

and Geraci and Bottai (2007), all involve Markov chain Monte Carlo (MCMC) compu-

tational methods due to the non-standard form of the SL likelihood. We extend these

MCMC methods to be adaptive, slightly extending the method in Chen and So (2006), to

cover a family of nonlinear dynamic autoregressive semi-parametric conditional quantile

models.

Value-at-Risk (VaR) forecasting is required by financial institutions worldwide (see

Basel II: http://www.bis.org/publ/bcbsca.htm) for capital allocation and risk manage-

ment. Thus, in recent years, volatility forecasting and measures of market risk have been

very important for financial institutions. VaR forecasts the minimum loss over a given

time interval, under normal market conditions, at a given confidence level, for an invest-

ment portfolio (Jorion, 1996); VaR is thus a function of the quantiles of an asset return

distribution. Many competing econometric and time series models/methods have been
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used in the literature to forecast quantiles, and hence VaR (see Kuester et al, 2006 for

a review). Engle and Manganelli (2004) proposed to use dynamic quantile regression to

model VaR directly, introducing some conditional autoregressive VaR (CAViaR) dynamic

quantile models. However, Manganelli and Engle (2004) noted that the classical numeri-

cal optimisation procedure used for estimation in this model family could be problematic

or inefficient at very low quantiles, and presumably at ”low” sample sizes as well, where

”low” also depends on the relevant quantile level. This paper develops a Bayesian MCMC

estimator for CAViaR models, taking advantage of the likely gains in efficiency that nu-

merical integration, used to estimate the posterior mean, can display over the standard

numerical differentiation based approaches in Engle and Manganelli(2004).

GARCH-type models, see Engle (1982) and Bollerslev (1986), with parametric speci-

fied error distributions, are also popular in VaR forecasting, see e.g. Chen and So (2006).

Manganelli and Engle (2004) found that the basic CAViaR model could out-perform

standard GARCH and historical simulation approaches for forecasting VaR from data

simulated from a range of dynamic models, especially for fat-tailed error processes. We

show that this result also holds for some real market return data, at the 1% quantile

level. Giacomini and Komunjer (2005) developed an encompassing test for forecast mod-

els and find that a CAViaR model is most useful at the 1% quantile level, but that a

simple GARCH model with Gaussian errors outperforms the CAViaR model at the 5%

level, for the US S&P500 return data from 1985-2001. We extend these results in this

paper across ten international market indices, including the US S&P500, finding that this

conclusion generalises across the markets considered, in a more up-to-date time period.

Further, Geweke and Keane (2007) propose a smoothly mixing regression approach to

semi-parametrically and flexibly estimate predictive densities for observations, that can

capture some types of heteroscedasticity. This approach outperformed GARCH models

for the US S&P 500 index from 1995-1999. Finally, many financial institutions simply em-

ploy sample return percentiles, called historical simulation, to estimate VaR. We consider

all the above-mentioned VaR forecasting approaches in this paper.

Black (1976) first discovered the asymmetric volatility phenomenon in financial mar-

kets. Many nonlinear models have been proposed to capture this trait, including some
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simple nonlinear CAViaR specifications. In this paper we extend the existing CAViaR

model forms into a fully nonlinear family of dynamic models, in the spirit of thresh-

old GARCH modelling (see Zakoian, 1994 and Brooks, 2001). We employ an adaptive

MCMC sampling scheme, extending work by Yu and Moyeed (2001), Tsionas (2003),

Geraci and Bottai (2007) and Chen and So (2006), to facilitate efficient Bayesian esti-

mation, inference and forecasting for the proposed dynamic quantile model family. The

proposed model and MCMC methods are examined firstly through a simulation study,

and secondly through application to various financial market stock indices in a study of

VaR forecasting. The simulation study illustrates favourable estimation performance, in

terms of efficiency, compared with numerically optimising the quantile criterion function.

The empirical study puts forward evidence of strong nonlinearity in dynamic quantiles in

financial markets, supporting the extended fully nonlinear CAViaR model. Secondly, the

VaR forecasting study illustrates that CAViaR models performed favourably compared

to RiskMetrics and general GARCH estimators at VaR forecasting during our forecast

period of 2005 to 2007, especially at the 1% quantile while simpler models, including

GARCH and RiskMetrics did well at the 5% quantile level.

Section 2 discusses dynamic quantiles and the link with the SL distribution. Section

3 proposes the extended family of dynamic autoregressive quantile models. Section 4

presents the MCMC methods employed here. Sections 5 and 6 respectively present the

simulation and empirical studies. Section 7 concludes.

2 Dynamic quantiles and Value at Risk

This section discusses the general dynamic quantile problem and the relation to the SL

distribution.

2.1 General problem

The general dynamic quantile regression problem may be written:

yt = ft(β, xt−1) + ut, (1)
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where yt is a dynamic observation at time t; xt−1 is a set of explanatory variables, which

could include lagged values of the response yt−k; k > 0; β are the unknown parameters and

ut is an unknown error term, with a generally unspecified distribution. The exogenous

variables are lagged so as to accommodate forecasting, which is highly relevant in the

financial examples we consider. The function ft(.) defines the dynamic link between the

response yt and the explanatory information xt−1. It is usually linear in the parameters

and x, an aspect that will be extended here. The conditional quantile at level α is then:

qα(yt|β, xt−1) = ft(βα, xt−1)

where βα is the solution to:

minβ

∑

t

ρα (yt − ft(β, xt−1)) . (2)

The function ρ(.) is a loss function, specified as ρα(u) = u(α − I(u < 0)).

2.2 The Skewed-Laplace connection

Yu and Moyeed (2001) and Tsionas (2003) illustrated the link between the solution to the

quantile estimation problem and the likelihood for the SL distribution, as follows. The

SL location-scale family (SL(µ, τ, α)) of distributions has density function:

pα(u) =
α(1 − α)

τ
exp

[
−ρα

(
u − µ

τ

)]
, (3)

where µ is the mode and τ > 0 is a scale parameter. If it is assumed, in model (1), that

ut ∼ SL(0, τ, α) and is i.i.d., then the likelihood function becomes:

Lα(β, τ ; y, X) ∝ τ−n exp

{
−τ−1

n∑

t=1

(yt − ft(β)) [α − I(−∞,0)(yt − ft(β))]

}
. (4)

Since (2) is contained in the exponent of the likelihood, the maximum likelihood estimate

for β is equivalent to the quantile estimator in (2).

It is important to emphasize that, though we treat (4) exactly as a likelihood function,

it is not actually assumed that y follows a Skewed-Laplace distribution. The likelihood

is only employed as it leads to an estimator that is mathematically equivalent to (2).

This allows us to consider powerful computational methods, such as adaptive MCMC
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algorithms, that employ numerical integration (which can be made arbitrarily accurate),

instead of numerical optimisation. Authors such as Yu and Moyeed (2001) and others,

have illustrated that accurate estimation and inference was achieved under this approach.

We further investigate and add to these findings for dynamic nonlinear quantile models.

2.3 Value at Risk

The Basel Capital Accord, originally signed by the Group of Ten countries in 1988, re-

quires Authorized Deposit-taking Institutions (ADIs) to hold sufficient capital to provide

a cushion against unexpected losses. Value-at-Risk (VaR) is a procedure designed to fore-

cast the worst expected loss over a given time interval under normal market conditions,

at a given confidence level α (Jorion, 1996). That is,

α = Pr(yt < −V aRt|y
1,t−1)

The VaR is thus proportional to a quantile in the conditional one-step-ahead forecast

distribution for the observations. Manganelli and Engle (2004) categorised VaR methods

as:

1. Parametric: makes a fully parametric distributional and model form assumption.

e.g. GARCH with Gaussian errors.

2. Non-parametric: minimal distributional and dynamic assumptions; e.g. historical

simulation (i.e. using past sample quantiles).

3. Semi-parametric: some assumptions are made, either about the error distribution,

or the model dynamics, but not both; e.g. quantile regression (CAViaR).

Monte Carlo (MC) simulation methods are commonly used in all three classes above.

