
 

 

 

ECOLOGY OF THE FERAL CAT (FELIS CATUS) IN THE 

TALL FORESTS OF FAR EAST GIPPSLAND 

 

 

A.J. Buckmaster 

BSc (Hons) (University of Canberra) 

 

 

 

 

 

 

 

A thesis submitted for the degree of Doctor of Philosophy 

University of Sydney 

 

March 2011 



 

 

  



 

 

 

 

 

Declaration 

 

 

 

 

 

  

I hereby declare that this thesis is my own original 

work and that it contains no material previously 

published or written by another person, except where 

due acknowledgement is made. 

 

 

Signed:       ........................................... 

Anthony John Buckmaster 

 

Dated:      ............................................ 

 



 

 

 

 

 

 

 

The gods were once disputing whether it was possible for a living being to change its 

nature.  Jupiter said "Yes," but Venus said "No."  So, to try the question, Jupiter turned a 

Cat into a Maiden, and gave her to a young man for a wife.  The wedding was duly performed 

and the young couple sat down to the wedding-feast. "See," said Jupiter to Venus, "how 

becomingly she behaves.  Who could tell that yesterday she was but a Cat?  Surely her 

nature is changed?"  

"Wait a minute," replied Venus, and let loose a mouse into the room.  No sooner did the 

bride see this than she jumped up from her seat and tried to pounce upon the mouse.  "Ah, 

you see," said Venus, "Nature will out."  

Aesop (620 – 584 BC) 

 

“The cat is relatively easy to house, feed and handle, but despite the process of 

domestication it has retained a behavioural repertoire which makes it very successful in the 

feral state...”  

Bradshaw et al. (1996) 
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Abstract 

The house cat, Felis catus, was introduced into Australia with European settlement of 

the mainland. Since its initial introduction, it now occupies all mainland habitats, 

Tasmania and many smaller offshore islands. Large numbers of cats were released 

intentionally into the environment in a misguided attempt to control the spread of 

other introduced mammalian pests, especially the European rabbit, Oryctolagus 

cuniculus. The feral cat is an invasive predator that has been implicated in the decline 

and extinction of many species of native small mammals across Australia, particularly 

in the arid regions and on offshore islands. Much of the research on feral cats in 

Australia has occurred in the continent‟s arid and semi-arid regions. Consequently, 

little is known about the ecology of feral cats in tall forests. Additionally, the most 

generally effective population control technique, poison baiting with sodium 

monofluoroacetate (compound 1080), has wide ranging applicability in arid and semi 

arid areas but its use is restricted in the temperate and forested eastern states of 

Australia due to concerns about impacts on non-target species.  

This thesis is divided into three parts. Firstly, I review the current knowledge of feral 

cats, particularly in relation to the actual and potential impact they have on native prey 

species. Secondly, I investigate the ecology of the feral cat in the temperate tall forests 

of Far East Gippsland, Victoria. The home range sizes, movement patterns and home 

range use of feral cats were determined. Thirdly, I examine a new technique for 

delivering poisons in a feral cat management program. The potential for all Australian 

non-target species to access the toxicant is examined using a desktop analysis, while 

field studies examine uptake by non-target species and the dynamics of prey species 

to determine acceptable times for baiting campaigns.  

GPS and VHF collars were utilised to obtain fix data for feral cats in Far East 

Gippsland. Male cats had significantly larger home ranges (MCP100 455 ± 126 ha) 

than females (105 ± 28 ha), with male home ranges overlapping those of females. 

Some female home ranges overlapped extensively, with neighbouring females also 

having overlapping core areas within their ranges. These overlaps in female home 
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ranges, in particular of the core areas, indicate that female cats in Far East Gippsland 

are tolerant of other females and do not actively exclude them.  

Compared with the home ranges of feral cats in other regions of Australia and New 

Zealand, the cats in Far East Gippsland had smaller home ranges than those of cats 

occupying arid and alpine zones yet larger ranges than those of feral cats living in 

farmland or grassland. This variation probably reflects the availability of food 

resources, with cats in resource-poor areas requiring larger home ranges and cats with 

smaller home ranges generally inhabiting areas with greater, or more accessible, food 

resources.  

The use of GPS collars to obtain accurate and high volumes of location data allowed 

the intra-home range movements of feral cats to be examined in ways not previously 

possible using conventional VHF radio telemetry. Location data were gathered at 

three different temporal intervals – 6 hourly, hourly and every 15 minutes. Feral cats 

followed a Lévy walk-style searching pattern as they moved through their home 

range. Employing a Lévy walk increases the likelihood of encountering prey items 

that are distributed sparsely in the environment, in turn maximising the potential 

hunting return for effort expended.  

Each of the cats examined had large areas within their home range that they did not 

enter. To test the hypothesis that this resulted from a scarcity of prey in these areas,  

trapping grids were established to capture small prey-sized animals. There was no 

difference in the rate of capture of prey species in the areas of high and zero cat use, 

thus allowing the food hypothesis to be rejected. Modelling of abiotic environmental 

parameters was used to determine if these influence home range use. While the 

models explained much of the variation in the data, the global model was 

overdispersed, indicating that other unmeasured parameters were influencing home 

range use. The avoidance of these areas most likely arises from the presence of larger 

intraguild predators and subsequent employment of predator avoidance strategies by 

the cats.   

Managing the abundance of feral cats using poison baiting requires that bait be 

distributed at times when cats are food-stressed. Generally this occurs in winter when 
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prey species are in natural decline. To determine the most appropriate time for baiting 

feral cats, trapping grids were established to assess the population demographics of 

feral cat prey species. The 2 046 trap nights undertaken resulted in 176 captures of 

five prey-sized species. The breeding periods for the Antechinus spp. occur earlier in 

Far East Gippsland than would generally be expected based on the latitude and 

altitude of the trap sites, and have bearing on the optimal time for poison baiting. 

Based on these findings, the optimal time to manage feral cat populations in Far East 

Gippsland through poison baiting is between late August and mid November provided 

that the toxicant is enclosed within a hard shell delivery vehicle (HSDV) that 

maintains structural integrity or, alternatively, if the baits are suspended above the 

ground surface and out of reach of lactating female antechinus. Further research is 

proposed to supplement these findings. 

Encapsulation of toxicants within an acid soluble HSDV which is then inserted into 

the bait media is being explored as a potential technique to minimise access of non-

target species to the toxicant. A desktop analysis employing a decision tree process 

was used to examine the potential for non-target access to toxicant delivered in an 

HSDV. This analysis encompassed all non-aquatic vertebrate species in Australia. 

significantly fewer species would be susceptible to non-target poisoning if HSDVs 

were used when compared with directly injecting the toxicant into the bait media. 

Carnivorous mammals were the most likely to consume both the bait and the HSDV.  

Using the systemic marker, Rhodamine B (Rb), in the HSDV, I assessed the ability of 

five species of small to mid-sized animals to access toxicants enclosed in the HSDV. 

This was compared with directly injecting it into the baits. Rhodamine B staining was 

apparent in the mystacial vibrissae of four of the five species at sites where Rb was 

injected into the baits. It was also present in three of the four species captured at the 

sites where the Rb was encapsulated within the HSDV. The longevity of the HSDV 

within the bait media was tested and found to decreased rapidly following insertion 

into the bait. This is most likely due to the bait media being slightly acidic. Since that 

experiment concluded, changes have been made to the pH of baits to extend the 

integrity of the HSDV and hence reduce leakage.  
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These key findings will allow managers to adopt a more targeted approach when 

undertaking cat control programs in these habitats. The use of GPS technology to 

obtain location data has allowed the analysis of intra-home range movements to an 

extent previously not possible with other techniques. This in turn will allow a more 

targeted approach to managing feral cats. The use of a decision tree approach to 

determining the susceptibility of non-target species during a baiting campaign can be 

applied to other poisoning campaigns regardless of the target species or the toxicant 

being used.  
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Chapter 1 

General introduction and study site description 

 

Introduction 

The domestic cat (Felis catus) was introduced into mainland Australia with the first 

European settlers (Abbott 2002). It has since spread across the mainland and to 

Tasmania and many offshore islands through a combination of intentional releases 

and natural dispersal (Abbott 2002; Burbidge et al. 1997). Feral cats have been 

implicated in the decline of many populations of native Australian animals, in 

particular native mammals and birds on offshore islands (Burbidge et al. 1997; 

Dickman 1996; Dickman 2009). Introduced predators can have a far greater impact on 

native prey populations than predators with which prey species have co-evolved. 

Naïve prey may not have adequate or appropriate predator avoidance strategies 

(Banks 1998; Salo et al. 2007).  

The ecology of the feral cat has been examined to a limited extent in the arid and semi 

arid regions of Australia (Algar and Burrows 2004; Read and Bowen 2001; Risbey et 

al. 1999) and to a lesser extent still in temperate woodlands (Molsher 1999; Molsher 

et al. 1999). Few studies have been directed towards feral cats in high productivity, 

tall forest habitats. Dietary analyses were carried out by Friend (1978) and Triggs et 

al. (1984) on cats in the tall forests of Gippsland, Victoria. These are the only specific 

studies that appear in the literature dealing with any aspect of feral cat biology in this 

habitat type in Australia, although several wider-ranging studies have presented data 

on cat diet as part of reviews or broader works on guilds of forest predators (Glen et 

al. 2011; May and Norton 1996).  

Overseas research, while more extensive than that in Australia, has been directed 

mostly towards the ecology of stray cats (Mirmovitch 1995; Natoli et al. 2007; Page 

et al. 1992), or feral cats in open habitats such as farmland (Langham 1992; Langham 
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and Porter 1991) or on islands (Apps 1986; Baldwin 1980; Kirkpatrick and Rauzon 

1986; Konecny 1987).  

In this thesis, I examine the ecology of feral cats in the tall closed forests of Far East 

Gippsland, Victoria. I describe patterns of movement and spatial behaviour of feral 

cats within their home ranges, assess possible causes for the patterns observed and 

examine novel control techniques for the management of feral cats. Some focus is 

also placed on the responses of prey species of small mammals to feral cats. In this 

chapter, I briefly introduce the cat and the definitions used throughout the thesis, and 

describe the tall forest region of Victoria where the study was carried out. Contrary to 

convention, I defer the primary justification for my work until chapter 2 and note here 

only that the feral cat is a particularly problematic species with respect to the 

management of its impacts on native Australian fauna. I adopt this slightly different 

arrangement to allow for a more thorough review of the ecology of the feral cat than 

would be usual in an introductory chapter, and then use the review to help inform the 

direction that my research should take.  

Definitions used in this thesis 

Felis catus: The domestic cat with a blotched tabby pelage was designated Felis catus 

by Linnaeus in 1758. More recently, phylogenetic studies have attempted to define 

and place the species within the cat clade. The European wildcat (F. silvestris), 

African wildcat (F. lybica) and the domestic cat (F. catus) appear to have diverged 

from their historical lineage as a polytomy, prompting some authors to advocate the 

classification of these three putative species as subspecies within the single taxonomic 

concept of F. silvestris (Johnson et al. 1996; Johnson and O'Brien 1997; Masuda et al. 

1996; Randi and Ragni 1991). However, until this occurs and formal taxonomic 

recognition of F. silvestris  is accorded, F. catus remains a species in its own right and 

shall be called such in this thesis.  

Introduced (or invasive) predator: I restrict this definition to only the fox (Vulpes 

vulpes) and the cat in this thesis. The fox was introduced into Australia following 

European settlement with the first successful release occurring at Geelong, Victoria in 

1871 (Rolls 1969; Saunders et al. 1995). While there is still robust discussion in the 
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literature about the origins of the cat in Australia, I have accepted the time line 

proposed by Abbott (2002) that the cat is a European import. The dingo (Canis lupus 

dingo) is excluded from this definition as it has been on the Australian mainland for 

3 500 – 4 000 years (Johnson and Wroe 2003) and is now considered by many to be a 

native predator. This situation stands in marked contrast to the much more recent 

arrivals of both the cat and fox.   

Home Range: Home range is described by Burt (1943) as the area traversed by an 

animal in the course of its normal activities of gathering food, mating and caring for 

young and does not include occasional, perhaps exploratory, sallies outside this area. I 

use Burt‟s (1943) definition in this thesis. Home ranges of individual cats may overlap 

with those of other cats. The existence of a home range does not necessarily imply, or 

preclude, the possibility that all or part of that range is defended by the resident(s) 

against intraspecific intrusion. 

Territory: This is taken to be an area equivalent to all or part of a cat‟s home range 

that is defended against intrusion of by other cats, especially cats of the same sex. 

Territories of male and female cats may overlap, however, with defensive behaviour 

being triggered only by intrusion of a cat of the same sex as the territory resident.  

Classes of cat 

Many differing definitions have been formulated to describe the various states of cats 

with respect to their interactions with humans and with the environment. Many of the 

categories used by one author overlap with other categories used by another author 

(e.g. Baker et al. 2010). For example, free-living cats defined by Denny et al. (2002) 

are described as stray cats by Say and Pontier (2004) and as semi-feral cats by Liberg 

et al. (2000). For the purposes of continuity, I will use the definitions proposed by 

Dickman (1996), who followed those of Moodie (1995). 

Domestic cat: A cat that is owned and lives in close connection with humans 

who assume most, if not all, responsibility for providing the obligate 

requirements of food and shelter. A domestic cat may still hunt for food or for 
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play purposes. Food obtained through hunting is additional to that provided by 

the person or persons assuming responsibility for that cat.  

Stray cat: A cat that lives in proximity with humans but is not wholly 

dependent on humans for the provision of food and shelter. They are not owned 

and no person takes absolute responsibility for all their requirements although 

they may be fed by humans on a regular basis. These cats are found in towns, 

garbage dumps and dockyards (Dards 1983; Denny et al. 2002; Liberg et al. 

2000; Page et al. 1992). Also included in this category are those cats defined as 

farm cat by various authors (for example, see Barratt 1999; Hamilton et al. 

2006; Langham and Porter 1991). Farm cats are cats living on farms where they 

are allowed to remain by the farmer primarily for the purposes of rodent control. 

They occasionally may be fed by the farm owner, but generally survive on 

rodents caught around the farm.  

Feral cat: Feral cats are free-living cats that do not rely on humans for any 

portion of their obligate resource requirements, either directly or indirectly, and 

have formed self-sustaining populations. 

It should be noted that individual cats may move between classes on several occasions 

throughout their lives. For example, a domestic cat may become stray or feral and vice 

versa. Furthermore, the boundary between each class is not sharply defined. There is 

no firmly established point along the gradient at which cats change from being wholly 

feral to wholly domestic. The class boundaries thus are somewhat blurred and based 

on the circumstances of individual cats at any given time (Dickman 1996). 

Study area 

Research for this thesis was undertaken in the Far East Gippsland region of Victoria, 

Australia. This region is characterised by tall forests that span the area from coastline 

to mountain peaks. Most land in the region is managed by the Victorian Department 

of Sustainability and Environment (DSE) for either forestry purposes (through the 

sub-department, VicForests) or for protection as national parks and reserves (through 

Parks Victoria). However, there are pockets of privately owned land in the region. 
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These are mainly confined to the southern, lowland river valleys where fertile flat 

land occurs due to a combination of erosion of higher land and flood deposits. 

Additional private land is located on the north eastern highland plateaus. 

Climate 

Far East Gippsland has an overall temperate/mesothermal climate. Cool winters and 

warm summers prevail. Due to the variety of land forms throughout the region, 

however, the climate varies dramatically between the coastal plains and the mountain 

areas or, as characterised by the Köppen climate classification scale (Peel et al. 2007), 

from oceanic to subtropical highland climates. The region receives a mean annual 

rainfall of 910 mm with rainfall decreasing from east to west and similarly decreasing 

from the coast towards the inland areas. Monthly rainfall patterns are trimodal with 

rainfall peaking in May and lesser peaks in November and February (Figure 1). Mean 

maximum temperatures range from 14.2°C in June to 26.1°C in February. Mean 

minimum temperatures range from 2.1°C in July to 13.5°C in February (Figure 2) 

(BoM 2010).   

 

Figure 1. Mean monthly rainfall pattern for Far East Gippsland. Solid bars show mean monthly 

rainfall. Hollow bars show mean number of rain days per month. Data obtained from the Bureau 

of Meteorology, Combienbar weather station. 
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Figure 2. Mean monthly temperature pattern for Far East Gippsland. Bars indicate the 

temperature range from average minimum to average maximum temperature. Data obtained 

from the Bureau of Meteorology, Combienbar weather station.  
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All of Far East Gippsland falls within the two bioregions “East Gippsland Uplands” 

and “East Gippsland Lowlands”. The floristic composition of the forests varies 

markedly across these bioregions. Classification of the floristic communities into 

Ecological Vegetation Classes (EVC) was undertaken by the Victorian Department of 

Sustainability and Environment (Davies et al. 2002; DSE 2010b). The dominant 
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Forest (EVC 29). These are characterised by a eucalypt tree layer to 30 m tall 

consisting of silvertop ash (Eucalyptus sieberi), white stringybark (E. globoidea), 

messmate stringybark (E. obliqua) and mountain grey gum (E. cypellocarpa). The 

dense understory consists of layers of shorter trees and shrubs such as blackwood 

(Acacia melanoxylon), narrow-leaf geebung (Persoonia linearis) and tangled guinea-
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banksia (Banksia serrata) to 10 m tall, with a thick understory. In the north western 

highlands the shallow infertile soils are typically characterised by open forest to 25 m 

tall with yellow stringybark (E. muelleriana) mountain grey gum (E. cypellocarpa) 

and red stringybark (E. macrorrhycha) dominating. The understory in these areas 

consists of a low shrub layer and tussock-forming graminoids such as thatch saw-

sedge (Gahnia radula) and forest wire-grass (Tetrarrhena juncea) (DSE 2010a).  

Industry 

According to the 2006 census, the largest employer groups in the region are the retail 

trade industry (2 047 people), health care and social assistance (1 810 people) and 

agriculture, forestry and fishing (1 383 people) (ABS 2008). Three main industry 

groups - tourism, agriculture and timber - contribute $471.8 million towards the gross 

value output for East Gippsland (Cameron et al. 2005), or 61% of the regional total. 

The timber industry in the region was relatively small until the 1950s when it became 

a major activity and employer and the mainstay of many of the smaller towns (NRE 

2010). About one third of the public land in Far East Gippsland is available for timber 

harvesting with some 6 000 ha of forest harvested annually (DSE 2010a). On average, 

3.4 million cubic metres of sawlogs and woodchips are harvested annually in the 

Gippsland region as a whole, with half of this is processed within the region. 

Gippsland sawmills process about 515 000 m
3
 of softwood sawlogs into 221 000 m

3
 

of sawn timber annually. The region exports some 75 000 m
3
 of softwood sawlogs 

and approximately 720 000 m
3
 of woodchips annually (Cameron et al. 2005).  

There are concerns that the timber industry is having negative impacts on the 

biodiversity within the region (DSE 2010a). Many of these impacts are likely to arise 

as a result of changes in the forest structure. As old growth trees are removed, the 

forest becomes dominated by young regrowth and the resultant homogeneous age 

structure reduces the vegetative complexity within the forest. Under the current 

forestry management regime, many regrowth trees will be harvested before becoming 

old enough to form hollows for birds and mammals (Lindenmayer et al. 1990; 

Lindenmayer et al. 1999).  
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Human population  

East Gippsland was home to five separate indigenous language groups before 

European settlement. Prior to 1800, the highest densities of the indigenous people in 

the region were along the coastline and rivers but numbered only a few thousand 

(NRE 2010). European settlement of the region commenced in the late 1830s. 

Settlement and population growth in the region were slow until the mid 19
th

 century 

but increased rapidly following the discovery of small gold deposits and the arrival of 

the railway from the west (NRE 2010). The 2006 census profile for “East Gippsland 

(S) – Orbost (Statistical Local Area)” (ABS 2008), which corresponds roughly with 

the region “Far East Gippsland”, shows that there are currently 8 298 people living in 

the area with approximately 3.6% identifying themselves as indigenous.   

Southern Ark project 

Far East Gippsland is the site of two major programs that have sought broad-scale 

reductions in invasive predator abundance. The first, Project Deliverance, commenced 

in 1998 to determine whether on-going, low intensity baiting would reduce the 

abundance of the red fox (Vulpes vulpes) and stimulate a commensurate increase in 

the abundance of five indicator species (Murray et al. 2006). Two of those species, the 

long-nosed potoroo (Potorous tridactylus) and southern brown bandicoot (Isoodon 

obesulus) had significantly larger populations following fox management at the end of 

the program compared with the non-baited control sites. Based on the outcomes of 

Project Deliverance, the Southern Ark project was established with the aim of 

reducing fox predation to enable the recovery of a range of native wildlife species 

(Murray et al. 2005).  

Southern Ark is a large-scale fox management program encompassing about 1 million 

hectares of public land in Far East Gippsland. It encompasses all public land east of 

the Snowy River, bounded to the north by the Victorian / New South Wales border 

and to the south by the coastline (Murray et al. 2005) (Figure 3). Private land is not 

included in the program. The Southern Ark operation is divided into six management 

sectors which are treated as separate units within the program. Six monitoring areas 

were established within these management sectors to monitor the effectiveness of the 
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baiting campaign. Three were designated as poisoned monitoring areas (treatment 

sites). The remaining three were designated as un-poisoned monitoring areas (non-

treatment sites) and act as experimental control sites.  

 

 
Figure 3. Map of the study area. The broken line indicates the approximate western boundary of 

the Southern Ark project. Background GIS data layers were provided by the Victorian 

Department of Sustainability and Environment. 

Southern Ark has established 3 486 bait stations throughout the six management 

sectors at which poison baits are set to reduce fox numbers. Bait stations were 

constructed at 1 km intervals along forest roads. Each station consists of a 1 m 

circular depression filled with sifted loamy soil or coarse river sand. Foxoff
®
 baits 

(Animal Control Technologies Australia, Somerton, Victoria) are buried 15 cm below 

the surface and a tuna oil emulsion is added as an olfactory lure (Murray et al. 2005). 

Baiting occurs only on accessible roads on public land within the area of operation 

(Figure 4).  
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Figure 4. Location of fox-baiting stations in the Southern Ark area. GIS data sources from the 

Department of Sustainability and Environment. 

Monitoring areas 

The six monitoring sites were set up to monitor the responses of both foxes and 

selected prey species. The three sites designated as poisoned monitoring areas 

(PMAs) are baited in the same manner as for the rest of the Southern Ark Project area 

(Table 1). The remaining three non-treatment sites (un-poisoned monitoring areas or 

UMAs) have no poison baiting. To minimise potential bias, non-poisoned baits are 

laid in the UMAs in the same manner as the poisoned baits. The six sites were paired 

so each PMA had a corresponding UMA that would be monitored at the same time.  

The Southern Ark project was reviewed extensively by Diment (2010), who also 

provided additional information on the efficacy of fox baiting and a preliminary 

assessment of the effects of fox reduction on prey species.   
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Figure 5.  Monitoring areas in the Southern Ark project. The three un-poisoned monitoring areas 

are the only areas within Southern Ark that are not being baited, and act as non-treatment 

(control) sites.  

Table 1. Monitoring areas within Southern Ark.  

Poisoned monitoring area Area (ha) 

Mueller 23 100 

Bemm 25 000 

Drummer 20 500 

Un-poisoned monitoring areas  

West Cann 19 000 

Tamboon  23 100 

Genoa 15 100 

 

This study 

The location of, treatment allocated to and pairing of the monitoring areas used in this 

study were decided by DSE management during the design phase of Southern Ark 

(Murray et al. 2005), and were established well before this project commenced. My 

study was conducted primarily in the West Cann UMA and the Drummer PMA 
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(Figure 5). Whilst not paired in the Southern Ark Project, these two monitoring areas 

were selected because they are geomorphologically more similar than other 

combinations of UMA and PMAs. Although these sites were chosen because of their 

geomorphological similarity, they differ in respect to fire history and logging regimes. 

No direct comparisons are made between these monitoring areas in this study and I 

have attempted to treat these areas as part of contiguous forest. Fox baiting did not 

occur in the Drummer PMA until late 2008. As all my data on the movement and 

home ranges of feral cats had been gathered by the time baiting commenced, I assume 

that no bias was introduced as a result of differing fox management treatments being 

allocated to these areas.  

Fire 

In 1983 a wildfire burnt large portions of Far East Gippsland. The Drummer PMA 

was completely burnt. More recently, a fire in 1995 re-burnt the north eastern quarter 

of this monitoring area. In comparison, only the north eastern quarter of the West 

Cann UMA was burnt in the 1983 fire. In 1990 a large fire burnt a further quarter of 

this monitoring area, in the south-east corner. There was very little overlap of these 

two fires. The only other fire event in this area occurred in the early 1970s (Figure 6).  

Logging history 

Over half the area available for harvesting in East Gippsland consists of trees over 

150 years old with the balance made up of recent regeneration from harvesting since 

1965 (Cameron et al. 2005). Logging is undertaken in coups of approximately 30-35 

ha. Logging rotation age (the time between harvesting of the same coup) is 83 years 

for silvertop ash (Eucalyptus sieberi) and 112 years for coups of mixed species. Both 

West Cann UMA and Drummer PMA are logged using clear-felling techniques 

(Cameron et al. 2005; DSE 2010a). These areas have been logged at different rates 

since 1960 with nearly half of West Cann UMA having been logged in the past 50 

years compared with about one quarter of the Drummer PMA (Table 2).  
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Figure 6. Fire history of the West Cann and Drummer monitoring areas shown by decade. West 

Cann UMA is shown on the left and Drummer PMA on the right. Data for this figure were 

extracted from GIS fire layers provided by the Victorian Department of Sustainability and 

Environment.  

 

 

Table 2. Area logged within the West Cann and Drummer monitoring 

areas by decade. Data were extracted from GIS layers provided  

by the Department of Sustainability and Environment, Victoria   

Decade of harvesting 
West Cann UMA Drummer PMA 

ha % ha % 

Pre 1930 223 1.2 21 0.1 

1960-69 3 462 18.2 21 0.1 

1970-79 2 263 11.9 934 4.6 

1980-89 636 3.3 2 185 10.7 

1990-99 1 526 8.0 1 558 7.6 

2000-10 1 037 5.5 489 2.4 

Total 9 147 48.1 5 208 25.4 
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Vegetation communities 

The two monitoring areas have differing floristic compositions based on Ecological 

Vegetation Classes (EVC) (Table 3). Lowland forest and damp forest are the 

dominant vegetation communities within the Drummer PMA while damp forest and 

dry shrubby forest are the dominant vegetation communities in the West Cann UMA 

(Davies et al. 2002). The forest in each area is dominated by messmate (E. obliqua), 

silvertop ash (E. sieberi), brown barrel (E. fastigata), and white stringybark (E. 

globoidea). 

Table 3. Composition of West Cann and Drummer monitoring areas based on  

the four most common Ecological Vegetation Classes (EVC) within those areas.  

*Less common EVCs are not shown so totals do not equal 100% 

Ecological 

Vegetation Class 
West Cann UMA Drummer PMA 

 ha % ha % 

Lowland forest 3 571 18.7 9 795 47.8 

Shrubby dry forest 4 035 21.2 235 1.1 

Damp forest 9 499 50.0 5 270 25.7 

Wet forest 1 147 6.1 1 581 7.7 

total 1269 96.0* 1092 82.3* 

 

Aims and structure of this thesis 

In this thesis I examine the ecology of feral cats in a tall forest ecosystem and then 

explore potential control techniques for feral cats in this and other habitats. I 

investigate the home range sizes and patterns of home range use by feral cats in the 

Southern Ark area. I also examine a technique based on poison baiting for managing 

feral cats and the potential for uptake of baits by non-target species using a decision 

tree process. My broad goal is to fill one of the gaps in the body of knowledge of feral 

cats; that is, to document aspects of their ecology in tall forests and to examine the 

potential for an innovative control technique that is applicable to a broad range of 

species and situations.  



Chapter 1. Introduction and study site 

 
 

15 

 

My specific objectives are to 

I. Review the introduction, spread and impacts of feral cats in Australia (Chapter 

2) 

I discuss how the domestic cat came into Australia and how it spread across the 

landscape. I also review the potential impacts of feral and domestic cats both on the 

mainland and offshore islands. This section provides a synthesis of the current 

knowledge of feral cats in Australia.  

II. Examine the ecology and movement of feral cats in tall forests (Chapters 3-4) 

No previous research has been undertaken on the ecology of feral cats in tall closed 

forests. These chapters fill that knowledge gap to some extent through the use of GPS 

collars to obtain location data. GPS collars allow movement patterns and foraging 

behaviours to be examined in more detail than is usually possible with conventional 

VHF telemetry. I scrutinise patterns of intra-home range use by feral cats using a 

novel analysis technique and discuss the potential influence of cat space-use on prey 

species.  

III. Examine how feral cats utilise their home ranges (Chapters 5) 

Burt (1943) describes an animal‟s home range as the area “....traversed by the 

individual in its normal activities of food gathering, mating, and caring for young…”. 

Very few animals utilise the whole of their home range. Here I examine the large 

unused areas within the home ranges of feral cats and propose possible explanations 

as to why these areas are not used.  

IV. Examine the population demographics of feral cat prey species (Chapter 6) 

Baiting programs designed to reduce feral cat abundance need to target times when 

cats are food stressed. During these times cats are more likely to scavenge for food 

and will consume poisoned baits. In south-eastern Australia, this generally occurs in 

winter when the natural fluctuations in prey abundance are at their lowest, particularly 

following the male die off in Antechinus species. In this chapter, I undertake small 
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mammal trapping at four sites to determine what prey species are available to be 

consumed by feral cats and at what time their abundance is at a low ebb to determine 

when a poison baiting campaign for feral cats would be most effective.  

V. Investigate a potential technique for managing feral cats (Chapters 7-8) 

There are few techniques available for the management of feral cats, and none that is 

cost-effective. However, poisoning is being investigated currently as a potential 

means of primary cat control. Access to poison bait by non-target species can restrict 

the use of poisons and limit the probability of success of a management program. In 

these chapters I present a desktop analysis using a decision tree process to determine 

which non-target species are likely to encounter baits, and which are likely to access 

the toxicants that are encapsulated within a hard shell delivery vehicle (HSDV) 

inserted in the bait. I also report on field experiments using a non-toxic bait marker to 

compare the access that non-target species have to toxicants enclosed within a HSDV 

compared with that directly injected into the bait media. 

 

VI. Integrate my findings into the current pool of knowledge of feral cats (Chapter 

9) 

In this chapter I present a synopsis of the key findings of my research and integrate 

the relevant findings into current knowledge of feral cats.   
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Chapter 2 

The feral cat (Felis catus): a review of its history, 

introduction into Australia and ecological effects 

Chapter overview 

In this chapter, I review current knowledge of the history and ecology of feral cats 

(Felis catus) including information on the damage that they cause and trends in 

thinking regarding the management of this ubiquitous species. The review covers 

research on cats in different parts of the world but maintains an overall focus on cats 

in Australia as this is where my own primary research was carried out. I also include a 

small section on the possible impact of domestic cats on native wildlife in the urban 

environment.  

The cat has had a long and varied relationship with humans over the past 10 000 

years. It is thought that initially cats were used as a source of food and pelts before 

eventually being tamed and subsequently domesticated. The cat was revered in 

ancient Egypt to the point of becoming a deity and having a ban placed on its export. 

By the time of the Roman Empire, domestic cats were part of everyday life and had 

dispersed across Europe with the expansion of the imperial empire. The subsequent 

movement of people across the globe allowed the domestic cat to extend its range and 

establish permanent populations on all continents except Antarctica. Cats were 

introduced to Australia with European colonisation. Domestic cats were introduced 

both accidentally and intentionally into the wild and have subsequently spread across 

the mainland, to Tasmania and many offshore islands.  

 Even with a long history of domestication, feral cats still possess all the hunting 

instincts and abilities of their forebears which allow them to survive easily in a feral 

state. Feral cats can impact negatively on native wildlife in many ways, including via 

predation and as carriers of diseases and parasites. Feral cats have had significant 

negative impacts on attempts to reintroduce endangered species back into their natural 

ranges. Counter-intuitively though, feral cats potentially may have a positive impact 



Chapter 2. The feral cat: a review 

 
 

18 

 

on some species through the suppression of lower-order predators or herbivores such 

as rats (Rattus spp.).  

Managing feral cats to protect endangered native species is difficult primarily due to 

the limited techniques that are available, especially in states where effective control 

techniques have been banned by legislators. However, on-going research into new bait 

media and novel ways of delivering toxins that minimise the access of non-target 

species to toxicants hold promise for the future.  

The cat holds a unique place in human society. It is both a loved family pet and a 

despised invasive predator. While there is generally strong support within society to 

manage feral cats, there are other attitudes that can disrupt or impair attempts to 

manage cats, such as the misconceived belief that feral and domestic cats are separate 

species or through a misplaced affection for feral cats.  

History of the domestic cat 

There has been a complex and changing relationship between humans and felids over 

the preceding 10 000 years. Bone and tooth fragments from Felis lybica (African 

wildcat) have been found in the excavations of early Jericho, but there is insufficient 

evidence to determine if these were the remains of domesticated animals or wild 

animals killed for food or pelts (Serpell 2000). More than 38% of all felid species 

have been tamed by humans over the millennia for one purpose or another, yet only 

Felis silvestris (European wildcat and its subspecies) has been domesticated (Faure 

and Kitchener 2009). Genetic analysis of over 1 000 felid samples from both wildcat 

species and domestic cats has indicated that all modern domestic cats originated from 

the Middle Eastern wildcat -  F. s. lybica  (Driscoll et al. 2009). Domestication is a 

gradual rather than sudden process and cats may have been captured, or kittens found 

and tamed as pets prior to the establishment of agricultural settlements (Serpell 2000).  

Following the shift towards agricultural practices by humans in the Fertile Crescent of 

Mesopotamia, some F. silvestris probably became attracted to settlements to feed on 

rodents exploiting stored food items. Those cats may have been encouraged to stay to 

protect the food stocks, which eventually led to full domestication (Driscoll et al. 



Chapter 2. The feral cat: a review 

 
 

19 

 

2007; Faure and Kitchener 2009). A complete cat skeleton found in a human burial 

site in a Neolithic village in Cyprus has been dated to ~9 500 years before the present 

(ybp) (Vigne et al. 2004). The non-disarticulation of the bones indicates that the cat 

had been intentionally buried rather than consumed as a food resource. As there is no 

evidence of any native felid on Cyprus, this indicates that cats must have been 

introduced to the island, and lived in close association with the humans of that time 

(Vigne et al. 2004). The finding of the bones of a small F. chaus (Jungle cat) in a pre-

dynastic burial site in Egypt dated to 5 700 ybp indicates that cats were being tamed at 

that time (Linseele et al. 2007; Linseele et al. 2008). The bones were not 

disarticulated and showed signs of healing fractures, thus indicating that the animal 

had been in captivity for a number of weeks.  

