
Sydney University

Faculty of Engineering and Information Technologies

Doctor of Philosophy Dissertation

Dynamic Workflow-Engine

by

Avner B. OTTENSOOSER

Supervisor: Professor Alan Fekete

Sydney, December 2011



Please use this identifier to cite or link to this item:

http://hdl.handle.net/2123/8120 .

Copyright c© Avner B. OTTENSOOSER 2011 All Rights Reserved

 http://hdl.handle.net/2123/8120


To Tal and Yochi





Contents

Contents i

Glossary xi

1 Introduction 1

1.1 The Project Management Approach . . . . . . . . . . . . . . 2

1.2 The Workflow Management Approach . . . . . . . . . . . . . 4

1.3 Overview of the Research Program . . . . . . . . . . . . . . 8

2 Context 11

2.1 Business Process Management . . . . . . . . . . . . . . . . . 11

2.1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Verification . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Enactment . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.4 Monitoring . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.5 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Requirements Engineering . . . . . . . . . . . . . . . . . . . 34

2.2.1 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Use Case Languages . . . . . . . . . . . . . . . . . . 36

2.3 Computer Human Interaction . . . . . . . . . . . . . . . . . 43

2.4 Linguistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Literacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Architecture 59

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 The Enactment Round Trip . . . . . . . . . . . . . . . . . . 60

3.3 Extending the Input Language . . . . . . . . . . . . . . . . . 64

i



ii CONTENTS

3.4 Use Case Oriented Workflow Engine . . . . . . . . . . . . . 72

3.4.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Methods — Run Time Interface . . . . . . . . . . . . 76

3.4.3 The Engine . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.4 The Role of the Business Analyst . . . . . . . . . . . 80

3.4.5 The Role of the Workflow Configuration Officer . . . 80

3.4.6 The Role of the Human Resource Team . . . . . . . . 81

3.4.7 The Role of the Security Officer . . . . . . . . . . . . 83

3.4.8 The Role of the Workflow Participant . . . . . . . . . 83

3.4.9 The Role of the Dispatcher . . . . . . . . . . . . . . . 86

3.4.10 The Role of the Business Process Manager . . . . . . 87

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Case Study 91

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Basil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 BTeP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Skills and Difficulty . . . . . . . . . . . . . . . . . . . 98

4.4.2 Observation Menu . . . . . . . . . . . . . . . . . . . 99

4.4.3 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.4 Dispatching . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.5 Roster . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.6 Workflow Patterns . . . . . . . . . . . . . . . . . . . 101

4.5 Implementation on Off The Shelf Engine . . . . . . . . . . . 104

4.6 Experience Gained . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Benefits Found . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.9 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Expressive Power 115

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Patterns Approach . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Sound Workflow Nets Approach . . . . . . . . . . . . . . . . 120

5.4 Unsafe Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.6 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



CONTENTS iii

6 Readability 133

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Experiment Planning . . . . . . . . . . . . . . . . . . . . . . 137

6.4.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Experiment Operation . . . . . . . . . . . . . . . . . . . . . 139

6.5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.2 Instruments . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5.4 Pilot Study . . . . . . . . . . . . . . . . . . . . . . . 144

6.5.5 Control . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . 150

6.6.2 Discussion of the Data . . . . . . . . . . . . . . . . . 151

6.6.3 Readability Comparison . . . . . . . . . . . . . . . . 152

6.6.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6.5 Interpretation of the Results . . . . . . . . . . . . . . 156

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.8 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Conclusion 159

8 Further Research 163

Appendices 165

A Participant’s workbook 167

B Pattern-Based Analysis of the Control-Flow Perspective

of written-use-cases 207

B.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

List of Figures 261

Bibliography 265

Index 279





Abstract

We present and assess the novel thesis that a language commonly

accepted for requirement elicitation is worth using for configuration

of business process automation systems. We suggest that Cockburn’s well

accepted requirements elicitation language — the written use case language,

with a few extensions, ought to be used as a workflow modelling language.

We evaluate our thesis by studying in detail an industrial implemen-

tation of a workflow engine whose workflow modelling language is our ex-

tended written use case language; by surveying the variety of business pro-

cesses that can be expressed by our extended written use case language;

and by empirically assessing the readability of our extended written use

case language.

Our contribution is sixfold: (i) an architecture with which a workflow

engine whose workflow modelling language is an extended written use case

language can be built, configured, used and monitored; (ii) a detailed study

of an industrial implementation of use case oriented workflow engine; (iii)

assessment of the expressive power of the extended written use case language

which is based on a known pattern catalogue; (iv) another assessments of

the expressive power of the extended written use case language which is

based on an equivalence to a formal model that is known to be expressive;

(v) an empirical evaluation in industrial context of the readability of our

extended written use case language in comparison to the readability of the

incumbent graphical languages; and (vi) reflections upon the state of the

art, methodologies, our results, and opportunities for further research.

Our conclusions are that a workflow engine whose workflow modelling

language is an extended written use case language can be built, configured,

used and monitored; that in an environment that calls upon an extended

written use case language as a workflow modelling language, the transi-

tion between the modelling and verification state, enactment state, and

v



vi CONTENTS

monitoring state is dynamic; that a use case oriented workflow engine was

implemented in industrial settings and that the approach was well accepted

by management, workflow configuration officers and workflow participants

alike; that the extended written use case language is quite expressive, as

much as the incumbent graphical languages; and that in industrial context

an extended written use case language is an efficient communication device

amongst stakeholders.



Statement of Originality

In this dissertation I give the first comprehensive report of a research

programme I have conducted under the supervision of Professor Fekete.

To the best of my knowledge this dissertation contains no material written

by another person, except where duly acknowledged. Contributions made

to my research programme, and assistance I received in the editing of this

dissertation are acknowledged as well. Parts of Chapter 3 – Architecture

and Chapter 4 – Case Study were previously published as:

A. Ottensooser and A. Fekete. An enactment-engine based on

usecases. In G. Alonso, P. Dadam, and M. Rosemann, editors,

Proc. BPM’07: Business Process Management (LNCS 4714),

pages 230–245, Heidelberg, 2007. Springer-Verlag [86].

Parts of Chapter 6 – Readability are currently in press as:

Ottensooser, A., et al., Making sense of business process descrip-

tions: An experimental comparison of graphical and textual no-

tations. J. Syst. Software (2011), doi:10.1016/j.jss.2011.

09.023 [89]

The appendix Participant’s workbook and the statistical work at Chapter

6 – Readability were previously published as part of:

A. Ottensooser and A. Fekete. Comparing readability of graph-

ical and sentential process design notations – data analysis re-

port. Technical report, School of Information Technologies, Uni-

versity of Sydney, Australia, 2010. TR-658, ISBN 978-1-74210-

198-9 [88].

vii

doi:10.1016/j.jss.2011.09.023
doi:10.1016/j.jss.2011.09.023


viii CONTENTS

The appendix Pattern-Based Analysis of the Control-Flow Perspective of

written-use-cases was previously published as:

A. Ottensooser and A. Fekete. Workflow patterns represented in

use-cases. Technical report, School of Information Technologies,

University of Sydney, Australia, 2008. TR-611, ISBN 978-1-

74210-021-0 [87] .

I present the state of the art — the work of other people, in Chapter 2

– Context. After describing the state of the art I synthesise the state of the

art in section 2.6 – Reflections. The rest of this dissertation is my original

contribution .

In chapter 4 – Case Study, I describe a workflow engine construction

project that BT Financial Group undertook. My role in that project was

that of a project director with responsibility for the overall architecture,

development, change management, deployment of the workflow engine soft-

ware and its configuration, the project budget and schedule. Naturally, I

harnessed the effort of a development team, a project manager, and change

agents drawn from the end user community.

The project was run on strict commercial terms and had no place in it

for pure science. Indeed chapter 4 is a study of that single case — a case

study by other name. Now, years later, I call upon this case and study it

as evidence that a use case oriented workflow engine exists and that it is

well accepted by management, workflow configuration officers and workflow

participants alike. These conclusions by those in the organisation are not

biased since I am no longer involved in the project.

The writing style of this dissertation calls for the use of the subjective

pronoun “I” in the reflective sections and the subjective pronoun “we” in

all other. The use of the subjective pronoun “we” does not imply that I did

not do the work described.

The translations of quotations from the Bible and the Talmud are original.



Acknowledgements

The wiser Kohellet was, he still imparted

knowledge to the people; pondered and

researched; and set in order many proverbs.

Ecclesiastes 12:9

I wish to thank my supervisor Professor Alan Fekete for years of con-

stant challenge, support and sensitively administered criticism. In par-

ticular I wish to thank Professor Fekete for help in drafting the road map

of this research programme and steering my progress along the way. I

also thank Alan for shielding me from the mundane chores of university

life — the annual progress reports and the ethical approval for our ex-

periment. While Professor Fekete is a mathematician by training, and an

original computer scientist, he is above all a teacher, and his calm manner,

encyclopedic knowledge, passion for computer science, and to the human

interaction within the various computer science communities, attention to

the completeness of a line of argument, and insistence on concrete examples

will stay with me for many years to come.

I would like to acknowledge the help of the three anonymous reviewers of

this dissertation for their contribution to the accuracy, breadth and format

of this dissertation.

Special thanks to my beloved wife Dalia Chaia Ottensooser who toler-

ated the years of effort, energy and attention I have devoted to the research

programme; years of effort, energy and attention that should have been

deployed to causes much more worthwhile.

During my research programme I had the honour of talking with Pro-

fessor van der Aalst and the joy of collaborating with Professor Reijers,

ix



x CONTENTS

Professor Mendling, Dr. Menictas, Professor Judy Kay and Dr. Cockburn

on the research presented in Chapter 6 — Readability. I also had the pride

and joy of employing my daughter Tal Ottensooser as a research assistant,

posting advertisements on notice boards and administrating questioners.

For 12 years I had the honour to observe, and sometimes contribute,

to the evolution of the business process management practice at BT. First

amongst the numerous colleagues I have to thank is the inspirational Mr.

Keith Hallet. Countless planning sessions, in various corners of the globe,

long into the night with Keith and his inseparable companion Dr. Walker,

J. were the inspiration for the operational concepts of dynamic workflow. I

also have to thank Mrs. Sandra Hill for sponsoring the development of a

workflow engine in BT, as well as Mr. Tony Forward who authorised the use

of experience gained at BT as the basis for this research programme. Special

thanks to Mr. Dale Swift who managed the team that developed BTeP, the

first use case oriented workflow engine, and reviewed this dissertation.

During my research years I was assisted by Ms. Jenni Michelson and my

son Yochi Ottensooser in all English related issues. Both Jenni and Yochi

spent countless hours editing my papers and this dissertation, often asking

very hard questions, and pointing at important reading material.

During my research programme I was assisted by various scientific tools

such as Google Scholar — the portal to the online databases, statistical

analysis with the R platform [93]; the LATEX platform; the BibTEX citation

manager; the Memoir class; the Glossaries terms management Package;

LEd, a LATEX editor; YASPER, a Petri-Net simulator [109]; and System

Architect, a CASE tool.

Of the material I read during my research programme I was especially

inspired by the monograms: Obedience to Authority: An Experimental View

by Milgram [73]; Human Computer Interaction by Dix et al [34]; Writing Ef-

fective Use Case by Cockburn [24] and Patterns for Effective Use Cases by

Cockburn et al [13]; Object-oriented software engineering by Jacobson [57]

and Experimentation in software engineering: an introduction by Wohlin et

al [116].

While writing this dissertation I always referred to the online edition

of the Oxford English Dictionary [25] as a first port of call for definitions,

in particular: “Gantt chart”, “work”, “work flow”, “specification”, “to gild

the lily”, “instruct’, “observe”, “pilot”, “induction”, “deduction”, “placebo’

as well as for the lovable English term “Schadenfreude” and the Australian

term “larrikin”.



Glossary

One of the challenges in a multi disciplinary work, such as this dissertation

that draws upon work of the Business Process management, Requirement

Engineering, HCI community’s work and Linguistics communities, is the

bridging of the terminologies of diverse communities. This dissertation is

founded upon 78 terms. While I use most of the terms in the definition of

other terms, I avoid circular definitions. However, due to editorial consid-

erations, I present in chapter 1 some yet to be defined terms. To help the

reader gain quick access to these definitions I use the hyper–linking func-

tionality provided by the GLS LaTex package. The reader who is after an

orderly introduction of terms, starting from basic principles sourced from

the Oxford English Dictionary, via terms sourced from the professional lit-

erature to original terms such as use case oriented workflow engine; should

read chapter two first, then chapters three to six and only then chapters

one and seven. To help the reader navigate through the terminology maze,

I placed an extended glossary section right at the beginning of the disserta-

tion. The glossary defines each term, points to every where page the term is

used, and to the terms that rely upon that term. Due to the large numbers

of terms introduced in this dissertation, I made the editorial decision not to

use acronyms. The style of writing adopted in this dissertation called for a

single bibliography entry to the OED. As I had to state the date I accessed

each definition online, I attached the date to the quote, otherwise I would

have had to place the dictionary 18 times in the bibliography.

absolute readability (QSetn) , n. The measured knowledge of a partic-

ipant after reading an artifact. 139, 140, 145

action step , n. A labelled written use case line which has a restricted

grammatical structure [24, Page 90]. 21, 35, 36, 40–43, 56, 62–64,

xi



xii CONTENTS

66–68, 70, 71, 80, 81, 83, 85, 87, 88, 112, 117, 121, 125, 126, 129, 130,

158, see also written use case language

action step ID , n. A label that uniquely identifies an action step within

a written use case [24, Page 218]. 41, 66, see also action step & written

use case language

activity , n. A description of a piece of work that forms one logical step

within a process. An activity may be a manual activity, which does

not support computer automation, or a workflow (automated) activ-

ity. A workflow activity requires human and/or machine resources(s)

to support process execution; where human resource is required an

activity is allocated to a workflow participant [117, Page 13]. 2–4, 7,

8, 12, 14, 19, 23, 25, 30–36, 40, 41, 43, 63, 64, 66, 67, 70, 72–74, 76,

77, 80, 81, 85–87, 89, 90, 93, 96, 99, 102–107, 109–111, 113, 159, 160,

164, see also work, workflow & workflow participant

allocation bias ,n. An undesirable property of an experiment where by

the officer executing the experiment effects the results of the experi-

ment by assigning participants to one of the experimental groups on

the basis of familiarity with both the participants and the experimen-

tal groups. 146, 148

alternative scenario , n. A success scenario that supplements the main

success scenario. The placing of alternative scenarios after the main

success scenario, rather than adding complexity to the main suc-

cess scenario seems to create use cases that are easiest to read [24,

Page 217]. 4, 63, 80, 125, see also scenario

between subjects , n. An experimental procedure used to compare re-

sults for different participants [15, page 18]. 44, 45, 138, 154, see also

within subjects & mixed design

bounded , a. A Petri net is bounded iff for each place p there is a natural

number n such that for every reachable state the number of tokens in

p is less than n. 26, 27, 124, see also structurally bounded & Petri

net

BPMN , n. A modelling language that is readily understandable by all

business users, from the business analysts who create the initial drafts



CONTENTS xiii

of the processes, to the technical developers responsible for imple-

menting the technology that will perform those processes, and, fi-

nally, to the business people who will manage and monitor those pro-

cesses [112]. 7, 13–16, 21, 36, 40, 56, 66–68, 87, 88, 98, 116, 132, 133,

135–139, 141, 143–146, 149–151, 153, 156–158, 162–164

business activity monitor , n. A utility that provides the ability to mon-

itor track and report on workflow events during [and after] workflow

execution [117, Page 56]. 9, 31, 62, 63, 86, 105, 108, 112, 161, see also

workflow

business transaction routing sheet , n. An ordered set of activities

that workflow participants perform as a group. 8, 62, 73, 74, 79, 80,

85, 86, 99, see also activity & workflow participant

deduction , n. The process of deducing or drawing a conclusion from

a principle already known or assumed; spec. in Logic, inference by

reasoning from generals to particulars; opposed to induction [25, Ac-

cessed 23-November 2010]. x, 120, see also induction

dependent variable , n. In an experiment the aspect that occurs as a

result of the experiment [15, page 20]. 45, 149, see also independent

variable

diarise , method. A public method used by the workflow participant to

postpone the execution of an activity until a given date and time. 76,

77, 85–87, 89, 90, see also workflow participant & activity

done , method. A public method used by the workflow participant to ac-

knowledge the completion of an activity. 76, 77, 86, see also workflow

participant & activity

extended written use case language , n. A workflow modelling lan-

guage that supplements the written use case language by: (i) adding

order of processing identifier to each action step, (ii) indenting mutu-

ally exclusive extensions, and (iii) listing potentially satisfied together

extensions right below each other. v, vi, 56, 57, 66, 70, 71, 73, 77,

78, 87, 88, 105, 108, 111, 114–116, 118, 120, 121, 124, 126–129, 131–

133, 135–139, 142, 146, 153, 156–158, 161, 162, 164, see also workflow

modelling language, written use case language, order of processing

identifier, & extension



xiv CONTENTS

extension , n. A stripped down scenario that starts with the condition

that makes it relevant [24, Page 99]. 36, 41, 43, 62, 63, 67, 74, 80, 81,

85, 87, 88, 98, 99, 105, 158, see also scenario

Gantt chart , n. The name of Henry Laurence Gantt (1861-1919), Amer-

ican management consultant, used attrib. to designate a chart in

which a series of horizontal [sic] lines shows the amount of work done

or production completed in certain periods of time in relation to the

amount planned for those periods [25, accessed October 2010]. x, 2–4,

7, see also work

GetNext , method. A public method used by a workflow participant to

request a worklist from the workflow engine. 76, 77, 85, 100, 103, 104,

106–110, see also workflow participant, worklist & workflow engine

independent variable , n. An experimental procedure used to compare

results for different participants [15, page 18]. 45, 149, see also de-

pendent variable

induction , n. The bringing forward, adducing, or enumerating of a num-

ber of separate facts, particulars, etc., esp. for the purpose of proving

a general statement [25, Accessed 23-November 2010]. x, 120, see also

deduction

information equivalence , n. Two representations are informationally

equivalent if all of the information in the one is also inferable from the

other, and vice versa each could be constructed from the information

in the other [64]. 58, 146

initial domain knowledge , n. The original familiarity of participants

with the material presented in the artefact. 24, 58, 139, 140, 145, 152

instruct , n. To furnish with authoritative directions as to action; to direct,

command [25]. x, 72, 73

instruction , n. An interface used to instruct a workflow participant to

perform an activity. 73, 81, see also instruct, workflow participant &

activity

Interval Data , n. Continuous data where the difference between the

measurements are meaningful but there is no natural zero point [15,

page 22]. 46, see also ordinal data



CONTENTS xv

language ,n [...] 2 a. The form of words in which something is communi-

cated; manner or style of expression. 2 b. The vocabulary or phrase-

ology of a particular sphere, discipline, profession, social group, etc.;

jargon. 2 c. The style of a literary composition; (also) the wording of a

document, statute, etc. [...] 6. The method of human communication,

either spoken or written, consisting of the use of words in a structured

and conventional way; (also) words [25, accessed October 2011]. v, vi,

1, 2, 4, 7–9, 11–15, 20–24, 30, 34, 36, 39, 42, 46–54, 56, 57, 59, 60, 63,

64, 66, 72, 80, 87, 89, 90, 110, 115–117, 129, 131, 134, 136–138, 161,

162, see also workflow modelling language, BPMN, written use case

language, extended written use case language & readability

live Petri net , n. A Petri net is live iff, for every reachable state M ′ and

every transition t there is a state M ′′ reachable from M ′ which enables

t. 26, 27, see also Petri net

main success scenario , n. A top-to-bottom description of an easy-to-

understand and fairly typical [sequence of events] in which the primary

actor goal is delivered and all stakeholders’ interests are satisfied [24,

Page 87]. 4, 36, 42, 43, 63, 71, 80, 88, 99, 125, 126, see also stakeholder

&

mixed design , n. An experimental procedure that contains between sub-

jects factors and within subject factors. [15, page 19]. 45, see also

within subjects & between subjects

observation , n. An attribute of a work item one may observe. 63, 74, 77,

80, 81, 85, 86, 90, 96, 99, 110, 113, see also work item & observe

observe , method. A public method used by a workflow participant to

declare which use cases or use case extensions should be performed

on a work item. 76, see also observe, workflow participant, use case,

extension & work item

observe , v. To take note of or detect scientifically; to watch or examine

methodically, esp. without experimental or therapeutic intervention;

to perceive or learn by scientific inspection or measurement; [...] [25].

x, 73, 77

order of processing identifier , n. An integer that defines the sequence

of action step within a written use case. 65–68, 70, 71, 80, 88, 96, 97,

125, see also action step & written use case language



xvi CONTENTS

ordinal data , n. Ordered groups or categories [15, page 21]. 45, 46, see

also Interval Data

partial order , a. By a system is meant a set S together with a binary

relation R(x, y) which may hold for certain pairs of elements x and y of

S. The relation R(x, y) is read “x precedes y” and is written“x > y”.

A system is called a partial order if the following conditions are

satisfied: if (x < y)⇒ (y ≮ x); if (x < y) and (y < z)⇒ (x < z) [35].

35, 39, 41, 56, 64, 66, 68, 70, 97

Petri net , n. A triple (P, T, F ) where P is a finite set of places, T is a

finite set of transition (P ∩ T = φ), and F ⊆ (P × T ) ∪ (T × P ) is

a set of arcs (flow relation) [3]. 9, 12, 13, 15, 17–21, 27, 57, 116–118,

120, 121, 124, 127–129, 131, 132, 162

pilot , n. A person who steers or directs the course of a ship; a helms-

man or navigator, spec. a qualified coastal navigator taken on board

temporarily to steer a ship into or out of a port, through a channel,

etc [25]. x, 63, 83, 85, 88–90, 99

pilot , method. To prescribe or link one or many business transaction

routing sheets to a work item. 73, 83–86, 89, 90, 104, see also pilot,

prescribe, business transaction routing sheet & work item

placebo , n. A substance with no therapeutic effect used as a control in

testing new drugs [25, Accessed 2-June-2010]. x, 25, 143, 145, 149,

152

prescribe , method. A private method used by the workflow engine, and

not exposed to users of the engine. In response to an observation, the

workflow engine places activities in a queue according to the business

transaction routing sheets. The activities queued are the action steps

derived from use cases or extension. 76, 85, 87, 89, see also workflow

engine, workflow, activity, use case, extension & observation

primary actor , n. The stakeholder that calls on the system to deliver

one of its services [24, page 54]. 40, 42, 63, see also stakeholder

primary contribution (Cont1) , n. Cont1 ≡ QSet1−Placebo. 145, 149,

151, 153, 156, see also absolute readability (QSetn) & placebo

Ratio Data , n. Interval data with the addition of an absolute zero [15,

page 23]. 46



CONTENTS xvii

reachability graph of a net , n. A 5 tuple (V,E, T, L, vO), where (V,E)

is a finite, labeled directed graph with the property that for each v in

V , there exists a directed path from v0 (called the initial vertex) to

v, i.e., (V,E) is rooted at v0. Each (directed) edge in E is labeled by

an element in the transition set T (of a Petri net) [84]. 20, 124, 132,

see also Petri net

readability , n. a language’s success in accurately communicating an idea

from the writer to human readers [as oppose to — from the writer

to computer ] [83]. v, 7–10, 12, 21, 22, 34, 51, 54–58, 60, 90, 116,

132–137, 139, 140, 149, 151, 160–163

readability formula , A mathematical equation derived by regression anal-

ysis. This procedure finds the equation which best expresses the rela-

tionship between two variables, which in this case are a measure of the

difficulty experienced by people reading a given text, and a measure

of the linguistic characteristics of that text. This formula can then be

used to predict reading difficulty from the linguistic characteristics of

other texts [71]. 54

risk register , n. A project management artefact used to record possible

deviation from the project plan, combined with the identification of

procedures to avoid or minimise the impact of such deviation [85,

Section 8.3.4]. 4, 7

role , n. A group of workflow participants exhibiting a specific set of at-

tributes, qualifications and/or skills [117, Page 53]. 12, 29–31, 41, 43,

60, 62–64, 67, 77, 81, 83, 86, 90, 93, 96, 98, 99, 102, 103, 105, 108, see

also workflow participant

safe , a. A Petri net is safe iff for each place the maximum number of

tokens does not exceed 1. 7–10, 12, 25–27, 127, 129, 130, 132, 161,

162, see also Petri net

scenario , n. [A mini specification built of] partly ordered set of action

steps [24, page 90]. 4, 8, 35, 36, 41–43, 62, 63, 66, 80, 121, 125, 126,

164, see also specification, partial order & action step

secondary contribution (Cont2) , n. Cont2 ≡ QSet2 − QSet1 . 145,

149–151, see also absolute readability (QSetn)



xviii CONTENTS

should not be done , method. A public method used by the workflow

participant to instruct the workflow engine to cancel an activity al-

ready prescribed to a work item. 77, 85, 86, 89, 90, see also done,

workflow engine, workflow, workflow participant, activity, instruct &

prescribe

sound workflow net , n. Workflow net PN = (P, T, F ) is sound iff (i)

for every state M reachable from state i, there exists a firing sequence

leading from state M to state o (∀M(i
∗−→ M) ⇒ (M

∗−→ 0)), and (ii)

state o is the only state reachable from state i with at least one token

in place o (∀M(i
∗−→ M ∧M ≥ o) ⇒ (M = o)), and (iii) there are no

dead transitions in (PN, i) ( ∀t∈T∃M,M ′i
∗−→ M

t−→ M ′) [3]. 19, 25–27,

57, 116, 120, 121, 124–126, 129, 131, 132, 162, see also workflow &

workflow net

specification , n. Specific, explicit, or detailed mention, enumeration, or

statement of something [25]. x, 41

stakeholder , n. Someone or something that has a vested interest in the

behaviour of the use case [24, page 53]. 2, 5, 32, 39, 40, 59, 60, 63,

87, 90, 111, 148, see also use case

structurally bounded , a. A Petri net is structurally bounded if the net

is bounded for any initial state. 26, see also Petri net & bounded

supporting document , n. External artefact that corroborates a business

transaction. 70, 74, 85, 94–97, 99, 100, 107

Theseus tree , n. A tree whose root is the start state of a graph S, the

nodes are the set of reachable states from S, and the children of a

node N are states that can follow N in one step and have not been

included in the tree at the same or higher level. 124, 125, 127, 128,

see also reachability graph of a net

to gild the lily , v. To embellish excessively, to add ornament where none

is needed [25], such as adding this definition. x, 67

usability , n. The extent to which product can be used by specified users

to achieve a specified goal with effectiveness, efficiency and satisfaction

in a specific context of use [58]. 21, 44, 46, 64, 67, 90, 132



CONTENTS xix

usability metric , n. An observable and quantifiable way of measuring

task success, user satisfaction or errors [15, page 7]. 44, see also us-

ability

use case , n. A collection of scenarios — a main success scenario, some

alternative scenarios, and a multitude of extensions. In the general

sense, though, extensions are miniature scenarios in their own rights

[24, page 106]. 2, 8–11, 15, 20, 22, 23, 34–36, 39–42, 56, 57, 59, 60, 62,

64, 66–68, 72–74, 80, 81, 84, 89, 96, 98, 106, 109, 110, 115–117, 127,

129–132, 143, 145, 149–151, 156–158, 161–163, see also main success

scenario, extension & alternative scenario

use case oriented workflow engine , n. A workflow engine that accepts

the extended written use case language as its workflow modelling lan-

guage. v, vi, viii, x, 8, 9, 57, 59, 60, 62–64, 72, 73, 75–77, 81, 82,

84, 85, 87–89, 91, 94, 96, 98, 102–104, 108, 110–115, 133, 136, 161–

163, see also workflow engine, observation, GetNext, done, diarise,

should not be done, workflow, extended written use case language,

use case, written use case language, activity, workflow modelling lan-

guage, work item, business activity monitor & prescribe

use case set , n. Collection of activities in a high level use case that are

further elaborated as lower level use cases, until sufficient detail is

achieved. Cockburn’s terminology is that of a use case and sub use

cases [24, Chapter 10 and Page 219]. 8, 35, 36, 42, 43, 57, 62, 66, 80,

121, 127, 146, 162, see also use case & activity

use case title , n. An active verb phrase that represents the goal of the

primary actor of the use case [24, Back Cover]. 40, 42, 81, 99, see also

use case

well formed , a. A Petri net PN is well formed iff there is a state M

such that (PN,M) is live and bounded. 26, see also Petri net, live

Petri net & bounded

within subjects , n. An experimental procedure when one compares dif-

ferent data for each participant [15, page 18]. 44, 45, 138, 154, see

also between subjects

work , n. Something that is or was done; what a person does or did;

an act, deed, proceeding, business; in pl. actions, doings [...] often

collectively [25]. x, 5, 6, 14, 99



xx CONTENTS

work flow , n. in an office or industrial organization [sic], the sequence

of processes through which a piece of work passes from initiation to

completion [25, accessed 19-March-2011]. x, 6, 29, see also work

work item , n. The representation of the work to be processed by a work-

flow participant in the context of an activity within a process in-

stance [117, Page 19]. 5, 7, 8, 19, 30–32, 62, 63, 73, 74, 77, 83, 85,

86, 88, 89, 95, 97–107, 109, 112, 131, see also workflow, workflow

participant & activity

workflow , n. The automation of a business process, in whole or part,

during which information and work lists are passed from one partici-

pant to another for action, according to a set of procedural rules [117,

Page 8]. 2, 5–7, 9, 10, 15, 18, 21, 25, 27, 29, 30, 87, 88, 97, 98, 105,

111, 113, 115, 117, 120, 121, 125–127, 129, 131, 132, 134, 137–139,

143, 144, 160–163, see also work flow & work

workflow configuration officer n. A person who is responsible to feed

workflow models into workflow engines. vi, viii, 2, 7–9, 33, 34, 62, 64,

66, 67, 72–74, 80, 81, 87–89, 108, 110, 111, 114, 134–136, 159–161, see

also workflow engine & workflow

workflow engine , n. A generic software system driven by explicit process

design to enact and manage operational business process [95]. v, viii,

6–9, 29–34, 56, 59, 60, 62–64, 66, 70, 72, 74, 77, 83, 85, 86, 88–90,

93, 97, 98, 100, 104, 106, 108–111, 113, 114, 133, 160, 161, see also

workflow

workflow modelling language , n. A format for defining a process en-

acted by a workflow engine. v, 2, 6, 7, 9, 11–13, 29, 30, 34, 43, 56, 57,

59, 64, 71, 77, 88–90, 105, 116, 133, 134, 160–164, see also workflow

engine & workflow

workflow net , n. A Petri net that has one input place i and one output

place o, and where for each transition t there is a path from i to o

via t. Formally a Petri net PN = P (P, T,E) is a workflow net iff (i)

there is one source place i ∈ P such that •i = φ, there is one sink

place o ∈ P such that •o = φ, and (ii) every node x ∈ P ∪ T is on

the path from i to o [3]. 19, 25, 26, 117, 120, 124, see also Petri net

& workflow



CONTENTS xxi

workflow participant , n. A resource which performs the work repre-

sented by an activity instance [117, Page 18]. vi, viii, 2, 5, 7–9, 13,

29–33, 62, 63, 70, 72–74, 76, 81, 83, 85–90, 93, 95, 97–114, 121, 134,

159–161, see also work & activity

worklist , n. A set of work items associated with a given workflow partic-

ipant [117, Page 20]. 31, 62, 83, 86, 99, 103, 109, 121, see also work

item & workflow participant

written use case language , n. A use case language described by Cock-

burn [24] and elaborated by Cockburn et al [13]. v, 2, 8–10, 16, 25,

34, 35, 39, 40, 42, 56, 59, 60, 63, 64, 66, 67, 80, 83, 87–89, 97, 99, 133,

146, 150, 153, 155, 160–162, see also use case



xxii CONTENTS

 class Workflow terms

Use Case Rriented 

Workflow engine

Workflow Engine

WorkflowWorkflow Modelling 

Notation

activ ity

- Difficulty:  int

Workflow 

Participant

Role

BPMN Use case

Cockburn (written) 

Notation

Jacobson (UML) 

Notation

Scenario

- Observation:  char

Action Step

- Desciption:  int

- ID:  char

Main Sucess 

Scenario

Alternativ e 

Senario

Eextention

Actor

- ID:  char

Workflow Item

Trigger

Traditional Wf 

Engine

Extended Written 

Use Case Notation

Order of 

processing 

Identifier

A wf engine enacts many workflows

A person can have

many roles

Partly ordered

Section 3.5

IS A

Section3.4

IS A

Who will perform the

activity?

Figure 1 – A reference model of the terminology introduced in the glossary



Chapter 1

Introduction

There are four languages worth using, Greek

for song, Latin for war, Syriac for

lamentation and Hebrew for speech.

Rabbi Jonathan from Bait Govrin [33, 43]

Formally articulated, optimised and followed business processes are

one of the main assets of contemporary organisations, parallel in im-

portance to franchises, brands, patents, capital and human resources. Some

organisations, challenged to continuously improve their business processes,

call upon systems that automate the management of the multitude of busi-

ness processes they perform day in and day out. These systems, in turn,

call for dedicated modelling languages for the configuration of business pro-

cesses. These languages are the subject of this dissertation.

In this dissertation we present and assess a novel approach for the con-

figuration of business process automation systems. Our thesis is that a

language commonly accepted for requirement elicitation is worth using for

configuration of business process automation systems.

Our research builds upon ideas drawn from the work of several commu-

nities. Using ideas sourced from the requirement engineering community,

we describe the language we propose for the configuration of business pro-

cess automation systems. Using ideas sourced from the software engineer-

ing community we articulate an abstract architecture of an implementation

that automates workflows described in this way and we describe the pro-

1



2 CHAPTER 1. INTRODUCTION

cess management practises in an organisation that applied our approach.

Using ideas sourced from the business process management community we

explore the gamut of business process patterns to which our approach may

be applied. Lastly, using ideas drawn from the human computer interaction

literature we measure the extent to which a wide cohort of stakeholders can

understand our language in comparison with the incumbent language.

In this introductionary chapter, we contrast two approaches to the man-

agement of business processes within the organisation — project manage-

ment and workflow management. We describe engines used for the man-

agement of projects and engines used for the management of workflow, and

in particular we describe the engines’ respective modelling language. Thus

we put into context the subject of this dissertation — a workflow mod-

elling language. We then suggest to reuse the written use cases, artifacts

that business analysts routinely produce for requirement elicitation, for the

purpose of workflow definition.

By reusing the written use cases, rather than translating them into a

dedicated workflow modelling language, organisations may improve com-

munication between different stakeholders, including workflow participants,

business analysts, modellers, workflow configuration officers and process im-

provement experts. Reuse may also enable organisations to remove risky

translation activities from workflow configuration projects, decrease time to

market and reduce costs.

We conclude this chapter by outlining the structure of the research pro-

gramme on which we report in this dissertation. In that research programme

we have undertaken to see how well a use case language could be used as a

workflow modelling language.

1.1 The Project Management Approach

Contemporary organisations often apply project management methodolo-

gies to projects — the once off medium to large scale activities that have

clear objectives, defined start and defined end. To describe projects for-

mally some project managers use Gantt charts. The Gantt chart project

modelling language was first published by Henry Gantt in 1903 while work-

ing on shop floor optimisation with Frederick Winslow Taylor [114].

Definition §1.1

Gantt chart, n. The name of Henry Laurence Gantt (1861-1919),

American management consultant, used attrib. to designate a



1.1. THE PROJECT MANAGEMENT APPROACH 3

chart in which a series of horizontal [sic] lines shows the amount

of work done or production completed in certain periods of time

in relation to the amount planned for those periods [25, accessed

October 2010].

Figure 1.1 – Gantt chart — In this example we see a simple project
plan that includes 24 activities and four participants. As the
figure was drawn from a real life commercial project, fonts
were deliberately scaled down to an unreadable size.

With a Gantt chart such as in Figure 1.1, project managers list project

activities on the Y axis and time line on the X axis. Horizontal bars rep-

resent activities. The horizontal span of an activity represents its time,

and arcs that connect these horizontal bars represent dependencies between

activities [59, Page 557].

Some project management engines ask project managers to key various

properties of project participants such as percent availability or hourly rate,

and properties of activities such as the project participants who will perform

the activities and their duration. By analysing Gantt charts, some project

management engines track circular referencing — the dependency of an ac-

tivity upon activities that are dependent on it, track resources that are over

utilised, and identify the project’s critical path — the sequence of activi-

ties that any delay in their start or their end will postpone the completion

of the entire project. Some project management engines can identify each

activity’s earliest possible start and latest optimal end, as well as the load

imposed on each of the projects’ participants, and calculate costs associated

with the project [10].

The project management approach scales up well. When an organisa-

tion commissions a very large project, a project director may split a handful



4 CHAPTER 1. INTRODUCTION

of activities within a master plan into independent, manageable, and some-

how coordinated activities. The project director may then commission other

project managers to describe each of these activities in independent Gantt

charts and so on, until the Gantt charts are sufficiently detailed. Exam-

ples of very large projects that were managed this way are the invasion of

Normandy, the Manhattan project [78, Pages 11-17] and the Apollo pro-

gram [78, Pages 49-59].

As the Gantt chart language has the “AND split” and the “AND join”

building blocks, Gantt charts can record dependencies between activities.

There are, however, some limitations to the expressive power of the Gantt

chart language. Gantt charts can record only one scenario, most usually

the optimistic one, we call it the main success scenario. A single Gantt

chart cannot record a scenario and alternative scenarios as the Gantt chart

language lacks “OR split” and “OR join” building blocks. Gantt charts,

thus, cannot express flow controls such as “if... then... else...”, “pick one

of several”, or “repeat... until”. Rather, project managers cater for risk —

the unpredictability inherent to many activities, by adding a safety margins

to the duration of activities and by recording all imaginable deviation from

the main success scenario on a secondary, manually connected aftefact —

the risk register. This is true for both PRINCE2 and PMBOK.

Definition §1.2

risk register, n. A project management artefact used to record

possible deviation from the project plan, combined with the

identification of procedures to avoid or minimise the impact of

such deviation [85, Section 8.3.4].

Project managers record in the risk registers as many deviations from

the main success scenario as imaginable and their estimated probability. For

each possible deviations from the main success scenario, project managers

use risk registers as means of recording countermeasures that are designed

to prevent the deviation, activities that will take place should the deviations

from the main success scenario occur, and status of the risks [85, page 356].

1.2 The Workflow Management Approach

To use an analogy, a project manager would treat an activity as an elegant

Bond street tailor would treat a three piece £5,000.00 suit. The provisioning

process in Bond street usually involves four meetings with the client, first



1.2. THE WORKFLOW MANAGEMENT APPROACH 5

for initial measurement and garment choice, second measurement of the

unfinished suit, optional third that may yield some minor alternation, and

fourth for delivery.

When the customer, though, is after 15,000 different T shirts, at $0.50

a piece, Bond street’s four appointment process does not scale down well.

At $0.50 a piece, the Bond street process cannot be economically applied

to each and every T shirt. Similarly the project management approach is

not suited to manage frequently invoked business process.

The project management does not economically scale down to handle

the multitude of repetitive work items that the organisation processes day

in and day out. These repetitive work items can be expensive and complex,

and would have required dedicated management structure, had they not

been so common and so vastly numerous.

To further contrast the project management approach and the workflow

management approach, please look at the different order of magnitudes in

the following examples: BT Financial Group, the financial services arm of

Westpac Banking Corporation, started on an average day in April 2006, ap-

proximately 10,000 work items (or business process instances). Example of

these business processes are “managed funds — initial deposit”, “retirement

product — additional application” “switch”, “transfer”, “cash redemption”

or “personal detail amendment”. In comparison, in April 2006 BT Financial

Group started less than 20 projects — a six orders of magnitude difference.

Or, think of an insurance company that has a major claims depart-

ment. Claimants may present scores of claims daily. Some claims may be

settled immediately; other may require recording, nomination of an asses-

sor, assessment, recording of the assessment, scheduling an internal review,

holding an internal review, recording of the internal review’s minutes, cor-

respondence with various stakeholders, scheduling of more internal reviews,

holding more internal reviews, recording of these reviews’ minutes, negoti-

ation, even more internal reviews, nomination of a legal team, briefing of

the legal team, scheduling even more internal reviews, litigation, drafting

of cheques, signing the cheques and only then are the claims settled.

Surely departments with business processes as numerous and convoluted

as this would benefit from an engine that would hold a detailed model of

their business process on one hand, the work items on the other hand, and

would allocate work items to workflow participants fairly. This engine falls

under an approach named workflow management.

The second edition of the Oxford English Dictionary, accessed on line

on June 2009, defines work as:



6 CHAPTER 1. INTRODUCTION

Definition §1.3

work, n. Something that is or was done; what a person does or

did; an act, deed, proceeding, business; in pl. actions, doings

[...] often collectively [25].

and workflow as:

Definition §1.4

work flow, n. in an office or industrial organization [sic], the

sequence of processes through which a piece of work passes from

initiation to completion [25, accessed 19-March-2011].

The lexicographer was insightful. With the definitions of “work” and

“work flow” on hand we can learn some of the important features that a

workflow engine should have. A workflow engine shall:

(a) Record “the sequence of processes through which a unit of work passes

from initiation to completion”.

(b) Record the skills of the “person” or the “collective”.

(c) Mark the “person” or the “collective” as available.

(d) Record “something” as “needs to be done”.

(e) Classify that “something” as “an act, deed, proceeding, business, ac-

tions, doings”.

(f) Fairly assign that “something” that “ought to be done” to a “person”

or to a “collective” who are available, and are sufficiently skilled.

(g) Decide which parts of that “something” done by a “collective” can be

done in parallel.

(h) Record that “something” “was done”.

Indeed the protagonist in this dissertation is the workflow modelling

language, the artifact used to record:

“the sequence of processes through which a unit of work passes

from initiation to completion” [25, accessed October 2010].



1.2. THE WORKFLOW MANAGEMENT APPROACH 7

A workflow engine is not needed for the strategic management of big

once off projects. They have dedicated project managers who record their

sequence of activities in Gantt charts and risk registers. Workflow engine

are needed for the management of those multitude work items that the or-

ganisation processes day in and day out. Unlike the project managers who

use two lightly coupled artifacts — Gantt charts and risk registers, workflow

configuration officers use a single document called “workflow model” to de-

fine all imaginable paths any work items may pass. The “workflow model”

combines in a single comprehensive artifact information that the project

manager records in two artifacts. Nonetheless, management of these large

once off projects may benefit from the use of workflow engines for tactical

activities such as the dispatching of tasks derived from the project plan to

stakeholders, manage the approvals of leaves, enforce change control poli-

cies, coordinate procurement and more.

With the workflow model on hand, depending on the specific attributes

of each work item, the workflow engine prescribes the specific activities that

each workflow participant should perform as appropriate for each work item.

So that a workflow modelling language would be able to adequately

describe a process, a workflow modelling language should:

• have high expressive power, namely be capable of expressing complex

control patterns including dependency between activities, parallelism,

and alternatives flows.

• be free of ambiguities,

• be readable,

• be maintainable, and

• have a formal mechanism to prove whether a workflow model is safe,

namely if each workflow model is free of dead and live locks, will

eventually terminate, and has no unreachable activities [3].

Many proprietary workflow modelling languages have been used in com-

mercial products, standards have been proposed, and many more research

papers have been written. The most widespread approaches have their roots

in a graph or network model, and can be formalised with Petri nets or similar

representations. For example, some vendors of industrial workflow engines,

such as Software AG and TIBCO, deploy dialects of BPMN, a modern flow

charting language, as their workflow modelling languages. Other proposals



8 CHAPTER 1. INTRODUCTION

have been based on event condition action rules. All these approaches, how-

ever much they differ in details, depend on a workflow configuration officer

producing a model of each process in a special format, for the purpose of

controlling the execution in the workflow engine [86].

1.3 Overview of the Research Program

Currently, organisations ask the workflow configuration officers to model the

business processes in a special language. We suggest a different approach.

We make use of a well accepted language for eliciting system requirements

— the written use case language. Use cases are commonly produced during

the requirements elicitation stages of projects and are thus available to the

workflow configuration officers naturaly. We conjecture that these use cases

are very readable, that they can contain most of the information needed to

configure workflow engines and that all the workflow configuration officer

has to do is to extend the use cases as we describe below.

Here is a brief overview of our approach from the point of view of its

users; much more detail is given below. With a use case set on hand, the

workflow configuration officer creates a business transaction routing sheet

from each scenario, each describing several activities which should be per-

formed as a group. When a work item arrives to the organisation, the

first workflow participant to touch the work item catalogues the work item,

and records its attributes. Using these attributes the workflow engine links

routing sheets to the work item. Following this, workflow participants per-

form activities according to the routing sheets, until eventually an activity is

found that this workflow participant should not deal with, at which point the

workflow engine passes the work item to another workflow participant. As

the workflow participants execute each activity, the workflow participants

acknowledge this to the workflow engine. From time to time the workflow

engine records audit data describing the workitems’ attributes and progress.

Before the use case oriented workflow engine approach would be widely

accepted, one would need to see if the approach is better (or at least as

good) as the incumbent approach from several perspectives — feasibility,

richness of expressive power, readability, maintainability and safety. In this

dissertation we report on research that explores the extent to which this is

so.

We translated these perspectives into hypothesis and conjecture that

arifact employing a use cases language are readable and contain most of the



1.3. OVERVIEW OF THE RESEARCH PROGRAM 9

information needed to configure workflow engines and that all the workflow

configuration officer has to do is to extend the use case as we describe in

section 3.4 on page 72 — Use Case Oriented Workflow Engine.

The hypothesis that we present, test and assess in this dissertation are:

H1: The written use case language can be used as a workflow modelling

language.

H2: The written use case language can express common workflow patterns.

H3: The written use case language can express every reasonable workflow

pattern.

H4: The written use case language can be tested for safety.

H5: The readability of the written use case language is higher than the

readability of incumbent languages.

By testing the hypothesis we lay the theoretical foundations for the work-

flow industry to improve the readability and maintainability of its products,

which in turn could simplify the role of workflow configuration officers and

increase the capability of workflow engines to handle complexity. In partic-

ular, we test H2 by exemplification, using a library of 43 patterns. We then

test the much wider H3, as it includes the adjective “every”, mathematically

using tools provided by the Petri net community.

We start at Chapter 2 by presenting a description of the state of the

art, drawing on the achievements of three communities: business process

management, requirements engineering and human computer interaction.

As our primary concern is language we also draw upon work from the lin-

guistics and the Literacy communities.

In Chapter 3 — Architecture, we provide a logical design of a use case

oriented workflow engine. The design is detailed enough to enable a software

developer to write a physical design of use case oriented workflow engine. It

is also sufficiently detailed for a workflow configuration officer to learn how

to configure a use case oriented workflow engine, for a workflow participant

to learn how to operate a use case oriented workflow engine, and for a

business process manager to learn how to analyse the logs produced by the

business activity monitor, a building block of a use case oriented workflow

engine.

In Chapter 4 — Case Study, we describe in detail the implementation

of a use case oriented workflow engine in BT Financial Group, the financial



10 CHAPTER 1. INTRODUCTION

services arm of Westpac Banking Corporation. By doing so we test H1. In

Section 5.2 — Patterns Approach, we demonstrate that common workflow

patterns can be expressed using the written use case language, thus testing

H2. In Section 5.3 — Sound Workflow Nets Approach, we further generalise

our investigation and provide a proof that every reasonable workflow pattern

can be expressed using the written use case language, thus we test H3. Then

in section 5.4 — Unsafe Patterns, we provide three examples of use cases

that are not safe, and call upon existing work to demonstrate how the safety

violation can be identified; this tests H4. In Chapter 6 — Readability, we

assess the readability of the written use case language, showing H5 and

completing an evaluation of the hypotheses above.



Chapter 2

Context

Rabbi Hanina said: ‘He who attributes his

quotes, brings salvation to the world.’

[36, 4:4]

H
aving earlier suggested that a use case language may be used

as a workflow modelling language, we now establish the lineage of

our approach. We draw upon work drawn from three computer science re-

search communities: the business process management community within

Databases and Information Systems field, the requirements engineering com-

munity within Software Engineering, and the human computer interaction

community. As our primary concern is languages we also draw upon work

from the linguistics and the literacy communities.