For instance, multi-step ahead VaR estimates are not available in closed form for many

models when estimated from daily returns (e.g. GARCH models). MC methods are used

in these cases, or similar bootstrap-type methods could be used in a truly non-parametric

situation. MCMC methods, as used in this paper, fit into this class also.
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A popular method for VaR estimation is RiskMetrics (RM), proposed by J.P. Mor-

gan in 1996, where an IGARCH(1,1) process, with no mean equation, is employed. For

expositional purposes, the standard GARCH(1,1) model is:

yt = µ + at ; at = σtǫt, ǫt
i.i.d.
∼ D(0, 1)

σ2
t = α1 + α2σ

2
t−1 + α3a

2
t−1,

with the IGARCH(1,1) RM model a special case that sets: D ≡ N(0, 1), µ = α0 = 0,

α1 = 1 − β1 and β1 = 0.94 (for daily data); and is thus non-stationary in volatility.

Standard GARCH theory (e.g. see Tsay, 2005) allows closed form solutions to the one-

step-ahead quantiles of yt|y
1,t−1, given the parameter values and based on parametric

errors. The standard GARCH(1,1) with Gaussian errors is labeled GARCH-n, while the

GARCH(1,1) with standardised Student-t errors is denoted GARCH-t.

2.4 CAViaR models for VaR

Engle and Manganelli (2004) proposed various dynamic quantile functions f(.), called

conditional autoregressive Value at Risk (CAViaR) models. We initially discuss three of

their specifications:

Indirect GARCH(1,1)(IG):

ft(β) = [β1 + β2f
2
t−1(β) + β3y

2
t−1]

1/2. (5)

This equation is exactly equivalent to the dynamic quantile function for a GARCH(1,1)

model with an i.i.d. symmetric error distribution and mean µ = 0. The model thus allows

efficient estimation for GARCH(1,1) quantiles with unspecified error distribution. This

is an advantage: GARCH models are estimated under a parametric error distribution.

However, it is well known that GARCH models tend to over-estimate volatility in general

(e.g. see Chen, Gerlach and Lin, 2008) and over-react to large return shocks (since they

are squared). As such we prefer the absolute value model types below:

Symmetric Absolute Value (SAV):

ft(β) = β1 + β2ft−1(β) + β3 |yt−1| . (6)
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The quantile again responds symmetrically to the lagged return yt−1. This equation is

equivalent to the quantile function for a standard deviation GARCH model (e.g. see

Zakoian, 1994), where:

σt = γ1 + γ2σt−1 + γ2|at−1|.

The two CAViaR models SAV and IG have symmetric responses to positive and negative

observations. To account for financial market asymmetry, via the leverage effect (Black,

1976), the SAV model was extended in Engle and Manganelli (2004) to:

Asymmetric Slope (AS):

ft(β) = β1 + β2ft−1(β) + (β3I(yt−1>0) + β4I(yt−1<0)) |yt−1| , (7)

where the dynamic quantile function can respond differently to positive and negative

responses. Such a threshold nonlinear model is similar in spirit to the GJR-GARCH model

(Glosten, Jaganathan and Runkle, 1993) or EGARCH (Nelson, 1991), where asymmetry

is modelled by adding one parameter only, and hence the types of asymmetry captured are

limited. Again the AS model corresponds to a standard deviation GJR-GARCH model

with mean µ = 0 where:

σt = δ1 + δ2σt−1 + δ3I(at−1>0)|at−1| + δ4I(at−1<0)|at−1|.

We extend these CAViaR models in Section 3 to capture more flexible and complete

asymmetric responses, via more general threshold nonlinear forms.

3 Proposed nonlinear dynamic quantile family

Li and Li (1996) and Brooks (2001) extend the simple 1st generation ARCH and GARCH

models to be fully threshold nonlinear: i.e. all parameters in the volatility (and mean)

equations were allowed to change between regimes, based on an observed threshold vari-

able. These models were natural extensions of the original threshold autoregressive (TAR)

model of Tong (1978), so as to allow fully threshold nonlinear dynamic volatility (and

mean). In this same spirit, it is natural to extend the SAV and AS (CAViaR) models to

the:

7



Threshold CAViaR (T-CAViaR):

ft(β) =





β1 + β2ft−1(β) + β3 |yt−1| , zt−1 ≤ r

β4 + β5ft−1(β) + β6 |yt−1| , zt−1 > r
(8)

Here z is an observed threshold variable which could be exogenous, or self-exciting i.e.

zt = yt and r is the threshold value, typically set as r = 0, or estimated, though empirically

many estimates in the literature are not significant from zero; as such we fix r = 0, which

also makes the T-CAViaR a direct extension of the AS-CAViaR model in 7. We consider

both exogenous and self-exciting thresholds in this paper. The exogenous threshold is

the return on the US S&P500 index and the model using that threshold is denoted as

T-CAViaR-x. The self-exciting model is denoted T-CAViaR.

Here each parameter in the dynamic quantile function can respond differently to

positive and negative responses. We call this the T-CAViaR family since it includes the

SAV (r = ∞) and AS (r = 0, β4=β1 and β5=β2) CAViaR models as special cases. Once

again, this model is the semi-parametric equivalent of the standard deviation T-GARCH

model with mean µ = 0:

σt =





δ1 + δ2σt−1 + δ3 |at−1| , zt−1 ≤ 0

δ4 + δ5σt−1 + δ6 |at−1| , zt−1 > 0
(9)

We choose to focus on this absolute value CAViaR model-type. However, a corresponding

T-CAViaR-IG model could be specified as:

Threshold Indirect-GARCH (T-CAViaR-IG):

ft(β) =





[
β1 + β2f

2
t−1(β) + β3y

2
t−1

]1/2
, zt−1 ≤ r

[
β4 + β5f

2
t−1(β) + β6y

2
t−1

]1/2
, zt−1 > r

(10)

We limit focus in this paper to the TCAV model family (8). These models are

non-parametric in their error specifications, but simply extend the existing forms for the

dynamic function f(.) to be fully threshold nonlinear: i.e. they are semi-parametric.

Dynamic models typically have constraints or restrictions on the parameters for sta-

tionarity (or positivity of dynamic variances). However, such restrictions are difficult to

locate or derive for CAViaR models, and we choose not to set any in this paper, as in

Engle and Manganelli (2004).
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4 Bayesian methods

Bayesian methods generally require the specification of a likelihood function and a prior

distribution. The likelihood function for the T-CAViaR is completely specified by (4) and

(8). We now specify the prior distribution.

4.1 Prior and Posterior densities

We choose the prior to be uninformative over the possible region for the regression-type

parameters β, The joint prior is thus:

π(β) ∝ 1.

which is equivalent to a flat prior on β over the real line, in six dimensions. This prior

distribution can have no effect on parameter estimation, in this metric for β, since it is

constant. All estimation will thus be based on the likelihood function alone. Yu and

Moheed (2001) showed that the posterior in β was proper, under this improper prior, for

general quantile regression models.

Using (4), (8), plus the standard Jeffreys prior π(τ) ∝ τ−1, the joint posterior density

for β, τ |y is:

p(β, τ |y) ∝ p(β, τ)Lα(β, τ ; y)

∝ τ−(n+1) exp{−τ−1
n∑

t=2

ρα (yt − ft(β))}, (11)

which is in the form of an inverse gamma density in τ . Since estimation of τ is not relevant

in VaR forecasting, this parameter was integrated out of p(β, τ |y), to obtain the marginal

posterior for β|y, via direct integration:

p(β|y) =
∫

p(β, τ |y)dτ

∝

[
n∑

t=2

ρα (yt − ft(β))

]
−n

, (12)

using the fact that the inverse gamma density integrates to 1. This posterior is not in

a form permitting direct inference on β. We thus turn to computational methods for

estimation and inference.
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4.2 Adaptive MCMC sampling using Metropolis methods

If a sample could be directly simulated from p(β|y) then it could be chosen to be an

independent Monte Carlo sample. However, this is not possible given the non-standard

form, so instead a dependent (Markov chain) Monte Carlo sample is obtained from (12) via

the Metropolis and Metropolis-Hastings (MH) (Metropolis et al., 1953; Hastings, 1970)

algorithms. To speed convergence and to allow optimal mixing properties in the chain, an

adaptive MCMC algorithm for β|y is employed that combines a random walk Metropolis

(RW-M) and an independent kernel (IK-) MH algorithm.