Examination of the genome of the cat indicates that domestication may well have 

taken place on multiple occasions in separate locations (O'Brien et al. 2008). The 

earliest evidence for full domestication of the cat (Felis catus) comes from ancient 

Egypt. Approximately 2 900 ybp the cat became an official deity of Egypt in the form 

of the goddess Bastet. The large number of sacrificed and mummified cats found in 

tombs and burial sites indicates that cats were being bred by Egyptians at that time 

(Driscoll et al. 2009). Cats were so revered by Egyptians that bans were placed on 

their export to other countries. However, this ban was ineffectual as by 2 500 ybp, 

domestic cats had made their way to Greece. By 2 300 ybp cats are shown in paintings 

and frescoes living with and as part of human society. The domestic cat expanded 

across Europe as the Romans expanded their empire some 2 000 years ago (Driscoll et 

al. 2009).  

The Romans were probably responsible for the introduction of the domestic cat into 

northern Europe, with domesticated cats present in Britain by the fourth century AD. 

By 1 450 years ago it is probable that cats were fully domesticated and that the 

presence of a domestic cat within a household was commonplace. Cats were 

widespread throughout most of Europe and Asia by the tenth century AD (Serpell 

2000). Subsequent movements of humans and their associated domestic animals have 

spread the domestic cat across the globe. By the time of the industrial revolution, cat 

owners were selectively mating their pets to produce new breeds of domestic cat 
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(O'Brien et al. 2008). Despite the progress of the cat into a domesticated state, it has 

retained its pre-domestication repertoire of behavioural and hunting traits that make it 

very successful when it reverts into a feral state (Bradshaw et al. 1996).  

Introduction of the cat into Australia 

There are many hypotheses on when cats were introduced into Australia. These range 

from cats having arrived with the indigenous people as much as 50 000 ybp, through 

Macassan trepangers in the 1600s (Baldwin 1980), or as a result of shipwrecks / 

coastal landings of European sailors and traders (Burbidge et al. 1988). While it is 

possible that single or small groups of cats arrived at various times prior to European 

settlement, it is most likely that the domestic cat did not arrive in Australia in 

sufficient numbers to form breeding populations until after European settlement. The 

domestic cat was most likely introduced into Australia at multiple points along the 

coastline during the period 1824-1886 (Abbott 2002). Cats then diffused across the 

Australian mainland from their points of entry along the coast and rapidly moved 

inland with European colonisation of these areas. Many early explorers failed to note 

cats at anywhere other than near settlements, indicating that cats were not widespread 

across Australia during the early stages of European settlement (Abbott 2002).  

The successful introduction of the European rabbit (Oryctolagus cuniculus) to 

Australia and its rapid growth into plague proportions is very likely to have 

unwittingly accelerated the spread of the cat across Australia. Not only did rabbits 

provide a readily available food source, domestic cats were advertised, sold and 

released in their hundreds as a measure to combat the rabbit plagues (Rolls 1969). 

Due to a combination of intentional and unintentional releases of domestic cats into 

the wild, feral cats are now widespread across the Australian mainland, Tasmania and 

many offshore islands (Abbott 2002; Burbidge et al. 1997).   

Dietary requirements and predatory behaviour 

The cat is an obligate carnivore (Bradshaw et al. 1996). It descended from specialised 

predators that utilise large canines to sever the neck vertebrae of mammalian prey 

(Baenninger 1978; Bradshaw 2006). Cats are fundamentally more constrained in diet 
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choices than canids due to the lack of certain key metabolic enzymes (Zoran 2002). 

These enzymes appear to have been lost in a common ancestor of all species in the cat 

family. This loss has resulted in a very narrowly defined diet that is high in protein 

and moderate amounts of fat, but low in carbohydrates. In the wild, this can be 

satisfied only by a diet that consists largely of vertebrate prey (Bradshaw 2006; Zoran 

2002).  

Hilmer (2010) showed that the basal metabolic requirements of a 3.7 kg feral cat in 

winter were about 800 kJ per day. Based on calculations by Nagy et al. (1999) this 

equates to a minimum 160 g of wet food intake per day for a cat of that weight. Feral 

cats are solitary hunters and generally take prey with a much lower body mass than 

their own. This can necessitate several kills per day to fulfil metabolic requirements. 

Felis catus is a generalist resident predator that exploits a wide range of prey and is 

able to readily switch from one prey to another (Fitzgerald and Turner 2000). Feral 

cats hunt using a number of audio and visual cues (Fitzgerald and Turner 2000) and 

have a hunting strategy that relies heavily on crypsis for success. Cats also use both 

“mobile” and “stationary” hunting strategies to secure prey. A mobile hunting strategy 

involves actively seeking out prey items by moving through the environment. When a 

potential prey item is detected either through visual or audio cues, the cat starts to 

stalk the animal, exploiting whatever cover is available (Fitzgerald and Turner 2000). 

Jones (1977) found that cats on sub-Antarctic Macquarie Island used a mobile hunting 

strategy when searching for rabbits. Cats would move between rabbit burrows, 

entering and searching each one prior to moving on to the next. In contrast, a 

stationary (sometimes called “sit and wait”) hunting strategy involves moving to an 

area that prey frequent, such as burrow entrances or animal trails, and laying in wait 

for a target to appear. When prey appears, it is ambushed from cover. Cats have been 

known to utilise this strategy when hunting for turtle hatchlings (Seabrook 1989), 

rabbits and burrow-nesting seabirds (Corbett 1979 as cited in Fitzgerald and Turner 

(2000)).  
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Potential impacts caused by cats 

Feral cats 

The predominant damage attributed to feral cats is through predation on birds, 

mammals, reptiles and amphibians, although some probably also occurs through 

competition for available food and shelter resources (Burbidge and Manly 2002; 

Dickman 1996). A worldwide meta-analysis which included multiple predator 

species, showed that predator management had positive effects on populations of non-

cyclic prey species (Salo et al. 2010). The effect of predator management was variable 

for cyclic prey species (those that go through boom and bust phases). Predator 

management resulted in a positive effect on prey species populations when those prey 

were at low densities but had no obvious effect when prey populations were at their 

peak. The negative impacts of introduced predators on native prey populations are 

usually greater than those of native predators (Mcevoy et al. 2008; Salo et al. 2007). 

While many marsupial predators did, and currently do, exist in Australia, placental 

carnivores were not present in Australia until introduced by humans 3 500 – 5 000 

years ago (Johnson and Wroe 2003). As a result, Australian marsupials did not co-

evolve with eutherian predators. Prey species that co-evolve with the predator possess 

predator recognition and avoidance strategies that naïve prey species lack (Banks 

1998; Mcevoy et al. 2008; Russell and Banks 2007). The lack of strategies for 

predator avoidance can lead to introduced predators having substantial negative 

impacts on populations of naïve native prey species. 

Feral cats have been implicated in the decline and extinction of a number of species of 

native Australian mammals (Burbidge and Manly 2002; Dufty 1994; Smith and Quin 

1996). There is also evidence of the deleterious impacts of feral cats on Australian 

islands that has been obtained through modelling island species populations (Burbidge 

and Manly 2002; Burbidge et al. 1997). Feral cats are listed as a threat to 117 native 

species in New South Wales (Coutts-Smith et al. 2007). Smith and Quin (1996) 

suggested that the presence of feral cats is the best predictor of the decline in 

abundance of conilurine rodents.  
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There is a positive correlation between the presence of feral cats on Australian islands 

and the extinction of ground-dwelling native fauna. This relationship is particularly 

strong on arid islands that lack refugia, such as rock piles, for the native animals 

(Burbidge and Manly 2002). Dickman et al. (1993) found that predation by feral cats 

could be implicated in the regional extinction of up to 10 species of native small 

mammals in western New South Wales prior to 1857. Predation by feral cats together 

with habitat degradation through overgrazing by stock was suggested by Smith et al. 

(1994) as instrumental in the extinction of the black bittern (Ixobrychus flavicollis) 

and Lewin‟s rail (Dryolimnas pectoralis). Smith et al. (1994) also concluded that the 

primary cause of decline of avifauna in the New South Wales western division was 

habitat degradation, with predation by exotic animals as a secondary cause. The 

spread of an epizootic disease across Western Australia has been suggested as a 

primary cause of the collapse of native fauna populations in this region, with feral cat 

predation and drought being additional influencing factors (Abbott 2006).  

Few studies have examined the actual impacts of feral cats on prey species at a 

population level. At Heirisson Prong, Western Australia, Risbey et al. (2000) showed 

that when fox density was reduced, the feral cat population increased and the small 

mammal population declined by 80%. This remains the only study in Australia to 

show the impact of feral cats on established native species populations through 

experimentation rather than by analysis of historical records or recovery of 

populations post-feral cat reduction.  

Feral cats affect prey species populations most directly through predation. Multiple 

dietary studies have shown that cats prey on native species (for example - Brunner et 

al. 1975; Coman and Brunner 1972; Glen et al. 2010; Jones and Coman 1981). 

However, inclusion in the diet does not necessarily mean that cat predation is having a 

detrimental impact at the population level that in turn leads to a decline of the prey 

species (Denny and Dickman 2010). An impact will occur only if the level of harvest 

by the predator exceeds the rate of increase of the prey species (Krebs 2001). For 

example, Banks (1999) found that fox removal had no effect on bush rats (Rattus 

fuscipes) and surmised that the foxes were taking the “doomed surplus”, i.e. that 

portion of the population that would have perished anyway even in the absence of 



Chapter 2. The feral cat: a review 

 
 

24 

 

foxes. Care must be taken not to assume that feral cats are having a negative impact 

on prey populations simply on the basis of the inclusion of these prey in the diet. 

While recovery of a population post-cat reduction may indicate that the cats were 

controlling the population at that level, it does not necessarily mean that they were the 

cause of the initial decline as other correlated or unmeasured factors could well have 

been involved (Hone 1999a). 

Some studies on islands show cats as the definitive cause of extinction of prey 

species. A single cat was responsible for the extirpation of the Angel de la Guarda 

deer mouse (Peromyscus guardia) on Estanque Island in the Angel de la Guarda 

Archipelago. A previously unrecorded population of P. guardia was discovered on 

Estanque Island in October 1995 and described as “relatively abundant” (Vazquez-

Dominquez et al. 2004). By November 1998, the population had become extinct 

(Mellink et al. 2002). A single cat was found and removed from the island. Analysis 

of cat scats collected from the island found that 93% contained P. guardia hair 

(Vazquez-Dominquez et al. 2004). Similarly, a single pregnant cat was introduced to 

Stephens Island, New Zealand, by the lighthouse keeper. This cat and her subsequent 

offspring are believed to be responsible for the extinction of the Stephens Island wren 

(Xenicus lyalli) (Galbreath and Brown 2004).  

While there is much circumstantial evidence on the detrimental impacts of feral cats, 

it comes predominantly from population recoveries of prey species following cat 

management and from modelling of predation-based scenarios. There is little direct 

evidence of negative impacts by feral cats on prey species at a population level. 

Caution must be applied when interpreting prey species population increases 

following feral cat management programs. It is possible that some other factor(s) 

induced the decline (Hone 1994; Hone 1999a).  

Environmental systems are complex, with many biotic and abiotic interactions 

occurring. Many factors other than predation, such as changed fire regimes, land 

clearing, grazing by domestic stock, drought and floods can impact on the persistence 

of native fauna. Our knowledge of these systems, and the interactions that occur 

within the systems, is very limited (Braysher 1993). It becomes easy to blame the 
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introduced predator that includes the prey species in its diet for any population decline 

in the prey species (Olsen 1998). For example, fox predation was blamed for the 

decline in malleefowl (Leipoa ocellata) populations in central western New South 

Wales, but populations did not increase following fox management. Subsequently it 

was found that chicks were not surviving due to a lack of available food (Priddel and 

Wheeler 1990). Similarly, Hone (1999a) analysed rock wallaby (Petrogale lateralis) 

recovery following fox management (see Kinnear et al. 1988; Kinnear et al. 1998). 

The rate of population increase was lower than would be expected if fox predation 

was the sole limiting factor, thus suggesting that some other factor(s) was still limiting 

population increase.  

Feral cats and reintroduction attempts  

Feral cats have impacted negatively on attempts to reintroduce native fauna to areas 

where local extinctions have occurred. Soderquist (1995) found that feral cats killed 

between 39 and 50% of reintroduced brush-tailed phascogales (Phascogale tapoatafa) 

within the first week after release on two separate occasions in Gippsland, Victoria. 

The release of rufous hare-wallaby or mala (Lagorchestes hirsutus) into the Tanami 

Desert was compromised by a single cat at each of two release locations (Gibson et al. 

1995; Gibson et al. 1994). Attempts to reintroduce burrowing bettongs (Bettongia 

lesueur) into the Gibson Desert similarly met with failure as feral cats killed the 

released animals. Within 60 days of release, no living bettongs could be found and all 

the remains that could be located showed clear signs of having been killed by cats 

(Christensen and Burrows 1995). In an early review of macropod reintroductions in 

Australia, Short et al. (1992) found that the reduction or exclusion of introduced 

predators was critical to the success of any reintroduction program and that feral cats 

were responsible for the failure of a number of attempted reintroductions. A more 

recent review has confirmed the role of predators, including cats, in causing the 

failure of many reintroduction programs, with predator absence being a key predictor 

of reintroduction success (Finlayson et al. 2010).   

Most of the animals used in these reintroductions were reared in captivity (Gibson et 

al. 1994; Soderquist 1995) or translocated from predator-free islands (Christensen and 



Chapter 2. The feral cat: a review 

 
 

26 

 

Burrows 1995). These animals had no previous exposure to predators. Training naïve 

animals to avoid predators is an essential step to improve the success of reintroduction 

programs, with many failing when this step is not undertaken (Kleiman 1989). 

McLean et al. (1995) instigated a predator aversion training program for captive 

rufous hare-wallabies following the quantification of the impacts that predators had on 

released captive-bred animals. However, it is unknown if this training was successful. 

A successful predator aversion training program was undertaken by van Heezik et al. 

(1999) which resulted in greater survival of captive-reared houbara bustards 

(Chlamydotis macqueenii) when compared with those which did not receive aversion 

training.  

Amensal effects 

Amensal effects occur where interactions between individuals result in the decrease in 

fitness of one but have no effect on the other. In the cases considered here, it is the cat 

that would suffer no decline in fitness. Feral cats can introduce and spread pathogens, 

such as the toxoplasma parasite (Toxoplasma gondii), and diseases through other 

species (Eberhardt et al. 2006; Henderson 2009; Hill and Dubey 2002). Dickman 

(1996) reviewed a number of parasites and diseases that could be transmitted from 

cats to native wildlife and concluded that two pathogens are of considerable concern – 

Spirometra erinacei and Toxoplasma gondii.  

Spirometra erinacei is a large tapeworm that infests the gut of carnivores and uses 

cats as a definitive host. Eggs passed by the carnivore develop into procercoids in 

freshwater copepods and small crustaceans. If these are consumed they develop into 

the second intermediate stage, plerocercoids. These have been recorded in native 

mammals, reptiles and amphibians (Moodie 1995; Munday et al. 1978). While 

producing no obvious clinical symptoms, they can cause muscle and soft tissue 

damage which may lead to death.  

Toxoplasma gondii also uses cats as a definitive host and causes toxoplasmosis. It is 

common among both the domestic and feral cat populations in Australia (Adams et al. 

2008; Hartley and Munday 1974; Smith and Munday 1965). Toxoplasma gondii is 

usually transferred to herbivores that eat grass containing oocysts that were excreted 
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as the cat defecated (Meireles et al. 2004). Insects such as flies and cockroaches can 

also carry the oocysts on their feet and mouthparts. Ingestion of oocysts can occur 

through consuming the insect or something it has walked over (Hartley and Munday 

1974). Infection by T. gondii can result in the aborting of foetuses in pregnant animals 

(Hartley and Munday 1974; Plant et al. 1974) or cellular damage to the brain, heart, 

lungs and/or liver (Jensen et al. 1985). It has been found in many native animals in 

eastern and central Australia, including dasyurids, bandicoots, macropods and some 

birds (Johnson et al. 1988; Moodie 1995; Smith and Munday 1965).  

The extent of the impact that pathogens and diseases carried by feral cats have on 

native species populations remains unclear. While they are present within both cats 

and native wildlife populations, their presence does not reveal what level of impact, if 

any, they have. Further research is needed into the effects that these diseases and 

pathogens actually have at the population level on native species.    

The presence of predators can affect not just the population size of prey species, but 

also the behaviour of prey individuals (Charnov et al. 1976). Such behavioural shifts 

results in the prey animals making shorter and less frequent feeding forays from a 

place of shelter or using more protective microhabitats (Brown 1988; Kotler 1984a; 

Lima and Bednekoff 1999). When the risk of predation is lower, animals forage more 

widely, for longer periods and are able to obtain more resources (Brown et al. 1988; 

Kotler 1984b; Lima 2002; Lima and Bednekoff 1999). The continued presence of a 

predator, or predators, can result in prey animals suffering depressed foraging and 

hence declines in individual fitness (Arthur et al. 2004; Mitchell and Lima 2002; 

Ruxton and Lima 1997). Using a modelled scenario, Beckerman et al. (2007) 

predicted that increasing densities of cats in urban areas had a negative effect on the 

fecundity of song birds due to sub-lethal effects rather than through direct predation 

on the songbirds. However, this model included only cat density as an influence on 

bird fecundity and did not include any other effects of urbanisation that may impact 

on fecundity such as habitat simplification (van der Ree and McCarthy 2005) or the 

increasing habitat fragmentation that occurs towards the central business district in 

most urbanised landscapes (Collins et al. 2002).   
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Domestic cats 

Whilst cats have been domesticated for many centuries, they have retained their 

repertoire of behavioural and hunting traits (Bradshaw et al. 1996). Domestic cats 

impact on fauna within their local ranges in a similar manner to feral cats. Predation is 

the primary impact of domestic cats. Soulé et al. (1988) described domestic cats as 

subsidised predators because their primary source of nutritional intake is not through 

predation. As domestic cats obtain all their food requirements from their owners, 

predation becomes a form of play rather than a necessity (George 1974). This 

potentially results in a greater impact on prey species than would occur if the 

predation was by feral cats. Classical optimal foraging theory suggests that when the 

cost of obtaining food is greater than the benefit gained, the predator will move to 

another patch to search (Charnov 1976; Pyke 1984). Being nutritionally subsidised, 

domestic cats can continue to hunt and catch animals in an area long after the prey 

population has been reduced to a level that cannot support feral cats which rely on 

wildlife for all their food requirements.  

Barratt (1997) surveyed local cat owners in Canberra and found that 1 961 prey items 

were brought home by the 214 domestic cats in his study over a 12 month period. The 

primary prey items brought home were small mammals. The estimated amount of 

prey caught annually by domestic cats in Canberra was between 380 000 and 630 000 

animals (Barratt 1998). The majority of these were introduced species with only a 

small proportion of native species. The predation rates of cats living closer to 

grasslands or rural settings were higher than of those in the centre of suburbs. In 

Felmersham, England, all domestic cat owners, except one, participated in a study for 

a period of 12 months to determine what prey items were returned by their cats.  The 

70 cats in the village brought home a total of 1090 prey items in the 12 month period 

(Churcher and Lawton 1987). As found by Barratt (1997), most prey items were small 

mammals. 

Predation by domestic cats in Dunedin, New Zealand, has been suggested to impose 

an unsustainable harvest on the urban bird populations (van Heezik et al. 2010). 

Estimates of the total catch by domestic cats of six species of bird were either higher 
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than the total, or close to the lower 95% confidence interval, of the urban population 

estimates for those species (van Heezik et al. 2010). Conversely, Grayson et al. 

(2007) found that predation by domestic cats in Perth was not a significant factor in 

the decline of passerine birds in the urban area, but rather the density of housing, 

distance to woodland and the size of the bushland remnants were more important 

factors in the declines. Cat predation following the control of coyotes in San Diego 

County, California was found to have contributed to the local extinction of many 

chaparral-dependent bird species that had persisted in remnant patches of chaparral 

(Soulé et al. 1988). Body condition, diet and the regularity of feeding do not appear to 

influence the reported frequency of predation by domestic cats (Barratt 1998; 

Robertson 1998).  

While predation does occur by domestic cats, the impact of this on populations of 

prey species is largely unknown. For there to be a detrimental impact, predation by 

domestic cats needs to exceed the rate at which the prey population can replenish 

itself. If predation does not exceed the ability of the population to replace itself yet it 

is still declining then there must be other causal factors involved. It is unlikely that 

predation by domestic cats would be the sole cause of population declines in urban 

areas, except where endangered prey species are restricted to small remnant patches of 

suitable habitat, as was found to be the case by Soulé et al. (1988). The process of 

urbanisation results in the removal or altering of many obligate resources for native 

species (Collins et al. 2002; McKinney 2002; Olden et al. 2006). This habitat 

modification alone has been responsible for the reduction in native plant species, 

invertebrates, reptiles, birds and mammals in urban areas (for examples see Jellinek et 

al. 2004; Odell and Knight 2001; Rickman and Connor 2003; Williams et al. 2005). 

The decline of native small mammals in the urban reserves of Canberra was suggested 

to have occurred through a number of processes, including habitat modification and 

changed fire regimes, rather than just predation by exotic species (Buckmaster et al. 

2010).  

Selective hunting and prey specialisation 
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Past studies on the diet of feral or domestic cats have rarely examined the level of 

prey availability. As a result, it is not known if cats selectively prey on some species 

in preference to another or if they are opportunistic hunters that take prey in similar 

proportions to those available. Selective predation by foxes on broad-toothed rats 

(Mastacomys fuscus) was found to occur in Australian alpine areas (Green 2002; 

Green and Osborne 1981). Of the few studies that have examined prey availability, 

Molsher (1999) found that feral cats at Burrendong, NSW selectively preyed on 

rabbits (Oryctolagus cuniculus). They continued to prey preferentially on rabbits even 

after a 90% decline in the rabbit population following the arrival of rabbit calicivirus 

disease (RCD). Domestic cats in Canberra have been shown to selectively prey on 

house sparrows (Passer domesticus) and blackbirds (Turdus merula) over a range of 

other common bird species including starlings (Sturnus vulgaris) (Barratt 1997). Cats 

have also been shown to selectively depredate certain weight ranges within a prey 

population. Stray cats in Baltimore, Maryland, for example, preferentially took 

juvenile or sub-adult rats rather than the much larger adult rats (Childs 1986). Cats are 

also believed to prey at a greater rate on juvenile and sub-adult eastern barred 

bandicoots (Perameles gunnii)with low predation on adult animals in an urban setting 

at Hamilton in Victoria (Dufty 1994) 

Prey specialisation occurs when an individual cat is more proficient at hunting and has 

greater success in capturing certain prey species over others (Dickman 2009). Some 

individual cats on Rottnest Island, Western Australia, were observed to have greater 

hunting success with mice, while others were more successful at hunting lizards or 

birds (Dickman 2009). Similar hunting specialisation was observed in a feral cat on 

North Head, Sydney that had a greater success rate when hunting rabbits compared 

with other prey species (Dickman 2009). Prey specialisation has been shown to occur 

in other predatory species such as African wild dogs (Lycaon pictus) (Kruger et al. 

1999).  

Further research is warranted into selective hunting and prey specialisation in feral 

cats. Gibson et al. (1995) surmised that a single cat killed most of the reintroduced 

rufous hare wallabies at each of the release locations in the Tanami Desert. Similarly, 

two boars accounted for most of the lamb predation events witnessed by Pavlov and 
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Hone (1982). In situations like these, the predation events will cease only when either 

the animals responsible are removed or when there are no prey animals left. Unless 

these particular animals are removed by management actions, no amount of 

population reduction will result in a decline in the impacts of predation.  

 

Mesopredator release 

Mesopredator release occurs when the management or removal of a high order or 

apex predator facilitates increased predation by a lower order predator, or 

mesopredator; this, in turn can result in increased impacts on shared prey species 

(Soulé et al. 1988). The so-called „release‟ of the mesopredator can occur via 

increased activity or ranging behaviour in the short term, and by increased numbers if 

management of the apex predator is maintained over a long period. In Australia this 

interaction is most commonly thought to occur between the introduced red fox 

(Vulpes vulpes), the feral cat and the dingo (Canis lupus dingo). Reducing fox density 

is thought to release the cat from competition with, or control by, foxes, resulting in a 

greater impact on common prey species. Reducing fox abundance resulted in an 80% 

decrease in small mammals in plots where feral cats were not managed on Heirisson 

Prong, Western Australia (Risbey et al. 2000). Molsher (1999) also found that after 

fox reduction, feral cats were more active and used areas that were not used prior to 

the reduction. Reducing the densities of dingoes in the arid zone may well release the 

restrictions that dingoes impose on the foraging of foxes and feral cats, in turn 

resulting in greater impacts on a wide range of prey species (Johnson et al. 2007; 

Letnic et al. 2009).  

Cats protecting birds 

The effect of mesopredator release also may result in the counter-intuitive situation 

where feral cats actually protect endangered species. Rats (Rattus spp.) depredate the 

eggs of many bird species (Ettel et al. 1998; Grant et al. 1981). Feral cats utilise rats 

as a food source and are thought to limit the rat populations. Courchamp et al. (1999) 

suggested that reducing the abundance of feral cats may result in an increase in the 
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level of rat predation on bird eggs and therefore result in an increase in damage to bird 

populations over that caused by the cats. The interactions between birds, rats and cats 

were further modelled by Fan et al.(2005) who found that two types of interaction can 

occur when cat densities are reduced. Firstly, severe mesopredator release can occur if 

cat removal results in a sharp increase in rat abundance and in turn leads to the 

extinction of the bird population. The second interaction is a milder mesopredator 

release effect that results in a negative impact on the bird population that does not lead 

to extinction (Fan et al. 2005). Similar negative impacts on shared prey species were 

found by Gambino et al. (2007) using a spatial modelling approach. 

The negative impacts arising from managing feral cats have been disputed by Dumont 

et al. (2010). They modelled the effects of cats on long-lived seabirds and indicated 

that no scenario would prevent the extinction of Barau‟s petrel (Pterodroma baraui) 

from Reunion Island, Indian Ocean, unless the feral cat population was drastically 

reduced or eradicated. This was despite the presence of rats, a lower order predator, 

on the island.  

There have been few manipulation experiments undertaken to determine if the “cats 

protecting birds” hypothesis has validity or not. In one such study, eradication of feral 

cats from Little Barrier Island, New Zealand, resulted in a decline in breeding success 

of Cook‟s petrel (Pterodroma cookii) due to increased rat predation on eggs. 

However, this effect was spatially heterogeneous and varied with altitude. It was not 

until the eradication of the Pacific rat (R. exulans) some 14 years later that petrel 

breeding success increased (Rayner et al. 2007). In Sydney, Dickman (2009) reported 

a strong negative relationship between predation on bird nests in trees (by rats, 

antechinus and ringtail possums) and the activity of cats. The eradication of feral cats 

from sub-Antarctic Macquarie Island resulted in substantial increases in the rabbit 

population despite on-going control efforts. The increase in rabbits in turn had 

significant detrimental impacts on native vegetation communities across the entire 

island (Bergstrom et al. 2009; Scott and Kirkpatrick 2008). Conversely, the 

eradication of feral cats from Ascension Island resulted in an increase in the sooty tern 

(Onychoprion fuscata) population despite the presence of rats on the island. No 

decrease in incubation success due to rat predation was detected (Hughes et al. 2008).  
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It is most likely that any mesopredator release effect involving cats, rats and birds is 

far more complex than a simplistic three-tier system might suggest and many 

additional factors will influence the outcome of any response by rats to cat control. It 

is likely that this issue will remain contentious until further experimentation is 

undertaken; even then it is unlikely that unambiguous results will be obtained that are 

applicable in all circumstances. Regardless, such uncertainty should not be used as a 

reason to refrain from managing feral cats to protect endangered species but should be 

taken into account when designing control programs. In particular, all potentially 

relevant second- and third-order interactions in the system should be identified and 

appropriate monitoring protocols should be included in any management plan.  

Management of feral cats in Australia 

Four techniques are commonly used to manage feral cats in Australia, and a fifth – 

trap-neuter-release – in other jurisdictions. On a per-project basis, the most widely 

used technique is trapping, followed by ground-shooting then poison baiting and 

exclusion fencing (Reddiex et al. 2006). In terms of areal coverage across Australia, 

feral cats are managed over more than 4000 km
2
 annually, with most of this activity 

occurring through aerial baiting programs in Western Australia (Algar and Burrows 

2004; Forsyth et al. 2005). While more cat management projects are undertaken in the 

eastern Australian states, they are on a much smaller scale than those in the Western 

Shield projects being undertaken in Western Australia (see, for example Algar and 

Burrows 2004; Morris et al. 2004), in the Arid Recovery project in South Australia 

(Moseby et al. 2009a), or those conducted by the Australian Wildlife Conservancy. 

Techniques for controlling cats 

Trapping: Trapping is the most commonly used technique for managing feral 

cats (Reddiex et al. 2006). Feral cats are trapped using both cage-style traps and 

rubber-jaw leg-hold traps. Steel jaw traps are banned in all Australian jurisdictions for 

feral cats due to welfare and ethical considerations. The far more humane rubber-jaw 

traps are just as effective at restraining captured animals, but do so without causing 

injury and also have fewer impacts on non-target species (Sharp and Saunders 2004c). 

However, amendments to Victorian State legislation in 2009 precluded the use of leg-
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hold traps of any nature for the capture of feral cats on public land. This has restricted 

the ability of cat management programs in Victoria to effectively reduce feral cat 

abundance. Despite this, leg-holds are still permitted to be used for the capture of 

rabbits, foxes and wild dogs.  

Cage traps are relatively ineffective compared with leg-hold traps for capturing feral 

cats away from urban areas and are useful mainly in areas of high human disturbance 

such as rubbish tips (Sharp and Saunders 2004b; Short et al. 1995). Cats are naturally 

wary animals and may not enter an unfamiliar confined space such as a cage trap as it 

is novel and too different from their natural surroundings. However, Molsher (2001) 

found no difference in the use of cage traps and leg-hold traps when trapping feral 

cats at Burrendong in central New South Wales. The effectiveness of cage traps for 

feral cats is, at best, variable in areas with habitats that have not been highly modified 

by humans.  

Shooting: Shooting is generally undertaken at night using a competent, 

qualified shooter with the aid of a spotlight. Shooting is a humane way of controlling 

feral cats (Sharp and Saunders 2004a), but it is both labour and time expensive and is 

ineffective in areas with thick undergrowth. Also, many programs that use shooting as 

a management technique do not do so in a strategic or systematic manner but rather in 

an opportunistic or ad hoc manner that further limits the effectiveness of the program 

(M. Braysher, pers. comm.).  

Poison baiting:  Poison baiting is used to reduce the numbers of feral cats over 

large areas, primarily in Western Australia. Generally poisoned baits are dropped 

from an aircraft flying on a predetermined path at a specified altitude (Algar and 

Burrows 2004; Burrows et al. 2003). At present the toxicant used for poison baiting is 

1080 (sodium monofluoroacetate) due to its high toxicity to introduced eutherian 

mammals and the evolutionary tolerance of many native animals to the substance in 

the north and west of Australia (McIlroy 1981b; Twigg and King 1989). The tolerance 

of many Australian native animals arises from the presence of fluoroacetate 

compounds in 35 widespread species of native plant species. Thirty-three of these 

belong to the genera Gastrolobium or Nemcia with two additional species from the 
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genus Acacia (Twigg and King 1991; Twigg et al. 1996; Wright et al. 1999). This 

tolerance allows baits to be laid on the ground surface in areas where these plants 

occur without the risk of significant adverse affects on native animal populations 

(Calver et al. 1989a; Eason and Frampton 1991; McIlroy 1981a).  

This tolerance to 1080 does not extend to animals in the south and east of Australia as 

these species of plants are either not present or are sparse in those areas. Baits 

containing 1080 must be buried to prevent access to the toxicant by non-target species 

(DEWHA 2008). Burying baits does not deter canid species as these are able to detect 

buried baits using their well-developed olfactory senses (Fleming et al. 2001; 

Saunders et al. 1995). Cats do not possess the same olfactory acuity as canids and are 

less able to detect the buried baits. Additionally, as cats will not exhume buried baits, 

this method is not an effective way of reducing feral cat abundance (Seebeck and 

Clunie 1997). 

Despite its widespread use, there is some perception that the use of 1080 is inhumane 

due to the clinical symptoms that can occur in the early stages of toxicosis, such a 

trembling, retching and uncontrolled paddling of limbs (Marks et al. 2000, Twigg and 

Parker 2010). This has resulted in increasing public aversion to the use of 1080 in 

poison baiting programs (Fitzgerald et al. 2007; Marks et al. 2000). A synthetic 

toxicant, para-aminopropiophenone (PAPP, see Savarie et al. 1983) is being trialled 

for use with feral cats (Johnston et al. 2011; Johnston et al. 2010b; Murphy et al. 

2007). PAPP is also being trialled for use with other introduced predators such as 

foxes (Marks et al. 2004), stoats (Mustela erminea) (Eason et al. 2010b) and wild 

dogs (Canis lupus) (Murphy et al. 2007). PAPP is a methaemoglobin-forming 

compound that rapidly restricts the oxygen-carrying capacity of haemoglobin in the 

blood (Vandenbelt et al. 1944). At sufficient concentrations it produces anoxia (Eason 

et al. 2010b; Marks et al. 2004). Unlike 1080, an antidote is available to reverse the 

effects of PAPP toxicosis. Susceptibility to PAPP toxicosis varies widely between 

genera (Murphy et al. 2005; Savarie et al. 1983). The susceptibility of non-target 

species to PAPP toxicosis is currently being tested in both pen and field trials (Eason 

et al. 2010a; Fisher et al. 2008; Murphy et al. 2007) 
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Feral cats, other than those at garbage tips, rarely scavenge for food and prefer live 

prey (Algar et al. 2007; Leyhausen 1979). As a result, they will usually consume baits 

only when they are food-stressed and have to resort to scavenging to survive. These 

periods are most likely to occur during winter when prey abundance is low or 

following a boom period in prey availability in arid areas when prey populations are 

declining (Algar et al. 2007; Letnic and Dickman 2010).  

Baits used for feral cat management need to be attractive and palatable to the cats to 

maximise the likelihood that they will consume them (Bradshaw et al. 1996). Dried 

meat baits such as those used for managing foxes and wild dogs are rarely consumed 

by cats (Risbey et al. 1997). Experiments with day-old chicks, fishmeal baits, chicken 

meat sausages and rabbits killed with 1080 to effect secondary poisoning have had 

limited or no success (Algar et al. 2007; Risbey et al. 1997). The use of frozen 

laboratory mice with a single grain of 1080-laced oats place at the back of the throat 

proved effective in reducing cat numbers (Short et al. 1997). However, preparing 

sufficient mice for broad scale aerial baiting would be both costly and time 

consuming.  

The Western Australian Department of Environment and Conservation has recently 

developed the Eradicat
®

 feral cat bait (Patent No. Au781829) (Algar and Burrows 

2004; Burrows et al. 2003; Hetherington et al. 2007). The bait substrate is a soft, 

meat-based sausage (much like a chipolata) containing kangaroo meat, chicken fat 

and digests, and weighs approximately 15 g. Baits are automatically injected with 4.5 

mg of 1080 during production and then air dried and stored frozen until used. The 

baits are attractive and palatable to feral cats both in Western Australia and in south-

eastern Australia (Algar and Burrows 2004; Johnston et al. 2007). The Eradicat
®
 bait 

is used extensively in Western Australia for managing feral cats over large areas 

through aerial delivery.  