2.1 Business Process Management

The business process management community is mostly concerned with the

round trip of modelling, verification, enactment, monitoring, and tuning of

business processes within the organisation and between organisations. A

wider view also encompasses organisational structure, leadership and per-

formance management, as well as service oriented architecture (SOA) [7].

11



12 CHAPTER 2. CONTEXT

Amongst the assets of the community are an annual conference — BPM,

YAWL — a Workflow Language [4], a pattern library [96], a seminal pa-

per on Petri nets by Tadao Murata [79], a business process management

adoption of Petri nets by van der Aalst [2] and Workflow terminology and

glossary [117] which was written in collaboration with the industry. In

this section we focus on the modelling, verification, enactment, monitoring,

and tuning of business processes within the organisation and between the

organisations.

2.1.1 Modelling

Key to a productive discussion about business processes is an accurate,

readable and verifiable model of the business process. Here we discuss

several approaches to the modelling of workflow; we then see how does the

BPM community assesses the readability of the models empirically and how

does the community verify that the models are safe.

Workflow Modelling Languages

Mili et al sorted through the workflow modelling languages in a survey en-

titled, alphabet soup, describing 15 languages [74]. Adopting the Workflow

Management Coalition’s terminology [117], Mili et al articulated A first-cut

business process meta model. The meta-model is implicitly broken into two

domains: organisation and process. An organisation has a hierarchy of the

departments within it, each department being an organisation in its own

right. An organisation has many members or actors, each capable of fulfill-

ing one or many roles. The organisation performs many functions, calling

upon the support of role bearers. A process is composed of sub-processes,

each being a process on its own right. At a certain point the business pro-

cess modeller decides that a sub-process is sufficiently granular so that it can

be broken into one or many activities. An activity consumes resources and

produces resources. An activity is triggered by an event and may trigger

other events. Mili et al bridge the organisational domain with the process

domain by observing that role bearers perform activities.



2.1. BUSINESS PROCESS MANAGEMENT 13

Mili et al classify workflow modelling languages according to the tradi-

tion that derived them: MIS (the IDEF family of languages and Petri net),

Workflow and process integration (RosettaNet, ebXML and BPEL4WS to

name just a few), and object oriented (for example the UML Activity di-

agram). Mili et al state, though, that UML does not yet provide explicit

support for business process modelling [74, Page 47]. Another dimension

of Mili et al’s taxonomy is target audience who may be workflow partici-

pants, business analysts or machines (e.g. the XML style languages such as

ebXML is aimed at the latter).

 class High lev el Business Process Metamodel

Process Domain Organisation domain

OrganisationFunction

ActorRoleActiv ity

resource

Ev ent

process

Hierarchy

Performs

Member Of

Plays

producesconsumes

performed by

triggers

generates

broken down into

subprocess

support

Figure 2.1 – Mili et al’s first-cut business process meta model [74]

BPMN

We now present three of the many languages proposed for the modelling

workflow: BPMN which is designed with business analysts in mind [112], the

UML Activity Diagram [19, pages 270-277] which is designed with objects in

mind [97], and Petri nets, a formal language with mathematical foundations

that can be used to model workflow [79].



14 CHAPTER 2. CONTEXT

The Business Process Modelling Notation (BPMN) was developed by

the Business Process Management Initiative (BPMI), and is currently main-

tained by the Object Management Group since the two organizations merged

in 2005. On December 2010, the version of BPMN was 1.2, with a major

revision process for BPMN 2.0 in Beta 2 stage. BPMN depicts the end to

end flow of a business process. The language has been specifically designed

to coordinate the sequence of processes and the messages that flow between

different process participants in a related set of activities. A sample diagram

employing the BPMN is provided in figure 2.2 on page 16.

IBM Corporation’s Stephen A. White succinctly described the BPMN

language, we quote directly from his 2004 paper:

Definition §2.1

BPMN, n. A modelling language that is readily understand-

able by all business users, from the business analysts who create

the initial drafts of the processes, to the technical developers

responsible for implementing the technology that will perform

those processes, and, finally, to the business people who will

manage and monitor those processes [112].

BPMN models a business process using a diagram, which is based on

a flowcharting technique tailored for creating graphical models of business

process operations. A Business Process Model, then, is a network of graphi-

cal objects, which are activities (i.e., work) and the flow controls that model

their order of performance. With BPMN, a business process diagram is

made up of a set of graphical building blocks. The building blocks were

chosen to be distinguishable from each other and to utilise shapes that are

familiar to most modelers. For example, activities are rectangles, and deci-

sions are diamonds. This provides a small set of language categories so that

the reader of a business process diagram can easily recognise the basic types

of building blocks and understand the diagram. Within the basic categories

of building blocks, additional variation and information can be added to

support the requirements for complexity without dramatically changing the

basic look and feel of the diagram. Wohed et al, with the help of a workflow



2.1. BUSINESS PROCESS MANAGEMENT 15

patterns library (more about it in section 2.1.1 — Evaluating Languages),

found BPMN suitable for workflow modelling with some reservations [115].

The Unified Modelling Glslanguage (UML) takes an object oriented ap-

proach to the modelling of applications, while BPMN takes a process ori-

ented approach to modelling of systems. Where BPMN has a focus on

business processes, UML has a focus on software design and therefore the

two are not competing languages but are articulating different views on

systems. The BPMN and the UML are compatible with each other. A

business process model does not necessarily have to be implemented as an

automated business process in a process execution language. Where this is

the case, business processes and participants can be mapped to constructs

such as use cases and behavioural models in the UML. Russell et al, with

the help of a workflow patterns library, found the UML Activity Diagram

suitable for workflow modelling with some reservations [97].

Petri Nets

Invented in August 1939, at the age of 13, by Carl Adam Petri to describe

chemical processes [11], Petri nets are appropriate for the description of

many varieties of system, including reactive control, operating systems, and

business software. Murata’s description of the language is very succinct:

Petri net is particular kind of directed graph, together with

an initial state called the initial marking, MO. The underly-

ing graph N of a Petri net is a directed, weighted, bipartite

graph consisting of two kinds of nodes, called places and transi-

tions, where arcs are either from a place to a transition or from

a transition to a place. In graphical representation, places are

drawn as circles, transitions as bars or boxes. Arcs are labelled

with their weights (positive integers), where a k weighted arc

can be interpreted as the set of k parallel arcs. Labels for unity

weight are usually omitted. A marking (state) assigns to each

place a non negative integer. If a marking assigns to place p a

non negative integer k, we say that p is marked with k tokens.

Pictorially, we place k black dots (tokens) in place p [79].



16 CHAPTER 2. CONTEXT

ATM Cash Withdrawal – High Level 

ATM Clearing System Customer’s BankCustomer

Request PIN

Key PIN

Request 

Operation

Select Withdrawal

Request amount

Key amount

Request Approval

Locate customer 

Bank

Found?RejectTermination

Approve?

ApproveDispense CashCollect Cash

Start

No

Yes

No

Figure 2.2 – Basic BPMN example. The example is of equivalent content
to the written use case language example in figure 2.7.



2.1. BUSINESS PROCESS MANAGEMENT 17

2

1

1

2

2

1

1

2

2

1

1

2

A

B

C

Figure 2.3 – Petri net example. Here we show the firing sequence of a
Petri net. In state A the transition is not triggered because
the place in the bottom left does not have a token. In state
B the transition is triggered with a token moving from the
bottom left place to the bottom right place. In state C, after
firing, each input place loses an equal number of tokens to the
weight of the arc flowing from it, and each output place gains
an equal amount of tokens to the weight of the arc pointing
at it [74, Page 17].



18 CHAPTER 2. CONTEXT

Please refer to figure - 2.3 on the preceding page for an example. For-

mally a Petri net is defined as:

Definition §2.2

Petri net, n. A triple (P, T, F ) where P is a finite set of places, T

is a finite set of transition (P∩T = φ), and F ⊆ (P×T )∪(T×P )

is a set of arcs (flow relation) [3].

To understand what behaviour is encoded in a Petri net, it is common

to use a simulator [22]. Simulation can also by applied, as we describe later,

to assess properties of a Petri net. The discussion about workflow should be

conducted formally [7]. We call upon van der Aalst and list some building

blocks of the grammar of the Petri net algebra [3].

1. A place p is called an input place of a transition t iff there exists a

direct arc from p to t.

2. A place p is called an output place of a transition t iff there exists a

direct arc from t to p.

3. •t denotes the set of input places of transition t.

4. p• is the set of transition sharing p as an input place.

5. A state represented as 1P1 + 2P2 + 1P3 + 0P4 is the state with one

token in place P1 two tokens in place P2, one token in place P3 and

no tokens in place P4. Or in short P1 + 2P2 + P3

6. To compare two states M1 and M2 one can say that M1 ≤ M2 iff for

all p ∈ P : M1(p) ≤M2(p).

7. M1
t−→ M2 denotes that transition t is enabled in state M1 and that

firing t in M1 result in state M2.

8. M1 −→M2 denotes that there is a transition t such that M1
t−→M2.

9. M1
σ−→ M2 denotes that the firing σ = t1t2t3...tn−1 leads from M1 via

set of intermediate states M2...Mn−1 to state Mn.



2.1. BUSINESS PROCESS MANAGEMENT 19

10. M1
∗−→ M2 denotes that a state Mn is reachable from state M1 (that

is, there is M1
σ−→M2).

11. P (PN,M) denotes a Petri net PN with initial state M .

Petri nets can be used to specify the routing of work items. Activities are

modelled by transitions and causal dependencies are modelled by places and

arcs. A place corresponds to a condition which can be used as pre and/or

post condition for activities. An AND split corresponds to a transition with

two or more output places, and an AND join corresponds to a transition

with two or more input places. “OR splits” and “OR joins” correspond to

places with multiple outgoing or ingoing arcs [3].

Definition §2.3

workflow net, n. A Petri net that has one input place i and one

output place o, and where for each transition t there is a path

from i to o via t. Formally a Petri net PN = P (P, T,E) is a

workflow net iff (i) there is one source place i ∈ P such that

•i = φ, there is one sink place o ∈ P such that •o = φ, and (ii)

every node x ∈ P ∪ T is on the path from i to o [3].

Workflow nets are classical Petri nets without data, hierarchy, time and

other extensions, therefore, their convenience is limited [4]. A sound work-

flow net is a workflow net further constrained so that the markings are

bounded. During execution of a sound workflow net the number of tokens

remains limited. A sound workflow net is safe iff for any case, the process

terminates properly, i.e., termination is guaranteed, there are no dangling

references, and deadlock and livelock are absent. Formally:

Definition §2.4

sound workflow net, n. Workflow net PN = (P, T, F ) is sound

iff (i) for every state M reachable from state i, there exists a

firing sequence leading from state M to state o (∀M(i
∗−→M)⇒

(M
∗−→ 0)), and (ii) state o is the only state reachable from state

i with at least one token in place o (∀M(i
∗−→ M ∧M ≥ o) ⇒

(M = o)), and (iii) there are no dead transitions in (PN, i) (

∀t∈T∃M,M ′i
∗−→M

t−→M ′) [3].



20 CHAPTER 2. CONTEXT

Definition §2.5

reachability graph of a net, n. A 5 tuple (V,E, T, L, vO), where

(V,E) is a finite, labeled directed graph with the property that

for each v in V , there exists a directed path from v0 (called the

initial vertex) to v, i.e., (V,E) is rooted at v0. Each (directed)

edge in E is labeled by an element in the transition set T (of a

Petri net) [84].

Mayr has demonstrated an algorithm for the general Petri net reacha-

bility problem [70].

Evaluating Languages

Members of the Business Process Management community evaluate these

languages using the following criteria:

Readability To ensure proper review of models, business users should read

and understand process models, whether written or drawn. We de-

scribe the mechanics of reading in section 2.5 — Literacy. Process

models are the building blocks of the human computer interface (HCI).

We describe the HCI community’s work in section 2.3 — Computer

Human Interaction.

Maintainability As we demonstrate below using activity theory in section

2.1.5 — Tuning, business process definitions stale fast and constant

maintenance is required. Authorised users of workflow engines should

be able to alter them.

Mathematical foundation With 70 years [11] of work devoted into Petri

net research, the community established a well defined algebra. The

community leverages its investment by translating between other lan-

guage and Petri nets [6, 22, 32, 70, 52, 79, 84]. Indeed Lee et al show

that use cases can be transformed into Petri nets [66].

Expressive Power By the expressive power of a language, we understand

the set of all queries expressible in that language [29].



2.1. BUSINESS PROCESS MANAGEMENT 21

The idea of a catalogue of patterns originated in architecture in the work

of Alexander [16]. It became widely accepted in the software industry fol-

lowing the publication in 1995 of the “Gang of Four” book listing patterns

of object oriented design [44]. In the business process modelling domain, a

seminal work has been done by the Workflow Patterns Initiative [96] which

started in 1999 and is a joint effort of Eindhoven University of Technology

(led by Professor Wil van der Aalst) and Queensland University of Tech-

nology (led by Associate Professor Arthur ter Hofstede). The aim of this

initiative is to provide a conceptual basis for process technology. In do-

ing so, they established a common vocabulary and agenda often used when

discussing workflow subjects.

The Workflow Patterns Initiative identified 43 patterns, that seem to ap-

pear often in describing business processes. While definitely not exhaustive,

the library is rich enough and is thus used as a benchmark for expressive

power [5, 96, 97, 115]. The patterns are named WPC 1 to WPC 43. Some

patterns are presented in Petri net language, in a fairly abstracted format

(with steps labelled A, B, C etc); sometimes they are also illustrated with

an example where the action steps have meaningful names.

Because the workflow pattern library is extensive and richly descriptive,

it provides a good test bed for new approaches to business process modelling.

This approach has been taken by Russell et al [96], when they evaluated

the richness of UML2.0 activity diagrams [97] and by Wohed et al [115],

when they evaluated the richness of BPMN.

Evaluating Readability of Modelling Languages

Researchers use many criteria to evaluate language, including expressive

power [97], precision which is essential to support formal analysis [65],

terseness [107], aesthetics [111], and usability [106]. Nielsen suggests that

usability is about ease of learning, efficiency, memorability, errors, and sat-

isfaction [81, Page 25]. Thus one aspect of usability of a language concerns

the ease with which writers can express their ideas, a second concerns read-

ability, a third concerns the ease of learning the language. There may be a

tradeoff between the three aspects; among these we focus in this section on

readability, an aspect of usability that lends itself to empirical examination.



22 CHAPTER 2. CONTEXT

Definition §2.6

readability, n. a language’s success in accurately communicat-

ing an idea from the writer to human readers [as oppose to —

from the writer to computer ] [83].

Siau et al [103] presented a three dimensional taxonomy for the evalua-

tion methods of languages: feature comparison, theoretical and conceptual

evaluation, and empirical evaluation. The empirical dimension was further

segmented into: surveys, laboratory experiments, field experiments, and

case studies.

Gemino et al [45] further elaborated Siau et al ’s taxonomy for empirical

studies. Among other contributions, they characterised some dimensions of

the taxonomy of laboratory experiments, namely: the type of instruments

presented to participants, the procedure participants are asked to complete

and the element measured.

Gemino et al observed two types of instruments presented to partic-

ipants, between-grammar instruments and within-grammar instruments.

When conducting within-grammar experiments researchers vary the writ-

ing style of artifacts (e.g. [100]), or, vary the training given to participants

(e.g. [27]).

In [100], Si et al created sample corpus of 91 Web documents with

variable sentence length distribution and three readability levels. When

using randomly collected web pages Si et al arrived at mixed results, in

part because of the small amount of training data and the large amount of

variation in the training data. Si et al then adopted a second approach to

acquiring data — use the syllabi of elementary and middle school science

courses. Three sets of syllabi (one per readability level) were collected

from different Web sites. The experiments showed that the a readability

model that contains both surface linguistic and content-based features is

much more accurate on K-8 science Web pages than the widely used Flesch-

Kincaid [61] readability metric.

In [27], Cox et al started from the premises that use cases cases rely

predominantly upon natural language and that for this reason, research

groups have proposed guidelines to assist in writing use cases. Various

research groups have found that writing guidelines help. However, Cox et



2.1. BUSINESS PROCESS MANAGEMENT 23

al experience with students was that some guidelines were a little unwieldy,

and were difficult to apply. Consequently Cox et al propose some simplified

use case guidelines. Cox et al then conducted an experiment to explore

whether the simplifications result in any loss of use case quality, and found

that the simpler guidelines were as effective as the more complex guidelines.

Gemino et al observed two types of activities: the reading of instruments

(e.g. [15, Pages 64-74]), and the writing of instruments (e.g. [83]).

In [15, Pages 64-74] Tullis et al present a methodology for comparing

the usability of artifacts by measuring task success. Tullis et al emphasise

that defining task success is at times not simple and that criteria should

be established such as asking the participants to exercise as much effort

as the participant would exercise outside the laboratory, apply the “three

strikes and you are out rule”, which means that participants will be allowed

to make three attempts before the experimenter stops them, or “Call” the

task after a specified time.

In [83] Norman is challenged to measure the match of psychological

variables of interest to the physical variables being controlled. For example,

when using a tap water a physical variable is the ratio of hot and cold water

and the interest is the temperature of the water. In a typical experiment

Norman would, for example, compare the usability of single tap mechanism

with the two taps system.

Gemino et al observed that the measured element of the experiments

were: correctness, efficiency (that is, time to complete a task using the

language, e.g. [14]) or the process participants follow (e.g. [60]).

In [14], Aguirre-Urreta et al review a dozen studies comparing the us-

ability of artifact employing an entity relation languages with artifacts em-

ploying object oriented languages. The main tenet of their review is that

researchers appear to have approached empirical comparison using a ‘black-

box’ approach: given a controlled input, the focus of analysis has been on

comparing alternative output without consideration for the particularities

of the process that mediates between them. Aguirre-Urreta et al suggest

that languages should be designed to account for the cognitive architecture

of their users, as opposed to being tied to a certain pattern library.



24 CHAPTER 2. CONTEXT

In [60], Kim et al started from the premises that the cognitive process

used when reviewing an artifact has two facades: perceptual and conceptual.

The perceptual process is a bottom-up activity of sensing something and

knowing its meaning and value, while the conceptual process is a top-down

activity of generating and refining hypotheses. In other words, we search

and recognise relevant information through perceptual processes and reason

by inferring and deriving new information through conceptual processes. To

compare two languages, they articulated a problem drawn from the fast food

industry. Rather than measuring the accuracy of the participants (all stu-

dents), the participants were trained to “think-aloud”. The subjects were

then presented with the experimental diagrams and were asked to diagnose

the business system based on the diagrams. Kim et al used protocol anal-

ysis to investigate the cognitive process involved in diagnosing the business

processes through the use of multiple diagrams.

When measuring effectiveness, Gemino et al distinguish between “com-

prehension”, which refers to what the reader can answer about particular

elements of the language, and “domain understanding”, which is shown by

problem-solving questions requiring significant additional cognitive process-

ing. To compare the effectiveness of artifacts in the usual way, researchers

ask participants to read an instrument and then measure participants’ an-

swers to questions about the domain described in the instrument. A con-

founding aspect for this measurement might be the different levels of initial

domain knowledge participants bring with them.

Definition §2.7

initial domain knowledge, n. The original familiarity of partic-

ipants with the material presented in the artefact.

Researchers have sometimes implicitly assumed homogeneity of initial

domain knowledge within community by choice of a well-known domain (e.g.

restaurant [60], ballistic trajectory [48], elevator [50]) or else they generate

synthetic artifacts, thus removing any domain specific information from the

artifacts (e.g. [72, 111]). We have not witnessed an experiment comparing

modelling languages that measures initial domain knowledge explicitly. In



2.1. BUSINESS PROCESS MANAGEMENT 25

contrast, in the medical area it is a common practise to compare a treatment

against the use of a placebo.

Definition §2.8

placebo, n. A substance with no therapeutic effect used as a

control in testing new drugs [25, Accessed 2-June-2010].

For further control, medical researchers randomly assign subjects to ei-

ther the control group (who are treated with a placebo) or the experimental

group. The experimenter is not told which treatment the experimenter ad-

ministers to each participant. This type of experiment is called randomised,

double blind, placebo controlled.

Wohlin [116, pages 43, 49] characterised the context or setting of empir-

ical work dealing with software engineering, along several aspects. There

can be one or multiple subjects, who work with one or multiple objects

(software artifacts). The experiments may be on-line (within real projects)

or off-line; the subjects may be students or professional practitioners; the

objects may come from real projects, or be toy examples; and the study

may be specific to the context, or aimed at conclusions of general validity

across the software engineering domain. We will return in Chapter 3 —

Architecture to the modelling of business process. There we will discuss

the proposition that one can call upon written use case languages to model

business processes.

2.1.2 Verification

We will now learn how the BPM community verifies workflows. The com-

munity has the tools needed to prove that a workflow model is safe, namely

(i) that each workflow model is free of dead locks, (ii) that each workflow

model is free of live locks, (iiii) that each workflow model will eventually

terminate, and (iv) that each workflow model has no unreachable activi-

ties [3].

In [3] van der Aalst suggests three different ways to check if a workflow

net is sound: (i) apply brute force in polynomial time, (ii) verify that some

suspicious constructs are absent, or (iii) partition the workflow net into



26 CHAPTER 2. CONTEXT

sound sub workflow nets and apply brute force in polynomial time to each

of the sub workflow nets. Here are core points from his paper:

Definition §2.9

live Petri net, n. A Petri net is live iff, for every reachable state

M ′ and every transition t there is a state M ′′ reachable from M ′

which enables t.

Definition §2.10

bounded, a. A Petri net is bounded iff for each place p there

is a natural number n such that for every reachable state the

number of tokens in p is less than n.

Definition §2.11

safe, a. A Petri net is safe iff for each place the maximum

number of tokens does not exceed 1.

Safety is a desirable property, because it makes no sense to have multiple

tokens in a place representing a condition. A condition is either true (one

token) or false (no tokens).

Definition §2.12

structurally bounded, a. A Petri net is structurally bounded if

the net is bounded for any initial state.

Definition §2.13

well formed, a. A Petri net PN is well formed iff there is a state

M such that (PN,M) is live and bounded.

Paths connect nodes by a sequence of arcs. A path C from a node n1 to a

node nk is a sequence (n1, ..., nk) such that (ni, ni+1) ∈ F for 1 6 i 6 K−1.

C is elementary iff, for any two nodes ni and nj on C, i 6= j ⇒ ni 6= nj. C is

conflict free for any place nj on C and any transition ni on C, j/neqi−1⇒
ni /∈ •ni. For convenience van der Aalst introduce the alphabet operator α

on paths. If C (n1, n2, ..., nk), then α(C) = { n1, n2, ..., nk }.



2.1. BUSINESS PROCESS MANAGEMENT 27

A Petri net is is strongly connected iff, for every pair of nodes (i.e.,

places and transitions) x and y, there is a path leading from x to y. A

Petri net is a free choice Petri net iff, for every two transitions t1 and t2,

•t1∩•t2 6= φ implies •t1 = •t2. Given a WF net PN = (P, T, F ), one wants

to decide whether PN is a sound workflow net. In [1] van der Aalst shows

that soundness corresponds to liveliness and boundedness by defining an

extended net PN = (P , T , F ). PN is a Petri net obtained by adding an

extra transition t∗ which connects o and i.

Formally, the extended Petri net PN = (P , T , F ) is defined as follows:

1. P = P, T = T ∪ {t∗} and

2. F = F ∪ {〈o, t∗〉, 〈t∗, i〉} and

3. F ∪ {〈o, t∗〉, 〈t∗, i〉}.

In [1] van der Aalst proves that a WF net PN is sound iff the (PN, i)

is a live Petri net and bounded thus showing that standard Petri net based

analysis techniques can be used to verify soundness. However, for a complex

WF net using this technique may be very slow. Indeed a general solution

to the problem is TBA. Thus the community narrows the discussion to free

choice workflow nets of which to decide if they are sound can be done in

polynomial time. Furthermore, van der Aalst shows in [3] that a sound free

choice Workflow net is safe.

Fahland et al evaluated the soundness of 735 industrial business process

models in a few milliseconds per process using a sequence of checks in IBM

WebSphere Business Modeler, LoLa and Woflan. These few milliseconds

Fahland et al included the compilation of the models into Petri net [37].

Another approach to obtain a structural characterisation of ‘good’ work-

flows, is to balance AND/OR splits with respective AND/OR joins. Clearly,

two parallel flows initiated by an AND split, should not be joined by an OR

join. Two alternative flows created via an OR split, should not be syn-

chronized by an AND join. A workflow configured this way is called well

handled, and formally: Petri net PN is well-handled iff, for any pair of

nodes x and y such that one of the nodes is a place and the other a tran-

sition and for any pair of elementary paths C1 and C2 leading from x to y,

α(C1 ∩ α(C2) = {x, y} ⇒ C1 = C2.



28 CHAPTER 2. CONTEXT

Petri Net

Use Cases

Sound workflow Nets

Workflow Patterns

Lee et al

This Dissertation

Workflow Patterns Coalition

Figure 2.4 – Classification



2.1. BUSINESS PROCESS MANAGEMENT 29

2.1.3 Enactment

A workflow can be modelled and presented to workflow participants as such,

but to ensure compliance with the model some organisation may find it

beneficial to use programmes that enact the workflow models — workflow

engines. Here we define the building blocks of a workflow engine. In partic-

ular we highlight the integral nature of a workflow modelling language and

describe some building blocks that any workflow modelling language should

incorporate.

In early times, transaction processing systems were designed to support

a small portion of the business processes – the recording of the business

transactions. Administrators invoked those applications once all required

data was at hand, and processed transactions from start to end, each in a

single iteration. In the 70s image management emerged, creating queues in

front of administrators who pulled work from queues and processed work

sequentially. In some cases the paradigm used to describe these queues is

that of trays in an office [7].

Today, it is common for some business processes to be processed over

several session as data drips into the organisation(s) and for the process-

ing of business transactions to span over multiple organisations, systems

and organisational role bearers. For this type of work a dedicated class of

software products emerged – workflow engines. The Workflow Management

Coalition, an industry body, uses the compound word ‘ ‘workflow” for the

previously coined term “work flow” and define workflow as follows:

Definition §2.14

workflow, n. The automation of a business process, in whole or

part, during which information and work lists are passed from

one participant to another for action, according to a set of pro-

cedural rules [117, Page 8].

van der Aalst et al in turn defines workflow engine as follows:

Definition §2.15

workflow engine, n. A generic software system driven by explicit

process design to enact and manage operational business process

[95].



30 CHAPTER 2. CONTEXT

A workflow model is an explicitly required element of a workflow engine.

Without an explicit process modelling languages, a software program is not

a workflow engine, even if the software program does manage some aspects

of workflow such as routing. E.g. Microsoft Dynamics CRM 4.0 has some

workflow capability, but has no explicit workflow modelling language, and

is thus not a workflow engine.

Definition §2.16

workflow modelling language, n. A format for defining a process

enacted by a workflow engine.

The atomic building blocks of a workflow model are activities and roles

which are instantiated at run time as work items and workflow participants.

Definition §2.17

activity, n. A description of a piece of work that forms one

logical step within a process. An activity may be a manual

activity, which does not support computer automation, or a

workflow (automated) activity. A workflow activity requires hu-

man and/or machine resources(s) to support process execution;

where human resource is required an activity is allocated to a

workflow participant [117, Page 13].

An activity is the atomic piece of work dispatched by the workflow engine

to workflow participants. If an organisation charges for the performance of

activities on time and material bases, and the execution of an activity is

long, an activity can be further broken into time sheet sessions (think of an

engineer to whom the workflow engine dispatches a complex design activity

that lasts five eight hours business days, with breaks for meetings, and meals

in the middle).

Definition §2.18

workflow participant, n. A resource which performs the work

represented by an activity instance [117, Page 18].

A way to describe workflow participants is by assigning them roles.



2.1. BUSINESS PROCESS MANAGEMENT 31

Definition §2.19

role, n. A group of workflow participants exhibiting a specific

set of attributes, qualifications and/or skills [117, Page 53].

Each activity is associated with one and only one role. A role can be

associated with many activities (a job description can be complex). A

workflow participant may have many roles (wear many hats).

Definition §2.20

work item, n. The representation of the work to be processed

by a workflow participant in the context of an activity within a

process instance [117, Page 19]..

A compound unit of management in the workflow domain is a worklist.

Definition §2.21

worklist, n. A set of work items associated with a given workflow

participant [117, Page 20].

A worklist is the atomic unit of work dispatched to workflow participants,

indeed the activities that combine to form a worklist may come from differ-

ent work items or even different business processes.

2.1.4 Monitoring

An organisation that deploys a workflow engine would expect that the en-

gine, in addition to the allocation of work items to workflow participants,

would record the history of the work items. Management uses this log to

support process improvement drives.

Definition §2.22

business activity monitor, n. A utility that provides the ability

to monitor track and report on workflow events during [and

after] workflow execution [117, Page 56].

Modelling a process is a complicated and time consuming activity. Mod-

elling requires deep understanding of the process at hand (ie. long discus-

sions with workers and management). Typically there are discrepancies



32 CHAPTER 2. CONTEXT

between the actual workflow process and the process perceived by various

stakeholders. Often, modelling states what should be done rather then de-

scribe the actual process. Process modelling is done a priori. Business

process monitoring is done post priori and can thus agree or conflict with

the business processes model. The challenge of the business process practi-

tioner is to reverse engineer the process, identify the paths commonly trailed

and influence the process so that the desirable paths are trailed more often.

For example, business process management may what to analyse how often

certain exception handling processes are invoked.

Business process monitoring does not necessarily assume the presence

of a workflow engine. Enterprise resource planning systems (ERP) or cus-

tomers relationship management systems (CRM) generate these event logs

as well. Naturally, the more control the business process practitioner has

over the format of the event log, the easier it is to derive significant conclu-

sions from the event log. Ideal event logs list the activities performed on

work items in correct order. It is important to state that monitoring is not

a redesign activity. The goal is to understand the process first, and only

then improve the process. The goal is to generate an explicit representation

of a process model [8]. Such event logs can be obtained from workflow en-

gines, but in applications where there is limited support from process aware

systems it may become difficult to retrieve log data in that format [39].

The challenges facings the process engineer are that not all possible paths

are executed, that noise can obscure important issues, and that failure to

carefully communicate logging of information about individual workflow

participants may result in industrial disputes.

2.1.5 Tuning

Business process tuning is the step that closes the loop of round trip business

process management, meaning the iterative process cycle from modelling,

to verification, enactment, to monitoring, and to tuning is done in one

integrated environment. Hardly any vendor or analyst explains how a BPM

system delivers better tuning capabilities. It is almost considered to be

common sense, like you don’t have to explain why you get warm in the sun.

But it is not that obvious at all [55].



2.1. BUSINESS PROCESS MANAGEMENT 33

Activity theory provides the theoretic foundation for dynamic business

process tuning. It is a meta theory with roots in the German philosophy

(from Kant to Hegel), in the writing of Marx and Engels, and in the Soviet

cultural historical psychology of Lev Semyonovich Vygotsky (1896–1934),

Alexander Romanovich Luria (1902–77) and Alexei Nikolaevich Leont’ev

(1903–79) [80, Page 19]. Kuutti applied activity theory principles to the

human computer interaction research [63]. Bradram applied the theory to

business process management [21]. Adams et al described how Staffware, a

workflow engine, applies activity theory principles using “event nodes” [12].

Proponents of the activity theory suggest that individuals, even animals,

map activities that have beneficial rewards into a web of actions, which on

their own have no meaning. Over time these maps become a tool accessible

to other individuals and thus part of the social interaction [41]. In the

modern BPM domain, we refer to “actions” as “activities” [117, Page 13]

and we refer to “activities” as “business processes”. Adams et al referred to

“activities” as “worklets” [12]. So, using our terminology “Activity Theory”

should have been called “Business Process Theory”. For the remainder of

this section we use current BPM terminology.

Workflow configuration officers formally construct process models from

activities. As workflow configuration officers rely on their experience when

constructing process models, they risk becoming detached from the working

life.

These process models guide workflow participants toward an expected

result. Often, workflow participants use the process model as a guide while

enacting a business process. Empowered workflow participants synthesise

activities from the process models and from the conditions of the concrete

situation. This synthesis forms a feedback loop in the course of a business

process and becomes the basis for learning, which is embedded in each

business process. This learning process, in turn, extends the process models.

Deviation from a process model is a breakdown, and therefore a potential

learning situation. Breakdown situations are all too common; they are a

natural and very important part of any business process. Deviations should

form the basis for learning and thus for developing and extending process

models.



34 CHAPTER 2. CONTEXT

It is important to consider exactly who is allowed to read, alter and save

process models within a work practice, but this is a question of division of

work and corresponding access rights within the workflow engine — not a

separation of the process modelling and execution of work.

In order for process models to become resources for the future realisation

of an activity, the review of the process model should be made as part of this

activity. That calls for very readable workflow modelling languages. This

understanding of process models as central dynamic assets of the organi-

sation raises some unconventional requirements from workflow engines —

instead of rigidly supporting routing information around the organisations,

the workflow engine should mediate the anticipation of the workflow con-

figuration officer with recurrent events in working life. Hence, a workflow

engine should support the modelling, verification, enactment, monitoring,

and tuning of process models within a democratic work activities.

2.2 Requirements Engineering

The Requirements Engineering community is concerned with the articu-

lation of requirements, the management of large number of requirements,

cataloguing of requirements and the cross referencing of requirements with

software artifacts, as well as the automatic generation of software from for-

mally articulated requirements. Its has an annual conference is RE. The

latest, RE’10 was conducted in October 2010 in Sydney, Australia.

Requirements engineering is the branch of software engineering con-

cerned with the real-world goals for, functions of, and constraints on soft-

ware systems. It is also concerned with the relationship of these factors

to precise specifications of software behaviour and to their evolution over

time and across software families [119]. A more recent development in the

field of requirements engineering is the introduction of use cases for elicita-

tion of business requirement [18]. We ourselves adopt this language for the

modelling of business process [86].

We now look at use cases which are a popular requirement elicitation

tool. We define what is a use case, describe the UML use case language,

and describe the written use case language. We define the building blocks



2.2. REQUIREMENTS ENGINEERING 35

of the written use case language, starting from the use case set, via the use

case and the various scenario types until we arrive at the action step. We

analyse the action step down to syntactical building blocks.

2.2.1 Use Case

There are plentiful definitions for the term “use case”. Jacobson’s definition

is elegant and succinct

“[use case, n.] Specific way of using a system using some part

of functionality” [57, page 154].

Some practitioners use the term scenario as an alias to the term use case

when introducing the concept to business people.

Jacobson started designing systems with the help of use cases in the late

1960’s [24, preface, page xx]. In 1992 Jacobson brought the technique to the

attention of the developer community [57]. Jacobson’s book, a presentation

of object oriented analysis, highlights the dependency of developers on the

ever evolving use cases [57, page 129]. Use cases might describe a business

process, focus discussion about future software system, describe functional

system requirements, or document a system’s design [13, Page 58].

The use case technique, arguably one of the best and most widely em-

ployed requirement gathering techniques in the industry, is accepted by both

IT professionals and business managers [67, page 298]. Use cases have been

found to be also effective for generating test suites [31], and for generating

security policies [38]. This success may arise because they tell coherent sto-

ries about how the system will be [24, Page 15]. Use cases follow a long

human tradition of analysing scenarios [17].

Before we offer a formal definition of a use case and its constructs, we

now give a brief overview of the subject. An activity is a description of

a piece of work that forms one logical step within a process. An activity

may be manual or automated [117, Page 13]. Cockburn advised authors

of use case to apply restricted grammatical structure for the description

of activities — subject, verb and object [24, page 90]. A scenario is a

sequence of goal-achieving actions by various actors [24, Page 89], it is a

mini specification consisting of partly ordered activities [24, Page 26]. An



36 CHAPTER 2. CONTEXT

extension is a stripped down use case that starts with a condition — the

one that makes it relevant [24, page 99]. A scenario contains a sequence

of action steps describing what happens under that condition. A scenario

ends with delivery or abandonment of the extension goal [24, Pages 99-

100]. A use case is a set of scenarios — a main success scenario and some

alternative scenarios, each with its extensions [24, page 106]. For example,

in Figure 2.7 on page 40 — UC Example we apply a use case language

to describe a business process which we also articulate using BPMN in

figure 2.2 on page 16 — BPMN Example. A use case set is a high level use

case, of which some activities are further elaborated as lower level use cases,

which in turn may be further elaborated, until sufficient detail is achieved.

2.2.2 Use Case Languages

The use case we described thus far is abstract. In this section we describe

two of the many languages proposed to articulate use cases.

Jacobson’s diagramming language for use cases [57, page 129] was in-

cluded within the UML standard in 1997 [19, p.12]; it represents the connec-

tions between different use cases, and the actors that participate in the use

cases, rather than expressing the content of a given use case [24, Page 233].

In many ways the UML use case diagram is a context diagram, showing

the software system and the world around the system as illustrated in Figure

2.6 — Use case goal levels. In this big picture view, the system is treated as a

closed box. In essence, the goal of the development process is to both fill and

fulfill the box. The emphasis is on how the system relates to the world, not

on its architecture or any other form of decomposition. Context diagrams

have been around in one form or another for three decades and have been

presented in various forms. Historically they were often shown as data

flow diagrams (DFDs), which follows naturally from their use in structured

analysis methods that make heavy use DFDs as a formalism [118]. In object

oriented modelling the appropriate style is to express the system and the

world around it as objects connected by associations. Michael Jackson has

taken the concept of context diagrams further and used them as the basis

for understanding problem frames [51].

UML context diagrams are a good tool to model the system boundaries,



2.2. REQUIREMENTS ENGINEERING 37

 class Business Process Model

Workflow Modelling 

Notation

Petri Net
workrkflow modewlling language

BPMN

workrkflow modewlling language

Use case

Jacobson (UML) 

Notation

Cockburn (written) 

Notation

UML Context 

Diagram

Extended Written 

Use Case Notation

Workflow Net

Sound Workflow 

Net

reachability graph of a 

net

Liv e Petri Net

Bounded Petri NetSafe Petri Net

structurally 

bounded Petri Net

well formed Petri 

Net

Finite reacahbility 

graph

Section 3.5

van der Aalst

[3]

section 5.2

Mayr [62]

Figure 2.5 – A reference of the Business Process Management terminology
introduced in this section



38 CHAPTER 2. CONTEXT

 

 

Book a trip

 

 

Book Trip

 

Book Hotel

 

Bool Flight

 

 

Book Trip

 

Book Hotel

 

Book Flight

 

Reserve Room

 

Find Hotel

 

Reserve Seat 

 

Find Flight

Summary

Level

User Goal 

Level

Subfunction

Level

Why?

How?

Use Case goal Levels 

(Cockburn 2001)

Figure 2.6 – Use case goal levels [24]. A requirements practitioner can
break a use case into a use case set, exposing more informa-
tion in the process.



2.2. REQUIREMENTS ENGINEERING 39

identifying potential actors and use cases because it helps us focus on the

things that interact with a system, while ignoring the services that those

things require [13, p15].

Of the 28 use case languages Hurlbut surveyed [56], we adopted the

written one, described by Cockburn [24] and elaborated by Cockburn et

al [13].

Definition §2.23

written use case language, n. A use case language described by

Cockburn [24] and elaborated by Cockburn et al [13].

In 2001, following anthropological observations of requirements practi-

tioners over more than a decade, and conversations with Jacobson, Cock-

burn published the most visible work in the field: the monograph “Writing

Effective Use-Cases” [24, Pages xx − xxi]. Guidelines for the usage of the

textual language followed in 2003 [13]. Cockburn advocates readability and

clarity, sometimes sacrificing precision and expressive power [24, pages 28

and 127].

Before we describe in detail the building blocks of the written use case

language we provide two auxiliary definitions.

Definition §2.24

partial order, a. By a system is meant a set S together with

a binary relation R(x, y) which may hold for certain pairs of

elements x and y of S. The relation R(x, y) is read “x precedes

y” and is written“x > y”. A system is called a partial order

if the following conditions are satisfied: if (x < y)⇒ (y ≮ x); if

(x < y) and (y < z)⇒ (x < z) [35].

Cockburn, as we discuss later, identifies partial order as a simplification

that makes the use cases easier to read [24, Page 26].

The written use case language has the following building blocks:

Definition §2.25

stakeholder, n. Someone or something that has a vested interest

in the behaviour of the use case [24, page 53].



40 CHAPTER 2. CONTEXT

Use Case # 1 - ATM Cash Withdrawal

Level: Summary

Primary Actor: The customer who wants to withdraw cash.

Stakeholders: The ATM, The clearing System, The customer’s bank.

Minimal Guarantee: The process will end with either a payment or a rejection.

Preconditions: The customer has an account and PIN. 

Trigger: The customer pressed “Enter” on the ATM’s keyboard.

Main success scenario:

1) The ATM request PIN.

2) The customer keys the PIN.

3) The ATM presents menu

4) The customer selects withdrawal.

5) The ATM asks for amount.

6) The Customer keys amount.

7) The ATM request approval from the clearing system.

8) The clearing system request approval from the customer’s bank.

9) The customer’s bank grants approval

10) The ATM dispenses the cash.

Extensions:

7) The clearing system cannot find the customer’s bank.

7a. The clearing system informs this to the ATM.

7b. The ATM terminates the session.

  

9) The customer’s bank does not grant approval.

7a. The clearing system informs this to the ATM.

7b. The ATM terminates the session.

Figure 2.7 – Basic written use case language example. The example is of
equivalent content to the BPMN example in figure 2.2.

Stakeholders perform the activities in a use case while defending their

own interests, in peruse of a specific and measurable goal which is of benefit

to the primary actor.

Definition §2.26

primary actor, n. The stakeholder that calls on the system to

deliver one of its services [24, page 54].

Definition §2.27

use case title, n. An active verb phrase that represents the goal

of the primary actor of the use case [24, Back Cover].

Definition §2.28

action step, n. A labelled written use case line which has a

restricted grammatical structure [24, Page 90].



2.2. REQUIREMENTS ENGINEERING 41

The action step structure should be absolutely simple, as shown in Fig-

ure 2.8 on page 43 [24, page 90]. The role for the activity is the grammatical

subject in the action step, and the activity is given by the predicate and

the object.

Definition §2.29

action step ID, n. A label that uniquely identifies an action step

within a written use case [24, Page 218].

Here we emphasise that action step IDs are labels, not sort fields as the

action steps in a use case are partially ordered. It is easy to fall into the mis-

conception that action step IDs are sorting fields, as they are monotonously

growing.

Definition §2.30

specification, n. Specific, explicit, or detailed mention, enumer-

ation, or statement of something [25].

Definition §2.31

scenario, n. [A mini specification built of] partly ordered set of

action steps [24, page 90].

We introduced the terms action step and scenario in unison as practition-

ers often oscillate between an action step, and a scenario when describing

one business process even while retaining the level of detail. When a busi-

ness analyst discovers more details about a business process, the business

analyst may split an action step into a scenario or add an extension, a

scenario in its own right. Vice versa, when a business analyst simplifies a

process, the business analyst may collapse a scenario into an action step.

Definition §2.32

use case, n. A collection of scenarios — a main success scenario,

some alternative scenarios, and a multitude of extensions. In

the general sense, though, extensions are miniature scenarios in

their own rights [24, page 106].



42 CHAPTER 2. CONTEXT

Definition §2.33

use case set, n. Collection of activities in a high level use case

that are further elaborated as lower level use cases, until suffi-

cient detail is achieved. Cockburn’s terminology is that of a use

case and sub use cases [24, Chapter 10 and Page 219].

Again we introduce the terms use case and use case set in unison as

business analyst may oscillate between a use case and use case set when de-

scribing one business process, even while retaining a level of detail. When

a business analyst discovers more details about a process, the business an-

alyst may split a use case into a use case set. Vise verse, when a business

analyst simplifies a process, the business analyst often collapses a use case

set into a use case.

If business analyst describes an action step elsewhere as a use case within

the use case set, then the business analyst underlines the action step [24,

page 113]. In Jacobson’s UML language, on the other hand, there is no

explicit distinction between use case, scenario and action step they are all

annotated as ellipses. In Jacobson’s UML language, the use case title is

denoted within the ellipse. In a written use case language the name of the

use case is the header of the written use case language . In the UML use

case language goals are expressed on the arrows, in the written use case

language, goals are part of the preamble to the use cases or the extension

headers.

The following definition may do away with the term use case set, at the

cost of clarity: Use case is a set of use cases performed by various actors,

each defending their own interests, in peruse of a specific and measurable

goal which is of benefit to the primary actor.

Definition §2.34

main success scenario, n. A top-to-bottom description of an

easy-to-understand and fairly typical [sequence of events] in which

the primary actor goal is delivered and all stakeholders’ interests

are satisfied [24, Page 87].



2.3. COMPUTER HUMAN INTERACTION 43

Figure 2.8 – The restricted grammatical structure of an action
step. The role for the activity is the grammatical subject
in the action step, and the activity is given by the verb
and any grammatical direct or indirect objects, following [28,
Page 252] and [24, page 90].

The main success scenario does not show any consideration for possible

failures. If there are multiple success scenarios of similar complexity, the

decision which scenario is the main success scenario is arbitrary.

Definition §2.35

extension, n. A stripped down scenario that starts with the

condition that makes it relevant [24, Page 99].

Below the main success scenario reside story fragments that show what

alternatives may occur. Each fragment thereafter has a header that de-

scribes a clearly detectable condition [13, p127]. These fragments later help

developers to handle errors. These variations represent a significant, and

possibly a majority portion of the effort involved in crafting use case sets.

2.3 Computer Human Interaction

In this section we look at the workflow modelling languages from the point

of view of the Computer Human Interaction community. The Computer

Human Interaction community has an annual conference — ACM CHI, the

latest, CHI10 was conducted in April 2010 in Atlanta, USA. A key work in

the HCI field is a book by Dix et al [34].



44 CHAPTER 2. CONTEXT

The human memory has a short term buffer from which an active deci-

sions has to be undertaken if we are to migrate element to the long term

memory. In a seminal work Miller estimated the capacity of the human

short term memory to record seven plus or minus two elements [75]. The

research within the CHI community is concerned with analysing the human

physiology, how we receive information, how do we remember it, revisiting

Miller’s work on our memory capacity [75], how we solve problems, use our

emotions, and the variation between individuals, the computer (memory

and CPU) and the input output devices, as well the design process.

The work of Newell and Simon suggests that problem solving exercise has

four steps: goal forming, operation selection, operation application and goal

completion. The real power of problem space architecture is in recursion [34,

Page 445].

Nielsen suggests that usability is about learnability, efficiency, memo-

rability, errors, and satisfaction [81]. The definition of usability from ISO

9241-11 is becoming the main reference of usability, though. ISO 9241-11

defines usability as:

Definition §2.36

usability, n. The extent to which product can be used by speci-

fied users to achieve a specified goal with effectiveness, efficiency

and satisfaction in a specific context of use [58].

Definition §2.37

usability metric, n. An observable and quantifiable way of mea-

suring task success, user satisfaction or errors [15, page 7].

This observation might be simply noting that a task was completed

successfully or noting the time required to complete a task. Evaluating

a product with a very small sample size (without collecting any usability

metrics) usually reveals most obvious usability problems [15, page 9] [34,

Page 324]. Usability data can be cleaned up so that extreme values are not

used in the analysis [15, page 12].

When comparing activities of subjects, two methods are common: within

subjects and between subjects. In between subjects experiment design,



2.3. COMPUTER HUMAN INTERACTION 45

each participant is assigned a different condition. In within subjects exper-

iment design, each participant is subjected to each different condition [34,

Page 331].

Definition §2.38

within subjects, n. An experimental procedure when one com-

pares different data for each participant [15, page 18].

A within subjects study does not require a large sample size and does

not require to worry about differences between groups as each participant

is compared to herself. However, one must worry about the carry over

effect where performance in one condition impacts performance in another

condition. A carry over effect might be the result of practice or fatigue.

Counterbalancing the carry over effect may involve a change in the order in

which different tasks are performed [15, page 18-19].

