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Abstract
Stephen Alexander Barkby Doctor of Philosophy
The University of Sydney March 2011

Efficient and Featureless
Approaches to Bathymetric

Simultaneous Localisation and
Mapping

This thesis investigates efficient forms of Simultaneous Localization and Mapping (SLAM)
that do not require explicit identification, tracking or association of map features. The
specific application considered here is subsea robotic bathymetric mapping. In this context,
SLAM allows a GPS-denied robot operating near the sea floor to create a self-consistent
bathymetric map. This is accomplished using a Rao-Blackwellized Particle Filter (RBPF)
whereby each particle maintains a hypothesis of the current vehicle state and map that
is efficiently maintained using Distributed Particle Mapping. Through particle weighting
and resampling, successive observations of the seafloor structure are used to improve the
estimated trajectory and resulting map by enforcing map self consistency.

The main contributions of this thesis are two novel map representations, either of which
can be paired with the RBPF to perform SLAM. The first is a grid-based 2D depth map
that is efficiently stored by exploiting redundancies between different maps. The second is
a trajectory map representation that, instead of directly storing estimates of seabed depth,
records the trajectory of each particle and synchronises it to a common log of bathymetric
observations. Upon detecting a loop closure each particle is weighted by matching new
observations to the current predictions. For the grid map approach this is done by extracting
the predictions stored in the observed cells. For the trajectory map approach predictions
are instead generated from a local reconstruction of their map using Gaussian Process
Regression. While the former allows for faster map access the latter requires less memory
and fully exploits the spatial correlation in the environment, allowing predictions of seabed
depth to be generated in areas that were not directly observed previously. In this case
particle resampling therefore not only enforces self-consistency in overlapping sections of
the map but additionally enforces self-consistency between neighboring map borders.

Both approaches are validated using multibeam sonar data collected from several missions
of varying scale by a variety of different Unmanned Underwater Vehicles. These trials
demonstrate how the corrections provided by both approaches improve the trajectory and
map when compared to dead reckoning fused with Ultra Short Baseline or Long Baseline
observations. Furthermore, results are compared with a pre-existing state of the art bathy-
metric SLAM technique, confirming that similar results can be achieved at a fraction of the
computation cost.

Lastly the added capabilities of the trajectory map are validated using two different bathy-
metric datasets. These demonstrate how navigation and mapping corrections can still be
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achieved when only sparse bathymetry is available (e.g. from a four beam Doppler Velocity
Log sensor) or in missions where map overlap is minimal or even non-existent.
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Chapter 1

Introduction

This thesis addresses the problem of improving navigation and mapping in underwater

vehicles by providing corrections to navigation through the mapping sensor, in this case a

multibeam sonar. This is achieved by using multibeam observations to localise the vehicle

(thereby improving navigation) based on the surrounding area. The ability for the vehicle

to do this accurately is therefore dependent on the accuracy of the map. Conversely the

accuracy of the map generated by a mobile agent is dependent on the accuracy of the

navigation solution. An interdependence between the navigation solution and the map is

therefore introduced if both operations are to be attempted simultaneously, as is desired

here. This problem, known as Simultaneous Localisation and Mapping (SLAM) allows a

bounded positional error to be maintained without requiring additional infrastructure. In

this way current state of the art techniques for underwater navigation and mapping that

do not provide this correction can be improved upon.

1.1 Motivation

The use of Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles

(ROVs) as mapping platforms is becoming evermore prevalent in research and industry,

due to their advantages over more traditional shipborne and towed sensor systems (Singh,

Whitcomb, Yoerger & Pizarro 2000). Such advantages include the ability to operate away

from the oceans’s surface, allowing these Unmanned Undersea Vehicles (UUVs) to main-

tain close proximity to the seafloor regardless of depth (Kirkwood 2007). This allows for
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higher map resolutions to be achieved and other sensors, such as stereo cameras, to be

utilized (Negahdaripour & Madjidi 2003)(Williams, Pizarro, Mahon & Johnson-Roberson

2009). UUVs also have the benefit of requiring less personnel for operations (particularly

with AUVs), as well as allowing mission operations to be conducted with smaller support

ships. Lastly UUVs can maintain operations in rough seas, whereas this can affect the

quality of shipborne surveys and may even cause them to be aborted.

For these reasons UUVs have proven to be an invaluable resource in marine applications such

as geological surveying, biodiversity assessments, pipeline surveys and prospecting/salvage

missions (Chapman, Wills, Brookes & Stevens 1999)(Blasco 2002). With the advancement

of computer processor design and high yield power supplies the capability of UUVs to

operate for longer periods underwater is also increasing. However this capability is hindered

by the navigation error that accumulates in the vehicle’s location estimate while operating

in this GPS denied environment, continuing to increase until either the UUV surfaces or has

position fixes relayed to it. Prolonging mission operations therefore requires that this error

be corrected for if precise navigation and mapping is to be maintained. SLAM provides a

method of fulfilling this requirement, though is by no means the only option available to

produce navigation corrections. However an additional benefit of SLAM is its ability to infer

corrections in the map observations themselves. Without handling these mapping errors

blur or inconsistency in the generated map can still occur, even if navigation is carried out

with absolute precision.

1.2 Underwater Navigation

Inertial Navigation Systems (INS), Attitude Heading Reference Systems (AHRS), a Doppler

Velocity Log (DVL), GPS, Ultra Short Baseline (USBL) and/or Long Baseline (LBL) acous-

tic positioning systems all provide options for improving navigational accuracy, each with

varying levels of attainable precision (Fairfield & Wettergreen 2008). Combining a high

precision INS with an AHRS and DVL provides stand-alone navigation with an unbounded

error in position typically < 0.1 % of the total distance traveled (Fairfield & Wettergreen

2008), though this is often an expensive option and will naturally degrade with increasing

mission time. This also assumes that the UUV is operating close enough to the seafloor to

maintain consistent DVL bottom lock. To provide navigation with a bounded error GPS
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observations can be used to constrain the uncertainty in the vehicle’s position while it is

travelling on the ocean’s surface, typically within 12 m of the true position (Fairfield & Wet-

tergreen 2008). While UUVs cannot receive GPS observations of their location underwater,

USBL acoustic positioning can be implemented to yield range and bearing measurements

between the UUV and a support vessel. By using GPS/Inertial measurements of the ship

the range/bearing observations can be georeferenced to provide an observation of the vehi-

cle’s position while it is underway. However, such a setup provides position estimates less

accurate than an equivalent GPS fix and requires the support ship to actively maintain the

UUV within the USBL’s range for the duration of the mission. This problem is further

compounded in deep water deployments as the accuracy of the USBL fix is dependent on

the angular accuracy of the USBL head, contributing an error of approximately 0.5 % of

range (Fairfield & Wettergreen 2008). LBL acoustic positioning also provides navigation

estimates with bounded error but this requires additional infrastructure to be in place, as

well as the LBL transponder net to be accurately surveyed in. Furthermore LBL transpon-

der nets are subject to a tradeoff between accuracy and coverage. High frequency (300kHz)

LBL provides sub-centimeter localisation but restricts operations to a maximum range of

100m from the beacons (Fairfield & Wettergreen 2008). Alternatively low frequency LBL

(12kHz) can be used, which provides ranges of up to 10 km, but this comes with the tradeoff

of only achieving 0.1 m to 10 m accuracy, depending on the beacon geometry and accuracy

of the estimated speed of sound profile. In addition LBL systems deployed on seafloor with

complex structure may suffer from multipath and/or occlusions.

Compared to these systems SLAM has the potential to provide position corrections that

are of the order of the resolution of the mapping sensor, provided that opportunities for

reobserving terrain or “loop closures” are available. This in addition to not requiring addi-

tional infrastructure makes SLAM an attractive option. As will be discussed in Chapter 2

there are many methods of implementing SLAM, the most suitable of which is determined

by the characteristics of the mapping sensor and the environment to be mapped.

1.3 Underwater Mapping

Bathymetric maps represent the height of the earth’s surface underwater within a given ge-

ographical region. These can be generated by several methods, depending on the resolution
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and coverage desired. In shallow waters bathymetric mapping can be carried out quickly

and efficiently through an airborne Lidar system or through Airborne Visible-Infrared Imag-

ing Spectrometry. However these methods are restricted to mapping depths of 50 m or less,

depending on water clarity (Danson 2006)(McIntyre, Naar, Carder, Donahue & Mallinson

2006).