The Eradicat
®
 bait is not target-specific and is consumed by a wide range of species 

including varanids, corvids and many native mammals (Burrows et al. 2003: Algar et 

al. unpublished data; also see Chapter 7 of this thesis). To minimise bait take by such 

non-target species, trials are underway to encapsulate the toxicant within a hard 
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shelled delivery vehicle (HSDV) which is subsequently inserted directly into the bait 

media (Hetherington et al. 2007; Johnston et al. 2011; Marks et al. 2006). The HSDV 

is a proprietary product made by Scientec Research Pty Ltd (Melbourne Victoria) and 

is specifically designed to encapsulate toxicants (Provisional Patent No. 200890357). 

The HSDV consists of a hard, acid soluble polymer about 6 mm in diameter. The 

polymer is designed to dissolve quickly in stomach acid, thus rapidly releasing the 

toxicant into the gut following ingestion (Johnston et al. 2010b).  

Feral cats lack grinding premolars and as a result, do not have a dentition that is 

suitable for chewing (Jones 1989). This results in cats swallowing larger portions of 

soft food and bones rather than trying to chew them into smaller portions. By contrast, 

many native mammal species, particularly dasyurid marsupials, comminute or 

masticate their food prior to swallowing (Hume 2003). When a native animal 

encounters the HSDV whilst gnawing on the bait it is predominantly rejected (i.e. spat 

out) rather than consumed. The use of a toxic pellet within the bait does not decrease 

the effectiveness of the bait (Hetherington et al. 2007) but does significantly reduce 

the possibility of a non-target species accessing the toxicant (see Chapter 7 of this 

thesis). When the HSDV is included within the Eradicat
®
 bait media it is known as 

Curiosity
®
 cat bait (Johnston et al. 2011). The Curiosity

®
 cat bait is buffered to 

alkaline, using sodium bicarbonate, to allow stability of the acid soluable HSDV. 

The Curiosity
®
 cat bait in conjunction with PAPP encapsulated in a HSDV has great 

potential for delivering a toxicant to feral cats while minimising the possibility of 

non-target species coming in contact with the toxicant. It does not overcome the 

difficulties associated with cats preferring to hunt live prey over scavenging. This can 

be mitigated to some extent by targeting bait delivery at times when cats are food 

stressed. Additional research is required to assess the acceptability of the bait by the 

non-target species that may be able to consume the HSDV (See chapter 7). Further 

research is also required to determine if the use of HSDVs will increase target 

specificity for other pest species for which poison is the currently preferred method of 

population management.   
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Exclusion fencing: Predator proof exclusion fencing can be used to provide 

secure areas for native species and to prevent reinvasion of areas that have been 

cleared of introduced predators. Exclusion fencing is expensive to erect and must be 

regularly maintained to maximise its effectiveness (Moseby and Read 2006). The 11 

kilometre exclusion fence surrounding Mulligans Flat Nature Reserve in the ACT cost 

just over $AUD 1.3 million to erect (ABC 2009). Sections of the fence were knocked 

over by flood water in 2010, potentially allowing reinvasion by predators while 

repairs were being undertaken. It is now being modified to allow flood water to pass 

through (ABC 2010). Exclusion fencing has been used successfully to assist 

reintroduction, or recovery, of endangered species in areas that they once occupied. 

The Arid Recovery project in South Australia (Moseby and O'Donnell 2003) and the 

Heirisson Prong project in Western Australia (Morris et al. 2004) are examples of 

exclusion fences that have proved successful for the reintroduction of native species. 

However, even with continual maintenance and monitoring of exclusion fencing, 

breaches are still likely to occur (Saunders et al. 1995).  

Trap-neuter-release (TNR): There are increasing calls from within the 

community advocating the trapping, sterilisation and re-releasing of feral cats into the 

environment as an appropriate management strategy (Andersen et al. 2004; Levy and 

Crawford 2004; Schmidt et al. 2009). TNR programs are used extensively in North 

America and are advocated by cat welfare groups on the pretext of managing feral cat 

populations based on the assumption that TNR is more humane than euthanasia 

(Foley et al. 2005; Winter 2004). While not widely promoted in Australia, literature is 

beginning to appear in peer-reviewed Australian journals advocating TNR (e.g. 

Schmidt et al. 2009). Some advocacy groups argue that feral cats fill a necessary 

niche in the environment or do no harm to native species (for examples of these 

claims see Longcore et al. 2009). However, there is little or no evidence that TNR 

programs effectively manage feral cat populations, particularly while there is 

continued recruitment to the population through deliberate dumping of unwanted pet 

cats (Jessup 2004; Winter 2004). There is a large volume of scientific evidence to 

refute the claims put forward in support of TNR as an effective management strategy 

(see reviews by Lepczyk et al. 2010; Longcore et al. 2009).  
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Public perceptions towards feral cats 

Felis catus occupies a unique position in society in being both a loved family pet and 

a loathed invasive predator. Feral cats are often perceived within the community as a 

significant threat to native wildlife and most community surveys show a high level of 

support for managing feral and urban cat populations (Johnston and Marks 1997; 

Lilith et al. 2006). Unfortunately, there is a perception within some sections of the 

community that feral and domestic cats are separate species (Dickman 1996). This 

view may well have been encouraged by the similarly erroneous view that feral cats 

are larger than their domestic relatives (Dickman 2009). These views persist despite 

the glut of published material, both peer-reviewed and otherwise, that dispels these 

myths (see Denny and Dickman 2010 for a review).  

Despite the often high level of support for managing feral cats, there is also strong 

public affection for them (Grayson et al. 2002). A simplistic search of the term “feral 

cat” in Yahoo!
®
 Groups (undertaken 29

th
 December 2010) revealed 309 separate 

groups worldwide having an interest in feral cats (Yahoo! inc 2010). Most promote 

the saving, care and protection of feral cats (see TNR section above). Only four of the 

309 groups advocated the management or removal of feral cats from public lands. 

Additionally, cats are viewed by many rural land holders as being beneficial to their 

farms. Stray cats are tolerated around farm sheds, hay and grain storage areas, and are 

seen as a cheap method of rodent control (Hamilton et al. 2006).  

Introduced animals have been present in Australia since European settlement (Olsen 

1998) and many indigenous communities now view these animals as belonging to the 

land rather than as invaders. The feral cat is no exception to this. In some 

communities the feral cat has a “Dreaming” and has been incorporated into 

Aboriginal law. In these communities the feral cat is now seen as part of the natural 

environment (Rose 1995). In other communities, the feral cat is an important food 

resource and is hunted in the absence of traditional native species (Olsen 1998). 

However, not all indigenous communities view the feral cat in such a favourable 

manner, especially when cats impact negatively on reintroductions of native fauna 

with which communities are involved (Gibson et al. 1995; Rose 1995). 
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These highly variable public perceptions and views towards feral cats have restricted 

the ability of various statutory authorities to implement effective programs for the 

management of feral cats, particularly in urban areas (Dickman 2009).  

 

Conclusion 

Feral cats have been present in Australia since European settlement. They have 

colonised all areas on the mainland and Tasmania and many off-shore islands. While 

there is little experimentally-based evidence of the level of damage that they cause to 

native wildlife populations, there is a large body of historical, correlative and 

empirical evidence that implicates them in the decline of many native species. While 

predation by feral cats undoubtedly occurs on native species and has the potential to 

exert downward pressure at a population level, many other factors can also influence 

population declines such as land clearing, overgrazing by domestic stock, epizootic 

disease, urbanisation and competition with other introduced species such as rabbits. 

Feral cats can severely compromise attempts to reintroduce small and mid-sized 

native animals, particularly if the reintroduced animal is from a captive-reared 

population with no previous exposure to predators. Domestic cats potentially can have 

greater detrimental impacts than feral cats on species that have been restricted to small 

remnant patches of suitable habitat through urbanisation. Domestic cats obtain all 

their food resources from their owners and hunt for play rather than through necessity. 

This allows them to put greater downward pressure on populations of small prey 

species as they can continue to hunt long after it would have become energetically and 

nutritionally unprofitable for feral cats that rely on predation for their food. There are 

few techniques available for the effective management of feral cat populations, 

particularly in Victoria where leg-hold traps now cannot be used to capture cats on 

public land. However, on-going research on cat ecology and behaviour in different 

environments and on methods of improving the target specificity of new baits and 

toxicant delivery techniques hold promise for the future. Aspects of feral cat ecology 

and attempts to improve baiting protocols are described in subsequent chapters.  
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Chapter 3 

Home range of feral cats (Felis catus) in tall forests of Far 

East Gippsland, Victoria 

Chapter overview 

In this chapter, I describe the home ranges of feral cats in the tall closed forests of Far 

East Gippsland, Victoria and compare these with home ranges of cats in other habitat 

types. Most research into feral cats in Australia has focused on the arid and semi-arid 

regions and consequently little is known about the ecology and home ranges of feral 

cats in forests. Here I redress that knowledge gap.  

Twenty-two feral cats were captured and fitted with either GPS collars or 

conventional VHF collars to determine the extent of their home ranges and range 

overlap. Eight cats provided sufficient home range data to reach asymptote. Home 

range and core area sizes were calculated using both Minimum Convex Polygon 

(MCP) and Kernel Density Estimate (KDE) methods. There was no significant 

difference in the size of the home ranges calculated from GPS data and those from 

VHF telemetry. Male cats were significantly heavier than female cats. There was a 

non significant but positive correlation between cat weight and home range size. All 

eight cats showed site fidelity to their home range. 

Male cats had larger home ranges than females. Male cat home ranges overlapped 

those of females. Home ranges of adjoining female cats overlapped. The core areas of 

two adjoining females also overlapped. The tendency for female cats to have 

overlapping home ranges and core areas indicates that the female cats in Far East 

Gippsland are tolerant of the presence of other females and do not actively exclude 

them. However, this overlapping is not the same as group living observed in cats in 

localised areas with high food resources such as rubbish tips.  

Two pelage colours were dominant among the captured cats – tabby and black. More 

tabby cats were captured than black cats but the difference was not significant. Only a 

single ginger cat was caught. 



Chapter 3 Feral cat home range  

 
 

42 

 

Compared with other studies in Australia and New Zealand, the home ranges of feral 

cats in the tall closed forests of Victoria were smaller than those of cats in the arid and 

alpine zones due most likely to poorer food resources in those areas. Home ranges 

were larger than those of feral cats living on farmland or grasslands where food 

resources are usually greater or more accessible.  

Introduction 

The domestic cat (Felis catus) is thought to have been introduced into countries of the 

Pacific region with early European sea-farers (Baldwin 1980). Early European settlers 

introduced the cat into Australia and they spread inland from multiple points on the 

coastline (Abbott 2002). The spread of feral cats across Australia was aided in no 

small part by the European rabbit (Oryctolagus cuniculus) which provided a reliable 

and abundant food source. In order to combat the rabbit plagues in the late 18
th

 and 

early 19
th

 centuries, domestic and stray cats were released into the Australian outback 

in large numbers; this contributed to their spread across the country (Abbott 2002; 

Rolls 1969). These cats eventually formed self sustaining feral populations that now 

occur over the Australian mainland, Tasmania and on many offshore islands 

(Dickman 1996). 

Feral cats prey on a wide range of prey species (Dickman 2009; Risbey et al. 1999; 

Risbey et al. 2000) however their impacts are not confined to direct predation and 

include a number of amensal effects (Dickman 1996; Glen and Dickman 2005). For 

example, feral cats not only depredate western quolls (Dasyurus geoffroii) (Glen et al. 

2010) but potentially compete with quolls more generally for food and den resources 

(Glen and Dickman 2005). Feral cats are carriers of non host-specific diseases which 

have been found in native wildlife, including toxoplasmosis (caused by Toxoplasma 

gondii) (Dickman 1996; Moodie 1995). Additionally, the presence of predators such 

as cats can depress the behaviour of prey species resulting in those species, making 

shorter and less frequent feeding forays from the safety of their nest or place of shelter 

(Charnov et al. 1976; Stokes et al. 2004). This can result in the individuals not being 

able to successfully forage, leading to declines in individual fitness and potentially 

reduced population performance (Arthur et al. 2004).  
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Feral cats generally have a greater impact on island species than on mainland species. 

When assessing the impact of feral cats on native species, for example  Dickman 

(1996), and later Dickman et al. (2010), created a separate, higher, scoring system to 

reflect the increased level of impact that feral cats have on island species. Meta 

analyses by Salo et al. (2010; 2007) confirmed that the impacts of introduced 

predators are greater in Australia than in other parts of the world, and suggested that 

island faunas – even continental ones – generally are more vulnerable to novel 

predators.  

 Smith and Quin (1996) found that the abundance of feral cats in areas where foxes 

and rabbits were present was the best predictor of the decline of small conilurine 

rodents (>35 g). For all conilurine rodents, feral cats were the strongest predictor of 

decline when foxes and rabbits were absent. Feral cat predation on threatened native 

species has prompted the eradication of feral cats from islands and some peninsulas in 

order to provide refuges for many endangered native species in Western Australia 

(Algar et al. 2002; Morris et al. 2004) and South Australia (Moseby et al. 2009a; 

Moseby and O'Donnell 2003). The Stephens Island Wren (Xenicus lyalli) was 

extirpated by a single cat and her kittens brought to the island by a lighthouse keeper 

(Galbreath and Brown 2004; Medway 2004) while the Angel de la Guarda deer mouse 

(Peromyscus guardia) is now extinct on Estanque Island, Gulf of California, as a 

result of predation by a single cat (Vazquez-Dominquez et al. 2004). 

Most research on feral cats in Australia has taken place in either the arid (for example: 

Burrows et al. 2003; Moseby et al. 2009b) or semi-arid regions (for example Edwards 

et al. 2001; Hilmer 2010; Jones and Coman 1982). There is only one study of feral 

cats in the alpine zone (Watson 2006) and a single study of feral cats in tall closed 

forests, which examined diet only (Triggs et al. 1984). No research has been 

undertaken on home range sizes or range overlap of feral cats in tall closed forests, 

despite the prevalence of cats in such habitats and their probably deleterious impacts 

on native species (May and Norton 1996). Knowledge of home ranges and the extent 

of their overlap is essential for managing the impacts of feral cats on threatened native 

species. It gives an indication of the intensity and spatial extent of control effort that is 
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required, and can inform managers about the utility of specific methods such as where 

to deploy traps, baits or other control measures.  

The main aim of this project was to answer key questions about the home range sizes 

and the extent of range overlaps of feral cats in the tall closed forests of Far East 

Gippsland, and to compare them with those of feral cats from other areas of Australia. 

Minor aims were to explore the general relationship between body weight and range 

area in male and female cats, and to compare range size estimates obtained using 

different methods. This knowledge can be then used to design new, or adapt existing 

feral cat control programs to target feral cats in a more strategic manner.  

Methods 

Study site 

This research was conducted in the Southern Ark Project area of operation in Far East 

Gippsland, Victoria. It was conducted in the Drummer Poisoned Monitoring Area and 

the West Cann Un-poisoned Monitoring Area. See Chapter 1 for a more 

comprehensive overview of the Southern Ark Project and the sites utilised for this 

research.  

Feral cat capture 

Feral cats were trapped using #1.5 and #3 Victor Soft Catch
®
 (Woodstream 

Corporation, Lititz, Pennsylvania; current manufacturer: Oneida Victor, Inc., Euclid, 

Ohio) rubber-jaw traps. Trap sets comprised either a single trap, two traps or a grid of 

four traps closely set with sides made from surrounding vegetation to guide the cats 

over the trigger plate of the trap to maximise the chance of capture. Trap sets were 

baited with either a meat based bait (beef or chicken meat or fish based tinned cat 

food) or „Pongo‟, a scent-based lure consisting of a mixture of cat faeces, cat urine 

and water (Algar et al. 2002). Meat baits were sprayed with Coopex
®
 (Bayer Australia 

Ltd) mixed with water to the manufacturer‟s specifications ( 25 g to 2.5 l water), to 

prevent the bait from becoming flyblown or covered in ants and therefore less 

attractive to the cats (Johnston et al. 2009; Johnston et al. 2008). A Feline Audio 

Phonic (FAPs) audio lure (Westcare Industries, Nedlands, Western Australia) was 



Chapter 3 Feral cat home range  

 
 

45 

 

placed at about 50% of the trap sets as an additional lure. Trapping for feral cats used 

in this study was undertaken from January 2007 until August 2009. Trapping to 

recapture collared feral cats continued until August 2010.  

Traps were checked from dawn each day. Depending on the level of sedation 

required, captured feral cats were sedated using an intramuscular injection of either 

Zoletil
®
 (5 mg/kg) or Domitor

®
 (0.15 mg/kg) or in combination (0.05 mg/kg Domitor 

plus 3 mg/kg Zoletil). Sedated cats were sexed, weighed and checked for trap injuries. 

Cats were then fitted with either a 135 g combination GPS/VHF collar with mortality 

sensor or a 40 g VHF-only collar with mortality sensor (SirTrack, Havelock North, 

New Zealand). Mortality sensors triggered after 24 h without movement increasing 

the VHF transmission rate from 40 ppm to 80 ppm. Cats weighing less than 2.7 kg 

were not fitted with a combination collar in order to keep the weight of the collar 

under 5% of the body weight. GPS collars were tasked to take fixes at either a 

combination of: a) 15 minute intervals for 4 h then hourly intervals for 23 h; or b) 6 h 

intervals. Fix data were stored onboard the unit. Battery life at these tasking rates was 

approximately 2.5 and 5.5 months, respectively. Prior to fitting the collars, the 

almanac on the GPS collars was updated in accordance with the manufacturer‟s 

instructions to ensure locational accuracy. The actual VHF transmission frequency for 

both style of collars was established and entered into the R 1000 radio receiver 

(Communications Specialists, Orange, California). Collars were not fitted with a 

timed drop off device, consequently cats had to be recaptured to recover GPS fix data.  

GPS data 

GPS data were downloaded from the collars using the Sirtrack download interface in 

comma-separated values (CSV) format. The GPS collars store position data using the 

Geographic Coordinate System (Lat/Long) (GCS). Data stored this way are not 

compatible with many of the analysis plug-ins and extensions that are used in 

Geographic Information System (GIS) programs. The downloaded data were 

transformed to remove incompatible formatting by loading into the program DNR 

Garmin (Department of Natural Resources, Minnesota); this converted the projection 

from GCS to the Universal Transverse Mercator (UTM) system in the WGS 84 
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projection. These transformed data were then loaded into the ArcMap 9.2 GIS 

program (ESRI Inc, Redlands, California). Hawth‟s Analysis Tools for ArcGIS 

(Beyer 2004) and Home Range Tools (Rodgers and Kie 2007) plug-ins were used to 

determine the home range and movement patterns for each cat. ArcView 3.2 (ESRI 

Inc, Redlands, California) with the Home Range extension (Rodgers and Carr 1998) 

and the Animal Movement extension (Hooge and Eichenlaub 2000) were used to 

determine site fidelity, turn angle and step length and to undertake home range 

bootstrap analyses.  

Horizontal dilution of precision  

A Horizontal Dilution of Precision (HDOP) value is calculated by the GPS for each 

fix based on the position of the satellites in the sky that it has been able to detect and 

obtain data from. A small HDOP value indicates that the available satellites were 

spread widely across the sky and indicates a high level of precision. A large HDOP 

value indicates that the satellites were closely grouped in the sky, thus increasing the 

probability of locational error. All fixes with a HDOP value of 4 or greater were 

discarded when calculating home range size because of the lower level of precision 

achieved for these fixes (Moseby et al. 2009b). 

VHF data 

Radio telemetry triangulation of the signal from the VHF transponders was used to 

determine locational fixes for the cats. VHF tracking was undertaken during both the 

day and the night. To minimise the potential for autocorrelation in the data (Swihart 

and Slade 1985), a single fix was taken each day when tracking during daylight hours. 

Timing of the fix varied on each day to avoid potential bias arising from cats returning 

to daytime dens. As cats were more active at night, two fixes were taken per night 

when night time radio tracking. Night time fixes were taken at least 6 hours apart. No 

daytime fixes were taken while night time tracking was being undertaken. Between 30 

and 50% of fixes were taken during the night. 

A single fix for a feral cat was determined from at least three individual bearings 

taken within a 10 minute period to minimise the errors arising from movement by the 
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cat between successive bearings. Movement by the cat within this period can effect 

the accuracy of the fix (Schmutz and White 1990). It was not possible to take bearings 

simultaneously from three separate locations, therefore this time frame was selected 

as a balance between distance needed to be moved between successive bearings to 

minimise triangulation error and the potential for movement by the cat. The GPS 

coordinates where each bearing was taken were recorded together with the compass 

bearing of the strongest signal. The compass bearing of the strongest signal was taken 

three times at each location and the mean bearing was used in fix calculations. Mean 

compass bearings were then converted using the magnetic declination from magnetic 

to grid based for analysis. Magnetic declination in Far East Gippsland is +13 degrees 

(Geoscience Australia 2007). The strength of the VHF signal as shown on the receiver 

(0 = very low to 5 = very strong) was noted. Where possible, the angle between 

successive bearings was between 30 and 60 degrees to minimise the potential error in 

location that can occur when intersection angles are too great or too small. When the 

angle between successive bearings was greater or less than this, the error polygon 

created in Locate III Radio Telemetry program (Pacer Computing, Canada) was 

examined. Decision to retain or exclude the fix were made on a case by case basis 

taking into account the distance between the point at which bearing was taken and the 

probable location of the cat, the potential for signal bounce from the surrounding 

topography and the strength of the signal for each bearing. Radio tracking data were 

entered into the Locate III program to determine the location of the cat. These data 

were then exported in ArcView format and imported into the GIS for further analysis.   

Home range calculation  

The home range of each cat was calculated using the 100% Minimum Convex 

Polygon (MCP 100) estimator (Mohr 1947) as home ranges calculated using MCP are 

comparable between studies whereas many of the alternative techniques are not 

(Harris et al. 1990; Kernohan et al. 1998). Forays outside the home range were 

removed prior to estimation of home range size. Forays were assessed using the 

continuous asymptote function of the Abode plug-in (Laver 2005) in ArcGis 9.2. 

Spikes (large increases) in the home range size were examined as possible roaming 

events. Date points were excluded if that point had no others nearby to indicate 
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common usage of the area. By convention, roaming outside of the home range area on 

occasional forays should not be included as part of home range estimates (Burt 1943).  

Home range estimation using Kernel-density estimation (KDE) (Kernohan et al. 1998; 

Worton 1989) was also undertaken. This method has the advantage over simple area-

based estimates such as MCP in that it is probabilistic and not unduly biased by the 

inclusion of occasional forays or roaming events. The fixed kernel estimator was used 

with a smoothing factor calculated using the least square cross validation (LSCV) 

method (Worton 1989). Output cell size was set at 10 m
2
 in order to avoid potential 

bias through using larger cell sizes (Laver 2005). One cat, Hans, had two fix rates 

tasked for the GPS collar. To avoid potential bias when determining the density of 

usage within the home range (i.e. more fixes in certain areas due to a more rapid fix 

rate), only those fixes taken at least an hour apart were used for KDE analysis. Home 

range size was calculated using the 95% density isopleth (KDE 95), thus removing 

outliers and further down-weighting the potential effects of forays and conforming 

with usage in previous works (e.g. Molsher et al. 2005) 

Home range overlap 

The intersect tool in ArcGis 9.3 was used to determine the extent of any overlap of the 

MCP 100 home ranges of adjacent cats. The size of overlap was calculated using the 

Table Tools function in Hawth‟s Analysis Tools for GIS. The degree of overlap is 

expressed as a percentage of the MCP 100 home range of each overlapping animal 

(Genovesi and Boitani 1997). 

Core area 

The core area of the home ranges was calculated based on the 50% of points closest to 

the harmonic mean centre of the home range (MCP 50) (Molsher et al. 2005) and the 

50% density isopleth using KDE (KDE 50). The harmonic mean centre in MCP 

analyses allows the centre point of the home range to move depending on which 

points are removed during the analysis. Core area calculations for the cat Hans used 

only fixes taken at hourly intervals to avoid bias that may be introduced by including 

the higher fix rate data.  
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Autocorrelated data 

All tracking data are autocorrelated, but this is especially so for GPS data due to the 

regularity of fixes when using the GPS collars. However, this was not considered to 

pose a large problem for analysis or interpretation as both the MCP and KDE 

techniques of calculating home range are robust with respect to autocorrelated data 

(Kernohan et al. 2001). The negative bias introduced into home range estimates is 

minimal when using MCP and KDE analyses. Swihart and Slade (1997) also found 

that the use of non-autocorrelated data is not necessary when estimating home ranges 

using those methods. 

Asymptote 

The MCP estimator is sensitive to sample size, with home range size increasing 

proportionally to the sample size until an asymptote is reached. No further increase in 

home range occurs once asymptote is reached regardless of further increases in 

sample size (Laver 2005). It is not possible to accurately estimate home range sizes 

unless asymptote has been approached. Spikes in home range size observed during 

asymptote analysis generally indicate either a range shift or foray outside the usual 

home range (Laver 2005). These data points were identified and removed from the 

analysis if determined to be a foray, rather than a range shift outside the home range. 

Asymptote was calculated using two separate techniques:-  

a) the asymptote analysis function in Abode for ArcGis 9.2 employing the 

random selection of points technique. Random selection was used as the data 

were discontinuous following the removal of foray data points and those fixes 

with a HDOP >4 (Harris et al. 1990; Laver 2005). An asymptote was 

considered to have been reached when there was less than 5% variation in 

home range size for at least 5 consecutive fixes for VHF telemetry or for at 

least 10% of all fixes for data gathered using a GPS; and 

b) the MCP Bootstrap function of the Animal Movements extension in ArcView 

3.2 (Hooge and Eichenlaub 2000; Laver and Kelly 2008), using 100 replicates 

for each analysis. Asymptote was deemed to have been reached when the 95% 
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confidence interval of the home range estimate was within 5% of the total 

home range estimate for at least 5 consecutive fixes for VHF telemetry and for 

at least 10% of all fixes for the GPS data (Harris et al. 1990; Laver and Kelly 

2008). 

Home ranges were considered to have attained asymptote only if both techniques 

indicated asymptote had been reached. 

Site fidelity 

Site fidelity can be used to quantitatively determine the existence of a home range. An 

animal that exhibits site fidelity is deemed to possess a home range (Spencer et al. 

1990). It exists if the area used by an animal is significantly smaller than the area used 

if an animal moved at random (Munger 1984). Site fidelity of feral cats was tested 

using Home Range Extension in ArcView 3.2. This analysis compared the home 

range of the feral cat against that created by 100 random walks based on the turn 

angles and step lengths of each individual cat. The random walks all commenced at 

the first data point for each cat. The mean square displacement (MSD) of each walk 

was calculated from that point and compared with the MSD of the actual movements 

of the cat.  

GPS collar fix rate 

GPS collar fix rates were calculated using the expected number of fixes that would be 

obtained from the tasking rate compared with successful fixes by the GPS collars. The 

time of last fix was calculated for cats that died during the study as the time of the last 

fix prior to any fixes taken of the point where the collar was located. Fixes taken at 

that point were deemed to have occurred after the cat died and were discarded. Where 

the GPS battery on the collar had become flat, the last fix with a HDOP <4 was used 

at the end point.  

General analyses techniques 

Comparisons between male and female home range sizes and between home ranges 

determined through GPS or VHF telemetry were made using the Mann-Whitney U 
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test. This test was used due to the small sample size obtained and the non parametric 

nature of the data. Comparisons between male and female cat weights were made 

using a single factor ANOVA. Spearman correlation analysis was used to determine 

the relationship between cat weight and home range size. All analyses were 

undertaken using the Statistica 7 (StatSoft Inc 2004) statistical analysis package. 

Results 

Twenty-two feral cats were captured during this study. Eleven were fitted with 

combination GPS/VHF collars and a further six were fitted with VHF-only collars. 

Two cats captured outside the study area were fitted with reflective collars for remote 

camera detection, one escaped prior to being fitted with a collar and two others were 

humanely euthanised for dietary analysis (Table 4). Three of the collared cats died 

and the collars were located with the remains of the cat. An additional collar was 

located after the mortality sensor activated, but the remains of that cat were not found. 

This collar bore marks consistent with being chewed by a fox or dog. It is unknown if 

this cat died as a result of being depredated or if it died and was subsequently eaten as 

carrion. Five cats moved into inaccessible areas not long after being collared and were 

unable to be located regularly using the VHF receiver. Only three cats were 

recaptured despite an extensive trapping effort. The remaining cats were monitored 

using VHF telemetry until the battery in the transmitter went flat and they were no 

longer able to be detected. Data sufficient to provide meaningful results were obtained 

from eight cats. 

Sexual dimorphism and pelage 

Male cats were heavier than female cats (F1,19 = 17.9, P <0.001). A greater number of 

cats with tabby pelage were captured (n = 13) compared to black (n = 8) or ginger (n 

= 1) but the frequency difference between tabby and black pelage was not significant 

( = 0.76, P ns). Overall, there was no difference between the weights of cats with 

tabby or black pelages (F1,18 = 0.3, P = 0.56) or between sexes with different pelage 

colours (F1,16 = 0.01, P = 0.90; note that the cat with the ginger pelage was excluded 

from that analysis). 
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Table 4. Cats captured during research. * = cat died, ** = cat recaptured, # = collar recovered ## 

= cat disappeared with limited data gathered,  = that cat was not recaptured and no GPS data 

were gathered; some VHF data gathered 

Cat Weight (kg) Sex Pelage Collar fitted 

Liz  3.4 F Tabby GPS/VHF 

Chris  5.2 M Tabby GPS/VHF 

Karen # * 2.9 F Tabby GPS/VHF 

Robyn ##  3.3 F Black GPS/VHF 

Dave ##  3.9 M Black GPS/VHF 

Olof # ** 4.6 M Tabby GPS/VHF 

Mike # * 5.6 M Tabby GPS/VHF 

Neil # ** 4.2 M Tabby GPS/VHF 

Brian ##  6.2 M Black GPS/VHF 

Hans # ** 4.3 M Tabby GPS/VHF 

Grant  6.0 M Tabby GPS/VHF 

Danielle 3.9 F Tabby VHF 

Hayley 3.4 F Black VHF 

Sue 3.5 F Black VHF 

Steffi` ## * 3.5 F Tabby VHF 

vhf 34 ## 5.1 M Tabby VHF 

James  4.8 M Ginger VHF 

Euthanised 2.7 M Tabby Nil 

Euthanised 3.0 F Black Nil 

Reflective collar 3.6 F Black Nil 

Reflective collar  5.1 M Black Nil 

Escaped n/k M Tabby Nil 

Mean male (± se) 4.8 ± 0.2    

Mean female (± se) 3.3 ± 0.1    
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GPS collar fix rate  

The duty cycle of the collars was set at the time of manufacture and was not able to be 

changed in the field. The mean time between fixes was less than the fixed amount 

requested (Table 5). This resulted in a slight backward shift in time for each 

subsequent fix. Fix success rate varied between collars (23.5% to 71.3%) with a mean 

success rate of 49.2%. The area the collar was operating in had no appreciable effect 

on fix success as separate collars on the same cat had both the highest (71.3%) and the 

lowest (23.5%) success rates (Table 5). Each cat also showed extended periods when 

no fixes were obtained.  

 

Table 5. Fix rate and fix success rates for the GPS collars on feral cats 

Cat 
Duty cycle time 

between fixes 

Mean time between 

fix attempts ± se 
Fix rate 

Olof (1
st
 collar) 6 h 5.93 ± 0.02 h 71.3% 

Olof (2
nd

 collar) 6 h 5.96 ± 0.004 h 23.5% 

Karen 6 h 5.97 ± 0.001 h 51.3% 

Neil 6 h 5.97 ± 0.001 h 38.0% 

Hans  1 h 59.44 ± 0.00002 mins 
61.9% total 

Hans 15 mins 14.54 ± 0.00003 mins 

Mean fix rate ± se  49.2 ± 8.5% 

 

Site fidelity 

All cats showed site fidelity, with each exhibiting more constrained movement than 

each of the 100 random walks (P<0.01) generated using the Animal Movements 

extension for ArcView 3.2 (Figure 7). This indicates that the cats were constrained 

within the boundaries of a home range, with the exception of occasional forays 

outside that area.  
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Figure 7. Site fidelity diagrams for two feral cats. The dark lines are randomly calculated walks 

taken from the distribution of step length and turn angle for each cat. The light line at the centre 

is the actual movement patterns of the cat.  All cats exhibited site fidelity, however only two are 

shown as examples.  

Asymptote 

Each of the GPS collars that were recovered reached home range asymptote and two 

of the cats fitted with GPS collars that were not recovered reached asymptote using 

the fixes obtained from VHF telemetry. A further two cats fitted with VHF only 

collars also reached asymptote (Figure 8; Table 6). Asymptote was not reached using 

either method for the remaining cats, and these cats have been excluded from further 

analysis.  
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A  B  

C  D  

E  F  

G  H  
Figure 8. Asymptote graphs for MCP home range for cats. Graphs A-D are for data collected via 

GPS collars and graphs E-H are for those collected using VHF telemetry. A-Karen, B-Neil, C-

Olof, D- Hans, E-Liz, F-Chris, G-Danielle, H- Hayley. 
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Table 6 Number of fixes required to reach asymptote for each feral cat using 2 separate methods 

Cat Fixes to reach asymptote 

  Method 1 
a
  Method 2 

b
 

Olof 307 305 

Neil 61 61 

Karen 44 45 

Hans 163 115 

Liz 12 30 

Hayley 14 20 

Danielle 27 29 

Chris 25 32 

a 
Analysis using ABODE using random selection of points 

b
 Analysis using MCP bootstrap method in ArcView 3.2 using 100 iterations  

Home range 

MCP 100 

The MCP 100 home range varied from 53 to 816 ha with a mean male home range (± 

se) of 455 ± 126 ha and mean female home range (± se) of 105 ± 28 ha (Table 7). 

These ranges fall within the median home range size for other studies undertaken in 

Australia and New Zealand using non-urban feral cats (Table 8).  

Male home ranges were larger than female home ranges (Mann-Whitney U test Z = 

-2.3, U = 0, P = 0.02). Home ranges determined by GPS were not significantly 

different from those determined by VHF telemetry (Mann-Whitney U test Z = 1.7 U = 

2, P = 0.08). Core areas, as defined by MCP 50, were larger for males than for 

females (Mann-Whitney U test Z = -2.0, U = 1, P = 0.04). A positive correlation 

existed between cat weight and home range size but this was not significant 

(Spearman‟s R = 0.68, P = 0.06). 
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Table 7 Home range of cats collared in this study. * indicates the number of points used in the 

KDE analysis. See text for explanation. 