Definition §2.39

between subjects, n. An experimental procedure used to com-

pare results for different participants [15, page 18].

Definition §2.40

mixed design, n. An experimental procedure that contains be-

tween subjects factors and within subject factors. [15, page 19].

Definition §2.41

independent variable, n. An experimental procedure used to

compare results for different participants [15, page 18].

Definition §2.42

dependent variable, n. In an experiment the aspect that occurs

as a result of the experiment [15, page 20].

Definition §2.43

ordinal data, n. Ordered groups or categories [15, page 21].



46 CHAPTER 2. CONTEXT

In usability, the most common occurrence of ordinal data comes from

self reported data on questioners [15, page 21]. The statistical procedures

that can be applied to ordinal data are frequencies, crosstabs, Chi square,

Wilcoxon rank sum tests and Spearman rank correlation [15, page 23].

Definition §2.44

Interval Data, n. Continuous data where the difference between

the measurements are meaningful but there is no natural zero

point [15, page 22].

As a rule of thumb, one would treat data like interval data when a half

point between any two of the defined data points makes sense [15, page 22

23].

Definition §2.45

Ratio Data, n. Interval data with the addition of an absolute

zero [15, page 23].

There is not much difference between Interval Data and Ratio Data in

terms of the available statistics. For Ratio Data one may use all descrip-

tive data (including geometric means), t − test, ANOVAs, correlation and

regression analysis [15, page 23].

2.4 Linguistics

The Linguistics community is mostly concerned with spoken or written lan-

guages, whether ancient or current, whether alive or dead, whether used by

technologically–advanced societies or technologically–challenged societies,

whether used by large group of people or very small groups, and whether

used by societies that are in contact with speakers of other languages or by

insulated societies. In this section we try to survey the highlights of the

state of the art, noving from the physical level, to the syntactic level before

arriving at the semantic level.

Rose at el, in a research programme whose description is outside the

scope of this dissertation, have shown that language learning, which can be

defined to a repeated exposure to a stimulus of information, is accompanied



2.4. LINGUISTICS 47

by changed patterns of protein synthesis at relevant areas of the cortex [105,

Page 302].

In the 1950s the social sciences were dominated by behaviorism, the

school of thought popularized by John Watson and B. F. Skinner [92, Lo-

cation 241]. Then came Chomsky, who worked earlier than Rose at el.

Chomsky attacked what is still one of the foundations of twentieth-century

intellectual life — the “Standard Social Science Model”, according to which

the human psyche is molded by the surrounding culture [92, Location 277].

Chomsky’s first fundemental observation was that virtually every sen-

tence that a person utters or understands is a brand-new combination of

words, appearing for the first time in the history of the universe. Therefore

Chomsky suggested that a language cannot be a repertoire of responses.

The brain, Chomsky suggested, must contain a recipe or program that can

build an unlimited set of sentences out of a finite list of rules.

Chomsky’s second fundamental observation was that children develop

these complex grammars rapidly and without formal instruction and grow

up to give consistent interpretations to novel sentence constructions that

they have never before encountered. Therefore, Chomsky argued, children

must innately be equipped with a plan common to the grammars of all

languages, a Universal Grammar, that tells them how to distill the syntactic

patterns out of the speech of their parents [92, Location 244–9].

A significant question that caught the attenstion of the Linguistics field

is whether thought is dependent on words. Do people literally think in En-

glish, Cherokee, Kivunjo, or, by 2050, Orwell’s Newspeak? Or are thoughts

couched in some silent medium of the braina language of thought, or “men-

talese” — and merely clothed in words whenever we need to communicate

them to a listener? No question could be more central to understanding

the language instinct [92, Location 886]. The idea that thought is the same

thing as language is an example of what can be called a conventional ab-

surdity: a statement that goes against all common sense but that everyone

believes because they dimly recall having heard it somewhere and because

it is so pregnant with implications. We have all had the experience of utter-

ing or writing a sentence, then stopping and realizing that it wasn’t exactly

what we meant to say. To have that feeling, there has to be a what we



48 CHAPTER 2. CONTEXT

meant to say that is different from what we said. Sometimes it is not easy

to find any words that properly convey a thought. When we hear or read,

we usually remember the gist, not the exact words, so there has to be such

a thing as a gist that is not the same as a bunch of words. And if thoughts

depended on words, how could a new word ever be coined? How could a

child learn a word to begin with? How could translation from one language

to another be possible [92, Location 910–14]?

The representations underlying thinking, on the one hand, and the sen-

tences in a language, on the other, are in many ways at cross-purposes. Any

particular thought in our head embraces a vast amount of information. But

when it comes to communicating a thought to someone else, attention spans

are short and mouths are slow. We end up with the following picture. Peo-

ple do not think in English or Chinese or Apache; they think in a language

of thought [92, Location 1130-1136]. The way language works, is that each

person’s brain contains a lexicon of words and the concepts they stand for

(a mental dictionary) and a set of rules that combine the words to convey

relationships among concepts (a mental grammar) [92, Location 1398].

Chomsky suggests that the unordered super-rules (principles) are uni-

versal and innate, and that when children learn a particular language, they

do not have to learn a long list of rules, because they were born knowing the

super-rules. All they have to learn is whether their particular language has

the parameter value head-first, as in English, or head-last, as in Japanese.

They can do that merely by noticing whether a verb comes before or after

its object in any sentence in their parents’ speech. If the verb comes before

the object, as in Eat your spinach!, the child concludes that the language

is head-first; if it comes after, as in Your spinach eat!, the child concludes

that the language is head-last [92, Location 1880–3].

When Chomsky introduced the terms in the behaviorist climate of the

early 1960s, the reaction was sensational. Deep structure came to refer to

everything that was hidden, profound, universal, or meaningful, and before

long there was talk of the deep structure of visual perception, stories, myths,

poems, paintings, musical compositions, and so on.“Deep structure” is a

prosaic technical gadget in grammatical theory. It is not the meaning of a

sentence, nor is it what is universal across all human languages. Though



2.4. LINGUISTICS 49

universal grammar and abstract phrase structures seem to be permanent

features of grammatical theory, many linguists including, in his more recent

writings, Chomsky himself thinks one can do without deep structure per se.

The concept is actually quite simple [92][location 2061-2082].

Syntax is complex, but the complexity is there for a reason. For our

thoughts are surely even more complex, and we are limited by a mouth

that can pronounce a single word at a time. Grammar, a form of mental

software, must have evolved under similar design specifications. Though

psychologists under the influence of empiricism often suggest that grammar

mirrors commands to the speech muscles, melodies in speech sounds, or

mental scripts for the ways that people and things tend to interact, all these

suggestions miss the mark [92, Location 2139]. Grammar is a protocol that

has to interconnect the ear, the mouth, and the mind, three very different

kinds of machine. It cannot be tailored to any of them but must have an

abstract logic of its own [92, Location 2125-41].

Wittgenstein’s work preceded Chomsky’s. Wittgenstein spoke about

surface and depth grammars. Chomsky spoke about ‘deep structures’, on

the other hand, which are located ‘far beyond the level of actual or even

potential consciousness’. Wittgenstein worked is in the semantic layer which

is above the syntactic layer in which Chomsky worked. Chomsky, in turn,

worked in the syntactic layer which is above the physical layer in which

Rose et al worked.

Wittgenstein, who opposed the deviation of systematic logic from ordi-

nary language, investigated the borders between meaning and speech, be-

tween mathematics and languages, between a private and a public language,

and between thoughts and words, in particular sensation words (notably

‘pain’).

Wittgenstein, accepting the existence of private language, placed com-

munication in a marginal position interpreting between individuals. Noting

that no two human beings share an identical associative context, Wittgen-

stein asked where, when, and by what rationally established criterion the

process of free, yet potentially linked and significant, association in psycho-

analysis could said to be said to have a stop.

As Wittgenstein argued in Philosophic Investigations, languages gen-



50 CHAPTER 2. CONTEXT

erate different social modes, and social modes further divide languages.

Different linguistic communities literally inhabit different landscape of con-

scious being. We will want to come back to old truism. It touches the nature

of language itself, on the absence of any satisfactory or generally accredited

answer to the question ‘what is language’. Indeed, text can conceal more

than it conveys. Presiding Orwell, Wittgenstein foresees a ‘speech ther-

apy’ that will mend the infirmities of ordinary language and the conflicts it

provokes. [105, Pages 8, 62, 64, 91, 92, 97,105,169-77, 236, 290, 290n, 338,

497n].

Wittgenstein proposes that the meaning of a word is its use in the lan-

guage. The Oxford English Dictionary, with its use base approach, can

certainly say something about the use of the term language:

Definition §2.46

language,n [...] 2 a. The form of words in which something is

communicated; manner or style of expression. 2 b. The vocabu-

lary or phraseology of a particular sphere, discipline, profession,

social group, etc.; jargon. 2 c. The style of a literary compo-

sition; (also) the wording of a document, statute, etc. [...] 6.

The method of human communication, either spoken or written,

consisting of the use of words in a structured and conventional

way; (also) words [25, accessed October 2011].

A thread that is of concern to some members of the Linguistic commu-

nity is the relationship between the expressive power of ones mother tongue

and ones ability to perceive certain concepts. The now defunct Sapir-Whorf

hypothesis states that deficiencies in ones mother tongue expressive power

limit ones speakers’ ability to express or understand concepts [33, page 150]

and the alleged inability of native speakers of the Hopi language to grasp

the notion of time is now infamous.

For example, the absence of the beloved German term “Schadenfreude”;

for which some English speakers did not have an equivalent, until the publi-

cation of Supplement III to the OED in 1982; did not in any form prevent

some of these native English speakers from indulging at times in the mali-

cious enjoyment of the misfortunes of others [25, Accessed January 2011].



2.5. LITERACY 51

In contrast, the somewhat more accepted Boas Jakonson hypothesis,

states that languages differ essentially in what must be conveyed and what

may be conveyed [33, page 151].

For example, when one says in English that one spent a night with a

friend, one has the option to revile the friend’s gender — ”I stayed the

night with my girl friend” or not — ”I stayed the night with my friend”.

That is not the case in languages that require to state of the gender of the

object of a sentence, such as Hebrew or German. Indeed languages such

as Turkish, Finish, Estonian, Hungarian, Indonesian and Vietnamese have

no grammatical gender at all [33, Page 200]. Hebrew and German forces

the explicit specification of the gender of the friend but in English this data

item is optional. This brings to the conclusion that the English writer does

not need to think of the gender while speakers of other languages may have

to.

2.5 Literacy

Literacy, with its high political and economical importance, is researched

by communities including journalism, military personnel, education, brain

research and psychology. While reading may look to some of us as a one

activity process, reading is a complex set of activities that requires the

gradual development of several skills. Here we describe the reading process

and effort done some members to the community to assess the readability

of various artifacts.

The language system’s components are: Phonology, Semantics, Syntax

and Discourse. A phoneme is the smallest unit of speech that distinguishes

one word from the other. It is the fundamental element of the language

system, the essential building block of all spoken words. Different combi-

nations of just 42 phonemes produce the tens of thousands of words in the

English language. The word cat, for example, consists of three phonemes:

K, aaaa, and t. Before words can be identified, understood, stored in mem-

ory or retrieved from it, they must first be broken down into phonemes

by the natural machinery of the brain. It is critical for both listening and

reading [99, page 41].



52 CHAPTER 2. CONTEXT

The listener has to receive the phonemes at a sufficiently fast pace so

that several can be held in the short term memory at the same time and

integrated to form the intended words and phrases. Phonemes can be held

in the short term memory only one or two seconds or about five unrelated

words before each vanishes like a bubble. In producing a word, the human

speech apparatus - the larynx, palate, tongue and lips - automatically com-

press the phonemes together. Consequently several phonemes are folded

into a single pulse or bubble of sound, without any overt clue to the un-

derlying segmental nature of speech. Hence spoken language appears to be

seamless.

Both reading and writing is dependent on the assembling of phonemes,

speaking is natural and reading is not. Functional MRI results visualise this

clearly. For the object of the readers’ attention (print) to gain entry into

the language module, the reader must first convert the printed characters

on the page into the phonetic code; otherwise these letters remain just a

bunch of lines and circles totally devoid of linguistic meaning. As a person

reads a sentence the person has to hold several bits of information in mind

in order to put it all together and make sense of what he has just now

read. He first decodes letters into sounds, then holds these sounds in his

memory as he tries to decode the remaining letters in the word, and then he

takes these stored sounds, blends them together, and forms a word. Words

are stored [indexed] primary on the basis of their sounds, so the ability to

hold words temporarily is a phonologic skill. Within the brain, the child is

literally building the neural circuitry that links the sounds of spoken words,

the phonemes, to the print code, the letters that represent these sounds

Phonological deficits are constant throughout the life of dyslexic man

and woman. In dyslexic people the processing of phonemes is less well de-

veloped. A dyslexic child may say lotion when she means to say ocean.

A dyslexic person may have a difficulty consciously. Paradoxically under-

standing dyslexia is important to the understanding reading as observing

people with difficulties in reading highlights the mechanisms of reading, as

fluent readers read in a hard to understand automatic manner. A seminal

work in the subject is by Shaywitz [99]. The word dyslexia comes from

the Greek words δυσ - dys- (”impaired”) and λεξις lexis (”word”). Identi-



2.5. LITERACY 53

fied for the first time by Oswald Berkhan in 1881, the term ’dyslexia’ was

coined in 1887 by Rudolf Berlin, an ophthalmologist practising in Stuttgart,

Germany. He used the term to refer to a case of a young boy who had a

severe impairment in learning to read and write in spite of showing typical

intellectual and physical abilities in all other respects. People with dyslexia

are called dyslexic or dyslectic.

Dyslexia is a specific learning disability that is neurobiological in origin.

It is characterised by difficulties with accurate and/or fluent word recogni-

tion and by poor spelling and decoding abilities. These difficulties typically

result from a deficit in the phonological component of language that is often

unexpected in relation to other cognitive abilities and the provision of effec-

tive classroom instruction. Secondary consequence may include problems

in reading comprehension and reduced reading experience that can impede

growth of vocabulary and background knowledge. Although dyslexia is the

result of a neurological difference, it is not an intellectual disability. Dyslexia

occurs at all levels of intelligence [69]. Dyslexia is a specific impairment in

learning to read with a prevalence of 5% - 10% in school age children [90].

Spelling and reading are intimately linked; to spell correctly a child relies

on his stored representation of a word, and these are imperfect in dyslexia.

In fact, spelling errors may remain long after a dyslexic child or adult has

learnt to decode most words accurately.

The reader’s job is to convert the letters into their sounds and to ap-

preciate that the words are composed of smaller segments of phonemes.

Dyslexic children and adults have difficulty developing awareness that spo-

ken and written words are comprised of phonemes. Overall, the reader

must come to know that the letters on the page represent, or map onto,

the sounds one hears when the words are spoken. These linkages are re-

ferred to as the alphabetic principle. Beginning readers must first analyse a

word; skilled readers indentify words instantaneously, by sight. fMRI imag-

ing studies revealed markedly different brain activation patterns in dyslexic

readers compared to those in good readers. As they read, good readers

activate the back of the brain, where the language reside, and also to some

extent the front of the brain. In contrast, dyslexic readers show a fault in

the system: under activation of neural pathways in the back of the brain.



54 CHAPTER 2. CONTEXT

At all ages good readers show a consistent pattern: strong activation in the

back of the brain, with lesser activation in the front. In contrast brain acti-

vation in dyslexic readers show increased activation in the frontal region in

order to compensate for the disruption in the back of the brain. One means

of compensating for a reading difficulty, for example, is to sub vocalise (say

words under your breath) as you read, a process that utilised a region in

the front of the brain responsible for articulating spoken words. Reading

problems do not go away, they are persistent and now we know why.

One of the problems in public education and mass communication is

how to tell whether a particular piece of writing is likely to be readable to

a particular group of readers. Two major solutions are possible: measur-

ing and predicting readability. Measuring, by judgements or tests, involves

using readers. Predicting by readability formulas, does not involve read-

ers but instead uses counts of language elements in the piece of writing.

Judgements and comprehension tests, on the other hand, are not predictive

devices in this sense. It is a predictive device in the sense that no actual

participation by readers is needed [61].

Definition §2.47

readability formula, A mathematical equation derived by regres-

sion analysis. This procedure finds the equation which best ex-

presses the relationship between two variables, which in this case

are a measure of the difficulty experienced by people reading a

given text, and a measure of the linguistic characteristics of that

text. This formula can then be used to predict reading difficulty

from the linguistic characteristics of other texts [71].

There are numerous documented readability formulas, indeed Klare sur-

veyed more that 50 [61]. Popular readability formulas are FOG [61, Page 89],

SMOG [61, Page 79] and Flesch Kincaid. The FOG readability metric is

defined as:

GLFOG = 3.0680 + 0.877 ∗ ASL+ 0.984 ∗ PoM

where GLFOG = FOG Grade Level and ASL = Average Sentence Length

and PoM = Percentage Of Monosyllables [101]. The SMOG readability



2.5. LITERACY 55

metric [3] defined as:

GLSMOG = 3 +
√
NP

where GLSMOG = SMOG Grade Level and NP = Number of Polysyllable

Words in 30 Sentences. If the document is longer than 30 sentences, the first

10 sentences, the middle 10 sentences, and the last 10 sentences are used.

If the document has fewer than 30 sentences, some rules and a conversion

table are used to calculate the grade level. The Flesch-Kincaid readability

metric is defined as:

GLFK = 0.39 ∗ AW + 11.80 ∗ AW − AS ∗ 15.5

where GLFK = Flesch-Kincaid Grade Level, AW = Average Number of

Words Per Sentence and AS = Average Number of Syllables Per Word [101].

SMOG, whose origin is in the pre-word processing journalism, can be

calculated manually. In [71], McLaughlin selected 8 articles and called for

three specialists in literacy training to make content analyses and identify

the ten most important ideas in each passage. After reading a passage

each reader was asked to recall its entire content as fully as possible. This

method of unaided recall was used in order to avoid the prompts which are

inevitably given to a subject when he is questioned directly. The recalls

were tape recorded and later transcribed verbatim. Each transcript was

then compared with the list of ten main ideas, so that every passage was

rated for comprehension by each reader on a scale of 0 to 10, McLaughlin

found that there is a perfect negative rank correlation between polysyllable

counts and the measures of reading efficiency.

The biggest body of work we found on evaluation of readability is in the

medical field. This may be because readability can be a matter of life and

death, maybe because informed consent is enforced by law, or maybe be-

cause the medical communities is accustomed to statistical based research.

For example Davis et al [30] compared the readability of two consent forms

using a verbal interviews of 183 adults recruited from private and university

oncology clinics and a low income housing complex adults recruited from

private and university oncology clinics and a low income housing complex.

Davis et al asked ten question such as “What is the purpose of the consent

form?” or “What is chemotherapy?”. Their conclusion is that an illustrated



56 CHAPTER 2. CONTEXT

consent form was more readable than a consent form that did not include

illustrations [30].

2.6 Reflections

The research I have described above leaves several gaps in important is-

sues that need to be addressed when we consider the proposal to configure

a workflow engine by use cases. Below I focus on gaps in the literature

that lead to the hypotheses whose answers make up the reminder of this

dissertation.

Written use case languages can be ambiguous as they use natural lan-

guage. There seems to be an evident trade-off between the ease of a com-

munication with business experts and accuracy. To overcome the natural

language ambiguities, Cox et al show how to improve the quality of use cases

with checklist driven reviews [27]. Törner et al suggest that it is possible to

increase the correctness, consistency, completeness, readability and level of

detail as well as to avoid ambiguity [108]. Nonetheless, Cockburn applied

partial ordering to the action steps in the written use case language, con-

sciously sacrificing expressive power for the sake of readability [24, Page 26].

Is the sacrifice needed? What should be done to resolve this

limitation? Will overcoming the partial ordering limitation re-

duce readability? Will a fully ordered extended written use case

language be readable?

The current approach to workflow configuration is to replace the use

cases that were formed in the requirement phase with more accurate lan-

guages such as BPMN or the UML activity diagram as projects move from

the analysis phase into the design phase.

Is it possible to gradually extend artifacts using an extended

written use case language as they flow from the analysis stage

into design stage rather than rewrite then all together?

While the written use case language is a popular requirement elicitation

language, it has not been proposed to act as workflow modelling language.



2.6. REFLECTIONS 57

Indeed, until mid 2010 I have not seen any other explicit or implicit reference

to the idea of use case oriented workflow engine, an idea my supervisor and

myself published in 2007 [86]. I have found the first implicit reference to

our idea in a 2010 book by Fiammate [40]. In particular [40, Chapter 5]

describes the dynamic assembly of processes from predefined use cases tree.

Will an extended written use case language, that is fully or-

dered be expressive enough to be a useful workflow modelling

language?

Lee et al bridged the Business Process Management and the Require-

ment Engineering communities by contributing a mechanism to translate

use cases into Petri nets, enabling the mathematical verification of use

cases [66]. We did not find any literature covering the converse.

Is it possible to demonstrate that every sound workflow net

can be translated into use case set?

It is commonly held that diagrams and visual languages are easy for hu-

mans to understand; a seminal argument for the benefits of visual language

over textual language was given by Larkin and Simon [64], who reasoned

that text is limited to a linear order, whereas a diagram allows more in-

formation to be carried by the spatial arrangement of different elements

in the language. In contrast to Larkin and Simon’s arguments, Moher et

al [76] looked at several ways to express program structures in text and in

diagrams (Petri Nets); they found “for our tasks, graphics were no better

than text, and in several cases were considerably worse”.

Who is right? Larkin and Simon? Moher et al? Or; should

we present both a graphical language and a written language to

achieve the highest readability? And if so, does the order count?

I expected that readability metrics would have been sufficient to assess

readability, however, I found that most of the readability metrics ignore doc-

ument content and only consider surface linguistic features. Some surface

linguistic features, such as average number of words per sentence, are influ-

enced by presentation style, and some monosyllable words, such as “quark”,



58 CHAPTER 2. CONTEXT

represent concepts that are not easy to understand. Features based on sen-

tence length and number of syllables per word are common in readability

measures such as the FOG, SMOG and Flesch Kincaid metrics, presumably

based on the hypotheses that longer sentences, and sentences containing

longer words, are more difficult to read [100].

Having read [71], one may claim that McLaughlin had only demonstrated

that people can better answer questions on the subject of “saying no to

your children” than about the subject of “the meaning of organ transfer”,

rather than demonstrate causal relationship between the SMOG rating of

an artifact and its readability. As McLaughlin did not assess the initial

domain knowledge of participants, his research, one may claim, does not

solely attributes the measured knowledge to the readding of instrument,

but to initial domain knowledge. Furthermore, Davis et al [30] did not

guarantee information equivalence between artifacts.

Are these methodological faults? If so, is it possible to eth-

ically overcome these methodological faults when experimenting

on consenting human beings?



Chapter 3

Architecture

A stone the builders had despised and it has

risen and it became a cornerstone.
Psalm 118:22

H
ere we articulate the main tenet that is explained in this disserta-

tion — the proposal to feed use cases directly into a workflow engine

as a workflow modelling language. In this chapter our focus is on the overall

design of a workflow engine that accepts this language. Within the context

established in Chapter 2, we first identify two classes of ambiguities inherent

to the written use case language; one class relates to parallelism, another to

choice. We explain why Cockburn knowingly accepted these ambiguities,

and explain why we had to resolve them. We then describe the external

interfaces of a use case oriented workflow engine, concentrating on proper-

ties and methods. We define the term use case oriented workflow engine,

the cornerstone of this dissertation, and in conclusion, describe how various

stakeholders interact with a use case oriented workflow engine.

Having articulated our proposal in this chapter we use the remaining

chapters of this dissertation to evaluate this proposition by studying in

detail a real life implementation of a use case oriented workflow engine, by

surveying the variety of business processes that can be enacted by a use

59



60 CHAPTER 3. ARCHITECTURE

case oriented workflow engine, and by empirically assessing the readability

of the written use case language.

3.1 Methodology

The methodology we employ in this chapter is that of logical design, without

covering in detail most implementation issue. We describe the main aspects

of a workflow engine taking use cases as models, without entering into im-

plementation details, give details of the input language, and build the object

model of a use case oriented workflow engine, articulating classes, methods

and properties. We conclude by describing the roles of various stakeholders

in an organisation that deploys a use case oriented workflow engine.

The logical design helps us concentrate on the algorithmic core of the

use case oriented workflow engine. The description we present is abstract,

succinct, and platform agnostic. It is written in a way that may survive the

test of time. More details of an actual implementation are in section 4.5 —

Implementation on Off The Shelf Engine

A limitation of this approach is that it does not describe in detail im-

plementation issues such as: document management, user interface man-

agement, messaging, caching, authentication or database management. A

would-be implementer will need to supplement this architecture with a phys-

ical design. In particular, this would-be implementer will have to choose one

of the many platforms one could leverage for the provisioning of a use case

oriented workflow engine, whether a traditional off-the-shelf workflow en-

gine from the likes of FileNet, TIBCO or K2, or other platforms, such as

Microsoft’s SharePoint or the fundamental .Net or J2EE platforms which

may be leveraged just as successfully.

3.2 The Enactment Round Trip

In this section we discuss the overall application of a workflow engine as it

applies to one configured by use cases.

As illustrated in Figure 3.1 — State Transition, the operation of a work-

flow engine may be split into three interweaving states — modelling and ver-



3.2. THE ENACTMENT ROUND TRIP 61

Model / Verify

Enactment Tuning

Commission

Add action steps 

or scenarios
Adaption

Selection

Decommission

Log

Figure 3.1 – State Transition — The enactment round-trip



62 CHAPTER 3. ARCHITECTURE

ification, enactment, and tuning. At modelling time workflow participants,

business analysts and workflow configuration officers model the process, ver-

ify the model and feed the model into the workflow engine. At run time the

workflow engine guides the workflow participants through the enactment of

business processes and monitors the processes. After the event, manage-

ment discovers opportunities for process improvement by mining knowledge

from the business activity monitor, and tunes the business processes [9].

The acceleration of this cycle may be desirable in dynamic environments.

While all workflow engines should follow these transitions between the

states, with a use case oriented workflow engine the transition between the

three state is dynamic. The platform allows the two flexibilities that Heinl

et al required from a workflow engine, namely: flexibility by selection and

flexibility by adaptation [53].

A major advantage of the use case oriented workflow engine over the

incumbent engines is that the movement within and between the states is

very quick. At design time, business analysts articulate a business process as

a use case set. The business analysts then the use case set to the workflow

configuration officer. The workflow configuration officer extends the use

case set, in a manner that we describe below. The workflow configuration

officer then creates a business transaction routing sheet from each scenario

and from each extension to each use case, each business transaction routing

sheet group, subject to an attribute observed, the attribute being the trigger

for the use case or the trigger for the extension.

At run time, when a work item arrives at the organisation, the first work-

flow participant to touch the work item catalogues the work item, and then

lists the attributes of the work item. Using these attributes the workflow

engine links business transaction routing sheets to the work item.

When a workflow participant requests the next worklist, the use case

oriented workflow engine, with a collection of work items on hand, makes

a dispatching decisions based on (i) attributes of the work items on hand,

(ii) the roles of the workflow participant, (iii) the prioritisation policies of

the organisation and (iv) other business rules. Following this, the work-

flow participant performs action step by action step according to use case

scenario captured in the business transaction routing sheets, until eventu-



3.2. THE ENACTMENT ROUND TRIP 63

ally an activity is found that the workflow participant cannot deal with, at

which point the workflow engine passes the work item to another workflow

participant. As the workflow participant executes each activity, the work-

flow participant acknowledges this to the workflow engine. From time to

time the workflow engine records audit data to the business activity mon-

itor describing the work item’s attributes and progress through the action

steps. Eventually the processing of the workflow item terminates and the

workflow item is closed.

After the event, management monitors the attributes logged by the busi-

ness activity monitor in order to understand process performance. From

time to time management uses these observation to fine tune the process.

The use case oriented workflow engine logs three types of massages into the

business activity monitor: (i) work item massages, (ii) activity messages,

and (iii) work item properties massages. The use case oriented workflow

engine logs these messages at five occasions: (i) when work items are cre-

ated (ii) when work items are terminated, (iii) when activities are spawned,

(iv) when activities are completed and (v) when observations are assigned

to work items. The work item massages keys are the indexing elements of

the work items. The activity messages contain the names of the action steps

that were undertaken on the work item. The work item properties messages

take the observation that the pilot applied to the work item.

The difference in the time span between the creation of a work item and

the termination of a work item represent the service visible to customers

(External SLA). The difference in the time span between the spawning of

an activity and the termination of an activity represent the service level

offered by a department (Internal SLA). The presence of some observations

can be used for tuning purposes as well.

As illustrated in Figure 3.2 on page 65, the written use case language

lends itself naturally to this mode of operation because roles (such as pri-

mary actor or stakeholder) or scenarios (such as main success scenario, ex-

tension or alternative scenario), the core building blocks of the grammar of

the language. The actor represents one of the roles a workflow participant

may have. The extension header describes the attributes of the work item

and the scenario list the workflow activities. When an end user, or a com-



64 CHAPTER 3. ARCHITECTURE

puterised system, indicates to the use case oriented workflow engine which

observation are met, the workflow engine is in a position to dispatch the

appropriate work items to the appropriate role bearer, listing the required

activities.

3.3 Extending the Input Language

Use cases are widely employed as a requirement elicitation tool, being ac-

cepted by both IT professionals and representatives of end users. As use

cases are commonly produced during the requirements elicitation stages of

the software delivery life cycle, they are available to the workflow configu-

ration officer naturally [67, Page 297]. Cockburn designed his written use

case language with requirement elicitation in mind, to be used in a phase

in a software delivery life cycle where some uncertainty is tolerated, even

encouraged, where solutions are not articulated, and optimisation is not yet

needed. As such, they lack the expressive power to describe the fine nuances

of parallelism and choice; using Moody’s terminology, the written use case

language suffers from symbol deficit [77]. We, on the other hand, apply

Cockburn’s language for workflow modelling, an application that requires

a higher level of precision, and thus more expressive power. For its role as

a workflow modelling language, we extend the written use case language in

small ways, described here.

The written use case language’s action steps are partially ordered. Cock-

burn argues that partial ordering is sufficient for requirement elicitation [24,

Page-26] and we agree with him. However, when taking the written use

case language into a new domain, to which it was not originally designed,

and utilising the language as a workflow modelling language, the written

use case language has to be extended so it can have the expressive power

needed to articulate the order of action steps. The challenge is to maintain

the business oriented nature of the language, while eliminating the ambigu-

ities. That is a trade off between usability and expressive power [34, Page

606].

In this section we highlight ambiguities inherent to the written use case

language and then we propose an extension to the language’s syntax and



3.3. EXTENDING THE INPUT LANGUAGE 65

 class Use Case Terms

Workflow TermsUse Case Terms

Use Case

- Name:  char

- Triger:  char

Workflow Participant

- Description:  char

- Skil l level:  int

Scenario

- Observation:  char

Action Step

- Difficulty:  int

- ID:  int

- Instraction:  char

- Order of processig:  int

Use Case Set

Actor

Work Item

- Indexing:  char

Work Flow Model

Role

- Skil l:  int

Business 

Transaction 

Routing Sheet

Worklist

Activ ity

- Dificulty:  int

- Instruction:  int

A scenario is a mini use case

A senario is made of partly

ordered action steps

A use case set is a use case that

requires further articulation

The list of action steps an actor

can perform is a job description

Figure 3.2 – Reference model of the use case terminology. Please
note that the order of processing identifier and its parallelism
implications are the only extension we introduce to Cock-
burn’s language.



66 CHAPTER 3. ARCHITECTURE

a style guide element, that together would resolve the ambiguities and so

make the language suitable for configuring a workflow engine. We show that

to resolve the ambiguities all the workflow configuration officer has to do is

to extend the use case set as we describe below. In section 5.3 — Sound

Workflow Nets Approach we provide a proof that with these extensions, the

written use case language is sufficiently expressive.

Recall that the action step IDs in the written use case language are

labels that uniquely identify conditions and activities, and that they are

not order of processing identifiers. As we illustrate in Figure 3.3 on page 68

and in Figure 3.4 on page 69, the price of the partial ordering of action

steps in a scenario is a high level of ambiguity. In these figures, inspired

by [96, 115], we present workflow patterns articulated in BPMN in the left

column and the same workflow pattern articulated as our extended written

use case language in the right column.

Due to the partial ordering of action steps, use case #1, located on top of

Figure 3.3, is ambiguous. The workflow configuration officer may interpret

use case #1 as any of the six BPMN diagrams listed below it as the nature

of the parallelism of activities A, B and C is yet to be articulated. The

written use case language shown are identical except for the added order

of processing identifier which serve to distinguish the allowed ordering of

action step.

The workflow configuration office may wonder whether activities A, B

and C are sequential, as articulated in use case #2 (WCP01-Sequence).

Or whether activity A comes first, and then when A is completed, both

activities B and C are executed concurrently, as articulated in use case

#3 (WCP02-Parallel Split). Or, vice verse, do activities A and B occur

concurrently, and only when both are completed does activity C commence,

as articulated in use case #4 (WCP03-Synchronisation)? Or maybe activity

C can start only after either activity A or activity B complete (but not

necessarily both of them), as articulated in use case #5 (WCP05-Simple

Merge). Perhaps all three activities should be executed concurrently, as

articulated in use case #6? Or should activity C be executed while activities

A and B are executed one after the other, as articulated in use case #7?

Or, does the order not count at all?



3.3. EXTENDING THE INPUT LANGUAGE 67

In the same way, use case #8, located at the top of Figure 3.4 can be

interpreted as one of the two BPMN diagrams listed below it. The reason

for that ambiguity is that in use case #8 we do not articulate explicitly if

conditions c’ and b’ are mutually exclusive or if conditions c’ and b’ are

potentially satisfied together.

We resolve the ambiguity illustrated in Figure 3.4 by recording the ver-

ification activity explicitly as an action step and by articulating all the

expected results as extensions that are nested (exclusive) or at the same

level (potentially coexisting). It is natural to describe an inspection as an

activity, for example, in the medical industry a blood test is an activity

with price, duration, and many possible results (some of which may be un-

expected). We anticipate that one of the roles of the workflow configuration

officer would be to help end users with that articulation.

Definition §3.1

to gild the lily, v. To embellish excessively, to add ornament

where none is needed [25], such as adding this definition.

Being acutely conscious that we are about to gild the lily, and reduce

the usability of the written use case language, we now extend the written

use case language by placing some extra information about the “order” of

action steps.

Definition §3.2

order of processing identifier, n. An integer that defines the

sequence of action step within a written use case.

Generally, the order of processing identifier is a monotonically increasing

positive integer. However, when the order of some action steps is of no

importance, or when action steps are taken in parallel, then these action

steps share an order of processing identifier. Synchronisation steps (merges)

are denoted as action steps whose order of processing identifiers are bigger

than that of the synchronised action steps. When several streams of activity

start (junction), each stream is represented by an individual sub use case,

each represented by a single underlined action steps [24, Page 113], or by a

adding a decimal point and a number to the order of processing identifier.



68 CHAPTER 3. ARCHITECTURE

Use Case #2 WCP1 Sequence

1) Actor a does A; Order = 1

2) Actor b does B; Order = 2

3) Actor c does C; Order = 3

A B C

Use Case #3 WCP2 Parallel Split

1) Actor a does A; Order = 1

2) Actor b does B; Order = 2

3) Actor c does C; Order = 2

B

C

A

Use Case #6

1) Actor a does A; Order = 1

2) Actor b does B; Order = 1

3) Actor c does C; Order = 1

A

B

C

Use Case #4 WCP3 Synchronisation

1) Actor a does A; Order = 1

2) Actor b does B; Order = 1

3) Actor c does C; Order = 2

A

B

C

Use Case #1 – No order

1) Actor a does A 

2) Actor b does B 

3) Actor c does C 

Use Case #5 WCP5 Simple Merge 

Main success scenario

1) Actor does A; Order = 1

2) Actor does B; Order = 2

3) Actor does C; Order = 2

Alternative scenario

1) Actor does B; Order = 1

2) Actor does A; Order = 2

3) Actor does C; Order = 2

A

B

C

Use Case #7

1) Actor a does A; Order = 1.1

2) Actor b does B; Order = 1.2

3) Actor c does C; Order = 1

A

C

B

Figure 3.3 – Partial Order. Due to the partial order of action steps,
use case #1 can be interpreted in six different topologies.
When supplemented with order of processing identifier, each
use case can only be interpreted as per the adjacent BPMN
diagram.



3.3. EXTENDING THE INPUT LANGUAGE 69

Default

A

CD B

Use Case #9 WCP4 Exclusive choice

Main success scenario

1) Actor does A;        Order = 1

2) Actor performs test; Order = 2

3) The use case ends;   order = 4

Extensions

2a) Condition d’

    2a1) Actor does D; Order = 3

    2a1a) Condition b’

          2a1a1) Actor does B; Order = 3

          2a1a1a) Condition c’

                  2a1a1a1) Actor does C; Order = 3

Use Case #10 WCP6 Multiple 

choices

Main success scenario

1) Actor does A;        Order = 1

2) Actor performs test; Order = 2

3) The use case ends;   order = 4

Extensions

2a) Condition d’

    2b1) Actor does D;  Order = 3

2b) Condition b’

    2b1) Actor does B;  Order = 3

2c) Condition c’

    2c2) Actor does C;  Order = 3

Default

A

CD B

Use Case #8 WCP4 or WCP6

Main success scenario

1) Actor does A;        Order = 1

2) Actor does D;        Order = 2

3) The use case ends;   order = 3

Extensions

2a) Condition c’

    2a1) Actor does C;  Order = 2

2b) Condition b’

    2b1) Actor does B;  Order = 2

         

Figure 3.4 – Ambiguous choice patterns



70 CHAPTER 3. ARCHITECTURE

We support three notions of parallelism. (i) When action steps must be

taken in parallel, their identical order of processing identifiers are supple-

mented with the ‖ sign. (ii) When action steps may be taken in parallel

or in any sequence, their identical order of processing identifiers are sup-

plemented with the  sign. (iii) However, as our work originated in office

environment, where the workflow engine locks supporting documents to

workflow participants for exclusive use, partial order is implicit. That is,

the Workflow Pattern Coalition’s pattern WCP-40 is the implicit default.

The pattern is described as

Each member of a set of activities must be executed once.

They can be executed in any order but no two activities can be

executed at the same time, i.e. no two activities can be active

for the same process instance at the same time. Once all of the

activities have completed, the next activity in the process can

be initiated [96, Page 73].

As the reader may find that the definition of the order of processing

identifier requires further elaborations we provide examples with the help

of patterns drawn from the Workflow Patterns Coalition’s library [96]. We

will return to this list when we explore the expressive power of the extended

written use case language in section 5.2 — Patterns Approach

(a) In general, the order of processing identifier is a monotonically increas-

ing integer.

E.g.

• in workflow WCP-01 in section B on page 207 the sequential, ac-

tion steps ‘A’ and ‘B’ have ‘1’ and ‘2’ as their order of processing

identifiers respectively.

(b) IF the order of some action steps is of no importance,

OR the action steps are parallel,

THEN these action steps share an order processing identifier.

E.g.



3.3. EXTENDING THE INPUT LANGUAGE 71

• In workflow WCP-02 in figure 5.3 on page 122, the parallel action

steps ‘A’ and ‘B’ share ‘2’ as their order of processing identifiers.

• In workflow WCP-13 in figure B on page 226, the six parallel action

steps ‘1’ to ‘6’ share ‘1’ as their order of processing identifiers.

(c) Synchronisation steps are described by an action step whose order of

processing identifier is bigger than that of the proceeding parallel action

steps.

E.g.

• in WCP-05 in figure 5.3 on page 122, in the main success scenario,

action step ‘C’ with ‘3’ as order of processing identifier, joins steps

’A’ with order of processing identifier ‘2’ and ’B’ with order of

processing identifier ‘2’.

• In workflow pattern WCP-40 in figure 5.2 on page 119, action steps

‘B’,‘C’,‘D’ and ‘E’ are parallel (or they can be performed in any

order) as the action steps share ‘2’ as their order of processing

identifier.

• In workflow pattern WCP-07a, described in figure 5.4 on page 123

the sequential transitions Transition-B and Transition-D, have order =

2.1 and order = 2.2 respectively, while Transition-C, the single

transition in the parallel stream, has order = 2.

• In workflow pattern WCP-03 in figure 5.3 on page 122; Transition-

C, with order = 2, synchronises after Transition-A and Transition-

B, both with order = 1.

.

We are now equipped to define our workflow modelling language as fol-

lows:

Definition §3.3

extended written use case language, n. A workflow modelling



72 CHAPTER 3. ARCHITECTURE

language that supplements the written use case language by:

(i) adding order of processing identifier to each action step, (ii)

indenting mutually exclusive extensions, and (iii) listing poten-

tially satisfied together extensions right below each other.

This way of presenting business processes has some features of natural

languages and some features of programming languages. The term language

is not a perfect match. Nonetheless, we see it is reasonable to refer as

languages to the presentation formats of business processes, whether with

the help of use case description syntax, or with the help of BPMN. Indeed

other presentation formats such as UML and SQL are called languages.

3.4 Use Case Oriented Workflow Engine

Here we describe a use case oriented workflow engine as a black box that

exposes properties and methods. In section 4.5 on page 104 — Implementa-

tion on Off The Shelf Engine we lift the veil and describe a few details of the

implementation of a specific use case oriented workflow engine leveraging

IBM’s FileNet Panagon APIs.

3.4.1 Properties

Here we provide, using figure 3.5 on page 75, a reference model of a use case

oriented workflow engine. In section 3.4.5 on page 80 — The Role of the

Workflow Configuration Officer we describe an algorithm we developed to

infer the data that the workflow configuration officer needs to populate from

use case which business analysts produce during requirements elicitation

stage. In section 4.5 on page 104 — Implementation on Off The Shelf

Engine, we describe how to build a use case oriented workflow engine above

a general purpose workflow engine.

The first interface we describe allows the use case oriented workflow

engine to instruct the workflow participant to perform an activity.

Definition §3.4

instruct, n. To furnish with authoritative directions as to action;

to direct, command [25].



3.4. USE CASE ORIENTED WORKFLOW ENGINE 73

Definition §3.5

instruction, n. An interface used to instruct a workflow partici-

pant to perform an activity.

Each activity has an attribute named instruction. Later we explain how

the workflow configuration officer infers the instructions from use cases.

Definition §3.6

business transaction routing sheet, n. An ordered set of activi-

ties that workflow participants perform as a group.

A business transaction routing sheet has one or more activities. An

activity, though, belongs to one and only one business transaction rout-

ing sheet. A business process can have one or many business transaction

routing sheets. Just like the routing used in production floors to describe

the processes an order has to pass, so does the business transaction routing

sheet describe the activities that have to be executed as a group to fulfil part

of the process. A work item has none, one or many business transaction

routing sheets. For example of business transaction routing sheets derived

from an extended written use case language please refer to Figures 3.6 —

Sample Process and 3.7 — Business Transaction Routing Sheet.

The second interface we describe allows the workflow participant to de-

scribe properties of the work item so that the use case oriented workflow

engine will be able to instruct other workflow participants to perform the

needed activity.

The act of prescribing, or linking, business transaction routing sheets to

a work item is called piloting (more about piloting in section 3.4.8 — The

Role of the Workflow Participant when we explain the various roles involved

in the enactment of a use case oriented workflow engine) . A work item that

has no business transaction routing sheet assigned is a piece of information

that arrives to the organisation and requires no action.

Definition §3.7

observe, v. To take note of or detect scientifically; to watch or

examine methodically, esp. without experimental or therapeu-

tic intervention; to perceive or learn by scientific inspection or

measurement; [...] [25].



74 CHAPTER 3. ARCHITECTURE

Definition §3.8

observation, n. An attribute of a work item one may observe.

Each business transaction routing sheet has an attribute named obser-

vation. The workflow configuration officer infers the observations from use

case ’s trigger and from the extension’s condition.

A modern workflow engine is expected to present to the workflow par-

ticipants the information they need to perform each activity.

Definition §3.9

supporting document, n. External artefact that corroborates a

business transaction.

A work item may be associated with supporting documents that guide

the workflow participants through the enactment of the workflow, or that

are used as an evidence that the workflow was duly enacted (for example,

a parking offence cannot be processed without a parking ticket signed in a

certain form by a parking inspector).

In the 1980s, when imaging systems were promoted as workflow engines,

one supporting document was provided with one work item; a 1 : 1 ratio.

Nowadays, any ratio is acceptable. 0 : 1 ratio implies that the work item

is not initiated by a supporting document, e.g. the periodic review of an

investment portfolio is triggered by the arrival of a predefined date, rather

than the arrival of a document. n : 1 ratio implies that the several sup-

porting documents are required for a work item to complete, e.g two signed

documents are required, one by the selling party and one by the buying

party before processing may commence. 1 : n ratio implies that the docu-

ment initiates several work items, e.g. when employer sends the details of

several pension payments in one spreadsheet. We even observed m : n.

The nature of supporting documents evolved as well, from scanned paper

to XML. Workflow participants no longer have to be humans. Workflow

participants can now be automated computer programmes.



3.4. USE CASE ORIENTED WORKFLOW ENGINE 75

Business
Transaction

Routing
Sheet

Observation

Use Case

Role

Task

Co-exist –
Yes/No

Workflow
Participant

Profile

Workflow
Participant

Proficiency

User 
Interface

Observation 
Class

Description

Instruction

Run time 
Construct

Work Item

Supporting
document

Worklist

Skill

Difficulty

Dispachment

Figure 3.5 – Use case oriented workflow engine — Data Model



76 CHAPTER 3. ARCHITECTURE

3.4.2 Methods — Run Time Interface

A use case oriented workflow engine exposes several methods at run time, en-

abling workflow participants to dynamically select the activities each work-

flow item is subjected to. The following definitions capture these methods.

Definition §3.10

observe, method. A public method used by a workflow partici-

pant to declare which use cases or use case extensions should be

performed on a work item.

Definition §3.11

prescribe, method. A private method used by the workflow en-

gine, and not exposed to users of the engine. In response to

an observation, the workflow engine places activities in a queue

according to the business transaction routing sheets. The ac-

tivities queued are the action steps derived from use cases or

extension.

Definition §3.12

GetNext, method. A public method used by a workflow partic-

ipant to request a worklist from the workflow engine.

Definition §3.13

done, method. A public method used by the workflow partici-

pant to acknowledge the completion of an activity.

Definition §3.14

diarise, method. A public method used by the workflow partici-

pant to postpone the execution of an activity until a given date

and time.



3.4. USE CASE ORIENTED WORKFLOW ENGINE 77

Definition §3.15

should not be done, method. A public method used by the

workflow participant to instruct the workflow engine to cancel

an activity already prescribed to a work item.

3.4.3 The Engine

Thus far, having started from basic principles and continued with commonly

accepted workflow and requirement elicitation principals, we have laid the

foundations for the introduction of the first contribution of our dissertation

— the use case oriented workflow engine. We then described some properties

of the use case oriented workflow engine. Now we will introduce our thesis

— the proposition of a workflow engine whose workflow modelling language

is the extended written use case language, following this we describe how

a workflow engine configured with extended written use case languages is

operated. The remaining chapters of this dissertation are devoted to the

evaluation of the thesis.

Definition §3.16

use case oriented workflow engine, n. A workflow engine that

accepts the extended written use case language as its workflow

modelling language.

At run time a use case oriented workflow engine exposes the observe,

GetNext, done, diarise, and should not be done methods. The dispatcher

of a use case oriented workflow engine prescribes activities linked to obser-

vations. For after the-event-analysis, a use case oriented workflow engine

posts messages to a business activity-monitor (i) when work items are cre-

ated (ii) when work items are terminated, (iii) when activities are spawned,

(iv) when activities are completed and (v) when observations are recorded.

In the next subsections we describe the activities needed to configure

a use case oriented workflow engine, operate one and analyse the logs pro-

duced by such a workflow engine. We list the activities and group them into

roles. We thus explain in detail the various roles required in an organisation

to support a use case oriented workflow engine.