We extend the sampling scheme from Chen and So (2006), who used Gaussian pro-

posal densities. Such a proposal can get ’stuck’ in local modes and take a large number

of iterates to move out of that area of the posterior. To improve on this aspect, for the

burn-in period iterations, a Student-t proposal distribution, with low degrees of freedom

(e.g. df = 5), is employed in a RW-M algorithm. The scale matrix, which might initially

be chosen as e.g. diagonal with positive values, is subsequently tuned to achieve optimal

acceptance rates, between 15% and 50%, as recommended in Gelman et al. (1996). After

the burn-in period, the sample mean vector and sample var-cov matrix are formed using

these M iterates of β. These are subsequently employed in the sampling period (iterations

M + 1 to N) as the mean and scale matrix for another Student-t proposal distribution

(again with low degrees of freedom) in an IK-MH algorithm.

This adaptive proposal updating procedure will speed mixing in the posterior distri-

bution, over that for the simple RW-M method, as long as the burn-in period has ‘covered’

the posterior distribution. See Chen and So (2006) for more details of the Gaussian pro-

posal case, but the Student-t proposals employed here will further assist in achieving

coverage and mixing, over the Gaussian, for both the burn-in and sampling periods, by

lowering the probability of getting stuck in local modes for long periods and allowing for

occasional large jumps around the posterior space. We extensively examined trace plots

and autocorrelation function (ACF) plots, from multiple runs of the MCMC sampler,

from differing starting points, for each element of β, so as to confirm convergence and to

infer adequate coverage. We also employed Gelman’s ’R’ statistic, which is typically very

close to 1 for our MCMC iterates, implying fast mixing and good convergence properties,
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for all parameters in this sampling scheme.

5 Simulation Study

The results from a simulation study, focusing on the full T-CAV model only, are now

discussed. Results from an extended study employing the AS and SAV models are avail-

able from the authors on request: the results are very similar to those presented here.

The simulation study serves to demonstrate an example of the comparative efficiency

of the proposed MCMC method and the usual numerically optimised quantile method

(2), both in parameter estimation and in quantile estimation/forecasting. While accurate

results can be expected under both methods, a comparison is relevant for a number of

reasons. Non-informative (flat) Bayesian priors are employed, so that as sample size in-

creases Bayesian posterior mean and the standard maximum likelihood (ml) estimator will

converge. However, low quantile levels (α = 0.05, 0.01) are examined here and it is well

known that standard errors for quantile regression estimates increase, for fixed sample size

n, as quantile levels depart from α = 0.5. There are two possible sources for differences

between Bayesian and ml estimators for a CAViaR model: (i) the likelihood (≡ posterior

here) in β is skewed; i.e. the central limit theorem may not be a good approximation,

for the chosen n, and the posterior may not be symmetric. In this case the Bayesian

posterior mean will be different to the posterior mode (≡ mle and classical estimator

here); and (ii) both estimators are numerical in nature. The posterior mean uses numer-

ical integration, which can be made arbitrarily accurate, this accuracy controlled by the

number of MC iterates employed. However the mle employs a numeric search algorithm,

effectively employing numerical differentiation. This procedure will become less accurate

as the dimension of the model grows, especially for ”smaller” sample sizes, and may give

rise to a less efficient estimator due to this numerical inaccuracy. The level of numerical

accuracy of the mle if difficult to control, except by increasing n, which is fixed here.

A specific choice of parametric error distribution is needed in order to simulate data

for quantile models. We focus on the GARCH family for this purpose, choosing the

equivalent, to the full T-CAViar model, standard deviation T-GARCH model in 9.
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5.1 Simulation Set-up and Results

Samples of size n = 2000 are simulated from the T-GARCH model with Student-t errors.

The full T-CAV model is then fit to this dataset, once using the MCMC method in Sec-

tion 4 and secondly using the standard optimisation routine, employing the ’fminsearch’

routine in Matlab software, to numerically minimise (2). The Matlab code employed was

adapted, and extended for the full T-CAV model, from freely available code written by

Simone Manganelli; downloadable from

http://www.simonemanganelli.org/Simone/Research.html.

VaR estimates for the in-sample data points, as well as a 1-step-ahead forecast for VaR

at time n + 1 = 2001 were also calculated. The T-GARCH-t model is specified as:

yt = at,

at = σtεt, εt
i.i.d.
∼ t∗6,

σt =





0.2 + 0.03|at−1| + 0.95σt−1, if at−1 ≤ 0,

0.05 + 0.15|at−1| + 0.75σt−1, if at−1 > 0.

Here ν is the degrees of freedom, set equal to 6, and t∗ represents the Student-t distribu-

tion, standardised to have unit variance. The true 1-step-ahead α level quantile is then

qα(yt+1|β) = σt+1T
−1
6 (α)

√
4
6
, where T−1

6 is the inverse cdf for the Student-t distribution.

Following Basel II risk management guidelines, quantile levels of α = 0.01, 0.05 were

considered. 400 datasets were simulated from this model, with results summarised in Table

1. It is straightforward to show that the corresponding parameters of the T-CAViaR

model are: β1(α) = 0.2T−1
6 (α)

√
4
6
; β2 = 0.95; β3(α) = 0.03T−1

6 (α)
√

4
6
; while β4(α) =

0.05T−1
6 (α)

√
4
6
; β5 = 0.75 and β3(α) = 0.15T−1

6 (α)
√

4
6
; giving the true parameter values

in Table 1.

The total MCMC sample size was N = 40000, with a burn-in of M = 15000 iterations.

Initial MCMC iterates were randomly set in the interval (0, 1) for each parameter. For the

standard numerical estimator, a grid of starting values were chosen for each parameter

(from [−1, 1]) and then the simplex method (default in Matlab’s ’fminsearch’ function)

was used to find parameter estimates, starting from each combination of grid values, that

minimised (2); the final estimates were those that gave the global minimum value of (2)
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Table 1: Summary statistics for the T-CAV model for simulated data from a T-GARCH-t

model.

MCMC α=1% α=5%

par. True Mean Std. 95% C.I. True Mean Std. 95% C.I.

β1 -0.513 -0.532 0.524 (-1.62, 0.59) -0.317 -0.333 0.180 (-0.72, 0.03)

β2 0.95 0.946 0.147 ( 0.64, 1.25) 0.95 0.941 0.084 ( 0.77, 1.11)

β3 -0.077 -0.079 0.224 (-0.58, 0.27) -0.048 -0.047 0.073 (-0.22, 0.10)

β4 -0.128 -0.231 0.460 (-1.29, 0.33) -0.079 -0.106 0.148 (-0.51, 0.12)

β5 0.75 0.719 0.145 ( 0.40, 0.95) 0.75 -0.734 0.080 ( 0.54, 0.86)

β6 -0.385 -0.407 0.190 (-0.83,-0.10) -0.238 -0.255 0.079 (-0.43,-0.13)

β1 − β4 -0.385 -0.301 0.853 (-1.60, 1.99) -0.238 -0.227 0.290 (-0.80, 0.45)

β2 − β5 0.20 0.227 0.233 (-0.19, 0.77) 0.20 0.207 0.133 (-0.04, 0.50)

β3 − β6 0.308 0.329 0.279 (-0.24, 0.85) 0.190 0.208 0.106 ( 0.00, 0.41)

V̂ aRn+1 -3.909 -3.922 1.449 (-7.76,-1.76) -2.417 -2.415 0.845 (-4.61,-1.05)

V aRn+1 -3.909 1.349 (-7.28,-1.71) -2.417 0.834 (-4.50,-1.06)

V̂ aRn+1 − V aRn+1 0 -0.013 0.631 (-1.36, 1.10) 0 0.002 0.223 (-0.41, 0.45)

MAD 0.432 0.154 ( 0.18, 0.79) 0.162 0.054 ( 0.08, 0.29)

MedAD 0.327 0.111 ( 0.14, 0.58) 0.124 0.045 ( 0.06, 0.23)

RMSE 0.572 0.285 ( 0.20, 1.24) 0.207 0.072 ( 0.09, 0.37)

Quantile α=1% α=5%

par. True Mean Std. 95% C.I. True Mean Std. 95% C.I.