Cat (sex) Period 

tracked 

Collar 

type 

MPC 100 

(ha) 

MCP 50 

(ha) 

KDE 95 

(ha) 

KDE 50 

(ha) 

Points 

used 

Karen (F) 6 wks GPS 141 42 179 43 54 

Neil (M) 5 mths GPS 410 162 546 52 105 

Hans (M) 3 mths GPS 370 131 446 41 683/203* 

Olof (M) 9 mths GPS 816 184 595 85 414 

Liz (F) 19 mths VHF 166 12 137 16 34 

Chris (M) 18 mths VHF 226 33 246 21 37 

Hayley (F) 11 mths VHF 53 5 58 11 25 

Danielle (F) 14 mths VHF 60 21 90 17 37 

Mean ± se   280 ± 89 73 ± 25 287 ± 74 37 ± 9  

Mean Female ± 

se 

  105 ± 28 20 ± 8 116 ± 26 22 ± 7  

Mean Male ± se   455 ±126 127 ± 33 458 ± 77 49 ± 13  

Kernel analysis 

KDE 95 home ranges for males were larger than those for females (Table 7) (Mann-

Whitney U test Z = -2.3, U = 0, P = 0.02). Unlike with MCP analysis, home ranges 

determined by VHF telemetry were significantly smaller than those described by GPS 

(Mann-Whitney U test Z = -2.0, U = 1, P = 0.04). As with MCP home ranges, a 

positive trend existed between cat weight and home range size, but this was not 

significant (Spearman‟s R = 0.65, P = 0.08) 

Core area  

Using the MCP 50 method for core area calculations for cats with GPS collars 

resulted in the inclusion of areas that cats apparently did not use as part of the core 

areas. Furthermore, this method also resulted in some areas of high use being 

excluded from the calculated core area (Figure 9). These problems did not occur to the 

same extent when using KDE 50 analysis. Additionally the KDE analyses indicated 

multiple core areas for the cats rather just a single area, as did the MCP 50 method. 

Core areas calculated using MCP 50 were significantly larger for males than females 
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(Mann Whitney U test Z = -2.0, U = 1, P = 0.04), however using KDE 50 analysis, 

core areas for males were not significantly larger than those for females (Mann-

Whitney U test Z = -1.7, U = 2, P = 0.11). 

Table 8 Comparison of home ranges of VHF and GPS tracked non urban feral cats in Australia 

and New Zealand in order of increasing male home range size. * indicates home range is assessed 

from observation rather than telemetry. ** indicates that 95 MCP was used so is smaller than 

would be found using MCP 100 analysis. ++ indicated GPS rather than VHF telemetry used.  

Study Habitat / Location 
Female 

(ha) 

Male 

(ha) 

Brothers et al. (1985) Grassland / Macquarie Island  41* 

Fitzgerald and Karl 

(1986) 
River Valley / New Zealand 80 140 

Schwarz (1995) Open forest / Australia 29 154 

Norbury et al. (1998) Farm land / New Zealand 249 189 

Moller and Alterio 

(1999) 
Coastal grassland / New Zealand 167 207 

Langham and Porter 

(1991) 
Farm land / New Zealand 124 240 

Molsher et al. (2005) Open woodland / Australia 238 426 

Gillies et al. (2007) Forest / New Zealand 117 446 

This study ++ Tall closed forest / Australia 105 455 

Jones and Coman (1982) Semi-arid / Australia 170 620 

Watson (2006) Alpine / Australia 409 628 

Recio et al. (2010) ++ River valley / New Zealand 1607 876 

Hilmer (2010) ++ Open bushland / Australia 720 1120 

Burrows et al. (2003) Arid desert / Australia 700** 1200 -

1500** 

Harper (2004) Wetland valley, New Zealand 1109 2083 

Edwards et al. (2001) Semi-arid woodland / Australia  2210 

Moseby et al. (2009b)++ Arid rangelands /Australia 2078** 3232** 
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Figure 9. Core area for each cat fitted with a GPS collar. Solid line is the core area described 

using MCP 50. Red dotted line is that described using KDE 50. A- Hans B – Neil, C – Karen, D – 

Olof .  

Home range overlap 

Four of the cats that were tracked using VHF telemetry had home ranges that 

overlapped with a neighbouring feral cat. The degree of overlap varied between cats 

with one female (Hayley) having her home range incorporated completely within that 

of a male (Chris). The home range of one female (Danielle) overlapped with that of 

the female Liz and with that of the male Chris. The home range of Liz also overlapped 

the home range of another adjoining female (Sue) (Figure 10,Table 9). The core area 

of the male cat Chris overlapped with that of the female Hayley by 4.6 ha or 21.9 % 

and 41.8% respectively of their core ranges. The MPC 100 home range for Chris 

overlapped the core area of the female Danielle. The core area for the two females, 

Liz and Sue overlapped by 3.1 ha or 18.0 % and 44.9% respectively of their KDE 50 

core areas. No cat for which a GPS collar was recovered had a home range 

overlapping with another cat.  
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Table 9. MCP 100 home range overlap between feral cats.  

* The home range area of the cat Sue did not reach asymptote,  

as a result the volume and percentage of home range overlap is  

calculated based on the known home range area rather than the full area.  

Cats Area of 

overlap (ha) 

Percentage of 

home range 

Chris / Hayley 53 23.5 / 100 

Chris / Danielle 2.2 1.0 / 3.6 

Liz / Danielle 2.6 1.6 / 4.3 

Liz / Sue* 37.7 22.7 / 60.9* 

Mean ± se 20.3 ± 10.4 27.1 ± 12.6 

Mean F / F 

overlap ± se 
 32.1 ± 16.4 

 
Figure 10. Home range overlap of radio tracked feral cats. * The home range for the cat Sue did 

not reach asymptote so was not fully described and core area was not determined using KDE. 

The extent of the overlap between cats Liz and Sue is based on the known volume of Sue’s home 

range rather than the potential full volume.  
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Unused areas in the home range 

The volume of fixes and regular fix rate of the GPS collars allowed a clearer 

assessment of intra home range use by the feral cats than is possible with conventional 

VHF telemetry. Each of the home ranges described for feral cats had areas (or holes) 

that were not used by the feral cats during the time the GPS collars were active 

(Figure 9).  

Discussion 

This is the first study of the home ranges of feral cats in tall closed forests in Australia 

using either VHF telemetry or GPS receivers. VHF telemetry has been used in other 

habitat types for feral cats (Table 8) while GPS collars have been utilised on other 

feral cat populations on islands (Dirk Hartog Island - Hilmer (2010), Johnston et al. 

(2010b) and French Island – Johnston et al. (2008)) and mainland sites ( Alcoa Lease 

site, Anglesea, Victoria - Robley et al. (2008) and Arid Recovery, South Australia - 

Moseby et al. (2009b)). Compared with other studies in Australia and New Zealand 

the home ranges of feral cats in the tall closed forests were smaller than those of cats 

in the arid and alpine regions. This is due most likely to fewer or poorer quality food 

resources in those latter areas. Conversely, home ranges were larger than those of 

feral cats living on farmland or in grassland habitats where food resources are usually 

greater or accessibility to food is easier.  

There is a general correlation between carnivore home range size and food resources 

in which low food resources result in large home ranges and abundant food resources 

tend to result in smaller home ranges (Sandell 1989). The availability of food 

resources was found by Liberg et al. (2000) to be one of the main factors determining 

the home ranges of feral cats. Those living on rich clumped food resources, such as 

rubbish tips and feeding stations, had very small home ranges while the largest ranges 

were found in feral cats living on highly dispersed natural prey items. The large home 

ranges found for feral cats in arid and semi-arid areas are thought to be the result of 

scarce and dispersed prey (Burrows et al. 2003; Edwards et al. 2001). While no 

sampling was conducted of prey availability in the home ranges of cats in the present 
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work, all captured cats were in good condition with obvious deposits of body fat, 

indicating that the animals presumably had access to reliable food resources.  

Site fidelity was clearly demonstrated by the feral cats in this study with each cat 

having a defined area where it remained unless undertaking short-term forays. The 

area used by each cat was more constrained that would be expected if the cats were 

moving randomly through the forest (Hooge and Eichenlaub 2000; Munger 1984). 

Site fidelity exists when the observed area used by an animal is smaller than the area 

that would be used if the movements are random. An animal is deemed to possess a 

home range if it exhibits site fidelity (Spencer et al. 1990).  

Sexual dimorphism was apparent in home range sizes with males having larger home 

ranges than females. This disparity is apparent in all studies of non-urban feral cats 

with the exception of the work of Recio et al. (2010) (see Table 8). However, only a 

single female cat was used in that study so it may not be representative of the true 

population mean. Liberg et al. (2000) reviewed 28 studies of feral cat home ranges 

and found that male cat home ranges are generally 3 times as large as those of 

females. In this study male home ranges were over 4 times larger than those of 

females. This could reflect the considerably larger body sizes of the males compared 

to the females that were tracked (Table 4), but could equally be the result of low 

sample sizes. 

The trend towards larger home ranges for heavier cats has been found in a variety of 

habitat types. Molsher et al. (2005) found that heavier cats had significantly larger 

home ranges in open woodland and Page et al. (1992) found similar increases in home 

range size with weight for cats at the Avonmouth docks. This increase in home range 

is presumably because of the need for higher energetic and nutritional intake (Nagy 

2005; Nagy et al. 1999) and therefore a correspondingly greater prey volume intake. 

In addition, larger ranges would be advantageous to males in allowing them to overlap 

the ranges of multiple females and hence gaining priority access to females during the 

breeding season (Kirby and Macdonald 1988). 

Generally felids are solitary animals and congregate in groups only when there are 

sufficient resources to eliminate the need to compete for food, shelter and mates 
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(Creel and Macdonald 1995). Only adult male lions and cheetahs predominantly live 

together in groups and only adult female lions and domestic cats live in groups; all 

other felids are asocial (Macdonald et al. 2000). Feral cats tend towards group living 

when there are high levels of rich clumped food resources such as at rubbish tips 

(Denny 2005; Hutchings 2003) or where humans provide food (Natoli and De Vito 

1991; Say et al. 1999) but are solitary when food resources are scarcer. The home 

ranges of male cats generally overlap those of females but males generally exclude 

other males from their home ranges (Liberg 1980; Liberg et al. 2000). Conversely, 

Hilmer (2010) found a high degree of overlap of both home range (72%) and core 

area (81%) for male cats on Dirk Hartog Island and suggested that this may have 

resulted from a high level of prey availability in the areas inhabited by those cats. 

Molsher et al. (2005) found a lesser degree of home range overlap (21%) and core 

area overlap (7%) and that range overlap was not dependent on the sex of the cat.  

Whilst the cats in this study appeared to be largely solitary, there was a degree of 

overlap of home ranges both between adjoining females and between females and 

males. Because it is possible also that other uncaptured and uncollared cats were 

present in the study area, the overlap described here should be regarded as minimal. 

Male home ranges regularly overlap those of females (as reviewed by Liberg et al. 

2000; Macdonald et al. 2000), as was also found to be the case in this study. 

Adjoining females had a higher degree of home range overlap than found by Molsher 

et al. (2005).  

The overlap of core areas of the two females, Liz and Sue, indicates a high level of 

tolerance at least between these individuals. The cat Sue was initially trapped within 

10 metres of a log that the other cat, Liz, had been living in for a period of 2 months – 

probably raising a litter of kittens. This level of tolerance has been noted in other 

studies, particularly those where cats have a high level of food resources. Denny et al. 

(2002) found that this tolerance usually reflected a relatedness between the cats, but 

this possibility could not be tested in this study. If it is assumed that not all cats in the 

study area had been trapped and that food resources in the study area were insufficient 

to allow the kind of group living observed in cats at resource-rich sites such as rubbish 

tips, the overlapping home ranges of the female cats studied here suggest that female 
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cats in the tall forests of Far East Gippsland are tolerant of each other in the same 

area.  

If this is correct, females in the tall forest environment may be more tolerant of each 

other than has been reported in most other habitats. Such tolerance could be facilitated 

by the high structural complexity of the Gippsland forests; in the same way that high 

habitat complexity increases the ability of prey to escape detection by predators 

(Arthur et al. 2004; Sinclair et al. 1998). Complex habitat structures such as logs, 

litter and different densities of understorey cover could allow potentially intolerant 

females to avoid each other.  

The variation in home range size attained through using MCP analysis compared with 

KDE analysis (Table 7) is likely a result of the smoothing factor that was used. Using 

the LSCV method for selecting the smoothing factor allows for a consistent method of 

analysis and comparison between studies using the same method (Laver and Kelly 

2008). However, with larger data sets such as those provided by GPS telemetry 

compared with VHF telemetry, Hemson et al. (2005) found that KDE analysis 

became unreliable when using LSCV. The use of KDE analysis was similarly rejected 

by Hins et al. (2009) and Recio et al. (2010) when using larger GPS-sourced datasets. 

However, Laver and Kelly (2008) were satisfied with the ability of KDE analyses to 

handle larger datasets and recommended the use of this approach over MCP analyses. 

It is most likely that this variation results from the presence, or absence, of multiple 

data points along or near the boundary of the home range. The KDE analysis searches 

for other points within the radius of the smoothing factor (Laver 2005). Multiple 

points along the edges of the home range allows the analysis to allocate a heavier 

weighting to cells outside the home range than would occur at a lower density of 

points on the edge, thus increasing the home range size.   

I found that using MCP 50 to define core area was unreliable in that it includes areas 

not used by cats and discards areas that cats return to frequently (see Figure 9). Harris 

et al. (1990) suggested that determining core areas may be useful for understanding 

intraspecific patterns of home range use. As an example, Harris et al. (1990) showed 

that the KDE 95 home ranges of adjoining male muntjac deer (Muntiacus reevesi) 
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overlapped, but the core area, defined as the KDE 50 of the home range, did not. This 

indicated that the core areas were mutually exclusive while other deer were tolerated 

in the outer areas of the home range. In this study, using KDE 50 core areas did not 

include the large areas of the home range that were not used by cats as was suggested 

using the MCP 50. Additionally, the KDE analysis showed multiple core areas for 

most cats, indicating differing areas of high use within the home range. These areas of 

high use probably reflect focal points of high food and shelter resources within the 

home range (Harris et al. 1990; Lair 1987) and result in the identification of more 

biologically significant core areas than are uncovered using MCP analyses. As a 

result, the use of MCP 50 to define core area should be discouraged and the KDE 50 

analysis used instead. 

A number of studies have used an arbitrary cut-off point for the number of fixes 

needed to fully describe a home range. This cut-off point is usually taken for the 

minimum number needed as reported in the literature (see the review of home range 

studies by Laver and Kelly (2008)). The variation I found in the number of fixes 

required for a home range to reach asymptote indicates that such a practice is likely to 

result in bias of the home range size through the inclusion of home ranges that have 

not been fully described. This is especially so for VHF telemetry. It is recommended 

that asymptote analysis be conducted for all home range studies.  

As GPS technology has become more readily available for use with small animals, an 

increasing number of studies have used this technology in preference to conventional 

VHF telemetry (Cain et al. 2005; Recio et al. 2010; Rodgers 2001). The GPS 

data-logging collars used here provided a large and unique dataset of locations. The 

large number of data fixes obtained using the GPS collars far exceeded that which has 

been possible to obtain previously using VHF telemetry alone. For example, Molsher 

et al. (2005), using VHF telemetry, obtained a maximum of 65 fixes for one cat with a 

mean of ~ 40 useable fixes per cat over a period of 4 months. The GPS collars used in 

this study based on a 6 hourly tasking rate and taking into account a mean 49% fix 

rate, were able to take ~ 230 fixes per cat without the researcher needing to be 

continually in the field. An advantage of VHF telemetry over the store on board 

collars is the immediate availability of the fix data whereas the cats need to be 
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recaptured to obtain the GPS data. This problem can be overcome by the use of 

automated drop-off collars; unfortunately this option was not available for the collars 

used when my study commenced, and my intensive efforts to recapture all the cats 

that had been fitted with GPS collars met only with partial success. 

The GPS fix rate for this study was low compared with that obtained in other studies. 

Recio et al. (2010) obtained a fix rate of 62.7% for feral cats in the Tasman Valley, 

New Zealand. Cain et al. (2005) reviewed some 35 studies using GPS collars on 

larger animals and found a mean fix rate of 76% with a strong inverse correlation 

between the fix interval time and the fix success rate. Cain et al. (2005) and other 

researchers using GPS collars (e.g. D‟Eon and Delparte (2005), DeCesare et al. 

(2005), Jiang et al. (2008) and Lewis et al. (2007)), noted that many factors can 

influence fix success including the type of habitat through which the animal is 

moving, the location and angle of the GPS antenna at the time the fix is attempted, the 

location of satellites in the sky and which satellites that the GPS is able to connect 

with. Hence, caution is warranted when comparing fix success rates between studies 

and between individual collared animals. While not tested in this study, it is probable 

that individual GPS receivers have varying ability to take a successful fix even in the 

same circumstances. Two separate GPS receivers used consecutively on the same cat 

(Olof) gave different rates of successful fixes while the home range and movement 

pattern of this cat did not noticeably change. The periods of missed fixes for each 

collar may have resulted from the cat being in a shelter at the time the fix was being 

taken due to the antennae not having clear access to the satellite signals (D'Eon and 

Delparte 2005; Moseby et al. 2009b). 

Knowledge of home range size and overlap can assist in determining the amount of 

effort that is needed in a control program. Where there are large individual home 

ranges with little overlap, the density of animals is low. Conversely, when home 

ranges are smaller and there is a high degree of overlap of home ranges, density of 

animals is higher (Liberg et al. 2000). The home ranges calculated in this study were 

smaller than those found in the arid and semi arid regions (e.g. Burrows et al. 2003; 

Edwards et al. 2001; Hilmer 2010). This, together with the high degree of home range 

overlap, indicates that a higher bait density may be required to manage cats in tall 
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forested habitats compared with that required in arid or semi-arid regions. 

Additionally, population management through trapping or shooting would require 

higher effort per unit area than is required for cats in arid regions.  

Similarly, knowledge of home range size and, from that, cat density estimates can 

assist in determining if reintroduction attempts for native species are advisable. 

Christensen and Burrows (1995) found that cats even at low densities caused the 

failure of reintroduction attempts for burrowing bettongs (Bettongia lesueur) in the 

Gibson Desert. Densities of feral cats as low as 1 / km
2
 have caused the failure of both 

bettong and bilby reintroductions outside the predator exclusion fencing at Arid 

Recovery in South Australia (K. Moseby, Arid Recovery, pers. comm.).  

GPS collars were found to allow more location fixes to be taken per animal than was 

possible with conventional VHF telemetry. This increase in the number of fixes per 

animal allowed the intra-home range movement patterns of animal to be examined in 

detail. Chapter 4 examines the movement patterns of feral cats whilst within their 

home range while chapter 5 examines the possible causes for the large unused areas 

within each home range. 
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Chapter 4 

Movement patterns and foraging behaviour of introduced 

predators in tall forests 

Chapter overview 

In this chapter, I examine how feral cats move though their environment and discuss 

how these movements may indicate the foraging patterns they employ. Animals rarely 

use their home range in a random manner but rather are driven by the need to find 

resources such as food and shelter that may occur in parts of their range and to 

maximise the probability of successful breeding. The use of GPS collars to gather 

accurate and high volume locational data has allowed the intra-home range 

movements of the feral cats in Far East Gippsland to be analysed in ways not 

previously possible using conventional VHF radio telemetry.  

I analysed the step lengths and turn angles of feral cats taken at three different 

intervals - 6 hourly, hourly and every 15 minutes - to determine if their movement 

patterns were purely random or followed a Lévy walk style of searching pattern. I 

found that feral cats employ a Lévy style walk pattern when sampled at both hourly 

and 15 minute intervals. Sampling at the coarser 6 hourly interval revealed that while 

the cats still employed a Lévy style walk pattern, it was less optimal than that found at 

the finer sampling intervals. This indicates that at the coarser sampling intervals may 

not adequately detect movement patterns.  

Employing a Lévy walk search pattern increases the chances of feral cats 

encountering prey items that are sparsely distributed through the environment and 

maximises their potential hunting return for effort expended.  

Knowing how feral cats move through their environment should allow control 

programs to be designed that target feral cats more efficiently. Using sparsely 

distributed control measures (traps or baits) over a large area increases the probability 

of a feral cat encountering and investigating the control measure.     
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Introduction 

Animals rarely move through their individual ranges in a completely random manner. 

Their patterns of movement are driven by behaviours that have been selected to 

maximize the probability of breeding, to achieve greater efficiency in access to 

resources, particularly food, shelter and breeding places, and to gain familiarity with 

their range (Burt 1943). Study of the movement patterns of wildlife has recently 

attracted renewed interest, driven in part by new approaches to gathering and 

analysing locational data (Coulombe et al. 2006; Robley and Gormley 2010; Rodgers 

2001).  

Location data may be gathered either by physically sighting the animals or through 

the use of remote techniques such as radio telemetry. Such techniques are often 

laborious and, in the case of telemetry, require observers to take bearings and 

subsequently triangulate to obtain location fixes (Kliskey and Byrom 2001). Advances 

in Global Positioning System (GPS) technology have resulted in the miniaturisation of 

GPS receivers, allowing them to be placed on smaller and more mobile animals (Jiang 

et al. 2008; Rodgers 2001; Schultze and Feilitz 2001). Using GPS technology to 

collect data has resulted in the ability to collect much more data per animal than was 

previously possible with standard Very High Frequency (VHF) radio telemetry 

techniques (Rodgers 2001). This increase in both the quantity and quality of data has 

allowed intra-home range movement patterns to be both seen and examined in more 

detail than has been possible previously (Dassault et al. 2006; Kliskey and Byrom 

2001; Robley and Gormley 2010).  

Several alternative hypotheses have been put forward to describe these observed 

patterns of movement. These include random walks, composite Brownian walks 

(Benhamou 2007), Lévy walks (Viswanathan et al. 1996; Viswanathan et al. 1999) 

and adaptive Lévy walks (Reynolds 2009). Random walks have a uniform distribution 

of step lengths and turn angles while composite Brownian walks use a combination of 

step length drawn from two random walk distributions where one has a short mean 

step length and the other a longer mean step length (Benhamou 2007).  
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The Lévy walk is characterised as multiple short distance movements interspersed 

with less frequent but longer ranged movements that result in a long tailed power law 

distribution - P(lj)~lj
-µ

 with 1< μ ≤ 3,  where lj is the step length and μ is the slope of 

the regression line of the log/log relationship between step length and frequency of 

occurrence. Brownian motion describes purely random movement through the 

environment. A Lévy style walk is apparent if  1≤ µ ≤ 3 (Viswanathan et al. 1996) 

and Brownian motion becomes apparent when µ>3 (Bartumeus et al. 2005). 

Viswanathan et al. (1996) showed that for non-destructive foraging, a µ= 2 resulted in 

an optimal search pattern for sparsely distributed prey items. Destructive foraging 

occurs when the entirety of a resource is consumed at a particular patch and that patch 

is then no longer available for foraging. With non-destructive foraging, the resource is 

only partially consumed at each location and the animal may return at a later stage to 

consume more of the resource.  

Lévy walk foraging patterns are found in many species in nature including micro-

organisms (Levandowsky et al. 1988), honey bees and moths (Reynolds et al. 2007a; 

Reynolds et al. 2007b), marine animals (Sims et al. 2008), jackals (Atkinson et al. 

2002), elephants (Dai et al. 2007), spider monkeys (Ramos-Fernandez et al. 2004) 

and human hunter-gatherers (Brown et al. 2007). Many of the studies reporting Lévy 

walks involved direct observation of the subject by the researcher (e.g. Atkinson et al. 

2002; Dai et al. 2007; Ramos-Fernandez et al. 2004). For larger or conspicuous 

vertebrates where sufficient distance can be kept between the researcher and the 

subject, this method may be employed without the presence of the observer biasing 

animals‟ behaviour (Dai et al. 2007). In the case of cryptic animals or in environments 

where sight distance is reduced, alternative methods including GPS tags or data 

loggers need to be used. Until recently the battery requirements of GPS collars have 

precluded their long-term use on mid or small sized vertebrates (Haines et al. 2006; 

Kliskey and Byrom 2001; Rodgers 2001). 

Knowledge of how an animal moves through its environment is of particular 

relevance in the study of invasive animals that are operating in novel environments 

and which, in the case of introduced predators, can cause devastating declines in naive 

native prey species (Burbidge and Manly 2002; Burbidge and McKenzie 1989). 
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Knowledge of their foraging behaviour and the strategies that such species employ to 

improve efficiency in prey encounter, detection and capture is likely to underpin the 

success of any control program. For example, baiting patterns could be adjusted to 

suit the foraging pattern of an invasive predator and result in an increased probability 

of the predator finding the bait.  

Fine scale data on the movement patterns of small and mid-sized introduced predators 

in environments where observation is impractical or introduces a bias have until now 

not been available. Improvements in GPS technology now allow fine scale data for 

such invasive predators to be obtained without biasing the animals‟ behaviour 

(Kliskey and Byrom 2001).  

In this chapter I use the introduced feral cat (Felis catus) in Australia as a model to 

demonstrate the utility of modern approaches to gathering and analysing movement 

data and for identifying avenues for improved control. Analyses of the movement 

patterns of F. catus indicate that these introduced predators may not use simple 

Brownian motion in searching for prey items, but appear instead to utilise an optimal 

searching strategy for prey items that are themselves likely to be patchily distributed.  

Methods 

Study area 

The approximately 10 000 km
2
 Southern Ark Project area is located in far eastern 

Victoria in south-eastern Australia (37.34 S, 149.09 E). Most of the area comprises 

steep forested hills with small areas of cleared private land that are used for 

agriculture. Mean annual rainfall is 970 mm (see Chapter 1 for a full study site 

description). The feral cats used in this study were located in the West Cann UMA 

and the Drummer PMA. The data used for this project were gathered between 

February and December 2007. 

Feral cat capture 

Feral cats were trapped using #1.5 and #3 Victor Soft Catch
®
 (Woodstream 

Corporation, Lititz, Pennsylvania; current manufacturer: Oneida Victor, Inc., Euclid, 
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Ohio) rubber jaw traps. Trap sets were baited with either meat (chicken or beef) or 

„Pongo‟, an olfactory lure consisting of a blend of cat faeces, cat urine and water 

(Algar et al. 2002). Half of the trap sets had a Felid Attractant Phonics (FAPs) audio 

lure (Westcare Industries, Nedlands, Western Australia) placed adjacent to the trap as 

an additional attractant. All traps were checked daily at dawn. Captured feral cats 

were sedated using an intramuscular injection of either Zoletil
®
 (5.0 mg/kg) or 

Domitor
®
 (0.15 mg/kg) or in combination (0.05 mg/kg Domitor

®
 plus 3.0 mg/kg 

Zoletil
®

) depending on the level of sedation required. 

GPS – VHF tag design 

Sedated cats were sexed and weighed and checked for trap injuries. A 135 g GPS 

collar with mortality sensor (SirTrack, Havelock North, New Zealand) was fitted to 

those cats weighing over 2.7 kg. In order that the collar weight be less than 5% of the 

body weight of the cat, GPS collars were not fitted to cats weighing under 2.7 kg. The 

GPS collars were tasked to take fixes at either a combination of 15 minute intervals 

and hourly intervals or at 6 hour intervals. Battery lives at these tasking rates were 

about 2.5 and 5.5 months respectively. Occasionally the GPS was unable to take fixes 

at the tasked times, possibly due to topography, weather conditions, antennae position 

or a combination thereof (Dassault et al. 2001; Hulbert and French 2001; Jiang et al. 

2008). Prior to fitting to the cats, the almanac on the collars was updated according to 

the manufacturer‟s instructions. I also determined the exact VHF frequency that the 

collars were transmitting on and entered this into an R 1000 radio receiver 

(Communication Specialists, Orange, California). This enabled the cats to be located 

using standard VHF radio telemetry techniques.  

Following processing of the cats and the fitting of collars, cats that had been sedated 

using Domitor
®
 were administered the antagonist Anti-sedan

®
 (0.3mg/kg) to facilitate 

recovery from sedation. All cats were monitored during the recovery phase and then 

released at the point of capture when assessed to be free from the effects of the 

sedation.  

The released cats were monitored initially using VHF telemetry. At the end of 5½ 

months when the GPS batteries were expected to be fading, attempts were then made 
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to recapture the cats over the following 18 months to recover the GPS collars. Collars 

were also recovered from feral cats that had died. The data were downloaded from the 

collars using proprietary software from SirTrack. Data obtained from the collars were 

transformed from geographical co-ordinates to projected coordinated (UTM) using the 

DNRGarmin GPS Application (Ver 5.03.0002) (Department of Natural Resources, 

Minnesota) computer program. The downloaded GPS data contained an estimate of 

Horizontal Dissolution of Precision (HDOP) for each fix (scale 1 – 100). A small 

HDOP figure indicates that the satellites used to generate the fix are widely dispersed 

across the sky whereas a large HDOP indicates the satellites are closely grouped 

resulting in a loss of precision for that particular fix. Fixes with a HDOP > 4 were 

removed from the analyses because of the potentially lower level of precision 

achieved for these fixes (Moseby et al. 2009b). 

Data for the cats with a 6 hourly GPS sampling interval were combined to provide 

larger data sets. Modelling of Lévy walk simulations show that using a larger dataset 

minimises potential bias in calculations (Sims et al. 2007). Step length and turn angle 

between each fix were determined using Hawth‟s Analysis Tools for ArcGIS (Beyer 

2004) in ArcGIS 9.2 (ESRI Corp Redlands, California). Turn angle statistics were 

calculated in ArcView 3.2 (ESRI Corp Redlands, California) using the Animal 

Movements extension for ArcView 3.2 (Hooge and Eichenlaub 2000). Data points 

where the time since the previous fix was outside the parameters of 15 mins ± 1 min, 

1 hour ± 1 min or 6 hours ± 1 min were discarded from the analysis. The remaining 

step-length data were combined for all cats. For analysis purposes, data were arranged 

into histograms with 200 metre intervals for the 6 and 1 hour sampling intervals and 

100 metre intervals for the 15 minute sampling intervals. The frequency of occurrence 

at each interval was used in the analyses. Final data analyses were undertaken in 

Statistica 7 (StatSoft Inc 2004). Directional persistence in turn angles was determined 

using Rayleigh‟s test for uniformity (Zar 1999).  

Results  

Eleven feral cats were captured between January and October 2007 and fitted with 

GPS collars. Five collars were recovered with useable data. One collar was recovered 
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that had failed soon after being fixed to the cat resulting in no useable data being 

recorded. Five collars were unable to be recovered.  Between February and December 

2007 the recovered GPS collars returned 2 243 successful fixes. After discarding 

those where the time between fixes was outside a priori parameters, a total of 699 

fixes were obtained at 6 hourly intervals, 326 fixes at hourly intervals and 375 fixes at 

15 minute intervals. The distances travelled (mean ± se) by the cats between 

successive fixes were 821 ± 26 m at 6 hour intervals, 185 ± 11 m at hourly intervals 

and 76 ± 6 m at 15 minute intervals (Table 10). At 15 minute and 1 hour sampling 

intervals there was no propensity for directional persistence between steps with turn 

angles evenly distributed (z = 1.97, n = 375, p > 0.1 and z = 1.96, n = 326, p > 0.1, 

respectively). At 6 hourly sampling intervals, the distribution of turn angles was not 

distributed normally (z = 5.07, n = 699, p < 0.01). The mean turn angle (mean ± 95% 

CI) at 6 hourly steps was 191 ± 14
o
 (Figure 11).  

The distribution of the step lengths at each temporal scale showed a log power-tailed 

distribution (Figure 12). Regression of the log10 relationship between step length and 

frequency showed the presence of a Lévy walk pattern - P(lj)~lj
-µ

 - at each temporal 

scale (Figure 12).  

Movement patterns at both hourly and 15 minute intervals indicated optimal searching 

patterns by feral cats - µ = 2.02 and µ= 2.09 respectively. At the 6 hourly sampling 

intervals a Lévy walk pattern was still apparent in the movement patterns of the feral 

cats but was less obvious than at the other sampling intervals. This indicates that this 

sampling period may be too great to detect searching patterns effectively (Table 10). 

Table 10. Mean step length and Lévy parameter for feral cats at each sampling interval. 

Interval  Mean step length (m ± se) r
2 a

 µ 
b
 

6 hours 821 ± 26 0.64 1.49 

1 hour 185 ± 11 0.93 2.02 

15 minute 76 ± 6 0.90 2.09 

a 
r
2
 is the coefficient of determination for the linear regression of the log/log 

relationship between step length and frequency of occurrence of the step length. 
b
 μ is the slope of the line for the linear regression of the log/log relationship between 

step length and the frequency of occurrence of the step length. 
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A

 

B

 

C  

Figure 11. Distribution of turn angles for feral cats at the sampled intervals. Turn angles are 

grouped in 10° intervals. 0/360° indicates that the animal continued in a straight line whereas 

180° indicates that the animal turned and retraced its previous track. A = 15 min sampling, B = 

hourly sampling C = 6 hour sampling.  

 

330°

300°

240°

210° 150°

120°

60°

30°

30 20 10 0 10 20 30

330°

300°

240°

210° 150°

120°

60°

30°

25 20 15 10 5 0 5 10 15 20 25

330°

300°

240°

210° 150°

120°

60°

30°

25 20 15 10 5 0 5 10 15 20 25

330°

300°

240°

210° 150°

120°

60°

30°

30 25 20 15 10 5 0 5 10 15 20 25 30

330°

300°

240°

210° 150°

120°

60°

30°

30 25 20 15 10 5 0 5 10 15 20 25 30



Chapter 4. Movement patterns and foraging behaviour of feral cats  

 
 

76 

 

Figure 12. Distribution of step lengths for each temporal scale with corresponding log-log 

regression of frequency against step length. Solid line is the fitted regression line. Dotted lines are 

the 95% CI of the fitted line. A= 15 min sampling, B = hourly sampling, c = 6 hourly sampling.  

Discussion 

I analysed the movement patterns of the introduced predator, Felis catus, with data 

collected at three time scales. A normal distribution of the step lengths and µ ≥ 3 that 

would be expected from simple Brownian motion are not apparent in the data. The 

long tailed power-law distribution of the data and 1< µ ≤ 3 indicates the presence of a 
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Lévy walk pattern. As µ ≈ 2 at the 15 minute and 1 hour sampling regime, it appears 

that feral cats employ an efficient movement pattern while searching for resources at 

these temporal scales.  

The Lévy walk pattern, while still present, is less apparent at the coarser 6 hourly 

sampling interval. This may have resulted from the sampling being too coarse to 

effectively detect such a pattern. If the movement pattern reflects foraging, it is 

unlikely that feral cats would forage for periods of 6 hours: most foraging could be 

expected to take place at much shorter temporal intervals. It is also likely that portions 

of the movement behaviour incorporated into the sampling intervals include non-

foraging behaviour such as moving from and to den locations, resting, predation 

avoidance, mating and defence of territory. However, even at this coarse sampling 

interval, it is apparent that feral cats do not move through their environment in a 

random or Brownian manner but rather they do so with some evidently distinct 

purpose and pattern.  

Implications for prey species 

The employment of Lévy style movement behaviour by predators optimises their 

chance of encountering prey items when the prey are sparsely distributed across the 

landscape (Humphries et al. 2010; Viswanathan et al. 1996), while a Brownian 

(random) motion style searching pattern is more suited when prey are more abundant 

(Humphries et al. 2010). Invasive predators, such as feral cats, forage for a 

combination of mammalian, avian and reptilian prey items (Dickman 1996; Jones and 

Coman 1981; Triggs et al. 1984) which would not be distributed uniformly through 

the environment. The Lévy walk style of searching is also more advantageous if the 

predator is larger and faster than the prey item, while Brownian style searches are 

more likely to increase encounter success when the target is larger and faster than the 

predator (Viswanathan et al. 2002). Feral cats prey on animals that are on the lower 

end of the Critical Weight Range (35- 5500g) (Burbidge and McKenzie 1989) and, in 

far eastern Victoria, generally take prey weighing less than themselves (Triggs et al. 