78 CHAPTER 3. ARCHITECTURE

Use case name: Apply to invest money in a fund

Main success scenario:

1. The mail room scans the application form to the 

   imaging  system.                                 Order = 1

2. The data entry person keys the deposit to the 

   system.                                          Order = 2 

3. The system sends transaction confirmation to the 

   investor.                                        Order = 6

4. The process ends.                                Order = 7

Extensions:

2a. The application is for more than AU$1,000,000:    

       2a1. The Senior Data Entry Person also keys the 

            deposit.                                Order = 2 

       2a2. The system reconciles the two data 

            entries.                                Order = 3  

       2a3. The flow continues at line 3

            2a1a. The reconciliation failed  

                  2a1a1. The system sends the two data 

                         entries to the senior data 

                         entry.                      Order = 4

                  2a1a2. Senior data entry corrects 

                         the data                    Order = 5

                  2a2a3. The flow continues at line 3

2b. The form arrived unsigned:      

    Replace action step 2 with:

    2b1. The Data Entry Person calls the 

         Investor, requesting a signed form.  Order = 2

    2b2. The current process ends.            Order = 3

Figure 3.6 – The sample business process expressed as a extended written
use case language (taken from [86]).



3.4. USE CASE ORIENTED WORKFLOW ENGINE 79

Business Transactions Routing Sheet 1

Observation = Small Application ! (Or default flow)

Activity = Scan the application form
Role = mail room
Order = 1

Activity = Key into the system
Role = Data Entry Person
Order = 2

Activity = Send transaction confirmation
Role = The system
Order = 6

Business Transactions Routing Sheet 2

Observation = Application Bigger than AU$1,000,000.00

Activity = Key into the system
Role = Senior Data Entry Person
Order = 2

Activity = Reconcile the two data entries
Role = The system ! Automated process
Order = 3 ! If order was 1, the dispatcher would be

! able to dispatch the two Activities in parallel,
! something that may be sensible.

Business Transactions Routing Sheet 3

Observation = Application with a missing signature1
Activity = Call the investor requesting a signature.

Role = Senior Data Entry Person
Order = 99 ! any number will do as this is a fatal error.

Business Transactions Routing Sheet 4

Observation = The reconciliation failed

Activity = Send the two data entries to the senior data entry.
Role = System
Order = 4

Activity = Correct the data
Role = Data Entry Person
Order = 5

Figure 3.7 – The business transaction routing sheet for our sample busi-
ness process (Figure 3.6) (taken from [86]).



80 CHAPTER 3. ARCHITECTURE

3.4.4 The Role of the Business Analyst

Elicit the Written Use Case Set

At configuration time, the business analyst, in cooperation with the rep-

resentatives from the business, elicits the process that requires automation

and articulates it as a use case set. This is a well-understood phase of many

IT-based system life cycles, and use cases are a common language for the

purpose.

3.4.5 The Role of the Workflow Configuration Officer

Elicit Order of Processing

The order of processing identifier cannot be automatically inferred from

the use case. The workflow configuration officer has to clarify the issue

with the business analyst. For example, consider Figure 3.6 on page 78. A

reader familiar with the written use case language will notice a syntactical

construct following each action step — Order = n. This is how we propose

to describe the order of processing identifier of action steps.

Infer the Business Transaction Routing Sheets

At configuration time, the workflow configuration officer infers the business

transaction routing sheets from the scenarios in the use case set. Every main

success scenario, every alternate scenario and every extension in the use case

set gave rise to a business transaction routing sheet. Every action step in

each scenario gave rise to an activity in a business transaction routing sheet.

In example 3.7 on the previous page, the workflow configuration officer

configured four individual business transaction routing sheets. The main

success scenario gave rise to a business transaction routing sheet (see sheet

1 in Figure 3.7), each alternative scenario and each extension gave rise to a

business transaction routing sheet and each extension gave rise to a business

transaction routing sheet (see sheets 2,3 and 4 in Figure 3.7). They are all

associated with observations in the individual business transaction routing

sheets. Each group of action steps that follows them is the reoccurring

activity element.



3.4. USE CASE ORIENTED WORKFLOW ENGINE 81

Infer the Roles

The roles of the workflow participants are found as the grammatical subjects

of the action steps. To infer a role from an action step one has to identify the

grammatical subject of a sentence. For example if an action step says that

“5. The claims officer verifies the signature on page 15 of the application

form”, then the role of that activity is “claims officer”.

Infer the User Interface Specification

The workflow configuration officer infers the observations and the instruc-

tions from the use cases. Observations are the use case titles and the con-

ditions in the extension sections. The instruction is the predicate and the

object in the action step. For example refer to Figure 2.8 on page 43 —

The restricted grammatical structure of an action step. In that example

we show how an action step can be parsed using syntactical analysis, and

the transformation from syntactical constructs into the various use case ori-

ented workflow engine terms. The workflow configuration officer transforms

the subject of the action step into a role, and the predicate and the optional

object into an activity. That is, in the action step “The data entry person

keys the deposit to the system” “ the phrase “data entry person” is the role,

and the phrase “keys the deposit to the system” is the activity.

3.4.6 The Role of the Human Resource Team

Establish the User Profile

At configuration time, the details of the workflow participants are stored in a

table, and another table describes the proficiency of workflow participants

in various roles. These two tables together are the workflow participant

profile, and one may assume that the profile is populated by the human

resources team.



82 CHAPTER 3. ARCHITECTURE

Figure 3.8 – An example of the run time user interface of a use case ori-
ented workflow engine.



3.4. USE CASE ORIENTED WORKFLOW ENGINE 83

3.4.7 The Role of the Security Officer

Infer Minimal Rights

At configuration time, the security officer infers the minimal rights of a

workflow participant from the written use case language as described by

Fernandez et al [38]. This is done by identifying the action steps each role

bearer performs and granting only the privileges required to do these action

steps and not granting other privileges.

3.4.8 The Role of the Workflow Participant

At run time the workflow engine assigns worklists to workflow participants,

and the workflow participants execute the work items in the worklist. In a

clerical setting, the workflow participants invoke the following four methods:

Catalogue Workflow Items

When a work item arrives, the first workflow participant to touch the work

item catalogues the work item by assigning to the work item attributes

such as the business process which the work item must follow, the customer

identifier, as well as business specific dispatcher related information. For

example, for an insurance claim, cataloguing may require the keying of

policy ID, claim date and claim’s estimated value.

Pilot

Definition §3.17

pilot, n. A person who steers or directs the course of a ship;

a helmsman or navigator, spec. a qualified coastal navigator

taken on board temporarily to steer a ship into or out of a port,

through a channel, etc [25].

Definition §3.18

pilot, method. To prescribe or link one or many business trans-

action routing sheets to a work item.



84 CHAPTER 3. ARCHITECTURE

Use Cases #1 & 2– Use Case Oriented – Run time usage

Initiator

Processing

Piloting

Core SystemAdministratorPilot Workflow Engine

Catalogue 

workow item

Process

Done

§3.12
Record the

processing

Instruction

1.1:

1.2:

2.1:

2.3: 2.4:

2.5:

2.2:

Observe

§3.9

Create

Workflow 

Item

Prescribe

§3.10

GetNext

§3.11

Dispatch

Worklist

Capture the 

transaction

1.3:

1.4:

1.5:

2.6:

Terminate

Wf Item

Finish?

Yes

2.7:
No

Diarised?

§3.13

Should not be 

done?

§3.14

Figure 3.9 – Use case oriented workflow engine — run time usage. Here
we describe two use cases — piloting and processing. Please
note that the diagram has a formal flow: the business process
never terminates.



3.4. USE CASE ORIENTED WORKFLOW ENGINE 85

As with a maritime pilot who describes the route of a vessel through a

complex waterway, the pilots describe the route the work item takes through

the organisational maze. The pilots do so by linking business transaction

routing sheets to work item using a classified menu of observations. At this

stage a work item can be spawned or merged, and supporting documents,

that arrived previously, can be attached to the work item. A pilot can be

a computer programme or a human. At every stage in the life cycle of the

work item, a workflow participant may further refine the piloting of the

work item, and in effect be a pilot.

As illustrated in Figure 3.8 the pilot first selects appropriate observa-

tions from a list presented on the left panel, in response the use case oriented

workflow engine reciprocates by presenting all the sub processes (that is, ex-

tensions) of the selected process, in the middle panel. The pilot then selects

all the sub processes that are applicable to the work item. Making these

selections is called “piloting”. In due course the workflow engine presents

the work item to an appropriate workflow participant in the right panel,

who in turn performs the activities (read action steps) and acknowledges

the performance. On some occasion, the workflow participant may post-

pone (diarise) the execution of an activity or declare that it “should not be

done”.

Execute

To prevent double handling, the pilot may execute the activities there and

then, or leave the activities to a specialised workflow participant. At this

stage, the workflow participant requests the next work item by calling the

workflow engine’s “GetNext” method, and the dispatcher dispatches a work

item (taking into consideration the cataloguing attributes that were previ-

ously assigned, the supporting document(s) and, according to the observa-

tions the pilot had prescribed, a list of activities the workflow participant

is expected to perform). The workflow participant then performs the ap-

propriate activity on the work item. For example, in figure 3.6 on page 78,

the activities are “key it to the mainframe”, “verify it”, or “contact the

customer”.



86 CHAPTER 3. ARCHITECTURE

Acknowledge

Following the execution of each activity the workflow participant flags it

as “done”, and also flags other activities as “diarise” or “should not be

done”, until all activities are dealt with. Following the acknowledgement,

the workflow participant may either request the next work item or terminate

the session.

3.4.9 The Role of the Dispatcher

Infer Worklists

At run time, the workflow engine groups one or more activities into a work-

list and dispatches the worklist to a workflow participant.

The dispatcher watches two lists:

• available workflow participants with their roles; and

• piloted activities with roles.

These two lists are used to implement dispatching patterns that the

business process managers define. Examples of dispatching algorithms used

in BT Financial group are provided in section 4.4.4 on page 100.

Populate the Business Activity Monitor

At run time the workflow engine sends messages from the following three

classes to the business activity monitor:

Work item Message: Sent when a work item is created, spawned, re-

catalogued, terminated, or, merged into anther work item. Records a

time stamp and the cataloguing information. Used to monitor adher-

ence to external Service Level Agreements.

Observation Message: Sent when a business transaction routing sheet is

assigned to awork item. Records properties of a work item. Used for

quality assurance (e.g in Figure 3.6 on page 78, how often do investors

forget to sign application forms).



3.5. CONCLUSION 87

Activity Message: Sent when an activity is queued, starts, ends, or di-

arised. Records who prescribed the activity, who performed the ac-

tivity and how fast. Used to monitor adherence to internal service

level agreements.

3.4.10 The Role of the Business Process Manager

Define the Dispatching Algorithm

At configuration time the business process manager selects the dispatching

algorithem used by the use case oriented workflow engine. The number of

the dispatching algorithms is limited only by imagination. We list a few of

the dispatching algorithms tried in BT Financial Group in section 4.6.

Review the Audit Data

After the event, the business process manager reviews the audit logs and

finds processes that take too long and processes that generate too many

defects. Following a correction intervention, the business process manager

reviews the logs again, finds if the intervention worked as expected, and

continuously improves that system. Another of the major challenges of the

business process manager is to learn lessons from the logs when designing

the work flow participants’ rosters.

3.5 Conclusion

When one maps syntactic constructs to semantic human endeavours, syn-

tactic certainties vanish. A concrete example: the syntactic meaning of a

BPMN rectangle is in agreement, but the semantic meaning of the label

inside a rectangle is open to interpretations like any other natural language

statement, albeit stylised.

Workflow configuration officers can map workflows modelled using the

extended written use case language to BPMN diagrams. The written use

case language’s action steps, extensions and stakeholders give rise to BPMN’s

rectengels, diamonds and swimlanes respectivly. The extended written use



88 CHAPTER 3. ARCHITECTURE

case language’s order of processing identifiers give rise to the arrows in

the BPMN diagrams, these arrows then connect rectangles to diamonds,

rectangles to rectangles, diamond to diamonds and rectangles to diamonds.

BPMN’s explicit fork join symbols, as well as start and end symbols are

missing from Cockburn’s notation, but are implicitly present none the less.

The extended written use case language trigger structure is translated into

BPMN start event, the end of the main success scenario is translated into

BPMN end event. As well the end of an extended written use case language

extension is translated into BPMN fork join symbol.

The written use case language is formal. The written use case language

has a clear syntax, and errors can be identified, not only for the “subject –

verb – object” syntax of action step. For example, questioning the precon-

ditions of a written use case language is forbidden within the written use

case language.

Cockburn focus our attention on semantic meaning, rather than on the

syntactical frame within which the semantics are articulated.

Thus, in this section we have demonstrated that a workflow engine whose

workflow modelling language is an extended written use case language can

be built configured, used and monitored.

3.6 Reflection

Activity theory provided me with the theoretical foundation required to

emphasise the need for sustained dialogue between the workflow configu-

ration officers, pilots and workflow participants, rather than the command

model assumed by the somewhat more rigid contemporary workflow man-

agement approaches. Indeed, with my proposed use case oriented workflow

engine, pilots regard the generic workflow models as a starting point for the

design of the specific handling of work items and not as a process that de-

tached workflow configuration officers force upon them. I devoted a couple

of pages to activity theory in section 2.1.5 on page 32 — Tuning, and to

activity psychology in section 2.3 — Computer Human Interaction.

I observed the business-process modelling process in several organisa-

tions, and analysed the communication between workflow participants, busi-



3.6. REFLECTION 89

ness analysts and workflow configuration officers. Taking in mind the dy-

namic nature of process modelling, I introduced a workflow modelling lan-

guage using syntax I borrowed from the requirement elicitation domain —

the written use case language.

I described how does a use case oriented workflow engine asks certain

workflow participants to link goals with a work item, and how does the

workflow engine reciprocates by selecting the activities that workflow par-

ticipants need to perform. Using my proposed use case oriented workflow

engine approach, where everybody is a pilot, workflow participants are em-

powered to accept the routing prescribed by pilots with a grain of salt. With

a use case oriented workflow engine, workflow participants can prescribe ac-

tivities ignored by the pilots, mark activities as ‘should not be done’ or

diarise activities.

The requirement engineering community gave me a detailed syntactical

reference model of two use case languages. Jacobson described the concept

and Cockburn described the written use case language, a very expressive

use case language. The written use case language is more expressive than

Jacobson’s UML use case language, as only the former has explicit “OR

split” and “OR join” building blocks building block.

I placed the term dynamic in the title of the dissertation. In contrast

with incumbent workflow engines that require a full release cycle to prop-

agate any change, a use case oriented workflow engine is dynamic, changes

to workflow definitions can be done at every stage of the process without a

need to flush the system.

Changes can be introduced by business analysts, workflow configuration

officers, pilots and workflow participants. Changes can be done at two

levels: (i) the workflow process in general, usually when new activities

are discovered, and (ii) at the specific work item when better informed

workflow participants decide to override a pilot’s earlier recommendation.

With a use case oriented workflow engine, workflow participants regard the

workflow model as a tool that helps them to perform their work. Pilots

use the prescription module to tailor the activities that will be performed

on each work item. They use the workflow model to guide them, but are

empowered to change it if needed. Workflow participants on the other hand



90 CHAPTER 3. ARCHITECTURE

are not obliged to fulfil the pilots’ instructions. The workflow participants

can always mark some activities as should not be done. They are empowered

to postpone activities by diarising them, as well as prescribe extra activities

as they deem right. Some workflow participants are even empowered to

create new activities that will be used by other workflow participants later.

As all of this is audited in detail, moral hazard is reduced.

When analysing rich context [34, Section 18.3] which is closer to my

domain then the usability of a simple GUI, Dix et al help me establish the

theoretical foundation for my method by stating “when we have a goal / sub

goal model, we can create internal plans which are blindly executed” [34,

Page 642]. This mode of operation similar to the observation / activities

model I later promote. In many ways this section, with its focus on goals,

tasks and triggers [34, Section 18.3.3] is very close to Cockburn’s approach

[24]. Dix et al state that there is no reason why most task analysis methods

should not adopt some form of artifact tracking where the authors clearly

describe a workflow engine [34, Page 647].

That decomposition is very applicable to my work: — the pilot’s role, I

later propose, concentrates on the goal identification and operation prescrip-

tion, the workflow participants concentrate on execution and the workflow

engine on completion and wrapping up tasks. My proposition is that differ-

ent populations of workflow participants are skilled for operation selection

compared to those skilled for operation application. In BT I found that

for complex operations, the selection is sometimes assigned to less trained

workflow participants while for simple, yet varied operations, the selection

is sometimes assigned to a highly skilled team member.

This can all be done if the workflow modelling language is expressive

and if the workflow modelling language is readable by a wide cohort of

stakeholders. I test the former statement in chapter 5 – Expressive Power.

I test the latter a statement in chapter 6 — Readability. All together, I

refer to this approach as a dynamic workflow engine.

In the remaining chapters of this dissertation we will see how a workflow

engine of such style was accepted by the industry, how expressive is the

language (in comparison with other languages, and evaluated by pattern

library), and how readable is the language.



Chapter 4

Case Study

and it was written in the book of the

chronicles
Esther 2:23

BT
, then Bankers Trust Australia Limited, a fully owned sub-

sidiary of Bankers Trust Company of New York, and now BT Fi-

nancial Group, the financial services arm of Westpac Banking Corporation,

built a use case oriented workflow engine. The author of this dissertation

was involved in the implementation of that use case oriented workflow en-

gine as a programme manager.

Here we study what happened at BT. We describe the system’s envi-

ronment, concentrating on the business problems that BT confronted. We

describe the evolution of the business process management practice within

BT and discuss how the implementation of a use case oriented workflow

engine worked out. We conclude by summarising the benefits BT Financial

Group derived from its use case oriented workflow engine.

91



92 CHAPTER 4. CASE STUDY

4.1 Methodology

The methodology we employ in this chapter is the detailed study of a single-

case, a methodology that was popularised by the Harvard Business School.

A strength of the methodology is that a detailed study of a single-case

develops a nuanced view of reality, a level of detail that is needed as the

human behaviour cannot be meaningfully understood as governed acts. A

detailed case study is also a fertile ground for forming hypotheses, as indeed

was the case in this research programme. Description of concrete, context-

dependent knowledge is, therefore, a valuable part of a scientific work [42,

Page 222-5].

A weakness of the case study methodology is that a single-case study

cannot be used to arrive at a general conclusion that would apply in all

cases. Thus this chapter can be seen as informative rather than definitive.

4.2 Background

BT Financial Group, now a fully owned subsidiary of Westpac Banking Cor-

poration, with roots in the deregulation of the financial markets in Australia

in the 1980s, is an Australian company that offers a comprehensive suite

of wealth management products including life insurance, managed funds∗,

superannuation†, cash management as well as a Wrap platform that admin-

isters portfolios managed by sophisticated investors‡. These wealth man-

agement products are governed by multiple frameworks of rules: legislative,

commercial, operational, audit controls and revenue assurance.

For example, some rules are set by the Australian Taxation Office regard-

ing eligibility to invest, say in retirement products (e.g. only Australian res-

idents can deposit funds into a superannuation product). Commercial rules

regard amounts that can be invested (say minimum balance of AUD2, 000

has to be maintained at all time for the investment to bear interest), cut

off dates and time (say instruction arrived by 10 a.m. will be processed

∗Managed funds are called mutual funds in the US.
†The Australian superannuation system is somewhat equivalent to 401k framework

in the US.
‡The Australian Wrap platforms offer services that can be compared to the fully

serviced brokerage accounts in the US



4.2. BACKGROUND 93

on the same day) and more. Operational rules govern the internal service

level agreement, the data entry processes, error correction protocols, qual-

ity control activities that are performed by various workflow participants

(say who should type a transaction, who should retype parts of the same

transaction and how should a discrepancy between the two be handled),

and more. Audit controls force, for example, the separation of back office

from front office. Revenue assurance verify that the group is collecting all

the fees it earned.

The complexity of these ever evolving business rules made it hard to

computerise all of these rules using one or even several mainframe systems.

While BT aimed at a high level of computerisation by the main data process-

ing systems, some business rules necessitate manual intervention, often due

to the developers not being able to cope with the annual cycle of legislative

changes, as well as new business rules devised by the marketing department,

that at times reacted to offerings of competing organisations. This fragmen-

tation gave rise to rules maintained in spreadsheets, maintained in dedicated

online calculators, stored only in the head of administrators and recorded

in legal documents inaccessible to anyone but the legally trained. Indeed

it was not uncommon for dispute to arise between departments within the

group and between the group and its customers. The resolution of some

of these disputes were so complex that legal and actuarial teams had to be

involved in their resolution (think of correcting a transaction recorded in a

previous financial year, for which the books are closed, tax paid and income

distributed). Consequently a complex web of departments and roles was

established. Indeed the group had more than 500 distinct roles in place in

2006.

The complexity of the management of a web of business rules necessi-

tate the breaking of processes into a set of activities, each earmarked to a

dedicated pool of role bearers. The challenges that BT’s management faced

were the traditional business process management challenges we described

before, namely the modelling, verification, enactment, monitoring, and tun-

ing of business processes, as well as enforcing and verifying compliance with

the above mentioned business rules.

To address these challenges BT introduced two generations of workflow



94 CHAPTER 4. CASE STUDY

engines, Basil and its successor BTeP.

4.3 Basil

Between 1993 and 2001, BT established Basil, a system that leveraged

FileNet’s imaging technology. The metaphor behind Basil was that of an

office environment where administrators moved documents from a virtual

in-tray to a virtual processing-tray and then to other processing-trays until

such time as an administrator completed the processing of the document

and archived the document in a virtual file-room.

Following this, between 2001 and 2005, using six tactical projects and

one strategic project, BT gradually migrated its business process manage-

ment practice from a tray based imaging system to a use case oriented

workflow engine. Each project was strictly controlled and cost justified. All

projects had a return on investment of less than two years.

While using Basil, on a typical day, BT scanned 12,000 documents.

The operators of the scanners roughly sorted the documents into several

pigeonholes and then scanned the documents from each pigeonhole into

a corresponding Basil in-tray. Dedicated senior administrators monitored

each Basil in-tray. Upon arrival of a supporting document into a Basil

in-tray the dedicated senior administrator pulled the supporting document

from the Basil in-tray, indexed the supporting document, and annotated the

supporting document by typing free text onto Basil’s supporting document

annotation structure. That senior administrator then pushed the support-

ing document to an appropriate Basil processing-tray. Dedicated adminis-

trators monitored each Basil processing-tray. Upon arrival of a supporting

document into a Basil processing-tray an administrator who monitored the

Basil processing-tray :

1. pulled the supporting document from that tray and implicitly locked

the document

2. read the annotations

3. processed the supporting document as per the annotations



4.3. BASIL 95

4. added their own annotation

5. pushed the supporting document to another Basil processing-tray for

further processing by other administrators and implicitly unlock the

document

This process was repeated by other administrators until the processing of

the supporting document was completed. The last administrator placed the

supporting document in the final Basil tray - named file-room.

This practice left BT exposed at the following fronts:

• The monitoring of large number of Basil trays and the assignment

of workflow participants to appropriate trays consumed a significant

amount of management time.

• The imaging system did not provide mechanism to decide to which

of the thousands of trays a document should move after every pro-

cessing stage. It was the administrators’ job to know the dozen or so

Basil processing-trays that were relevant to their business process and

they had to push supporting documents to these Basil processing-trays

diligently.

• Processes had to be put in place to locate work items that were mis-

filed.

• Excessive typing of annotations caused repetitive stress injury (RSI)

• Lack of standardisation of the annotations disabled automated routing

• Lack of standardisation of the annotations disabled-after-the-event

analysis. To resolve that issue artificial Basil trays (and tray move-

ments) were needed to record attributes of workflow items.

• Free text was subject to ambiguities

• The annotations were not always up to BT’s writing standards. With

the emergence of freedom of information, clients were entitled to re-

quest access to their files, exposing BT to reputation risk in the pro-

cess.



96 CHAPTER 4. CASE STUDY

To address these challenges, BT commissioned the comment-assistant,

a tiny Visual-Basic annotation prescription system that leveraged FileNet

imaging programmable interface. That tiny utility, as we explain later, was

the little acorn from which the use case oriented workflow engine grew. The

comment-assistant’s configuration file was made of records. Each record

had four fields: (i) an observation, (ii) an activity, (iii) Basil processing-

tray – roles and (iv) order of processing identifier. Eg:

• ‘‘Signature is missing” — observation

• “Client service administrator to contact the investor requesting a new

form” —activity .

• “Client-Contact-Tray” — role,

• “2” — order of processing identifier.

To initialise the comment-assistant, business-analysts or line-managers

populated the comment-assistant’s configuration file. At run-time, the se-

nior administrators who monitored that Basil in-tray pulled the support-

ing document and selected appropriate annotations from the comment-

assistant. The comment-assistant in turn pasted the annotations into the

document and pushed the supporting document to a Basil processing-tray

associated with the observation. Following this, administrators who moni-

tored these Basil processing-trays

1. pulled the supporting document,

2. read the annotations

3. acted accordingly, and

4. placed their own annotation on the document

5. .. until the completion of the processing where the comment-assistant

pushed the supporting document to the Basil file-room.

Having fed a few scores of business processes into the comment assistant,

business analysts, including the author of this dissertation, had a road to

Damascus realisation: the Cockburn style use cases, which business analysts



4.4. BTEP 97

write in order to specify a process, could ease the identification of the anno-

tations. The only addition BA’s in BT introduced to the written use case

language was to add explicit support for parallel steps – order of processing

identifier as described in section 3.3 — Extending the Input Language. BT

had to include partial order as it was a fundamental business requirement.

The deployment of the comment-assistant was followed by a series of

tactical improvements to the imaging system, such as adding the ability to

initiate a workflow from a Microsoft-Office application (Save to Basil) and

ability to spawn work items from existing work items (Basil Photocopier).

All these extensions still retained the fundamental constraints of the imaging

system namely:

• a significant part of the middle management time was consumed by

the inspection of the content of Basil trays and the assignment of

workflow participants to appropriate trays (a daily ritual dubbed by

some larrikins§ as “horse trading”),

• inflexible ratio of one supporting document to one work item,

• dependency on the clerical accuracy of workflow participants for the

determination of routing trays,

• the administrators had to perform redundant tray movements in order

to record attributes of workflow items.

• Cherry picking. This refers to the action or process of selecting only

the best or the most profitable items, opportunities [25] – Some pro-

cessors picked work items according to their needs rather than the

customers’ needs.

4.4 BTeP

To resolve the fundamental issues intrinsic to an imaging system, a strategic

shift was suggested – the adoption of a workflow engine. BT conducted a

formal evaluation of the market using a request for proposal process and

§Larrikin, n. A (usually juvenile) street rowdy; the Australian equivalent of the
hoodlum or hooligan [25].



98 CHAPTER 4. CASE STUDY

chose a workflow engine supplied by FileNet, then an independent com-

pany and now a part of IBM. While a few the competing workflow engines

were of equal functionality, BT hoped that an integration partner FileNet

introduced would reduce the implementation project duration by six month.

A fundamental feature of FileNet’s out of the box solution was that

for each use case, a dedicated BPMN style diagram was expected. That

was deemed to limit the scalability of the system as it required too much

development resources. BT had more than 350 use cases in mind and em-

powerment of front line supervisors was thus required. These supervisors

were more likely to have an accounting related degree than an IT related

degree. BT have thus introduced the use case oriented workflow engine to

the configuration of BT’s FileNet basedworkflow engine.

BT built BTeP, a use case oriented workflow engine, as an application

that called the FileNet workflow engine application programmable interface

according to the framework described in Chapter 3. The first use case

went into production after six months of development, and the second took

yet another six month, which were devoted to generalise BTeP to support

multiple use cases. From then on, business processes were automated at the

rate of one per month, accelerating eventually to the rate of one per week.

The high quality of data, the accurate models of business processes, the

efficient assignment of roles to workflow participants and the accurate index-

ing of work items, all presented BT with the opportunity to programmaticly

enact and monitor its workflow. This section describes further refinements

to the use case oriented workflow engine, which business-analysts in BT

Financial Group found to be useful.

4.4.1 Skills and Difficulty

The initial configuration of BTeP saw the assignment of roles to workflow

participants according to the use cases in which the workflow participant

could participate as actor. Roles where thus, for example “Retirement prod-

ucts redemption officer”, “Cash deposit officer”, or “Dispute resolution of-

fice”. Very soon, it became apparent that an increase in the granularity of

the roles catalogue was required as some of these extensions were easier than

other. For example, some switches between superannuation products were



4.4. BTEP 99

harder to process than switches between managed fund products. Close

analysis found that, using written use case language terminology, all the

workflow participants whose role permitted them to process switches be-

tween superannuation products could handle the main success scenario, the

‘happy day scenario’, but not all workflow participants could process all of

the extensions. In this case, some extensions required calculations that had

to be processed using complex spreadsheets.

To increase the granularity of the dispatching of activities to role bearers,

BT’s business analysts assigned difficulty to activities and skill to role bear-

ers. BTeP’s development team configured the dispatcher to assign worklists

to role bearers who were sufficiently skilled to handle the most difficult ac-

tivity in the worklist (more about the dispatcher later). This enabled the

introduction of seniority amongst role bearers, difficulty amongst activities,

and the appropriate despatching of achievable activities to administrators

according to their seniority and the complexity of the activity.

4.4.2 Observation Menu

To increase operational efficiency and increase the speed of processing mail,

BT Financial Group outsourced the scanning of supporting documents to

Australia Post, shaving a full business day from the time elapsed between

the moment a customer posted an instruction to BT and the time the in-

struction was processed. The central scanning facility implied that all the

work items arrived to one pool where they were roughly sorted, but further

sorting capability was required. That secondary sorting required detailed

understanding of product rules.

Close analysis found that, using written use case language terminology,

an efficient way to catalogue work items was by business line (say Superan-

nuation, Cash, Insurance...), then by use case title (say application, redemp-

tion, switch, transfer...), and then, by observations. These observations, as

we have described before, linked work to business transaction routing sheets.

All that the pilots had to do was to prescribe or link one or many business

transaction routing sheets to each work item.

To ease the task of locating observations, a taxonomy based tree struc-

ture was implemented. This fitted very well within Newell and Simon’s sug-



100 CHAPTER 4. CASE STUDY

gestion that problem solving exercise has four steps: goal forming, operation

selection, operation application and goal completion. The observation menu

helped the workflow participants to separate operation selection from oper-

ation application, either by separation of duty between pilot and processors,

or by separation of state of mind, if the pilot was also a processor [34, page

422].

4.4.3 Index

To catalogue work items, BT used a key combining the customer’s identi-

fier, the business line and the transaction type. Supporting documents were

catalogued in BT Financial Group using monotonically increasing, non con-

tiguous integers, with a check digit concatenated. XML documents would

be usually catalogued by a computer programme reading the document and

assigning attributes to the indexing of the document according to the con-

tent of the document. Every business line had a different indexing strategy,

which at times was expressed as varying number of fields, a fact that created

a programmatic challenge to the GUI developers.

4.4.4 Dispatching

Dispatching is one of the fundamental reasons to have a workflow engine.

The dispatcher decides what is the order of the workflow items in general,

and amongst the sorted list of workflow items, which is the one that a

workflow participant would receive the once workflow participant invokes

the GetNext method. Naturally, when designing the dispatching algorithm

one has to take into consideration diverse elements such as workflow par-

ticipants skills set, the rarity of a specific skill the workflow participant

possesses, internal and external service level agreements, fairness and more.

In BT, different business lines had different dispatching algorithms at differ-

ent times of the day and at different times of the month, taking into account

daily processing cycles as well as annual processing cycles. The dispatcher

took into consideration data elements such as: value date, product, client

pressure, value, and distribution channel.

BT experimented with the following dispatcher patterns:



4.4. BTEP 101

• FIFO. This mode which seems the fairest was often found to be the

least efficient, as it can overwhelm skilled workflow participants with

mundane tasks.

• The hardest job one can do in descending age order. This mode of

operation seems to better utilise highly skilled workflow participants,

but not to be fair.

• The oldest un–piloted work, then the oldest and the hardest work

item a workflow participant may perform, from the oldest day. This

moderately complex dispatching rule seems to be fair and efficient.

The basic dispatching rules were sometimes further modified, taking into

account extra information. For example the dispatcher considered:

• Business related consideration such as priority for redemptions over

deposits and of cash transactions over manged fund transactions. This

rule tries to help an organisation with competing demands to handle

the most valuable of them.

• Client pressure, an integer that enables manual control the priority

of a work item. This pragmatic adjustment was needed to let the

workflow participants feel in full control of the system’s behaviour at

the price of efficiency and fairness.

4.4.5 Roster

The meticulous documentation of the arrival patterns of work items on one

hand, and of the productivity of workflow participants on the other hand,

enabled BT to model its staffing levels using an Erlang based rostering

engine.

4.4.6 Workflow Patterns

BTeP’s development team identified several workflow patterns which re-

quired the workflow participants to prescribe a sequence of activities, some



102 CHAPTER 4. CASE STUDY

of which required some optimisation of the dispatcher. These workflow pat-

terns were needed to support very specific business rules that were grounded

in the organisation’s values. For example:

• The quest for excellence in client service, necessitated that whenever

possible, the same client contact representative will contact the cus-

tomer through the entire life of the work item.

• Another example is that to increase data quality, some data items had

to be keyed by two different workflow participants.

Some of the patterns may not be common to other organisations due

to difference in business domain and in culture. BTeP’s development team

found it worthwhile to hard-code the patterns into the use case oriented

workflow engine, rather than to ask workflow participants to prescribe them

individually. We now list several of these patterns.

Boomerang

The Boomerang pattern, or ‘return to me’, describes the movement of a

work item from one workflow participant (owner), to a second workflow

participant and then back to the first. The pattern emerged because respect

for the individual, a cultural value, required that a work item will return

to the same workflow participant if further processing is required by an

identical role bearer.

For example if a transaction required some evaluation by one workflow

participant, an approval by a second workflow participant, and then execu-

tion by yet another workflow participant of equal role to the first workflow

participant, then it made sense to assign the third activity, whenever possi-

ble, to the first workflow participant who was familiar with the work item.

It would have taken up to twenty minutes to establish this familiarity, had

the dispatcher chosen a different workflow participant.

A specific example is an application for life insurance policy, that re-

quires processing by a fund administrator, medical evaluation by an under-

writer, and then further calculations done by a fund administrator. Assign-

ing the first and third activities to the same workflow participant would

significantly expedite the third activity which is further calculations.



4.4. BTEP 103

A complexity inherent to this pattern is that the BTeP’s development

team had to put a process in place should the work item owner be hit by

the proverbial bus, or more generally, when the first workflow participant

is unavailable for a protracted period of time (defined by the service level

agreement), in that case the use case oriented workflow engine has to assign

the third activity to a third workflow participant.

Implementation of this pattern using the normal GetNext method was

not possible as workflow participants were not allowed to explicitly select

work items due to our wish to prevent ‘cherry picking’.

Verification

Verification is a pattern that moves the work item to a different workflow

participant with an identical role for independent review.

The verification pattern emerged, because quest for quality, a cultural

value, required that certain data elements were typed twice by two indepen-

dent administrators. For example, during the processing of an application

into a managed fund, the investor’s bank account was keyed by two workflow

participants of equal roles.

As for boomerang, implementation of this pattern using the normal Get-

Next method was not possible as workflow participants were not allowed to

explicitly select work items due to ‘cherry picking’ prevention.

Call planner

In this pattern the use case oriented workflow engine presents a batch of

several related work items (worklist). For example, if a client contact is

required, the use case oriented workflow engine should make sure to address

all open issues with the customer, even if many of them are of a lower priority

than work items at hand. This pattern reflects the need to cover as many

issues as possible when establishing a contact with a customer.

Diarise

Workflow participants could place the work item on timed hibernation be-

fore despatching another activity. For example, when contacting a cus-



104 CHAPTER 4. CASE STUDY

tomer, and learning that the customer is on protracted leave, the workflow

participant may place the work item on hold until a day or two after the

client’s leave.

The normal GetNext had to be tweaked to achieve this pattern as the

priority of the work item would have otherwise increased and the GetNext

algorithm would have assigned the same work item whenever invoked, like

a broken record.

Floodgate

The Floodgate pattern which is a variation on the diarise pattern, requires

the GetNext method to wait for an external event and then move to another

activity. For example, selling instructions have to wait until a price is set.

When a price is set, a floodgate opens and the dispatcher despatches work

items that depend on that price.

Just as above the normal GetNext behaviour had to be changed as the

priority of the work item would have otherwise increased and the GetNext

algorithm would have assigned the same work item whenever invoked, like

a broken record.

The Floodgate pattern may have been too complex to explain, and while

deployed and maintained, it was never used.

Cluster

The Cluster pattern enable pilots to prescribe several activities in one mouse

click. The pattern is useful when several activities are often prescribed as

one.

4.5 Implementation on Off The Shelf Engine

While BTeP’s development team could have implemented a use case ori-

ented workflow engine on a great variety of platforms, the team elected to

implement a use case oriented workflow engine on top of Panagon WorkFlo

[sic], a commercial workflow engine from FileNet which was at the time an

independent company and is now a division within IBM.



4.5. IMPLEMENTATION ON OFF THE SHELF ENGINE 105

A challenge that BTeP’s development team faced was the sheer magni-

tude of the problem at hand, namely the more than 360 constantly evolv-

ing distinct business processes (with an average of 26 activities each) that

required automation. BTeP’s development team could not afford the tra-

ditional workflow configuration practices as the practices required more de-

velopers than BT could hire, train or brief. BTeP’s development team thus

opted to implement and maintain the automation of this pool of processes

by delegating responsibilities and authority to the workflow participants

themselves.

These workflow participants, whose background was most often in the

accounting trade rather than in software development, found it hard to

model the extension rich business processes using FileNet’s proprietary

workflow modelling language which is a flowcharting based notation. As

well, the workflow participants found it hard to comply with the software

delivery life cycle best practice in general, a particular difficulty was source

code management. To support and train these workflow participants, BT

created a small change management team that trained the workflow par-

ticipants in modelling their processes using the extended written use case

language and in using BTeP.

As the workflow participants evolved the process constantly, often chang-

ing it several times a week, the business users could not afford to flush out

all of the workflows in the system before releasing a new one.

BT’s workflow participants were quite skilled with data entry in general

and with browser-based data-entry in particular. It was thus natural to

leverage these skills and develop a table driven user interface instead of

FileNet’s existing graphical interface. BTeP’s development team utilised

the form management capabilities of the FileNet platform to create five

major screens, (i) for the capturing the extended written use case language,

(ii) for maintenance workflow participants’ roles, (iii) for indexing piloting

and processing of work items,(iv) for enquiries and reporting and (v) for

the simulation of various dispatching algorithms.

BTeP’s development team used Microsoft SQLServer (called from IIS) to

manage records such as workflow participants’ roles and skills, the tabular

workflow configuration and the business activity monitor.



106 CHAPTER 4. CASE STUDY

The FileNet platform served BT very well, as BT was able to leverage

it for the management of the user interface, the workflow participant’s cre-

dentials, document management, queues, transaction integrity management

and security log.

As BT Financial Group’s GetNext method governed the despatching of

work items from the moment they were spawned to the moment they were

completed, BTeP’s development team decided to configure the fundamental

business process using the ‘hub-and-spoke’ topology (a topology that is also

known as ‘spider workflow’ [20] or ‘cross connected star’).

With its ‘hub-and-spoke’ topology, BT had a central hub, that imple-

mented the GetNext method, and a number of ‘spoke’ steps connected to

the hub using bi-directional arrows. The GetNext step, determines to which

activity (or activities ) the work item should route to next. During the work-

flow run time, the work item moved from one spoke (workflow participant)

to another, until a specific condition was met such that the workflow was

completed. In this manner, any spoke can follow a previous one (even the

same spoke more than once if required).

This pattern was especially useful as the order of activities could not

always be determined at design time. Dynamic adjustment was needed

when several steps had to occur more than once (for example the iteration of

multiple proposals) or when workflow participants determine the next step

of a process (for example when a workflow participant requires clarification

from the customer). The ‘hub-and-spoke’ topology enabled the dispatcher

to move work items from one arbitrary workflow participant to another

arbitrary workflow participant, depending on the properties of the specific

work item and use case on hand. This cross connected graph was the only

workflow model that the FileNet workflow engine was conscious of. Above

this layer BT implemented a use case oriented semantic layer.

BTeP’s development team configured the FileNet workflow engine to

have only four locations where work items would reside. (i) The unpiloted

work queue, as its name suggests, held all work items that were not cat-

alogued. As cataloguing all incoming document was a priority, this queue

had a higher priority than the work in progress queue. (ii) The work in

progress queue was the queue from which the dispatcher allocated activi-



4.6. EXPERIENCE GAINED 107

ties to workflow participant. (iii) The diaries queue contained all the work

items that were postponed — placed in the diary . (iv) The completed work

store (named fileroom) was used for the storage of completed work items

that ended.

4.6 Experience Gained

In this section we list observations of the system as it executed in practice:

Volumes

• In April 2007, 368 Business-Process were controlled by the system.

By March 2011 this number increased threefold to 1, 109.

• In April 2007, each business process had on average 26 possible activ-

ities. By March 2011 this number decreased to 20.

• In April 2007, on a typical day, about 600 workflow participants (ad-

ministrators) were logged in. By March 2011 the number of workflow

participants logged in to the system varied between 800 to 900.

• On an average day in April 2007, approximately 10, 000 work items

(business process instances) which were supported by 12, 000 support-

ing documents (images) were executed. By March 2011 the number of

supporting documents scanned daily increased sixfold to 75, 000 but

the number of work items (business process instances) remained iden-

tical. The ratio of supporting documents changed over this period.

• The number of audit rows generated daily was about 300, 000. That

number stayed the same in March 2011.

• The workflow participants (administrators) were located in three Aus-

tralian states and in India.

Acceptance of the Configuration Mode

• The introduction of the GetNext method reduced the need for man-

agement to inspection the content of queues and the assignment of



108 CHAPTER 4. CASE STUDY

workflow participants to appropriate queues. For a few years after

the introduction of Implementation on Off The Shelf Engine manage-

ment continued to inspect the content of queues and manually assign

roles to workflow participants. As confidence in the GetNext method

increased, a cultural shift occurred, and management learnt to accept

the recommendations of the use case oriented workflow engine.

• The extended written use case language became the primary process

modelling notation used by the workflow configuration officers.

• Workflow configuration officers’ productivity was so high that in 2006

Westpac Life, a sister company which, as its name suggests, is in the

life insurance business, migrated its entire processes into BT Finan-

cial Group’s workflow engine within five weeks. For this achievement

FileNet awarded BTeP’s development team the best return on invest-

ment award for 2006.

• Line managers, with general accounting skills, felt comfortable to add,

maintain, or remove action-items.

• Assigning the order of processing to action steps was never difficult.

• We found that the large majority of business processes did not have

any scope for within-instance parallelism.

Business Activity Monitor

The workflow engine used event-driven asynchronous messages to commu-

nicate with an external data warehouse — the Business Activity Monitor.

Analysis of the audits data stored in the business activity monitor was in-

strumental for the identification, quantitative justification, and subsequent

quantitative evaluation, of Six-Sigma process improvement initiatives.

Timing

New customers details were keyed into the systems as part of the piloting

activity.



4.7. BENEFITS FOUND 109

The dispatcher created worklists whenever a workflow participant re-

quested the next worklist. This approach, where administrators request a

worklist (GetNext) and the dispatcher assigns them the most appropriate

one, rather then letting administrators “Cherry Pick” work items, increased

the management control.

Piloting Strategies

BTeP’s development team experimented with the following piloting pat-

terns:

• When BT Financial Group placed skilled personnel as pilots, quality

was built from the beginning, at the price of overloading experts with

mundane activities. When BT Financial Group placed unskilled pro-

cessors at the beginning, work often arrived to the skilled personnel

none the less, but for the wrong reason — repair.

• Some business areas encouraged pilots to pilot and perform the pre-

scribed activity in a single session. Other business areas discouraged

this.

• Some business areas tried to complete the piloting early in the morning

and process in the rest of the day. Other business lines piloted and

processed in an interleaved fashion throughout the day.

4.7 Benefits Found

Our experience showed that the use of a workflow engine configured by use

cases gave the following benefits, which could be summarised for managers

as the value proposition of our approach. BTeP resolved some of the issues

that we highlighted earlier. In particular:

• The choice of the next routing step for a workflow item to follow,

moved from the memory of an administrator to the workflow engine,

that relied upon observation and their related worklists.



110 CHAPTER 4. CASE STUDY

• As the typing of annotation using a keyboard was replaced by the

selecting of tasks using a pointing device, typing was reduced, and

the risk of RSI reduced.

• The standardisation of observations enabled the automatic prescrip-

tion of activity to workflow items.

• As well, standardisation enabled the analysis of logs, eliminating re-

liance on artificial tray movements in the process.

• The standardisation of observations and activities enabled the organ-

isation to invest the effort of eliminating ambiguities in the syntax of

the observations and the activities .

• Dependency on the GetNext method removed the ability to cherry

pick. If the workflow participant pressed GetNext, and received an

undesirable activity, pressing GetNext again would present the same

workflow item, until such time as another workflow participant pressed

GetNext and received that workflow item.

• As well, standardisation of observation and activities enabled the or-

ganisation to ensure that no offensive language or offensive concepts

were used in internal communication.

BT’s experience showed that the use of a workflow engine configured by

use cases gave the benefits which could be summarised for managers as the

value proposition of our approach:

• A use case oriented workflow engine reduces the amount of effort re-

quired to configure workflow engines, by reusing the organisation’s

investment in use cases. As use cases are ubiquitous in today’s busi-

ness analysis arena, one would expect that the workflow configuration

officers would have use cases available before the Workflow configura-

tion commences.

• Audit data and the user interface were maintained as part and parcel

of the process modelling reducing development effort. In a post de-

ployment interview, management in BT Financial Group stated that



4.8. CONCLUSION 111

the contribution of the log was as important as the workflow automa-

tion as it enabled a Six-Sigma programme.

• It allows the two flexibilities that Heinl et al [53] required from a

workflow engine, namely:

Flexibility by Selection – the processor has the freedom to choose

between different execution paths if necessary.

Flexibility by Adaptation – it is possible to change the Workflow

model at run-time by adding, removing or altering Business-

Transaction Routing Sheets.

• Extended written use case language provided descriptions which can

be understood by various stakeholders in a straightforward manner.

Cox et al suggest that end-users do understand well the extended

written use case language [26].

• Our approach enables pilots who were unfamiliar with the underly-

ing routing to make complex routing decisions by concentrating on

observations rather than activities.

4.8 Conclusion

We have thus shown that a use case oriented workflow engine was im-

plemented in industrial settings and that the approach was well accepted

by management, workflow configuration officers and workflow participants

alike.

4.9 Reflections

Both BT and myself learnt much about the management of workflow in

a single business environment. The lessons are described in this chapter

and the chapter 3, and I am grateful to BT’s management for allowing this

publication. At a personal level I have learnt a few things which probably

differ from the organisation’s party line.



112 CHAPTER 4. CASE STUDY

BTeP’s more than eight years in operation demonstrate that a use case

oriented workflow engine can handle large scale processes in the commer-

cial settings of a financial institute. Until now BTeP managed more than

1, 300, 000 work items and logged more than 600, 000, 000 action steps.

In the Australian Financial Industry, most fund managers (BT Finan-

cial Group included) are remunerated by a fixed percentage of funds under

management. Due to reduction in funds under management caused by the

decline of international markets in the turn of the century, and below av-

erage investment performance, BT Funds Management implemented BTeP

at a time when BT was under unprecedented pressure to reduce costs, and

this led to BT Management’s restless quest for operational efficiency. The

analysis of business activity monitor logs was essential for the continuous

support for the system by BT’s management over the very long duration of

the project. In particular the identification of expensive manual processes

and the ability to prove that some of them could automated was key to the

management support for the project.

But, the measurement and reporting capabilities were not always utilised

for the improvement of client satisfaction. In particular establishment and

measurement of internal service level agreements (SLAs) enabled certain de-

partments to reduce their service level. I have noticed workflow items that

violated external SLAs, while satisfying internal SLAs. While dispatching

rules were always optimised to cater for external SLAs, individual workflow

participants performance measurements were based on sometimes conflict-

ing internal SLAs. That was usually when processing of work items required

handover to other departments such as the call centre or the department

that fixed complex issues such as backdating. In these cases the transfers

from the main department to the second and back were padded with in-

ternal SLAs on each direction, practicably ensuring that the external SLAs

will be breached.

