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Arsenic (As) contamination of soils is a major environmental problem due to its toxic and 

carcinogenic nature. Historical use of As-containing pesticides has resulted in the 

contamination of soils with high and variable concentrations of As in many parts of Australia. 

Phytoremediation using As-hyperaccumulating ferns can be potentially utilised as an 

environmental friendly and low-cost remediation technology to phytoextract As from soils at 

sites containing elevated and varying concentration of As. 

The spatial variability of total and phosphate-extractable As concentrations was evaluated in 

soil adjacent to a cattle-dip site located at Wollongbar in northern NSW, Australia. The results 

from the linear mixed model showed that total (0–0.2 m) and phosphate-extractable (0–0.2, 

0.2–0.4 and 0.4–0.6 m depths) As concentrations in the soil adjacent to the dip site varied 

greatly and increased significantly (P = 0.004–0.048) toward the dip site, indicating that As 

variability in soil was spatially correlated with distance from the dip. The data suggest that 5 

samples should be required to assess the soil contamination level (mean = 826 mg kg
–1

) and 

15 samples would be required to evaluate the effects of phytoremediation of As-contaminated 

site. The proposed guidelines on sampling requirements are important to estimate the 

variability in As contamination levels around other cattle-dip sites and to monitor changes in 

soil As content from phytoremediation activities. 

Ensuing study compared the phytoremediation potential of Pityrogramma calomelanos var. 

austroamericana (gold dust fern) against the well-known Pteris vittata (Chinese brake fern) 

over a 27-month duration grown at the cattle-dip site described earlier. The ferns were planted 

in January 2009 and harvested following 10, 22 and 27 months of growth. After 10 months of 
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growth (short-term data), P. calomelanos var. austroamericana produced significantly higher 

frond dry biomass, possessed higher frond As concentration and removed more As in fronds 

(mean = 130 g plant
–1

, 887 mg kg
–1

 and 124 mg plant
–1

, respectively; P < 0.05) than P. vittata 

(mean = 81 g plant
–1

, 674 mg kg
–1

, 57 mg plant
–1

). Further samplings up to 27 months (long-

term data) confirmed the earlier results that the mean frond dry biomass, As concentration and 

As uptake were significantly higher in P. calomelanos var. austroamericana than P. vittata. 

In the three harvests over the 27-month period, P. calomelanos var. austroamericana 

removed (8,053 mg As) 2.65 times higher As than P. vittata (3,042 mg As). For the surface 

(0−20 cm) and subsurface (40−60 cm) layers, the mean total soil As content was significantly 

(P < 0.05) reduced by 49% and 63%, respectively, using P. calomelanos var. 

austroamericana; and 17% and 15%, respectively, by P. vittata (P > 0.05). It is estimated that 

P. calomelanos var. austroamericana would take approximately 6 years to decrease mean 

total As content below the ecological investigation level (EIL; 20 mg kg
−1

) limit in the surface 

and subsurface soils, whereas P. vittata would require 13−15 years to achieve this target. The 

field experiment results suggest that P. calomelanos var. austroamericana is better suited than 

P. vittata for the phytoremediation of As-contaminated soils under the experimental 

conditions existing at the site.   

The potential of mid infrared (MIR) spectroscopy in combination with partial least squares 

(PLS) regression was investigated to estimate the total As content in a large number of soil 

samples collected from a highly variable As-contaminated dip site. The MIR-PLS calibration 

model developed excluding spectral outliers (n = 149) was robust with an acceptable 

reliability (coefficient of determination; R
2

c = 0.73; residual prediction deviation; RPDc = 

1.94) to estimate total soil As content. The validation of calibration model using a separate set 

of unknown soil samples (n = 149; validation set) showed R
2

v and RPDv values of 0.63 and 
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1.66, respectively. The results indicate an acceptable prediction of total As content in 

unknown samples, suggesting that MIR-PLS based model is capable of estimating total soil 

As and possibly be used in certain situations; for example to estimate soil As concentration at 

a highly variable site, where a large number of samples needs to be analysed. 

 

The solid-phase speciation and plant availability of As in contaminated soils was determined 

using combination of a sequential extraction procedure (SEP), X-ray absorption near edge 

structure (XANES) spectroscopy and As plant uptake using Brassica juncea as a test plant. 

Arsenic was found to be predominantly associated with amorphous Fe oxides in arsenate 

(As
V
) form; in few samples As was present in arsenite (As

III
) form. The concentration of As in 

plant shoots showed significant (P < 0.001−0.05) correlations with the exchangeable As (r = 

0.85), and amorphous Fe oxides associated As evaluated by the SEP (r = 0.67) and XANES 

spectroscopy (r = 0.51). The results suggest that As in these fractions is readily available for 

plant uptake and may pose potential risk to the environment. Such detailed analysis for As 

speciation and phytoavailability is vital for the management and rehabilitation of As-

contaminated soils. 