1984; and also see Appendix 1).  
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Non-destructive foraging occurs when a predator leaves an area prior to the prey items 

being completely extirpated, either through the predator being satiated or the prey 

becoming temporarily depleted. Temporary depletion can occur through a behavioural 

response of prey that reduced their chance of being eaten (Charnov et al. 1976). 

Optimal foraging theory (Charnov 1976; Pyke 1984) suggests that once prey 

behaviour or abundance is depressed to a point where continued searching by the 

predator is no longer viable, the predator moves to a new patch. Following the 

departure of the predator, prey behaviour or abundance is released (Charnov et al. 

1976). Employment of a Lévy walk, rather than a Brownian movement style of 

foraging by predators, increases the time intervals between re-searching the same 

patch (Viswanathan et al. 2000; Viswanathan et al. 2002), which in turn should 

increase the time since release from depression and thus make the prey more readily 

available to the predator on its return to that patch. 

For a naïve prey species, especially one that did not co-evolve with the predator, this 

depression may arise through depletion of the population rather than through 

individual behavioural responses (Charnov et al. 1976). The prey item does not 

recognise the danger the predator poses and therefore undertakes minimal or no 

avoidance behaviour (Banks 1998; Dickman 1992; Russell and Banks 2007), or 

avoidance behaviour that is not appropriate for the predator (Banks and Dickman 

2007). As a result, the predator can forage for longer and take more prey items in the 

same patch before continued searching of that patch becomes energetically 

unprofitable (Charnov 1976; Pyke 1984). This was shown experimentally by Dickman 

(1992) who introduced mice from both predator-free and predator-present areas to a 

new area containing predators. Predator-naïve mice were depredated at a rate 2 ½ 

times that of mice that had been introduced from areas where predators were present.  

If prey species are able to reproduce at a higher rate than they are being harvested by 

the predator, an increase in predation may have no real impact on the prey species 

population. However, if the harvest rate of the predator exceeds that at which the prey 

population can replace itself, then the population of the prey species must decline 

(Hone 1999b; Hone 2007). For a rare or endangered prey population with low 

reproductive capacity, an increase in predation through introduction of a novel 
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predator may lead to extinction (Smith and Quin 1996). This has been evident on 

predator-free islands where cats were introduced and has resulted in the extirpation of 

several prey species (Burbidge and Manly 2002; Galbreath and Brown 2004; Short 

and Smith 1994; Vazquez-Dominquez et al. 2004). Similarly when populations of 

more common prey species erupt (for example a mouse plague or rabbits in the arid 

zone following a rainfall event) the increase can lead to increased feral cat populations 

being sustained during the period of the eruption and result in heavy per capita 

predation pressure, or hyperpredation (Smith and Quin 1996). As populations of prey 

species decline post-eruption, feral cats will switch to less common prey species to 

survive. If a secondary prey species has a low rate of increase, occurs as remnant 

populations or is restricted to scattered refuge sites, this can then lead to marked 

population declines or local extinction (Smith and Quin 1996) 

Implications for control 

Brownian searching techniques provide an efficient searching pattern where prey 

items are in high densities or are larger and faster than the predator while Lévy walk 

searching maximises encounter rates where prey items are sparsely distributed 

through the environment (Viswanathan et al. 2002). Modelling the distribution of 

control measures to suit the foraging style of the species to be controlled should 

increase the probability of encounter by that species with a control device. Animals 

employing a Lévy walk style of foraging pattern are more likely to encounter a 

control device (for example a trap or bait) than those that employ a Brownian foraging 

pattern if the control measures are sparsely placed through the environment. Trapping 

is the predominant technique used to control feral cats in the eastern Australian states, 

and the effort required to place and check traps at regular, closely spaced intervals is 

high (Reddiex et al. 2006).  

As the feral cats studied here move through the forest environment using a Lévy walk, 

traps or control measures do not need to be closely spaced to be effective. An example 

of this is the aerial baiting for feral cats in Western Australia. Baits are delivered at a 

rate of 50 baits /km
2
. For a uniform coverage, a single bait would have to be placed in 

every 140 x 140 m block within the baited area. However, baits are released from the 
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aircraft in a single block of 50 per km
2
 (Johnston et al. 2010b) (resulting in a 300 x 

100 spread) or in blocks of 5 at more regular intervals (Johnston et al. 2011). This 

results in a clumped distribution of baits and, as cats employ a Lévy walk movement 

pattern, increases the likelihood of cats encountering the baits. 
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Chapter 5 

Intra-home range use by feral cats 

Chapter overview 

Analysis of the home ranges of feral cats in Chapter 3 revealed that for each cat fitted 

with a GPS collar, there were large areas within the home range that they did not 

enter. In this chapter, I examine the potential reasons why those areas were not used 

by feral cats.  

I hypothesised that these „holes‟ in the ranges were areas where prey species were 

scarce and that, as a result, cats avoided these areas because foraging would be 

energetically unprofitable. To test this hypothesis, I established trapping grids to 

capture small prey-sized mammals within the holes. These grids bordered areas of 

high cat use and extended into the areas not used by cats. Analyses of the data 

revealed no differences in the capture rates of prey species between the unused areas 

and areas of high cat use, thus allowing the hypothesis to be rejected.   

In contrast, modelling abiotic and vegetation community-based parameters explained 

much of the variation in the data. The global model was overdispersed (ĉ = 6.3) 

indicating that other un-measured parameters were also influencing home range use 

by cats. It is most likely that this unaccounted for parameter is avoidance of intraguild 

predation. 

The collar deployed on one of the cats was recovered following activation of its 

inbuilt mortality sensor. This collar bore the teeth marks of a larger predator such as a 

dog or fox. This suggested that at least one missing parameter in the models is the 

presence of other intraguild predators known to occur in the study area. Cats are 

smaller than foxes and dogs and are likely to be subordinate to them; hence it is 

possible that the home range „gaps‟ reflect avoidance by the cats of the other 

predators. Examination of GPS data used to determine the home ranges of feral cats in 

areas with no other mammalian predators failed to uncover any similarly unused areas 

within those home ranges, thus providing comparative support for this possibility.  
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The presence of higher order intraguild predators within the system inhabited by the 

cats may impose on them a level of behavioural suppression and confine the cats to 

safer parts of the forests. Reducing the density these intraguild predators may trigger a 

mesopredator release effect, with cats then becoming the primary predator.  

Introduction 

Many animals exhibit fidelity to a particular area and are therefore described as 

having a home range (Börger et al. 2008; Munger 1984). The most widely accepted 

definition of a home range within the literature is that described by Burt (1943) as:  

...that area traversed by the individual in its normal activities of food 

gathering, mating, and caring for young. Occasional sallies outside the area, 

perhaps exploratory in nature should not be considered as part of the home 

range. 

Until recently, data for determining the home range sizes of mammals have been 

gathered largely through direct observations of the target individuals, capturing and 

repeatedly recapturing animals in different locations, or through the use of VHF 

telemetry (White and Garrott 1990). These techniques, while useful, are laborious to 

carry out and usually yield relatively small data sets. The more recent use of Global 

Positioning System (GPS) collars to record location fixes of animals has increased the 

ability of researchers to look inside the home range and examine both how and why 

individuals use parts of their home range (Coelho et al. 2007; Kliskey and Byrom 

2001). Very few species use or traverse their home ranges in a homogeneous manner. 

How an animal moves around in its home range is governed by a number of factors 

including the needs to find adequate food and shelter resources (Kernohan et al. 

1998), to secure or defend mates (Kernohan et al. 2001) and avoid predators 

(Heithaus 2001). The presence of competitors or larger predators can also influence  

how animals utilise both the space and resources within their home ranges (Basset 

1995; Harris et al. 1990).  

Knowledge of how and why animals move through their home ranges can assist in 

management. Additionally, analysis of large amounts of accurate GPS data can 
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identify the location and level of use of obligate resources, allowing the level of 

importance of these resources to the study animal to be determined (Lele and Keim 

2006; Moen et al. 1996; Osborne et al. 2001). This type of analysis can help to 

determine when, where and how to focus management against pest species (see 

chapter 4).   

Analysis of the data from the GPS-collared cats revealed that each cat had areas 

within their ranges that were not used and they showed a propensity to move along or 

near creek lines and other areas of heavy cover. I hypothesised initially that the reason 

why cats used some areas within their home range preferentially and avoided others 

was due to spatial differences in prey availability. This hypothesis was tested by live 

trapping small mammals that form a large part of the diet of feral cats in areas used 

heavily by cats and in areas that were not used. I also hypothesised that biotic and 

abiotic factors could influence the use of space by cats, with individuals perhaps 

selecting landscape attributes such as vegetation type, elevation, distance from 

creek-lines, and slope of the land. This hypothesis was tested using AIC based 

modelling. Other factors, such as the presence of large intraguild predators in the 

areas unused by cats, could not be tested directly, but are discussed and evaluated 

with reference to other works.  

Methods 

Study area  

This project was undertaken in the West Cann Unpoisoned Monitoring Area. The 

holes in the home range of one cat, Olof, were selected primarily for reasons of safety. 

Trapping for small mammals commenced February 2009. At this time the large 

bushfires in Victoria (known in the popular media as the “Black Saturday Fires”) had 

not long been contained and were still burning in many places. Most of the field and 

fire staff from Parks Victoria and DSE in Cann River had been deployed elsewhere in 

the state. Due to the extreme fire danger rating and high winds and daytime 

temperatures, it was decided in conjunction with local Department of Sustainability 

and Environment and Parks Victoria managers that it would be unsafe to trap any 

deeper into the forest than the areas allowed for within Olof‟s range. Accordingly, two 
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trapping grids were laid out adjacent to creek lines commonly used by the cat but 

extending into the areas that were not used (Figure 13). The GPS data from the other 

cats fitted with GPS collars also showed that they used creek-lines more heavily than 

other habitats. While the grids were restricted to within the home range of one cat, 

they were chosen as they were representative of the habitats that were generally 

avoided and those that were used heavily by all the cats. Trapping concluded at the 

beginning of December 2009. 

 
Figure 13. Location of trap grids within the home range of a feral cat,  Olof in Far East 

Gippsland. Grid sites (A and B) are marked with arrows and the GPS locations for Olof by dots. 

The township of Cann River is located in the bottom right of the map. Background GIS layers 

were supplied by the Department of Sustainability and Environment, Victoria. 

Small mammal trapping 

The two trapping grids were established within the home range of the feral cat Olof. 

The grids had one side adjacent to areas of high use as shown by the GPS data and 

extended from there into the unused areas within the home range. Each grid was 

trapped for three consecutive nights on three occasions. Each grid contained 64 type 

A Elliott traps (330 x 100 x 100 mm) (Elliott Scientific Equipment, Upwey, Victoria) 

Site A

Site B
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in an 8 x 8 grid with 20 m spacing between the traps. Traps were placed in the most 

suitable location within 2 metres of the 20 metre point to maximise captures (Stewart 

1979; Tasker and Dickman 2002). A wad of dacron fibre was placed in each trap to 

provide bedding and warmth for captured animals. Each trap was also placed in a 

plastic bag to prevent the ingress of water and dew. Traps were positioned in such a 

way to as to be shaded from the sun and, if necessary, additional bark and leaf litter 

were added to ensure that traps remained shaded and to camouflage traps from casual 

observance. Traps were baited with a mixture of peanut butter, rolled oats and honey 

(Catling and Burt 1994; Dickman et al. 1983) compressed into a 2 cm ball. To reduce 

potential bias from differing proportions of ingredients, the bait mixture was made to 

the same “recipe” on each occasion (see chapter 3 for details).  

Traps were checked from dawn each day with captured animals identified, sexed and 

weighed. Each animal was fitted with an individually numbered lightweight 

aluminium (< 0.18 g) ear tag (Model 1005-1, National Band and Tag Co, Newport, 

Kentucky). The ear tags are self-piercing and were fitted using the proprietary 

applicator. To prevent infection, the ears were swabbed with Betadine
®
 solution pre 

and post fitting of the tags (Sharp et al. 2007). Following processing the animals were 

released at the point of capture and observed until they entered suitable shelter.       

GIS data 

The methods used for capturing feral cats and details of the GPS collars are discussed 

in Chapter 3. The GPS fixes for each cat for which GPS data were available were 

entered into ArcMap 9.2 (ESRI Inc. Redlands, California). Each point was buffered 

with a radius of the mean estimate of accuracy of all points (in my case 18.54 m). This 

was calculated by averaging all horizontal dissolution of precision (HDOP) values and 

multiplying that by the receiver accuracy (6 m) (Moseby et al. 2009b). Polygons were 

created outlining the unused areas in the home ranges but excluding the buffered areas 

around each point. Random points were created within polygons using Hawth‟s 

Analysis Tools for ArcGIS (Beyer 2004). The same numbers of random points were 

created as there were useable fixes for each cat. To determine if the cat preferentially 

used areas within its home range, the parameters of each actual fix were compared 
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against the randomly generated locations in areas unused by the cat. Abiotic 

environmental parameters thought to influence the location of the feral cat were 

determined a priori. These values were determined for each point by interrogating the 

appropriate GIS layers using the intersect point tool in Hawth‟s Analysis Tools for 

ArcGIS (Beyer 2004). The parameters selected to be examined were: 

1. Distance to nearest stream (metres) 

2. Elevation (metres above mean sea level) 

3. EVC code (This is a categorical factor where each vegetation community is 

classified using a code. See Davies et al. (2002) and DSE (2010b) for 

additional details if required) 

4. Slope of the land at the point 

5. Aspect of the land at the point, and  

6. Distance to nearest roadway (metres). 

Analysis 

The minimum numbers of animals known to be alive (MNKA) (Gilbert and Krebs 

1981) were calculated for each potential prey species and for prey animals as a whole. 

Prey density, population estimates and detection probabilities were calculated for each 

trapping grid using DENSITY software, version 4.4 (Efford 2004). The mean distance 

moved by animals between captures was calculated and added as a buffer to the grid 

size to remove potential bias in prey density estimations by accounting for the area 

used by animals captured on the edges of the grids. Prey species were combined for 

this analysis to give overall prey density rather than individual species density. Chi-

squared analysis was used to identify differences in capture rates between trap lines 

close to the creek lines and those further away. As cats did not appear to use roads, 

chi-squared analyses were used to determine if distance from road affected capture 

rates. 

A stepwise logistic regression with binomial distribution was used to determine if the 

abiotic environmental parameters determined a priori were suitable parameters for 

inclusion in the AIC models. This analysis was undertaken for each cat and for the 

dataset as a whole and compared the parameter values for each known location of a 

feral cat against those of the randomly chosen locations in areas unused by the cats. 
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All analyses detailed in this section were undertaken using the Statistica 7 statistics 

package (StatSoft Inc 2004).  

Modelling 

Once the appropriate abiotic factors were determined using the logistic regression 

model, ten a priori models, including a global model which contained all the 

parameters, were constructed and tested. The models were used to determine which 

would best fit the home range use by feral cats based on the abiotic environmental 

factors. The performance of the models against the GPS data were compared using 

Akaike Information Criteria (AIC) (Burnham and Anderson 2002). It is suggested that 

when the sample size to parameter ratio (n/K) is < 40 that AIC be corrected to AICc 

(Burnham and Anderson 2002). As the ratio of sample size to parameters in this 

analysis was about 118, this correction was not used. The overdisperson parameter (ĉ) 

of the models was calculated from the goodness-of-fit chi-square statistics of the 

global model (i.e. all parameters included). This is divided by the degrees of freedom 

of that model to give a ĉ value. AIC analyses were undertaken using the GLZ model 

building function of the Statistica 7 statistical package (StatSoft Inc 2004).  

Results 

Small mammal trapping was undertaken for 1 152 trap nights over three occasions 

commencing in February 2009 and concluding at the beginning of December 2009. 

Overall, 37 unique animals were captured a total of 73 times. Three species of small 

mammal were captured – bush rat (Rattus fuscipes), agile antechinus (Antechinus 

agilis) and dusky antechinus (A. swainsonii) with captures dominated by the bush rat. 

Capture and recapture rates at site B were quite low, with correspondingly large 

standard errors for population size and density estimates. Only a single animal was 

captured in February 2009 resulting in no estimation of density or capture probability 

(Table 11). The estimated overall population size declined at site A during the course 

of the trapping but increased at site B over the same period (Figure 14). Insufficient 

animals were recaptured between trapping sessions to allow a population estimation to 

be made over the term of the sampling.   



Chapter 5. Intra-home range use by feral cats  

 
 

88 

 

Table 11. Population and capture-related estimates for small mammals at each of two trapping 

sites (A and B) in Far East Gippsland. As all species captured are potential prey for feral cats, 

numbers have been combined to yield overall estimates of prey abundance. Note: only a single 

animal was captured during the February 2009 trapping session at site B so no density or capture 

rate estimates are available. MNKA = minimum number known to be alive. 

Site and date 

trapped 
MNKA Recaptures 

Population 

estimate 

 ± se 

Density ± se 

(animals ha
-1

) 

Capture 

Prob 

Site A      

February 2009 20 16 21 ± 1.65 5.48 ± 1.32 0.57 

July 2009 9 7 9 ± 0.98 2.53 ± 0.93 0.59 

December 

2009 
5 2 6 ± 2.02 2.27 ± 1.55 0.38 

Mean    12 ± 4.58 3.43 ± 1.03 0.51 ± 0.07 

Site B      

February 2009 1 0 1 ± 1.07 * * 

July 2009 2 3 2 ± 0.1 0.42 ± .023 0.83 

December  

2009 
7 1 17 ± 12.42 3.90 ± 3.54 0.16 

Mean   7 ± 5.17 1.97 ± 1.92 0.49 ± 0.33 

Data from site B were pooled into grid halves and analysed as the half closest to the 

creek-line or road and the half furthest from the creek-line or road to ensure sufficient 

numbers of captures. Distance from the creek-line had no effect on numbers of 

captures, with no differences found in the number of animals captured on each line of 

the grid at either trapping site (Site A:  = 8.39, P = ns and Site B:  = 0, P = ns). 

Distance to the road also had no effect on the capture rate, with no difference found 

between the number of captures on lines closest to the road compared with those 

further away (site A:  = 7.31, P = ns and site B: = 2.57, P = ns).  
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a  

 

b  
Figure 14. Minimum numbers of small mammals known to be alive during three trapping 

sessions in Far East Gippsland.  MNKA = minimum number known to be alive, a = site A, b = 

site B. 

GPS data were obtained and analysed for four feral cats. A total of 768 useable fixes 

were gained from the four cats. I did not use the fixes taken at 15 minute intervals for 

the cat Hans as on many occasions the subsequent fix location was still within the 

GPS error radius of the previous fix. The same numbers of random fixes were 

generated, making a total of 1 536 data points used in the analyses. Slight variation in 

the time between fixes ensured that fixes were taken at all times during the day over 

the period the collars were on the cats (see Chapter 3 for a full explanation).  
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The GPS collar of one cat, Olof, was found after the mortality sensor was triggered. 

The cat had been radio tracked two weeks previously. It was assumed to be alive at 

that time as it had moved between successive fixes and the mortality sensor had not 

been triggered. The collar was located but not the body of the cat. The epoxy resin 

used to protect the components of the collar was damaged. An examination indicated 

that the damage was caused by the teeth of a large predator; either a fox or wild dog 

as shown by the spacing of the teeth marks. It is unknown if the cat died as a result of 

predation or had died and was subsequently consumed as carrion. 

Logistic regression of the biotic and abiotic environmental parameters showed that 

their relevance was specific to each individual cat, with some parameters being 

considered significant for some cats but not others. From evaluated parameters, five 

were selected as they had a significant effect on the presence of most feral cats, these 

being elevation, slope, aspect, ecological vegetation classification code (EVC), and 

distance to stream (Table 12). A sixth factor, distance to road, was also added into the 

analyses as it had been shown to be a significant factor for several cats. Model 

averaging was not used as the second best model contained all factors (Table 13).   

Table 12. Result of logistic regression of all factors considered a priori to influence feral cat home 

range use. Factors are shown in increasing order of significance as determined by the analysis. 

*EVC is a categorical variable with eight categories giving it 8 degrees of freedom within the 

analysis. 

Factor df Wald statistic P 

Intercept 1 0.00002 0.996 

Distance to road 1 0.371 0.542 

Aspect 1 0.399 0.046 

Elevation 1 7.229 0.007 

EVC* 8 27.372 0.001 

Slope 1 21.416 0.001 

Distance to stream 1 27.776 0.001 
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Table 13. Summary of the model selection statistics for the 10 a priori determined models for 

describing cat presence at study sites in Far East Gippsland. K is the number of parameters in 

the model (EVC contributes 8 parameters to each model it is included in). -2Log(L) is twice the 

negative log likelihood value. AIC is the Akaike Information Criteria value and Δ AIC is the 

difference in AIC values between that model and model 1. (Model terms: Elev = elevation, 

Stream = distance to nearest stream, Slope, angle of the slope of the land and the sampling point, 

Aspect = aspect of the land at the sampling point, EVC = Ecological Vegetation Classification 

code (note this is a categorical factor not a continuous factor), and Road = distance to nearest 

road). 

No. Model K -2Log(L) AIC ∆ AIC 

1 Elev, Stream, Slope, EVC, Aspect  12 2047.40 2073.40 0 

2 
Elev, Stream, Slope, EVC, Aspect, 

Road 
13 2047.03 2075.03 1.63 

3 Elev, Stream, Slope, EVC 11 2051.49 2075.49 2.09 

4 Elev, Stream, Slope 3 2083.89 2091.39 17.99 

5 Stream, EVC 9 2071.62 2091.62 18.22 

6 Elev, Stream, EVC 10 2071.61 2093.61 20.21 

7 Stream 1 2098.39 2102.39 28.99 

8 Elev, stream 2 2098.35 2104.35 30.95 

9 EVC 8 2098.40 2116.40 43.00 

10 Elev 1 2128.62 2132.62 59.22 

 

The model with the lowest AIC value generally best describes the variation in the data 

and is used as the model of best fit. However, in this case, model 3 is chosen as the 

best model. As the Δ AIC is about 2 or lower for all three of the best models, there is 

substantial support for each of these models. Also, the additional parameters of 

“aspect” in model 1 and “aspect” and “distance to road” in model 2 have added no 

more to the model than would occur through adding a further parameter which has no 

effect on the model outcome (Burnham and Anderson 2002). As a result, models 1 

and 2 are discarded in favour of model 3 on the basis that the added parameters in 

those models have added little, if any, value to the model.  

The global model produced a ĉ = 6.33 indicating that the models were overdispersed. 

As ĉ > 4, it also indicates that the fitted model does not account for sufficient 

variation in the data to be robust and that one or more unknown factors are likely to be 

contributing to the overall variation (Burnham and Anderson 2002 pp. 68).    
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Discussion 

The results provided little support for the two initial hypotheses of home range use by 

cats. There was little evidence to suggest that cats avoided parts of their  home range 

because they lacked either food or habitat resources. Small mammal trapping 

indicated that there were populations of prey animals in areas that were used and not 

used by the cat Olof, with prey densities of up to 5.48 ha
-1

 and a mean of 2.79 ha
-1 

across the two trapping grids. This would indicate that there are sufficient food 

resources within these holes to make hunting energetically profitable. In addition, 

there was no difference in the capture rates of potential prey items near or away from 

the creek-lines, suggesting no reduction in prey availability with distance from areas 

that cats frequent. As a result, it seems unlikely that cats avoid some areas due to the 

lack of available prey items. Similarly there was no reduction in captures on grid lines 

closer to roads than on those further away, indicating that little or no edge effect exists 

in relation to prey availability (Andren and Angelstam 1988; Goosem 2002). 

The habitat variables chosen to explain home range spatial use by feral cats were 

generally cat-specific, with some being important for one cat but not for others. Five 

of the six variables that were chosen for modelling cat presence against the random 

cat absence points were shown by logistic regression analysis to be significant 

predictors of cat locations. Of the individual variables, distance to creek-line was the 

most significant in determining cat locations compared with randomly generated 

points. This may be due to the more complex vegetation that occurs along creek-lines 

(pers. observation) which affords them more shelter from weather or greater 

protection from intraguild predation. 

The first two models in the AIC analysis were discarded as the addition of more 

parameters did not decrease the AIC score by much more than 2. This indicates that 

these additional parameters contributed little, if anything, to the ability of the model to 

account for the variance in the data. The calculation of the AIC values from the data 

uses the formula AIC = -2log(L(y)) + 2K, where (L(y)) is the model likelihood 

and K is the number of parameters. Generally, as the number of parameters increases, 

the first term (-2log(L(y)) decreases. However, this is counter balanced by the 
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increase in the second term (2K) (Burnham and Anderson 2002, p. 62). Generally if 

the number of parameters is increased by one, and the AIC value decreases by <2, 

then that parameter has not added value to the model and the decrease in AIC is 

attributable to the addition of the parameter.  

The accepted best model, model 3, was similar to the logistic regression in showing 

that the most important parameters are the distance to nearest stream, slope, elevation 

and vegetation composition. However, as the global model was overdispersed (ĉ = 

6.3) it is likely that that some other, unmeasured factor(s) contributed to the variation 

within the data. It is most likely that this missing parameter involves predator 

avoidance strategies being employed by the cats that also contribute to determining 

how they use their home ranges. Two other methodological possibilities exists which 

may account for why cats use only some parts of their home ranges and these are 

discussed later.  

The mammalian predator guild in Far East Gippsland consists primarily of three 

species, the wild dog/dingo (Canis familiaris / C. lupus dingo), the red fox (Vulpes 

vulpes) and the feral cat. A fourth predator, the spotted-tailed quoll (Dasyurus 

maculatus) also exists in the region but its abundance is far lower than that of the 

other three predators. The three main predators exhibit extensive dietary overlap, with 

common ringtail possum (Pseudocheirus peregrinus), Antechinus spp. and Rattus spp. 

featuring prominently in the diets (Diment 2010; Triggs et al. 1984; Appendix 1 of 

this thesis). Intraguild predation occurs between cats and quolls (Glen et al. 2010). 

Inclusion of intraguild species, particularly cats, in fox diet was found in Far East 

Gippsland by both Diment (2010) and Triggs et al.(1984).  Similarly, dogs in New 

South Wales forests adjacent to the Gippsland border have been shown to include cats 

in their diet (Lunney et al. 2001; Lunney et al. 1990).  

Over the period of this study, 10 wild dogs / dingoes and nine foxes were captured in 

the same areas as the cats. The dogs were released at the point of capture and the 

foxes participated in other experiments being conducted in the area (i.e. Diment 

(2010)). Sand-plot and bait-take data collected by Southern Ark indicates that wild 

dogs / dingoes and foxes are present across all the monitoring areas within the 
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Southern Ark Project. Approximately 43% of all bait-take is by these species (Diment 

2010, p. 61). It is likely that predator avoidance is why cats avoid large areas of their 

home ranges. Many lower order intraguild predators face a trade-off between 

obtaining sufficient prey to meet their nutritional requirements and their need to 

remain safe from being preyed upon by higher order intraguild predators (Sih 1980).  

Intraguild predator avoidance strategies occur in bobcats (Lynx rufus) when in the 

same area as coyotes (Canis lutrans) (Wilson et al. 2010). When prey availability is 

high, bobcats avoid areas that are used extensively by coyotes. Conversely, when prey 

abundance is low, they are forced into areas of high coyote use.  

Other opportunistic predators, such as wolf spiders (Pardosa milvina) prefer to remain 

in areas where prey items can be exposed yet where sufficient protection remains for 

them to reduce the potential for intraguild predation (Schmidt and Rypstra 2010). 

Similarly, bottlenose dolphins (Tursiops aduncus) avoid good quality foraging areas 

when tiger sharks are present, even in low numbers (Heithaus and Dill 2002). In the 

present study, prey animal trapping suggested that sufficient prey resources existed in 

the areas frequented by cats during the time the cats wore GPS collars. As a result 

they were not compelled to enter areas that are probably more frequently used by 

foxes and dogs, such as roadways and ridgelines (Mahon et al. 1998; Webbon et al. 

2004) that would expose them to a higher risk of depredation.  

Other studies have been conducted using GPS collars on feral cats. Hilmer (2010) and 

Johnston et al. (2010b) tracked 15 feral cats on Dirk Hartog Island, Western Australia. 

Feral cats were also tracked using GPS on French Island, Victoria (M.J. Johnston, 

unpublished data). Intraguild predators do not exist on either of these islands. The 

holes noticed in the home ranges of cats in this study were not present in those of cats 

on the islands without other predators.   

If the predator teeth marks on the collar of the cat Olof resulted from an intraguild 

predation event, it is possible that it was forced to forage in areas frequented by foxes 

and wild dogs. There was a downward trend over the period of this study in the 

number of prey items detected on the grids within its home range. If it became 

energetically unprofitable to continue to forage in areas that afforded greater 
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protection from encountering intraguild predators, it may have been forced into areas 

where there was an increased likelihood of encountering foxes or dogs. Unfortunately 

the GPS collar on Olof ceased to function several months prior to his death so this 

hypothesis cannot be tested. 

Two methodological possibilities exist that may also explain the avoidance of these 

areas by feral cats. Firstly, if GPS fixes were not taken at times when cats were in the 

„unused‟ areas, their avoidance of these areas would be an artefact rather than 

reflecting reality. The mean time between the GPS taking a location was slightly 

shorter than requested (see Chapter 3, Table 5), resulting in a “fix creep”. For 

example, using the collars with a 6 hourly sampling rate, the mean time between fixes 

was 5.96 h, resulting in a cumulative time slip of 10 minutes per day in the timing of 

fixes. A collar that took a fix at 6 am one day would take the same scheduled fix at 

5.50 am the following day and at 5.40 am the next day, and so on. However, such fix 

creep would be very unlikely to result in apparently unused areas within home ranges. 

If feral cats used certain areas at certain times of the day, this would have been 

evident by the presence of data points at those times as a result of the time slip 

between fixes. 

Secondly, it is possible that other cats were present in the areas not frequented by the 

GPS-collared cats, and that their presence deterred the collared cats from entering and 

using them. However, this seems unlikely as female cats appear to readily overlap 

both the home range and core areas of other females and male cat home ranges readily 

overlap those of females (see Chapter 3). The potential for exclusion by another cat 

only appears probable when both cats are male, however, male home ranges are 

substantially larger than the un-entered areas within the collared cat home ranges 

therefore making this scenario unlikely.     

If the above line of thinking is correct, the presence of higher order intraguild 

predators in the environment inhabited by the cats may influence both their 

movements and the areas they use within their home ranges. Dingoes have a 

controlling effect on foxes and feral cats through direct predation (Edwards et al. 

2002; Paltridge 2002). Additionally they can force behavioural changes, a response to 
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an increased risk of predation, which can change both the habitat use and abundance 

of the mesopredator (Ritchie and Johnson 2009). Glen et al. (2007a) found evidence 

that dingoes can limit both lower order predators and prey species. Similarly, Molsher 

(1999) found that when fox abundance was reduced, feral cats began to move into 

areas previously unused when foxes were present in larger numbers. If the feral cats in 

Far East Gippsland do not use areas within their home range to minimise the potential 

for intraguild predation, the management of the higher order intraguild predators 

through population reduction may result in mesopredator release. This may allow 

feral cats to increase in abundance (Johnson et al. 2007; Letnic et al. 2009) and 

become the apex predator in the region. If so, this has the potential to have substantial 

negative impacts on prey species populations within the system (Fan et al. 2005; 

Risbey et al. 2000; Soulé et al. 1988).  

It is recommended that a long-term, replicated predator removal study, similar to that 

of Risbey et al. (2000), be undertaken in Far East Gippsland to determine if the 

presence of dingoes / wild dogs and foxes is suppressing the behaviour and abundance 

of feral cats. Such an experiment should incorporate experimental control sites, sites 

where the population of the higher order predators is reduced individually and sites 

where both higher order predators are reduced. This will allow the level of 

suppression each exerts on feral cats to be determined. Having sites where the 

abundance of both higher order predators is reduced will determine whether their 

presence has a synergistic suppressive effect on feral cats. Monitoring of the impacts 

of feral cats on prey species would also need to be undertaken to determine if 

reducing the abundance of the higher of order predators impacts negatively on prey 

species populations. 

If the populations of the higher order predators are reduced and a mesopredator 

release occurs, there are limited techniques available to land managers in Far East 

Gippsland to enact feral cat management through felinicide. No poison baits have 

been approved for use with feral cats in Victoria (APVMA 2011). In 2008 the 

Victorian government banned the use of rubber-jawed traps for capturing feral cats on 

public land (see Division 3 of the Victorian Prevention of Cruelty to Animals 

Regulation 2008). Indeed, Section 32 of that Regulation requires that any cat captured 
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be taken to the nearest local council rather than be destroyed at the point of capture. 

As a result, the management of feral cats may well need to be undertaken through 

managing the populations of higher order intraguild predators rather than the cats 

directly. A study such as that suggested above would be able to guide the land 

managers on the best methods of doing such. 
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Chapter 6 

Prey population dynamics and optimal baiting times for 

feral cats   

Chapter overview 

As feral cats are obligate carnivores, knowledge of the population demographics of 

their prey species is essential for determining the optimal timing of effective 

management programs. Feral cats generally prefer live prey and do not scavenge 

except during times of high food stress. In the eastern states of Australia such times 

generally occur in winter and early spring when their primary prey sources are 

naturally at their lowest levels, particularly after the breeding period of Antechinus 

species, which are among the most common and abundant potential prey for cats. 

Antechinuses are semelparous marsupials in which all males die after a brief mating 

period that lasts about two weeks during the winter – early spring.   

To determine the population demographics, breeding cycles and population 

fluctuations in terrestrial mammals that could potentially form prey for feral cats in 

Far East Gippsland, I established four mammal trapping grids. Each grid was trapped 

for three consecutive nights on four separate occasions – three for small mammals and 

once for mid-sized mammals. Captured animals were tagged to allow recaptured 

animals to be identified.  

Five species of prey-sized animals were captured, with the bush rat Rattus fuscipes 

being captured most commonly. Patterns of abundance of prey animals varied 

between the trapping grids, with the populations declining on half the grids and 

increasing on the remaining two grids as the study progressed. The spatial and 

temporal variation in these populations is most likely explained by a combination of 

the natural population fluctuations of the study species and site-specific phenological 

changes or availability of other resources in the forest over the period of sampling. 

Female Antechinus agilis in September had 1 – 1.5 cm long pouch young, indicating 

that the breeding period for this species is early to mid August. Male A. swainsonii 

had entered the trappable population by the end of November. The time between 
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conception and entering the trappable population is about five months, indicating that 

the breeding season for this latter species occurs before late June in the study area. 

The breeding seasons for the Antechinus species in this region occur earlier than 

would be expected based on the breeding periods of other populations of the same 

species. This has ramifications for managers in that the winter food deficit for feral 

cats occurs earlier than would be expected in other regions. Additionally, management 

intervention using poison baiting needs to avoid periods when non-target species are 

at increased risk. Timing of poison baiting campaigns in Far East Gippsland would 

have to occur earlier to avoid placing females with pouch young at risk as they are 

present in the forest earlier than would be expected in other regions.   