For example, a deposit instruction has an external SLA guaranteeing

that it will be processed within two business days, and internal SLAs of one

day, guaranteeing that each department had to process it within 24 hours.

Say, a deposit instruction queued for a day in front of the application team

that required some qualification, say marital status, the work item had to



4.9. REFLECTIONS 113

be routed to the client contact team, who had a next business day SLA and

then returned the deposit instruction to the original team that started a new

next 24 hours SLA. That say, the deposit instruction was processed within

three business days, violating the external SLA by a day, but complying

with the internal SLAs none the less.

As habits of the business analysts and workflow participants were formed

before BTeP was implemented, they used to think in terms of activities

only, rather than observation - activity pairs. Hence observations were

often similar to activities. That is to say that what the pilots observed as

properties of workflow items were activities that should be done. This, in

many ways defeated the purpose of the separation between an observation

and the activities the observation spawns.

For example think of a situation when a required tax file number was

missing, and the activity that should have rectified this was to contact the

client by phone and ask for the tax file number. In that case, the observation

should have been: “Tax file number missing” and the activity should have

been: “Ask for tax file number”. In the configured workflow, the observation

had been “Ask for tax file number”. This could definitely not be observed.

Having inspected the code of BTeP I suspect that it would have probably

been cheaper and faster to build BTeP upon a generic platform such as, for

example, Microsoft SharePoint, or even the .Net or the J2EE platforms.

As described in section 4.5 on page 104, BTeP’s development team used

the workflow capabilities of the engine to a very little extent, building a

full use case oriented workflow engine upon a very basic FileNet hub-and-

spoke workflow. Consequently BTeP’s development team wrote scores of

function points using IIS, JavaScript and SQLServer. BTeP’s development

team did gain some benefits from the functionality of FileNet’s workflow

engine, and the expertise of FileNet’s integration partner, especially short-

term time-to-market; however, over the life of the project it would have

been cheaper for BTeP’s development team to replicate the small amount

of FileNet functionality BTeP’s development team did use, rather than pay

FileNet for the workflow engine licence and maintenance.

Treatment of scarce resources, such as highly qualified administrators,

may have been sub-optimal, as the dispatcher often presented them urgent,



114 CHAPTER 4. CASE STUDY

yet menial, tasks which could have been catered for by less skilled admin-

istrators who were often more plentiful, while the hard tasks accumulated

and eventually violated the SLAs, while lesser skilled administrators where

idle.

In this chapter I studied a single-case in detail. In chapter 3 I have

specified what is a use case oriented workflow engine. A few questions re-

main open regarding the generic nature of a use case oriented workflow

engine, namely: can the extended written use case language express com-

plex workflows? and, can workflow participants and workflow configuration

officers understand the extended written use case language, enough so, that

they both can dynamically configure the workflow engine correctly? The

following two chapters are devoted to the answering of these questions.



Chapter 5

Expressive Power

Beware the Jabberwock, my son! The jaws

that bite, the claws that catch! Beware the

Jubjub bird, and shun The frumious

Bandersnatch!

Lewis Carroll [23]

P
reviously, we coined the term use case oriented workflow engine

and described in detail a single implementation of a use case oriented

workflow engine — BTeP. The experience of configuring workflow from use

cases gained in an enterprise setting with BTeP, lead us to conjecture that

the extended written use case language is very rich and expressive; enough

so, that it could be taken as a general language for workflow modelling. In

this chapter we test this conjecture by investigating the expressiveness of

the extended written use case language.

5.1 Methodology

We employ two methodologies in this chapter. First we demonstrate that

the extended written use case language can express patterns drawn from

a rich workflow patterns library. Along the way, by means of examples,

115



116 CHAPTER 5. EXPRESSIVE POWER

we express some 15 workflow patterns using the extended written use case

languages, of them three are pathological patters. We refer the reader to

an appendix B where we articulated all 43 workflow patterns from a stan-

dard catalogue expressing them in extended written use case language. A

strength of the pattern approach is that it provides a demonstration that

the extended written use case language can express a variety of popular

workflow scenarios and it can thus be applied by the industry. On the other

hand, a weakness of this collection of case studies, is that is yet anecdotal

in nature, and does not cover all possible workflow patterns.

The second methodology we employ in this chapter is to show that

extended written use cases are able to express the union of every trace set

of examples from another well-accepted language — the sound workflow net

and the Petri net algebra which we summarised in section 2.1.1. We show

that we can trace every sound workflow net by a written use case. The

strength of this approach is that it is generic and shows that expressiveness

of the extended written use case language is at least as great as another

language. A weakness of this approach is that trace equivalence is a weak

form of equivalence.

Thus we arrive at an original and general statement regarding the ex-

pressive power of the extended written use case language. Following this

generalised statement, regarding the expressive power of the extended writ-

ten use case language, we use Chapter 6 — Readability, to look at another

aspect of power — the readability of artifacts employing the extended writ-

ten use case language.

5.2 Patterns Approach

In this section we ask whether the extended written use case language’s

expressive power is sufficient, so that one can express, with the help of the

language, common workflow patterns. We adopt a methodology previously

deployed by Russell et al [97] and by Wohed et al [115], when they evalu-

ated the richness of other workflow modelling languages – UML2.0 Activity

Diagrams and BPMN. The Russell methodology is to see how a workflow

modelling language would model each of the 43 workflow patterns which



5.2. PATTERNS APPROACH 117

were previously identified by the Workflow Patterns Initiative [96]. We

carry out this agenda, articulating each pattern as a use case in appendix B

on page 207. This appendix should be read with the patterns catalogue [96]

at hand.

The idea of a catalogue of patterns originated in architecture in the

work of Alexander [16]. It became widely accepted in the software industry

following the publication in 1995 of the“Gang-of-Four” book listing patterns

of object-oriented design [44]. For our domain of business process modelling,

the seminal work has been published by the Workflow Patterns initiative

[96] which started in 1999 and is a joint effort of Eindhoven University of

Technology (led by Professor Wil van der Aalst) and Queensland University

of Technology (led by Associate Professor Arthur ter Hofstede). The aim

of this initiative is to provide a conceptual basis for process technology.

In doing so, they established a common vocabulary and agenda often used

when discussing workflow subjects.

The Workflow Patterns Initiative identified 43 patterns, that seem to ap-

pear often in describing business processes. The patterns are named WPC-

01 to WPC-43. Each pattern is presented in the Petri net language, in a

fairly abstracted format (with steps labelled A, B, C etc); sometimes they

are also illustrated with an example where the action steps have meaningful

names.

Because the workflow pattern library is extensive and richly descriptive,

it provides a good testbed for new approaches to business process modelling.

A systematic presentation of all the patterns is beyond the scope of this

chapter, but it can be found in appendix B on page 207.

We have simulated all the patterns using Petri net simulators, ensuring

100% coverage. In this section we describe the results of our simulation.

We present written use cases that would be traversed in the same manner

that the Petri nets would be traversed with identical input. In section 5.3

we will describe the algorithm we followed and prove that is general.

In this chapter we use several of these patterns to illustrate our claims;

for example, the left hand column in Figure 5.3 presents some of the work-

flow patterns (however, we have made small modifications, shown in gray

shading, to convert the patterns into the standard workflow net subset of



118 CHAPTER 5. EXPRESSIVE POWER

WCP-12a (Multiple Instances without Synchronisation)
Main success scenario:
1: Actor does A.       Order = 1
2: Actor does B.       Order = 2
3: The use case terminates.
                       Order = 3   

                       
Extention:
Action step 2b1 is incompatible with 

Cator

action step 2

2b: Actor creates an instance    
    
    2b1:  Actor create an intance. Order = 2.1

    
    
    2b2:  Actor does C.            Order = 2.2  

    
    
    2b3:  Repeat action step 2b1   Order = 2.3      

Plate-B

Use Case WCP-19c 
Main success scenario:
1: Actor does A.      Order = 1
2: Actor does startB. Order = 2
3: Actor does endB.   Order = 3
4: Actor does C       Order = 4
5: The use case terminates.        
                      Order = 5
Extension:

Action step 2b is incompatible with action step 2

2b: elects Terminate
    2b1:   Actor does terminate.    Order = 2
    2b2:   Actor does D.            Order = 3.1  
    2b3:   The use case terminatess Order = 3.2      

Use Case WCP-1 - Sequence 
Main success scenario:

1: Actor does A. Order = 1
2: Actor does B. Order = 2

Figure 5.1 – WCP-01,WCP-12 and WCP-19

Petri nets, as described below). Other patterns are shown in Figures 5.1,

5.2 and 5.4.

In figures 5.1 and 5.2 on the next page we model five of the patterns in

the extended written use case language.



5.3. SOUND WORKFLOW NETS APPROACH 119

Use Case WCP-39 (Critical section pattern)
Trigger: i1

Main success scenario:

1: Actor does A.   Order = 1
2: Actor does B.   Order = 2
3: Actor does D.   Order = 3
4: Actor does C.   Order = 4
5: Actor does E.   Order = 5
6: Actor does F.   Order = 6

Alternative Scenario

1: Actor does A.   Order = 1
2: Actor does c.   Order = 2
3: Actor does E.   Order = 3
4: Actor does B.   Order = 4
5: Actor does D.   Order = 5
6: Actor does F.   Order = 6

Use Case WCP-40 (Interleaved Routing)
Trigger: i1
Main success scenario:
1: Actor does A.     Order = 1
2: Actor does B.     Order = 2
3: Actor does D.     Order = 2
4: Actor does C.     Order = 2
5: Actor does E.     Order = 2
6: Actor does F.     Order = 3
7: The process ends. Order = 4

Figure 5.2 – WCP-39 AND WCP-40



120 CHAPTER 5. EXPRESSIVE POWER

5.3 Sound Workflow Nets Approach

Definition §5.1

induction, n. The bringing forward, adducing, or enumerating of

a number of separate facts, particulars, etc., esp. for the purpose

of proving a general statement [25, Accessed 23-November 2010].

Definition §5.2

deduction, n. The process of deducing or drawing a conclusion

from a principle already known or assumed; spec. in Logic,

inference by reasoning from generals to particulars; opposed to

induction [25, Accessed 23-November 2010].

The inductive style of assessing expressive power which we have pre-

sented thus far is popular and often applied [115, 97]. However, one may

want to go beyond a patterns catalogue and devise a somewhat more generic

solution using deductive reasoning, as there is always the suspicion that

there are workflow patterns outside the catalogue which are more demand-

ing and that the extended written use case language would not be able

to expresses them. To do so we call upon the well understood Petri nets

mathematics and in particular upon the sound workflow nets. Recall that a

workflow net is a sound workflow net iff for any case, the process terminates

properly, i.e., termination is guaranteed, there are no dangling references,

and deadlock and livelock are absent.

We show how one can mathematically obtain, from a sound workflow

net, am extended written use case such that the union of the trace set of

the sound workflow net is equal to the union of the trace set of the extended

written use case.

When we argue about expressive power, we need to compare different

models of workflow, in the same language or in different languages. Other

research fields, such as concurrent programming, use many different notions

of equivalence. For process modelling languages, researchers have considered

several notions of equivalence [54].

Here we use trace equivalence, in which two models are considered equiv-

alent if they generate exactly the same set of sequences of actions. This is



5.3. SOUND WORKFLOW NETS APPROACH 121

a weak concept of equivalence in general programming, but it is suitable

for our purposes. In particular, trace equivalence is compositional – every-

thing we can observe about the trace of an interaction of workflows can

be deduced from the traces of the component flows. This was proved by

Lynch [68, Thm 8.10] in an abstract model called I/O Automata, whose es-

sential feature is that each action step is controlled in a single component of

the system; more complicated equivalence definitions are needed only when

the choice to do an action requires synchronisation, and so the “moment of

choice” can be different in components with the same set of traces.

We note that workflow execution has the property that the workflow par-

ticipant chooses an action from a worklist, and the system does not refuse

any response returned by the workflow participant, so the result of Lynch

holds for this model too for this reason, we claim that any trace equivalent

description is sufficient to represent the essential features of a process mod-

elling. Thus we prove that the extended written use case language can trace

any reasonable business process, by showing how to trace a sound workflow

net by a written use case set.

To this extent we take the opposite tack than that taken by Lee et al [66]

when showing that every use case can be translated into a Petri net. That

is, we show that sound workflow nets, can be traced by the extended written

use case language.

Recall that sound workflow nets are a special class of Petri nets and that

their set of possible markings is finite due to the workflow being a sound

workflow net. Thus, we assume that we have been given a sound workflow

net. We first show that it is possible to produce a trace equivalent use

case set for this sound workflow net. The conversion we first show does

not necessarily lead to an elegant or concise expression as use case set with

our extension, just to some set of scenarios. We then show how to refactor

the presentation we have first shown, into a more natural formulation. We

conclude by providing an example.



122 CHAPTER 5. EXPRESSIVE POWER

Theseus 

Tree

Written 

Use Case

`

Workflow Net
The grey items where added to the patterns to 

transform them into Wf Nets

i

i

A B

B A

C C

O2 O3

C

B

O1

C

A

O4

Use Case WCP-05 (Simple Merge)

1: Actor a does A Order = 1.

2: Actor b does C Order = 2.

3: Actor c does B Order = 2.

4: Actor b does C Order = 3.

Alternative scenario

1: Actor a does B Order = 1.

2: Actor b does C Order = 2.

3: Actor c does A Order = 2.

4: Actor b does C Order = 3

Use Case WCP-3 - 

Synchronisation

Main success scenario:

1: Actor a does A. Order = 1

2: Actor b does B. Order = 1

3: Actor c does C. Order = 2

i

A B

B A

C C

O1 O2

Use Case WCP-2,3  (Cockburn)

Main success scenario:

1: Actor a does A.

2: Actor b does B.

3: Actor c does C.

Use Case WCP-2 - Partial Split

Main success scenario:

1: Actor a does A. Order = 1

2: Actor b does B. Order = 2

3: Actor c does C. Order = 2
i

A

i

B C

o1 o2

A

Cp2

p1 B

o

p4

p3

i

i

Bp2

p1 A

o

p4

p3

C

i

Bp2

p1 A

op3 C

Figure 5.3 – WCP-2,WCP-3, and WCP-5



5.3. SOUND WORKFLOW NETS APPROACH 123

Theseus 
Tree

Written 
Use Case

`

Workflow Net

i

B

D

C

O2

i

i

p2

p1 Pre
Test

o

p2 B

A

Cp2

p1 B

o

p5

E

C

W C P -2 1 a  (s t r uc t ur e d L oop) 
- Do W hi l e

Main success scenario
1: Actor does C Order=2
2: The use case ends  Order=3

Action steps 2 and (1a1, 1a2) are
incompatible .

Extension:
1a: Pre Test gives b’
    1a1: Actor does b Order =1
    1a2: Rule b is evaluated

W C P -2 1 b (s t r uc t ur e d L oop) -
r e pe a t  U nt i l

Main success scenario
1: Actor does A Order = 1
2: Actor does B Order = 2
3: Actor does C Order = 3

Action steps 3 and (2a1, 2a2) are
incompatible .

Extension:

2a: Post Test gives End !
2a1: Actor evaluates b’
2a2: The use case continue at b’

Dp3 p4

U s e  C a s e  W C P -0 7 a  S t r uc t ur e d 
s y nc hr onis i ng m e r ge

Main success scenario :
1: Actor does A . Order = 1
2: Actor does B . Order = 2.1
3: Actor does D . Order = 2.2
4: Actor does C . Order = 2
5: Actor does E . Order = 3

A

B

C

o1

i

B C

O1

A

i

i
A Cp1 B op3 p3Post

Test

Repeat 
From b’

A

BC

B

O1

C

D

O3

b’

b’

Repeat 
From b’

Figure 5.4 – WCP-21b,WCP-21a, and WCP-7a



124 CHAPTER 5. EXPRESSIVE POWER

Proof

Let us define Theseus tree∗, which captures the unwinding of the reachability

graph of a net.

Definition §5.3

Theseus tree, n. A tree whose root is the start state of a graph

S, the nodes are the set of reachable states from S, and the

children of a node N are states that can follow N in one step

and have not been included in the tree at the same or higher

level.

The first phase of the conversion takes the sound workflow net, and

produces a Theseus tree. Examples of as the unwinding of the reachability

graph of a net into Theseus trees are provided in Figures 5.3 and 5.4 where

we present six patterns drawn from the workflow patterns catalogue [96] and

present each of them them as workflow net, Theseus tree and as extended

written use case.

Lemma 1 – A business process that can be presented as a sound work-

flow net has a finite Theseus-tree

1. We consider every possible execution of the net; that is, we look at

the set of sequences, each of which starts with the initial marking, and

show how successive steps cause the net to reach a new marking. In

each execution, we either reach the termination, or return to a mark-

ing that already occurred in the execution.

This will definitely happen, because a Petri net (N,MO) is said to

be bounded if there is an upper bound on the number of tokens in any

place for any marking reachable from the initial marking MO. Thus,

the total number of reachable markings (states) is finite [84].

See figures 5.5, 5.6 and 5.7.

∗We use the term Theseus tree because of the Greek myth describing how Theseus
traced a trail through a labyrinth



5.3. SOUND WORKFLOW NETS APPROACH 125

2. When/if we return to a marking, we cut the sequence short at that

point, with a “repeat from” indication that labels the earlier point

where the same marking occurred.

3. When we reach the output marking of the net, we cut the sequence

short at that point, with a “termination” indication.

4. This set of execution sequences can be built into a tree, a Theseus tree,

by joining the sequences along a common prefix. Each path through

the tree corresponds to an execution sequence; some of which end in

termination leaves, and others end in repeat leaves.

We have now created the Theseus tree representation of the sound work-

flow net. This transformation will terminate, because the set of possible

markings is finite due to the workflow being sound.

Lemma 2 – Theseus-tree can be broken into a set of scenarios

Given the Theseus tree, we now define one scenario for each leaf of the tree,

by concatenating the action steps that occur on the path from the root i,

to that leaf.

1. Let us label the scenarios that lead to termination as
−→
S (1,...,m).

2. Similarly we label scenarios
−→
R (1,...,m) that lead to the repeat leafs.

Each scenario is a sequence of transitions: action steps, with no ex-

tensions, yet.

3. Then we assign successive integers as order of processing identifier to

action steps in scenarios
−→
S (1,...,m) and

−→
R (1,...,m) as described before.

4. We choose one scenario from
−→
S (1,...,m) and declare it as the main

success scenario
−→
S (m)

5. If the Theseus tree splits at its root i, we may choose several other sce-

narios from
−→
S (k,...,n) and declare them as alternative scenarios

−→
S (k..n).

From lemma 1, the “Theseus tree” being final, we will now present a

solution for the main success scenario
−→
S (m), and apply the same logic for

the alternative scenarios
−→
S (k..n).



126 CHAPTER 5. EXPRESSIVE POWER

Theorem – Any sound business process can be traced by an extended

use case set.

From lemma 2, we received a set of scenarios of which the main success

scenario is
−→
S (m) . We will now refer to the remaining scenarios

−→
S (1,...,l) as

alternate scenarios.

1. For each scenario in
−→
R (1,...,m), we start at the repeat leaf, r(k), traverse

up to the repeat label and remove all the steps from after the label to

the root i.

2. We declare the sets of transitions from the label and below as incom-

patible extensions to an arbitrary scenario that has its end leaf o,

under the repeat label. I refer to the reason for the repeat label in the

extension title†.

We have now proved that sound workflow net can be translated into an

extended Cockburn language.

Refactoring

We now have a extended written use case language representation for the

workflow net. To improve readability, we can repeatedly refactor the repre-

sentation through either of the following changes:

1. From
−→
S (1,...,l), we collapse scenarios which differ only as permutations

among a consecutive sub-sequence of action steps; and give all these

action steps the same order-indication in the collapsed scenario.

2. To further the reduction , we start from an arbitrary output leaf, o(k),

traverse up to the first junction above that output leaf, j, and remove

all but one of the paths leading up from the junction j to the root i. I

declare the remaining sets of transitions from the junction j down to

the leafs o(k,...,m) as incompatible extensions to the same scenario and

refer to the reason for the junction j in the extension title.

†Failure to execute this operation will indicate the workflow has an infinite loop.



5.4. UNSAFE PATTERNS 127

Figure 5.5 – Producing a Theseus tree from a Petri net — Step one of
two — The move from t0, to t2, to t1, and to t4. Please note
that the double headed arrow denotes two transitions, each
on one direction.

3. We expect to repeat steps 1 and 2 while the readability of the overall

use case increases.

Example

In figures 5.5, 5.6 on the next page and 5.7 on the following page we go

through a simplified version of workflow Control-Flow Pattern WCP-40 [96,

Page 73]. We first explore the only two possible paths through the net. We

then merge the paths into a Theseus tree. We conclude by producing a use

case set.

5.4 Unsafe Patterns

We have shown that the extended written use case language is expressive

for a wide class of safe workflows. We now consider whether it can also

model some pathological patterns. We find that it can.

In Figure 5.8 on page 130 we present use cases that are not safe, namely

that have deadlocks, that have unreachable nodes or have infinite loops.

In that figure use case #1 enters a dead lock when the data entry person



128 CHAPTER 5. EXPRESSIVE POWER

Figure 5.6 – Producing a Theseus tree from a Petri net — Step two of
two — Starting at the already described t0 we branch to t1,
move to t2, and end at t4. Please note that the double headed
arrow denotes two transitions, each on one direction.

Figure 5.7 – Here we take the Theseus tree, translate it into the extended
written use case language and optimise it.



5.5. CONCLUSION 129

finds that the indexing of the document does not match the data on the

document, in use case #2 action step 1a1a1 inaccessible and use case #3

enters an infinite loop when the data entry person finds that the indexing

of the document does not match the data on the document.

It is thus possible to our notation to create workflow patterns which are

not safe, that is, have dead locks or infinite loops or unreachable nodes. This

is a risk that can be mitigated. Detection of these undesirable behaviour

can be done using tools constructed for Petri net. Recall that Lee et al have

shown that use case can be transformed into Petri nets [66] and that the

safety of Petri nets may be assessed using tools such as these described by

van der Aalst [3] and implemented by Fahland et al [37].

5.5 Conclusion

Cockburn says that he does not care much about modes of parallelism and

variants of OR statements (indeed he does not differentiate between OR

and XOR); he has a bigger fish to fry - communication, and by extension

readability [24, Page 26]. However, since we do care about parallelism, we

have added the order structure, and since we do care about the difference

between XOR and OR, we have added explicit syntax to carter for the

differnce between XOR and OR.

By now we know that:

1. Sound workflow nets are safe [3].

2. Petri nets can be tested to see if they are sound workflow nets [3].

3. Every use case can be expessed as a Petri net [66].

4. Every reasonable workflow can be expressed using our proposed ex-

tended written use case language as a use case (from our proof above).

5. Every reasonable workflow can be expessed with the help of our pro-

posed language as a use case. Indeed, that use case can be expessed

as a Petri net. That Petri net can, in turn, be tested for to see if that

Petri net is a sound workflow nets. If that Petri net is indeed a sound



130 CHAPTER 5. EXPRESSIVE POWER

Use-Case 1 - Process a retirement application

Primary actor - Data entry person who keys in the application.

Main success scenario:

1. The WF system presents a work item document to the data entry person.

2. The Data entry person keys the details from the work item document to

   the processing system.

3. The data entry person releases the document to the WF system.

4. The process ends

Extensions:

    1a. The data entry person finds that the indexing of the document does not

        match the data on the document.

        1a1. Expecting an indexing swap, the data entry person retrieves a

             document indexed like the details on the document.

        1a2. The data entry person changes the indexing of the first document.

        1a3. The data entry person changes the indexing of the second document.

        1a4. The data entry person releases the first document.

        1a5. continue step 2 with the new document.

Use-Case 2 - Process a retirement application

Primary actor - Data entry person who keys in the application.

Main success scenario:

1. The WF system presents a work item document to the data entry person.

2. The Data entry person keys the details 

3. The process ends

Extensions:

    1a. The data entry person finds that the indexing of the document does not

        match the data on the document.

        1a1. The data entry person fixes the issue.

        1a2. The use case continues at action step 2

             1a1a. The  entry person finds that the indexing of the document does 

                   match the data on the document

                   1a1a1. The use case continues at action step 3.

Use-Case 3 - Process a retirement application

Primary actor - Data entry person who keys in the application.

Main success scenario:

1. The WF system presents a work item document to the data entry person.

2. The Data entry person keys the details 

3. The process ends

Extensions:

    2a. The data entry person finds that the indexing of the document does not

        match the data on the document.

        2a1.  The use case continues at action step 1.

Figure 5.8 – Unsafe patterns — Here we present use cases that are
not safe, namely that have deadlocks, that have unreachable
nodes or have infinite loops. Use case #1 enters a dead lock
when the data entry person finds that the indexing of the
document does not match the data on the document, in use
case #2 action step 1a1a1 inaccessible and use case #3 enters
an infinite loop when the data entry person finds that the
indexing of the document does not match the data on the
document



5.6. REFLECTIONS 131

workflow nets, that Petri net is safe, and by association the use case

is also safe (from 1,2,3 and 4).

6. Every reasonable workflow can be expessed with the help of our pro-

posed extended written use case language and be tested for safety (In

summary).

We derive the sense of what is ‘a reasonable workflow’ and what is not

from the workflow coalition’s own patterns library [96] and from our ex-

perience in BT Financial Group, where we collected a rather large sample

of work items over eight years. Indeed our sense is that most industrial

work items trace short, yet highly variable paths. As for safety, we focus on

proving that our proposed extended written use case language can express

every possible safe workflow. We do not prove that our proposed language

can express every possible non-safe workflow. Indeed, for obvious reasons,

we do not care if we cannot express some possible non-safe workflows. How-

ever, by expressing workflows using our proposed extended written use case

language, translating them into Petri nets and applying established Petri

net verification tools, we can detect if the workflows that we do express are

safe or not.

We have thus shown that the extended written use case language is quite

expressive, at least as much so as the incumbent graphical language.

5.6 Reflections

The work I conducted at BT-Financial Group exposed me to more than 350

use cases. While these use cases were drawn from one domain – financial

services, and were not at all a representative sample for workflow patterns,

they led me to conjecture that the extended written use case language is

very expressive. To demonstrate this, I first conducted a patterns based

evaluation which show that the language can express a variety of patterns

taken from a multitude of industries. In the process I have developed a

conversion algorithm, translating patterns from sound workflow nets into

use cases. Proving that the algorithm can be applied so that the extended

written use case language can express every reasonable workflow pattern



132 CHAPTER 5. EXPRESSIVE POWER

gives further confidence in my conjecture. I then explored the outer range

of the notation’s expressive power and found that it can express unsafe

patterns.

My interest in Petri nets stems from the research community extensive

experience with of Petri nets to formally model workflow in the organisation

and between organisations [52]. There are many variants of Petri nets. In

this dissertation, I focus on one class of Petri nets — the sound workflow

nets, which are especially appropriate for modelling of workflow [6, 32].

An important attribute of Petri nets, on which I rely in section 5.3, is the

reachability graph of a net.

I decided to compare the extended use case language to sound workflow

nets, rather than to de facto standards such as BPMN or UML Activity

Diagrams which are more widely accepted. I made this choice not because

sound workflow nets are modern, readable, maintainable, or accepted by the

industry as a user interface, but because, as van der Aalst et at have shown,

sound workflow nets are known to be expressive for workflow modelling [4].

One issue still requires investigation, though. I did not assess the us-

ability of the extended written use case language. The following chapter

is devoted to assessing the effectiveness of the language in conveying the

writer’s intent correctly.



Chapter 6

Readability

‘It seems very pretty,’ she said when she had

finished it, ‘but it’s RATHER hard to

understand!’

Lewis Carroll [23]

I
n this dissertation we propose to feed models expressed in the writ-

ten use case language into workflow engines as a workflow modelling

language. We coin the term use case oriented workflow engine in Chap-

ter 3, study an industrial implementation of a use case oriented workflow

engine in Chapter 4, and assess the expressive power of the extended writ-

ten use case language in Chapter 5. One fundamental question still begs

answering:

Are artifacts written in the extended written use case language

more readable by a wide cohort of readers than the incumbent

graphical languages?

6.1 Methodology

We assess the readability of the extended written use case language by com-

paring it with that of BPMN, a language we use as a proxy to a class of

133



134 CHAPTER 6. READABILITY

incumbent workflow modelling languages. We measure the readability of

these languages by two groups of participants who serve as proxies for dif-

ferent communities: for subject-matter-experts and workflow participant on

one hand; and people trained in business process management such as busi-

ness analysts or workflow configuration officers on the other hand. While

doing so we assess several predictors for the graphical or sentential success

of readers.

The methodology we deploy at this chapter follows the suggestions of

Wohlin et al [116]. An advantage of this methodology is that it is sys-

tematic and tailored for experimentation in computer science settings. The

presentation format that Wohlin et al recommended, and that we adopted,

necessitates repetition of few definitions from earlier chapters of this disser-

tation.

In section 6.3 — Problem Statement, we explain the particular question

that we address in this chapter, giving the established theory that relates

to readability of languages. We follow by a short revisit of the Business

Process Management domain and the languages we compare. In section

6.4 — Experiment Planning, we discuss the appropriate research methods

for our evaluation, thus we position our readability research within the

wider research framework. We also list the hypotheses that our experi-

ment tests. Then, in section 6.5 — Experiment Operation, we describe

our experiment, present the participants, the instruments that the partici-

pants worked through, and the procedure the participants followed. We also

describe how we controlled the experiments to extend the reliability of the

results. Finally in section 6.6 — Data Analysis we present our experimental

results and the statistical tests we applied.

6.2 Background

Readability by diverse groups of people is crucial for a workflow model

to effectively bridge the various communities involved in the round trip of

development, enactment, analysis and improvement of workflow. Errors

introduced early in the development process are commonly the most ex-

pensive to correct, and a review of workflow models by a wide audience



6.3. PROBLEM STATEMENT 135

would detect these errors, should the artifacts be readable. Let us consider

a situation where business representatives approve a workflow model, and

at a later time approve an implementation of the workflow. A prudent

risk manager may be concerned as to whether the approvals are made on

the basis of correct communication between the different stakeholders, in-

cluding end users, business analysts, modellers and workflow configuration

officers. If the models are not correctly understood by all stakeholders, the

project’s outcome is threatened. Mitigation of communication risk gives

rise to such practices as peer review, or prototyping, or even doing away

with specifications. Here we address the core of the issue – readability.

6.3 Problem Statement

In this chapter we present an experimental assessment of the readability of

the extended written use case language by comparing its readability with

that of BPMN. Each language has been proposed for modelling in the do-

main of business process management. BPMN is graphical, with the process

structure captured in labelled diagrams; the other, our proposed extended

written use case language, is textual. The extended written use case lan-

guage applies stylised natural language text.

Previous work offers insights into the readability of such languages, and

provides the theory underpinning the particular questions we designed the

experiment to answer. Many of the languages used to represent workflow

models are graphical, laying out shapes and connecting lines (with attached

labels) on a page in order to convey information about software structure

or behaviour. One of the early graphical languages in software engineering

was the flow-chart, and more recently the diverse diagrams that make up

UML have been widely accepted. It is commonly held that diagrams and

visual languages are easy for humans to understand; a seminal argument

for the benefits of visual over textual language was given by Larkin and

Simon [64], who reasoned that text is limited to a linear order, whereas a

diagram allows more information to be carried by the spatial arrangement

of different elements in the language. In contrast to Larkin and Simon’s

arguments, Moher et al [76] looked at several ways to express program



136 CHAPTER 6. READABILITY

structures in text and in diagrams (Petri Nets); they found “for our tasks,

graphics were no better than text , and in several cases were considerably

worse”.

Indeed, programming languages, are usually textual, and graphical pro-

gramming has not found much uptake. Gruhn et al found that graphical

models often contain mistakes that are avoided in textual programming,

such as using OR-join in place of XOR-join or AND-join [49]. In this chap-

ter we offer an empirical check of these conflicting views of the readability of

graphical and textual languages, in a particular domain and with particular

languages of each sort. By checking these views we arrive at a conclusion

regarding the readability of the extended written use case language, a key

building block of a use case oriented workflow engine. We carefully evalu-

ate whether each language does convey useful information to readers, and

compare the extent of information gain by readers from the two languages.

We thus test hypotheses which claim that the extended written use case

language is effective, that the graphical language is effective, that the ex-

tended written use case language is more effective than BPMN, and that

BPMN is more effective than the extended written use case language.

As noted, we see it as vital that readability should be evaluated for the

different stakeholder communities among whom communication is to take

place. Thus the experiment was with participants divided into groups. Some

participants represent IT professionals such as business analysts or workflow

configuration officers, who have previous training in workflow models, and

others are representative of a broader community in the organisation. We

regard a hypothesis as valid only if we see significant support for it among

each kind of participant considered separately.

Green [47] observed that while different languages can achieve identical

ends, where the information structures they use is different, they facilitate

different cognitive processes. In our case, while the languages can present

the same information as showed in Chapter 4 , the extended written use

case language may be better at convening a multitude of exceptions and

BPMN may be better at convening a multitude of nested loops. As each

language highlights some types of information while obscuring other types,

each language may facilitate some tasks while making others harder. There-



6.4. EXPERIMENT PLANNING 137

fore, the languages may not be absolutely good, but good only in relation to

certain tasks. If so, we expect that presenting the same information using

two languages would increase comprehension.

We are also inspired by analogy with other situations, such as education,

where text and diagrams are often used together, to reinforce a message

through different media. Thus the research we present in this chapter also

studies the effect of giving readers models of a workflow in both languages,

one after the other. We test the hypotheses that doing so conveys greater

information than presenting the workflow model in only one language.

Finally, we are interested in whether there are personal features about

different people, which could predict whether they would receive information

well though one language or the other. Vessey [110] differentiates between

a problem representation using a language and its mental representation.

Reading is thus a transformation from one representation to another. A

good fit of a language to a problem-solving style, would simplify the read-

ing process by requiring less transformation. Ideally there should be no

transformation from the language based representation to the mental rep-

resentation. Hence, a good cognitive fit of a language to a thinking style

would lead to an effective and efficient problem-solving process. We would

thus expect to see difference between the understandings of the two lan-

guages depending on the thinking styles of the readers. In our case, since

we are comparing a graphical language with a sentential one, we explore

whether it mattered if a reader had a preference for sentential or graphical

information in other contexts; we also consider experience with a similar

language, as a possible predictor of the effectiveness of a language.

The rest of the chapter shows in detail the experiment we performed, to

compare the readability of extended written use case language and BPMN,

for conveying information about workflow to readers from different commu-

nities.

6.4 Experiment Planning

We use an experimental approach to investigate the problem identified in

Section 6.3. Having described in section 2.1.1 on page 21 a taxonomy of



138 CHAPTER 6. READABILITY

research methods that can be applied, we will now position our research

within this taxonomy.

In this chapter we present a between-grammar study, that measures un-

derstanding of a domain. For the within-grammar comparison we vary the

training background of participants. We vary the treatment which we ran-

domly, and double blindly, assign to participants. We use both between

subjects and within subjects comparisons. The multiple subjects are stu-

dents, the multiple objects are taken from toy problems, and the experiment

occurs offline. Details of the experiment procedure are in Section 6.5.

6.4.1 Hypotheses

We present the explicit hypotheses that are tested in our experiment. First

we determine whether each language can be read effectively.

H1: Information about workflow is conveyed to business analysts and sub-

ject matter experts from reading a model in the extended written use

case language.

H2: Information about workflow is conveyed to business analysts and sub-

ject matter experts from reading a model in BPMN.

We next offer two (mutually contradictory) claims about the comparison

between the languages. These go to the heart of the debate about suitable

choice of language.

H3: More information about workflow is conveyed to business analysts and

subject matter experts from reading a model in the extended written

use case language than from reading a model in BPMN.

H4: More information about workflow is conveyed to business analysts and

subject matter experts from reading a model in BPMN than from

reading a model in the extended written use case language.

Two further hypotheses concern the value of providing an additional

presentation of the same information in a different style of language.



6.5. EXPERIMENT OPERATION 139

H5: More information about workflow is conveyed to business analysts and

subject matter experts from reading a model in the extended written

use case language followed by a corresponding model in BPMN, than

from only reading a model in the extended written use case language.

H6: More information about workflow is conveyed to business analysts and

subject matter experts from reading a model in BPMN language fol-

lowed by a corresponding model in the extended written use case

language, than from only reading a model in BPMN.

As mentioned explicitly in each hypothesis, we are interested both in

the community of business analysts, and in the community of subject mat-

ter experts from the broader business context. Our experiments used two

groups of participants as proxies to these communities, and we consider

a hypothesis validated only if both groups show the effect. One type of

participants can be considered as proxies for business analysts (BAs), since

they have received explicit training in business process modelling and flow-

chart notations. Post-graduate students (like these) have been previously

found to be adequate proxies for analysts with low to medium expertise

levels [46, 91, 94].

6.5 Experiment Operation

The common method for assessing readability, in a research concerning

human computer interaction, or indeed in medicine or law, is to give people

a document to read, and measure how much they know by seeing how well

they answer questions whose answers come from the document. The result

is the sum of three components: initial domain knowledge, contribution

from the document, and chance. We refer to this total measurement as

absolute readability (QSetn).

Definition §6.1

absolute readability (QSetn), n. The measured knowledge of a

participant after reading an artifact.



140 CHAPTER 6. READABILITY

We measure readability by concentrating on the average contribution

from the document, which is the component that the workflow modeller

controls. We refer to this measurement as relative readability. Our ex-

perimental procedure aims at reducing chance, gauging participants’ initial

domain knowledge, and gauging the absolute readability (QSetn). We ar-

rive at the relative readability of the workflow model by subtracting the

initial domain knowledge from the absolute readability (QSetn).

6.5.1 Participants

196 participants, all post-graduate students, were drawn from three univer-

sities. 129 participants were industrial engineering students from Eindhoven

University of Technology, The Netherlands (TU/e). 26 participants were ad-

vanced business process management and enterprise systems students from

Humboldt-Universität zu Berlin, Germany (HU). They were encouraged to

take part as the experiment was relevant to their studies. Both types of

participants can be considered as proxies for business analysts (BAs), since

they have received explicit training in business process modeling and flow-

chart notations. Post-graduate students (like these) have been previously

found to be adequate proxies for analysts with low to medium expertise

levels [46, 91, 94].

The remaining 41 participants were students following various courses

in the University of Sydney, Australia (USYD). They were recruited by

advertisements on noticeboards in cafeterias, and paid AU$20.00 for their

effort. Participants from USYD are considered as proxies for business users

(BUs) without training in flow-charting. They come from a broad range

of disciplines, and are likely to act in that role a few years after joining

the workforce. Note that the preliminary knowledge of business user par-

ticipants is not relevant, as will become clear from the discussion of the

controls that have been applied in this experiment.

6.5.2 Instruments

We asked each participant to follow through a workbook, a variant of it

is available in Appendix A on page 167. A supplementary technical report



6.5. EXPERIMENT OPERATION 141

Use Case #2 Detail analysis and design

 Project Manager Project team Technical Lead
General 

Manager

Nnominate 

a Project 

Manager
Supplement 

the solution 

concept

Assemble 

project team

Review 

project 

concept 

document

Write HLD

Write 

technologic 

assessment

Conduct 

vendor 

selection

Write low 

level design

Write 

detailed 

project plan

Solution 

unrealistic
Project ends

The solution

is unrealistic

Solution 

unrealistic

Yes

No

Solution 

unrealistic

Yes

No

SCD

PSD

HLD

LLD

1:

2:

3: 4:

5:

6:

7:

8:

9:

2a1:2a:

4a:

4a1:

8a:

8a1:

Figure 6.1 – BPMN Example. The participants’ hand book, a variant
of it is available in Appendix A on page 167, had six BPMN
diagrams of equal complexity.



142 CHAPTER 6. READABILITY

Use Case #2 Detail analysis and design

Use case Scope: High level

Trigger: Solution Concept Document (SCD) is completed and approved

Primary Actor: Project Manager who has to assess the project cost in detail

Actors: Project team, Technical Lead

Main success scenario

1: General Manager nominates a Project Manager. Order = 1

2: Project Manager supplements the solution concept document 

with detail, writing a Project Scope Document (PSD). Order = 2

3: Project Manager assembles the project team, including direct 

    reports, customers, suppliers and auditors. Order = 3

4: Project team reviews Project Concept Document. Order = 4

5: Technical Lead writes High Level Design (HLD) evaluating 

several design avenues. Order = 5

6: Technical Lead writes an assessment of technology and methods 

selecting one of the design alternatives. Order = 6

7: Technical lead conducts vendor selection. Order = 7

8: Technical lead writes a Low Level Design (LLD) (Solution 

Design, Support impact, Risk assessment). Order = 8

9: Project manager writes Detailed Project Plan using input from 

the LLD (Time Line and Resources in Microsoft Project, Cash flow, 

Risk Management Plan). Order = 9

Extensions:

2a: The project manager finds the Solution Concept Document unrealistic

2a1: The project ends

4a: The project team finds errors in the Project Concept Document

4a1: The use case starts at action step 2

8a: While writing the LLD the technical lead finds errors in the HLD.

8a1: The technical use case continues at action step 5.

Figure 6.2 – extended written use case language Example. The
participants’ hand book, a variant of it is available in Ap-
pendix A on page 167, had six extended written use case
language diagrams of equal complexity.



6.5. EXPERIMENT OPERATION 143

includes a sample instrument we used in our experiment [88]. The preamble

to the workbooks was a disclosure statement. It was followed by a privacy

statement. At the core of the workbooks resides a description of a certain

business issue. The workbook also includes a placebo, a solution to the

business issue, three identical questionnaires, a preferences survey, and a

demographic survey. The length of the workbook is 39 printed A4 pages.

Being descriptions of a toy problem, the workflow models were shorter,

poorer in red herrings, less ambiguous, richer in workflow patterns, yet

more consistent than real life workflow models. The workbook articulated

the genuine workflow solution to the business issue twice, once employing

eight A4 size BPMN diagrams similar in complexity to that of the diagram

in Figure 6.1, and once employing use cases of similar complexity to that of

the text in Figure 6.2. Each questionnaire had six multiple choice questions

about the genuine workflow solution to the business issue.

6.5.3 Procedure

In the workbook, we asked the participants to complete the following pro-

cedure:

1. Read a disclosure statement explaining the experiment’s goals, the

tasks, and the participants’ privacy.

2. Read, and optionally, sign a consent form. The participant could opt

out at any stage.

3. Read a description of a business issue that a project office in a hypo-

thetical financial services company faces.

4. Read the placebo that describes the financial services that the hy-

pothetical company offers. It includes no information related to the

business issue that the project office faces.

5. Answer a multiple choice questionnaire asking about factual matters

concerning workflow models that solve the business issue the project

office faces, a solution that was not presented yet to the participants.

6. Read an artifact that models the workflow in one language.



144 CHAPTER 6. READABILITY

7. Answer the same questionnaire for the second time.

8. Read a second model, presenting the same workflow in the other lan-

guage.

9. Answer the same questionnaire for the third time.

10. Fill in a preferences survey.

11. Fill in a demographic survey.

In order to compare the impact of different languages, we used two

workbook types; in one type we used one language in Step-6 and the other

language in Step-8; the other workbook type reversed the order in which

the languages were given. We refer to one workbook type (and to the

condition of participants who receive this workbook) as “BPMN first”; the

other condition is “written use cases first”.

6.5.4 Pilot Study

As per the recommendation of Dix et al, we conducted a pilot study prior to

the large scale distribution of workbooks to participants [34, page 350]. The

study involved two groups, of seven members each, a sufficiently large num-

ber according to Nielsen [82]. One group has been drawn from the University

of Sydney, Australia, School of Information Technologies. The second came

from practising members of the information technology industry. We issued

the workbooks to the participants and observed their behaviour. Of note

is an observation that, being experienced students, some participants read

all the instruments before answering questions. Later we discouraged this

behaviour by adding a specific guideline to the disclosure statement.

The pilot study helped us fine-tune the instructions in the workbooks.

It confirmed that the workbooks were complex, but not too complex, and

that participants can complete the tasks we listed in the workbooks in the

allotted 50 minutes. We did not include the 14 returns from the pilot study

in our statistics.



6.5. EXPERIMENT OPERATION 145

6.5.5 Control

To arrive at reliable results, from which we will be able to generalise beyond

the narrow scope of the experiment, we instituted several controls.

Initial Domain Knowledge

In Step-5 of the experiment, to convince the participants to answer questions

after only seeing the placebo, we stated that:

“The philosophy of this design language is that one must

understand the products of a company to understand its pro-

cesses” [88, Page 113].

We thus used the questionnaire presented in Step-5 to measure initial

domain knowledge. To neutralise initial domain knowledge, we subtracted

the placebo score from both the written use cases and the BPMN scores,

and arrived at the average contributions of the two languages. In Step-7

of the experiment we measure the absolute readability (QSetn) of the first

language, and in Step-9 we measure the absolute readability (QSetn) of

a presentation through both languages in sequence. Later we refer to the

results of the questionnaire presented in Step-5 as Placebo, to the results

of the questionnaire presented at Step-7 as QSet1 and to the results of the

questionnaire presented in Step-9 as QSet2. We now define:

Definition §6.2

primary contribution (Cont1), n. Cont1 ≡ QSet1 − Placebo.

Definition §6.3

secondary contribution (Cont2), n. Cont2 ≡ QSet2 −QSet1 .

Realistic Patterns

We could have equalised the initial domain knowledge by using nonsense

words, as Lewis Carrol did in Jabberwocky [23], or by using a schematic

process as other experimenters did [72]. However, as we wanted to mimic

reality as closely as possible, we used a meaningful real life business issue



146 CHAPTER 6. READABILITY

because humans process meaningful information in a manner different to

nonsense or schematic information [99, page 133].

Information Equivalence

The usage of real life business issues required us to ensure equivalence be-

tween the two models.

Definition §6.4

information equivalence, n. Two representations are informa-

tionally equivalent if all of the information in the one is also in-

ferable from the other, and vice versa each could be constructed

from the information in the other [64].

When presenting two different workflow models to participants, whether

they are within-grammar or between-grammar, the workflow models should

include equivalent information. Larkin et al also speak about computational

equivalent representations, but the criteria to evaluate that equivalence are

subjective [45, 102].

For example, consider the navigation from point A to point B we il-

lustrate in Figure 6.3. Verbally we may phrase a statement regarding the

navigation as: ”walk south east 400m, turn left and continue 20m.” Graph-

ically, compromising the information equivalence, we may add information

such as the names of streets passed and surrounding streets. We would have

achieved information equivalence had we only given the L shaped curve as

the graphical instruction.

To ensure the information equivalence of the BPMN and the extended

written use case language workflow models, we reconciled the models with

each other, ensuring that the use case sets and the BPMN diagrams were

(i) logically identical, (ii) included the same information, and (iii) included

the same amount of information. Note, that using Moody’s terminology,

the written use case language suffers from symbol deficit [77].

Allocation Bias

Definition §6.5

allocation bias,n. An undesirable property of an experiment



6.5. EXPERIMENT OPERATION 147

A
B

Figure 6.3 – Information Equivalence



148 CHAPTER 6. READABILITY

where by the officer executing the experiment effects the re-

sults of the experiment by assigning participants to one of the

experimental groups on the basis of familiarity with both the

participants and the experimental groups.

To prevent allocation bias, we applied double blind sampling. We ran-

domly sorted the workbooks and placed these in sealed unmarked envelopes,

thus preventing unintentional bias in the allocation of participants to groups

according to perceived verbal or graphical aptitude. A side effect of this pro-

cedure was that we could not ensure that the size of the two groups was

identical.

Objective Result Processing

To ensure the correct interpretation of participants’ answers, the ques-

tionnaires concentrated on the knowledge domain, the lowest level within

Bloom’s cognitive section [62]. We asked questions such as: “What happens

if stakeholders change the project” or “What condition determines when a

build is reiterated?”.