β1 -0.513 -0.496 0.541 (-1.55, 0.77) -0.317 -0.320 0.179 (-0.68, 0.07)

β2 0.95 0.955 0.153 ( 0.65, 1.29) 0.95 0.948 0.083 ( 0.77, 1.12)

β3 -0.077 -0.076 0.233 (-0.62, 0.28) -0.048 -0.041 0.074 (-0.21, 0.10)

β4 -0.128 -0.246 0.529 (-1.74, 0.32) -0.079 -0.096 0.152 (-0.50, 0.13)

β5 0.75 0.718 0.158 ( 0.33, 0.94) 0.75 0.743 0.081 ( 0.54, 0.87)

β6 -0.385 -0.402 0.195 (-0.85,-0.09) -0.238 -0.248 0.079 (-0.42,-0.11)

β1 − β4 -0.385 -0.250 0.938 (-1.63, 2.21) -0.238 -0.225 0.303 (-0.79, 0.54)

β2 − β5 0.20 0.237 0.252 (-0.16, 0.80) 0.20 0.205 0.139 (-0.04, 0.52)

β3 − β6 0.308 0.327 0.288 (-0.23, 0.84) 0.190 0.207 0.108 (-0.00, 0.42)

V̂ aRt+1 -3.909 -3.924 1.443 (-7.74,-1.76) -2.417 -2.401 0.854 (-4.60,-1.06)

V aRt+1 -3.909 1.349 (-7.28,-1.71) -2.417 0.834 (-4.50,-1.06)

V̂ aRn+1 − V aRn+1 0 -0.015 0.629 (-1.35, 1.08) 0 0.017 0.233 (-0.44, 0.48)

MAD 0.445 0.162 ( 0.19, 0.79) 0.166 0.056 ( 0.08, 0.30)

MedAD 0.336 0.117 ( 0.14, 0.60) 0.127 0.046 ( 0.06, 0.23)

RMSE 0.590 0.293 ( 0.22, 1.35) 0.213 0.076 ( 0.10, 0.40)

across all starting positions. This method was far slower than the MCMC, for the full

TCAViaR model. The MCMC method typically took just over 1 minute (i.e. 65 − 70

seconds) at n = 2000, while the standard optimisation method took around 5-6 minutes,

for each dataset. However, for the AS and SAV models, the MCMC method took 60-65
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seconds (AS) and 45-50 seconds (SAV), while the standard estimator took only 25-30

seconds (AS) and 5-10 seconds (SAV), in Matlab on a standard desktop PC. Adding

extra parameters to the model makes a significantly greater impact to running time for

the standard quantile estimator, since it involves a grid search.

For the MCMC method, Table 1 reports the average of the 400 posterior means for

each parameter, their standard deviation (Std.) from each true value, as well as the 95%

interval for the estimates. The same summaries are shown for the true (simulated) VaR at

t = n + 1 = 2001, the MCMC 1 step-ahead forecast VaR for t = 2001, and the difference

between forecast and true VaR by MCMC. This same information is also shown for the

traditional quantile parameter estimates and forecasts of V aRn+1. Finally, the measures

mean absolute deviation (MAD), median absolute deviation (MedAD) and root mean

square error (RMSE) were used to assess the competing MCMC and traditional quantile

in-sample estimates of the VaR, for all 2000 observations. For the traditional quantile

estimator, the average estimate (mle) is shown, as are the standard deviations of the mles

from the true value and a 95% interval over the 400 parameter estimates.

We consider estimation bias and precision (efficiency). Regarding bias, both methods

parameter estimates average close to the true values across both quantile levels. Values

highlighted in bold are closer to the true value: i.e. optimal among the two methods.

Clearly, the methods are comparable regarding estimation bias. However, regarding pre-

cision, the MCMC estimates are almost all closer in squared error terms to the true value

than the standard quantile estimators. While the differences are mostly marginal, the

agreement across parameters in this aspect is striking. Clearly the MCMC estimator is

more precise than the standard estimator for this model, over the 400 datasets generated,

at n = 2000. We have found this result also holds for different parameter value sets and

across the AS and SAV models also. Further, this result also carries over to VaR esti-

mation in sample, with all accuracy measures favouring the MCMC estimates. However,

1 step-ahead forecast VaR results are mixed and comparable between the two methods.

In short, the MCMC method should be the preferred estimator, at least for the full T-

CAViaR model, as it gives comparable levels of bias and marginally but clearly better

precision, more efficiency, in parameter and in-sample VaR estimation at this sample size.
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This is an interesting result given that asymptotically, Bayesian estimation under

diffuse priors and standard estimates should yield the same results. An examination of

MCMC posterior distributions for each parameter β usually revealed significant nega-

tive skewness, but not significant excess kurtosis, allowing a Jarque-Bera test to reject

independent normality, suggesting that indeed the posterior mean could be different to

the mle at n = 2000. However, since the MCMC and standard parameter estimates are

highly similar in terms of bias, it is more likely that it is the inherent difference in nu-

merical estimation paradigms, i.e. numerical integration vs numerical optimisation, that

is driving the observed differences in efficiency of estimation. This is likely a sample size

issue, since the function (2) weights each observation error yt − ft(β) by α for positive

errors and by 1 − α for negative errors. For α = 0.01 and n = 2000 then, ≈ 1980 errors

or sample observations would receive the very small weight of α = 0.01, while only ≈ 20

of the errors or sample points would receive the much higher weight of 1 − α = 0.99. As

expected, for α = 0.01, the MCMC and ml estimators do converge by about n = 10000

for this model, while for α = 0.05 convergence is clear by around n = 5000, as found by

further simulations not reported here.

6 Testing VaR models

A common non-test criterion to compare VaR models is the rate of violation, defined

as the proportion of observations for which the actual return is more extreme than the

forecasted VaR level, over the forecast period. The violation rate is:

VRate =

∑n+m
t=n+1 I(yt < −VaRt)

m
,

where n is the learning sample size and m is the forecast or test sample size. A forecast

model’s VRate should be close to the nominal level α. We employed the ratio VRate/α,

to help compare the competing models, where models with VRate/α ≈ 1 are most desir-

able. However, as in Wong and So (2003), when VRate < α, risk and loss estimates are

conservative (higher than actual), while alternatively, when VRate > α, risk estimates

are lower than actual and financial institutions may not allocate sufficient capital to cover

likely future losses. Here solvency outweighs profitability and for models where VRate/α
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are equidistant from 1, lower rates are preferred; e.g. VRate/α = 0.9 is preferred to

VRate/α = 1.1.

We further consider three standard hypothesis-testing methods for evaluating and

testing the accuracy of VaR models: the unconditional coverage (UC) test of Kupiec

(1995): a likelihood ratio test that the true violation rate equals α; the conditional cover-

age (CC) test of Christoffersen (1998): a joint test, combining a likelihood ratio test for

independence of violations and the unconditional coverage test; and the Dynamic Quan-

tile (DQ) test of Engle and Manganelli (2004). Both the CC and DQ are joint tests where

the null hypothesis consists of: independence of a model’s violations, equivalently cor-

rect conditional violation rate for a given model, combined with a correct unconditional

violation rate. The DQ test is well-known to be more powerful than the CC test, see

Berkowitz, Christoffersen and Pelletier (2007). These tests are now standard; we refer

readers to the original papers for details.

Table 2: Summary statistics: stock index returns for ten stock markets.

Japan France Germany Italy U.K.