To provide bathymetric maps at greater depths a shipborne multibeam depth profiler can

be utilized, offering the high coverage bathymetry needed to map out large areas of seafloor

quickly and accurately (Singh et al. 2000). However ships equipped with this technology are

restricted to operating at the ocean’s surface and so provide maps whose resolution decreases

as seabed depth increases. Wave induced motion is also problematic for these systems as er-

rors in attitude can translate to significantly large errors in the northing/easting coordinate

of the observation, particularly for large grazing angles and depths. For these reasons, and

those mentioned previously, UUVs are often used instead for these deeper water surveys.

Bathymetric maps are traditionally built using a gridded or point cloud model of the seafloor

with a deterministic model of the vehicle or vessel pose estimate (Blasco 2002). In this case

it is sufficient to generate the map by estimating the depth at any given location with

the mean of the depth measurements observed there. However, assuming a deterministic

navigation solution introduces misalignment in the map if the navigation is subject to errors

such as drift or unmodeled biases.

SLAM allows misalignments such as these to be resolved by correcting the navigation solu-

tion from which the map was generated from, and can be classified as either feature-based

or featureless in its approach. In the feature-based approaches, appropriate features are

identified using the vehicle’s sensors (camera, laser, sonar, etc.) and the location of the fea-

tures in space are estimated. Reobservations of particular features are then used to refine

the estimate of the vehicle location. Featureless techniques on the other hand exploit map

representations that do not require features to be explicitly identified in the sensor data.

The unstructured nature of the majority of the seafloor suggest that such an approach may

be more appropriate for mapping using sonar. Features, such as peaks and troughs in the

seabed, are scale dependent, sensitive to viewing angle and are typically of low spatial den-

sity when compared to the footprint of the sonar swath, making them difficult to identify

and model reliably.
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1.4 Approach

The aim of this thesis is to provide a method of SLAM suitable for underwater bathymet-

ric mapping that can be used by vehicles such as UUVs to improve their navigation and

mapping when compared to using state of the art navigation without SLAM. From the

discussion so far it is clear that a featureless approach to SLAM is the most suitable option

to achieve this.

The key framework upon which this thesis is built is the Rao Blackwellized Particle Filter

(RBPF) (Thrun, Burgard & Fox 2005). This is a non-parametric version of the Bayes filter

that represents the vehicle state probability distribution by a collection of particles, each

maintaining a hypothesis of the current vehicle state and map. Through particle weighting

and resampling, successive observations of the seafloor structure are used to improve the

estimated trajectory and resulting map by enforcing map self consistency, thereby providing

a featureless method of Bathymetric Particle SLAM (BPSLAM).

The map representation used by the filter should be chosen based on the requirements of

the vehicle, where the the computational memory requirements and run time of the filter

are often of primary concern. As such this thesis presents two map representations, each

focusing on optimising one of these requirements.

1.5 Contributions

The work presented in this thesis focuses on applying an existing framework to featureless

SLAM (the RBPF filter) to a novel domain i.e. the underwater environment. Initially a 2.5D

gridded map representation, which can be considered an extension of the 2D occupancy grid

into 2.5D, is coupled with this framework to form an approach to BPSLAM. Research and

implementation of this map representation then motivated the formulation of an entirely

different and novel map representation that addresses the shortcomings of the grid map

approach. These two map representations form the main theoretical contributions of this

thesis, which through their implementation also led to several practical contributions. These

contributions, both theoretical and practical, are listed below:

• A novel 2.5D grid map representation whose run time and memory requirements
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scale linearly with the number of particles used. In practice the computational speed

attained by this form of BPSLAM is on the order of ≈ 2% of the mission time.

• A novel trajectory map representation whose run time and memory requirements

scale linearly with the number of particles used. In practice the memory usage of this

approach allows for the processing of very large datasets (≈ 1.65 km2) while attaining

a computational speed on the order of ≈ 25% of the mission time. In addition this

approach can provide corrections to navigation and mapping even when all areas in

the map are only observed once.

• The implementation of both map representations to several real mission scenarios,

resulting in a consistent improvement in navigation and map self-consistency.

• A novel online and offline technique for ranking the map quality produced by different

navigation solutions based on map self-consistency.

• A method to provide interpolation and extrapolation of terrain predictions in unob-

served regions by learning and exploiting the spatial correlation in the seabed using

Gaussian Processes and an online version of covariance function training.

• A principled method of transforming uncertainty in a set of range observations to an

equivalent set of observations with uncertainty only in depth.

1.6 Thesis Outline

This section provides an overview of the thesis. Chapters 2 and 3 present background and

related work while Chapters 4-5 are novel contributions and results.

Chapter 2 provides background information on the current state of research for SLAM in

underwater vehicles.

Chapter 3 describes the basic theory behind RBPF SLAM.

Chapter 4 presents the development of the grid map representation used by our BPSLAM

filter.

Chapter 5 presents the development of the trajectory map representation that can alter-

natively be used by our BPSLAM filter.
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Chapter 6 provides conclusions and directions for future work.



Chapter 2

SLAM Review

2.1 Introduction

The origins of the SLAM problem can be traced back to the 1986 IEEE Robotics and Au-

tomation Conference held in San Francisco, California. At this time the use of probabilistic

methods in robotics and Artificial Intelligence (AI) was just emerging, sparking an inter-

est from researchers Cheeseman, Crowley and Durrant-Whyte who realised these methods

could be applied to mapping and localisation problems. In essence the problem they sought

to solve was as follows: upon placing a robot at an unknown location in an unknown envi-

ronment, how can the robot incrementally build a consistent map of its environment while

at the same time determine its location within this map. This soon came to be known as

the Simultaneous Localisation And Mapping (SLAM) problem, whose structure was first

presented at the International Symposium on Robotics in 1995. At the theoretical level the

SLAM problem has since been solved, though much research still exists concerning its prac-

tical implementation, as is the case here. For a more thorough investigation into the history

of SLAM and its general framework Durrant-Whyte & Bailey (2006a) and Durrant-Whyte

& Bailey (2006b) provide an extensive introduction.

The remainder of this chapter describes the current state of the art SLAM methods available,

classifiable as either feature-based or featureless in their approach. This serves to highlight

the strengths and weaknesses of each technique, and in doing so motivates the need for a

new approach to SLAM that is suitable for large scale underwater bathymetric mapping.
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2.2 Feature-Based SLAM

Feature-based SLAM methods represent the environment by a map of the positions (and

associated uncertainties) of several distinguishable landmarks, while the accuracy of the

navigation solution is represented by the uncertainty in each of the vehicle’s states. By

augmenting the vehicle state vector with the feature position estimates, a Bayesian filter

such as the Extended Kalman Filter (EKF)1 can be used to simultaneously track and

reduce the uncertainty in the augmented state vector upon re-observing features. This basic

approach to SLAM has been shown to work with various mapping sensor modalities, such as

sidescan sonar (Tena, de Raucourt, Petillot & Lane 2004) and single vision cameras (Garcia,

Puig, Ridao & Cufi 2002). However, this approach becomes computationally expensive for

large numbers of features, as the update time of the EKF scales quadratically with the

dimension of the augmented state vector. In this situation the EKF can be replaced by an

Extended Information Filter (EIF), which is capable of maintaining computational efficiency

for large numbers of features if we further approximate the SLAM posterior with a sparse

EIF representation (SEIF)(see Thrun et al. (2005) for a review). However, this results in

a loss of accuracy, depending on what degree of sparseness is enforced in the information

matrix to improve the computational efficiency.

Alternatively Eustice & Singh (2005) presents an approach that casts the SLAM problem

into a delayed state framework, also known as view-based SLAM, where past vehicle state

estimates are tracked instead of features. By using a single downward looking camera to

collect images of the environment, relative pose measurements between past estimates are

generated by pairwise registration of images with common overlap, using identifiers such as

Harris Corners and Scale Invariant Feature Transform (SIFT) keypoints. This technique

also uses an EIF to store past poses. However, in this framework the information form is

exactly sparse, and so removes the approximation error that the SEIF approach is subject to.