Anonymity

To ensure anonymity, participants were asked not to write their names on

the workbooks and to remove the disclosure statement and the signed pri-

vacy statement from workbooks before commencing the experiment. To

further extend the perceived anonymity of the participants, we added “I do

not wish to answer this question” options to each question in the preferences

and the demographic surveys.

Reflection of Participants’ Views

To allow the participants to fully articulate their understanding of the work-

flow solution, or even criticise it, we included the following statements “I

do not know”, “The workbook does not supply information needed to an-

swer the question” and “None of the above” option to each question in the

questionnaire.



6.6. DATA ANALYSIS 149

Chance

To reduce chance we randomised the choice sequence among the concrete

answers. As well we offered seven options for every question, rather than

the conventional four.

Sufficient Time

The 50 minute time constraint only allowed six questions in each question-

naire.

Read Forward Prevention

To ensure that participants answered questionnaires one by one, immedi-

ately after reading the appropriate instrument, we asked participants not

to read ahead. We decided against issuing mini workbooks to participants

one by one, as the synchronisation of this threefold increase in anonymous

workbooks would have risked the integrity of the experiment.

6.6 Data Analysis

Our main, randomly controlled, independent variable was the order of the

treatments namely: (i) BPMN first and written use cases second, and (ii)

written use cases first and BPMN second. Another aspect that varied was

the group to which each subject belonged (proxies for BAs, or proxies for

SMEs); however we regard this not as an independent variable within one

experiment, but rather, we consider a hypothesis on each group of subjects,

and ask for its validity on both groups.

Our dependent variables were the primary contribution (Cont1) and sec-

ondary contribution (Cont2) to the readability. Recall that primary con-

tribution (Cont1) is the score on the second questionnaire minus the first

questionnaire (the placebo). Similarly, secondary contribution (Cont2) is

the change between the second and third questionnaire (due to seeing the

second language). We use R and Stata [93, 104] for statistical analyses.



150 CHAPTER 6. READABILITY

Table 6.1 – Results From the Three Universities

University
First

Score x s n
artifact

TU/e

BPMN
Placebo 1.96 1.09

74QSet1 3.41 1.32
QSet2 3.23 1.37
Placebo 1.78 1.10

55UC QSet1 2.73 1.38
QSet2 3.16 1.36

USYD

BPMN
Placebo 2.05 1.22

19QSet1 2.47 1.39
QSet2 2.53 1.07
Placebo 1.86 0.77

22UC QSet1 2.68 1.09
QSet2 3.55 0.86

HU

BPMN
Placebo 1.77 0.73

13QSet1 2.85 1.07
QSet2 2.54 1.27
Placebo 1.62 1.12

13UC QSet1 2.77 1.54
QSet2 2.85 1.77

6.6.1 Descriptive Statistics

The descriptive statistics from our experiments are summarised in Table 6.1,

in Figure 6.4 on the next page and in Figure 6.5 on page 152, with appro-

priate rounding. Details are available in full in a supplementary technical

report [88].

As seen in Figure 6.4 on the next page the mean initial contribution

of written use cases was reasonably consistent among the cohorts, ranging

from 0.8 at USYD to 1.2 at HU/b. The initial contribution of BPMN varied

widely (from 0.4 at USYD to 1.4 at TU/e), and it was bigger than the initial

contribution of written use case language for the participants from TU/e,

but lower than written use cases at USYD. While the secondary contribution

(Cont2) of BPMN to TU/e was modestly positive, and big at USYD, the

remaining secondary contribution (Cont2)s were small or even negative.

That is, the second workflow model did not contribute much, or worse,

it confused participants, thus raising doubts of Green’s view on cognitive



6.6. DATA ANALYSIS 151

0.9

0.4

1.4 1.4

-0.2

1.3
1.2

0.1

1.2
1.1

-0.3

0.8 0.8 0.9

1.7

0.4

0.1

0.5

-.5
0

.5
1

1.
5

1.
9

M
ea

n 
Co

nt
rib

ut
io

n

UC 1st TU/e
BPMN 1st TU/e

UC 1st HU/b
BPMN 1st HU/b

UC 1st USYD
BPMN 1st USYD

Primary Contribution Secondary Contribution Total

Figure 6.4 – Mean Contributions – All samples

dimensions [47] that suggests that presenting the same information twice,

using different languages would always improve readability.

If we consider the combined impact of primary contribution (Cont1) and

secondary contribution (Cont2), we see that presenting written use cases

followed by BPMN gave consistent good results (from 1.2 to 1.7), while the

reverse order had a wide variation (from 0.5 to 1.3).

6.6.2 Discussion of the Data

While the theoretical range of contributions was −6 to 6, the range of

the average contributions we measured was between −3 and 5 (a negative

contribution implied that the instrument confused the participant). For ten

of the twelve tests we performed the average contributions were positive.

The two exceptions were the TU/e and HU participants who received BPMN

first. When subsequently presented with written use cases, their test results

went down (see Figure 6.4 which compares the mean relative contribution

of each language and of both languages to our six participant groups). In



152 CHAPTER 6. READABILITY

1

9

20

42

48

41

27

10

2

0
10

20
30

40
50

Fr
eq

ue
nc

y

-3 -2 -1 0 1 2 3 4 5

Relative Contribution

Figure 6.5 – Distribution of the Primary Contribution – All Participants
– Both Languages

all the tests the initial domain knowledge (placebo) was bigger than the

average contribution of any model.

Our findings suggest that the data are distributed normally. The Shapiro-

Wilk W Test for Normal Data for N < 5000 [98] found that the test results

are consistent with normality: Placebo (Prob >z = 0.7552) QSet1 (Prob

>z = 0.9958) and QSet2 (Prob >z = 0.9982).

6.6.3 Readability Comparison

To compare the two languages, we performed a range of common statistical

tests on hypotheses 1 to 6. Table 2 shows the p-values from the one-sided

Wilcoxon tests [113], for the two groups of participants: students at TU/e

and HU/b, as a proxy for business analysts (BAs) and students at USYD,

as a proxy for subject matter experts (SMEs). We use italics for p-values

below 0.05. We also calculated other tests, such as t-tests; the details can



6.6. DATA ANALYSIS 153

be found in [88] but the significant conclusions are the same.

There is support for H1 (extended written use case language does con-

tribute) and H5 (extended written use case language followed by BPMN,

makes more contribution than extended written use case language alone) at

the statistically very significant 0.01 level, among both groups.

Had we considered only the business analysts proxies, we would have

noticed strong support for H2 (BPMN does contribute) and also support

that is significant at 0.1 level for H4 (BPMN contributes more than extended

written use case language); however neither of these hypotheses seems well-

supported for the subject matter expert proxies.

It is important for effective communication that a model be read cor-

rectly by diverse groups, including both business analysts and subject mat-

ter experts, so we see the data indicating that BPMN on its own is not a

sufficient way to present process models, despite its success among those

with training in process models.

Instead, our experiment offers reasons to provide a written presentation

first, and then follow it with a graphical equivalent; this gave maximal scores

among all the communities of readers.

6.6.4 Prediction

While searching for attributes that would help management predict which

language is better for a particular team member, we asked participants to

rate their comfort and experience with BPMN or written use case language

using scales of one to five. We observed four OLS (ordinary least squares)

linear regressions models as described below.

The model-estimates we provide are pairs of coefficients, one for the

high scale and one for the low. We qualify each coefficient, in brackets, by

a standard error, and a t-value. The coefficient reflects the weight of the

variable and the impact of one unit change in the variable on the primary

contribution (Cont1) of the language. The standard error shows the vari-

ability in the weight calculated, it is the standard deviation of the variable

divided by the square root of the sample size.

The t-value, which is the coefficient divided by the standard error, indi-

cates significance for a two tailed test. If the absolute value of the t-value



154 CHAPTER 6. READABILITY

T
a
b
le

6
.2

–
P

V
al

u
es

fo
r

O
n
e-

S
id

ed
W

il
co

x
on

S
ig

n
-R

an
k

T
es

ts

B
A

s
S

M
E

s
T

e
st

D
at

a
S
et

1
D

at
a

S
et

2
H

1
0
.0

00
0

0
.0

05
4

w
it

h
in

su
b

je
ct

s
P

ri
m

ar
y

C
on

tr
ib

u
ti

on
(U

C
)

0
H

2
0
.0

00
0

0.
15

40
w

it
h
in

su
b

je
ct

s
P

ri
m

ar
y

C
on

tr
ib

u
ti

on
(B

P
M

N
)

0
H

3
0.

94
62

0.
23

52
b

et
w

ee
n

su
b

je
ct

s
P

ri
m

ar
y

C
on

tr
ib

u
ti

on
(U

C
)

P
ri

m
ar

y
C

on
tr

ib
u
ti

on
(B

P
M

N
)

H
4

0.
05

42
0.

77
29

b
et

w
ee

n
su

b
je

ct
s

P
ri

m
ar

y
C

on
tr

ib
u
ti

on
(B

P
M

N
)

P
ri

m
ar

y
C

on
tr

ib
u
ti

on
(U

C
)

H
5

0
.0

06
6

0
.0

00
3

w
it

h
in

su
b

je
ct

s
S
ec

on
d
ar

y
C

on
tr

ib
u
ti

on
(B

P
M

N
)

0
H

6
0.

91
14

0.
45

21
w

it
h
in

su
b

je
ct

s
S
ec

on
d
ar

y
C

on
tr

ib
u
ti

on
(U

C
)

0



6.6. DATA ANALYSIS 155

is greater than 1.96, we have confidence that random chance is not likely to

lead to the observed impact, so we say that the relevant attribute makes a

significant difference in performance.

When asked if they were comfortable with flow charts, 82 participants re-

sponded that they strongly agree and one participant responded with strong

disagreement. The remaining participants reported preferences somewhere

in the middle. Participants at the higher end of the scale did not perform

differently when compared to those at the lower end, with model estimates

of −0.2258 (0.1507; −1.4980) for comfort, and 0.0642 (0.1576; 0.4075) for

lack of comfort.

When asked if they were comfortable with the written use case lan-

guages, 73 participants responded that they strongly agree and 16 partici-

pants strongly disagreed. The remaining participants reported preferences

somewhere in the middle. Participants at the higher end of the scale did not

perform differently when compared to those at the lower end, with model

estimates of −0.0823 (0.0986; −0.8350) for comfort and 0.0701 ( 0.1027;

0.6830) for lack of comfort.

When asked if they often worked with flow charts, 30 participants strongly

agreed and six participant responded with strong disagreement. The re-

maining participants reported preferences somewhere in the middle. Par-

ticipants at the higher end of the scale performed significantly better 0.2669

(0.1558; 2.3104). The performance of participants at the lower end varied

−0.0865 (0.1351; −0.6404).

When asked if they often worked with the written use case language,

36 participants responded that they strongly agree and 20 participant re-

sponded with strong disagreement. The remaining participants reported

preferences somewhere in the middle. Participants at the higher end of the

scale performed significantly better at the 0.1 level 1.1875 (0.6426; 1.8479).

The performance of participants at the lower end of the scale varied 0.1714

(0.3569; 0.4803).

We did find one statistically significant predictor. When asked how

many fiction books they had read in the past 12 month, 73 participants

reported none, 52 reported one to three, 26 reported four to six, 13 re-

ported seven to ten, and 22 reported more than ten. Our findings suggest



156 CHAPTER 6. READABILITY

a strong relationship between readership and textual aptitude. The range of

the number of books that were read in the past 12 months ranged zero to

more than ten. For the participants who first received written use cases

as opposed to BPMN, the number of books they read were clustered via

a Wards Hierarchical clustering routine, which revealed three distinct clus-

ters of readership intensity. The first cluster comprised low readership, the

third cluster comprised high readership levels. The primary contribution

(Cont1) of the extended written use case language was regressed over read-

ership intensity. Low readership significantly predicted a negative effect on

the primary contribution (Cont1) with written use cases: −0.2370 (0.1125;

−2.1070) and high readership predicted a significant positive effect: 0.4712

(0.1918; 2.4560). We also investigated this factor among the participants

who received BPMN first: high readership predicted a significant negative

effect on primary contribution (Cont1) from the BPMN workflow model:

−0.3911 (0.0867; −4.5092), but low readership was not a statistically sig-

nificant predictor for success with BPMN: −0.1250 ( 0.1814; −0.6890).

6.6.5 Interpretation of the Results

The recruitment procedures we applied did not generate a random repre-

sentative sample of the business analysts and business users in the industry.

Nonetheless, there are some considerations that support the results to have

external validity. Business users in a workplace had been students in a

wide variety of fields, only a few years earlier. Both share the characteristic

that they typically do neither have training in reading formal models nor

modelling skills in general. The main difference that we would expect be-

tween students and business users is the level of initial domain knowledge,

and we explicitly controlled for the effects of this in our analysis. Similarly,

post-graduate students who study industrial engineering or business process

modelling have been shown previously to be valid proxies for business ana-

lysts with low or median expertise in the industry [46, 91, 94]. These groups

are both familiar with the concepts of formal models. Indeed, these cohorts

of students demonstrated a good grasp of the particular notations in our

experiment, with higher primary contribution from each notation than the

generalist students from Sydney.



6.6. DATA ANALYSIS 157

The recruitment procedures we applied did not generate a random rep-

resentative sample of the business analysts and subject matter experts in

the industry. None the less, due to the big size of the populations, the low

p-values we found for some of the tests, and the strict control we exercised

over the experimental procedure, we claim that some of our results can be

generalised. In particular our findings suggest that participants from all

groups can understand a model presented in written use cases, and business

analysts can understand BPMN. Our results support H1. Proxies for sub-

ject matter experts and for business analysts showed statistically significant

increases in their understanding of models after reading a written use case

presentation, when compared to their understanding using only background

knowledge of the domain. In contrast, only proxies for business analysts

showed statistically significant increases in their understanding of models

after reading a BPMN presentation, when compared to their understanding

from background knowledge of the domain.

Our findings show that participants from all groups who first read models

employing the extended written use case language benefited further from the

BPMN set. This was not true in the reverse order, indeed it even confused

participants. Our results support H5: proxies for subject matter experts

and proxies for business analysts showed statistically significant increases in

their understanding of a business problem from reading BPMN set following

the delivery of written use cases. In contrast, the delivery of written use

cases following the delivery of BPMN increased comprehension for subject

matter experts but decreased it in business analysts. Dix et al state that

formal specification should be accompanied by extensive commentary and

a parallel sentential description [34, Page 596] and we agree.

We also suggest that the amount of fiction reading is predictive for the

level of understanding of extended written use case language or BPMN.

Other aspects of graphical or sentential aptitude, experience or preferences

do not seem particularly informative.



158 CHAPTER 6. READABILITY

6.7 Conclusion

We have taken care to craft a set of BPMN diagrams and written use cases

that contain equivalent information. While doing so, we found that BPMN

lacks an element of meta expressive power – the elements’ identifiers which

are presented in Cockburn’s notation as the action steps labels, or as the

extensions labels.

When we add a business reader to the equation, we leave Euclid’s solid

ground of slides and triangles and enter Shakespeare’s shaky ground of

intent and interpretations. That is where cognitive science and linguistics

march in to our help.

Thus have we shown that in industrial context the extended written use

case language is a more efficient communication device amongst stakeholders

than the incumbent graphical languages.

6.8 Reflection

The hardest element of the research articulated in this chapter, and indeed

in the entire research programme was the obtaining of an ethical approval.

Accepting the “do no harm” principle as granted, another of the premises

of the process is that students are to volunteer their services, or even to

sell them. I have to question this assertion, as students benefit from older

research whose results are incorporated into their syllabus, so I feel that they

have the duty to generate research for their successors. I would thus call

for a mandatory amount of hours a student should dedicate into research

in proportion to the amount of research they consume. So a student who

learns math, and consume no empirical research, will have to contribute

less empirical researchers, than say, a medical student who consume lots of

empirical research.

The approach I promote is that of partnership, between the experiment

manager and the participants. That is the reason I have used the term

“participants” rather then the more traditional term “subjects”. In many

ways I was disappointed that not one of the 210 participants in the experi-

ment and the pilot study registered to receive the experiment’s result even

though they were all explicitly invited to do so.



Chapter 7

Conclusion

End of matter all was heard ...

Ecclesiastes 12:13

W
orkflow configuration officers construct formal process mod-

els from activities. As the workflow configuration officers rely on

their past experience when constructing process models, they risk becom-

ing detached from the working life. These process models guide workflow

participants toward an expected result. Often, workflow participants use

the process models as guides while enacting a business processes. Empow-

ered workflow participants synthesise activities from the process models and

from the conditions of the concrete situations. This synthesis forms a feed-

back loop in the course of a business process and becomes the basis for

learning, which is embedded in each business process. This learning pro-

cess, in turn, extends the process models. Deviations from process models

are breakdowns, and therefore potential learning situations. Breakdown

situations are all too common; they are a natural and very important part

of any business process. Deviations should form the basis for learning and

thus for developing and extending the process models.

In order for process models to become resources for the future realisation

of activities, the review of the process models should be made as part each

159



160 CHAPTER 7. CONCLUSION

activity. This calls for very readable workflow modelling languages. The

understanding of process models as central dynamic assets of the organi-

sation raises some unconventional requirements from workflow engines —

instead of rigidly routing information around the organisations, the work-

flow engine should mediate the anticipation of the workflow configuration

officers with recurrent events in working life. Hence, a workflow modelling

language should support the modelling, verification, enactment, monitoring,

and tuning of process models within a dynamic work environment.

The popular deployment of workflow engines, thus, necessitates more

readable workflow modelling languages. The gap our research programme

fills is that contemporary workflow modelling languages’ sole function is to

model workflow, they have the required expressive power but they are not

an efficient interpersonal communication device. We find that readability by

diverse groups of people is crucial for a workflow model to effectively bridge

the various communities involved in the round trip of BPM — modelling,

verification, enactment, monitoring, and tuning of workflow. Contempo-

rary workflow modelling languages are not designed to produce artifacts

that can be read, understood, reviewed, critiqued, and amended by work-

flow participants. Indeed workflow participants are not exposed to these

models, and business analysts do not understand these models. We have

not seen a workflow model expressed using contemporary workflow mod-

elling languages, presented to workflow participants as a documentation of

a process.

A candidate for a more approachable workflow modelling language shall

be expressive, unambiguous, verifiable readable by wide a cohort of stake-

holders, and acceptable by the industrial community.

Following industrial experience, having conjectured that the written use

case language is worth using as a workflow modelling language, we under-

took a research programme devoted to the examination of this conjecture.

We broke our conjecture into five hypotheses which we presented, tested

and assessed in this dissertation.

We started our journey by presenting in Chapter 2, a description of the

state of the art, drawing on the achievements of three communities: busi-

ness process management, requirements engineering and human computer



161

interaction. As our primary concern was languages we also drew upon work

of the linguistics and the literacy communities.

Then, in Chapter 3 — Architecture, we provided a logical design of a use

case oriented workflow engine. The design was detailed enough to enable

a software developer to write a physical design of use case oriented work-

flow engine. This logical design was also sufficiently detailed for a workflow

configuration officer to learn how to configure a use case oriented workflow

engine, for a workflow participant to learn how to operate a use case ori-

ented workflow engine, and for a business process manager to learn how

to analyse the logs produced by the business activity monitor, a building

block of a use case oriented workflow engine. Indeed, we articulated the use

case oriented workflow engine idea by describing the architecture of such a

workflow engine. In the process we highlighted and addressed some of the

acknowledged limitations of Cocburn’s written use case language.

We have then studied an implementation of a use case oriented work-

flow engine in the industry and learned that a use case oriented workflow

engine was implemented in industrial settings and that the approach was

well accepted by management, workflow configuration officers and workflow

participants alike.

We then asked how expressive is our extended written use case language.

We answered the question twice. In Section 5.2 — Patterns Approach,

we demonstrated that common workflow patterns can be expressed using

the written use case language. In Section 5.3 — Sound Workflow Nets

Approach, we further generalised our investigation by providing a proof

that every reasonable workflow pattern can be expressed using the written

use case language. Then in section 5.4 — Unsafe Patterns, we provided

three examples of use cases that are not safe, and called upon existing work

to demonstrate how the safety violation can be identified.

Finally, in Chapter 6 — Readability, we assessed the readability of the

written use case language and found that it is readable by BAs and workflow

participants alike.

We now claim:

Claim1: The written use case language can be used as a workflow modelling



162 CHAPTER 7. CONCLUSION

language. We have provided a logical design of a use case oriented

workflow engine and described in detail an industrial implementation

of a use case oriented workflow engine.

Claim2: The written use case language can express common workflow pat-

terns. We have expressed a full library of workflow patterns as use

case sets.

Claim3: The written use case language can express every reasonable work-

flow pattern. We have proved that we can trace any sound workflow

net by a use case set.

Claim4: The written use case language can be tested for safety. We have

shown this by calling upon Lee et al who have shown that use cases

can be translated into Petri nets [66], which in tern one may test for

safety by applying tools described by van der Aalst [3] and applied by

Fahland et al [37].

Claim5: The readability of the written use case language is higher than the

readability of incumbent languages. We showed that the extended

written use case language is an effective communication mechanism

among heterogeneous stakeholders, which was not the case for BPMN.

Thus, having described the architecture of a use case oriented workflow

engine, having described an industrial implementation of a use case oriented

workflow engine, having proved that our extended written use case language

is sufficiently rich to express every reasonable workflow patterns and having

gathered statistically significant evidence that the extended written use case

language is readable, we now suggest that the extended written use case

language is worth using as a workflow modelling language.



Chapter 8

Further Research

See the distress that we are in, how

Jerusalem lies desolates , and her gates are

burned with fire: come, and let us build up

the walls of Jerusalem
Nehemiah 2:17

The research programme on which we reported in this dissertation opened

more questions than it closed. So it should.

The experiment, described in Chapter 6 assesses readability. It would be

interesting to see how the various cohorts of participants react to demands

for the changing of workflows.

The experiment, described in Chapter 6 assesses readability by students.

It would be interesting to see how other cohorts of participants react to

graphical or textual workflow modelling languages.

The use case oriented workflow engine approach was applied in com-

mercial settings. It would be interesting to see if it can be applied to social

networks, say to community managed workflows?

We measured a reduction in the comprehension of the participants from

TU/e and HU/b, as participants’ comprehension degraded after seeing BPMN

followed by use cases. However statistically insignificant as it was, was this

163



164 CHAPTER 8. FURTHER RESEARCH

an indication that we are not the rational being we would have liked to

think we are?

But most of all, we did not attempt to come with a cognitive theory

that explains our fundamental observations. Why is this that the extended

written use case languages works well with untrained business people? A

possible explanation may be that untrained business people best under-

stand algorithms presented as a sequential sets of activities. The extended

written use case language does a good job at breaking algorithms into sets

of scenarios. These scenarios are uninterrupted sequences of activities that

are clearly separated from their triggers. On the other hand, incumbent

workflow modelling languages, for which BPMN is a proxy, mix activities

with triggers as they break the sequence of activities while jumping between

swim lanes. It is possible to design an experiment that will test this theory.



Appendices

165





Appendix A

Participant’s workbook

167



Process Notations - Usability Studies

The University of Sydney School of Information Technologies
Faculty of Engineering 

and Information Technologies

Associate Professor Alan Fekete
Room 447
School of IT, Building J12
University of Sydney NSW 2006 
AUSTRALIA
Telephone:   +61 2 9351 4287
Facsimile:  +61 2 9351 3838
Email: fekete@it.usyd.edu.au

ABN 15 211 513 464

1 Participant’s Information Statement

What is the study about?

We are doing some research in software engineering, a field which aims to im-
prove the way software is developed. We are studying design notations that
are used to communicate between IT professionals and the stakeholders such
as managers for whom software is developed. In particular, we look at nota-
tions which describe the details of how a business process takes place. Differ-
ent development teams use different notations when they explain this aspect
to stakeholders; some of the notations are graphical and others use only text.
While there has been a lot of research comparing the expressive power, accu-
racy and ambiguity of such notations, there is a gap, which we try to fill, in
comparing them for usability and clarity. Notations that are not clear when
read by stakeholders may cause unsatisfactory results, even if the notations are
very expressive for the IT professional who writes the descriptions.

What does the study involve?

To conduct the research we have documented a business process using three
different business process design notations. We imagine a fictitious company
XYZ, and we document the process it uses to manage delivery of technological
solutions to business problems. The process was written with one organisation
in mind, so it is not generic, and probably does not fit many other organisa-
tions. As documenting a process is always a work in progress, we deliberately
included some errors, omissions and inconsistencies. The inconsistencies and
incompleteness simulate real life business modeling situations where designs are
at times incomplete, ambiguous or even wrong.

In this experiment, you will be acting like a business stakeholder. You will be
asked to read the descriptions of the business process, and we will explore how
well the notation communicated to you. You have received a booklet that con-
tains the experiment’s material. As you read the material you will be asked three
times to answer a short questionnaire. The questionnaires are identical. Our

1 of 39



Process Notations - Usability Studies

experiment measures the difference between the answers, not the answers them-
selves. Please answer the questionnaires using all the information you know,
rather than only the information we have given you most recently. Do not guess
answers, if you do not know an answer to a question please tick the ”I do not
know” option. We have also included a ”There is insufficient information” op-
tion. We are not assessing your skill, so you cannot be right or wrong; rather
we are trying to judge the impact of the different design notations. Please read
one section at a time and then answer its questionnaire. You may return to old
sections.

Following all of this, we will ask you some questions to investigate your prefer-
ence for communicating, whether you like graphical or verbal approaches.

Please do not write your name on the questionnaire, as we intend to keep the
responses so they are not connected with your identity, in order to protect your
privacy.

Who is carrying out the study?

The study is being conducted by PhD student Avner Ottensooser, and will form
part of the basis for his thesis for the degree of Doctor of Philosophy at The
University of Sydney under the supervision of Associate Professor Alan Fekete.

How much time will the study take?

The session will last approximately one hour. The session will consist of ap-
proximately 15 minutes for the background and post-experiment questionnaires,
and approximately 45 minutes to complete the practical tasks.

Can I withdraw from the study?

Being in this study is completely voluntary - you are not under any obligation
to participate. If you do consent to participate, you can later withdraw at any
time until the booklet is handed in. Withdrawal will not affect your relationship
with the researchers or the University of Sydney in any way. You may stop the
experiment at any time if you do not wish to continue. However, once you have
submitted your questionnaire you cannot withdraw as we will not be able to
identify yours

Will anyone else know the results?

All aspects of the study, including individual results, will be strictly confidential
even the researchers will not have access to information on participants. All
recorded data and responses will not be associated with any name. While the
envelope you received is numbered the booklet is not. A report of the study will
be submitted for publication, but individual participants will not be identifiable
in such a report.

2 of 39



Process Notations - Usability Studies

Will the study benefit me?

You will receive AU$20.00 as compensation for your time. You are also mak-
ing a valuable contribution to our ongoing research on design notations. The
experience you have here may also be practice that can make your work easier
if you pursue a career as manager or similar stakeholder who needs to interact
with software development projects.

Can I tell other people about the study?

The study is not confidential and you are free to tell others.

What if I require further information?

If you are interested in the result of the research, of which you are now an
important part, please drop us a note at avner@it.usyd.nsw.au . We will gladly
share the research results with you in due course. When you have read this
information, the lab supervisor will discuss it with you further and answer any
questions you may have. If you would like to know more at any stage, please
feel free to contact Avner Ottensooser (e-mail: avner@it.usyd.edu.au, ph: 0402
798 460), or Professor Alen Fekete (e-mail: fekete@it.usyd.edu.au, ph: 02 9351
4287).

What if I have a complaint or concerns?

Any person with concerns or complaints about the conduct of a research study
can contact the Manager, Ethics Administration, University of Sydney on (02)
8627 8175 (Telephone); (02) 8627 8180 (Facsimile) or gbriody@usyd.edu.au (Email).

This information sheet is for you to keep

3 of 39



Process Notations - Usability Studies

2 Instrument I – PARTICIPANT CONSENT
FORM

This page is intentionally left empty.

4 of 39



Process Notations - Usability Studies

The University of Sydney School of Information Technologies
Faculty of Engineering 

and Information Technologies

Associate Professor Alan Fekete
Room 447
School of IT, Building J12
University of Sydney NSW 2006 
AUSTRALIA
Telephone:   +61 2 9351 4287
Facsimile:  +61 2 9351 3838
Email: fekete@it.usyd.edu.au

ABN 15 211 513 464

Participant’s Consent Form

I, .............................................................................[PRINT NAME], give con-
sent to my participation in the research project titled: Process Notation –
Usability Study.

In giving my consent I acknowledge that:

1. I am at least 18 years old.

2. The procedures required for the project and the time involved have been ex-
plained to me, and any questions I have about the project have been answered
to my satisfaction.

3. I have read the Participant Information Statement and have been given the
opportunity to discuss the information and my involvement in the project with
the researcher/s.

4. I understand that I can withdraw from the study at any time until I hand
in the questionnaire, without affecting my relationship with the researcher(s) or
the University of Sydney now or in the future. If I withdraw, my contact details
will be removed from the files.

5. I understand that my involvement is strictly confidential and no information
about me will be used in any way that reveals my identity. I understand that
I may optionally give permission for my answered questioners and survey to be
used in future research publications arising from this study.

6. I understand that being in this study is completely voluntary - I am not
under any obligation to consent.

5 of 39



Process Notations - Usability Studies

7. I consent to the use of my answered questionnaire and survey for research
publications and presentations:

YES NO

Signed:..............................................................

Name:................................................................

Date:.................................................................

6 of 39



Process Notations Usability Studies

Avner OTTENSOOSER Alan FEKETE Hajo Reijers

September 9, 2009

7



Process Notations - Usability Studies

3 Instrument II – Business Problem

With its global presence, company XYZ is the well established leader in the
Australian financial services industry.

Company XYZ’s management acknowledges that its core competency is not in
the field of software development. However, due to the importance of software
in the financial services industry, management had established a two tier strat-
egy: usage of acquired software for general operations, and usage of in-house
software innovations for the timely provision of solutions for core operations, so
important for their competitive advantage.

Having witnessed several project failures, the company established a risk man-
agement culture. The company’s management encourages the cancellation of
projects that lag behind in cost justification measures, in order to free scarce
resources.

Aiming at a repeatable process, the company instituted in 1998 a Solution De-
livery Framework (SDF). The SDF articulates activities, deliverables and mile-
stones mandated for the delivery of every software solution, whether acquired or
developed in-house. The SDF’s nature is that of a classical waterfall framework,
gradually flowing between the development phases from requirement gathering,
to specification, procurement, testing and deployment. Company XYZ adopted
lessons from the contemporary iterative frameworks by concentrating on a mul-
titude of small projects, close customer liaison, short development cycles and
early testing, early delivery of pilots, and constant assessment and adjustment
of upstream deliverables as solutions evolve.

To coordinate its investment in software, a project office had been established.
Over the years the project office developed a spreadsheet based solution that
supports the Solution Delivery Framework. The number and size of projects,
let alone the complexity of supporting multiple teams have stretched the limits
of the current solution and a new solution is required.

8 of 39



Process Notations - Usability Studies

Acronym Description Description
SDF Solution Delivery Framework A process describing the activi-

ties that have to be performed,
artifacts that have to be created
and milestones that have to be
met in order to deliver a software
solution.

SSF Strategic Solution Framework A five year plan articulating
the emerging business needs of
company XYZ, solutions com-
pany XYZ will acquire to meet
these needs, a time table, and
build//buy classification.

RMP Risk Management Profile A description of the risks that
could prevent success in the
project, classified for seriousness,
likelihood, ways of mitigating
them, etc

SCD Solution Concept Description A very high level account of one
way to provide the business with
software that solves its problem

PSD Project Scope Document A description of the aspects
that are covered by the solution,
and those that are left to other
projects

IR Incident (bug) Report A description of the circum-
stances in which the software did
not behave as it was supposed to.

HLD High Level Design A high level description, showing
the most important aspects only.

LLD Low level design The most detailed specification,
issued to developers for coding.

TBA To be advised This acronym is used to acknowl-
eged that an element in the de-
sign has not been decided yet.

9 of 39



Process Notations - Usability Studies

Role Description
Lead planner A person who articulates all of the systems company XYZ will need

over the planning horizon
Solution
planner

A person who designs in detail one system that company XYZ will
need in the short term

Project
Manager

A person who has the overall responsibility for all resources needed
to deliver one system that company XYZ needs in the short term.

Technical
Lead

A person who has the overall responsibility for the technical aspects
of one system that company XYZ needs in the short term

Project
Board

A body that has the overall authority for the full development life-
cycle of a solution

Project
Office

A body that has the central authority for the full development life-
cycle of all the solutions company XYZ has

Development
Team

A body that has the responsibility to implement a single solution

Stake-
holders

All people that will be effected by the system, directly or indirectly,
whether they use it or not.

10 of 39



Process Notations - Usability Studies

4 Instrument III -- Company XYZ Product of-
fering

Research notes

This is the first design notation we evaluate. The philosophy of this design
notation is that one must understand the products of a company to understand
its processes.

Overview

Company XYZ has three families of products which it sells through three dis-
tribution channels.

The products are:

• A basket of real estate properties

• A family of indexed linked funds that represent equities and bonds in
different markets.

• A book of loans issued to 23 of the S&P 500 companies.

These products are distributed through three channels:

• Managed funds issued to retail customers

• Retirement products issued to individuals either during the accumulation
stage or the retirement stage

• A hedge fund issued by invitation only to selected high net worth individ-
uals.

The XYZ real estate basket

With US$250 Billion under management company XYZ’s controls basket of real
estate properties ranging from the high speed rail (Beijing to Shanghai), airports
(Denver, Frankfurt and Dubai), shopping malls and toll roads.

The XYZ family of index funds

The XYZ index funds aim to replicate the movements of an index of a specific
financial market, or a set of rules of ownership that are held constant, regardless
of market conditions. Tracking is achieved by trying to hold all of the securities
in the index, in the same proportions as the index. Other methods include sta-
tistically sampling the market and holding ”representative” securities. Some of
company XYZ’s index funds rely on a computer model with little or no human
input in the decision as to which securities are purchased or sold and is therefore
a form of passive management.
The lack of active management (stock picking and market timing) gives the

11 of 39



Process Notations - Usability Studies

advantage of lower fees and lower taxes in taxable accounts. However, the fees
will generally reduce the return to the investor relative to the index. Company
XYZ finds that it is impossible to precisely mirror the index as the models for
sampling and mirroring, by their nature, cannot be 100% accurate. The differ-
ence between the index performance and the fund performance is known as the
’tracking error’ or informally ’jitter’.

The XYZ index funds track some common indices including the S&P 500, the
Wilshire 5000, the FTSE 100 and the FTSE All-Share Index.

The XYZ loan book

A book of loans issued to 23 of the S&P 500 companies.

The XYZ wholesale funds

Managed funds issued to retail customers. The fund is liquid and customers who
apply for units by 9:30 am will have same day value. Customers who request
a redemption by 2pm will have the funds transfered to their bank accounts by
close of business same day.

The XYZ retirement fund

Retirement products issued to individuals either during the accumulation stage
or the retirement stage.

The XYZ Hedge fund

Company XYZ offers to wealthy individuals the opportunity to participate in
a hedge fund that is designed to be profitable regardless of the directions of
movements in the market. The fund is less liquid than the wholesale product.

The hedge funds are offered as either Capital Guaranteed flavor or naked flavor.

Capital Guaranteed The Capital Guaranteed flavor is a basket of high qual-
ity debt picked to mature at the instrument expiration date, and a basket
of high beta long and short position, designed to achieve high return (al-
beit at high risk). The Capital Guaranteed product has a lifespan of five
years during which redemptions are possible annually, at a high cost.

Naked The naked flavor is designed to have better performance over the medium
range. Redemptions are processed every three months. Application for
new units are currently closed.

12 of 39



Process Notations - Usability Studies

5 Instrument IV – Comprehension Assessment
Questionaire

Q1 What happens if stake-holders change the project scope?

1 The project stops

2 The project manager revisits the project plan

3 Scope creep is addressed in subsequent projects

4 The stake holders talk with developers who alter their code

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q2 Who reviews the SCD?

1 People nominated by the project office review the SCD

2 The Project Office review the SCD

3 The SCD is rarely reviewed

4 The project office reviews the SCD, and if the SCD is deemed valid, the
project office nominates other approvers

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q3 What document does the PSD supplement?

1 The PSD supplements the SCD

2 The PSD is a core document? It supplements no other documents.

3 The PSD supplements the HLD and the LLD

4 None of the above

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

13 of 39



Process Notations - Usability Studies

Q4 How many test cycles does the SDF allow?

1 One at the project end

2 As many as needed until no severe bugs are found or the project is cancelled.

3 Several, one at the end of every project stage

4 None - tests are not done in cycles but end users test all the time

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q5 What happens immediately after a solution is documented?

1 The testing team tests the solution

2 The customer tests the solution

3 The testing team writes detailed use-cases

4 The customer writes detailed use-cases

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q6 What condition determines when a build is reiterated?

1 Whether a severe bug has been found

2 Whether a not-severe bug has been found

3 Whether a severe bug has been fixed

4 Whether a build was completed

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

14 of 39



Process Notations - Usability Studies

6 Instrument V – Solution expressed as written
use cases

Research notes

This is another design notation we evaluate. The philosophy of this design
notation is that words are good at managing complexity.

Use Case #0 Deliver a software solution

Use case Scope: High level

Trigger: General Manager nominates a lead planner.

Primary Actor: Lead Planner who wishes to establish a five year Solution
acquisition plan.

Actors: Project team, Technical team, Project Manager, Operation control

1: Lead Planner creates Strategic Solution Framework (SSF).
2: Project team analyses requirements and designs a solution.
3: Technical team builds a solution and tests it.
4: Project manager performs ongoing management review.
5: Technical team deploys the solution to Operation Control.
6: Project Manager decommissions the project, retaining a skeleton maintenance team.
7: Operations Control conducts ongoing maintenance.

Figure 1. Use Case #0 Deliver a software solution

15 of 39



Process Notations - Usability Studies

Use Case #1 Create a Solution Concept Document

Use case Scope: High level

Triggers: Lead Planner creates a Strategic Solution Framework, SSF, articu-
lating core solutions and a five year project plan.

Risk management lead defines a company wide risk management frame-
work, RMF, articulating project governance structures depending on Risk/Cost
profile and adherence with project plan.

Brief description: A solution planner creates a Solution Concept Document

Primary Actor: A solution planner who wishes to plan a solution.

Actors: Project Office, Approvers, Development Lead, the Lead Planner

Minimal Guarantee: A strategy is written and reviewed .

1: A solution planner, concentrating on one solution in the SSF, creates a Solution
Concept Document, SCD, articulating the current state, problems in the current
states, requirements from a new solution, top down milestones and estimated
benefits. Order = 1

2: Project Office reviews the SCD. Order = 2

3: Project Office assigns approvers depending on the projects Risk/Cost profile. Order = 3

4: Approvers review the SCD and approve the project. Order = 4

5: Development lead assigns a development slot. Order = 5

6: Project Office establishes a Solution Delivery Entry in the company’s projects
portfolio. Order = 6

Extensions:

1a: The solution planner finds that the SCD cannot be implemented with current
technology / resources with acceptable risk, time frame or cost.
1a1: The development of the solution stops.

2a: Project office review finds the project concept document requires improvement
2a1: Technical lead repeats step 1.

2b: Project office review finds the project’s benefits to be insufficient or the
project risk to be too high.
2b1: The project is cancelled.

4a: Approver finds the project not worth pursuing.
4a1: The project is cancelled.

4b: Approvers do not approve the project, specifying assumption errors.
4b1: The use case restarts at action step 1.

5a: Resources are not unavailable.
5a1: The project is cancelled

5b: The project will be possible only with less demand for resources
5b1: The use case restarts at action step 1.

Figure 2. Use Case #1 Create a Solution Concept Document

16 of 39



Process Notations - Usability Studies

Use Case #2 Detail analysis and design

Use case Scope: High level

Trigger: Solution Concept Document (SCD) is completed and approved

Primary Actor: Project Manager who has to assess the project cost in detail

Actors: Project team, Technical Lead

Main success scenario

1: General Manager nominates a Project Manager. Order = 1

2: Project Manager supplements the solution concept document with detail, writing a
Project Scope Document (PSD). Order = 2

3: Project Manager assembles the project team, including direct reports, customers,
suppliers and auditors. Order = 3

4: Project team reviews Project Concept Document. Order = 4

5: Technical Lead writes High Level Design (HLD) evaluating several design avenues. Order = 5

6: Technical Lead writes an assessment of technology and methods selecting one of
the design alternatives. Order = 6

7: Technical lead conducts vendor selection. Order = 7

8: Technical lead writes a Low Level Design (LLD) (Solution Design, Support
impact, Risk assessment). Order = 8

9: Project manager writes Detailed Project Plan using input from the LLD (Time Line
and Resources in Microsoft Project, Cash flow, Risk Management Plan). Order = 9

Extensions:

2a: The project manager finds the Solution Concept Document unrealistic
2a1: The project ends

4a: The project team finds errors in the Project Concept Document
4a1: The use case starts at action step 2

8a: While writing the LLD the technical lead finds errors in the HLD.
8a1: The technical use case continues at action step 5.

Figure 3. Use Case #2 Detail analysis and design

17 of 39



Process Notations - Usability Studies

Use Case #3.1 Build and test

Use case Scope: High level

Trigger: Low Level design completed

Description: This is the technical part of the project where the solution is
crafted and verified.

Primary Actor: Technical Lead who wants to build the solution.

Actors: Development team, Testers, Project Manager, customers

1: Technical lead to write detailed use cases. Order = 1

2: Technical lead conducts procurement. Order = 2

3: Technical lead establishes development environments. Order = 3

4: Development team bring the solution to a build state. Order = 4

5: Development team to document the solution (Operational manual, training material,
maintenance guide). Order = 5

6: Testers test the solution. Order = 6

7: Customers learn the solution and approve the solution. Order = 7

Extensions:

2a: Technical lead finds that the negotiated costs invalidate the project
benefits.
2a1: The use case is repeated from step 1.

2b: Technical lead finds that the negotiated costs invalidates the project beyond
repair.
2b1: The project is resumed from use case 2 step 4 (review project concept).

4a: The development team identifies extensions not handled in the use cases
4a1: The use case continues at action step 1

4b: The changes to the use case are significant
4b1: The Technical Lead refines the LLD

(Reiterates use case 2 action steps 8 and 9).

6a: Tester finds a bug and writes an IR
6a1: The project lead finds the bug worth fixing

6a1a: The use case continues in step 4.

6a2: The technical lead finds the bug too minor to be fixed.
6a2a: The project continues in step 6.

6a3: The technical lead finds the bug and finds that the bug constitutes a change to the use cases.
6a3a: The use case continues from step 1.

6a4: The technical lead finds the bug a major scope change.
6a4a: The use case continues in use case 1 step 2 (back to the drawing board).

Figure 4. Use Case #3.1 Build and test

18 of 39



Process Notations - Usability Studies

Use Case #3.2 Monitor Building

Use case Scope: High level

Primary Actor: The project manager who wants to track progress against
plan.

Actor: Project Board, Project Office

1: Project manager conducts communication with stake-holders Order = 1

2: Project manager maintains and reviews risk log Order = 1

3: Project manager monitors milestone adherence. Order = 1

4: Project manager monitors budget compliance. Order = 1

5: Project manager writes a weekly project status report. Order = 2

6: Project Board reviews project progress. Order = 3

7: The project office collates the minutes of the project board’s meetings in the
companys projects portfolio. Order = 4

Extensions:

1a: stake holders change the project scope
1a1: TBA

3a: New risk is identified
3a1: The project manager adds the new risk to the risk log

3b: Existing risk becomes a reality
3b1: The project continues from use case 3.1 step 2.

3c: Existing risk is rectified
3c1: The project manager erases the risk from the risk log

7a: A project did not submit a weekly report
7a1: TBA

Figure 5. Use Case #3.2 Monitor Building

19 of 39



Process Notations - Usability Studies

Use Case #4 Deployment

Use case Scope: High level

Primary Actor: Development team that wants users to start using the sys-
tem.

Actors: Users, Service Operation

1: Development team writes a user manual. Order = 1

2: Development team conduct user training. Order = 1

3: Development team deploys the software. Order = 2

4: Development team hands over maintenance responsibility to Service Operations. Order = 3

5: After the end of the warranty period, development team ceases to maintain the
project. Order = 4

Extensions:

2a: New requirements are identified while training users
2a1: The project resumes from use case 3.1 step 5.

2a: New bugs are identified while training users
2a1: The project resumes from use case 3.1 step 5.

5a: Too many bugs are found during the warranty period.
5a1: The Warranty period is extended.

Figure 6. Use Case #4 Deployment

20 of 39



Process Notations - Usability Studies

Use Case #5 Close Project

Use case Scope: High level

Primary actor: Project manager who wishes to bring the project to closure.

Actors: Technical Manager, Solution Maintenance Team

1: Technical Manager reviews vendor’s contracts. Order = 1
2: Project Manager conducts a post deployment review. Order = 2
3: Project Manager conducts knowledge harvesting Order = 3
4: Project Manager decommissions the project Order = 4
5: Project Manager establishes a solution maintenance skeleton Order = 5
6: The project office removes the project from the project list Order = 6

Figure 7. Use Case #5 Close Project

21 of 39



Process Notations - Usability Studies

Use Case #6 Post deployment ongoing activities

Main Success scenario

1: Operation management monitors the solution. Order = 1
2: Help desk monitors users’ activities. Order = 1
3: Project manager reviews enhancement requests Order = 1
4: Technical team develops enhancements / bug fixes Order = 1
5: Operations Management deploys enhancements Order = 1

Figure 8. Use Case #6 Post deployment ongoing activities

22 of 39



Process Notations - Usability Studies

7 Instrument VI – Comprehension Assessment
Questionaire

Q7 What happens if stake-holders change the project scope?

1 The project stops

2 The project manager revisits the project plan

3 Scope creep is addressed in subsequent projects

4 The stake holders talk with developers who alter their code

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q8 Who reviews the SCD?

1 People nominated by the project office review the SCD

2 The Project Office review the SCD

3 The SCD is rarely reviewed

4 The project office reviews the SCD, and if the SCD is deemed valid, the
project office nominates other approvers

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q9 What document does the PSD supplement?

1 The PSD supplements the SCD

2 The PSD is a core document? It supplements no other documents.

3 The PSD supplements the HLD and the LLD

4 None of the above

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

23 of 39



Process Notations - Usability Studies

Q10 How many test cycles does the SDF allow?

1 One at the project end

2 As many as needed until no severe bugs are found or the project is cancelled.

3 Several, one at the end of every project stage

4 None - tests are not done in cycles but end users test all the time

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q11 What happens immediately after a solution is documented?

1 The testing team tests the solution

2 The customer tests the solution

3 The testing team writes detailed use-cases

4 The customer writes detailed use-cases

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q12 What condition determines when a build is reiterated?

1 Whether a severe bug has been found

2 Whether a not-severe bug has been found

3 Whether a severe bug has been fixed

4 Whether a build was completed

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

24 of 39



Process Notations - Usability Studies

8 Instrument VII – Solution expressed as BPMN
style flow charts

Research notes

This is another design notation we evaluate. The philosophy of this design
notation is that pictures are good at managing complexity (a picture is worth
a thousand words).

25 of 39



Process Notations - Usability Studies

Use Case #0 - Deliver a SW solution

Operations 

Control  
Technical Team Project Team 

Project 

Manager 
Lead Planner 

Create 

Strategic 

Solution 

Framework

analyse 

requirements 

and design a 

solution

Build and 

tests

ongoing 

management 

review

deploys 

decommission 

the project

conduct 

ongoing 

maintenance

SSF

1:

2:

3:

4:

5:

6:

7:

Figure 9. Use Case #0 Deliver a SW solution

26 of 39



Process Notations - Usability Studies

Use Case #1 Create a Solution Concept Document

Project office Approvers
Development 

Lead
solution planner 

Write a 

Solution 

Concept 

Document

assign 

approvers

Solution 

Delivery 

Entry in the 

company's 

projects 

portfolio

Review 

the SCD
SCD needs

improvement

Solution Benefits 

do not add up

review 

the SCD 

Project 

Cancelled

Insufficient

 Benefits

SCD needs

improvement

Locate 

Delivery Slot

Resources

are unavailable

Normal 

Successful 

end

The project will 

be possible only

 with less 

demand for 

resources

SSF

SCD

1:

2:

3:

4:

5:

6:

Solution 

Possible?