Introduction 

Feral cats (Felis catus) are obligate carnivores (Bradshaw et al. 1996; Zoran 2002). 

The loss of key metabolic enzymes has resulted in the cat having a narrowly defined 

diet that is high in protein and low in carbohydrates. For feral cats – that is, animals 

that do not rely on humans for any portion of their dietary intake – this can be 

satisfied only by a diet consisting largely of vertebrate prey (Zoran 2002). Feral cats 

usually have a preference for live prey and rarely scavenge carrion unless they are 

hungry and food stressed (Algar et al. 2007; Leyhausen 1979).  

Generally the diet of feral cats consists predominantly of mammals with only limited 

numbers of birds being consumed (Jones 1989). In the Far East Gippsland region of 

Victoria, feral cat diet consists primarily of small to mid-sized mammals such as 

Antechinus spp., Rattus spp. and Pseudocheirus peregrinus (common ringtail possum) 

(Triggs et al. 1984; also see Appendix 1 of this thesis). However, the composition of 

prey species‟ populations themselves is largely unknown in Far East Gippsland; it is 

also not known if feral cats in that region consume different prey species in the same 

ratio at which they are available in the environment, or if they selectively depredate 

some species in preference to others.    

Reducing feral cat populations through poison baiting relies on presenting baits at a 

time when they are most likely to be consumed by cats. This is usually during times of 

food stress when prey populations are at low levels such as during winter and early 
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spring and following boom periods in prey availability when prey populations are 

declining (Algar et al. 2007; Letnic and Dickman 2010). In order to successfully 

manage cats through poison baiting it is essential to know at which time of year a prey 

deficit is most likely to occur.  

Members of the marsupial carnivore genus Antechinus are entirely semelparous. All 

males die following a brief and synchronous breeding period in mid to late winter 

(Morton et al. 1989; Wakefield and Warneke 1967; Wood 1970). The mating period 

of Antechinus agilis (agile antechinus), a common and widespread species in Far East 

Gippsland, is triggered every year when a particular threshold is reached in the rate of 

change in photoperiod as days lengthen following the winter solstice (McAllan and 

Dickman 1986; Scott 1986). However, there is considerable variability in the timing 

of breeding between the various populations in Victoria (Dickman 1982; McAllan and 

Dickman 1986),  perhaps as a result of undetected cryptic species or as a result of 

slippage in the photoperiodic response of panmictic species populations. As a result, it 

is not possible to predict the timing of the breeding period in Far East Gippsland as 

accurately as it is with more northern populations. Understanding and accurately 

predicting the time of breeding is important in helping to identify the period when 

populations decline and cats, in consequence, may face a much reduced prey base.  

The timing of the breeding period of A. swainsonii (dusky antechinus) is thought to be 

based on altitude rather than latitude, and is much more difficult to predict accurately 

than in most other species of the genus (Dickman 1982; McAllan et al. 2006);  its 

timing in Far East Gippsland is not known. As in A. agilis, there is a halving or more 

of the number of A. swainsonii available to be consumed as prey immediately 

following the breeding period due to the complete die-off of males. As adult females 

are often only half as large as adult males (McAllan et al. 2006), the biomass of 

available food for feral cats is reduced by considerably more than half following the 

male die-off.   

Rattus fuscipes (bush rat) is also a common component of the diet of feral cats in Far 

East Gippsland (Triggs et al. 1984; also see Appendix 1 of this thesis). It is a member 

of the family Muridae and is one of the new endemic rodents (Watts and Aslin 1981). 
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It is an omnivorous species that can breed several times a year if there are sufficient 

food resources available (Menkhorst and Knight 2001; Taylor and Calaby 1988); 

while some research has focused on this species elsewhere in Victoria (e.g. Robinson 

1988; Warneke 1971),  little is known about its reproductive behaviour or population 

dynamics in Far East Gippsland. 

Few data are available on the population parameters of prey species in Far East 

Gippsland that are likely to be relevant to managers charged either with the 

conservation of these taxa or the control of their predators. Parameters such as 

population size, species composition, the mass of small or mid-sized mammals, if 

sexual dimorphism exists, and if so, the sex ratios within the population, are all likely 

to be relevant to predators that need to balance energy expenditure against energy gain 

when pursuing food. Knowledge of population parameters is also essential for local 

land managers who are required to make decisions about the timing of certain 

management actions. For example, poison baiting at a time when non-target species or 

females with pouch young are most susceptible could place those females and young 

at high risk and also have disproportionately large effects on their populations. 

To determine the most appropriate time to manage feral cats using poison baiting, I 

examine the composition and abundance of populations of small and mid-sized 

terrestrial mammal species that may be susceptible to feral cat predation in Far East 

Gippsland. I also compare the potential availability of different species with current 

knowledge of the diet of feral cats in the same region. I also describe the population 

demographics of three of the more common species.  

Methods 

Study area 

Sampling was undertaken in the West Cann unpoisoned monitoring area, the 

Drummer poisoned monitoring area and the Coopracambra National Park in Far East 

Gippsland (Figure 15).  
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Figure 15. Location of four small and mid-sized mammal trapping grids (A – D) in Far East 

Gippsland, Victoria. Sites A and B are closely spaced within the home range of one feral cat (see 

chapter 5 for details). Sites A and B were trapped simultaneously as were sites C and D except as 

described in the text. Background data were extracted from geospatial data provided by the 

Department of Sustainability and Environment, Victoria. 

Trapping 

Four grids were established for trapping prey-sized mammals. The grids were placed 

both inside and outside the monitoring areas used by Southern Ark (Figure 15) to 

account for any variation in density that may occur due to differences in habitat and 

management regime. The grids were established in tall forest dominated by white 

stringy bark (Eucalyptus globoidea) and brown barrel (E. fastigata). Each grid 

consisted of 64 Elliott traps (330 × 100 × 100 mm) (Elliott Scientific, Upwey, 

Victoria) laid in an 8 × 8 grid with 20 m spacing between traps. Traps were placed at 

the most suitable point within 2 m of the 20 m point to maximise capture rates 

(Stewart 1979; Tasker and Dickman 2002). Traps were baited with a combination of 

peanut butter, honey and rolled oats rolled into a 2 cm ball (Catling and Burt 1994; 

Dickman et al. 1983). Bait was made to the same recipe on each occasion to reduce 

the potential for bias from differing proportions of ingredients (see chapter 5 for 

details). A wad of Dacron fibre was placed in each trap for bedding and each trap was 

placed in a plastic bag to prevent the ingress of rain or dew. Traps were placed in 
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shaded positions and, where necessary, additional bark and leaf litter was added to 

ensure the trap remained shaded.  

Wire cage traps (520 × 200 × 200 mm) (Mascot Wireworks, Homebush, New South 

Wales) were obtained through the Cann River Parks Victoria office for mid-sized 

mammal trapping. Traps were deployed in a 3 × 8 grid pattern of 24 traps at each site, 

and were laid out on grid lines used previously for the small mammal trapping. Cage 

traps were trigger-operated and closed when an animal pulled on the bait at the rear of 

the trap. Several large handfuls of leaf litter were added to each cage trap to provide 

bedding and warmth for captured animals. Each trap was fitted with a custom-made 

heavy PVC cover to reduce the amount of rain or dew that could affect the captured 

animals. 

Small mammal trapping was undertaken on three occasions at sites A, B and C but 

occurred only twice at site D. Each site was trapped for three consecutive nights on 

each occasion. Mid-sized mammals were trapped on one occasion consisting of three 

nights of trapping at each of the four sites.  

Traps were checked each day at dawn with captured animals identified, checked for 

sex and reproductive status, and weighed. Fresh captures were fitted with an 

individually numbered ear-tag made from lightweight aluminium (< 0.18 g) (Model 

1005-1, National Band and Tag Co, Newport, Kentucky). These self-piercing ear-tags 

were fitted to the lower proximal region of the pinna using the proprietary applicator. 

Care was taken to avoid blood vessels when fitting the tag. The ear was swabbed with 

Betadine
®
 solution (Sanofi-Aventis Pty Ltd, Rydalmere, New South Wales) both pre 

and post fitting of the tag to minimise infection risk (Sharp et al. 2007). Animals were 

released at the point of capture and were observed until they reached suitable shelter. 

Analysis 

The minimum number of animals known to be alive during each trapping session was 

calculated for each prey species captured. Insufficient numbers of some species were 

captured at some sites to allow population level analyses to be undertaken, but data 

for bush rats (Rattus fuscipes) were analysed using Density software (version 4.4) 
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(Efford 2004). Bush rat density was calculated based on the effective grid size rather 

than the actual grid size used. Effective grid size was calculated by adding a buffer 

zone to the grid equivalent in width to the mean distance moved by animals between 

captures, following conventional practice (Hayne 1949; Southern 1979). Comparisons 

between species and sex ratios of captures were undertaken using chi-squared tests, 

with Yates‟ correction for continuity applied in analyses with a single degree of 

freedom (Fowler et al. 1998 p. 116). Student‟s t-tests were used to determine 

differences in weight between males and female. These analyses were undertaken 

using the Statistica 7 software package (StatSoft Inc 2004).  

Results 

Trapping was undertaken between February 2009 and September 2010. Access to 

trapping grids was restricted by heavy rain or high fire danger on several occasions, 

resulting in the planned trapping sessions being delayed. In all, 2 046 trap nights were 

completed with 93 individual animals being captured on 176 occasions. One animal 

escaped prior to processing so has been excluded from the analyses. Five species were 

captured (Table 14). Overall trap success rate was 8.6%; however, trap success was 

high for small mammals (9.7%) compared with mid-sized mammals (1.7%). Bush rats 

were the most common species captured across all grids (  = 47.8, P <0.001) (data 

for the three least common species were pooled for this analysis).  

Table 14. Mammal species captured at four sites in Far East Gippsland, indicating total numbers 

of individuals captured, with recaptures shown in parentheses. Numbers of individual males and 

females are also shown, excluding recaptures. 

Species  Captures ♂ ♀ 

Bush rat (Rattus fuscipes) 62 (123) 23 39 

Agile antechinus (Antechinus agilis) 20 (38) 5 15 

Dusky antechinus (A. swainsonii) 8 (10) 4 4 

Long nosed bandicoot (Perameles nasuta) 2 (4) 1 1 

Long nosed potoroo (Potorous tridactylus) 1 (1) 0 1 

Total 93 (176) 33 60 
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Significantly more female than male R. fuscipes were captured (  = 4.14, P <0.05). 

Similarly, more female A. agilis were captured than males ( = 5.05, P <0.05). 

There was no difference in the weights (mean ± se) of male ( x  = 125.9 ± 8.59 g) and 

female R. fuscipes ( x  = 119.8 ± 4.59 g) (t(60) = -0.67, P = 0.49). There was also no 

difference between the weights of male ( x  = 21.8 ± 0.97 g) and female A. agilis ( x  = 

24.5 ± 2.52 g) (t(18) = 0.61, P = 0.54), nor between  male ( x  = 50.3 ± 20.58 g) and 

female A. swainsonii ( x  = 45.0 ± 2.89 g) (t(6) = 0.25, P = 0.81). Insufficient numbers 

of the remaining two species were captured to enable meaningful analyses.  

The minimum number of small prey animals known to be alive and the composition 

of prey species varied between sites. The populations of small mammals at site A 

declined over the study while at sites B and D the populations increased (Figure 16.)  

Only R. fuscipes provided sufficient captures and recaptures to enable density 

estimates to be calculated. During the December 2009 trapping session on site B, four 

individuals were captured, but none of these were recaptured during the trapping 

session. As a result, the standard error of the density for that trapping session could 

not be calculated. The population of R. fuscipes showed a declining trend at site A, no 

clear trend at site C, and a gently increasing trend on sites B and D (Figure 17).  

All female A. agilis captured at site D during September 2010 had hairless pouch 

young 1 – 1.5 cm in length. The longer pouch young had distinct dark circles where 

the eyes were developing but had not developed obvious ears. A single female A. 

agilis without pouch young was captured at site C during that same trapping session. 

This female still had a pouch present with extended nipples, indicating that young 

were being fed in a nest. Juvenile male A. swainsonii had entered the trappable 

population by the November / December 2009 trapping session.  
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Figure 16. Minimum numbers of animals known to be alive on each of the trapping grids in Far 

East Gippsland. Grid identifier is shown at the bottom left corner of each graph. Note: Grid D 

was trapped on two occasions only. Mid-sized mammals are not shown due to low capture rates. 

Note: trapping session noted as Dec 09 in this figure commenced on 27th November 2009 and 

continued into December 2009. It is shown as Dec 09 in the above figure only for the sake of 

brevity. 
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Figure 17. Density of Rattus fuscipes at each of four sites in Far East Gippsland. Y axis is density 

of bush rats ha
-1

. Site identifier is shown on the bottom left corner of each graph. Density 

estimates were calculated using the program Density (Efford 2004). Error bars indicate standard 

error of the density estimate. Note: No recaptures occurred during the December 2009 trapping 

session on site B. As a result no error bars could be calculated for the population density. 

Discussion 

The most common species captured during this research, R. fuscipes was also the most 

common prey item in the diet of feral cats in Far East Gippsland (Appendix 1).  

However, the agile antechinus, A. agilis, was the second most commonly captured 

mammal yet was not found in the diet of the feral cats. Fewer A. swainsonii were 

captured than A. agilis yet that species appeared as a dietary component in nearly 20% 

of the cat scats analysed. The scansorial nature of A. agilis may assist it to avoid 

predation more readily than the wholly terrestrial A. swainsonii but, if such behaviour 

is advantageous, it does not account for why the predominantly arboreal ringtail 

possum, Pseudocheirus peregrinus (not captured in this study), was found in about 

10% of cat scats. As A. agilis (reported as A. stuartii) was found by Triggs et 

0

1

2

3

4

5

6

A

0

1

2

3

4

5

6

B

C

0

1

2

3

4

5

6

0

1

2

3

4

5

6

D



Chapter 6. Prey population dynamics and optimal baiting times for cats  

 
 

108 

 

al..(1984) in 15% of cat scats, it is possible that the low number of scats analysed in 

Appendix 1 may have introduced bias into the dietary analyses. However, it is also 

possible that the lower body mass of the A. agilis makes them energetically 

unprofitable to pursue when compared with the larger A. swainsonii, especially when 

the latter species and the even larger bush rats are available. The paucity of captures 

of mid-sized mammals unfortunately precluded any assessment being made of their 

distribution or abundance in the forest. Neither the long nosed bandicoot, Perameles 

nasuta, nor the long nosed potoroo, Potorous tridactylus, were detected in the diet of 

cats in the present study (Appendix 1). It is possible that these species are too scarce, 

or too large (adults in both species achieve body weights >1 kg) to be hunted 

regularly, but further work is needed to evaluate these possibilities. 

The R. fuscipes population exhibited variable trends over the period of the study. A 

declining trend was found at site A, no clear trend at site C, while increasing trends 

were found at sites B and D. As there was considerable overlap in the standard errors 

of the density estimates within each site, it is possible that the temporal patterns in 

density were more apparent than real. If the patterns did reflect actual population 

trends, it is unlikely that they were influenced by fox baiting by Southern Ark as 

baiting had occurred in the vicinity of sites C and D prior to my study but did not 

occur at sites A and B (Diment 2010; Southern Ark, unpublished data). Instead, the 

forests of Far East Gippsland are highly, but patchily, productive (Cameron et al. 

2005), and this may provide a more likely explanation for the trends observed. Thus, 

the population fluctuations of R. fuscipes may reflect site-specific responses as 

animals tracked locally different changes in phenology or other resources over the 

course of the study (Lindenmayer et al. 2005; Taylor and Calaby 1988; Wood 1971).  

The higher numbers of female than male R. fuscipes captured during this study differ 

markedly from the results of most other studies (e.g. Robinson 1988; Taylor and 

Calaby 1988; Wood 1971). Generally the ratio of males to females is closer to 50:50 

or male biased, rather than showing the female dominance as found in this study. 

However, Wilson et al. (1986) found that the ratio of male to female R. fuscipes 

varied throughout the year with periods when only females were captured and others 

when captures of males outweighed those of females 2:1; overall, there were more 
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females captured than males. It is probable that the female bias found in this study is a 

result of the natural fluctuation of the R. fuscipes population, with my sampling taking 

place when females were either more abundant or more readily trappable. 

Many of the early records of A. agilis in Victoria were recorded as A. stuartii. This 

species was originally classified taxonomically as A. stuartii until separated as a 

distinct and separate species (Dickman et al. 1988; Dickman et al. 1998). While both 

species are nearly identical morphologically, they have predominantly separate 

distributions with limited overlap at Kioloa on the south coast of New South Wales 

and in parts of the southern tablelands of that state. Antechinus agilis occurs generally 

to the south of Kioloa and A. stuartii to the north (Menkhorst and Knight 2001), with 

no confirmed records of the latter species from Victoria.   

The capture of more female than male A. agilis in my work most likely arose from the 

timing of the sampling. As noted, members of the genus Antechinus are semelparous; 

all males die following a brief but intense period of mating in mid to late winter 

(Dickman 1980; Dickman 1985; Taylor and Horner 1970). Males generally do not 

enter the trappable population until mid to late summer the following year (Friend 

1985; Smith 1984). Sampling in this study took place mainly during the periods 

following male die-off and prior to juvenile males entering the trappable population. 

The lack of sexual dimorphism that I found in the two Antechinus species captured 

here may also result from the timing of the trapping. Strong sexual dimorphism is 

present in all Antechinus species, with adult – but not juvenile or subadult – males 

being 50-100% heavier and larger than females. While all species are sexually 

promiscuous, the weight of the male is correlated positively with the number of 

females fertilised and the number of offspring produced (Kraaijeveld-Smit et al. 

2003). It is most likely that trapping of adults prior to the breeding season would have 

revealed much stronger sexual dimorphism in these species than my results would 

otherwise suggest. 

The breeding season for most Antechinus species varies primarily depending on the 

rate of change of photoperiod (change in daylight length) in spring (McAllan and 

Dickman 1986; McAllan and Geiser 2006), although other factors such as population 
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density may also play a role (Dickman 1985). For A. agilis and other species in the 

temperate and subtropical zones, there is a distinct correlation between latitude and 

timing of breeding (McAllan and Dickman 1986; McAllan et al. 2006; Watt 1997). 

The pouch young in a female A. agilis captured in September 2010 (26
th

 – 28
th

) were 

hairless and 1 – 1.5 cm long. Marlow (1961) examined the growth rates of the larger 

A. stuartii (reported as A. flavipes) and indicated that pouch young of that size were 

between 12 and 20 days old. Antechinus agilis is a smaller species than A. stuartii and 

as a result, the pouch young found in this study are potentially older than would be 

predicted from Marlow (1961). However, as no data are available in the literature 

regarding the growth rates of A. agilis, I will use that proposed by Marlow (1961) as a 

minimum age. As the gestation period for A. agilis is 27 days (Selwood 1980), 

conception occurred between the 9
th

 and 17
th

 August. This places the breeding period 

in early to mid August for A. agilis in Far East Gippsland at the latest. This is slightly 

earlier than the time predicted using the model of McAllan and Dickman (1986) who 

found that the critical rate of change in photoperiod that triggers breeding is +127 to 

+137 seconds per day. This rate of change occurs from the 18
th

 August to 1
st
 

September at the latitude of my study (37.32 S) (Figure 18). When in sympatry with 

A. swainsonii, as in this study, A. agilis tends to breed later than when in allopatry 

(Dickman 1982).  

The breeding season of A. agilis in this study coincides with that of A. agilis in the 

Otway mountains ranges in western Victoria which lie between 1 and 1.5 degrees 

latitude further south (Scott 1986). As the Otway ranges are further south it would be 

expected that the breeding season at my sites would occur later than that of the 

animals in the Otways rather than in synchrony (McAllan and Dickman 1986). 
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Figure 18. Rate of change in photoperiod for latitude 3732 South. Y axis shows the rate of 

change in photoperiod in seconds per day. Dashed vertical lines show the period when the rate of 

change increases from 127 to 137 seconds per day which is the predicted breeding period for A. 

agilis. Solid lines show the probable breeding period found in this study. It is noted that the 

actual breeding period would last longer than indicated here. Adapted from McAllan and 

Dickman (1986) and day length data from the Bureau of Meteorology for Melbourne.  

The single A. agilis captured without pouch young yet still having extended nipples 

tends to indicate that either the young were being suckled in a nest, or that she had 

recently ejected the pouch young prior to being captured. No ejected pouch young 

were found in or near the trap in which she was captured. Juvenile antechinus attach 

very firmly to the mother‟s teats for 36 – 40 days from birth (Marlow 1961; Smith 

1984). Following that time, the young are left in a nest while the mother hunts. If the 

single A. agilis captured without pouch young had deposited her young in a nest by 

the time of capture, it would tend to indicate the breeding season for the population 

begins in late July.  

McAllan and Dickman (1986) suggested that there might be isolated remnant 

populations of A. stuartii in certain areas in Victoria. This species breeds when the 

rate of change of photoperiod is between 97 and 107 seconds per day. Isolated 

populations of Antechinus have been found at Mallacoota, Frankston and in the 

Grampian Ranges that breed when that rate of change of photoperiod is achieved. 

This rate of change occurs at my study sites in late July. If the single Antechinus 

captured had indeed deposited her young into a nest at the time of capture, and if the 
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advanced state of growth of the young of other females is considered, it is possible 

that this may be another isolated population of A. stuartii rather than A. agilis. 

Alternatively, no A. swainsonii were captured at site C during this study, nor were any 

recorded during a 7-year trapping program by Parks Victoria (R. Korn, Parks Victoria, 

pers. comm.) that immediately preceded my study. This indicates that A. agilis in this 

area are allopatric, in which case, breeding by A. agilis would tend to take place 

earlier than when in sympatry with A. swainsonii (Dickman 1982) such as at the other 

three sites trapped in the study. Clearly, the potential for an earlier breeding season in 

A. agilis in Far East Gippsland than in other populations at similar latitudes warrants 

further investigation. I note that the sample size in the present study is low and that 

definite conclusions should be drawn with caution. Nonetheless, as animals appeared 

to be breeding earlier than expected, this may have considerable bearing on when 

poison baiting for cats could be safely carried out, and should be investigated in more 

detail to determine exactly when breeding occurs.  

Juvenile male A. swainsonii had entered the trappable population by the end of 

November 2009. Juvenile Antechinus enter the trappable population about five 

months after the breeding period. This indicates that breeding of A. swainsonii in Far 

East Gippsland occurs in late June at the latest. This is up to one month earlier than 

occurs at other locations at similar latitudes in Victoria, for example, in the Otway 

ranges and at Sherbrooke (Cockburn et al. 1985). Juveniles did not enter the trappable 

populations until mid to late December at these locations. Dickman (1982 p. 146) 

suggested that altitude rather than latitude is one of the primary factors in the timing 

of breeding in A. swainsonii, with animals at lower altitudes breeding earlier. Timing 

of the breeding season in Far East Gippsland may be earlier due to the low elevation 

at the study sites (160 m AMSL). A further contributing factor may well be that 

populations there are sympatric with A. agilis, which could also result in an earlier 

breeding period than if the population was allopatric (Dickman 1982).  

If these differences in the breeding seasons of Antechinus spp. in Far East Gippsland 

have been interpreted correctly, they may require alterations to current management 

practices in that region. Trapping was scheduled in this study to avoid times when 
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young were in the pouch or had just been placed in the nest. This was done to avoid 

the potential for pouch young to be ejected due to stress on the mother while in the 

trap. Similarly, it was anticipated that the trapping schedule would avoid times when 

young had left the pouch and had been placed in the nest but were still dependant on 

suckling the mother for food. Restraining the mother in a trap for a period of time may 

reduce the survival of the nest young. Regular trapping as part of the Southern Ark 

project should be avoided at times when young Antechinus have just been placed in 

the nest, as restraining the mother in a trap for extended period may impact negatively 

on the nest-bound juveniles.  It is recommended that a survey of the breeding period 

of Antechinus species in Far East Gippsland be undertaken to establish the temporal 

variability of the breeding season in that region compared with the rest of the state. 

Additionally, it is recommended that additional trapping of the Antechinus 

populations takes place at the Coopracambra National Park site to determine which 

species is present.  

Feral cats generally eat carrion, and therefore baits, only at times when they are food 

stressed. In the south eastern states of Australia this is generally in late winter and 

early spring when food resources are at a minimum, for example following the male 

die-off in Antechinus spp. If an earlier breeding season for Antechinus causes a 

temporal shift in the timing of the food shortage, it therefore changes the best time to 

lay baits for cats. Based on this research, the optimal time for baiting feral cats is 

between the die off of male A. agilis in late August and the time that juvenile male A. 

swainsonii enter the trappable population at the end of November. The bush rat 

population would also be at a low ebb at this time.  Poison baiting for feral cats using 

baits where the toxicant in encapsulated within a hard shelled delivery vehicle 

(HSDV) that maintained structural integrity would result in little or no adverse effects 

on the remaining females (Chapters 7 and 8).  

Poison baiting at this time using surface-laid baits into which the toxicant has been 

directly injected is not recommended. The female Antechinus are lactating at this time 

which increases their metabolic requirements. As many insects are in diapauses at this 

time, it would be expected that the females, like the feral cats, would be food stressed 

and more likely to consume poisoned baits. If baiting at this time with directly 
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injected poison baits was a necessity, it is recommended that the bait be suspended 

above ground and beyond the reach of female antechinus using a technique similar to 

the gantry employed by Algar and Brazell (2008) on Christmas Island. 
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Chapter 7 

Potential for ingestion by non-target Australian animals of 

Curiosity
®
 baits with toxicant enclosed in a hard shell 

delivery vehicle – a desktop analysis   

Chapter overview 

Effective population control of feral cats remains an almost intractable problem, with 

very few techniques available for use by managers. Poison baiting is used over large 

areas in Western Australia to manage feral cat populations, with sodium 

monofluoroacetate (compound 1080) used as the primary toxicant. However, while 

many native mammal and bird species have a natural tolerance to 1080 in western and 

northern regions of Australia, their eastern conspecifics do not. Because of the 

potential risks of poisoning to non-target species, this precludes the laying of 1080 

baits on the ground surface in the eastern states of Australia. Trials are currently 

underway to determine if encapsulating the toxicant within a hard shelled delivery 

vehicle is effective in minimising access to the toxicant by non-target species.   

Here I present the results of a desktop analysis used to investigate the likelihood of 

Australian vertebrate animals consuming Curiosity
®

 baits, or similar media for baiting 

feral cats, and the potential of these animals to access toxicants that may be 

incorporated into the baits using a hard shell delivery vehicle (HSDV) approach. The 

HSDV comprises toxicant compound encapsulated in an acid soluble polymer 

approximately 6 mm in diameter (Hetherington et al. 2007; Marks et al. 2006) and 

which is inserted into the Curiosity
®
 bait media. I compare the numbers of animals 

that have the potential to consume just the Curiosity
®

 bait with those that have the 

potential to consume the HSDV to determine if incorporating HSDVs can reduce the 

likelihood of poisoning of non-target species.  

The four main groups of vertebrate land animals: mammals, reptiles, birds and 

amphibians, were analysed using an a priori determined list of criteria. The analysis 

included 3796 species and subspecies native to Australia as well as accidental and 

occasional visitors. 
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Most species would not be exposed to the toxicant if surface baits are used to control 

feral cats. Many of the species examined are either too small to consume the bait or 

have diets that would usually preclude them from eating food such as the bait. Of 

those species that would consume the Curiosity
®

 bait, significantly fewer would be 

susceptible to non-target poisoning if HSDVs were used as opposed to direct injection 

of toxicant into the bait media. Carnivorous mammals were the most likely to 

consume both the baits and the HSDV. 

Introduction 

The control of invasive predator species for the conservation of biodiversity and 

protection of primary production assets is conducted principally through the use of 

poisons (Olsen 1998). However, a primary consideration when using a toxicant for the 

control of any species is the likelihood that non-target species will take the bait 

(Calver et al. 1989a; Glen et al. 2007b). Consumption of poisoned baits by non-target 

species can have lethal consequences (Dexter and Meek 1998; Hetherington et al. 

2007; Martin et al. 2002), and excessive bait take by non-target species can limit the 

effectiveness of the control program (Algar and Brazell 2008). Baits are also used for 

the delivery of oral vaccines for disease control (Olson et al. 2000; Steelman et al. 

2000) and potentially for the dissemination of immunocontraceptives (Miller et al. 

1999). Ensuring effective bait delivery is clearly imperative in any control campaign. 

European foxes (Vulpes vulpes) and feral cats (Felis catus) have contributed to the 

extinction of many native mammalian species and have been implicated in the decline 

of many others in Australia (Burbidge et al. 2009; Dickman 1996; Risbey et al. 1999; 

Risbey et al. 2000). Because of its acute toxicity to most species of mammals, 1080 

(sodium monofluoroacetate) is the only registered toxicant available for the control of 

invasive predators in Australia (McIlroy 1981a; McIlroy 1981b; McIlroy 1982a). 

Many native mammal species in western and north-western Australia are relatively 

tolerant to this toxicant as they coevolved with endemic plant species that contain 

naturally occurring fluoroacetate compounds (Martin and Twigg 2002; Twigg and 

King 1989; Twigg and King 1991). Mammals in eastern Australia are less tolerant 

and are more susceptible to 1080 toxicosis than their western counterparts; as result, 
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1080 baits laid in eastern Australia need to be buried to minimise the potential for 

non-target species to access them (Fairbridge  et al. 2003; Twigg and King 1991). 

Bait burial provides little deterrence for canid species as their acute olfactory senses 

allow them to detect buried baits which are then excavated and consumed (Bradshaw 

2006).  

Feral cats do not possess the same acute olfactory senses as canids and rarely locate 

and excavate buried baits (Algar and Burrows 2004). They demonstrate a preference 

for live prey (Leyhausen 1979) over carrion or dried meat baits, and therefore baits 

intended for feral cats must be surface-laid and consist preferably of a wet meat or 

similar material (Algar et al. 2007; Algar and Burrows 2004). However, surface-

laying of baits increases the potential for non-target species to access the bait and 

consume a lethal amount of toxicant (Glen et al. 2007b). 

Currently trials are being undertaken to determine the suitability of 

para-aminopropiophenone (PAPP) as a substitute toxicant for some control 

applications (Fisher  et al. 2005; Johnston et al. 2010a; Johnston et al. 2011; Murphy 

et al. 2007). In many instances, LD50 rates - the amount of toxicant needed to kill 50% 

of the sample group - for PAPP are far higher than those for 1080. For example, the 

LD50 for PAPP for F. catus, is 5.56 mg/kg (Savarie et al. 1983) while for 1080 it is 

between 0.28 mg/kg (Eason and Frampton 1991) and 0.4 mg/kg (McIlroy 1982b). 

Having a lower toxicity, non-target species must consume more of the PAPP to obtain 

a lethal dose than would be required if using 1080.  

Encapsulation of the toxicant (both 1080 and PAPP) within bait media is also being 

trialled as a means of minimising the exposure of non-target species  to the toxicant 

(Hetherington et al. 2007; Johnston et al. 2009; Marks et al. 2006). The toxicant is 

sealed within a small, hard, acid-soluble polymer capsule known as a hard shelled 

delivery vehicle (HSDV). The HSDV is then inserted into the bait prior to it being 

laid. Many Australian native animals gnaw at baits rather than consuming them with a 

single, or several, large bites (Hetherington et al. 2007) (Figure 19 and Figure 20). 

When a native animal encounters the hard capsule while gnawing the bait, it may be 
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rejected (i.e. spat out) rather than consumed (Hetherington et al. 2007; Marks et al. 

2006).  

Approving authorities usually require extensive field and pen trials to determine 

which non-target species are likely to take baits (Brunner 1983). Here I use a desktop 

analysis incorporating appropriate parameters based on the biology of all native 

Australian species to determine which non-target animals are likely to take baits. This 

can reduce the number of species that need to be tested. I use the best current 

knowledge for each species to determine the parameters, including what may appear 

to be aberrations of behaviour such as foxes being poisoned through consuming 

fermented wheat baits for pigs (Twigg et al. 2007). Parameters must be updated as 

further research findings become available. 

Methods 

Bait and capsule 

The Curiosity
®
 bait (Johnston et al. 2009; Johnston et al. 2011) was chosen as the bait 

medium for this analysis (Figure 21). The Curiosity
®

 bait is essentially the Eradicat
®
 

cat bait manufactured by the Department of Environment and Conservation in 

Western Australia (Patent number AU 781829) but containing a HSDV rather than 

directly injected 1080 (Johnston et al. 2011). It is a chipolata sausage-style wet meat 

based bait medium ~15 g in weight and 10 cm in length consisting of kangaroo meat, 

chicken fat, digests and flavour enhancers (Algar and Burrows 2004; Hetherington et 

al. 2007). The Curiosity
® 

bait is also buffered slightly differently to the Eradicat
®
 to 

ensure HSDV stability within the bait. The HSDV is a proprietary product 

manufactured by Scientec Research Pty Ltd (Melbourne, Victoria) designed 

specifically to encapsulate the PAPP toxicant (Provisional Patent No. 200890357). It 

is ~6 mm in diameter and formulated to dissolve swiftly in stomach acid, thus 

releasing the toxicant into the stomach rapidly following consumption (Johnston et al. 

2009; Johnston et al. 2008). 
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Figure 19. Image of brush-tailed possum 

(Trichosurus vulpecula) gnawing an 

Eradicat
®
 bait. Photograph: T. Buckmaster 

 
Figure 20. Image of European fox (Vulpes 

vulpes) consuming an Eradicat
®
 bait in several 

large bites. Photograph: T. Buckmaster 

 
Figure 21. Eradicat

®
 feral cat bait (left) and HSDV (right) with Rhodamine B bait marker 

enclosed within. Photograph: T. Buckmaster 
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Species list 

Comprehensive species lists of all Australian terrestrial vertebrate animals were 

obtained from the Department of the Environment, Water, Heritage and the Arts, 

Australian Biological Resources Study (ABRS) for the four taxonomic classes being 

analysed: Amphibia (DEWHA 2009a), Aves (DEWHA 2009b), Mammalia (DEWHA 

2009c), and Reptilia (DEWHA 2009d). These lists of Australian fauna are publicly 

accessible from the ABRS web site at 

(http://www.environment.gov.au/biodiversity/abrs/index.html) and are assumed to 

provide the current scientific name for each species and subspecies. 

These species data files were downloaded directly from the ABRS website as CSV 

files and then converted into MS Excel spreadsheets. Superfluous data (for example: 

species synonyms, details of amendments to species common and scientific names 

and historical nomenclature) were removed. The remaining data included for each 

species: common name, current scientific name and recognised subspecies. All 

subsequent analyses were undertaken using these modified lists.   