Mean 0.016 -0.0033 0.0027 0.0034 0.0014

Variance 1.955 2.05 2.692 1.226 1.2903

Skewness -0.080 -0.0411 -0.0993 -0.384 -0.223

(0.21) (0.51) (0.11) (<0.001) (0.0003)

Excess kurtosis 1.518 3.504 3.103 5.069 3.946

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Canada U.S. Taiwan Hong Kong Australia

Mean 0.025 0.0062 0.0309 0.0201 0.037

Variance 0.760 1.156 2.109 1.3540 0.443

Skewness -0.465 0.162 -0.018 -0.313 -0.566

(<0.001) (0.010) (0.78) (<0.001) (<0.001)

Excess kurtosis 3.842 2.864 1.867 3.772 3.796

(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Note: P-values based on asymptotic normality are listed, under a null hypothesis of 0.
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7 Empirical Results

We considered ten daily international stock market indices: the S&P 500 (US); FTSE 100

(UK); CAC 40 (France); Dax 30 (Germany); Milan MIBTel Index (Italy); Toronto SE

300 (Canada); AORD All ordinaries index (Australia); Nikkei 225 Index (Japan); TSEC

weighted index (Taiwan) and the HANG SENG Index (Hong Kong). Data were obtained

from Datastream International and covered the period from January 1, 2001 to January

19, 2007. The log return series were generated by taking logarithmic differences of the

daily price index, yt = (ln(Pt) − ln(Pt−1)) × 100, where Pt is the closing price index on

day t.

The full sample was divided into a learning sample: January 1, 2001 to January 10,

2005; and a forecast sample: the 500 trading days from January 11, 2005 to early to mid-

January, 2007. Small differences in end-dates across markets occurred due to different

market-specific non-trading days. Table 2 shows summary statistics from the full sample

of these market indices including sample mean, variance, skewness and kurtosis. All ten

return series display the standard properties of daily asset return data: they are heavy-

tailed and mostly negatively skewed.

7.1 TCAViaR model estimation results

Tables 3-4 show parameter estimates for the full T-CAViaR model applied to the entire

series for each market. The MCMC burn-in sample size was again 15000 iterations,

followed by a sampling period of 25000 iterations. To assess mixing and convergence, the

MCMC method was run from five different, randomly generated, starting positions, for

each market, at α = 0.01, 0.05. Each of the six parameters (β1, . . . , β6) had at least one

starting value on either side of its reported posterior mean in Table 4. Convergence to

the same posterior distribution was clear in all five runs for each parameter, in each case

well before the end of the burn-in sample. A typical example of the inefficiency factors

’R’ (see Gelman et al, 2005, pg 296) for each parameter over these five runs were 1.029,

1.034, 1.019, 1.041, 1.032 and 1.006; all highlighting fast mixing and clear and efficient

convergence for the proposed sampling scheme.
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Table 3: MCMC parameter estimates from T-CAV model fit to returns from major market

indices.
α=1% α=5%

parameter Mean std. 95% C.I. Mean std. 95% C.I.

Japan β1 -0.374 0.054 (-0.470,-0.272) -0.045 0.031 (-0.108, 0.011)

β2 0.771 0.019 ( 0.739, 0.805) 0.905 0.017 ( 0.871, 0.937)

β3 -0.378 0.018 (-0.412,-0.344) -0.206 0.015 (-0.233,-0.177)

β4 0.012 0.036 (-0.056, 0.077) -0.031 0.027 (-0.086, 0.023)

β5 0.927 0.014 ( 0.902, 0.954) 0.920 0.015 ( 0.890, 0.948)

β6 -0.203 0.015 (-0.235,-0.175) -0.099 0.018 (-0.134,-0.063)

β1-β4 -0.386 0.084 (-0.531,-0.232) -0.015 0.053 (-0.124, 0.089)

β2-β5 -0.157 0.029 (-0.207,-0.102) -0.015 0.028 (-0.072, 0.039)

β3-β6 -0.175 0.020 (-0.212,-0.137) -0.106 0.021 (-0.149,-0.067)

France β1 -0.200 0.020 (-0.235,-0.160) 0.054 0.015 ( 0.024, 0.083)

β2 0.897 0.010 (0.878, 0.918) 0.972 0.007 ( 0.958, 0.986)

β3 -0.253 0.016 (-0.287,-0.220) -0.232 0.013 (-0.259,-0.205)

β4 0.0024 0.022 (-0.042, 0.046) -0.100 0.015 (-0.129,-0.071)

β5 0.904 0.008 (0.891, 0.921) 0.910 0.009 ( 0.892, 0.926)

β6 -0.115 0.021 (-0.157,-0.077) 0.032 0.014 ( 0.006, 0.059)

β1-β4 -0.202 0.039 (-0.277,-0.129) 0.155 0.029 ( 0.096, 0.212)

β2-β5 -0.007 0.013 (-0.029, 0.020) 0.062 0.013 ( 0.036, 0.088)

β3-β6 -0.138 0.016 (-0.172,-0.107) -0.264 0.020 (-0.307,-0.224)

Germany β1 -0.182 0.043 (-0.266,-0.109) 0.010 0.028 (-0.048, 0.054)

β2 0.882 0.016 ( 0.851, 0.908) 0.979 0.020 ( 0.935, 1.011)

β3 -0.303 0.022 (-0.353,-0.265) -0.171 0.018 (-0.211,-0.141)

β4 -0.048 0.031 (-0.102, 0.014) -0.075 0.019 (-0.107,-0.038)

β5 0.922 0.010 ( 0.903, 0.942) 0.928 0.010 ( 0.912, 0.950)

β6 -0.051 0.014 (-0.076,-0.024) 0.031 0.012 ( 0.007, 0.053)

β1-β4 -0.134 0.073 (-0.274,-0.008) 0.086 0.046 (-0.010, 0.157)

β2-β5 -0.041 0.024 (-0.086, 0.002) 0.051 0.027 (-0.011, 0.097)

β3-β6 -0.253 0.028 (-0.315,-0.204) -0.202 0.019 (-0.247,-0.171)

Italy β1 0.286 0.038 ( 0.208, 0.354) -0.002 0.014 (-0.027, 0.027)

β2 1.070 0.011 ( 1.045, 1.091) 0.996 0.008 ( 0.980, 1.010)

β3 -0.469 0.014 (-0.495,-0.444) -0.155 0.013 (-0.179,-0.131)

β4 -0.519 0.033 (-0.589,-0.451) -0.055 0.011 (-0.078,-0.036)

β5 0.713 0.012 ( 0.689, 0.743) 0.911 0.009 ( 0.894, 0.926)

β6 0.036 0.012 ( 0.011, 0.057) 0.026 0.015 (-0.006, 0.052)

β1-β4 0.805 0.070 ( 0.665, 0.937) 0.053 0.025 ( 0.009, 0.101)

β2-β5 0.357 0.022 ( 0.304, 0.394) 0.085 0.013 ( 0.060, 0.113)

β3-β6 -0.504 0.015 (-0.530,-0.476) -0.181 0.021 (-0.222,-0.143)

UK β1 0.103 0.020 ( 0.061, 0.137) 0.029 0.019 (-0.008, 0.065)

β2 1.019 0.014 ( 0.994, 1.040) 0.966 0.001 ( 0.947, 0.985)

β3 -0.260 0.032 (-0.318,-0.213) -0.279 0.015 (-0.308,-0.249)

β4 -0.169 0.017 (-0.200,-0.127) -0.081 0.016 (-0.112,-0.048)

β5 0.853 0.014 ( 0.827, 0.883) 0.906 0.011 ( 0.883, 0.928)

β6 -0.045 0.025 (-0.098, 0.0001) 0.063 0.014 ( 0.036, 0.093)

β1-β4 0.272 0.035 ( 0.192, 0.334) 0.110 0.034 ( 0.041, 0.175)

β2-β5 0.167 0.019 ( 0.126, 0.208) 0.060 0.019 ( 0.021, 0.098)

β3-β6 -0.215 0.025 (-0.268,-0.167) -0.342 0.021 (-0.384,-0.301)
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Table 4: MCMC parameter estimates from T-CAV model fit to returns from major market

indices.
α=1% α=5%

Parameter Mean std. 95% C.I. Mean std. 95% C.I.