1a:

1a1:

2a:

2b:

4a:

5a:

4b:

Solution not feasible

5b:

Figure 10. Use Case #1 Create a Solution Concept Document

27 of 39



Process Notations - Usability Studies

Use Case #2 Detail analysis and design

 Project Manager Project team Technical Lead
General 

Manager

Nnominate 

a Project 

Manager
Supplement 

the solution 

concept

Assemble 

project team

Review 

project 

concept 

document

Write HLD

Write 

technologic 

assessment

Conduct 

vendor 

selection

Write low 

level design

Write 

detailed 

project plan

Solution 

unrealistic
Project ends

The solution

is unrealistic

Solution 

unrealistic

Yes

No

Solution 

unrealistic

Yes

No

SCD

PSD

HLD

LLD

1:

2:

3: 4:

5:

6:

7:

8:

9:

2a1:2a:

4a:

4a1:

8a:

8a1:

Figure 11. Use Case #2 Detail analysis and design

28 of 39



Process Notations - Usability Studies

Use case #3.1 Build and Test

 Testing team
Development  

team
CustomerTechnical Lead

Write 

detailed use 

cases

Conduct 

procurement

Establish 

development 

environment

Build

Test

Document 

the solution

Learn to use 

the solution

No, or of low severity

Cost 

overrun
Beyond repair

Reasonable

Unhandled 

extension 
Use Cases 

can be fixed

Bugs 

found

Bug Severity

Bug Should be

fixed

Restart use 

case 2

Beyond repair

LLD

Use Cases 

cannot be fixed

IR

1:

2:

3:

4:

5:

6:

7:

2a,b:

2a1:

2b1:

4a,b:

4a:

4b:

6a:

6a1:

6a1:

Bug Changes

Use case

6a4:

6a3:

6a4:

6a2a:
Log the bug

But do not fix it
the bug too minor to be fixed

Figure 12. Use case #3.1 Build and Test

29 of 39



Process Notations - Usability Studies

Use case #3.2 Build Monitoring

Project BoardStakeholders Project OfficeProject Manager

Stakeholder 

communication

weekly 

status report

Review 

Status 

Report

Minutes

Change Project 

Scope

New 

Risk?

Continue at 

use case 3.1 

step 2

TBA

Collate 

Minutes

Minute

Submitted?

TBA

NO!

6:

7:

1a1:

1a:

3a:

7a:

7a1:

Contact 

Stakeholder

1:

Review Risk 

Log

2:

Risk

Rectified

3c:

Risk becomes 

reality

3b:

Monitor 

Milestone 

Adherence

3:

Monitor 

Budget 

Compliance

4:

 Weekly:

3a1:

3c1:

3b1:

+
5:

Figure 13. Use case #3.2 Build Monitoring

30 of 39



Process Notations - Usability Studies

Use case #4 Deploy the new system

 OperationsUser Comunity
Development 

Team

Develop a 

User 

manual 

Manual

Deploy the 

solution

Hand over 

maintenance
Manual

Minor Bug

Bugs 

Identified

Resume 

development

Severe bug

Cease 

Maintaining

Conduct User Training

1:

2:

3:

4:

5:

New 

Requirements

2a:

Requirement approved 

2b:

2a1:

2b1:

Warranty 

expired

Figure 14. Use case #4 Deploy the new system

31 of 39



Process Notations - Usability Studies

Use case #5 Project closure

Project OfficeProject Manager
Technical 

Manager

Review 

vendors’ 

Contract

Conduct 

Post 

deployment 

Review 

Conduct 

knowledge 

harvesting

Decommission 

project 

resources 

Establish 

solution 

maintenance 

skeleton

Remove the 

project from 

the project 

list

1:

2:

3:

4:

5:

6:

Figure 15. Use case #5 Project closure

32 of 39



Process Notations - Usability Studies

Use case #6 Post deployment ongoing activities

 
Project 

Manager
Help Desk

Technical 

Team

Operation 

Management

Monitor 

the 

solution

Monitor 

users’ 

activities

Review 

enhancement 

Requests

Enhance 

/ Fix Bugs

Deploy 

enhancements

1:

2:

3:

4:

5:

+

Figure 16. Use case #6 Post deployment ongoing activities

33 of 39



Process Notations - Usability Studies

9 Instrument VIII – Comprehension Assessment
Questionaire

Q13 What happens if stake-holders change the project scope?

1 The project stops

2 The project manager revisits the project plan

3 Scope creep is addressed in subsequent projects

4 The stake holders talk with developers who alter their code

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q14 Who reviews the SCD?

1 People nominated by the project office review the SCD

2 The Project Office review the SCD

3 The SCD is rarely reviewed

4 The project office reviews the SCD, and if the SCD is deemed valid, the
project office nominates other approvers

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q15 What document does the PSD supplement?

1 The PSD supplements the SCD

2 The PSD is a core document? It supplements no other documents.

3 The PSD supplements the HLD and the LLD

4 None of the above

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

34 of 39



Process Notations - Usability Studies

Q16 How many test cycles does the SDF allow?

1 One at the project end

2 As many as needed until no severe bugs are found or the project is cancelled.

3 Several, one at the end of every project stage

4 None - tests are not done in cycles but end users test all the time

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q17 What happens immediately after a solution is documented?

1 The testing team tests the solution

2 The customer tests the solution

3 The testing team writes detailed use-cases

4 The customer writes detailed use-cases

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

Q18 What condition determines when a build is reiterated?

1 Whether a severe bug has been found

2 Whether a not-severe bug has been found

3 Whether a severe bug has been fixed

4 Whether a build was completed

5 I do not know

6 The handout does not supply information needed to answer the question.

7 None of the above.

35 of 39



Process Notations - Usability Studies

10 Instrument IX – Preference Survey

Q19 When asking for directions, would you prefer to receive:

A a map

B verbal instructions

C neither, or not applicable

Q20 When asking for directions, you most often receive:

A a map

B verbal instructions

C neither, or not applicable

Q21 When your team is asked to develop software, would you prefer:

A to design the solution yourself, and hand the design to a team member for
coding.

B to receive a design from a team member, and code the solution yourself.

C neither, or not applicable

Q22 When your team is asked to develop software, most often you:

A design the solution yourself, and hand the design to a team member for
coding.

B receive a design from a team member, and code the solution yourself.

C neither, or not applicable

Q23 The number of fiction books you read last 12 month is:

A 0

B 1-3

C 4-6

D 7-10

E more than 10

36 of 39



Process Notations - Usability Studies

Q24 You are comfortable with flow charts:

A Strongly agree

B Somewhat agree

C I do not know

D Somewhat disagree

E Strongly disagree

Q25 You often work with flow charts:

A Strongly agree

B Somewhat agree

C I do not know

D Somewhat disagree

E Strongly disagree

Q26 You are comfortable with written use cases:

A Strongly agree

B Somewhat agree

C I do not know

D Somewhat disagree

E Strongly disagree

Q27 You often work with written use cases:

A Strongly agree

B Somewhat agree

C I do not know

D Somewhat disagree

E Strongly disagree

37 of 39



Process Notations - Usability Studies

11 Instrument X – Demographic Survey

Q28 What is your gender?:

A female

B male

C I do not wish to answer this question

Q29 Which role best describes your occupation (Select all that ap-
ply)?

A student

B professional

C academic

D I do not wish to answer this question

Q30 Is English your native language?

A Yes.

B No.

C I do not wish to answer this question.

Q31 Do you have work experience related to Business Process Man-
agement and/or Modelling?

A Yes.

B No.

C I do not wish to answer this question.

Q32 Do you have any knowledge related to the software delivery life
cycle?:

A Yes.

B No.

C I do not wish to answer this question.

Q33 Do you have any knowledge related to the financial industry?:

A Yes.

B No.

C I do not wish to answer this question.

38 of 39



Process Notations - Usability Studies

Thank you for your participation

39 of 39



Appendix B

Pattern-Based Analysis of the

Control-Flow Perspective of

written-use-cases

Pattern WCP-01 (Sequence)

Description:

An activity in a workflow process is enabled after the completion of a pre-

ceding activity in the same process.

Examples

(a) The verify account activity executes after the credit card details have

been captured.

(b) The codacil-signature activity follows the contract-signature activity.

(c) A receipt is printed after the train ticket is issued.

Use Case WCP-01a

207



208
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Main success scenario:

1. Actor to capture credit card details. Order = 1
2. Actor to verify account activity. Order = 2

Figure B.1 – Use Case WCP-01a - Sequence



209

Pattern WCP-2 Parallel Split

Description:

The divergence of a branch into two or more parallel branches each of which

execute concurrently.

Examples

(a) After completion of the capture enrolment activity, run the create stu-

dent profile and issue enrolment confirmation activities simultaneously.

(b) When an intrusion alarm is received, trigger the despatch patrol activity

and the inform police activity immediately.

(c) Once the customer has paid for the goods, issue a receipt and pack them

for despatch.

Use Case WCP-02

Main success scenario:

1. Actor1 to capture enrolment. Order = 1 ! Action step 1 is followed by an implicit AND-Split
2. Actor2 to create student profile. Order = 2 ! Action steps 2 and 3 are parallel
3. Actor3 to issue enrolment activity. Order = 2
4. Process ends. Order = 3 ! AND-Join

Figure B.2 – Use Case WCP-02 — Parallel Split



210
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-3 Synchronisation (AND-Join)

Description:

The convergence of two or more branches into a single subsequent branch

such that the thread of control is passed to the subsequent branch when all

input branches have been enabled.

Examples

(a) The despatch-goods activity runs immediately after both the check-

invoice and produce invoice activities are completed.

(b) Cash-drawer reconciliation can only occur when the store has been

closed and the credit card summary has been printed.

Use Case WCP-03, covers examples a and b

Main success scenario:

1. Actor1 does A. Order = 1 ! Step 1 follows an implicit AND-Split
2. Actor2 does B. Order = 1 ! action-steps 1 and 2 are parallel
3. Actor3 does C. Order = 2 ! AND-Join

!
! action-step 3 can start only after
! the completion of both action-steps
! 1 and 2.

Figure B.3 – Pattern WCP-03 Synchronisation (AND-Join)



211

Pattern WCP-4 Exclusive Choice

The divergence of a branch into two or more branches. When the incoming

branch is enabled, the thread of control is immediately passed to precisely

one of the outgoing branches based on the outcome of a logical expression

associated with the branch.

Examples

(a) Depending on the volume of earth to be moved, either the dispatchback-

hoe, despatch bobcat or despatch-D9-excavator activity is initiated to

complete the job.

(b) After the review election activity is complete, either the declare results

or the recount votes activity is undertaken.

Use Case WCP-4a

Main success scenario:
1. Validate that the volume of earth to be moved is small. Order = 1
2. Dispatch backhoe. Order = 2
3. End the process. Order = 3 ! XOR-Join

Extension:

Action steps ‘2’, ‘1a1’, and ‘1b1’ are all not compatible. ! XOR

1a. The volume of earth to be moved is medium. ! XOR-Split
Replace action step 2 with:
1a1. Dispatch bobcat Order = 2

1b. The volume of earth to be moved is large ! XOR-Split
Replace action step 2 with:
1b1. Dispatch D9-excavator Order = 2

Figure B.4 – Pattern WCP-4 Exclusive Choice — This approach com-
plies with Cockburn Guideline 7: “Validate,” Don’t “Check
Whether” [24, Page 95]. One may ask why don’t we place
explicit restrictions on ‘1a’ and ‘1b’ as they are mutually ex-
clusive. The answer is that our understanding of the process
leads us to realise that of the two avenues, only one will be
opened.



212
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-05 Simple Merge (XOR-Join)

Description:

The convergence of two or more branches into a single subsequent branch.

Each enablement of an incoming branch results in the thread of control

being passed to the subsequent branch.

Discussion:

The difference between WCP-3 and WCP-5 is that they are AND-Join and

OR-Join respectively.

Examples

(a) At the conclusion of either the bobcat-excavation or the D9-excavation

activities, an estimate of the amount of earth moved is made for billing

purposes.

(b) After the cash-payment or provide-credit activities, initiate the produce-

receipt activity.

Use Case WCP-5a

Main success scenario:
1 . Actor to validate that the amount of earth to be moved is small. Order = 1
2. Actor to despatch bobcat. Order = 2
3. Actor to bill Order = 3 ! XOR-Join

Extension:

1a. Amount of earth movement need is big ! XOR-Split
Replace action step 2 with:
1a1. Actor to despatch D9. Order = 2

Figure B.5 – Pattern WCP-05 Simple Merge (XOR-Join) — This ap-
proach complies with Cockburn Guideline 7: “Validate,”
Don’t “Check Whether” [24, Page 95]. Action steps ‘2’ and
‘1a1’ are mutually exclusive.



213

Pattern WCP-06 (Multi-Choice)

Description:

The divergence of a branch into two or more branches. When the incom-

ing branch is enabled, the thread of control is passed to one or more of

the outgoing branches based on the outcome of distinct logical expressions

associated with each of the branches.

Example

Depending on the nature of the emergency call, one or more of the despatch-

police, despatch-fire-engine and despatch ambulance activities is immedi-

ately initiated.

Use Case WCP-06a



214
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Precondition:
Emergency call arrived.

Main success scenario:
1. Actor to asses call. Order = 1
2. Processing to end. Order = 3. ! OR-Join

Extension:

! Steps ‘1a’, ‘1b’ and ‘1c’ are compatible.
Step ’1d1’ is incompatible with step ’1a1’. ! XOR
Step ’1d1’ is incompatible with step ’1b1’. ! XOR
Step ’1d1’ is incompatible with step ’1c1’. ! XOR

1a. Fire occurred. ! OR-Split
1a1. Dispatch fire engine. Order = 2.

1b. Crime suspected ! OR-Split
1b1. Dispatch Police. Order = 2.

1c. Injury occurred ! OR-Split
1c1. Dispatch Ambulance.

1d. Fire and crime and injury did not occur ! OR-Split
1d1. TBA Order - 2 ! The example does not state what

! happens in that case, but implies that
! something is sent.

Figure B.6 – Pattern WCP-06 (Multi-Choice) — This is the context most
common in BT Financial Group as the customer makes ar-
bitrary choice of features. If no routing sheet is prescribed
- the work item is closed. The way the use case is written
implies that it is possible not to send anything.



215

Pattern WCP-07 (Structured synchronising Merge)

Description:

The convergence of two or more branches (which diverged earlier in the

process at a uniquely identiable point) into a single subsequent branch.

The thread of control is passed to the subsequent branch when each active

incoming branch has been enabled.

Example

Depending on the type of emergency, either or both of the despatch-police

and despatch ambulance activities are initiated simultaneously. When all

emergency vehicles arrive at the accident, the transfer-patient activity com-

mences.

Use Case WCP-07a
Precondition:
Emergency call arrived.

Main success scenario:

1. Actor to assess damage. Order = 1
2. Process ends. Order = 5

Extension:
! Action steps ‘2a’ and ‘2b’ can co-exist
Observations ‘2c’ and ‘2a’ are not compatible.
Observations ‘2c’ and ‘2b’ are not compatible.

2a. Crime is suspected ! OR-Split
2b1. Dispatch police. Order = 2
2b2. Police arrived. Order = 3

2b. Injury occurred ! OR-Split
2b1. Dispatch ambulance. Order = 2
2b2. Ambulance arrives. Order = 3
2b3. Transfer patient Order = 4 ! AND-Join

2c. Neither a crime is suspected nor an injury occurred
2c1. TBA Order = 2 ! The example requires some thing to be despatched.

Figure B.7 – Pattern WCP-07a (Structured synchronising Merge)



216
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Use Case WCP-07b
Main success scenario:
1. Actor does p2. Order = 1
2. Actor does p3. Order = 2
3. Actor does p4. Order = 3
4. Actor does o1. Order = 4 ! The Process ends

Alternative Scenario (Condition A)
1. Actor does p4. Order = 1
2. Actor does o1. Order = 2 ! The Process ends

Alternative Scenario (Condition B)
1. Actor does p1. Order = 1
2. Actor does p5. Order = 2
3. Actor does o1. Order = 3 ! The Process ends

Alternative Scenario (Condition C)
1. Actor does p5. Order = 1
2. Actor does o1. Order = 2 ! The Process ends

Figure B.8 – Pattern WCP-07b (Structured synchronising Merge) In that
case, the pilot prescribes one of the 4 scenarios. That exam-
ple is illustrated using the Petri Net above



217

Use Case WCP-07c
Main success scenario (Condition A)
1. Actor does p2. Order = 1
2. Actor does p3. Order = 2
3. Actor does p4. Order = 3
4. Actor does o1. Order = 4 ! The process ends.

Alternative Flow (Condition B)
1. Actor does p1 Order = 1
2. Actor does p5 Order = 2
3. Actor does o1. Order = 3 ! The process ends.
}

Figure B.9 – WCP-7c — Structured synchronising Merge. That example
is illustrated using the Petri Net above.



218
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-08 (Multi-Merge)

Description:

The convergence of two or more branches into a single subsequent branch.

Each enablement of an incoming branch results in the thread of control

being passed to the subsequent branch.

Example

The lay foundations, order materials and book labour activities occur in

parallel as separate process branches. After each of them completes the

quality review activity is run before that branch of the process completes.

Use Case WCP-08
Main success scenario

! Action steps 1, 2 and 3 follow and
! implicit AND-Split

1. Actor1 to lay foundation. Order = 1 ! Action steps 1, 2 and 3 are parallel
2. Actor2 to order material. Order = 1
3. Actor3 to book labourer. Order = 1
4. Actor4 to review quality. Order = 2 ! AND-Join

Figure B.10 – WCP-08 — (Multi-Merge)



219

Pattern WCP-9 (Structured discriminator)

Description:

The convergence of two or more branches into a single subsequent branch

following a corresponding divergence earlier in the process model. The

thread of control is passed to the subsequent branch when the first incoming

branch has been enabled. Subsequent enablements of incoming branches do

not result in the thread of control being passed on. The discriminator

construct resets when all incoming branches have been enabled.

Example

When handling a cardiac arrest, the check breathing and check pulse ac-

tivities run in parallel. Once the first of these has completed, the triage

activity is commenced. Completion of the other activity is ignored and

does not result in a second instance of the triage activity.

Use case WCP-9a

Precondition

Breathing check started.
Pulse check started.

Main success scenario

1. Actor to start the breathing test. Order = 1
2. Actor to start the pulse test. Order = 1
3. Actor to monitor the breathing test. Order = 2
4. Actor to monitor the pulse check. Order = 2
5. Process ends. Order = 4 ! XOR-Join

Extension

Observations ‘3a’ and ‘4a’ are mutually exclusive ! XOR

3a. Breathing test ended check ended first. ! XOR-Split
3a2. Actor to commence triage activity. Order = 3

4a. Pulse check ended first. ! XOR-Split
4a1. Actor to commence triage activity. Order = 3

Figure B.11 – WCP-09a — (Pattern WCP-9 (Structured discriminator)



220
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

WCP-09 — Example b



221

Figure B.12 – WCP-9b (Structured discriminator)

Main success scenario
1. Actor does P1 Order = 1
2. Process ends Order = 4 ! XOR-Join

Extension
Action Steps ‘a1a’ and ‘1b’ are mutually exclusive. ‘1b’ can be prescribed several times. !XOR

1a. Condition B ! XOR-Split
12a1. Actor does P2 Order = 2

1b. Condition = D ! XOR-Split
1b1. actor does p3 Order = 2
1b2. Actor does p2 Order = 3

Figure B.13 – WCP-09c — (Pattern WCP-9 (Structured discriminator)



222
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

WCP-09 — Example c



223

Main success scenario (Condition A)
! Routing sheet 2a and 2b are co-existing.
! Routing sheet 3a can be prescribed multiple times for one workflow.

1. Actor does p1. Order = 1
2. Actor does p3. Order = 2
3. Process ends. Order = 3

Alternative scenario 1 (Condition D)
4. Actor does p2. Order = 1
5. Actor does p3. Order = 2
6. Process ends. Order = 3

Alternative scenario 2 (Conditions (B or C))
7. Actor triggers input. Order = 1
8. Actor to redo the use case. Order = 2

Extensions:

! Action steps 1a, 1b and 1c co-exist
2a. Condition G

2a1. Actor does p5
2a2. Actor does p4
2a3. Actor does 01
2a2a. Cond K.

2a2a1. Actor does Trigger input.
5a. Condition M

5a1 Actor does P4.
8a. Condition j

8a1 Actor does Alternative scenario 1
8b. Condition L

8b1 Actor does p4

Figure B.14 – WCP-09c — (Pattern WCP-9 (Structured discriminator)



224
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-10 (Arbitrary Cycles)

The ability to represent cycles in a process model that have more than one

entry or exit point.

Use Case WCP-10

Main success scenario (Condition A)
1. Actor does P1. Order = 1
2. Actor does P3. Order = 2 ! OR-Join
3. Actor does p4. Order = 3
4. Process ends. Order = 5 ! Step 4 is optional

Alternative scenario (Condition B)
5. Actor does P4. Order = 3
6. Process ends. Order = 5

Extension
! Condition C can be observed multiple times.
*a Condition C ! OR-Split

*a1. Actor does p5. Order = 4
*a2. Actor does p3. Order = 5
*a3. Actor does p4. Order = 6
*a4. Process ends. Order = 7

Figure B.15 – Pattern WCp-10 (Arbitrary Cycles) — The star notation
indicate that the extension has multiple entry points (‘3’
and ‘5’), see [24, page 103].



225

Pattern WCP-11 (Implicit Termination) — Con-

fidence - Trivial?

A given process (or sub-process) instance should terminate when there are

no remaining work items that are able to be done either now or at any

time in the future. The implicit termination feature is in the domain of the

Workflow engine. Once all action-steps are tricked as done or as should not

be done, the workflow item should be terminated.

Pattern WCP-12 (Multiple Instances without Syn-

chronisation) — Confidence - Trivial?

Within a given process instance, multiple instances of an activity can be cre-

ated. These instances are independent of each other and run concurrently.

There is no requirement to synchronise them upon completion.

Example

A list of traffic infringements is received by the Transport Department.

For each infringement on the list an Issue-Infringement-Notice activity is

created. These activities run to completion in parallel and do not trigger any

subsequent activities. They do not need to be synchronised at completion.

Use Case WCP-12a

Trigger: A traffic infringement row is received by the Transport Department.

Main success scenario

1. Actor to issue Infringement-Notice. Order = 1

Figure B.16 – Pattern WCP-12 (Multiple Instances without Synchronisa-
tion)



226
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-13 (Multiple Instances with a pri-

ory Design-Time Knowledge)

Description:

Within a given process instance, multiple instances of an activity can be

created. The required number of instances is known at design time. These

instances are independent of each other and run concurrently. It is necessary

to synchronise the activity instances at completion before any subsequent

activities can be triggered.

Example

The Annual Report must be signed by all six of the Directors before it can

be issued.

Use Case WCP-13

Trigger

Annual report presented to signatures.

Main success scenario

1. Director to sign the annul report. Named User = A. Order = 1
2. Director to sign the annul report. Named User = B. Order = 1
3. Director to sign the annul report. Named User = C. Order = 1
4. Director to sign the annul report. Named User = D. Order = 1
5. Director to sign the annul report. Named User = E. Order = 1
6. Director to sign the annul report. Named User = F. Order = 1
7. Actor to issue the annual report. Order = 2 ! AND-Join

Figure B.17 – Pattern WCP-13 (Multiple Instances with a priory Design-
Time Knowledge)



227

Pattern WCP-14 (Multiple Instances with a pri-

ory Run-Time Knowledge)

Within a given process instance, multiple instances of an activity can be

created. The required number of instances may depend on a number of run

time factors, including state data, resource availability and inter-process

communications, but is known before the activity instances must be cre-

ated. Once initiated, these instances are independent of each other and

run concurrently. It is necessary to synchronise the instances at completion

before any subsequent activities can be triggered.

Examples

(a) When diagnosing an engine fault, the check-sensor activity can run

multiple times, depending on the number of error messages received.

Only when all messages have been processed, can the identify-fault

activity be initiated;

(b) In the review process for a journal paper submitted to a journal, the

review paper activity is executed several times depending on the con-

tent of the paper, the availability of referees and the credentials of the

authors. The review process can only continue when all reviews have

been returned;

(c) When dispensing a prescription, the weigh compound activity must be

completed



228
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Use Case WCP-14a
Trigger: Diagnosing an engine fault requested

Main success scenario:
1. Actor to check-sensor . Order = 1
2. Process to end. Order = 3

Extension
*. Error found
add this scenario to the process:

1a1. Actor to process fault. Order = 2

Figure B.18 – Pattern WCP-14 (Multiple Instances with a priory Run-
Time Knowledge) — The star notation indicate that the
extension has multiple entry points (‘1’ and ‘1a2’), see [24,
page 103].



229

Pattern WCP-15 (Multiple instances without a

priory run-time knowledge)

Within a given process instance, multiple instances of an activity can be

created. The required number of instances may depend on a number of run

time factors, including state data, resource availability and inter-process

communications and is not known until the final instance has completed.

Once initiated, these instances are independent of each other and run con-

currently. At any time, whilst instances are running, it is possible for addi-

tional instances to be initiated. It is necessary to synchronise the instances

at completion before any subsequent activities can be triggered.

Examples

The despatch of an oil rig from factory to site involves numerous trans-

port shipments activities. These occur concurrently and although sufficient

activities are started to cover initial estimates of the required transport vol-

umes, it is always possible for additional activities to be initiated if there is

a shortfall in transportation requirements. Once the whole oil rig has been

transported, and all transport shipment activities are complete, the next

activity (assemble rig) can commence.

Use Case WCP-15
Main success scenario:

1. Actor to perform transportation activity. Order = 1
2. Actor to verify that all transportation completed. Order = 3
3. Actor to assemble oil rig. Order = 4 !OR-Join

Extension:

*a. More transportation required. ! OR-Split
add this scenario to the process:
*a1. Actor to perform additional transportation activity Order = 2

Figure B.19 – Pattern WCP-15 (Multiple instances without a priory run-
time knowledge) — This functionality is supported by our
models ability to enable pilots to tailor the process after its
start by prescribing action-steps on the fly.



230
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-16 (Deferred Choice)

A point in a workflow process where one of several branches is chosen based

on interaction with the operating environment. Prior to the decision, all

branches present possible future courses of execution. The decision is made

by initiating the first activity in one of the branches i.e. there is no explicit

choice but rather a race between different branches. After the decision is

made, execution alternatives in branches other than the one selected are

withdrawn

Examples

At the commencement of the Resolve complaint process, there is a deferred

choice between the Initial customer contact activity and the Escalate to

manager activity. The Initial customer contact is initiated when it is started

by a customer services team member. The Escalate to manager activity

commences 48 hours after the process instance commences. Once one of

these activities is initiated, the other is withdrawn.

Use Case WCP-16
Main success scenario

1. Actor to start an issue. Order = 1
2. Actor to close issue. Order = 4 ! OR-Join

Extension

1a. Initial customer contact is initiated by
customer service team. ! OR-Split
Add this scenario to the use-aces:
1a1. Customer service performs

initial customer contact Order = 2

1b. 48 Hours passed
Add this scenario to the use-aces:
1b1. Manager performs escalate activity. Order = 3 ! OR-Split

Figure B.20 – Pattern WCP-16 (Deferred Choice) — This is an example
of mutual exclusive action-step



231

Pattern WCP-17 (Interleaved Parallel Routing)

A set of activities has a partial ordering denfing the requirements with

respect to the order in which they must be executed. Each activity in the

set must be executed once and they can be completed in any order that

accords with the partial 34 order. However, as an additional requirement,

no two activities can be executed at the same time (i.e. no two activities

can be active for the same process instance at the same time).

Examples

When dispatching an order, the pick goods, pack goods and prepare invoice

activities must be completed. The pick goods activity must be done before

the pack goods activity. The prepare invoice activity can occur at any time.

Only one of these activities can be done at any time for a given order.

The Work Flow item can be dispatch to one actor at a time.

Use Case WCP-17
Main success scenario:

1. Actor1 to pick goods. Order = 1
2. Actor1 to pack goods. Order = 2
3. Actor2 to invoice. Order = Any

Figure B.21 – Pattern WCP-17 (Interleaved Parallel Routing)



232
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-18 (Milestone)

An activity is only enabled when the process instance (of which it is part)

is in a specic state (typically in a parallel branch). The state is assumed

to be a specific execution point (also known as a milestone) in the process

model. When this execution point is reached the nominated activity can

be enabled. If the process instance has progressed beyond this state, then

the activity cannot be enabled now or at any future time (i.e. the deadline

has expired). Note that the execution does not influence the state itself, i.e.

unlike normal control-flow dependencies it is a test rather than a trigger.

Example

(a) Most budget airlines allow the routing of a booking to be changed pro-

viding the ticket has not been issued;

(b) The enrol student activity can only execute whilst new enrolments are

being accepted. This is after the open enrolment activity has completed

and before the close or enrolment activity commences.



233

Use Case WCP-18a
Trigger

Customer asked to change routing

Main success scenario

1. Actor accepts customer’s call. Order = 1
2. Actor issues ticket. Order = 3
3. Customer to use the ticket. Order = 5 ! OR-Join
3. End Order = 6

Extension

1a. Customer requests a routing change (before the ticket is issued)
Add this scenario to the use-aces:
1a1. Client contact to accept the request. Order = 2

2a. Customer requests a routing change (having been issued a ticket) ! OR-Split
Add this scenario to the use-aces:
2a1. Client-contact to (refuses, charges high amount). Order = 4

Use Case 18b

Main success scenario:

1. Student to enrol. Order = 1

Extensions

1a. Student to request enrolment before opening day: ! OR-Split
Replace action step 1 with this scenario:

! that covers both before and after,
! as there is always a next term)

1a1. System rejects enrolment. Order = 1
1a2. Student to be reminded of the upcoming enrolment period Order = 2

Figure B.22 – Pattern WCP-18 (Milestone)



234
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-19 (Cancel Activity) and Pattern

WCP-20 (Cancel Case)

Description:

The cancellation of activity can be done at any time using our model’s

“should not be done” action-step state. When all action-steps are either

market as “Done” or “Should not be done”, the dispatcher terminates the

Workflow Item.

Examples

(a) The assess damage activity is undertaken by two insurance assessors.

Once the first assessor has completed the activity, the second is can-

celled;

(b) The purchaser can cancel their building inspection activity at any time

before it commences.

Use Case 19a

Main success scenario:

1. Order assessment from assessor. Named user = a Order = 1
2. Order assessment from assessor. Named user = b Order = 1
3. Process claim. Order = 3

Extensions

*. First assessment arrived.
add this scenario to the use-case:
*1. Send assessment cancellation request to the other assessor. Order = 2

Figure B.23 – Pattern WCP-19 (Cancel Activity) — The star notation
indicate that the extension has multiple entry points (‘1’
and ‘2’), see [24, page 103].



235

Pattern WCP-20 (Cancel Case)

Description:

A complete process instance is removed. This includes currently execut-

ing activities, those which may execute at some future time and all sub-

processes. The process instance is recorded as having completed unsuccess-

fully.

Examples

(a) During an insurance claim process, it is discovered that the policy has

expired and, as a consequence, all activities associated with the partic-

ular process instance are cancelled;

(b) During a mortgage application, the purchaser decides not to continue

with a house purchase and withdraws the application.

Discussion:

This is an example where the“should not be done” structure is applicable.



236
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-21 (Structured Loop)

The ability to execute an activity or sub-process repeatedly. The loop has

either a pre-test or post-test condition associated with it that is either eval-

uated at the beginning or end of the loop to determine whether it should

continue. The looping structure has a single entry and exit point.

Example

(a) While the machine still has fuel remaining, continue with the production

process.

(b) Only schedule fights if there is no storm activity.

(c) Continue processing photographs from the film until all of them have

been printed.

(d) Repeat the select player activity until the entire team has been selected.

.

Use Case WCP-21a

1. Actor to verify that the machine has no fuel. Order = 1
2. Actor to terminate the production proses. Order = 4

Extension

*a. There is fuel.
Supplement the use case with:
*a1. Actor to continue with the production process. Order = 2
*a2. Actor to verify that the machine has no fuel. Order = 3

Figure B.24 – Pattern WCP-21 (Structured Loop) — The above can be a
action-step. That will solve the problem, but will create a
misleading log. To enrich the log, a counter has to be added,
so that the log can account for the number of iteration on
the loop



237

Pattern WCP-22 (Recursion)

An instance of the resolve-defect activity is initiated for each mechanical

problem that is identfied in the production plant. During the execution

of the resolve-defect activity, if a mechanical fault is identied during in-

vestigations that is not related to the current defect, another instance of

the resolve-defect is started. These sub-processes can also initiate further

resolve-defect activities should they be necessary. The parent resolve-defect

activity cannot complete until all child resolve-defect activities that it ini-

tiated have been satisfactorily completed.

Examples

An instance of the resolve-defect activity is initiated for each mechanical

problem that is identified in the production plant. During the execution

of the resolve-defect activity, if a mechanical fault is identified, during in-

vestigations, that is not related to the current defect, another instance of

the resolve-defect is started. These sub-processes can also initiate further

resolve-defect activities should they be necessary. The parent resolve-defect

activity cannot complete until all child resolve-defect activities that it ini-

tiated have been satisfactorily completed.

Use Case WCP-22
Main success scenario

1. Actor to perform a clean verification Order = 1
2. Actor do declare the resolve defect satisfactorily completed. Order = 4

Extensions

*a. A mechanical fault is identified
*a1. Actor to resolve the fault. Order = 2
*a2. Actor to perform a clean verification. Order = 3

Figure B.25 – Pattern WCP-22 (Recursion) — The above issue is fully
resolved by my method by prescribing routing-sheets on
the fly as issues are identified.



238
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-23 (Transient Trigger)

The ability for an activity to be triggered by a signal from another part of

the process or from the external environment. These triggers are transient

in nature and are lost if not acted on immediately by the receiving activity.

(a) Start the Handle Overflow activity immediately when the dam capacity

full signal is received.

(b) If possible, initiate the Check Sensor activity each time an alarm trigger

signal is received.

Use Case 23a
Main success scenario:

1. Observe the dam capacity Order = 3

Extensions

Action-steps ‘*a1’ and ‘*b1’ are mutually exclusive. ! XOR

*a. The dam capacity full signal is received. ! Or-Split
*a1. Start the Handle Overflow activity immediately Order = 2
*a2. Observe the dam capacity Order = 3

*b. The dam capacity full signal is off . ! Or-Split
*b1. Stop the Handle Overflow activity. Order = 2
*b2. Observe the dam capacity Order = 3

Figure B.26 – Pattern WCP-23 (Transient Trigger) — These are observa-
tion that trigger activities.



239

Pattern WCP-24 (Persistent Trigger)

The ability for an activity to be triggered by a signal from another part of

the process or from the external environment. These triggers are persistent

in form and are retained by the workflow until they can be acted on by the

receiving activity.

Examples

(a) Initiate the Staff Induction activity each time a new staff member event

occurs.

(b) Start a new instance of the Inspect Vehicle activity for each service

overdue signal that is received.

Use Case WCP-24a and b
Main success scenario:

1. Observe. Order = 2

Extensions

*a. A new staff member event occurred.
*a1. Initiate the staff induction activity. Order = 1
*a2. Observe. Order = 2

Figure B.27 – Pattern WCP-24 (Persistent Trigger) — These are obser-
vation that trigger action-steps.



240
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-25 (Cancel Region)

The ability to disable a set of activities in a process instance. If any of the

activities are already executing, then they are withdrawn. The activities

need not be a connected subset of the overall process model.

Examples

(a) Stop any activities in the Prosecution process, which access the evidence

database from running.

(b) Withdraw all activities in the Waybill Booking process after the freight-

lodgment activity.

Discussion:

The model supports this using selective cancellation of multiple action-steps.

A single click activity on a cluster of action-steps can be implemented.



241

Pattern WCP-26 (Cancel Multiple Instance Ac-

tivity)

Within a given process instance, multiple instances of an activity can be

created. The required number of instances is known at design time. These

instances are independent of each other and run concurrently. At any time,

the multiple instance activity can be cancelled and any instances which have

not completed are withdrawn. This does not aect activity instances that

have already completed.

Example

Run 500 instances of the Protein Test activity with distinct samples. If it

has not completed one hour after commencement, cancel it.

Use Case 26a
Main success scenario

1. Actor to run 500 instances of the protein Test activity with distinct samples. Order = 3
2. Actor to do some thing with the test result. Order = 4

Extension

1a. An hour elapsed and the tests were not completed !
1a1. Actor to cancel the tests. Order = 1
1a2. Process terminated. Order = 2

Figure B.28 – Pattern WCP-26 (Cancel Multiple Instance Activity)



242
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-27 (Complete Multiple Instance Ac-

tivity)

The required number of instances is known at design time. These instances

are independent of each other and run concurrently. It is necessary to

synchronize the instances at completion before any subsequent activities

can be triggered. During the course of execution, it is possible that the

activity needs to be forcibly completed such that any remaining instances

are withdrawn and the thread of control is passed to subsequent activities.

Example

Run 500 instances of the Protein Test activity with distinct samples. One

hour after commencement, withdraw all remaining instances and initiate

the next activity.

Use case 27

Main success scenario

1. Actor to run 500 instances of the protein Test activity with distinct samples. Order = 1
2. Actor to do some thing with the test result Order = 2

Extension

1a. An hour elapsed and the tests were not completed
1a1. Actor to cancel the remaining tests. Order = 3

Figure B.29 – Pattern WCP-27 (Complete Multiple Instance Activity)



243

Pattern WCP-28 (Blocking Discriminator)

The convergence of two or more branches into a single subsequent branch fol-

lowing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when the rst active

incoming branch has been enabled. The discriminator construct resets when

all active incoming branches have been enabled once for the same process

instance. Subsequent enablements of incoming branches are blocked until

the discriminator has reset.

Example

When the first member of the visiting delegation arrives, the check creden-

tials activity can commence. It concludes when all delegation members have

arrived. Owing to staff constraints, only one instance of the check creden-

tials activity can be undertaken at any time. Should members of another

delegation arrive, the checking of their credentials is delayed until the first

check credentials activity has completed.

Use Case 28
Trigger

First member of the visiting delegation arrives

Main success scenario

1. Actor to check credentials. Order = 1

Extension

1a. More members of the current delegation arrive
1a1. Repeat step 1 Order = 1

1b. Members of another delegation arrive
1b1 Actor to ask them to wait Order = 1

Figure B.30 – Pattern WCP-28 (Blocking Discriminator) — This is an
assignment of work to a single processor to a single queue
until all of the action-steps are completed.



244
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-29 (Cancelling Discriminator)

The convergence of two or more branches into a single subsequent branch fol-

lowing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when the first

active incoming branch has been enabled. Triggering the discriminator also

cancels the execution of all of the other incoming branches and resets the

construct

Example

After the extract-sample activity has completed, parts of the sample are

sent to three distinct laboratories for examination. Once the first of these

laboratories completes the sampleanalysis, the other two activity instances

are cancelled and the review-drilling activity commences.

Use Case 29
Main success scenario

1. Actor to extract sample Order = 1
2. Actor sends sample to labs A-C Order = 2
3. Wait Order = 5

Extensions

routing sheets 2a, 2b and 2c are mutualy exclusive.

2a. Lab A returned sample first ! OR-Split
2a1. Actor to cancel labs B and C. Order = 3
2a2. Actor to review drilling. Order = 4

2b. Lab B returned sample first ! OR-Split
2b1. Actor to cancel labs A and C. Order = 3
2b2. Actor to review drilling. Order = 4

2c. Lab C returned sample first ! OR-Split
2c1. Actor to cancel labs A and B. Order = 3
2c2. Actor to review drilling. Order = 4

Figure B.31 – Pattern WCP-29 (Cancelling Discriminator)



245

Pattern WCP-30 (Structured Partial Join)

The convergence of M branches into a single subsequent branch following a

corresponding divergence earlier in the process model. The thread of control

is passed to the subsequent branch when N of the incoming branches have

been enabled. Subsequent enablements of incoming branches do not result

in the thread of control being passed on. The join construct resets when all

active incoming branches have been enabled.

Example

Once two of the preceding three Expenditure Approval activities have com-

pleted, trigger the Issue cheque activity. Wait until the remaining activities

have completed before allowing the Issue Cheque activity to fire again.

Use Case 30
1. Actor to process Expenditure Approval Order = 1
2. Actor to process Expenditure Approval Order = 1
3. Actor to trigger cheque activity Order = 1
4. Actor to process remaining Expenditure Approval Order = 1
5. Actor to fire Issue Cheque activity Order = 2

Figure B.32 – Pattern WCP-30 (Structured Partial Join)



246
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-31 (Blocking Partial Join)

The convergence of two or more branches into a single subsequent branch fol-

lowing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when N of the

incoming branches have been enabled. The join construct resets when all

active incoming branches have been enabled once for the same process in-

stance. Subsequent enable- ments of incoming branches are blocked until

the join has reset.

Example

When the first member of the visiting delegation arrives, the check creden-

tials activity can commence. It concludes when 80 percent of delegation

members have arrived. Owing to staff constraints, only one instance of the

check credentials activity can be undertaken at any time. Should members

of another delegation arrive, the checking of their credentials is delayed until

the first check credentials activity has completed.

1. Actor to process members of the visiting delegation. Order = 2

Extension
1a. 80% of delegation members have arrived. ! Or-Split

1a1. Actor to end processing delegation. Order = 1

1b. members of another delegation arrive ! Or-Split
1b1. Inform of delay. Order = 3
1b2. Place member at the new queue. Order = 4

Figure B.33 – Pattern WCP-31 (Blocking Partial Join) — This is imple-
mented by instructing a single processor to serve a queue
until 80% of delegation member has arrived and then serve
a second logical queue.



247

Pattern WCP-32 (Cancelling Partial Join)

The convergence of two or more branches into a single subsequent branch fol-

lowing one or more corresponding divergences earlier in the process model.

The thread of control is passed to the subsequent branch when N of the

incoming branches have been enabled. Triggering the join also cancels the

execution of all of the other incoming branches and resets the construct.

Example

Once the picture is received, it [or an image of it AO] is sent to three art

dealers for the examination. Once two of the prepare condition report activ-

ities have been completed, the remaining prepare condition report activity

is cancelled and the plan restoration activity commences.

Use Case 32
Main success scenario

1. Actor to send picture to dealer A Order = 1
2. Actor to send picture to dealer B Order = 1
3. Actor to send picture to dealer C Order = 1
4. Plan restoration activity Order = 2

Extensions

4a. Both dealers A and B returned the picture ! OR-Split
4a1. Actor to cancel dealer-Cs examination Order = 3

4b. Both dealers A and C returned the picture ! OR-Split
4b1. Actor to cancel dealerbs examination Order = 3

4c. Both dealers B and C returned the picture ! OR-Split
4c1. Actor to cancel dealeras examination Order = 3

Figure B.34 – Pattern WCP-32 (Cancelling Partial Join)



248
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-33 (Generalised AND-Join)

The convergence of two or more branches into a single subsequent branch

such that the thread of control is passed to the subsequent branch when all

input branches have been enabled. Additional triggers received on one or

more branches between firing of the join persist and are retained for future

rings.

Examples

(a) When all Get Directors Signature activities have completed, run the

Complete Contract activity.

(b) Accumulate engine, chassis and body components from the various pro-

duction lines. When one of each has been received, use one of each

component to assemble the basic car.

Use Case 33a
Main success scenario

1. Get Director signatures. Order = 1
2. Actor to run the Complete Contract activity. Order = 2

Figure B.35 – Pattern WCP-33 (Generalised AND-Join)



249

Pattern WCP-34 (Static Partial Join for Multiple

Instances)

Within a given process instance, multiple concurrent instances of an activity

can be created. The required number of instances is known when the first

activity instance commences. Once N of the activity instances have com-

pleted, the next activity in the process is triggered. Subsequent completion

of the remaining M −N instances are inconsequential.

Example

Examine 10 samples from the production line for defects. Continue with

the next activity when 7 of these examinations have been completed.

Use Case 34a
Main success scenario

1. Examine 10 samples from the production line for defects Order = 2

Extention

1a. 7 of these examinations have been completed ! OR-Split
1a1. Actor to continue with the next activity Order = 1

Figure B.36 – Pattern WCP-34 (Static Partial Join for Multiple In-
stances)



250
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-35 (Cancelling Partial Join for Mul-

tiple Instances)

Description:

Within a given process instance, multiple concurrent instances of an activ-

ity can be created. The required number of instances is known when the

first activity instance commences. Once N of the activity instances have

completed, the next activity in the process is triggered and the remaining

M-N instances are cancelled.

Example

Run 500 instances of the Protein Test activity with distinct samples. Once

400 of these have completed, cancel the remaining instances and initiate the

next activity.

Use Case 35
Main success scenario

1. Actor to Run 500 instances of the Protein
Test activity with distinct samples. Order = 3

! note that activity one will be executed before 1a1 as the condition was not raised.

Extension

1a. 400 of these have completed. ! OR-Split
1a1. Actor to cancel the remaining instances Order = 1
1a2. Actor to initiate the next activity Order = 2

Figure B.37 – Pattern WCP-35 (Cancelling Partial Join for Multiple In-
stances)



251

Pattern WCP-36 (Dynamic Partial Join for Mul-

tiple Instances)

Within a given process instance, multiple concurrent instances of an activ-

ity can be created. The required number of instances may depend on a

number of runtime factors, including state data, resource availability and

inter-process communications and is not known until the initial instance

has completed. At any time, whilst instances are running, it is possible for

additional instances to be initiated providing the ability to do so has not

been disabled. A completion condition is spec ied which is evaluated each

time an instance of the activity completes. Once the completion condition

evaluates to true, the next activity in the process is triggered. Subsequent

completions of the remaining activity instances are inconsequential and no

new instances can be created.

Examples

The despatch of an oilrig from factory to site involves numerous transport

shipment activities. These occur concurrently and although sufficient activ-

ities are started to cover initial estimates of the required transport volumes,

it is always possible for additional activities to be initiated if there is a

shortfall in transportation requirements. Once 90 percent of the transport

shipment activities are complete, the next activity (invoice transport costs)

can commence. The remaining transport shipment activities continue until

the whole rig has been transported.



252
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Use Case 36a
Main success scenario
1. Actor to order 90% of transport Order = 1
2. Actor to invoice transport costs Order = 2
3. Actor to continue to order transport. Order = 3

Use Case 36b
Main success scenario
1. Actor to order transport Order = 2
Extensions
1a. 90\% of transport was ordered ! OR-Split

1a1 Actor to invoice transport costs Order = 1

Figure B.38 – Pattern WCP-36 (Dynamic Partial Join for Multiple In-
stances)



253

Pattern WCP-37 (Acyclic Synchronizing Merge)

Description:

The convergence of two or more branches which diverged earlier in the

process into a single subsequent branch. The thread of control is passed to

the subsequent branch when each active incoming branch has been enabled.

Determination of how many branches require synchronization is made on the

basis of information locally available to the merge construct. This may be

communicated directly to the 69 merge by the preceding diverging construct

or alternatively it can be determined on the basis of local data such as the

threads of control arriving at the merge.

Example

Main success scenario

1. Actor to do P1 Order = 1
2. Actor to do P3 Order = 2
3. Actor to do p4 Order = 3
4. Process ends Order = 4 !XOR merge

Extension

Action steps (2 and 3) as a group are incompatible with action steps (1b1 and 1b2) as a group

1a. Condition B was raised ! XOR Split
Replace action steps 2 and 3 with:
1b1. Actor to do P2 Order = 2
1b2. Actor to do P5 Order = 3

Figure B.39 – Pattern WCP-37 (Acyclic Synchronizing Merge)



254
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-38 (General Synchronizing Merge)

The convergence of two or more branches which diverged earlier in the

process into a single subsequent branch. The thread of control is passed to

the subsequent branch when each active incoming branch has been enabled

or it is not possible that the branch will be enabled at any future time.