Mahon, Williams, Pizarro & Johnson-Roberson (2008) has also shown that this approach

can be extended to 3D using a stereo camera and has illustrated how a modified Cholesky

factorisation allows for efficient prediction and update depending on the variable ordering

of the state vector.

FastSLAM (see Thrun et al. (2005) for a review) is another approach to feature-based

1For more information Thrun et al. (2005) provides an extensive review and introduction to Bayesian
Filters such as the EKF and their application to probabilistic robotics.
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SLAM which reduces the computational complexity of the EKF method described earlier

by exploiting the conditional independence of the features being tracked, given the vehicle

trajectory. In other words, if the vehicle state is known then the estimation of feature

positions becomes independent of each other, allowing them to be tracked instead with

separate low-dimensional EKF’s. A particle filter can therefore be used to represent the

vehicle state, provided that each particle (which treats its vehicle state hypothesis as a

known quantity) maintains its own set of EKF’s describing its uncertainty in each feature

location. The act of separating the vehicle state from the map in this way is an example of

Rao-Blackwellization (though the map need not be represented by EKF’s) and has become a

popular method of conducting feature-based SLAM (Doucet, de Freitas, Murphy & Russell

2000) (Dong, Wijesoma & Shacklock 2007).

All of the feature-based techniques discussed so far have one common approximation that

reduces the accuracy of each filter, this being the need to linearize the vehicle and observa-

tion models upon every state prediction/update. In addition techniques such as the SEIF

do not attempt to solve the full SLAM problem i.e. they only calculate the posterior over

the current pose instead of computing the joint posterior over the whole path of the robot,

which allows corrections made in the current pose to propagate back to previous poses. The

delayed state framework mentioned earlier can be considered a solution to the full SLAM

problem. However when updating past poses this method is bound to use the same lineari-

sations as it did initially, retaining the original error introduced by this approximation.

GraphSLAM provides a solution to the full SLAM problem by framing it as a non linear

least squares minimisation problem (see Thrun et al. (2005) for a review). Specifically

GraphSLAM retains the full robot path and uses measurements to define constraints be-

tween robot poses and sensed features. Likewise control inputs are used to define constraints

between consecutive robot poses. In this way the information retained by GraphSLAM is

naturally sparse. Upon receiving all measurements and poses the maximum likelihood es-

timate of the robot path and map is calculated by minimising the function formed from

these constraints, usually cast in information space. By performing batch processing the

linearisation errors described previously can also be reduced by relinearising during each

iteration of the optimisation procedure. While this solves the full SLAM problem the main

disadvantage of GraphSLAM is that it cannot run online, whereas all the filters mentioned

above are specifically tailored to this, with the exception of FastSLAM and view-based
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SLAM that are capable of both.

The work of Dellaert is similar to GraphSLAM in that it also treats SLAM as a least squares

problem (Dellaert & Kaess 2006). However in this case the information matrix is factorised

into square root form that allows for fast extraction of the robots optimal trajectory and

map, as well as resulting in a more stable and accurate algorithm. This method called

square root simultaneous Smoothing And Mapping (
√
SAM) can be run as both an offline

batch process or an online version, as the factorised matrix is capable of being updated

incrementally. However one of the main limitations of this approach is a computational

cost thats grows unbounded (as the full trajectory is always used). This suggests that its

implementation in large datasets is limited.

Up until now an important requirement of feature-based SLAM has not been discussed,

this being the accurate identification of features in the environment that can be used for

localisation. Furthermore the algorithm must be capable of determining whether or not two

features observed at different points in time correspond to the same feature in the physical

world, known as the data association problem. As mentioned earlier a common solution

to this problem in vision-based SLAM is to use SIFT keypoint features extracted from the

visual imagery (Lowe 2004). These features are invariant to both changes in scale and

rotation and provide descriptors that can be used to uniquely identify a feature when it is

reobserved.

Discerning what constitutes a feature in bathymetric data however remains a non trivial is-

sue. Previous work has shown that steep gradient contours can be used as map features (Lu-

cido, Opderbecke, Rigaud, Deriche & Zhang 1996), though the matching techniques de-

scribed involve several processing steps and are sensitive to noise, scale, orientation and

displacement. Furthermore, the seabed often lacks the relatively sparse and unambiguous

landmarks that are required for feature-based SLAM, leading to instances where features

may have multiple possible associations. Methods such as incremental maximum likelihood

data association (Thrun et al. 2005) attempt to handle these multiple hypotheses but cannot

guarantee that the correct match will be made. Consequently any loop closures performed

using incorrect data associations can corrupt the navigation solution, potentially reducing

its accuracy below that obtained by simple Dead Reckoning.

To avoid this we assume dense sensor data which individually are not very distinctive,

but taken together may form recognizable trends in the seabed. This leads us to examine
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methods of SLAM that attempt to resolve misregistrations in the map by manipulating the

surface generated as a whole, rather than explicit features identified therein.

2.3 Featureless SLAM

Featureless SLAM does not require features to be explicitly identified or tracked and so

bypasses the problem of feature estimation entirely. Many approaches to featureless SLAM

stem from earlier work in Terrain Aided Navigation (TAN), where position fixes are de-

rived by seeking a position offset from the current estimate that minimizes a cost function.

This function is related to the difference between the measured and expected ranges to

the local terrain (referencing a prior map) at each candidate offset (Golden 1980). The

work of Burgard, Fox, Jans, Matenar & Thrun (1999) shows how this approach can be

extended to SLAM by tracking a collection of candidate offsets with a particle filter, where

each particle builds its own occupancy grid map that it references during the mission, as

opposed to requiring that all particles reference a common prior map. More recent work has

examined methods to efficiently maintain detailed grid maps using similar particle based

techniques (Grisetti, Stachniss & Burgard 2007, Eliazar & Parr 2003).

An approach to bathymetric SLAM which uses these foundations has been reported by

Fairfield, Kantor & Wettergreen (2006). Here a RBPF is combined with an occupancy grid-

based volumetric map representation, efficiently managed with Deferred Reference Counting

Octrees. This method has proven to be successful in generating a consistent 3D bathymetric

map in a closed cave environment in real time, where the benefit of continuous localisation

via measurement of the AUV’s proximity with the surrounding cave walls, using both fore

and aft mounted sonar arrays, is fully utilized. This approach has also been shown to

perform well in an open marine environment when equipped with a single multibeam sonar

and a large scale high resolution prior map (Fairfield & Wettergreen 2008). However in

this case localisation was only performed using the prior map. For bathymetric mapping

missions where no prior map information is available opportunities to localise are typically

not as abundant as in these two trials.

Alternatively another approach reported by Roman & Singh (2005) uses a point cloud map

model to divide a temporal sequence of bathymetry into submaps that are assumed to

be error free. Pairwise matching of overlapping submaps constrains the vehicle trajectory
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and submap origins using a delayed state Kalman filter. This technique has been shown

to produce more accurate maps than Dead Reckoning (DR) navigation alone or LBL fil-

tered navigation. However it cannot address errors within the individual submaps that

link together to form the overall map. In addition, the tradeoffs in complexity, accuracy

and matching performance based on the size and number of submaps are only partially

understood.

The approach presented in this thesis, hereby named Bathymetric Particle SLAM (BP-

SLAM), also uses a RBPF to account for the uncertainty in the vehicle’s navigation so-

lution and its effect on map-making, where particle resampling is performed based on the

self-consistency of each particle’s map. This acts to reduce the uncertainty in the trajectory

upon re-observing previously explored terrain.

2.4 Summary

This chapter has presented the current state of research in SLAM applicable to bathymetric

mapping. Feature-Based methods based on Bayesian frameworks such as the EKF and

EIF were investigated, in addition to techniques that keep such approaches tractable when

dealing with large sets of features, such as sparse representations. The Rao-Blackwellized

Particle Filter was also introduced, a non-parametric version of the Bayes filter which offers

desirable computational characteristics by exploiting the conditional independence of the

features being tracked. This was followed by a discussion into GraphSLAM, demonstrating

how this least squares optimisation approach can yield improvements to solving the full

SLAM problem, at the cost of moving to an offline implementation.