Canada β1 -0.143 0.025 (-0.186,-0.095) -0.027 0.020 (-0.064,0.013)

β2 0.937 0.014 (0.915,0.960) 0.956 0.014 (0.926,0.985)

β3 -0.128 0.011 (-0.151,-0.105) -0.149 0.014 (-0.177,-0.120)

β4 0.012 0.018 (-0.022,0.044) -0.034 0.016 (-0.067,-0.004)

β5 0.965 0.014 (0.943,0.989) 0.922 0.012 (0.898,0.947)

β6 0.014 0.020 (-0.022,0.054) -0.024 0.015 (-0.054,0.005)

β1-β4 -0.154 0.042 (-0.225,-0.075) 0.008 0.034 (-0.061,0.078)

β2-β5 -0.028 0.027 (-0.072,0.017) 0.034 0.023 (-0.014,0.078)

β3-β6 -0.142 0.020 (-0.182,-0.111) -0.125 0.020 (-0.164,-0.086)

US β1 -0.121 0.027 (-0.180,-0.067) 0.033 0.022 (-0.011,0.072)

β2 0.921 0.016 (0.887,0.954) 1.024 0.014 (0.996,1.052)

β3 -0.140 0.016 (-0.174,-0.112) -0.076 0.010 (-0.095,-0.056)

β4 0.085 0.024 (0.036,0.135) -0.079 0.019 (-0.113,-0.043)

β5 1.007 0.010 (0.983,1.030) 0.929 0.013 (0.905,0.954)

β6 -0.029 0.021 (-0.074,0.009) 0.035 0.009 (0.019,0.053)

β1-β4 -0.206 0.051 (-0.317,-0.103) 0.113 0.039 (0.033,0.182)

β2-β5 -0.086 0.023 (-0.130,-0.032) 0.095 0.025 (0.045,0.142)

β3-β6 -0.112 0.015 (-0.151,-0.081) -0.112 0.014 (-0.141,-0.087)

Taiwan β1 -0.076 0.126 (-0.290,0.249) -0.100 0.031 (-0.161,-0.044)

β2 0.884 0.036 (0.825,0.980) 0.904 0.015 (0.873,0.934)

β3 -0.439 0.030 (-0.501,-0.380) -0.240 0.020 (-0.277,-0.200)

β4 -0.758 0.149 (-0.964,-0.295) -0.033 0.026 (-0.084,0.018)

β5 0.775 0.037 (0.721,0.889) 0.901 0.017 (0.867,0.934)

β6 0.070 0.019 (0.030,0.098) -0.058 0.013 (-0.084,-0.032)

β1-β4 0.682 0.237 (0.148,1.136) -0.067 0.051 (-0.170,0.032)

β2-β5 0.109 0.062 (-0.032,0.223) 0.004 0.025 (-0.047,0.053)

β3-β6 -0.509 0.037 (-0.583,-0.437) -0.183 0.022 (-0.223,-0.138)

HK β1 -0.003 0.102 (-0.188,0.214) -0.103 0.033 (-0.169,-0.040)

β2 0.896 0.035 (0.836,0.969) 0.903 0.017 (0.872,0.938)

β3 -0.468 0.045 (-0.559,-0.367) -0.240 0.020 (-0.277,-0.198)

β4 -0.969 0.093 (-1.144,-0.718) -0.029 0.030 (-0.089,0.029)

β5 0.723 0.027 (0.672,0.792) 0.902 0.019 (0.865,0.938)

β6 0.089 0.014 (0.063,0.113) -0.059 0.014 (-0.087,-0.033)

β1-β4 0.966 0.130 (0.703,1.252) -0.074 0.058 (-0.189,0.035)

β2-β5 0.173 0.041 (0.090,0.266) 0.001 0.030 (-0.056,0.061)

β3-β6 -0.557 0.050 (-0.653,-0.433) -0.181 0.022 (-0.225,-0.139)

Australia β1 -0.242 0.016 (-0.275,-0.211) -0.196 0.036 (-0.267,-0.126)

β2 0.771 0.010 (0.751,0.793) 0.798 0.038 (0.723,0.870)

β3 -0.496 0.021 (-0.538,-0.460) -0.201 0.024 (-0.252,-0.157)

β4 0.001 0.015 (-0.030,0.030) 0.005 0.019 (-0.033,0.042)

β5 0.983 0.019 (0.947,1.023) 0.904 0.020 (0.865,0.943)

β6 0.116 0.018 (0.079,0.148) -0.047 0.019 (-0.084,-0.011)

β1-β4 -0.243 0.028 (-0.297,-0.188) -0.200 0.052 (-0.305,-0.096)

β2-β5 -0.200 0.020 (-0.238,-0.160) -0.106 0.051 (-0.209,-0.005)

β3-β6 -0.612 0.023 (-0.659,-0.565) -0.154 0.029 (-0.211,-0.102)
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Tables 3-4 indicate that the 10 markets roughly fit into three categories in terms of

the parameter estimates obtained. Consider first α = 0.01. Japan, France, Germany,

Canada, US and Australia display similar estimates across parameters: a significantly

negative intercept (β1 < 0), medium positive persistence (β2), significantly less than 1,

and a large negative effect of the lagged return (β3 < 0), all in the negative regime; while

exhibiting small insignificant intercepts (β4 ≈ 0), higher positive persistence (β5 > β2)

and smaller, mostly still negative and significant, lagged return effect (0 > β6 > β3)

in the positive regime. For these markets, quantiles become more extreme (negative)

following negative returns and are positively but not too strongly persistent (except the

US), more so following positive returns. In contrast, the markets in Italy and the UK have

significantly positive intercepts (β1 > 0) and very strong positive persistence (β2 > 1),

with estimates above 1, significantly so for Italy, in the negative regime. The effects

(β3 < β6 < 0) are similar to the first market grouping. In the positive regime, intercepts

are now significantly negative (β4 < 0), with lower positive persistence (β5 < β2). For

these two markets, dynamic quantiles still become more extreme (negative) following

negative returns but now are strongly positively persistent, more so following negative

returns. Finally, Taiwan and Hong Kong have insignificant intercepts in the negative

regime, as well as very strong lagged return effects (β3 << 0). In the positive regime,

intercepts are very high and negative (β4 << 0) but lagged return effects are smaller

and significantly positive (|β6| < |β3|; β6 > 0). Quantile persistence in these markets is

comparatively medium.

Tables 3-4 also show estimates and inferences for differences between corresponding

parameters in the positive and negative regimes. These estimates indicate the level and

direction of asymmetries between the two regimes. All markets show clear evidence of

significant asymmetry in response to negative and positive returns, in their dynamic

quantiles. The markets fell into the same three classes in their nonlinear behaviour.

Firstly, the lagged return effect is consistently and significantly asymmetric across all ten

markets. Dynamic quantiles become more extreme (negative) following negative returns

than positive returns. For the first group above, each parameter difference is negative,

but usually significantly so only for the intercept and the lagged return effect. For the
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second and third groups, intercepts and persistence are significantly higher in the negative

regime.

7.2 Forecasting VaR study

VaR is forecasted 1 day ahead for each day in the forecast sample of 500 returns, using

a range of competing models from all three quantile estimation classes: non-parametric,

semi-parametric and fully parametric. Many financial institutions use sample return per-

centiles (called historical simulation) to forecast VaR; we follow their approach and employ

a short-term (ST, last 25 days) and a long-term (LT, last 100 days) percentile: these are

non-parametric estimates. We compare two full T-CAV models, one with local return

threshold (TCAViaR, labelled TCAV), the other with US market return threshold (T-

CAViaR, lebelled TCAVx) with its two nested versions: AS and SAV, as well as a range

of popular GARCH specifications, including GARCH-n (G-n), GARCH-t (G-t); GJR-

GARCH (GJR) and IGARCH (IG). Except for the RiskMetrics (RM) model, where the

parameter was set to 0.94, all models were re-estimated in order to forecast each day’s

quantile, using MCMC methods. Details for the MCMC algorithms for the models just

listed can be found in Chen, Gerlach and So (2006). We also considered the MCMC

estimated method of Geweke and Keane (2007) (GK), that employs a smooth mixture of

Gaussian regression models. This method required a long pre-sample period of returns:

we employed an extra 1000 daily returns, pre-2001, to employ this method and used all the

same settings listed in Geweke and Keane (2007). For each day yn+t in the forecast sample

then, each semi and parametric model used the entire previous data set (y1, . . . , yn+t−1) as

observations in an MCMC sampling scheme to estimate parameters, which were then used

to generate a forecast of the next day’s α-level quantile; thus for each day 25000 (post

burn-in) VaR forecasts were generated, one for each MCMC iterate, for each model. The

Geweke and Keane (GK) method used an additional 1000 daily returns from pre-2001 in

this process. These forecasts were simply averaged to give the posterior mean quantile

forecast for each day. Naturally this was quite time consuming: each MCMC run took

just under 1 minute, so two years of forecasts (500 days) took approximately 8 hours to

produce, for each model, on a standard modern desktop PC.
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Table 5 shows the ratios of the observed VRate to the true nominal level, for α =

0.01, 0.05, across all twelve models/methods and ten markets. The results are quite dif-

ferent from α = 0.01 to 0.05. First, at α = 0.01 it is immediately apparent that in all

markets, except France, one of the CAViaR models ranked (at least equal) first, with

VRate/α closest to 1. Further, the long and short-term historical simulation methods,

together with the full set of GARCH models, all had ratios mostly above 1 across the ten

markets, at α = 0.01. This indicates that risk is being consistently under-estimated by

this group of models. The GK method seems highly variable in its performance across

the markets, at α = 0.01.