Example

Use Case WCP-38
Main success scenario

1. Actor to do P1 Order = 1
2. Actor to do P3 Order = 2
3. Actor to do p4 Order = 3
4. Process ends Order = 4

Extension

Action steps (2 and 3) are together incompatible with action steps (1b1 and 1b2) together.

1a. Condition B was raised
Replace action steps 2 and 3 with:
1b1. Actor to do P2 Order = 2
1b2. Actor to do P5 Order = 3

4a. Condition C was raised
4a1. Actor to repeat the main success scenario

Figure B.40 – Pattern WCP-38 (General Synchronizing Merge)



255

Pattern WCP-39 (Critical Section)

Two or more connected sub graphs of a process model are identified as “crit-

ical sections”. At runtime for a given process instance, only activities in one

of these “critical sections” can be active at any given time. Once execu-

tion of the activities in one “critical section” commences, it must complete

before another ”critical section” can commence.

Example

Both the take-deposit and final-payment activities in the holiday book-

ing process require the exclusive use of the credit-card-processing machine.

Consequently only one of them can execute at any given time.

Use Case WCP-39
Main success scenario

1. Actor to take-deposit order = 1
2. Actor to process final payment order = 2

Figure B.41 – Pattern WCP-39 (Critical Section) — The uniqueness of
the credit card processing machine should be implemented
as queue served by only one actor.



256
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-40 (Interleaved Routing)

Each member of a set of activities must be executed once. They can be

executed in any order but no two activities can be executed at the same

time (i.e. no two activities can be active for the same process instance at

the same time). Once all of the activities have completed, the next activity

in the process can be initiated.

Example

The check-oil, test-feeder, examine-main-unit and review-warranty activi-

ties all need to be undertaken as part of the machine-service process. Only

one of them can be undertaken at a time, however they can be executed in

any order.

Use Case WCP-40
Main success scenario

1. Actor to check-oil Order = 1
2. Actor to test-feeder Order = 1
3. Actor to review-warranty Order = 1

! The uniqueness is maintained by the
! dispatcher and the unique supporting document.

Figure B.42 – Pattern WCP-40 (Interleaved Routing)



257

Pattern WCP-41 (Thread Merge)

At a given point in a process, a nominated number of execution threads in

a single branch of the same process instance should be merged together into

a single thread of execution.

Example

Instances of the register-vehicle activity run independently of each other

and of other activities in the Process Enquiry process. They are created as

needed. When ten of them have completed, the process-registrationbatch

activity should execute once to finalise the vehicle registration system records

update.

Use Case WCP-41
Main success scenario

1. Actor to register-vehicle Order = 2

Extension

1a. Ten vehicle registrations have been completed ! AND-Split
1a1. process-registrationbatch activity Order = 1

Figure B.43 – Pattern WCP-41 (Thread Merge)



258
APPENDIX B. PATTERN-BASED ANALYSIS OF THE CONTROL-FLOW

PERSPECTIVE OF WRITTEN-USE-CASES

Pattern WCP-42 (Thread Split)

At a given point in a process, a nominated number of execution threads can

be initiated in a single branch of the same process instance.

Example

At the completion of the confirm paper receival activity, initiate three in-

stances of the subsequent independent peer review activity.

Use Case WCP-42

Trigger

Paper arrival

Main success scenario:

1. Actor to confirm paper revival Order = 1
2. Acror to send paper to reviewer 1 Order = 2 ! AND-Split
3. Actor to send paper to reviewer 2 Order = 2 ! AND-Split
4. Actor to send paper to reviewer 3 Order = 2 ! AND-Split

Figure B.44 – Pattern WCP-42 (Thread Split)



B.1. CONCLUSION 259

Pattern WCP-43 (Explicit Termination)

A given process (or sub-process) instance should terminate when it reaches

a nominated state. Typically this is denoted by a specific end node. When

this end node is reached, any remaining work in the process instance is

cancelled and the overall process instance is recorded as having completed

successfully.

Example

N/A

Use Case WCP-43
Main success scenario

1. Actor to do A Order = 1
2. Actor to do B Order = 2
3. Actor to do C Order = 3
4. Actor to do D Order = 4
5. Terminate the process Order = 5

Extension

2a. Something was observed ! OR-Split
2a1. Terminate the process Order = 5

Figure B.45 – Pattern WCP-43 (Explicit Termination)

B.1 Conclusion

This completes our demonstration that written Use-Cases, with the extra

notation for order and coexistence, are richly expressive for the purpose of

describing workflows. They have allowed us to represent every one of the

43 workflow patterns suggested as a catalogue by the Workflow Patterns

Initiative.





List of Figures

1 A reference model of the terminology introduced in the glossary xxii

1.1 Gantt chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A first-cut business process meta model . . . . . . . . . . . . . . 13

2.2 BPMN Example . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Petri net example . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 A reference of the Business Process Management terminology

introduced in this section . . . . . . . . . . . . . . . . . . . . . 37

2.6 Use case goal levels . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 UC Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 The restricted grammatical structure of an action step . . . . . 43

3.1 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Use case terminology - reference model . . . . . . . . . . . . . . 65

3.3 Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Ambiguous choice patterns . . . . . . . . . . . . . . . . . . . . . 69

3.5 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Sample Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Business Transaction Routing Sheet . . . . . . . . . . . . . . . . 79

3.8 Run time user interface . . . . . . . . . . . . . . . . . . . . . . . 82

3.9 Run time usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 WCP-01,WCP-12 and WCP-19 . . . . . . . . . . . . . . . . . . 118

5.2 WCP-39 AND WCP-40 . . . . . . . . . . . . . . . . . . . . . . 119

261



262 LIST OF FIGURES

5.3 WCP-2,WCP-3, and WCP-5 . . . . . . . . . . . . . . . . . . . . 122

5.4 WCP-21b,WCP-21a, and WCP-7a . . . . . . . . . . . . . . . . 123

5.5 Producing a Theseus-tree 1/2 . . . . . . . . . . . . . . . . . . . 127

5.6 Producing a Theseus-Tree 2/2 . . . . . . . . . . . . . . . . . . . 128

5.7 Constructing a use case from a Theseus-Tree . . . . . . . . . . . 128

5.8 Unsafe Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 BPMN example . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Extended Written Use Case example . . . . . . . . . . . . . . . 142

6.3 Information Equivalence . . . . . . . . . . . . . . . . . . . . . . 147

6.4 Mean Contributions – All samples . . . . . . . . . . . . . . . . . 151

6.5 Distribution of the Primary Contribution – All Participants –

Both Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B.1 Use Case WCP-01a - Sequence . . . . . . . . . . . . . . . . . . 208

B.2 Use Case WCP-02 — Parallel Split . . . . . . . . . . . . . . . . 209

B.3 Pattern WCP-03 Synchronisation (AND-Join) . . . . . . . . . . 210

B.4 Pattern WCP-4 Exclusive Choice — This approach complies

with Cockburn Guideline 7: “Validate,” Don’t “Check Whether”

[24, Page 95]. One may ask why don’t we place explicit restric-

tions on ‘1a’ and ‘1b’ as they are mutually exclusive. The answer

is that our understanding of the process leads us to realise that

of the two avenues, only one will be opened. . . . . . . . . . . . 211

B.5 Pattern WCP-05 Simple Merge (XOR-Join) — This approach

complies with Cockburn Guideline 7: “Validate,” Don’t “Check

Whether” [24, Page 95]. Action steps ‘2’ and ‘1a1’ are mutually

exclusive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B.6 Pattern WCP-06 (Multi-Choice) — This is the context most

common in BT Financial Group as the customer makes arbitrary

choice of features. If no routing sheet is prescribed - the work

item is closed. The way the use case is written implies that it is

possible not to send anything. . . . . . . . . . . . . . . . . . . 214

B.7 Pattern WCP-07a (Structured synchronising Merge) . . . . . . . 215



LIST OF FIGURES 263

B.8 Pattern WCP-07b (Structured synchronising Merge) In that case,

the pilot prescribes one of the 4 scenarios. That example is il-

lustrated using the Petri Net above . . . . . . . . . . . . . . . . 216

B.9 WCP-7c — Structured synchronising Merge. That example is

illustrated using the Petri Net above. . . . . . . . . . . . . . . . 217

B.10 WCP-08 — (Multi-Merge) . . . . . . . . . . . . . . . . . . . . 218

B.11 WCP-09a — (Pattern WCP-9 (Structured discriminator) . . . 219

B.12 WCP-9b (Structured discriminator) . . . . . . . . . . . . . . . . 221

B.13 WCP-09c — (Pattern WCP-9 (Structured discriminator) . . . 221

B.14 WCP-09c — (Pattern WCP-9 (Structured discriminator) . . . 223

B.15 Pattern WCp-10 (Arbitrary Cycles) — The star notation indi-

cate that the extension has multiple entry points (‘3’ and ‘5’),

see [24, page 103]. . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.16 Pattern WCP-12 (Multiple Instances without Synchronisation) . 225

B.17 Pattern WCP-13 (Multiple Instances with a priory Design-Time

Knowledge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.18 Pattern WCP-14 (Multiple Instances with a priory Run-Time

Knowledge) — The star notation indicate that the extension

has multiple entry points (‘1’ and ‘1a2’), see [24, page 103]. . . . 228

B.19 Pattern WCP-15 (Multiple instances without a priory run-time

knowledge) — This functionality is supported by our models

ability to enable pilots to tailor the process after its start by

prescribing action-steps on the fly. . . . . . . . . . . . . . . . . . 229

B.20 Pattern WCP-16 (Deferred Choice) — This is an example of

mutual exclusive action-step . . . . . . . . . . . . . . . . . . . . 230

B.21 Pattern WCP-17 (Interleaved Parallel Routing) . . . . . . . . . 231

B.22 Pattern WCP-18 (Milestone) . . . . . . . . . . . . . . . . . . . 233

B.23 Pattern WCP-19 (Cancel Activity) — The star notation indicate

that the extension has multiple entry points (‘1’ and ‘2’), see [24,

page 103]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

B.24 Pattern WCP-21 (Structured Loop) — The above can be a

action-step. That will solve the problem, but will create a mis-

leading log. To enrich the log, a counter has to be added, so that

the log can account for the number of iteration on the loop . . . 236



264 LIST OF FIGURES

B.25 Pattern WCP-22 (Recursion) — The above issue is fully resolved

by my method by prescribing routing-sheets on the fly as issues

are identified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

B.26 Pattern WCP-23 (Transient Trigger) — These are observation

that trigger activities. . . . . . . . . . . . . . . . . . . . . . . . 238

B.27 Pattern WCP-24 (Persistent Trigger) — These are observation

that trigger action-steps. . . . . . . . . . . . . . . . . . . . . . . 239

B.28 Pattern WCP-26 (Cancel Multiple Instance Activity) . . . . . . 241

B.29 Pattern WCP-27 (Complete Multiple Instance Activity) . . . . 242

B.30 Pattern WCP-28 (Blocking Discriminator) — This is an assign-

ment of work to a single processor to a single queue until all of

the action-steps are completed. . . . . . . . . . . . . . . . . . . 243

B.31 Pattern WCP-29 (Cancelling Discriminator) . . . . . . . . . . . 244

B.32 Pattern WCP-30 (Structured Partial Join) . . . . . . . . . . . . 245

B.33 Pattern WCP-31 (Blocking Partial Join) — This is implemented

by instructing a single processor to serve a queue until 80% of

delegation member has arrived and then serve a second logical

queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

B.34 Pattern WCP-32 (Cancelling Partial Join) . . . . . . . . . . . . 247

B.35 Pattern WCP-33 (Generalised AND-Join) . . . . . . . . . . . . 248

B.36 Pattern WCP-34 (Static Partial Join for Multiple Instances) . . 249

B.37 Pattern WCP-35 (Cancelling Partial Join for Multiple Instances) 250

B.38 Pattern WCP-36 (Dynamic Partial Join for Multiple Instances) 252

B.39 Pattern WCP-37 (Acyclic Synchronizing Merge) . . . . . . . . . 253

B.40 Pattern WCP-38 (General Synchronizing Merge) . . . . . . . . 254

B.41 Pattern WCP-39 (Critical Section) — The uniqueness of the

credit card processing machine should be implemented as queue

served by only one actor. . . . . . . . . . . . . . . . . . . . . . 255

B.42 Pattern WCP-40 (Interleaved Routing) . . . . . . . . . . . . . . 256

B.43 Pattern WCP-41 (Thread Merge) . . . . . . . . . . . . . . . . . 257

B.44 Pattern WCP-42 (Thread Split) . . . . . . . . . . . . . . . . . . 258

B.45 Pattern WCP-43 (Explicit Termination) . . . . . . . . . . . . . 259



Bibliography

[1] W. M. P. van der Aalst. Verification of workflow nets. In P. Azema

and G. Balbo, editors, Application and Theory of Petri Nets (LNCS

1248), pages 407–426. Springer-Verlag, Berlin, 1997. [cited at p. 27]

[2] W. M. P. van der Aalst. The application of petri nets to workflow

management. Journal of Circuits Systems and Computers, 8(1):21–66,

1998. [cited at p. 12]

[3] W. M. P. van der Aalst. Workflow verification: Finding control-flow

errors using petri-net-based techniques. In W. M. P. van der Aalst,

J. Desel, and A. Oberweis, editors, Proc. BPM’00: Business Process

Management (LNCS 1806), pages 161–183, 2000. [cited at p. xvi, xviii, xx,

7, 18, 19, 25, 27, 129, 162]

[4] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: yet an-

other workflow language. Information Systems, 30(4):245–275, 2005.

[cited at p. 12, 19, 132]

[5] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,

and A. P. Barros. Workflow patterns. Distrib. Parallel Databases,

14(1):5–51, 2003. [cited at p. 21]

[6] W. M. P. van der Aalst and A. H. M. ter Hofstede. Verification of

workflow task structures: A petri-net-based approach. Information

Systems, 25(1):43–69, 2000. [cited at p. 20, 132]

[7] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske.

Business process management: A survey. In W. M. P. van der

265



266 BIBLIOGRAPHY

Aalst, A. H. M. ter Hofstede, and M. Weske, editors, Proc. BPM’03:

Business Process Management (LNCS 2678). Springer-Verlag, Berlin,

2003. [cited at p. 11, 18, 29]

[8] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,

G. Schimm, and A. J. M. M. Weijters. Workflow mining: A survey

of issues and approaches. Data & Knowledge Engineering, 47(2):237–

267, 2003. [cited at p. 32]

[9] W. M. P. van der Aalst, K.M. van Hee, J.M. van Werf, and M. Ver-

donk. Auditing 2.0: Using process mining to support tomorrow’s

auditor. Computer, 43(3):90 –93, 2010. [cited at p. 62]

[10] M. C. L. Abeyasinghe, David J. Greenwood, and D. Eric Johansen.

An efficient method for scheduling construction projects with resource

constraints. International Journal of Project Management, 19(1):29–

45, 2001. [cited at p. 3]

[11] C. Adam Petri and W. Reisig. Petri net. Scholarpedia, 3(4):6477,

2008. [cited at p. 15, 20]

[12] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van

der Aalst. Facilitating flexibility and dynamic exception handling in

workflows through worklets. In Short Paper Proceedings of CAiSE’05

Forum, Porto, Portugal, June 2005. [cited at p. 33]

[13] S. Adolph, P. Bramble, A. Cockburn, and A. Pols. Patterns for Ef-

fective Use Cases. Addison Wesley, 2003. [cited at p. x, xxi, 35, 39, 43]

[14] M. I. Aguirre-Urreta and G. M. Marakas. Comparing conceptual mod-

eling techniques: a critical review of the EER vs. OO empirical liter-

ature. ACM SIGMIS Database, 39(2):9–32, 2008. [cited at p. 23]

[15] B. Albert and T. Tullis. Measuring the user experience. Morgan

Kaufmann, 2008. [cited at p. xii, xiii, xiv, xv, xvi, xix, 23, 44, 45, 46]

[16] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-

King, and S. Angel. A Pattern Language: Towns, Buildings, Con-

struction. Oxford University Press USA, 1977. [cited at p. 21, 117]



BIBLIOGRAPHY 267

[17] I. Alexander. Misuse cases: use cases with hostile intent. Software,

20, no.1:58–66, Jan/Feb 2003. [cited at p. 35]

[18] I. Alexander and N. Maiden. Scenarios, stories, use cases: through the

systems development life-cycle. John Wiley and Sons Ltd, England,

2004. [cited at p. 34]

[19] W. S. Ambler. The Object Primer. Cambridge University Press, 2004.

[cited at p. 13, 36]

[20] H. Anderson, J. Apergis, S.D. Piccolo, C. Geier, C. Kaji, and

S. Leisegang. Professional K2 Blackpearl. John Wiley & Sons, 2009.

[cited at p. 106]

[21] J. E. Bardram. Plans as situated action: an activity theory approach

to workflow systems. In Proc. ECSCW’97: fifth European Conference

on Computer-Supported Cooperative Work, 1997. [cited at p. 33]

[22] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,

L. Petrucci, R. Post, C. Stehno, and M. Weber. Applications and

Theory of Petri Nets, chapter The Petri Net Markup Language: Con-

cepts, Technology, and Tools, pages 483–505. 2003. [cited at p. 18, 20]

[23] L. Carrol. Through the Looking-Glass, and What Alice Found There.

1872. Available from Project Gutenberg at http://www.gutenberg.

org/files/12/12.txt. [cited at p. 115, 133, 145]

[24] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 1999.

[cited at p. x, xi, xii, xiv, xv, xvi, xvii, xviii, xix, xxi, 35, 36, 38, 39, 40, 41, 42, 43, 56,

64, 67, 90, 129, 211, 212, 224, 228, 234, 262, 263]

[25] Various Contributors. The Oxford English Dictionary. 2nd ed, on line

edition, June 1989. [cited at p. x, xiii, xiv, xv, xvi, xviii, xix, xx, 3, 6, 25, 41, 50,

67, 72, 73, 83, 97, 120]

[26] K. Cox, A. Aurum, and R. Jeffery. An experiment in inspecting the

quality of use case descriptions, 2008. [cited at p. 111]

http://www.gutenberg.org/files/12/12.txt
http://www.gutenberg.org/files/12/12.txt


268 BIBLIOGRAPHY

[27] K. Cox, K. Phalp, and M. Shepperd. Comparing use case writing

guidelines. In Proc. REFSQ’01: Workshop on Requirements Engi-

neering Foundation of Software Quality. [cited at p. 22, 56]

[28] David Crystal. How Language Works. Penguin Group (Australia),

2008. [cited at p. 43]

[29] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.

Complexity and expressive power of logic programming. ACM Com-

put. Surv., 33(3):374–425, September 2001. [cited at p. 20]

[30] T. C. Davis, R. F. Holcombe, H. J. Berkel, S. Pramanik, and S. G.

Divers. Informed consent for clinical trials: a comparative study of

standard versus simplified forms. Journal of the National Cancer In-

stitute, 90(9), May 1998. [cited at p. 55, 56, 58]

[31] A.L.L. de Figueiredo, W.L. Andrade, and P.D.L. Machado. Generat-

ing interaction test cases for mobile phone systems from use case spec-

ifications. ACM SIGSOFT Software Engineering Notes, 31, November

2006. [cited at p. 35]

[32] J. Desel and W. Reisig. Lectures on Petri Nets I: Basic Models, chap-

ter Place/transition Petri Nets. 1998. [cited at p. 20, 132]

[33] G.. Deutsche. through the language glass. Metropolitan Books, Henry

Holt and Company, New York, 2010. [cited at p. 1, 50, 51]

[34] A. Dix, L. Finlay, G. Abowd, and R. Beale. Human Computer Inter-

action. Pearson Education, 2004. [cited at p. x, 43, 44, 45, 64, 90, 100, 144,

157]

[35] B. Dushnik and E. W. Miller. Partially ordered sets. American Jour-

nal of Mathematics, 63(3):600–610. [cited at p. xvi, 39]

[36] Rabbi Eleazar. Babylonic talmud. Tractate Megillah. [cited at p. 11]

[37] D. Fahland, C. Favre, B. Jobstmann, J. Koehler, H. Völzer

N. Lohmann, and K. Wolf. Instantaneous soundness checking of in-

dustrial business process models. In U. Dayal, J. Eder, J. Koehler,



BIBLIOGRAPHY 269

and H. Reijers, editors, Proc. BPM’09: Business Process Management

(LNCS 5701), pages 278–293, 2009. [cited at p. 27, 129, 162]

[38] E. B. Fernandez and J. C. Hawkins. Determining role rights from use

cases. In RBAC ’97: Proceedings of the second ACM workshop on

Role-based access control, pages 121–125, New York, NY, USA, 1997.

ACM. [cited at p. 35, 83]

[39] Diogo R. Ferreira and Daniel Gillblad. Discovering process mod-

els from unlabelled event logs. In U. Dayal, J. Eder, J. Koehler,

and H. Reijers, editors, Proc. BPM’09: Business Process Manage-

ment (LNCS 5701), pages 143–158. Springer-Verlag, Berlin, 2009.

[cited at p. 32]

[40] M. Fiammante. Dynamic SOA and BPM. IBM Press, Pearson PLC,

2010. [cited at p. 57]

[41] M. Fjeld, K. Lauche, M. Bichsel, F. Voorhorst, H. Krueger, and

M. Rauterberg. Physical and virtual tools: Activitytheory ap-

plied to the design of groupware. Comput. Supported Coop. Work,

11(1-2):153–180, 2002. doi = http://dx.doi.org/10.1023/A:

1015269228596. [cited at p. 33]

[42] B. Flyvbjerg. Five misunderstandings about case-study research.

Qualitative Inquiry, 12:219–245, 2006. [cited at p. 92]

[43] Rabbi Jonathan from Bait Govrin. Palestinian talmud. Tractate

Megillah, pages 4:15a),. [cited at p. 1]

[44] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Longman, 1995. [cited at p. 21, 117]

[45] A. Gemino and Y. Wand. A framework for empirical evaluation of

conceptual modeling techniques. Requirements Engineering, 9(4):248–

260, November 2004. [cited at p. 22, 146]

[46] A. Gemino and Y. Wand. A framework for empirical evaluation of

conceptual modeling techniques. Requir. Eng., 9(4):248–260, 2004.

[cited at p. 139, 140, 156]

http://dx.doi.org/10.1023/A:1015269228596
http://dx.doi.org/10.1023/A:1015269228596


270 BIBLIOGRAPHY

[47] T. R. G. Green. Cognitive dimensions of notations. In People and

Computers V, pages 443–460. University Press, 1989. [cited at p. 136,

151]

[48] T.R.G. Green and M. Petre. Usability analysis of visual programming

environments: A ‘cognitive dimensions’ framework. Journal of Visual

Languages & Computing, 7:131–174(44), June 1996. [cited at p. 24]

[49] V. Gruhn and R. Laue. What business process modelers can learn

from programmers. Science of Computer Programming - Special Is-

sue on Increasing Adequacy and Reliability of EIS, 65(1):4–13, 2007.

[cited at p. 136]

[50] R. Guindon. Designing the design process: exploiting opportunistic

thoughts. Hum.-Comput. Interact., 5(2):305–344, 1990. [cited at p. 24]

[51] J.G. Hall, M. Jackson, R.C. Laney, B. Nuseibeh, and L. Rapan-

otti. Relating software requirements and architectures using problem

frames. In Proc. RE’02: IEEE Joint International Conference on

Requirements Engineering, pages 137–144. IEEE, 2002. [cited at p. 36]

[52] R. Hamadi and B. Benatallah. A petri net-based model for web ser-

vice composition. In K. Schewe and X. Zhou, editors, Proceedings

of the 14th Australasian Database Conference, volume 17 of Con-

ference Proceeding, pages 191–200, Adelaide, Australia, 2003. ACM

International, Australian Computer Society, Darlinghurst, Australia.

[cited at p. 20, 132]

[53] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke.

A comprehensive approach to flexibility in workflow management sys-

tems. In WACC ’99: Proceedings of the international joint conference

on Work activities coordination and collaboration, pages 79–88, New

York, NY, USA, 1999. ACM. [cited at p. 62, 111]

[54] J. Hidders, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hof-

stede, and J. Verelst. When are two workflows the same? In Proc.

CATS’05: Australasian symposium on Theory of computing, pages



BIBLIOGRAPHY 271

3–11, Darlinghurst, Australia, Australia, 2005. Australian Computer

Society. [cited at p. 120]

[55] J. Hoogland. Change in control. In U. Dayal, J. Eder, J. Koehler,

and H. Reijers, editors, Proc. BPM’09: Business Process Management

(LNCS 5701), pages 28–30, 2009. [cited at p. 32]

[56] R. Hurlbut. A survey of approaches for describing and formal-

izing use cases. Department of Computer Science, Illinois, Insti-

tute of Technology, Technical report:XPT–TR–97–03, 1997. URL

http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html. [cited at p. 39]

[57] I. Jacobson. Object-oriented software engineering. ACM, New York,

NY, USA, 1992. [cited at p. x, 35, 36]

[58] T. Jokela, N. Iivari, J. Matero, and M. Karukka. The standard of user-

centered design and the standard definition of usability: analyzing

ISO 13407 against ISO 9241-11. In Proc. CLIHC ’03: Latin American

conference on Human-computer interaction, pages 53–60. ACM, 2003.

[cited at p. xviii, 44]

[59] Harold Kerzner. Project Management: A Systems Approach to Plan-

ning, Scheduling, and Controlling. John Wiley & Sons, Inc, 2009.

[cited at p. 3]

[60] J. Kim, J. Hahn, and H. Hahn. How do we understand a system

with (so) many diagrams? cognitive integration processes in diagram-

matic reasoning. Information Systems Research, 11(3):284–303, 2000.

[cited at p. 23, 24]

[61] G. R. Klare. Assessing readability. Reading Research Quarterly,

10(1):62–102. [cited at p. 22, 54]

[62] D. R. Krathwohl. A Revision of Bloom’s Taxonomy: An Overview.

Theory Into Practice, 41(4):212–218, 2002. [cited at p. 148]

[63] K. Kuutti. The concept of activity as a basic unit of analysis for

cscw research. In ECSCW’91: Proceedings of the second conference

on European Conference on Computer-Supported Cooperative Work,

 http://www.iit.edu/~rhurlbut/xpt-tr-97-03.html


272 BIBLIOGRAPHY

pages 249–264, Norwell, MA, USA, 1991. Kluwer Academic Publish-

ers. [cited at p. 33]

[64] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes)

worth ten thousand words. Cognitive Science, 11(1):65–100, 1987.

[cited at p. xiv, 57, 135, 146]

[65] A. Lauder and S. Kent. Precise visual specification of design patterns.

In E. Jul, editor, Proc. ECOOP’98: 12th European Conference on

Object-Oriented Programming, pages 114–134, 1998. [cited at p. 21]

[66] W. J. Lee, S. D. Cha, and Y. R. Kwon. Integration and analysis

of use cases using modular petri nets in requirements engineering.

IEEE Transactions on Software Engineering, 24(12):1115–1130, 1998.

[cited at p. 20, 57, 121, 129, 162]

[67] D. Leffingwell and D. Widrig. Managing software requirements: a uni-

fied approach. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2000. ISBN 0-201-61593-2. [cited at p. 35, 64]

[68] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN

1-55860-348-4. [cited at p. 121]

[69] G. Reid Lyon, Sally E. Shaywitz, and Bennett A. Shaywitz. A defini-

tion of dyslexia. Annals of Dyslexia, 53(1):1–14, 1 2003. [cited at p. 53]

[70] E. W. Mayr. An algorithm for the general petri net reachability prob-

lem. In STOC ’81: Proceedings of the thirteenth annual ACM sympo-

sium on Theory of computing, pages 238–246, New York, NY, USA,

1981. ACM. [cited at p. 20]

[71] G. Harry McLaughlin. Smog grading — a new readability formula.

pages 639–646, May 1969. [cited at p. xvii, 54, 55, 58]

[72] J. Mendling, H. A. Reijers, and J. Cardoso. What makes process mod-

els understandable? In G. Alonso, P. Dadam, and M. Rosenmann,

editors, Proc. BPM’07: Business Process Management (LNCS 4714),

pages 48–63, 2007. [cited at p. 24, 145]



BIBLIOGRAPHY 273

[73] S. Milgram. Obedience to Authority: An Experimental View. Harper

and Row, New York, 1974. [cited at p. x]

[74] H. Mili, G. Tremblay, Guitta Bou Jaoude, É. Lefebvre, L. Elabed,

and Ghizlane El Boussaidi. Business process modeling languages:

Sorting through the alphabet soup. ACM Comput. Surv., 43(1):4:1–

4:56, December 2010. [cited at p. 12, 13, 17]

[75] George A. Miller. The magical number seven, plus or minus two: Some

limits on our capacity for processing information. The Psychological

Review, 63:81–97, 1956. [cited at p. 44]

[76] T. G. Moher, D. C. Mak, B. Blumenthal, and L. M. Leventhal. Com-

paring the comprehensibility of textual and graphical programs: the

case of petri nets. In Empirical Studies of Programmers: Fifth Work-

shop, 1993. [cited at p. 57, 135]

[77] D. Moody. The “physics” of notations: Toward a scientific ba-

sis for constructing visual notations in software engineering. IEEE

Transactions on Software Engineering, 35:756–779, November 2009.

[cited at p. 64, 146]

[78] Peter W. G. Moris. The management of projects. Thomas Telford

Services, 1994. [cited at p. 4]

[79] T. Murata. Petri nets: Properties, analysis and applications. vol-

ume Vol. 77, no. 4 of Proceedings of the IEEE., pages 541–580, 1989.

[cited at p. 12, 13, 15, 20]

[80] B. A. Nardi, editor. Context and consciousness: activity theory and

human-computer interaction. Massachusetts Institute of Technology,

Cambridge, MA, USA, 1995. [cited at p. 33]

[81] J. Nielsen. Usability Engineering. Academic Press, Inc., San Diego,

1993. [cited at p. 21, 44]

[82] Jakob Nielsen and Thomas K. Landauer. A mathematical model of

the finding of usability problems. In Proc. CHI ’93: ACM conference



274 BIBLIOGRAPHY

on Human Factors in Computing Systems, pages 206–213, New York,

NY, USA, 1993. ACM. [cited at p. 144]

[83] D. Norman. Cognitive engineering. In Norman, D. and Draper, S.

Editors; User centered design: new perspectives on human computer

interaction, pages 31–61. Hillsdale, 1986. [cited at p. xvii, 22, 23]

[84] M. Notomi and T. Murata. Hierarchical reachability graph of bounded

petri nets for concurrent-software analysis. IEEE Transactions on

Software Engineering, 20(5):325–336, May 1994. [cited at p. xvii, 20, 124]

[85] Office of Government Commerce of Great Britain. Managing success-

ful projects with PRINCE2. The Office of Government and Commerce

under licence from her Majesty’s Stationary Office. [cited at p. xvii, 4]

[86] A. Ottensooser and A. Fekete. An enactment-engine based on use-

cases. In G. Alonso, P. Dadam, and M. Rosemann, editors, Proc.

BPM’07: Business Process Management (LNCS 4714), pages 230–

245, Heidelberg, 2007. Springer-Verlag. [cited at p. vii, 8, 34, 57, 78, 79]

[87] A. Ottensooser and A. Fekete. Workflow patterns represented in use-

cases. Technical report, School of Information Technologies, Univer-

sity of Sydney, Australia, 2008. TR-611, ISBN 978-1-74210-021-0.

[cited at p. viii]

[88] A. Ottensooser and A. Fekete. Comparing readability of graphical

and sentential process design notations – data analysis report. Tech-

nical report, School of Information Technologies, University of Sydney,

Australia, 2010. TR-658, ISBN 978-1-74210-198-9. [cited at p. vii, 143,

145, 150, 153]

[89] A. Reijers A.H. Mendling j. Ottensooser, A. Fekete and C. Menic-

tas. Making sense of business process descriptions: An experimental

comparison of graphical and textual notations. J. Syst. Software, to

appear 2011. [cited at p. vii]

[90] S. Paracchini, C.D. Steer, L.L. Buckingham, A.P. Morris, S. Ring,

and et al. Association of the kiaa0319 dyslexia susceptibility gene



BIBLIOGRAPHY 275

with reading skills in the general population. J Psychiatry, 2008.

[cited at p. 53]

[91] J. Parsons and L. Cole. What do the pictures mean? guidelines

for experimental evaluation of representation fidelity in diagrammati-

cal conceptual modeling techniques. Data & Knowledge Engineering,

55(3):327342, 2005. [cited at p. 139, 140, 156]

[92] S. Pinker. The Language Instinct. Penguin Book, Kindle Edition,

London, 1994. [cited at p. 47, 48, 49]

[93] R Development Core Team. R: A Language and Environment for Sta-

tistical Computing. R Foundation for Statistical Computing, Vienna,

Austria, 2005. [cited at p. x, 149]

[94] H.A. Reijers and J. Mendling. A study into the factors that influence

the understandability of business process models. IEEE Transactions

on Systems, Man, and Cybernetics – Part A, 2010. [cited at p. 139, 140,

156]

[95] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and

D. Edmond. Workflow resource patterns: Identification, represen-

tation and tool support. In O. Pastor and J. Falcao e Cunha, editors,

Proc. CAiSE’05: International Conference on Advanced Information

Systems Engineering (LNCS 3520), pages 216–232. Springer-Verlag,

2005. [cited at p. xx, 29]

[96] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N. Mul-

yar. Workflow control-flow patterns: A revised view. Technical Report

BPM Center Report BPM-06-22, BPM Center, 2006. [cited at p. 12, 21,

66, 70, 117, 124, 127, 131]

[97] N. Russell, P. Wohed, W. M. P. van der Aalst, M. Dumas, and

A. H. M. ter Hofstede. chapter Pattern-Based Analysis of the Control-

Flow Perspective of UML Activity Diagrams, pages 63–78. 2005.

[cited at p. 13, 15, 21, 116, 120]



276 BIBLIOGRAPHY

[98] S. S. Shapiro and M. B. Wilk. An analysis of variance test for

normality (complete samples). Biometrika, 52(3-4):591611, 1965.

[cited at p. 152]

[99] S. Shaywitz. Overcoming Dyslexia: A New and Complete Science-

Based Program for Reading Problems at Any Level. 2003], publisher

= Alfred A. Knopf. [cited at p. 51, 52, 146]

[100] L. Si and J. Callan. A statistical model for scientific readability. In

Proc. CIKM’01: tenth international Conference on Information and

Knowledge Management, pages 574–576, New York, NY, USA, 2001.

ACM. [cited at p. 22, 58]

[101] Luo Si and Jamie Callan. A statistical model for scientific readability.

In Proceedings of the tenth international conference on Information

and knowledge management, CIKM ’01, pages 574–576, New York,

NY, USA, 2001. ACM. [cited at p. 54, 55]

[102] K. Siau. Informational and computational equivalence in comparing

information modeling methods. Journal of Database Management,

15(1):73–86, Jan.-Mar 2004. [cited at p. 146]

[103] K. Siau and M. Rossi. Evaluation techniques for systems analysis

and design modelling methods – a review and comparative analysis.

Information Systems Journal, 2008. [cited at p. 22]

[104] StataCorp Corporation. Stata – Statistical Software: Release 7.0.

College Station, TX, 2001. [cited at p. 149]

[105] G. Steiner. After Babel: Aspects of Language and Translation. Oxford

Univeristy Press, Oxford, 1998. [cited at p. 47, 50]

[106] R. N. Taylor and A. van der Hoek. Software design and architecture:

The once and future focus of software engineering. In FOSE ’07: Fu-

ture of Software Engineering, pages 226–243, Washington, DC, USA,

2007. IEEE Computer Society. [cited at p. 21]

[107] S. Taylor. Extreme terseness: Some languages are more agile than

others. In M. Marchesi and G. Succi, editors, Proc. XP’03, pages

334–336, 2003. [cited at p. 21]



BIBLIOGRAPHY 277

[108] F. Tørner, M. Ivarsson, F. Pettersson, and P. Öhman. Defects in auto-

motive use cases. In ISESE ’06: Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software engineering, pages

115–123, New York, NY, USA, 2006. ACM. [cited at p. 56]

[109] K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. an der Werf.

Yasper: a tool for workflow modeling and analysis. In Proceedings of

the Sixth international Conference on Application of Concurrency To

System Design, pages 279–282, Washington, DC, 2006. ACSD. IEEE

Computer Society. [cited at p. x]

[110] I. Vessey. Cognitive fit: A theory-based analysis of the graphs versus

tables literature. Decision Sciences, 22(2):219–240, 1991. [cited at p. 137]

[111] C. Ware, H. Purchase, L. Colpoys, and M. McGill. Cognitive measure-

ments of graph aesthetics. Information Visualization, 1(2):103–110,

2002. [cited at p. 21, 24]

[112] S. A. White. Introduction to BPMN. BPTrends, July 2004.

[cited at p. xiii, 13, 14]

[113] F Wilcoxon. Individual comparisons by ranking methods. Biometrika,

1(6):80–83, December 1945. [cited at p. 152]

[114] James M. Wilson. Gantt charts: A centenary appreciation. European

Journal of Operational Research, 149(2):430 – 437, 2003. Sequencing

and Scheduling. [cited at p. 2]

[115] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,

and N. Russell. On the Suitability of BPMN for Business Process

Modelling. In S. Dustdar, J. Fiadero, and A. Sheth, editors, Proc.

BPM’06: Business Process Management (LNCS 4102), pages 161–

176, 2006. [cited at p. 15, 21, 66, 116, 120]

[116] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén. Experimentation in software engineering: an intro-

duction. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[cited at p. x, 25, 134]



278 BIBLIOGRAPHY

[117] Workflow Management Coalition. Terminology and glossary. Techni-

cal report, February 1999. WFMC-TC-1011. [cited at p. xii, xiii, xvii, xx,

xxi, 12, 29, 30, 31, 33, 35]

[118] Edward Yourdon and Larry L. Constantine. Structured design : fun-

damentals of a discipline of computer program and systems design.

Yourdon Press, 2nd edition, 1979. [cited at p. 36]

[119] P. Zave. Classification of research efforts in requirements engineer-

ing. In Proceedings of the Second IEEE International Symposium on

Requirements Engineering, pages 214 – 216, mar 1995. [cited at p. 34]



Index

§1.1 - Gantt chart, n., 3

§1.2 - Risk Register, n., 4

§1.3 - work, n., 6

§1.4 - Work Flow, n., 6

§2.1 - BPMN, n., 14

§2.2 - Petri net, n., 18

§2.3 - workflow net, n., 19

§2.4 - sound workflow net, n., 20

§2.5 - reachability graph of a net, n., 20

§2.9 - live Petri net, a., 26

§2.10 - bounded, a., 26

§2.11 - safe, a. , 26

§2.12 - structurally bounded, a., 26

§2.13 - well formed, a, 26

§2.14 - workflow, n., 29

§2.15 - workflow engine, n., 30

§2.16 - workflow modelling language, n.,

30

§2.16 - activity, n., 30

§2.18 - workflow participant, n., 30

§2.19 - role, n., 31

§2.20 - workitem, n, 31

§2.21 - worklist, n., 31

§2.22 - Business Activity Monitor, n., 31

§2.25 - stakeholder, n., 40

§2.26 - primary actor, n., 40

§2.23 - written use case, n., 39

§2.24 - partial order, a., 39

§2.30 - specification, n., 41

§2.27 - use case name, n., 40

§2.28 - action step, n., 41

§2.29 - action step ID, n., 41

§2.31 - scenario, n., 41

§2.32 - use case, n., 41

§2.33 - use case set, n., 42

§2.34 - main success scenario, n., 42

§2.35 - extension, n., 43

§2.36 - usability, n., 44

§2.37 - Usability metric, n., 44

§2.38 - within subjects, a., 45

§2.39 - between subjects, a., 45

§2.40 - mixed design, n., 45

§2.41 - independent variable, n., 45

§2.42 - Dependent Variable, n., 45

§2.43 - Ordinal Data, n., 46

§2.44 - interval data, n., 46

§2.45 - Ratio Data, n., 46

§2.47 - readability formula, n., 54

§2.0 - language, n., 50

§3.1 - to gild the lily, v., 67

§3.2 - order of processing identifier, a.,

67

§3.3 - extended written use case, n., 72

§3.4 - instruct, v. , 73

§3.5 - instruction, n., 73

§3.6 - business transaction routing sheet,

n., 73

§3.7 - observe, v., 74

§3.8 - observation, n., 74

§3.9 - supporting document, n., 74

279



280 INDEX

§3.10 - observe, method., 76

§3.11 - prescribe, method. , 76

§3.12 - getNext, method., 76

§3.13 - done, v., 76

§3.14 - diarise, method. , 76

§3.15 - should not be done, v., 77

§3.16 - use case oriented workflow en-

gine, n., 77

§3.17 - pilot, n., 83

§3.18 - pilot, v., 85

§5.1 - induction, n., 120

§5.2 - deduction, n., 120

§5.3 - Theseus tree, n., 124

§6.6 - readability, n., 22

§6.7 - initial domain knowledge, n., 24

§6.8 - placebo, n., 25

§6.1 - absolute readability, n., 139

§6.2 - primary contribution, n., 145

§6.3 - secondary contribution, n., 145

§6.4 - information equivalence, n., 146

§6.5 - allocation bias, n., 148

absolute readability, 139

Action Step, 40, 41, 43, 67, 70

Action Step,ID, 41

Activity, 30, 31, 41, 96

allocation bias, 146

Audit Data Terminology, 86

Basil, 94

Between Subjects, 45

BPMN, 14

BT Financial Group, 91

BTeP, 98

Business Activity Monitor (BAM), (n).,

31

Business Analyst, 77

Business Process Manager, 87

Business Transaction Routing sheet, 73,

80

Catalogue Workflow Item, 83

comment assistant, 96

Data, Interval, 46

Data, Ordinal, 45

Data, Ratio, 46

Dead Lock, 129

deduction, 120

diarise, 76

Dispatcher, 86

Dispatching Algorithm, 87

done, 76

Extended written Use Case, 71

Extension, 43

FileNet, 60, 91

Gantt chart, 2

GetNext, 76

Human Recourse, 81

IBM, 91

induction, 120

Infinite loop, 127

information equivalence, 146

initial domain knowledge, 24

Instruct, 72

Instruction, 73, 81

K2, 60

language, 50

Mixed Design, 45

Observation, 81, 85, 86, 96

Observation, n., 74

Observe, 76

Observe, v., 73

Order of Processing, 80

Order of Processing Identifier, 67, 70

Partial Order, 39, 41, 64

Petri Net, 18, 19

Petri net, bounded, 26

Petri net, live, 26



INDEX 281

Petri net, safe, 26

Petri net, structurally bounded, 26

Petri net, well formed, 26

Petri-net, 129

Pilot (n), 73, 83, 88

Pilot (v), 83

placebo, 25

Prescribe, 76

Primary Actor, 40, 42

primary contribution, 145

Reachability Graph of a Net, 20

readability, 22

Readability Formula, 54

Risk log, 4

Role, 30, 41, 80

Scenario, 41–43

Scenario, Main Success, 42

secondary contribution, 145

Security Officer, 81

Should Not Be Done, 76

Specification, 41

Stakeholder, 39

Supporting Document, 74

Theseus tree, 124

TIBCO, 60

to gild the lily, 67

Usability, 44

Usability Metric, 44

Use Case, v, 2, 11, 39–42, 162

Use Case Oriented Workflow Engine, 77

Use Case Set, 41

Use Case,Goal, 40

Use Case,Name, 40, 42

Use Case,Written, 39–42, 64, 67, 74, 80,

83

Use-Case Oriented Workflow-Engine, 94

Use-Case,Written, 98

Use-Case,Written - example, 207, 209–

213, 215, 216, 218, 219, 221,

223–227, 229–232, 234–239, 241–

251, 253–259

User Interface, 81

Variable, Dependent, 45

Variable, Independent, 45

WCP-01, 67, 70, 117, 118, 207

WCP-02, 67, 71, 122, 209

WCP-03, 67, 71, 122, 210

WCP-04, 211

WCP-05, 67, 71, 122, 212

WCP-06, 213

WCP-07, 71, 215, 216

WCP-07a, 123

WCP-08, 218

WCP-09, 67, 219, 221, 223

WCP-10, 67, 224

WCP-11, 225

WCP-12, 118, 225

WCP-13, 71, 226

WCP-14, 227

WCP-15, 229

WCP-16, 230

WCP-17, 231

WCP-18, 232

WCP-19, 118, 234

WCP-20, 235

WCP-21, 236

WCP-21a, 123

WCP-21b, 123

WCP-22, 237

WCP-23, 238

WCP-24, 239

WCP-26, 241

WCP-27, 242

WCP-28, 243

WCP-29, 244

WCP-30, 245

WCP-31, 246

WCP-32, 247

WCP-33, 248



282 INDEX

WCP-34, 249

WCP-35, 250

WCP-36, 251

WCP-37, 253

WCP-38, 254

WCP-39, 119, 255

WCP-40, 70, 71, 119, 256

WCP-41, 257

WCP-42, 258

WCP-43, 117, 259

WCP01, 66

WCP02, 66

WCP03, 66

WCP05, 66

Wespack-Life, 91

Westpac Banking Corporation, 91

Within Subjecst, 45

Work, 5

Work Flow, 6

Workflow, 29

workflow configuration officer, 80

Workflow Engine, 29, 30, 77

Workflow Modelling language, 11

Workflow modelling language, 30

Workflow Net, 19

Workflow Net,Sound, 19

Workflow Participant, 30, 31, 83

Workitem, 5, 7, 31

Worklist, 31

Written Use Case, Extended, 71


	Contents
	Glossary
	1 Introduction
	1.1 The Project Management Approach
	1.2 The Workflow Management Approach
	1.3 Overview of the Research Program

	2 Context
	2.1 Business Process Management
	2.1.1 Modelling
	2.1.2 Verification
	2.1.3 Enactment
	2.1.4 Monitoring
	2.1.5 Tuning

	2.2 Requirements Engineering
	2.2.1 Use Case
	2.2.2 Use Case Languages

	2.3  Computer Human Interaction
	2.4 Linguistics
	2.5 Literacy
	2.6 Reflections

	3 Architecture
	3.1 Methodology
	3.2 The Enactment Round Trip
	3.3 Extending the Input Language
	3.4 Use Case Oriented Workflow Engine
	3.4.1 Properties
	3.4.2 Methods — Run Time Interface
	3.4.3 The Engine
	3.4.4 The Role of the Business Analyst
	3.4.5 The Role of the Workflow Configuration Officer
	3.4.6 The Role of the Human Resource Team
	3.4.7 The Role of the Security Officer
	3.4.8 The Role of the Workflow Participant
	3.4.9 The Role of the Dispatcher
	3.4.10 The Role of the Business Process Manager

	3.5 Conclusion
	3.6 Reflection

	4 Case Study
	4.1 Methodology
	4.2 Background
	4.3 Basil
	4.4 BTeP
	4.4.1 Skills and Difficulty
	4.4.2 Observation Menu
	4.4.3 Index
	4.4.4 Dispatching
	4.4.5 Roster
	4.4.6 Workflow Patterns

	4.5 Implementation on Off The Shelf Engine
	4.6 Experience Gained
	4.7 Benefits Found
	4.8 Conclusion
	4.9 Reflections

	5 Expressive Power
	5.1 Methodology
	5.2 Patterns Approach
	5.3 Sound Workflow Nets Approach
	5.4 Unsafe Patterns
	5.5 Conclusion
	5.6 Reflections

	6 Readability
	6.1 Methodology
	6.2 Background
	6.3 Problem Statement
	6.4 Experiment Planning
	6.4.1 Hypotheses

	6.5 Experiment Operation
	6.5.1 Participants
	6.5.2 Instruments
	6.5.3 Procedure
	6.5.4 Pilot Study
	6.5.5 Control

	6.6 Data Analysis
	6.6.1 Descriptive Statistics
	6.6.2 Discussion of the Data
	6.6.3 Readability Comparison
	6.6.4 Prediction
	6.6.5 Interpretation of the Results

	6.7 Conclusion
	6.8 Reflection

	7 Conclusion
	8 Further Research
	Appendices
	A Participant's workbook
	B Pattern-Based Analysis of the Control-Flow Perspective of written-use-cases
	B.1 Conclusion

	List of Figures
	Bibliography
	Index