The problem of reliable detection, association and tracking of features in an unstructured

environment was then discussed, motivating the use of a featureless method of SLAM that

does not require these actions to be performed. Following this the foundations of featureless

SLAM research were presented. Lastly the current state of the art methods of featureless

bathymetric SLAM were discussed, reporting the strengths and weaknesses of each which

motivate the new form of SLAM that is presented here.



Chapter 3

RBPF SLAM

3.1 Introduction

Particle filters are a nonparametric implementation of the Bayes filter that can be used to

approximate the probability distribution of a state (not necessarily Gaussian) by a set of

state hypotheses sampled from the distribution (see Thrun et al. (2005) for an extensive

review). Rao-Blackwellized particle filters provide a framework for conducting SLAM by

additionally providing each particle with its own map to build (Doucet et al. 2000). The

general framework for the RBPF SLAM algorithm with a particle set size (N) is given in

Algorithm 1.

As each particle hypothesis can be treated as a concrete instantiation of the true state

the associated uncertainty in navigation can be removed entirely from the data association

problem, allowing the procedure to simplify to a deterministic referencing of observations

into the map. This is a valid approximation when the accuracy of the mapping sensor is

significantly greater than that of the navigation, as is the case here.

For a straightforward implementation, using RBPF SLAM for bathymetric mapping would

require entire maps to be copied and destroyed each time a particle is resampled, thereby

becoming computationally expensive for large numbers of particles. Distributed Particle

Mapping (DPM) (Eliazar & Parr 2004, Eliazar & Parr 2005) addresses this issue by effi-

ciently maintaining a joint distribution over maps and robot poses. The key idea behind

DPM is to retain the original particle’s map and have any new particles (children) that are



3.1 Introduction 15

Algorithm 1 RBPF SLAM Framework

1: Initialise N particles with poses sampled from some initial distribution and a map
with prior information that may exist about the world.

2: repeat
3: Receive new observation.
4: for i = 1 to N do
5: Propagate each particle pose to the time of the new observation by sampling

from the vehicle motion model.
6: Weight each particle based on how well the new observation agrees with its

map.
7: end for
8: Resample the N particles from the current set with replacement. Perform this

based on the particle weights so that particles with low weights are likely to be
discarded while particles with high weights are likely to be duplicated.

9: Update the N maps of the new particle set with the new observation.
10: until end of mission
11: Select the best surviving particle and corresponding map.

resampled from the original particle (parent) point to the parent’s map rather than copy the

map themselves. Extracting a particle’s map is then achieved by examining its estimates

as well as those inherited by it through the particle ancestry.

An example of this filter structure with a general map is shown in Figure 3.1. Here the

bottom level of the tree represents the current particle set tracking the vehicle state, where

incoming observations are used to build each of their respective maps. Each particle main-

tains a map generated using the observations received after it was created (which occurs

during resampling) and so does not encompass the whole mission. However by tracing back

through the particle’s ancestry its full map can be reconstructed.

Particles that are not resampled are removed from the ancestry tree along with their map

elements. In addition particles that do not possess any siblings are merged with their

parent without any loss of information. The particle removal and merging process is also

done recursively, as often a parent particle may have only one or no children left after

resampling, thus requiring itself to also be merged or removed respectively. In doing so the

number of ancestor particles is guaranteed never to exceed (2N − 1) (Eliazar & Parr 2004).

Pruning the particles and maps in this manner reduces the asymptotic complexity of DPM

to constant/linear (amortized) time per iteration of the filter, keeping it an efficient means

of performing featureless SLAM.
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Figure 3.1: An example of the ancestry tree structure used in DPM. Here the tree is
undergoing a resampling event that has allowed Particles 5 and 7 to survive and Particle
3 to triplicate. These resampled particles are given new IDs and form the current particle
set, indicated by the bottom layer of the tree. Particles that are not resampled (indicated
with a cross) or only possess one child (indicated by the curved arrows) are discarded and
merged respectively, along with their map sections. While the particles in the new set have
yet to create a map section of their own, each inherits the map sections of its ancestors.
This is shown for Particle 9, reconstructing its full map by concatenating the map sections
of the particles along its lineage (circled with a broken line). Note that in this example
Particle 0 is also called the root particle, as any map sections stored by this particle are
available to all particles in the current set, due to the common lineage.
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This concludes a general description of the RBPF SLAM algorithm using DPM. What

follows is the specific frame geometry, particle structure and RBPF procedures used to

apply RBPF SLAM to bathymetric mapping.

3.2 Vehicle and Sensor Setup

Figure 3.2 presents the frames of reference used to define the vehicle and the placement

of its sensors, as well as the geometrical relationship between range observations and their

global coordinates. Note that while a specific vehicle is shown the following generalises to

other vehicle designs as well.

Figure 3.2: Relationship between a multibeam observation of range (r), bearing (α), along
track angle (β), the state hypothesis (~xv(tk)) and the location of the seabed patch observed
(E)

Observations from the multibeam sensor are received in the form of range observations (r)

for a given along track angle (β) and bearing (α). Relative to the multibeam sensor frame
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Fs the coordinates of these observations are given as:

sPobs =


b

a

d

 =


rcos(α)sin(β)

rsin(α)

rcos(α)cos(β)

 (3.1)

where b, a and d are referred to as the along track, across track and depth of the observation

respectively. For this application the body frame Fb is used to represent the vehicle’s pose,

defined here as the location and orientation of the main navigation sensor i.e. the DVL.

sPobs can then be transformed into the body frame through the homogenous transformation

b
sT , which specifies the fixed translational and angular offsets of the sensor frame relative

to the body frame. To calculate an observation’s location (E) in the global frame Fg (with

XYZ defined along North/East/Down) sPobs is additionally multiplied by g
bT , calculated

from the current pose of the vehicle:


Ex

Ey

Ez

1

 = g
bT

b
sT

 sPobs

1

 (3.2)

The origin of the global frame can be set to zero or to a georeferenced location, depending

on whether a form of absolute positioning is available at the start of the mission, e.g. GPS.

3.3 Particle Structure

To represent the vehicle state we adopt a similar approach to that advocated by Fairfield

et al. (2006), in which states that are directly observable using the vehicle’s sensors are

removed from the particle filter and tracked instead with a single EKF that is shared by all

particles. In this thesis we assume that observations of body velocity, attitude and depth

(but not x, y position) are available to the vehicle such that the state vector tracked by the

EKF is given as:

xv(tk) = [gzv(tk),
g ψv(tk),

b vv(tk), ψ̇v(tk)] (3.3)

where gzv(tk),
g ψv(tk),

b v̇v(tk), ψ̇v(tk) is the respective depth, attitude, body velocity and

angular velocity (in terms of Euler angles) of the vehicle. Here the superscript g denotes
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states that are relative to the global frame and b for those relative to the vehicle’s body

frame.

Although this is an approximation and decouples the estimation of the vehicle position

to some degree from the estimation of attitude and velocity, in practice we find that the

observations available with our sensor suite have low noise and that the dynamics of the

vehicles presented here, which are relatively slow moving and stable in roll and pitch, are

well suited to decoupling the estimation in this manner. The results presented in Chapters

4 and 5 serve to validate this approach. This allows us to use the particle filter to track

the x, y position of the vehicle, leading us to define the particle set S(tk):

S(tk) =


gx1(tk) ... gxN (tk)

gy1(tk) ... gyN (tk)

pID1 ... pIDN

 (3.4)

where [gxi(tk),
g yi(tk)] is the hypothesized vehicle state for the ith particle stored in the set

and pIDi is the particle’s identification number.

This setup also assumes that the ocean’s surface remains at constant height during the

period of the survey. For the missions presented in this thesis this remains a valid approx-

imation. However in regions where tidal influences do cause significant fluctuations in sea

level the corresponding tidal bias must be corrected for. This can easily be accomplished

by including the tidal bias as an additional state in xv(tk) if local tide gauge observations

are available. Alternatively if these are not available the tidal bias can be tracked as a

particle state in S(tk), thereby allowing particle weighting/resampling to additionally learn

the tidal bias that creates the most self-consistent map.

3.4 Filter Initialisation

RBPF SLAM begins by initialising each particle with an estimate of the vehicle state relative

to Fg (which can be local or georeferenced). The initial probability distribution describing

the vehicle state is encoded into the RBPF by randomly sampling N different initial state

hypotheses from the distribution of the initial estimate.