A different story is apparent at α = 0.05. Here the models are much closer in

performance, with first place rankings spread across models over the ten markets, and

ratios closer to 1 (in location and spread) across all models, except the GK method and

the short-term percentile method (ST) that both consistently under-estimated risk once

again. We examine the models forecast performance in more detail below.

Figures 2 and ?? illustrate some of the models/methods for the Italian MIBTel index

returns in the forecast period at α = 0.01, 0.05 respectively. For this market at α = 0.01

the four CAViaR models ranked first-fourth in VRate/0.01 with 1 (SAV) and 0.8 (AS,

TCAV, TCAVx), followed by the GARCH and GK models with ratios, all significantly

different to 1, of 3 (GJR and GK) or 3.2, while the ST method had a ratio of 3.8. Figure

2 highlights that the TCAViaR model was clearly more extreme (and accurate) in its

quantile forecasts in this market. The GARCH models’ forecasts, all similar to the GJR

shown, were consistently too close to the return series for a 1% quantile level. The GK

method, while demonstrating that indeed it can capture heteroscedasticity, seemed too

smooth in its dynamic quantiles for this market, and did not react to high volatility periods

as much as the other models/methods did, its’ quantile forecasts being less extreme than

all other methods in highly volatile return periods and being generally much smoother

at all times in this sample. The ST method is clearly not optimal for this market either,

partly since 25 days is not sufficient to estimate a 1% sample quantile. ST’s forecasts are

far less smooth than all other models in this case.

Figure ?? shows the VaR forecasts for α = 0.05, again for Italy, and for the same four
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methods. Now we see that the ST method, at least in low-medium volatility periods, is

approximating the GARCH (all similar to the GJR shown) models’ forecasts, which are

all quite similar to the TCAViAR model. However, the ST method ”recovers” slowest

after extreme returns or high volatility periods, since any extreme return will affect the

sample percentile for exactly 25 days. The GK method again seems quite different to

the other methods, it is smoother and less reactive to extreme returns: though it can

clearly capture some types of heteroscedasticity, it has struggled with the specific type

represented by this data set, at both α = 0.05, 0.01.

Table 6 displays summary statistics for the observed ratios VRate/α for each model

across the ten markets, using the numbers in Table 5. The results confirm the discussion

and illustrations above. At α = 0.01 the SAV, AS and TCAV (self-exciting) models are

most favoured across all criteria. In particular, their typical ratios VRate/α are very close

to 1, both in location and spread, and they usually finish in the top three models for each

market on this criteria. The GARCH models considered typically under-estimate risk,

with ratios above 1, across markets, as do the GK and historical simulation methods.

The TCAV model has the lowest standard deviation, average ratio second closest to 1,

and was ranked in the top 3 models for all ten markets. The SAV ranked first in six

markets, average ratio was closest to 1, had second lowest deviation in ratios and finished

in the top 3 models in seven markets.

At α = 0.05, all the models except the short-term 25 day percentile (ST) have ratios

with location close to 1 across markets, with small standard deviation (except the GK

method). The GARCH and CAViaR models seem quite comparable, and are hard to

distinguish between, at this quantile level, the the TCAV model had average ratio closest

to 1, followed by GJR and AS. However, once again the SAV finished first in top rankings

with four, and equal first with RM in finishing in the top 3 models in five markets.

The fully threshold TCAV models both had slightly larger standard deviation in ratios

compared to the GARCH, ST, LT, AS and SAV models.
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Table 5: Ratio of VRate/α at α = 0.01, 0.05 for each model across the ten markets.

model Japan France Germany Italy U.K. Canada US Taiwan HK Australia

α = 0.01

ST 4.6 4.2 4.8 3.8 4.6 5 4 4.4 3.4 4.6

LT 1.2 1.6 1.8 2.4 1.6 1.8 1.6 1.4 1.4 2

G-n 1.4 1.2 1.6 3.0 1.2 2.4 1.4 1.6 1.6 2.8

G-t 1.4 1 1.6 3.0 1.2 2 1 1.2 1.4 1.8

GJR 1.2 1 1.8 3.2 1 1.6 1 1.4 1.6 2

IG 1.6 1.6 2 3.2 2.2 2.6 1.8 1.8 1.6 3

RM 1.6 1.8 1.6 3.0 2.2 2.6 1.6 2 1.8 2.6

GK 0.2 0.2 0.2 3.0 2.0 5.0 0.8 1 0.8 9.2

SAV 0.8 0.4 0.6 1 1 1.8 1.2 1 1 1.4

AS 0.8 0.6 0.8 0.8 1 1.4 1.6 0.6 1.2 1.8

T-CAV 0.8 0.8 1.2 0.8 1 1.6 1 1 0.8 1.4

T-CAVx 1.4 1.4 1.6 0.8 1.6 2.2 − 1 0.4 3.8

α = 0.05

ST 1.32 1.4 1.48 1.4 1.56 1.52 1.2 1.44 1.36 1.52

LT 1.04 1.08 1.16 1.24 1.08 1.4 1.04 1.2 1.08 1.28

G-n 0.96 1.04 1.2 1.08 1.08 1.32 0.84 0.84 1.16 1.32

G-t 1 1.16 1.24 1.2 1.08 1.32 0.88 0.88 1.2 1.32

GJR 0.96 1.16 1.16 1 1 1.32 0.84 0.72 1 1.24

IG 1 1.16 1.12 1.16 1.12 1.24 0.92 1 1.2 1.2

RM 0.92 1.12 1.12 1.16 1.04 1.24 0.92 1 1.24 1.16

GK 0.36 0.4 0.24 1.36 1.12 2.2 0.6 0.48 0.6 3

SAV 0.76 1.04 1 1 0.88 1.12 0.72 0.68 0.84 1.08

AS 0.8 1.32 1.12 1.12 1.16 1.04 0.64 0.6 0.6 1.24

TCAV 0.84 1.32 0.96 1.2 1.12 1.12 0.6 0.56 1.08 1.36

TCAV-x 0.92 1.2 0.96 1.2 1.04 1.44 − 0.76 0.92 1.76

Note: Boxes indicate closest to 1 in that market), bold indicates the model is rejected by the unconditional

coverage test (at a 5% level), for each market.

To help distinguish between the better models at each quantile level, Table 7 shows

summary statistics for each model’s rank in terms of how close its’ VRate/α ratio is to 1

in each market. Naturally we prefer models with ratios close to 1, while again for ratios

that are equidistant from 1, less than 1 is preferred to above 1. The average, median,

standard deviation and range of the forecast ranks for each model over the ten markets are

displayed in Table 7. At α = 1%, the self-exciting TCAViaR model has by far the lowest

mean rank, the 2nd lowest median rank, as well as the 2nd smallest standard deviation

in rank of VRate/α across the models (ST only ranks 11 or 12 explaining why it has the

smallest Std.). In fact, the TCAV model ranked in the top 3 in every market, and thus
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has the smallest rang in ranks. The SAV and then AS CAViaR models were next best on

these measures, with SAV having the best median rank of 1. The GARCH-n, GARCH-

t, and the GJR-GARCH and TCAVx models, typically ranked just behind the TCAV,

SAV and AS CAViaR models in 4th-7th placing, followed by the long-term percentile,

Geweke and Keane methods; while RM, IG and short-term percentile methods typically

ranked lowest in each market. Clearly the TCAV model has forecasted dynamic quantiles

comparatively well over this forecast sample and for the models considered, at α = 0.01.