Information on animal size, habits, diet, conservation status and other aspects relevant 

to this desktop review was sought from a variety of field guides, checklists and other 

published sources. Due to the continual and ongoing revision and variation in the 

taxonomy of Australian vertebrates, however, most references used for the analysis 

inevitably contained outdated nomenclature for some species and subspecies. Where 

this was encountered, the original ABRS CSV file was checked to ensure that the 

species referred to in the literature was the same as the species on my lists. The final 

analysis was undertaken on species lists as they stood with the ABRS as of the 3
rd

 

March 2009: subsequent taxonomic revisions of Australian vertebrates have not been 

included in this analysis. Recently Christidis and Boles (2008) undertook a review of 

the systematics and taxonomy of Australian birds. As the ABRS has adopted the 

nomenclature of that review, and as my analysis follows the ABRS, it is 

acknowledged that it may differ from that used in some currently available species 

guides. 

http://www.environment.gov.au/biodiversity/abrs/index.html


Chapter 7. Non-target species potential for ingestion of Curiosity
®
 bait and HSDV 

 
 

121 

 

In several instances the ABRS database listed animals that were not present in any 

guide used in this analysis. A search of the recent literature was used to obtain 

information on the morphometrics and other biological characteristics of these 

species. Generally discrepancies arose when a previously described species had been 

reclassified into multiple new species for which no description had been published 

outside the scientific literature. In these instances, details of the species were obtained 

from the relevant literature.  

Common names for species have been taken from the ABRS data files. There may be 

instances where a locally used common name does not conform with that listed by the 

ABRS. No attempt was made to determine all possible common names for species 

used in this analysis.  

Species attributes 

Size of animals 

The maximum weight for each mammal is listed in grams; in cases where maxima 

were listed but qualified by the reference with a usual weight range, I used the 

maxima for the usual weight range. Mammalian weights were sourced from 

Menkhorst and Knight (2001). The length of birds, inclusive of tail is listed in 

centimetres and was taken from Pizzey and Knight (1997). Lengths for amphibians 

and reptiles are as given in Cogger (2000) or Wilson and Swan (2008). Combined 

body plus tail length of snakes and turtles was listed while snout – vent length was 

listed for the remaining reptiles.  

Conservation status 

Conservation status for each species was obtained at the Commonwealth level from 

Clayton et al. (2006). Whilst listings are available in this reference for each state and 

territory, only the Commonwealth conservation status is used in this analysis.  
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Potential for bait or HSDV consumption 

No field or pen testing of any animal was conducted for this analysis. Bait-take 

potential was assessed instead for each species using decision tree analysis (Dickman 

et al. 2010) with assessment criteria listed in Appendix A of this chapter. These 

criteria were developed to assess each species‟ potential to consume the bait, and 

included diet, feeding behaviour and size of the animal. For HSDV consumption the 

criteria included potential for bait consumption, body size and diet and the results, if 

any, of pen and field studies. Data from published and unpublished reports from field 

and pen trials could be, in some instances, extrapolated to morphologically similar 

species. Relevant information for the selected criteria was taken from the 

morphometric, dietary and habitat preferences as listed in the species guides used 

(mammals - Menkhorst and Knight (2001), amphibians and reptiles – Wilson and 

Swan (2008) and Cogger (2000), and birds - Pizzey and Knight (1997)). For most 

birds and reptiles, dietary and habitat information was listed only at the family level 

so the assessment was undertaken at that level. Where field or pen trails had been 

undertaken reference is made to those trials and an assessment based on those trials is 

made (for example Marks et al. (2006) and Hetherington et al. (2007)).  

The probability of unintentional consumption of the bait media was not considered in 

this analysis. For example, a large obligate herbivore would not actively seek out and 

consume meat-based baits, but may unintentionally consume one while foraging. For 

this to be quantified with any degree of certainty, field or pen testing needs to be 

undertaken and was beyond the scope of this analysis. I have not consistently assessed 

the possibility of toxicants leaking into the bait media after degradation of the capsule, 

but note any studies that have shown this to occur.  

Where possible, I make recommendations to minimise consumption of the bait media 

by listed species based on the available biological data. A recommendation is made 

for the future testing of any species if it was apparent that there was potential for 

consumption of the bait media or HSDVs by those particular species. No attempt is 

made to prioritise one species for testing ahead of another.   
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Chi squared analyses, with Yates‟ correction where appropriate, were used to compare 

the numbers of non-target species likely to be exposed using toxicant injected into bait 

media with those at potential risk from toxicants enclosed within HSDVs. 

Results 

In total, 3 769 vertebrate species and subspecies were examined in this review, and 

490 species were determined to either consume or have the potential to consume the 

Curiosity
®
 bait media if deployed on the ground surface rather than as buried baits. 

The analysis revealed that, of these, only 47 species would consume the HSDVs of 

encapsulated toxicant within the bait media while a further 343 species potentially 

may consume the HSDV (Table 15). A complete list of all species used in this 

analysis and the complete results listed by taxonomic class is attached in electronic 

form as Appendix 2 to this thesis.  

Table 15. Numbers of species in each taxonomic class used in the analysis and the numbers 

within each taxonomic class assessed to have the potential to consume bait media and have access 

to the encapsulated toxicant.  

Group No. analysed Bait HSDV 

Will 

consume 

Possibly 

consume 

Will 

consume 

Possibly 

consume 

Mammalia 582 157 20 21 69 

Aves 1872 24 239 12 239 

Reptilia 1086 40 10 14 35 

Amphibia 229 0 0 0 0 

Total 3769 221 269 47 343 

Only a single species on the Environment Protection and Biodiversity Conservation 

(EPBC) Act 1999 list, the Tasmanian devil (Sarcophilus harrisii) was assessed as 

definitely consuming the Curiosity
®
 bait and enclosed HSDV. A further 21 species on 

the EPBC list were found to have potential to consume the HSDV (Table 16). 

Significantly fewer non-target species are susceptible to being exposed to the toxicant 

when using a HDSV within the bait media ( = 140.7, P <0.001) than if the toxicant 

was injected directly into the bait (Figure 22). At a taxonomic class level, other than 

for Amphibia, the use of HSDVs markedly decreased the number of species 
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susceptible to non-target poisoning – Mammalia (  = 913.7, P <0.001), Aves ( = 

12.1, P <0.001) and Reptilia ( = 48.9, P  <0.001). No amphibians were assessed as 

being likely to consume the Curiosity
®
 bait media so non-target poisoning of 

amphibians was therefore considered unlikely.  

Table 16. Species listed under the Commonwealth Environment Protection and Biodiversity 

Conservation Act 1999  that have the potential to consume HSDVs during a ground surface 

baiting campaign.  E = Endangered V = Vulnerable.  

Common Name Scientific Name Status 

Southern cassowary Casuarius casuarius  E 

Malleefowl Leipoa ocellata  V 

Antarctic tern subsp. bethunei Sterna vittata bethunei E 

Antarctic tern subsp. vittata Sterna vittata vittata V 

Pied currawong subsp. crissalis Strepera graculina crissalis V 

Brush-tailed bettong subsp. oglibyi Bettongia penicillata ogilbyi E 

Crest-tailed mulgara Dasycercus cristicauda  V 

Ampurta Dasycercus hillieri  E 

Kowari Dasyuroides byrnei  V 

Western quoll (Chuditch) Dasyurus geoffroii  V 

Northern quoll Dasyurus hallucatus E 

Spotted-tailed quoll Dasyurus maculatus gracilis E 

Spotted-tailed quoll Dasyurus maculatus maculatus  E / V 

Golden bandicoot subsp. auratus Isoodon auratus auratus  V 

Golden bandicoot subsp. barrowensis Isoodon auratus barrowensis V 

Dibbler Parantechinus apicalis  E 

Eastern barred bandicoot unnamed 

subsp. 

Perameles gunnii subsp. 

(Victoria) 
E 

Eastern barred bandicoot subsp. gunnii Perameles gunnii gunnii  V 

Red-tailed phascogale Phascogale calura  E 

Northern brush-tailed phascogale  Phascogale tapoatafa pirata V 

Tasmanian devil Sarcophilus harrisii E 

Julia Creek dunnart Sminthopsis douglasi  E 
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Figure 22. Number of species / subspecies assessed to be susceptible to poisoning if toxicant is 

injected directly into the Curiosity
®
 feral cat bait or if toxicant is enclosed in a HSDV within the 

bait.   

Discussion 

This analysis revealed that most Australian vertebrates would not be susceptible to 

non-target poisoning if surface-laid baits are used during programs to control feral 

cats. Significantly fewer non-target species would access the toxin when enclosed 

within HSDVs than would occur if the toxicant was injected directly into the bait 

media, as is the current practice using 1080. Similarly, in pen trials, Hetherington et 

al. (2007) showed that using a HSDV would reduce the potential impacts of a 

poisoning campaign on Western quolls (Dasyurus geoffroii), Brush-tailed bettongs 

(Bettongia pencillata) and Southern brown bandicoots (Isoodon obesulus) while 

Marks et al. (2006) found that a HSDV would reduce the ability of Northern quolls 

(Dasyurus hallucatus) to access toxicants within feral cat baits.  

Mammals, particularly carnivorous marsupials, were assessed as the most susceptible 

group for consuming the bait and the enclosed HSDV. However the number of 

species likely to consume the HSDV was significantly lower than those likely to 

consume the bait. Carnivorous animals, particularly marsupials, are the most likely to 

be susceptible to non-target poising when using the Curiosity
®
 bait as the bait is 
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designed to target a carnivorous mammalian pest – the feral cat (Algar and Burrows 

2004; Hetherington et al. 2007).  

The lack of amphibians susceptible to non-target poisoning reflects the small size of 

the Australian amphibians when compared with the size of the bait. Similarly, most 

birds were excluded as non-target species due to their size in comparison with the 

bait.  

My analysis did not consider the possibility of the HSDV decaying prior to being 

consumed by an animal. Such decay may take two forms. Firstly, the capsule may 

decay at the folds on the end and, while still retaining structural integrity, toxicant 

may leach into the bait media. Secondly, when the capsule softens from contact with 

the bait medium, it is likely to be cracked or punctured with far less effort than if it 

had retained its structural integrity. Either form of decay would result in the 

encapsulated toxicant becoming available to non-target species. As I show in Chapter 

8, HSDV decay within the bait media is possible. By manipulating the manufacture 

process of the bait, Scientec Research Pty Ltd is in the process of minimising the 

potential for HSDV decay within the bait media (M O‟Donoghue, Scientec Research 

Pty Ltd, pers comm).  

By examining the behaviour and feeding patterns of possible non-target species it 

should be possible to minimise the potential for bait-take by these species still further. 

Varanids, for example, are very active during the warmer months and have the 

potential to consume Curiosity
®
 bait media and the HSDV. By shifting a baiting 

campaign to late winter, most varanids will be in hibernation and are therefore 

unlikely to consume the bait. Algar and Burrows (2004) indicated that the most likely 

time feral cats would take baits is when they are food stressed. During the winter 

months in the eastern states of Australia, many of the food sources of feral cats 

decline (e.g. Antechinus males die off following the breeding season (Banks et al. 

2005; Dickman 1980), reptiles are less active (Wilson and Swan 2008) and most 

insects are in diapause or overwintering as eggs or pupae). Targeting feral cats at this 

time would both increase the likelihood of cats taking baits and minimise the uptake 

by varanids.  
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Many of the non-target mammal species that are likely to consume baits are small 

(<200 g). Suspending the baits above the ground would remove them from the reach 

of these animals and greatly minimise the possibility of non-target bait take. Algar 

and Brazell (2008) devised a gantry device to suspend the Curiosity
® 

baits out of the 

reach of both black rats (Rattus rattus) and land crabs (Cardisoma carnifex). The 

device minimised non-target problems on Christmas Island by suspending the bait 40 

cm above the ground, beyond the reach of the non-target species yet still within the 

reach of feral cats (Algar and Brazell 2008; Johnston et al. 2009).  

Many of the difficulties with using surface-laid baits for pest or feral animals can be 

reduced by encapsulating the toxicant within a HSDV. Encapsulation within the 

HSDV would allow other toxicants such as 1080 that are not able to be used in 

surface-laid baits to be now considered for use. However, while every effort needs to 

be taken to minimise the poisoning of non-target species during feral cat control 

programs and using a HSDV for toxicants can minimise the risk of non-target deaths, 

it cannot completely negate it. All intervention in wildlife management carries some 

risk to both target and non-target species so a considered stepwise approach to 

managing and addressing risk needs to be undertaken.  

The analysis presented here shows the potential to minimise the exposure of non-

target species to a toxicant by using a HSDV. However the actual degree to which 

many of the species listed as potentially taking the bait media / HSDV needs to be 

tested through pen and field trials. It is also acknowledged that the poisoning of non-

target species may still occur in unexpected circumstances not considered in this 

analysis. 

I have shown that a decision tree process can provide a transparent and repeatable 

assessment method for identifying animals that are likely to take baits and / or HSDV. 

This approach also allows the incorporation of new data within the decision making 

process when it become available. A similar process was used by Dickman et al. 

(2010) to prioritise areas in Australia for feral cat control. The decision making 

process utilised in this chapter can be adapted for most bait types, making it a useful 
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tool for preliminary risk assessment of taxa that may otherwise be non-target victims 

in poison baiting campaigns. 

Acknowledgements 

I thank Mike Johnston for his guidance and thoughts on the preparation of this 

chapter. I sincerely thank all the researchers who freely gave their unpublished pellet / 

HSDV rejection data and allowed me to use it.  

I also thank Julie Quinn for her assistance in obtaining and arranging the funding for 

this part of my research. Funding was provided by the Commonwealth Department of 

Environment, Water, Heritage and the Arts.  



Chapter 7. Non-target species potential for ingestion of Curiosity
®
 bait and HSDV 

 
 

129 

 

Appendix A to chapter 7  

Criteria for assessment of the likelihood that Australian terrestrial vertebrates will 

consume sausage style meat baits (Curiosity
®

) designed for feral cats (A1) and toxins 

encapsulated in HSDVs within the bait (A2) 

Table A1: Potential for consumption of bait substrate. Assessment is modified by each 

subsequent level. For example a carnivore that feeds predominantly at sea will be assessed as 

having no potential to consume the bait. When a “No” assessment is made, analysis for that 

animal ceases.  

Criteria Assessment of potential  

A. Diet  

Carnivore / scavenger (including scavenging 

omnivores)  

Yes – unless otherwise shown by 

lab / field testing 

Terrestrial insectivore  Yes – unless otherwise shown by 

lab / field testing 

Omnivore Probable – unless otherwise shown 

by lab / field testing 

Terrestrial foraging hypogeal fungivore  Probable– unless otherwise shown 

by lab / field testing 

Herbivores / frugivores / insectivores / exudate 

feeders: including  specialist or obligate 

feeders 

No 

Volant insectivores No 

Granivorous birds No 

  

B. Feeding behaviour  

Feeds predominantly at sea No 

Specialist ant feeders No 

Where foraging activities are unlikely to result 

in baits being identified as food sources 

No 

Unlikely to recognise bait as food source e.g. 

cursorial carnivores with minimal 

scavenging 

No 

  

C. Size  

Birds / amphibians / reptiles too small to 

consume bait* 

No 

*For this category, birds < 26cm, amphibians < 15cm and reptiles < 30cm SVL or 50 

cm in total length were assumed to be too small to eat the baits.  
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Table A2: Potential for consumption of HSDV. Assessment is modified by the subsequent level. 

For example a large carnivore that has demonstrated complete HSDV rejection in field or pen 

studies will be assessed as having no potential to consume the HSDV. When a “No” assessment is 

made, analysis for that animal ceases. 

Criteria Assessment of potential 

A. Bait consumption  

Where potential for bait consumption = No No 

  

B. Size and diet  

Large eutherian carnivore* Yes 

Carnivore / insectivore larger than smallest known to consume 

HSDV (Determination based on body size and feeding 

habits) 

Possible /Yes 

Carnivore / Insectivore smaller than smallest known to consume 

HSDV (Determination based on body size and feeding 

habits) 

Possible / No 

Omnivore larger than smallest mammal known to consume 

HSDV with similar feeding habits to those known to 

consume HSDVs 

Individual determination 

Omnivore smaller than smallest known to consume HSDV No 

  

C. Field and pen studies  

Complete HSDV rejection confirmed by lab / field experiment No 

Predominant HSDV rejection demonstrated by lab / field 

experiment 

Unlikely with data shown 

Predominant HSDV consumption demonstrated by lab / field 

experiments 

Yes 

*For this section a large eutherian carnivore is defined as a cat (Felis catus) or larger. 
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Chapter 8 

Bait take and access to encapsulated toxicants by non-target 

species  

Chapter overview 

One technique currently being trialled to minimise the access of non-target species to 

the toxicant in baits is to encapsulate it within a hard shelled delivery vehicle 

(HSDV). In the preceding chapter I conducted a desktop analysis to determine which 

non-target species would be most likely able to access a toxicant encapsulated within 

a HSDV. To determine the validity of this analysis for a subset of the species 

assessed, I undertook a field experiment to determine more critically which non-target 

species would consume the Eradicat
®
 cat bait and which of these would be able to 

access the encapsulated toxicant. Field testing was carried out in Far East Gippsland.   

I used a non-toxic systemic marker dye, Rhodamine B (Rb) as a toxicant substitute. 

When ingested, Rhodamine B leaves a band within actively growing hair that is 

visible under a fluorescent microscope. I distributed Eradicat
®
 baits that were injected 

directly with an aqueous solution of Rb at two sites. At a further two sites I distributed 

baits in which the Rb had been encapsulated within a HSDV that was then inserted 

into the baits. I subsequently trapped small and medium sized animals at each of these 

sites. Captured animals had mystacial vibrissae (whiskers) plucked from the snout and 

analysed for Rb banding.  

Four of the five non-target species captured had banding in the vibrissae, indicating 

that they had consumed some bait material but not necessarily all of the bait. At the 

sites where the Rb was encapsulated within HSDVs, three of the five species had clear 

banding in vibrissae. This indicated that they would be able to access a toxicant 

enclosed within a HSDV.  

Testing of the HSDVs revealed that they rapidly lose structural integrity within the 

Eradicat
®
 bait media, with integrity being reduced significantly within an hour of 

insertion into the bait. The Rb began to leach from the HSDVs within 3 hours, and 

then increased with the time since insertion of the HSDV into the bait. Integrity 
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testing ceased at 13 hours post-insertion as the seal at the ends of the HSDV had by 

then failed completely. Any pressure on the HSDV at that time caused liquefied Rb to 

be ejected from the ends of the HSDV into the bait media. By 48 hours post-insertion, 

the HSDV could not be removed from the bait without causing it to rupture 

completely.  

Introduction 

Invasive predators often impact negatively on agricultural production and on the 

conservation status of endangered native wildlife (Kinnear et al. 1988; Saunders et al. 

1995; Twigg and King 1991). Controlling these predators can result in significant 

benefits for both endangered species conservation and for increased agricultural 

production (Kinnear et al. 1998; Murray et al. 2006) The primary method of 

controlling invasive predators in Australia is through the use of poison baiting (Algar 

and Burrows 2004; Olsen 1998; Saunders et al. 2010). 

Despite the ubiquity of its use, control of invasive predators by poisoning has raised 

concerns regarding the consumption of baits and toxicants by non-target species and 

the impact that this may have on the population dynamics of these species (Calver et 

al. 1989a; Calver et al. 1989b; Jackson et al. 2007). The most common toxicant used 

to control invasive predators in Australia is 1080 (sodium monofluoroacetate). 

Fluoroacetate occurs naturally in many Australian native plants across the western and 

northern areas of Australia. Access to fluoroacetate has resulted in most native 

animals in these areas having a relatively high natural resistance to 1080 that is not 

present in the invasive species (Twigg and King 1989; Twigg and King 1991). This 

allows 1080 baits to be laid on the ground surface when targeting introduced animals; 

if bait is consumed by non-target species it is likely to have little deleterious effect. 

Native animals in the south-eastern areas of mainland Australia and Tasmania show 

significantly lower tolerance to 1080 than their northern and western conspecifics 

(Fleming et al. 2001; King et al. 1978). As a result, baits containing 1080 are 

commonly buried in these areas to minimise access by non-target species but still 

allow some predators, especially red foxes, to find them. While this is an important 

strategy to minimise access by non-target species to the toxicant (Dexter and Meek 
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1998; Saunders et al. 1995; Thomson and Kok 2002), it still does not preclude a range 

of native mammals from excavating the baits and consuming them (Fairbridge et al. 

2003; Fairbridge et al. 2000). In addition, there is little indication that feral cats will 

dig up buried baits, making this method of bait presentation unsuitable for cat control. 

Studies conducted in Western Australia and on French Island, Victoria have shown 

that feral cats will consume aerially-laid baits that have a wet meat base (Algar et al. 

2002; Burrows et al. 2003; Johnston et al. 2011). Research has also been undertaken 

to assess the suitability of encapsulating the toxicant in a hard shelled delivery vehicle 

(HSDV) to minimise the likelihood of non-target species encountering the toxicant in 

baits laid on the ground surface (Hetherington et al. 2007; Marks et al. 2006; also see 

chapter 7 of this thesis).  

Initial likelihood of bait-take by non-target species can be assessed using a decision 

tree process (as demonstrated in chapter 7). However, field and pen trials are still an 

important step in ascertaining if native animals can access the toxicant in baits if they 

have been assessed as potentially susceptible by the decision tree process. In this 

experiment, I examined the ability of five small and mid-sized native mammals to 

access toxicant encapsulated within a HSDV. Each of these was deemed capable of 

consuming the bait media in the desktop analysis. I used a non-toxic bait marker 

encapsulated in the HSDV and then inserted this into non-toxic Eradicat
®
 baits. 

Methods 

Marker 

Rhodamine B (IUPAC name: [9-(2-carboxyphenyl)-6-diethylanimo-3-

xanthenylidene]-diethyammonium chloride; molecular formula: C28H31ClN2O3) was 

used as the marker dye for this experiment. Rhodamine B (Rb) acts as a systemic 

marker that produces a persistent, but harmless, mark when consumed by animals. It 

produces short term staining on the lining of the intestinal tract and noticeably 

pink-stained scats on passing. The mark also appears in claws and hairs that there 

actively growing at the time of ingestion (Fisher 1999; Johns and Pan 1981). All hairs 

have a cycle of growth interspersed with resting periods. Mystacial vibrissae have 
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very short resting periods so are most likely to be actively growing at the time of 

ingestion of the marker dye. Rhodamine B banding in vibrissae appears as a bright 

band between 1 and 6 mm in length when viewed under a fluorescent microscope 

(Fisher et al. 1999).  

For this experiment, Scientec Research Ltd (Melbourne, Victoria) encapsulated 25 mg 

of Rb powder in the same HSDV as being developed for use with actual toxicants. 

Additional Rb powder was also supplied by Scientec Research Ltd which was then 

weighed and mixed into an aqueous solution with a concentration of 25 mg ml
-1

 

allowing it to be directly injected into the baits.    

Bait  

Non-toxic Eradicat
®
 feral cat baits were sourced from the Department of Environment 

and Conservation (DEC) bait factory in Western Australia This bait is based on a 

moist meat-based medium consisting of kangaroo meat, chicken fat, digests and 

flavour enhancers (Patent number AU 781829) (Algar and Burrows 2004; 

Hetherington et al. 2007). Baits are shaped in the form of chipolata sausages, with 

each bait ~15 g in weight and 10 cm in length. 

One hundred baits were chosen at random from those supplied by DEC and had a 

single HSDV containing Rb inserted into them at about the midpoint. A further 100 

baits were randomly chosen and injected with the aqueous Rb solution to determine 

which species consumed the baits. To ensure that all baits (i.e. those containing the 

HSDV with Rb and those injected directly with Rb) had the same concentration of Rb, 

the directly-injected baits were injected with 1 ml of the Rb solution.   

All baits were sprayed with Coopex
®
 (Bayer Crop Science Pty Ltd, Hawthorne East, 

Victoria) mixed to the manufacturer‟s specifications (25 g Coopex in 2.5 l water) and 

allowed to dry. This was intended to act as a deterrent to ants and other invertebrates 

that might otherwise attack the baits. Baits were then sweated in the sun until fats in 

the bait medium started to appear on the surface of the bait (Algar and Brazell 2008; 

Algar and Burrows 2004). Two sites in tall forest habitat in Far East Gippsland were 

chosen at random to receive baits with the inserted HSDV and two further sites 
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received the baits with the directly-injected Rb solution. The selected sites 

encompassed areas that are likely to be targeted for feral cat control in the future, and 

hence represent areas where the potential impacts of control on non-target species are 

important to quantify. The minimum distance between sites was about 1 km to ensure 

independence of the sites. Baits were spread haphazardly across each site at a rate of 

about 25 baits hectare
-1 

(~ 50 baits site
-1

). Trapping was undertaken four weeks after 

the baits were distributed to allow the fluorescent banding to grow out along the 

vibrissae away from the follicle. The bulbs and follicles of hairs have a natural 

fluorescence that may interfere or mask any Rb banding. Allowing the banding to 

grow out along the vibrissae decreases the possibility of it being confused with this 

naturally present fluorescence (Fisher 1998).  

Small mammal trapping 

Four trapping grids were established in Far East Gippsland, each containing 64 type A 

Elliott traps (330 × 100 × 100 mm) (Elliott Scientific Equipment, Upwey, Victoria) in 

an 8 x 8 grid with 20 m spacing between the traps; the area covered by each grid was 

~ 1.96 ha. Traps were placed in the location judged to be most suitable for small 

mammals within 2 m of each 20 m point to maximise capture success (Stewart 1979; 

Tasker and Dickman 2002). A wad of dacron fibre was placed in each trap to provide 

bedding and warmth for captured animals. Each trap was also placed in a plastic bag 

to prevent ingress of water and dew. Traps were positioned in such a way as to be 

shaded from the sun and, if necessary, additional bark and leaf litter were added to 

ensure that traps remained shaded and to camouflage traps from casual observers. 

Trapping for small mammals was undertaken in November 2009, with trap checks 

undertaken as close to first light as possible over three consecutive mornings.  

Mid-sized mammal trapping 

Wire cage traps (600 × 200 × 200 mm) (Mascot Wireworks, Homebush West, New 

South Wales) were borrowed from the Cann River Parks Victoria office for mid-sized 

mammal trapping. 24 traps were placed at each site using three of the lines used for 

small mammal trapping. Cage traps were trigger operated and closed when an animal 

pulled on the bait at the rear of the trap. Several large handfuls of leaf litter were 
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added to each cage trap to provide bedding and warmth for captured animals. Each 

trap was fitted with a custom-made heavy PVC cover to reduce the amount of rain or 

dew that could affect the captured animals. All four sites were trapped simultaneously 

for mid-sized mammals in May 2010. A second batch of Rb laced baits was deployed 

for the mid-sized mammal survey. Any Rb banding present in the vibrissae from the 

baits deployed while sampling small mammals would have no longer been detectable 

due to the time between the small and mid-sized mammal surveys.   

Trapping methods common to both small and mid-sized mammals 

Traps were baited with a mixture of peanut butter, rolled oats and honey (Catling and 

Burt 1994; Dickman et al. 1983) compressed into a ball of approximately 2 cm 

diameter and placed in the back of the trap. To minimise possible influences from 

differing proportions of ingredients, the bait was made using the same „recipe‟ on 

each occasion (400 g honey, 1 100 g rolled oats and 1 600 g smooth peanut butter – 

Buckmaster (2005)).  

Traps were checked from first light each morning over three consecutive mornings 

with captured animals identified, weighed and sexed. Each animal was fitted with an 

individually numbered lightweight aluminium (< 0.18 g) self-piercing fish tag (Model 

1005-1, National Band and Tag Co. Newport, Kentucky) to enable recaptured animals 

to be identified. The ear was swabbed with Betadine
®
 solution (Sanofi-Aventis Pty 

Ltd, Rydalmere, New South Wales) prior to and following the fitting of the tag to 

minimise the risk of infection (Sharp et al. 2007). The tags were fitted using the 

proprietary applicator.  

Traps in which animals had been captured were removed and replaced with a clean 

trap and bag. Dirty traps and bags were washed in a disinfectant solution, rinsed 

thoroughly and allowed to air dry before being reused (Tasker and Dickman 2002). 

For the small mammal trapping, all traps were washed in disinfectant when being 

moved between sites to minimise the possibility of transferring soil borne pathogens 

between sites.  
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Vibrissae collection and analysis 

Captured animals were transferred to a clean bag and four vibrissae were removed 

from each side of the snout using flat-bladed tweezers (Fairbridge  et al. 2003; Fisher 

1998; Fisher et al. 1999). Vibrissae were sealed in small paper bags (75 × 125 mm) 

(Prospectors Earth Sciences, Glenwood, New South Wales), stored in a dark, airtight 

container and then refrigerated to minimise the leaching of Rb bands. For analysis, the 

vibrissae were gently washed in water then ethanol and allowed to air dry to remove 

any particulates that may have been stuck to their surface. Four vibrissae were then 

mounted per slide using DPX, a proprietary non-fluorescing mountant. Once the 

mountant was dry, slides were inspected under a fluorescent microscope using an 

ultraviolet light source with a wavelength of 360 nm.   

HSDV integrity in the bait media 

Based on the initial results of the small mammal trapping, I decided to test the 

integrity of HSDVs in the baits over time. Ten baits were chosen randomly and fitted 

with HSDVs containing Rb. These baits were then sprayed with Coopex
®
 and 

sweated as described above. After 24 hours these baits were broken open and the 

HSDVs inspected for signs of leakage and loss of structural integrity. Following this, 

a further 96 baits were chosen at random and fitted with a HSDV containing Rb. 

These baits were sprayed with Coopex and sweated, as above. Baits were then placed 

on the forest floor to replicate field conditions and covered with fine mesh (1 cm) 

chicken wire to prevent access by birds and other animals. The HSDVs were removed 

from four randomly chosen baits each hour. The baits were inspected for leakage 

within the bait and then tested for crush integrity using a custom made press (see 

below). Hourly sampling ceased when integrity testing resulted in Rb being forced out 

the ends of the HSDV without actually puncturing the polymer. At this stage, I 

assumed that any animal eating the bait could compress the HSDV sufficiently to 

eject the Rb into the bait media. Two further tests of HSDV integrity were attempted 

at 24 and 48 hours after insertion into the bait media.  
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HSDV integrity testing 

A press was constructed to enable HSDVs to be compressed against a set of electronic 

scales until they either broke or leaked Rhodamine B (Figure 23). A threaded rod was 

used to exert pressure on an HSDV that was positioned in the press; this was lathed to 

a diameter of 2 mm and rounded slightly on the end to replicate the approximate size 

of a marsupial carnivore tooth. As shown in chapter 7, such carnivores are the most 

likely non-target species to be impacted in cat-control programs. Once the HSDV was 

placed on the scales, they were zeroed to ensure that only the weight used to crush the 

HSDV was recorded. The threaded rod was screwed down at a uniform rate until the 

HSDV either broke or leaked Rb, at which time the weight as shown by the scales was 

recorded. Testing was conducted using four randomly chosen HSDVs on each 

occasion to obtain an average weight at which the integrity of the HSDV was 

compromised.  

Results 

A total of 65 captures of small and mid-sized mammals was made from 840 trap 

nights. Trapping resulted in the capture of 39 individual small mammals from three 

species, as well as two long nosed bandicoots (Perameles nasuta) and a single long 

nosed potoroo (Potorous tridactylus) (Table 17). No dusky antechinus (Antechinus 

swainsonii) were captured at sites where baits contained HSDVs, and no long nosed 

potoroos were captured at sites containing baits with directly-injected Rb. 

The overall capture rate tended to be higher at the sites with baits containing HSDVs 

but the difference was not significant (  = 2.6, P ns). There was no difference in the 

number of unique individuals captured in each treatment (  = 0.95, P ns).  
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Figure 23. Press built for integrity testing of HSDV. A = bolt used to test integrity of HSDVs. For 

testing, this is screwed into the hole immediately above the metal washer. Note lathed end to 

replicate the shape of a tooth. B = metal washer used to stabilise HSDV during testing. C = 

electronic scales screen. Photograph: T. Buckmaster. 

Table 17.  The numbers of individual small and mid-sized mammals captured overall and in each 

of the two treatment areas, i.e. sites with baits containing HSDVs with encapsulated Rhodamine 

B dye, and sites with baits containing directly-injected Rhodamine B. Total captures inclusive of 

recaptures shown in parentheses. Recaptures are not shown for the two treatments.  

Species Captures 
Bait 

direct 

injected 

Bait 

containing 

HSDV 

Bush rat (Rattus fuscipes)  29 (44) 12 17 

Agile antechinus (A. agilis) 6 (12) 3 3 

Dusky antechinus (A. swainsonii) 4 (4) 4 0 

Long nosed bandicoot (P. nasuta) 2 (4) 1 1 

Long nosed potoroo (P. tridactylus) 1(1) 0 1 

total 42 (65) 20 22 
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Bait consumption 

No Rb banding appeared in the vibrissae of the long nosed potoroo. The remaining 

four species all had Rb banding in the vibrissae, demonstrating that these species did 

consume Eradicat
®
 bait (Figure 24). Several bush rats had up to three bands in each 

vibrissa, suggesting these individuals accessed baits on multiple occasions. More of 

the bush rats captured had consumed baits than had not consumed baits, but this was 

not significant (  = 1.33, P ns). 

HSDV 

Three of the four species captured at sites with Rb encapsulated in the HSDVs had Rb 

banding in their vibrissae (Figure 24). At the sites with baits containing HSDVs, more 

bush rats accessed the Rb than those that did not but the difference again was not 

significant (  = 0.594, P ns). The single long nosed bandicoot captured at those sites 

had accessed the encapsulated Rb, as had two of the three agile antechinus captured.  

 
Figure 24. Numbers of each of five mammal species tested for Rb banding in each of the two bait 

treatments. Injected = Rb directly injected into the bait. HSDV = Rb encapsulated into a HSDV 

within the bait, + indicates Rb banding in vibrissae detected, - indicates Rb banding not detected.  
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HSDV crush integrity 

The integrity of the HSDV fell significantly within the first hour of being placed 

within the bait media (Figure 25) (t(6) = 3.856, P = 0.008). After 3 hours there were 

minor signs of Rb leaking from the ends of the HSDV where the polymer is folded to 

close off the end. After 5 hours there was substantial Rb staining within the baits 

around the folded ends of the HSDV. The amount of bait media stained with leaked 

Rb increased with each subsequent testing. After 7 hours the HSDV was very soft to 

the touch and care had to be exercised when removing it from the bait to prevent it 

splitting open as it was being removed. After 13 hours within the bait media, attempts 

to crush the HSDV resulted in liquefied Rb being expelled from the ends rather than 

the HSDV being punctured by the press.  

After 24 hours in the bait media, the entire bait matrix surrounding the HSDV was 

stained with Rb, extending 4-5 mm in all directions (Figure 26). All the Rb powder in 

the HSDV had liquefied by this time. After 48 hours, the HSDVs had lost all 

structural integrity, and ruptured completely when being removed for integrity testing.  

The polymer shell of the HSDV would shatter on failure when tested prior to being 

inserted into the bait at about 9.5 kg pressure in the integrity press. The shell similarly 

shattered on failure at the 1 h and 2 h tests albeit at a lower pressure (Figure 25). In 

testing at 3 hours and subsequently, HSDV failure resulted from the press puncturing 

the polymer shell rather than from it shattering. At 13 hours after insertion, testing 

forced liquefied Rb from the ends of the HSDV rather than puncturing or shattering 

the shell. Testing ceased at 13 hours (Figure 25).  

.  



Chapter 8. Bait take and access to encapsulated toxicants by non-target species 

 
 

142 

 

 
Figure 25. Results of hourly integrity testing of HSDV following insertion into bait media. A = 

pre insertion integrity. B = point where HSDV no longer shattered but was punctured by the 

integrity press. C = point where press forced Rb out the ends of HSDVs rather than puncturing 

the shell. Means are shown ± SE, with n = 4 for each hourly point. 