The RBPF can also be initialised with prior map information if available. Normally this
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would involve initialising each particle’s map with the prior map information. However by

utilising Distributed Particle Mapping this step can be equivalently carried out by initialis-

ing only one particle map, that belonging to the ancestor particle located at the base of the

ancestry tree, which we call the root particle (See Figure 3.1). Since each current particle

shares this common ancestor they all automatically inherit this common map containing

the prior map information, allowing them to treat it as previously explored terrain and

thereby use it to resample S(tk), which in turn provides corrections to navigation. However

the RBPF can only be initialised in this way if the prior map information is treated as a

rigid map with no uncertainty in x, y. If the prior map information is instead another set

of navigation and bathymetric logs then these can be used by concatenating them to the

front of the respective logs from the current mission. Provided that the state hypotheses

held by S(tk) are reinitialised each time a new mission is started this allows for the merging

of several overlapping datasets.

By supplying a prior map RBPF SLAM solves the prior map localisation problem, with the

added benefit of being able to additionally localise off the current map as its being built.

However the success of this approach is dependent on the map representation used by the

RBPF and the ease to which prior map information (which can be of different resolutions)

can be entered into it. As such this step will be discussed further in Sections 4.2.2 and 5.3.2

in terms of how it applies to the two different map representations presented in this thesis.

3.5 Particle Propagation

Particle propagation requires that the vehicle states held in both the particle and EKF

sections of the filter be predicted forward to the time of the next observation. This is done

using a discrete vehicle model of the form:

ẋv(tk) = F v(tk)xv(tk) +Gv(tk)wv(tk) (3.5)

where F v(tk) is the state transition matrix, Gv(tk) is the noise transition matrix and wv(tk)

is the vector of vehicle model errors.

Assuming that navigation is, for the most part, carried out with a constant speed as is

typical for bathymetric mapping missions (Grasmueck, Eberli, Viggiano & Correa 2006),
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we can approximate the dynamics of the vehicle with a simple constant velocity/rotation

rate model. Equation 3.5 can then be written explicitly as:


gzv(tk)

gψv(tk)

bvv(tk)

ωv(tk)

 =


gzv(tk−1) + g

bR(3,:)(tk−1)bvv(tk−1)∆t

gψv(tk−1) + g
bE(tk−1)ωv(tk−1)∆t

bvv(tk−1)

ωv(tk−1)

+


g
bR(3,:)(tk−1)wv̇(tk)

∆t2

2
g
bE(tk−1)wω̇(tk)

∆t2

2

wv̇∆t

wω̇∆t


(3.6)

where wv̇(tk) and wω̇(tk) represent translational and angular acceleration disturbances to

the model at time tk.

The particle set is also predicted forward, except in this case the uncertainty associated with

the prediction step is encoded into S(tk) by each particle randomly sampling a hypothesis

from the distribution of xv(tk−1) to base its prediction on. For the current setup this

corresponds to: gxvi(tk)

gyvi(tk)

 =

 gxvi(tk−1)

gyvi(tk−1)

 +
(

g
bR(1:2,:)(tk−1)κ∆t

)
+

(
g
bR(1:2,:)(tk−1)wv̇(tk)

∆t2

2

) (3.7)

where κ ∼ N (bvv(tk−1),σ2
v(tk−1)) and g

bR(1:2,:) are constructed from an attitude hypoth-

esis randomly sampled from N (gψv(tk−1),σ2
ψ(tk−1)) .

3.6 Particle Weighting

For observations of states contained in xv(tk) the standard EKF prediction/update equa-

tions can be used to incorporate new information into the filter. For a thorough description

of the simple measurement models used to update the EKF see Mahon (2007).

However for observations that infer information about the states tracked in S(tk), such as

those from the mapping sensor, particle weighting and resampling must be carried out to

achieve the same goal.

This is done by calculating a weight for each particle that measures the likelihood of re-

ceiving the new observation, given the particles previous trajectory and observations. i.e.

wi = p(z(tk+1)|Si(t0 : tk), z(t0 : tk)). The set of weights produced thereby represent an
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approximation to the Bayes filter posterior distribution, by which S(tk) is shifted towards

through resampling its particles based on these weights. In the context of bathymetric

SLAM this corresponds to weighting each particle by the likelihood that the current multi-

beam swath would be observed based on its map. The calculation of this likelihood is

therefore heavily influenced by how the map is represented, later discussed in Chapters 4

and 5.

3.7 Particle Resampling

Once particle weighting has been completed the weights are grouped together and normal-

ized. The particles are then randomly sampled to form the new particle set, ensuring that

their probability of being resampled remains directly proportional to their normalized like-

lihood (Gordon, Salmond & Smith 1993). This allows the particles that are most likely to

be an accurate hypothesis to propagate while removing those which are unlikely.

Excessive resampling however can often lead to particle depletion, i.e. the premature re-

moval of particles with maps that could end up being the most self-consistent. This is

particularly true if resampling is carried out on a set containing similarly weighted parti-

cles. In such a case the most likely state hypotheses cannot be discerned and so resampling

would result in a purely random draw of particles from the set, thereby running the risk of

removing potentially good particles.

To avoid this, resampling is prevented if the effective particle size, which provides a measure

of the variation in the weights, is greater than half the number of particles (Liu 1996). This

is calculated as follows:

Neff =
1∑N

i=1(w̃(i))2
(3.8)

where w̃(i) refers to the normalized weight of particle i.

3.8 Particle Map Updating

Once particle weighting has been completed each particle updates its map with the new

multibeam swath observations. This is normally done after particle resampling (as only the

surviving particle maps need updating) but can also be done before particle resampling if
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this helps reduce the number of map queries required. Again this procedure is completely

dependent on the map representation and so is discussed in Chapters 4 and 5.

3.9 Final Particle and Map Selection

At the end of the mission the particle filter provides N possible trajectories and correspond-

ing maps to choose from. For particle filters that are only performing pure localisation the

problem of determining the best state hypothesis from S(tk) reduces to finding the particle

with the maximum likelihood at the end of the mission (for an EKF filter this is equivalent

to choosing the mean estimate µt). However as we are performing full SLAM this method

does not ensure the best result, as the particle with the maximum likelihood at the end

of the mission does not necessarily attain the maximum likelihood for past poses as well,

which are just as important in determining the quality of the map produced.

To this end we choose the best particle from S(tk) by analyzing each particle’s map and

identifying which is the most self-consistent. This is determined, assuming that the bathy-

metric data has been processed to remove outliers, using an offline method described by

Roman & Singh (2006). This method involves splitting the bathymetry into a sequence of

submaps and then calculating the maximum registration error between submap portions

located in the same cell, as described in Algorithm 2. These registration errors can then be

used to determine the self-consistency of the map, provided that map overlap occurs.

Algorithm 2 Final Map Selection

1: for i = 1 to N do
2: Extract the ith particle’s trajectory from S(t0 : tend).
3: Segment the trajectory and start a new submap every time the multibeam swath

is about to overlap (in the z direction) with previously explored terrain.
4: Transform all submaps into 3D space.
5: Grid the area and for each cell calculate the minimum difference in depth between

all submaps present in that cell.
6: Set the maximum of these measurements as the registration error of the map for

that given cell.
7: end for

An example of calculating this consistency metric over a 2D slice of terrain observed several

times is shown in Figure 3.3. While this procedure involves picking points at random from
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Figure 3.3: An example of calculating the map self consistency in different cells using the
metric developed by Roman & Singh (2006) (Image source). The vertical lines represent
the boundaries of each bin that are populated by depth observations from three different
submaps. In each cell a point from each submap is randomly chosen and matched with the
closest point belonging to each of the other submaps, either in the same or neighboring cell
(represented by the thin arrows). The maximum registration error between these matches is
then returned as the map self-consistency metric for that cell (shown in each cell by the bold
arrow). Note that bin size related biases in this calculation are avoided by including the
immediate neighboring cells when finding the closest match. This is demonstrated by the
magenta arrow that shows how the closest green to blue map pairing is incorrectly chosen
when neighboring cells are not considered. Note also that the right most bin does not have
any Map 3 pairings as these are only included for consideration when all surrounding bins
contain Map 3 points.

each submap, the variance associated by doing this is quickly reduced by performing several

instances of this calculation.