Further, the CAViaR models did best as a group, followed by the stationary GARCH

specifications, the GARCH-t’s fat-tails outperforming the GARCH-n as expected, then

the GK and remaining methods. RiskMetrics and IG did not do well at this quantile level

at all.

Table 6: Summary statistics for VRate/α at α = 0.01, 0.05 for each model across the ten

markets.
α=1% α=5%

Mean Median Std. 1st Top 3 Mean Median Std. 1st Top 3

ST 4.34 4.5 0.49 0 0 1.42 1.4 0.11 0 0

LT 1.72 1.7 0.33 0 0 1.16 1.1 0.12 0 2

G-n 1.82 1.6 0.66 0 0 1.08 1.1 0.17 1 3

G-t 1.56 1.4 0.60 2 3 1.13 1.2 0.16 0 2

GJR 1.58 1.5 0.67 3 4 1.04 1.0 0.18 3 4

IG 2.14 1.9 0.60 0 0 1.11 1.1 0.10 2 4

RM 2.08 1.9 0.50 0 0 1.09 1.1 0.12 1 5

GK 2.24 0.9 2.88 1 2 1.04 0.6 0.91 0 0

SAV 1.02 1.0 0.39 6 7 0.91 0.9 0.16 4 5

AS 1.04 0.9 0.40 4 6 0.96 1.1 0.28 1 1

TCAV 1.04 1.0 0.28 5 10 1.02 1.1 0.28 0 3

TCAV-x 1.58 1.4 0.98 1 1 1.13 1.0 0.31 0 3

Note: Boxes indicate the favoured model, bold indicates the least favoured model, in each column.

For α = 0.05 there is a different story. The RiskMetrics method now has the lowest

average and median rank across markets, closely followed by the IGARCH and GJR-

GARCH models. However, the SAV model finished with the equal best median rank, but

highest standard deviation in rank, while GARCH-n had the best standard deviation in

ranks across markets. These four models are still hard to separate at this quantile level,

but perhaps the GJR-GARCH would be marginally favoured considering both Tables 6
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Table 7: Summary statistics for model ranks, in terms of VRate/α, at α = 0.01, 0.05 across the

ten markets.
α=1% α=5%

Mean Median Std. Range Mean Median Std. Range

ST 11.75 12.0 0.48 1 10.60 11.0 1.43 5

LT 6.65 7.0 2.14 6 6.20 5.5 3.36 11

G-n 6.20 6.0 1.69 5 4.80 4.5 2.30 8

G-t 4.30 5.0 2.00 5 5.30 5.0 2.58 9

GJR 4.95 4.5 3.70 9 3.90 4.0 2.38 6

IG 9.20 9.5 1.40 5 3.90 4.0 2.33 7

RM 8.40 9.0 2.32 7 3.80 3.5 2.39 8

GK 7.00 9.0 4.09 11 11.10 11.5 1.29 4

SAV 2.50 1.0 2.17 6 4.40 3.5 3.60 9

AS 3.10 2.5 2.28 6 7.00 8.5 3.46 10

TCAV 1.60 1.5 0.70 2 6.70 8.0 3.16 8

TCAV-x 5.33 6.0 2.74 9 5.89 6.0 3.37 9

Note: Boxes indicate the favoured model, bold indicates the least favoured model, in each column.

and 7. The TCAViaR models now typically rank in the middle (5th, 6th or 7th) of the

models.

To summarise, the fully nonlinear self-exciting TCAViaR model seems to be favoured

at dynamic quantile forecasting when α = 0.01, while four models are hard to separate

at alpha = 0.05. We now consider formally testing these models as a final point of

comparison.

Table 8 counts the number of rejections for each model, over the 10 markets, for each

of the three tests considered: unconditional coverage (UC), conditional coverage (CC) and

the dynamic quantile (DQ) test, where four lags were used as in Engle and Manganelli

(2004). At α = 0.01 most of the models are rejected in most of the markets, by the DQ

test. The CAViaR models fare best as a group, with the self-exciting TCAViaR model

rejected in the least number of markets for all three tests, and for all tests combined (four

rejections). The GK method is only rejected in six markets, while all the GARCH models

are rejected in at least eight markets; ST, RM and IG are rejected in all ten markets.

At α = 0.05 the historical simulation (ST, LT) and GK methods are rejected in almost

all markets, while the CAViaR models are rejected in two or three markets each and the

GARCH and RM models fare best with only 1 or 2 rejections across markets.
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Table 8: Counts of model rejections for three standard quantile coverage tests, across the ten

markets.
α=1% α=5%

Model UC p CC p DQ4 p Total UC p CC p DQ4 p Total

ST 10 10 10 10 5 5 9 9

LT 2 2 9 9 0 2 7 7

G-n 3 3 9 9 0 0 1 1

G-t 2 1 9 9 0 0 2 2

GJR 2 1 8 8 0 0 1 1

IG 5 4 10 10 0 0 1 1

RM 5 4 10 10 0 0 1 1

GK 7 4 6 9 8 7 8 9

SAV 0 0 7 7 0 0 2 2

AS 0 0 5 5 3 0 1 3

TCAV 0 0 4 4 2 1 1 3

TCAVx 2 0 6 6 0 0 2 2

Note: Boxes indicate the favoured model, bold indicates the least favoured model, in each column.

In summary, the CAViaR family of models were highly competitive at worst, and

far more accurate at best, at dynamic quantile VaR forecasting, compared to a range

of popular and well-known VaR methods. At α = 0.05 most of the models performed

roughly similarly with no clear standout, though RiskMetrics and the CAViaR SAV model

finished best in mean and median ranking respectively, in terms of violation rates, across

markets; and the RM, GJR and G-n models were rejected the least across all VaR forecast

methods. The full TCAViaR model, though still performing well in overall violation

rate across markets, perhaps is an unnecessarily complex model at quantile level 0.05.

However, the self-exciting TCAViaR model performed in a comparably superior fashion

to the other models, followed by the remaining CAViaR specifications, for α = 0.01. It

had by far the lowest mean rank, in terms of violation rates, and was rejected the least

number of times across markets. The RiskMetrics, IGARCH, stationary GARCH, GK

and historical simulation methods were simply not competitive with the CAViaR models

at this more extreme quantile.
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8 Conclusion

The CAViaR model for dynamic quantile estimation is extended to a fully nonlinear

family. Bayesian MCMC methods were adapted to this family, employing the well-known

link between the quantile estimation criterion function and the Skewed-Laplace density.

MCMC estimation proved favourably accurate and efficient, in simulations from a GARCH

model, compared to the standard numerically optimised quantile criterion function at

the quantile levels 0.05 and 0.01. Empirical results for ten major market index returns

reveal significant nonlinearity and asymmetry in response to negative and positive lagged

shocks, as expected. Further, a VaR forecasting study revealed that the fully nonlinear

self-exciting TCAViaR model compared most favourably in terms of violation rates and

independence of violations, to more parsimonious CAViaR models. A range of well-

known GARCH models, including RiskMetrics, historical simulation and a semiparametric

smoothly mixing regression approach were not competitive at the quantile level 0.01,

across the ten markets. However, at level 0.05, most models forecast reasonably similarly,

results marginally favouring RiskMetrics, GJR-GARCH and the simple CAViaR SAV

specification.
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Figure 1: Italian MIBTel index returns Jan, 2005 to Jan, 2007 (circles), together with

four sets of forecasted VaR series at α = 0.01. Series are GK, GJR, TCAV and ST
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Figure 2: Italian MIBTel index returns Jan, 2005 to Jan, 2007 (circles), together with

four sets of forecasted VaR series at α = 0.05. Series are GK, GJR, TCAV and ST
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