 

 

 

 

* * * 
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P. calomelanos var. austroamericana (Plot B) after 10 months of growth.  111 

Figure 4.7  The initial amount of As contained in 0–60 cm of Plot A (P. vittata) and Plot B (P. 
calomelanos var. austroamericana) of the experimental area (a) total As, (e) phosphate-
extractable As. The maps showing the (b) total and, (e) phosphate-extractable As after 
10 months of ferns growth. The remediation estimates made for the total As over a 
period of (c) 10 years, (d) 20 years, and for phosphate-extractable As for a period of (g) 
4 years, are also presented.       117 
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Figure 5.1  The spatial variability maps of As showing remediation trend in the total soil As 

concentration for three depths in Plot A (P. vittata) and Plot B (P. calomelanos var. 
austroamericana) of the experimental area; (a,c,e) initial As concentration in soil 
determined in June 2009; (b,d,f) final As concentration in soil measured in April 2011, 
after 27 month of fern growth. The two experimental plots were separated by a buffer 
strip as shown in the figure above. The data presented here correspond to the mean 
total soil As concentration in Table 5.2.      134 
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Figure 6.1  The absorbance spectra of a soil sample in the MIR spectral region (4000–400 cm–1). 

The blue colour line represents the raw absorbance spectrum; red colour spectrum is 
first derivative of the raw spectrum after removing the baseline.   149 

Figure 6.2  Principal component analysis (PCA) performed on the (first derivative pre-treated) 
absorbance spectra of all soil samples (n = 304). The green filled circles are the 6 
spectral outliers in the soil samples. PC-1 = principal component-1; PC-2 = principal 
component-2.         150 

Figure 6.3  Frequency distribution (histograms and box-plots) of the measured total As 
concentration in soil samples used for the MIR-PLS regression analysis for the 
development of (a) final calibration model; and for (b) validation of the calibration 
model.          151 

Figure 6.4  (a) The mid infrared (MIR) absorbance spectra of the six soil samples collected from 
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Figure 6.5  The measured values of total soil As concentration are plotted against the MIR-PLS 
model predicted As values; (a) preliminary calibration model including the 6 spectral 
outliers (n = 155); (b) validation of the preliminary calibration model; (c) final 
calibration model developed excluding the 6 spectral outliers spectral data (n = 149) 
using the calibration set data as shown in Figure 6.3a; (d) validation of the calibration 
model constructed with n = 149 samples. The R2

c and R2
v are coefficient of 

determination in the calibration and validation sets, respectively; SECV = standard 
error of cross validation; SEP = standard error of prediction; RPDc and RPDv = 
residual prediction deviation in the calibration and validation sets, respectively. 158 
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Figure 7.1  Locations of the As-contaminated cattle-dip sites, railway corridor and As spiked soil 
samples collected from New South Wales (NSW) and South Australia (SA) states of 
Australia.         170 

Figure 7.2  Sequential extraction procedure applied to the cattle-dip sites, railway corridor and 
As spiked soil samples (n = 18, 3 and 11, respectively). Means of each extracted 
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contaminated and As spiked soils. The residual fraction of As was calculated by 
subtracting sum of the four fractions from the total As concentration in each of the 
soils. The bars represent ±SD around the mean values.    178 
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Figure 7.3  Arsenic K-edge XANES spectra of (a) reference compounds, and (b) selected soil 
samples from the cattle-dip sites, railway corridor and As spiked soils. Solid (–), 
dotted (���) and dashed (---) lines drawn at 11875.7, 11872.2 and 11868.7 eV represent 
the position of white lines for arsenate (AsV), arsenite (AsIII), and orpiment (As2

IIIS3), 
respectively. The white line energy values (eV) are given in the parentheses for each 
of the reference compound.       184 

Figure 7.4  Arsenic K-edge XANES spectra for Boorie (black and purple lines) and Wollongbar 
(red and green lines) soil samples analysed after Step-II and Step-III of the SEP. The 
solid (–) line is drawn at 11875.7 eV represent the position of white line for arsenate 
(AsV).          188 

Figure 7.5  Arsenic concentration in dry shoots of B. juncea in relation to the sequentially 
extracted (a) exchangeable As (Step-I); (b) specifically sorbed As (Step-II); (c) 
amorphous Fe oxides bound As (Step-III); (d) crystalline Fe oxides bound As (Step-
IV); and (e) As determined using XANES associated with amorphous Fe oxides. 

Cattle-dip sites and railway corridor soils (�); As spiked soils (�). The correlations are 
presented excluding the As spiked soils data due the considerable differences in 
ageing time.         191 

Figure 7.6  The relationship of amorphous (ammonium oxalate extractable) Fe concentration with 
the amorphous Fe oxides associated As in the studied soils determined using (a) SEP 
in Step-III, and (b) XANES spectroscopy.     193 
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