As each particle has a different trajectory the amount of swath overlap in each particle’s

map will be different. Consequently the number of registration error measures available

to each particle varies. Given that Nerrors is the smallest number of registration error

measures available to a particle in the final set, we calculate a single measure of self-

consistency for each particle’s map by taking the average of the Nerrors largest registration

errors present in its grid cells, which prevents this average being biased towards particles

with more overlap. The trajectory and corresponding map of whichever particle achieves

the lowest error measure is then returned by the filter. Note that this metric assumes that

a single large registration error is just as preferable as numerous small registration errors

with the same total error. Altering this depending on the requirements of the user is a

subject of future work.

This Final Particle Selection (FPS) scheme is only available offline and requires that swath

overlap exists in each particle’s map. For missions with minimal overlap (as can be at-

tempted with the trajectory map approach) an online FPS scheme is instead used that
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progressively builds histograms of the observation/estimate differences encountered by each

particle during the particle weighting stage. Similar to the offline method the average of the

Nerrors present in each particle’s histogram can then be used to estimate the best particle

trajectory and map. This is less accurate than the offline method as it only compares the

registration error between two submaps, one created by the current observed swath and the

other that is a fusion of all previous overlapping swaths. However the benefit of the online

FPS scheme is that it can use extrapolated predictions and has the potential to aid in path

planning decisions should this algorithm be implemented in real time.

Once the final particle is selected the final map can also be obtained. For online applications

this can be done quickly as the final particle’s map is accessible from BPSLAM. However,

for a more dense and non-discretised version the map can alternatively be reconstructed

as a point cloud by georeferencing the raw bathymetry using the final particle’s trajectory.

This is the method that will be used to generate the maps shown in Chapters 4 and 5.

3.10 Summary

This chapter has presented the underlying mechanics of the particle filter, both in general

terms and when applied to bathymetric mapping. For the BPSLAM algorithm the states

most prone to drift (x, y) are tracked in the particle filter, while those that are directly

observable are tracked with a common EKF accessed by all particles.

The state transition model was also presented, a simple constant velocity/rotation rate

model that is used to propagate both RBPF and EKF sections of the filter. This was then

followed by a description of the general premise behind particle weighting, map updating

and particle resampling, the specific details of the former two presented in the proceeding

chapters.

Lastly two FPS schemes were presented, an offline method that explicitly determines the

particle with the most self-consistent map and an online method that makes an educated

guess of this based on the differences between the observations and estimates encountered

during the particle weighting stage.



Chapter 4

Bathymetric Particle Filter SLAM

Using Grid Maps

4.1 Introduction

The approach presented in this chapter utilizes the RBPF SLAM technique described in

Chapter 3 as its foundation. As each particle represents a deterministic hypothesis of the

true location of the vehicle, standard mapping techniques can be used to properly maintain

each particle’s local map of the environment. Several map representations exist that can

capture the 3D structure of an underwater environment. Of these, one of the simplest is to

represent the map as a cloud of 3D points.

Alternatively grid based map representations are available which allow for relatively faster

map access at the cost of losing resolution through discretisation. In this case to capture a

fully 3D environment (e.g a subterranean cave system) a 3D grid must be used, each cell

containing a probability of occupancy. However by restricting the scope of operations to

marine environments that are approximately 2.5D (as is the case for the majority of the

seafloor) the mapping requirement can be relaxed to a digital elevation map, i.e. a 2D grid

where each cell contains an estimate and uncertainty in depth. The memory requirements

of the map then scale quadratically as either the size or resolution is increased. For the area

and resolution of the datasets we wish to map (see Section 4.3) this provides a tractable

option. In addition the 2D depth grid map representation allows for direct prior map input
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and new map output in a format which is standard in the marine surveying industry. To

process even larger datasets the implementation of quadtrees may become necessary to

handle the growing memory requirements (Fairfield et al. 2006), though this will increase

the complexity of the map querying and updating operations.

So far only a general description of the stages in the RBPF SLAM framework involving

map operations i.e. the map weighting and map updating procedures, has been given

(see Algorithm 1). This was done as the RBPF setup allows for an interchangeable map

representation, on which these two procedures are dependent. The remainder of this chapter

now goes on to describe the grid map representation and the manner in which it carries out

these two tasks. Two case studies are then presented which validate this approach using

real mission data.

4.2 Method

4.2.1 Map Structure

Instead of each particle adding/updating estimates in its own grid, the estimates are first

keyed with the particle’s ID and entered into a single global grid. Each cell in the global

grid thus contains an estimate for every particle or particle ancestor that has observed that

cell. For this reason the maximum memory used by this approach can sometimes rival the

simpler approach of providing each particle with its own private copy of the map. However

the latter requires entire maps to be copied whenever it is resampled. This creates O(NG)

work per iteration, where G is the number of grid cells in the map, thereby becoming

inefficient for large maps and large numbers of particles.

Each particle maintains and updates its estimates of seabed depth stored in the grid map

using a 1D EIF, where each estimate is represented by an information vector ξ and an

information matrix Ω. The advantage of using an EIF over an EKF here is the ability to

specify zero information at initialisation, as opposed to infinite uncertainty. The EIF is also

computationally superior in this scenario as information is additive.

The list of depth estimates in a cell is referred to as the estimate vector, where each entry

in the estimate vector, called an estimate node, contains the following items:
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• Particle ID - The ID of the particle that owns the estimate.

• Information - The Information Vector (ξ) and Information Matrix (Ω) of the esti-

mate.

• Timestamp - The time at which the estimate was last updated.

The estimate at a given cell for a given particle is accessed by searching through the estimate

vector contained within that cell for the last estimate that was made/updated by the particle

or its ancestors. Each particle also retains the following information in the ancestry tree of

the particle filter:

• Parent ID - The ID of the parent that the particle was resampled from.

• Child List - A list of all the particle’s children.

• Estimates - A list of all (x,y) locations where the particle made/updated an estimate

of seabed depth.

Here each particle maintains a list of the estimates it has made. This is done purely to

facilitate their removal from the map structure should the owner not survive the resampling

procedure, thus preventing the need to query each cell.

Figure 4.1 provides an example of the map representation and associated ancestry tree used

to maintain and extract the maps monitored by each particle. In Figure 4.1a) the vehicle

moves over an unexplored patch of seabed from left to right (shown mid-progress). Each

particle uses its observations to make its own initial estimates of seabed depth (the estimate

nodes are shown with finite thickness for clarity). In Figure 4.1b) the vehicle returns some

time later from a different direction and encounters the same seabed patch. Each particle

searches the cells they are currently observing for a previous depth estimate belonging to

them. If one exists a weighting for the particle, based on the consistency between the new

observations and previous estimates of seabed depth, is calculated. These previous estimates

are then updated with the new observations using an EIF1. In Figure 4.1c) the particle set

is shown two timesteps later. Resampling triggered by the weights calculated in 4.1b) has

1The maps are updated here (as opposed to after particle resampling) as it requires no extra map accessing
operations. This does not effect the particle weights for this iteration as they are calculated before the maps
are updated.
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caused Particle 1 to be resampled twice while removing Particle 2 from the set. The two

samples are renamed Particles 4 and 5 and inherit the map estimates of Particle 1. In the

next timestep Particles 4 and 5 are randomly propagated and take on different positions,

as shown.
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Figure 4.1: An example of the map structure and ancestry tree used to store estimates from
different particles with a particle set size of N = 3 and a sonar swath of two observations.

The map for any given particle can be retrieved at any time during the mission by extracting

the estimates in each map cell made by that particle. If no estimate is available then the cell

is iteratively checked for estimates made by the particle’s ancestors, most recent first. The

trajectory of each particle can also be retrieved if S(tk) is progressively saved as the filter

propagates, along with each particle’s (or parent particle’s) index in S(tk−1). In this way

the trajectory of a particle can be backtraced through the poses that were held previously

by the particle set.