 

Figure 26. Eradicat
®
 cat baits opened to remove HSDVs for testing. Pink staining is Rhodamine 

B that has leached out of HSDV. White arrows indicate location of HSDV prior to removal. A = 

48 hours after insertion. B = 13 hours after insertion. C = 24 hours after insertion. Photograph: 

T. Buckmaster 
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Discussion 

One of the primary concerns with laying toxic baits on the ground surface is the risk 

of them being consumed by non-target species. This has stimulated a considerable 

amount of research. For example, Fenner et al. (2009) tested non-target bait uptake by 

bush rats and brown antechinus (Antechinus stuartii) of wet meat baits used for wild 

dog control. These baits were injected with 6 mg of 1080 and 50 mg of Rb. After the 

laying of these baits, trapping revealed no animals with Rb banding in their vibrissae, 

leading the authors to conclude that no sublethal consumption of bait had occurred by 

either bush rats or brown antechinus. However, as the 1080 and the Rb were mixed 

together prior to injecting into the bait, any animal that consumed the Rb must also 

have consumed the 1080. No conclusion was made by Fenner et al. (2009) as to 

possible levels of lethal consumption. My research has revealed that both bush rats 

and the agile antechinus (recently split from the brown antechinus as a separate 

species by Dickman et al. (1998)) do indeed consume wet meat-style baits that have 

been laid on the ground. This makes them susceptible to non-target poisoning if the 

baits are directly injected with the toxicant. 

The desktop analysis I conducted to determine which non-target species would 

consume baits used in a feral cat baiting program indicated that all five species 

captured during this experiment would be likely to do so (Chapter 7). Vibrissae from 

four of the five species contained Rhodamine B banding, indicating bait consumption. 

The single long nosed potoroo captured did not have banding in its vibrissae. 

However, it was a single animal; as this species has been found to consume baits on 

French Island (M. Johnston unpublished data), it is highly unlikely that this animal is 

representative of the population as a whole.  

This experiment also demonstrated that it was possible for three of the five captured 

species to access the Rb encapsulated within the HSDV. Although the desktop 

analysis again indicated that the long nosed bandicoot and the bush rat were both 

capable of accessing toxicant within HSDVs based on previous experiments (e.g. 

Marks et al. 2006), it was not expected that the Antechinus species would be able to 

access the HSDV contents. This experiment demonstrated that the agile antechinus 
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was capable of accessing the Rb within the HSDV. While no dusky antechinus were 

captured at the sites where the HSDV was employed, as they are larger than the agile 

antechinus, it is assumed that this species would also be able to access the contents of 

a HSDV when consuming bait.  

The Rhodamine B banding in the vibrissae of those animals captured at the sites 

where the HSDV was deployed can be explained largely or entirely by the failure of 

the HSDV to maintain its integrity within the Eradicat
®
 bait. Animals that consumed 

the bait media but rejected the HSDV would have been susceptible to consuming the 

Rb without having consumed the HSDV from a point just 3 hours after the HSDV was 

inserted into the bait. As the time within the bait media lengthened, the level of 

accessibility of the encapsulated Rb increased even if the HSDV was rejected by the 

animal consuming the bait. After 48 hours within the bait media, the HSDV had lost 

structural integrity to a point where gently trying to remove it from the bait resulted in 

it breaking open.   

During this experiment, the baits were sweated for two hours prior to being taken to 

the field and distributed. Overall, it was about four hours from the time the HSDV 

was inserted into the bait media to the time they were distributed at the trapping sites. 

Thus any animal consuming the bait media from the time baits were distributed in the 

field was liable to have come in contact with the Rb that had leaked from the HSDV. 

Any animal consuming a bait more than 24 hours after the insertion of the HSDV 

would have scarcely noticed the presence of the HSDV within the bait as rupturing it 

took similar or lesser force as biting into or through the bait itself. 

These results confirm that loss of structural integrity of the HSDV allowed the Rb to 

leach out into the bait media, or resulted in animals puncturing the HSDV while 

chewing the bait. In either case, animals that accessed the Rb showed banding of the 

vibrissae. In terms of toxicant delivery using the combination of HSDV and bait 

tested in this study, non-target animals consuming the bait would have been able to 

access the toxicant from just three hours after the insertion of the HSDV into the bait 

media. Due to the time taken to process the baits (inserting HSDV, spraying with 
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Coopex
®
, sweating and then deploying), access to the encapsulated toxicant would 

have been possible from the moment the baits were deployed in the field.  

The point of failure of the HSDVs while in the bait was the end of the HSDV capsule 

where the polymer had been folded in during manufacture. Initial leakage of Rb was 

detected at the ends and, as more RB leached out, it diffused through the bait media 

adjacent to the HSDV. The liquefaction of the powdered Rb within the HSDV 

resulted from the moisture (water and melted fats following sweating) within the baits 

leaking into the HSDVs through the failed folds at either end.   

Similar to the findings of this study, during preliminary field trials on Christmas 

Island it was noted that HSDVs lost integrity within the bait (Johnston et al. 2010a). 

The authors of this latter study suggested that this may have been the result of the 

baits being slightly acidic. Since the conclusion of the present study, the Curiosity
®
 

cat bait has now been buffered to a pH of 7.5 by Scientec Research Ltd to overcome 

the problem of the HSDV losing structural integrity within the bait media and 

allowing the animal access to the enclosed toxicant (Johnston et al. 2011; M. Johnston 

pers comm). These modified baits were used successfully in cat management 

operations in the arid environment of Dirk Hartog Island, Western Australia, in 2010 

(Hilmer 2010; Johnston et al. 2010b). Further trials are now required to determine 

whether the modified bait medium will increase the longevity of the HSDVs under 

field conditions in other environments such as in the mesic forests of eastern 

Australia, or whether additional improvements are needed to make the concept viable 

generally under field conditions. 
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Chapter 9 

Synthesis 

The primary aim of my research was to answer key questions about feral cats in tall 

forested ecosystems. These questions were a) how large are the home ranges of feral 

cats in tall forests and to what extent to their ranges overlap; b) how do these cats 

move through their environment and utilise their home ranges; and c) is there a bait 

suitable for delivering toxicants to feral cats and, if so, when is an optimal time to do 

so. While the focus of my work was restricted to the tall forests, many of the findings 

of the research should be broadly applicable to the management of feral cats and other 

predators regardless of habitat type or location. I briefly outline my key findings in the 

first part of this chapter, and then discuss their implications for management.  

Knowledge of feral cat movement patterns and of how cats utilise areas within their 

home range can allow refinements to be made in the planning of management 

programs that actively exploit these behaviours, thus allowing more effective 

management of cats in many different environments. For example, baits can be set in 

places such as creek lines where it is most likely that cats will encounter them. 

Similarly, use of the decision tree process to determine which non-target species are at 

risk of accessing toxicants used during baiting campaigns can be adapted to the 

management of cats and many different pest species. This approach also allows 

comparisons to be made between management techniques to determine which is the 

most cost-effective for managing feral cats, yet still affords the greatest protection to 

non-target species.  

 The use of GPS telemetry on feral cats has enabled the gathering of accurate 

locational data in quantities previously not possible with conventional VHF telemetry, 

and this has in turn allowed patterns of intra-home range use by cats to be examined 

in detail. GPS technology provides further benefit in that, unlike conventional VHF 

telemetry, the researcher does not need to be in the field to obtain fix data. It is 

gathered automatically at the tasking rate programmed by the user into the GPS unit.  
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The feral cats in Far East Gippsland proved to be extremely elusive following their 

initial capture. As the GPS units stored all the fix data on board, the collars needed to 

be retrieved to allow the data to be gathered. Timed automatic collar release 

mechanisms were not readily available at the time this project commenced. The 

on-board VHF transponder allowed the location of cats to be readily identified and 

thus allowed trapping to be targeted to the appropriate locations. Despite very 

extensive efforts using several different trap sets and techniques over three years to 

recapture the feral cats with the GPS collars, only three were actually recaptured. 

Several others died, allowing the collars to be retrieved after the mortality sensor 

activated. I recommend that any future work being undertaken on feral cats should use 

GPS receivers fitted with timed automatic collar release mechanisms. This will allow 

the data stored on board the collar to be retrieved in an easier manner than having to 

recapture recalcitrant cats. Once the collar releases, the researcher can locate the 

collar using the inbuilt VHF transponder and thus readily retrieve it.  

This was the first research undertaken on the home range of feral cats in tall forests in 

Australia. When compared with other studies of feral cat home ranges in Australia 

and New Zealand, feral cats in the tall forests of Gippsland were found to have home 

ranges smaller than those in alpine, arid and semi-arid areas but larger than those in 

modified grassland or farmland habitats. The size of feral cat home ranges appears to 

be governed generally by the availability of food resources. Cats in areas where there 

is a paucity of prey have larger home ranges than those in areas with abundant food 

resources. The high degree of overlap of female home ranges, including overlaps of 

core areas, shows that female cats are tolerant of other females and do not seek to 

actively exclude them. However, this overlap does not indicate that the cats are group 

living as can be found in localised areas of high food resources such as at rubbish tips.  

The general convention when using Minimum Convex Polygon (MCP) analyses to 

determine home ranges is to use a MCP50 to define the core area of use. The large 

volumes of fix data gathered using the GPS collars in my research showed that the 

MCP50 definition of core area incorporated areas that the cats did not use as well as 

excluding areas of high cat use. As a result, continued use of this method for 

determining core areas is not recommended. By using instead the 50% isopleth of a 
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Kernel Density Estimator (KDE) the core area can be more accurately identified. 

Using the KDE50 also allows identification of multiple core areas within home 

ranges, rather than just a single area as with the MCP50 analysis.  

The large volume of data gathered using GPS collars in this study also yielded insight 

into how animals move through their home ranges by analysing the step length and 

turn angles between successive fixes. These were analysed at three temporal intervals 

and revealed that cats employed a Lèvy walk style of movement. Using this pattern of 

movement allows cats to increase the probability of encountering prey items within 

their home range, especially as the predator is larger than its prey and the prey items 

are distributed sparsely across the landscape.  

Modifying feral cat management programs to exploit such movement patterns should 

increase the probability of cats coming into contact with management devices, be 

these poison baits or traps. The poison bait delivery technique employed in Western 

Australia simulates sparsely distributed prey, in that clusters of baits are dropped at 

regular intervals from an aircraft (Johnston et al. 2011; Johnston et al. 2010b). While 

this results in a uniform program-wide distribution of baits at 50 / km
2
, at a finer 

scale, the baits are distributed in relatively small areas with large areas of matrix with 

no baits. 

 All the cats for which GPS collars were recovered had large areas within their home 

ranges that they did not enter. These unused areas did not arise from the sampling 

regime of the collars as each had a degree of time slip between fixes that resulted in 

fixes being taken at all times throughout the day. My initial hypothesis that there was 

a deficiency of prey in the unused areas was not supported by the small and mid-sized 

mammal trapping data. The trapping showed that there was no difference in prey 

abundance between the habitats commonly used by the cats and those which they 

avoided.  

Modelling of habitat parameters between the used and unused areas of cats‟ ranges 

revealed that elevation, vegetation community, slope of the land and the distance to 

the nearest stream were the most important factors in determining which areas were 

used and which were avoided. However, the global model was overdispersed (ĉ = 
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6.33), indicating that other unmeasured parameters are involved in the determination 

of habitat use by cats. The recovery of a GPS collar that bore the teeth marks of a 

larger intraguild predator, either a fox or wild dog/dingo, suggested that the missing 

parameter in the model may be a predator avoidance strategy employed by cats in Far 

East Gippsland. It is possible that cats avoid areas within their home ranges to 

minimise their risk of predation from the larger predators that are present. Further 

support for this possibility comes from the analysis of GPS collar data from feral cats 

on islands where there are no larger intraguild predators present (Hilmer 2010; 

Johnston et al. 2010b). On these islands the large unused areas seen in the ranges of 

Gippsland forest cats are not present, and the home ranges of these insular feral cats 

tend to cover most or all of the areas encompassed within their range boundaries. I 

further discuss the implications for management of this apparent large predator 

avoidance strategy later in this chapter. 

Feral cats are obligate carnivores and are often described as generalist predators 

(Bradshaw et al. 1996; Fitzgerald and Turner 2000), but some recent research 

suggests that individuals within populations can specialise in hunting particular types 

of prey (Dickman 2009). Feral cats in Far East Gippsland prey predominantly on the 

bush rat (Rattus fuscipes), which was also the most commonly caught prey species 

during my mammal trapping. Feral cats appear to avoid depredating agile antechinus 

(Antechinus agilis); this was the second most commonly captured small mammal 

species yet did not appear in any feral cat scats. The scansorial nature of agile 

antechinus may afford them a greater degree of protection from predation through 

being able to avoid capture by climbing trees; however the predominantly arboreal 

common ring-tailed possum (Pseudocheirus peregrinus) was present in about 18% of 

the cat scats. The agile antechinus had the lowest body mass of all the species 

captured during the mammal trapping and was also the smallest of the mammals in 

the cats‟ diet. It is possible that cats do not prey on this species due to the lower 

energetic or nutritional return per prey item that it provides compared with larger 

species. However, previous research (Triggs et al. 1984) shows that cats will eat agile 

antechinus under certain conditions, perhaps when more profitable food sources are 

scarce.    
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The agile and dusky antechinus in Far East Gippsland have an earlier mating season 

than would be predicted based on more northern populations of these species. The 

subsequent death of all males in these species contributes to the decline in prey items 

for feral cats over winter. As a result, the times that cats are food stressed, and more 

liable to consume a bait during a poison baiting campaign, start and finish earlier in 

Far East Gippsland than would be predicted. Similarly, times when populations of 

non-target species are more vulnerable to non-target poisoning, such as when there are 

young in females‟ pouches, also occur earlier in Far East Gippsland than in other 

locations. The implication of this for the management of feral cats is discussed later in 

this chapter.  

Bait take by non-target species in any poison baiting campaign is one of the primary 

concerns for land managers. Much assessment of bait-take potential by non-target 

species is undertaken at a local level and with limited consistency between sites. I 

employed a decision tree process to determine which Australian vertebrate animals 

would be most likely susceptible to accessing toxicants that were either injected 

directly into baits or encapsulated within a hard shelled delivery vehicle (HSDV). The 

Curiosity
®
 cat bait, which utilises the toxicant para-aminopropiophenone (PAPP) 

encapsulated within a HSDV, was used as the basis for my analyses. The decision tree 

process allowed those animals that are likely to be susceptible to accessing toxicants 

to be readily identified and listed for further testing through field and pen trials. 

Significantly fewer non-target species were assessed as being able to access toxicant 

when it is encapsulated within a HSDV compared with when it is injected directly 

into bait media.  

To test the validity of the desktop analysis, the marker dye Rhodamine B (Rb) was 

injected into Eradicat
®
 baits that were then deployed at two sites in Far East 

Gippsland. Baits containing Rhodamine B encapsulated within HSDVs were 

distributed at two further sites. Vibrissae taken from small and mid-sized mammals 

captured at these sites indicated that four of the five species captured consumed the 

baits and would therefore be able to access any toxicant that had been directly injected 

into the baits. Analysis of the vibrissae also revealed that three of the five species had 

accessed the Rb even when it had been encapsulated within a HSDV. Subsequent 
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testing of the HSDVs indicated that they rapidly lost integrity after being inserted into 

the baits. HSDV integrity declined continually until a point 13 hours after insertion 

when complete structural integrity was lost and any external pressure resulted in the 

encapsulated Rb being ejected into the surrounding bait media.  

Implications of my findings for managing feral cats for conservation 

Far East Gippsland 

The high degree of overlap found in the home ranges and core areas of the feral cats 

in Far East Gippsland indicates that cat density in the region is higher than would be 

expected if the cats excluded others from their home ranges and core areas. It also 

indicates that the abundance of available resources for feral cats is high as they do not 

need to maintain exclusive areas to ensure adequate access to obligate resources such 

as food and shelter. 

It also appears that the presence of larger intraguild predators could be influencing the 

behaviour of feral cats in the region. The presence of larger predators has been 

suggested or demonstrated in other areas to exert a level of suppression on the 

behaviour of cats (e.g. Glen et al. 2007a; Johnson et al. 2007; Molsher 1997; Molsher 

1999). There are limited techniques available for the management of feral cats in the 

forests of Far East Gippsland. No toxicant is yet registered and able to be used in 

baiting programs for feral cats in Victoria. Similarly, legislative changes to the 

Victorian Prevention of Cruelty to Animals Regulations 2008 now preclude the use of 

soft-jaw traps to catch feral cats in state forests. If feral cats are to be captured, cage 

traps must therefore be used, despite their ineffectiveness in forest habitats. As a 

result, management of feral cats may need to be undertaken by adopting different 

management practices such as the use of higher order intraguild predators. Baiting of 

canids, primarily red foxes, is currently undertaken over large areas of forest. It is 

recommended that a predator management experiment be undertaken in Far East 

Gippsland, similar to that of Risbey et al. (2000), to determine what role, if any, larger 

intraguild predators play in regulating the behaviour of feral cats. If such an 

experiment can be undertaken, it should also determine the resultant impacts on prey 
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species. The results of such an experiment could then be used to guide how not only 

feral cats, but also the larger intraguild predators, should be managed.  

When fully implemented, the Southern Ark project will be poison-baiting foxes over 

about 1 million hectares in Far East Gippsland. Fox abundance is being reduced as a 

result of the baiting by Southern Ark (Diment 2010). If the larger intraguild predators 

are exerting a suppressive influence on feral cats, the reduction in abundance of foxes 

(and possibly dingoes or wild dogs also) may result in mesopredator release, with cats 

increasing in activity and abundance. If this occurs, there is potential for there to be 

greater impact on the native mammals than if fox management did not occur (Risbey 

et al. 2000; see also Chapter 2). It is therefore recommended that regular small 

mammal surveying occur in conjunction with the trapping already being undertaken 

by Southern Ark for mid-sized indicator species. Together with the long-term regular 

sand-plot monitoring already being undertaken, this will indicate if feral cats are 

released from suppression following the reduction in fox abundance and what impact 

this has on the smaller prey species that are not currently being monitored by 

Southern Ark.   

The findings of my small mammal trapping indicated that Antechinus species in Far 

East Gippsland breed earlier than would be expected based on photoperiodic triggers. 

This has implications for the control of predators as the most appropriate timing of 

management interventions for feral cats is when they are food stressed by reduced 

abundances of their prey. The optimal time for poison baiting feral cats in Far East 

Gippsland would be between the late August and mid November. At this time the 

Antechinus populations are low as a result of the male die off following the mating 

season. As this time is also when female antechinus are likely to be food stressed, 

surface-laid baiting should only occur during this time using either a HSDV that 

maintains structural integrity within the bait matrix or through suspending the baits 

beyond the reach of the female antechinus. Similarly, as foxes include Antechinus 

species in their diet (Diment 2010; Triggs et al. 1984), these findings could be used by 

the Southern Ark project to target times when foxes are more food stressed.  
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Trapping for small mammals in Far East Gippsland should avoid times when 

Antechinus species have pouch young due to the potential for the female to eject these 

young through stress when captured in a trap. Similarly, when the young have been 

deposited into a nest, they are still completely reliant on the mother for nourishment. 

Trapping at these times has the potential to negatively impact on these young through 

the female being restrained within a trap for extended periods.  

Although the sample sizes obtained during my trapping were small, the short breeding 

season of Antechinus species is usually synchronous across local populations within a 

region (McAllan et al. 2006), so it is likely that the animals captured in my work 

reflected the life history timing of the broader species‟ populations. However, it is 

recommended that further trapping be undertaken in Far East Gippsland to 

definitively establish the temporal variation in the breeding season compared with the 

rest of the state. In chapter 6, I also raised the possibility that a remnant population of 

brown antechinus (Antechinus stuartii) may be present in the southern areas of 

Coopracambra National Park. A similar remnant population of A. stuartii or an 

equivalent taxon exists at nearby Mallacoota (McAllan and Dickman 1986). It is 

recommended that further sampling of Antechinus spp. be undertaken in 

Coopracambra National Park to determine if a remnant population of the brown 

antechinus does exist in that area, or whether other aberrant populations within this 

diverse and ubiquitous genus occur there.  

Broader applications of my finding 

Adapting management practices to better target pest species with control measures, or 

to conserve rare species, is not new (Olsen 1998). Techniques are being developed, or 

adapted from other fields of science, to describe the movement patterns and habitat 

selection processes of a number of species (for examples, see Robley and Gormley 

2010). In this instance, the Lévy walk principle was originally developed to describe 

the movement of a particle in a fluid yet has now been found to describe the 

movement patterns of many animals as they move through their environment 

(Humphries et al. 2010; Reynolds et al. 2007b). While it is beneficial to have this 

knowledge, determining how to apply this newfound knowledge to the management 
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of a species is of far greater benefit and yet very few published studies take this next 

step. To avoid this deficiency, suggestions are made on how management plans could 

be adapted to incorporate the knowledge gained from the research I have undertaken.  

My research has shown that feral cats utilise a Lévy walk style of movement through 

their environment at all the temporal scales that I sampled. This type of movement 

pattern increases the probability that they will detect sparsely distributed prey items. 

Similarly, feral cats probably avoid certain areas within their home ranges when in 

sympatry with larger intraguild predators. This knowledge can be used to adapt feral 

cat management programs to target them more effectively and, potentially, increase 

the efficacy of the program. For example, where feral cats are in sympatry with larger 

intraguild predators, baits or traps should be deployed along creek lines or areas of 

greater structural complexity and thus avoiding areas that are potentially not used by 

the cats. Baits should also be deployed in a clumped manner rather than uniformly 

distributed (for examples of clumped baiting see Johnston et al. 2011).  

The desktop analysis I developed will enable land managers Australia-wide to quickly 

assess which non-target animals in their region are potentially susceptible to non-

target poisoning when using the Curiosity
®

 feral cat bait as part of a management 

program. By modifying the assessment criteria in the analysis, the decision tree 

process that I used can be adapted for use with other pest animals. Similarly it can be 

adapted for use with different toxicants and bait combinations by modification of the 

assessment criteria. The decision tree process has also been used to identify potential 

sites of high feral cat impact across Australia and prioritise these sites for cat control 

(Dickman et al. 2010).  

My experiment using the Eradicat
®
 bait resulted in HSDVs rapidly losing their 

structural integrity. This allowed any non-target species that consumed the bait to 

come in contact with the encapsulated Rhodamine B. A similar loss of the structural 

integrity of HSDVs was observed by Johnston et al. (2010a) when also using them in 

conjunction with the Eradicat
®
 bait. Following those observations, and since this 

experiment concluded, there have been modifications to the buffering of the pH of the 

baits, Although these should result in strengthening the integrity of the HSDVs, 
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further experiments are now needed to determine whether the capsules will retain 

sufficient integrity for field use. The desktop analysis I undertook showed that the use 

of HSDVs to encapsulate toxicant within feral cat baits should significantly reduce the 

number of non-target species that can access the toxicant. The use of HSDVs in feral 

cat baiting programs will enable such programs to be used in the eastern states of 

Australia where the use of directly-injected 1080 cannot be used in surface laid baits 

due to concerns about poisoning of non-target species.  

Conclusions 

The research I have conducted and presented in this thesis should allow a more 

targeted approach to feral cat management while minimising the risks to non-target 

species. The analytical techniques that I used and applied to feral cats in Far East 

Gippsland are not restricted to that species or that region alone. They are applicable to 

a broad range of management situations involving the management of one species and 

the potential flow-on effects that the management intervention may have on other 

species. Similarly, the research into the behaviour of pest animals, how they move 

through their ranges and why they use or don‟t use parts of their ranges, can be used 

to adapt management techniques in order to increase their effectiveness. For example, 

any pest animal that employs a Lévy walk pattern of movement should be especially 

susceptible to a baiting program in which baits are deployed in a sparse or patchy 

manner. 

Of course, my research is by no means the final word on feral cats in the tall forests of 

Far East Gippsland. While it has provided hitherto unknown insights into the ecology 

and behaviour of this elusive predator, it should be seen as a starting point rather than 

as the end point for more detailed investigations elsewhere in the tall forest 

environment.
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Appendix 1 

Diet of feral cats (Felis catus) in Far East Gippsland, 

Victoria 

Introduction 

The feral cat (Felis catus) was introduced to Australia with European settlement in the 

late 1700s (Abbott 2002). Since that time it has spread across the Australian mainland, 

to Tasmania and many offshore islands. It has been implicated in the decline of many 

native species, particularly those in the arid and semi-arid regions and on offshore 

islands (Burbidge and Manly 2002; Burbidge and McKenzie 1989; Dickman et al. 

1993; Short and Smith 1994). The introduction of the European rabbit (Oryctolagus 

cuniculus) into Australia facilitated the spread of the feral cat by providing a readily 

available food resource. So too did the deliberate capture, breeding and release of cats 

into the wild in a misguided attempt at controlling the spread of the rabbit (Rolls 

1969).  

In most regions of Australia where the rabbit is present, it forms the primary food 

source for feral cats. Cats will continue to preferentially depredate rabbits even when 

rabbit populations have been reduced by some 90% (Molsher et al. 1999). This 

indicates that cats selectively depredate certain prey items, and switch to alternative 

prey species only when populations of the preferred prey have declined to a 

significant extent. If rabbits are uncommon, their prevalence in the diet of feral cats is 

reduced and the bulk of the diet then consists usually of native small mammals (Jones 

and Coman 1981). 

The analysis of predator scats has been used previously to study predator diets (e.g. 

Kirkwood et al. 2005; Risbey et al. 1999; Saunders et al. 2004), predator prey 

dynamics (e.g. Mahon 1999) and to determine the presence of prey species within 

areas (e.g. Brunner et al. 1976; Friend 1978). Similarly, it can alert land managers to 

the presence of species not previously detected in those areas. For example, broad-

toothed rat (Mastacomys fuscus) remains in a fox scat confirmed the presence of this 

species in a region where it had previously been known only from fossil records 
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(Diment 2010, Appendix 2)  In addition, diet analysis has been used to show 

differential predation between size classes and sexes within single species of prey 

(Dickman et al. 1991). 

In this appendix, I utilised cat scats collected in Far East Gippsland to determine the 

composition of prey species in the diet of feral cats of that region. I then compared 

this information with the only previous study on cat diet in the region and with the 

species captured during small mammal trapping undertaken in chapters 7 and 8 of this 

thesis.   

Methods 

Predator scats were collected by fellow PhD student, Alex Diment between January 

2008 and August 2009 while undertaking regular scat transects in four of the 

monitoring areas within the Southern Ark project (see Diment 2010, chapter 7, p 157) 

(Figure 27). Scats were air dried and then the surface was scraped using a sterile 

razorblade to remove epithelial cells. Scrapings were forwarded to the Wildlife 

Forensic Laboratory at the University of Western Australia to confirm the specific 

identity of the predator that excreted the scat (Diment 2010) using melt-curve 

analyses (Berry and Sarre 2007). Of the 697 scats collected by Diment (2010), 22 

were identified as originating from a cat.  

The 22 cat scats were forwarded to hair identification expert, Barbara Triggs (Dead 

Finish, Genoa, Victoria) for content analysis. The hair, bones and teeth of prey items 

consumed by cats are indigestible and are passed with other faecal matter following 

digestion of the balance of the animal (Brunner and Coman 1974; Triggs 1996). The 

morphometric features of the recovered guard hairs such as size, medulla pattern, 

cross section shape and scale pattern, allow the identity of the prey item to be 

determined with a high degree of accuracy for most species (Brunner and Triggs 

2002; Lobert et al. 2001).  

Insufficient scats were obtained to allow comprehensive dietary analyses to be 

undertaken. The percentage occurrence of each prey species was determined and 
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compared with that found by Triggs et al. (1984), the only other study of feral cat diet 

in the region.  

 

 

Figure 27. Locations of 22 feral cat scats collected by A. Diment while undertaking regular scat 

collection transects. Note: some scats were found adjacent to each other so only one marker may 

be visible for multiple scats. Background data were obtained from geospatial layers provided by 

the Department of Sustainability and Environment, Victoria.  

Results 

A total of 697 predator scats were collected by Diment (2010) during his study on fox 

diet. Only 22 (3.15%) of these were identified as belonging to cats. The hairs of seven 

mammal species (eight including F. catus) were detected in the analysed scats (Figure 

28). A single scat contained no mammalian remains. Bird feathers and reptile scales 

were detected in only one scat. Bush rats (Rattus fuscipes) were the most common 

prey species detected in the scats. One scat also contained hair from Trichosurus sp., 

probably T. vulpecular. This genus is difficult to separate into individual species 

through hair analysis (Lobert et al. 2001) and is left at the species level for this 
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analysis. Agile antechinus were not detected in any of the scats analysed for this study 

yet were found in 15% of the feral cat scats (n = 56) analysed by Triggs et al. (1984).  

 

Figure 28. Percentage occurrence of dietary items in the feral cat scats found by A. Diment in Far 

East Gippsland (light grey bars). Also shown is the percentage occurrence of dietary items found 

by Triggs et al. (1984) (horizontally banded bars). The number of scats in which each species was 

detected in this study is also shown.  

Discussion 

Mammals are the dominant prey items for feral cats in Far East Gippsland occurring 

in about 95% of all scats collected in the present study and in the bulk of those 

analysed by Triggs et al. (1984). Native mammals formed the bulk of the mammalian 

component of the diet with the introduced black rat (R. rattus) being detected in only 

13% of the scats. The bush rat (R. fuscipes) was the most common native animal 

detected in the cat scats. Small mammal trapping (see chapters 5 and 6) revealed that 

this was also the most commonly caught species in Far East Gippsland. The 

proportion of bush rats in the diet of cats was higher than that found by Triggs et al. 
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(1984) who found this species in only 10% of the scats they analysed. Conversely the 

proportion of scats containing common ring-tailed possum (Pseudocheirus 

peregrinus) hair was much lower in this study than that by Triggs et al. (1984) who 

found this species to be the most common prey item for cats (Figure 28).  

There appears to be a marked under-representation of the agile antechinus in the diet 

of the feral cat as found in this study. Triggs et al. (1984) found agile antechinus 

(recorded then as Antechinus stuartii) remains in 15% of all the cat scats analysed. 

Similarly, hairs of agile antechinus were found in over 25% of feral cats stomachs 

analysed from Victoria‟s eastern highlands (Coman and Brunner 1972; Jones and 

Coman 1981). Agile antechinus were trapped in greater numbers than dusky 

antechinus at all the sites used for small mammal trapping in my study, yet dusky 

antechinus were detected in about 18% of the scats. One possible reason for the 

paucity of agile antechinus in the diet of cats is the lower body mass of this species 

compared with that of bush rats and dusky antechinus. The lower body mass would 

result in less energetic return for cats for each successful capture than it would for the 

larger animals, possibly rendering the agile antechinus energetically unprofitable to 

hunt when in sympatry with the larger prey items. If this is correct, it remains 

uncertain why agile antechinus occurred in the diet of feral cats in the study of Triggs 

et al. (1984). It is possible that cats were more nutritionally stressed in the earlier 

study and thus more likely to take any available prey than in my study. The early 

1980s were characterised by regional droughts that could have reduced the general 

availability of prey for feral cats, but this possibility requires testing with more 

extensive data.   

The presence of swamp wallaby (Wallabia bicolor) in cat scats may be indicative of 

scavenging on the part of the cat. Adult swamp wallabies are far larger than feral cats 

and it is highly unlikely that a cat could subdue and kill an adult (see Menkhorst and 

Knight (2001) for a full description of both species). Alternatively, it is possible that 

cats depredated juveniles, which are much smaller than adults and would be more 

readily able to be ambushed, subdued and killed. Feral cats are known to depredate 

adult rufous hare-wallabies (Lagorchestes hirsutus) (Gibson et al. 1995; Gibson et al. 

1994) which are similar in size to juvenile swamp wallabies.  
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Birds and reptiles formed only a small proportion of the diet of feral cats in Far East 

Gippsland and were found in about 4% of scats. This is similar to the findings of other 

studies undertaken in Victoria (e.g. Coman and Brunner 1972; Triggs et al. 1984) but 

is lower than that found in other regions of Australia where birds and reptiles 

contribute a much larger proportion of the diet of feral cats. For example, in central 

Australia, birds and reptiles may occur in nearly 70% of all cat scats (Paltridge 2002), 

while in mixed forest habitats in New South Wales Glen et al. (2011) found bird 

remains in over 30% of cat scats.   

The differences in prey proportions in the diet of feral cats between this study and that 

of Triggs et al. (1984) may be due to the differing locations of the studies, with this 

study being undertaken over a larger area some 40 kilometres west of that studied by 

Triggs et al. (1984). That study was also confined to the system of tracks and trails to 

the east of the Mallacoota inlet. It is possible that there is a difference in species 

composition between the two areas; however, the level of prey availability in that 

study and across the entire area of this study is unknown. 

Care must be taken not to assume that feral cats are having a negative impact on prey 

species simply on the basis of including them in the diet. It does not indicate that feral 

cats are having a detrimental impact on the species at a population level that in turn 

leads to a decline of the prey species (Denny and Dickman 2010). Impact at a 

population level will occur only when the level of harvest by cats exceeds the ability 

of the prey population to replace what is consumed. For example, foxes (Vulpes 

vulpes) regularly depredate bush rats (Diment 2010; Friend 1978; Saunders et al. 

2004) yet do not appear to have an appreciable negative impact at the population 

level. Banks (1999) determined that foxes take only what is termed the “doomed 

surplus” or that portion of the population that was not likely to survive even in the 

absence of fox predation.  

The European rabbit (Oryctolagus cuniculus) has been found to be the preferred prey 

item of feral cats in many regions of Australia, including other parts of Victoria (e.g. 

Catling 1988; Coman and Brunner 1972; Molsher et al. 1999); however, this is not the 

case in Far East Gippsland. The remains of rabbits were not detected in any of the 
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scats analysed in this study nor in that of Triggs et al. (1984). Rabbits are present in 

the Far East Gippsland region and were seen regularly both on and adjacent to the 

cleared land in the region and along forest roads substantial distances from cleared 

areas over the period that the scats were collected (T. Buckmaster, pers. observation). 

Rabbits are consumed, albeit in low numbers, by both foxes and wild dogs/dingoes 

(Canis familiaris / Canis lupus dingo) in the region (Diment 2010; Friend 1978; 

Triggs et al. 1984). In other nearby regions, rabbits are consumed in larger number by 

cats (Coman and Brunner 1972; Jones and Coman 1981). The substantial variation in 

diet between cat populations in different areas is most likely due to a combination of 

previous feeding experiences, possibly to the degree of hunger, and to prey 

availability (Bradshaw et al. 2000).  
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Appendix 2 

Potential for ingestion by non-target Australian animals of 

Curiosity
®
 baits with toxicant enclosed in a hard shell 

delivery vehicle – Electronic supplement 

 

A CD ROM containing the complete assessment for all species is attached to this 

page.  

Note: The contents of this disc were scanned for potential viruses and other materials 

that may be harmful to your computer prior to being included on the disc. None were 

found during that scan. However, I strongly recommend that you scan the file on 

this disc using your own anti-virus and anti-malware software prior to opening 

it.   

 