4.2.2 Map Initialisation

As we use a 2D grid structure for our map representation it is also relatively straightforward

to initialize these grid cells with depth estimates from a prior map. All that is required is

to enter each prior depth estimate, along with its uncertainty, into the grid cell at its x, y

location and key it with the ID number of the root particle (see Figure 4.1). If the prior map
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is of higher resolution than the BPSLAM grid map then multiple initial depth estimates

will be available per grid map cell. These are combined into a single depth estimate using

the standard EIF update equations (Thrun et al. 2005). As with the estimates that are

generated from the current bathymetry this map discretisation limits the precision of the

position corrections to the resolution of the grid map.

Prior maps with resolution lower than the BPSLAM grid map structure can also be used to

provide corrections to navigation. However in this case attempting prior map localisation

will require that particle resampling be allowed when only a fraction of the incoming multi-

beam observations (which are assumed to have resolution comparable to the grid map) can

be matched to a prior map estimate (as these are relatively sparser). The effect that this

allowable fraction, which we refer to as γoverlap, has on particle resampling is discussed in

the next section.

4.2.3 Map Weighting

As mentioned previously, the map weighting stage judges each particle by the likelihood

that the current multibeam swath would be observed, given the particle’s current map.

Algorithm 3 details the steps involved to calculate this.

Algorithm 3 Step 6 from Algorithm 1:Grid Map Weighting

Require: Combined particle/EKF state hypothesis ~xvi(tk), Observations z, Map i
1: ctr = 0
2: Bmin = Nbeams ∗ γoverlap
3: for b = 1 to Nbeams do
4: Transform zb into coordinates [µEx.obs , µEy.obs , µEz.obs ] relative to global frame.
5: Access most recent depth estimate Ez.est at cell [µEx.obs , µEy.obs ] that belongs to

current particle or any of its ancestors.
6: if (Ez.est exists) then
7: Calculate the likelihood of Ez.obs matching the current estimate:

lklhd(ctr) = p(Ez.obs − Ez.est = 0).
8: Increment ctr.
9: end if

10: end for
11: if (ctr ≥ Bmin) then
12: return Joint Likelihood wi =

∏Bmin
j=1 lklhd(j)

13: else
14: return Do not include particle in resampling.
15: end if



4.2 Method 31

As shown the observations of range must first be transformed into the global frame. This is

calculated using Equations 3.1 and 3.2. In addition a Markovian observation model is used

to define the relationship between z and the depth estimates stored in the map:

z =
(
r α β

)T
= h(~xv(tk),E) + v (4.1)

where h is the measurement function, ~xv(tk) is the combined state hypothesis/shared EKF

state of the current particle, E = [Ex, Ey, Ez] is the location of the seabed patch being

observed and v is zero mean Gaussian noise associated with the observations with covari-

ance:

R = diag(σ2
r , σ

2
α, σ

2
β) (4.2)

Note that along track angle observations are not provided by the sensor but rather modeled

as 0◦ with an uncertainty that arises from the beamwidth of the sonar aperture. Similarly

the bearing observations are also subject to a finite uncertainty.

The measurement function h, and its corresponding Jacobian ∇xh, are formulated from

the geometrical relationship between E, ~xv(tk) and the expected observation ẑ, shown

previously in Figure 3.2:

ẑ = h(~xv(tk),E) =
( √

b2 + a2 + d2 arctan(ad) arctan( bd)
)T

(4.3)

where b, a and d are derived from E and ~xv(tk) as:


b

a

d

 = s
gR


Ex − xv(tk)

Ey − yv(tk)

Ez − zv(tk)

 (4.4)

where s
gR is the global to sensor frame Directional Cosine Matrix.

With the observation model defined z can be used to calculate an equivalent depth obser-

vation with mean µEz.obs . The uncertainty of the observation in this frame σ2
Ez.obs

can also

be calculated as a backwards transport (Hartley & Zisserman 2003) of the covariance R

through h:

σEz.obs
2 = (∇xhTR−1∇xh)−1 (4.5)

This effectively approximates Ez.obs as Gaussian by linearizing about the mean µEz.obs . The
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corresponding depth estimate at the observed location can also be quickly extracted from

the EIF stored there:

µEz.est(t−1) = Ω−1
t−1ξt−1 (4.6)

σ2
Ez.est(t−1) = Ω−1

t−1 (4.7)

A data association problem should be highlighted at this stage as, although each particle

state hypothesis [xvi(tk), yvi(tk)] can be treated as truth, the uncertainty in a sonar’s range

and angular observations will cause uncertainty in its corresponding x, y position, more

so at large grazing angles and ranges. The depth observation made can therefore belong

to any of the grid cells located within this region of uncertainty. Several data association

techniques were investigated (Dezert & Bar-Shalom 1993, Bar-Shalom & Fortmann 1987)

to try and take this into account but were found to be too computationally expensive for

real time operation with large numbers of particles. Alternatively the observation could be

used to update the depth estimate of every cell within this region of uncertainty, though

this results in a blurring of the maps. Instead we directly associate the observation to the

grid cell at the observation’s mean x, y location and set the resolution of the grid to be on

the scale of the sensor error in x, y. While this also blurs the map through discretisation

it prevents the filter from producing overconfident depth estimates and therefore guards

against particle depletion during resampling.

To determine the resolution the grid maps should be set at the 95% confidence bound in an

observation’s across track and along track coordinate (aerror, berror) is analysed for the worst

case scenario (maximum range, bearing and along track angle). This can be calculated from

the corresponding confidence bounds in the raw observation, given as:

aerror = 2[rmaxcos(αmax)sin(2σα) + 2σrsin(αmax)cos(2σα)]

berror = 2[rmaxcos(βmax)sin(2σβ) + 2σrsin(βmax)cos(2σβ)]
(4.8)

Assuming the stability of our platform provides minimal disturbances in roll and pitch, we

can approximate the error bound in the x, y location of the observation with aerror or berror,

whichever is largest. This quantity can thus be used to dictate a maximum resolution that

ensures this error bound does not exceed the size of the grid cells, thereby being on the order

of the map error already introduced by map discretisation. As will be shown in Section 4.3
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this maximum resolution is more than adequate for the large mapping missions we wish to

undertake.

Now that both observation Ez.obs and estimate Ez.est are in the same frame of reference

the map can be weighted based on their difference. As both are modeled as Gaussian

the probability distribution of their difference is also Gaussian. The likelihood that this

difference is zero therefore provides a principled method by which the particle that made

the observation can be weighted. Setting this difference to zero we obtain:

likelihood = p((Ez.est − Ez.obs) = 0) =
e
− 1

2

(µEz.est
−µEz.obs

)2

σ2
Ez.obs

+σ2
Ez.est√

2π(σ2
Ez.obs

+ σ2
Ez.est

)
(4.9)

Note that the likelihood measure described in Equation 4.9 can only be calculated when

a prior estimate exists. If a particle has no prior estimates to match its observations to

it is assumed that the particle is just as likely to be a good or bad estimate of the true

state, and thus is not included in the resampling phase. Since each particle will often have

a differing number of observation/estimate matches it is also withheld from the resampling

phase if less than γoverlap percent of its observations are successful in matching to a prior

estimate. If γoverlap = 100% this would ensure that resampling only occurred when the

multibeam swath fully overlapped with an area previously explored. Decreasing γoverlap will

include more particles in the resampling phase (i.e. those with swaths that only partially

overlap previously explored terrain) but comes with the tradeoff of using a less informative

likelihood to weight each particle. This reduced threshold can be chosen based on the

amount of overlap/loop closures expected during the mission. If Lmin is the smallest number

of likelihood measures belonging to a particle within the subset of those to be included in

the resampling phase, then a single weighting factor can be generated for each of these

particles by sampling Lmin of the likelihood measures belonging to them and calculating

the joint likelihood, i.e. the product of those likelihoods.

4.2.4 Map Updating

Once a particle has been weighted its map is updated with the new information provided

by the observations. As the estimate of seabed depth contained within each grid map

cell is tracked using a simple 1D EIF it can be updated with the standard EIF equations,
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based on the observation model described in Section 3.6. Furthermore if we assume a static

environment, where the seafloor does not change with time over the period of a single survey,

the prediction step of the EIF can be removed, simplifying the update equations to those

shown in Algorithm 4:

Algorithm 4 Step 9 from Algorithm 1:Grid Map Updating

1: for b = 1 to Nbeams do
2: Extract current estimate (ξt−1,Ωt−1) from observed cell.
3: µt−1 = Ω−1

t−1ξt−1

4: Ωt = Ωt−1 +∇xhTt R−1
t ∇xht

5: ξt = ξt−1 +∇xhTt R−1
t [zb − h(~xv(tk), µt−1) +∇xhtµt−1]

6: Store new estimate.
7: end for

4.3 Results

In this section we present a thorough analysis of the BPSLAM filter running on the grid

map representation for both short scale and long scale missions. All results presented in

this thesis were processed using an Intel Xeon 3.00GHz CPU with 16GB of RAM, though

the actual memory requirements of this approach often fall well below this capacity.

4.3.1 Case Study 1: Butts Reef Pockmarks

To begin with, the BPSLAM algorithm was tested on a small scale mission scenario using

bathymetric and navigation logs from a real survey undertaken by our research class AUV

Sirius (Williams et al. 2009), shown in Figure 4.2.

The survey was taken off the coast of Tasmania and contains several pockmarks 30 m

in diameter and 3 m deep (on average). Two orthogonal grid transects were carried out

underwater at an altitude of 20m. Sirius possesses inclinometers that provide the AUV

with observations of roll and pitch throughout the mission. Depth observations are obtained

through a high precision depth sensor whereas along track, across track and depth velocity

observations are provided by a 1200 kHz DVL with ±3 mms−1 accuracy. Note that this

specification does not take into consideration errors in the speed of sound estimate used

by the DVL. However Sirius also possesses a high precision conductivity and temperature
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Figure 4.2: The Sirius AUV is a research vehicle capable of exploring the ocean down to
700 meters depth. Sirius’s two torpedo shape promotes passive stability in pitch and roll,
allowing for high resolution bathymetry and stereo imagery to be obtained.

sensor that it uses to calculate the speed of sound in the surrounding water. Therefore the

precision stated earlier (provided by the manufacturer) remains a reasonable error model

for our DVL velocity observations.

Heading estimates are received from a magnetic compass and as such can be prone to

persistent heading-dependent errors of ≈ 1◦, arising from its sensitivity to the magnetic

signature of the rest of the vehicle. Fortunately through an iterative calibration process the

heading dependent bias in the compass observations was able to be modeled and corrected

for (Jakuba, Williams & Pizarro 2010). This coupled with the design of Sirius, which

promotes passive stability in pitch and roll, justifies the inclusion of the states x, y into the

particle filter, as they are the most prone to drift, while leaving the remaining states to be

tracked by the EKF.

USBL observations of the AUV’s range and bearing relative to a support ship, along with

a GPS fix of the ship, were also available and relayed to the AUV throughout the mission.

These were then used as measurement updates in an EKF filter (separate to BPSLAM) to

fuse this information into a dead reckoning based navigation solution. This navigation solu-

tion is not used by the BPSLAM filter but is reproduced here as a baseline to demonstrate
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the best possible map that could previously be produced, and how BPSLAM can improve

upon these results.

The bathymetric sensor used by Sirius is an Imagenex Delta T 260 kHz multibeam profiling

sonar, providing 120 beams uniformly across 120◦ with a 3◦ beamwidth in along track. This

is taken into account when creating the particle maps, as the resolution of the map is limited

by the resolution of the mapping sensor. While the spacing between observations on the

seafloor is non-uniform the variance in the spacing is reduced when mapping is performed

at constant altitude. As such the average separation provides a good measure by which to

gauge an appropriate resolution for the grid maps. For this mission the resulting average

beam separation in across track and along track was calculated as 0.726 m and 0.065 m

respectively. Additionally we impose the maximum resolution approximated by Eq. 4.8,

calculated as 0.486 m. Based on this requirement, the size of the survey (150 m by 300 m)

and the length of the mission (113 minutes) a grid resolution of 1.0 m was chosen to

demonstrate the BPSLAM filter’s performance.

To reduce mapping errors induced by sensor misalignment between the multibeam and

the vehicle, a standard calibration run was completed prior to the mission in which the

AUV maintained position and rotated on the spot over a test target (Foote, Chu, Hammar,

Baldwin, Mayer & Hufnagle 2005). The sensor offsets which minimised the discrepancy in

the resulting bathymetry were then applied.

As this survey mission does several complete passes over previously explored terrain, the

parameter γoverlap can be set to 100 % for resampling.

Navigation and Mapping Comparison

To ensure a good result we demonstrate the BPSLAM filter performance during the mission

using the aforementioned parameters with a relatively large number of particles (N = 640).

The corresponding navigation solution produced by the BPSLAM filter is shown in Fig-

ure 4.3 along with the vehicle position confidence in Figure 4.4. Figure 4.5 presents the

multibeam data collected during the mission. The hand matched correspondences shown

are not used in any way by the filter but are provided here for reference.

Without resampling the point cloud continues to spread out without bound as the uncer-

tainty in the pose grows, as expected. The first resampling event occurs at t = 73.75 min
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Figure 4.3: Tracklines produced by three different navigation solutions; the start and end
position/direction of the BPSLAM solution is shown by the light and dark arrows respec-
tively (longest tracklines belong to the initial grid survey). The evolution of the particle
cloud is also shown, changing from light to dark as the mission progresses.
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Figure 4.5: Waterfall display of the multibeam observations (depth relative to AUV). Letters
A through M correspond to 13 distinct pockmarks uncovered by the survey. The dark bands
on the timeline indicate the periods when resampling occurred.
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after travelling ≈ 2 km, which corresponds to the reobservation of pockmark F (see Fig-

ure 4.5) and the initial contraction in the uncertainty of the particle cloud in Figure 4.4.

This contraction is also evident in Figure 4.3 near the east corner of the survey where the

particle cloud is in the process of collapsing down into a smaller set of more likely state

hypotheses. Further resampling after this time continues to constrain the uncertainty in the

current pose, converging the particle cloud towards the solution which possesses the most

self-consistent map. Note that resampling only occurs during a very small portion of the

2nd grid transect despite there being an effectively continuous reobservation of terrain. It

was found that during these times resampling was possible but was being prevented by the

filter as the particle weighting was too uniform to discern the most likely state hypothe-

ses (see section 4.2.3). This suggests that during these times the relative navigation error

accumulated between observation and reobservation was still relatively small, or that the

majority of the particles had already been resampled and possessed similarly self-consistent

maps.

Figure 4.6 presents a comparison of the resulting maps produced by the DR, USBL fused

DR and BPSLAM solutions (see Appendix A for larger reproductions). Corresponding

maps and histograms of the offline registration error measure described in Section 3.9 are

also provided.

From Figure 4.6(a) the pockmarks discovered during this mission can be seen. However, the

use of dead reckoning as a navigation method has resulted in some blur. Errors produced by

bad sonar returns can appear anywhere in the map and will not be consistent with nearby

swaths. However, inspection of Figure 4.6(b), which plots the maximum separation between

overlapping swaths in each cell (note that these are only available in places where overlap

occurred i.e. during the 2nd grid survey), reveals that the inconsistencies are localised

around pockmarks. This is where sudden changes in depth occur and suggests that the

blur is most likely caused by navigation error creating a misalignment between successive

observations of each pockmark (i.e. ghosting), as opposed to bad sonar returns. The severity

and abundance of these registration errors is also highlighted by Figure 4.6(c), which plots

them as a histogram. Figures 4.6(d), 4.6(e) show how fusing USBL observations into the

navigation helps reduce ghosting in the map by improving the navigation solution. However

Figure 4.6(f) shows that while the overall quantity of these registration errors has decreased

(indicated by the slight shift leftwards of the median and 99th percentile in Figure 4.6(f))
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Figure 4.6: Bathymetric maps generated using our three different navigation solutions. The
corresponding error maps and histograms are also provided, detailing the misregistration
between overlapping swaths within each cell. Comparison shows the BPSLAM filter provid-
ing a reduction in the mapping error, the most prominent circled in black, when compared
to the map produced by DR and the USBL fused solution. This is also reflected by a re-
duction in the tail of the histogram, which highlights the large registration errors, as well
as a shift of the histogram’s median and 99th percentile towards lower values as we move
from using DR to USBL and then to the BPSLAM solution.
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a small number of large scale registration errors have been introduced by this solution,

making the map quality worse in some areas. These artifacts in the USBL solution may be

owing to multipath in the acoustic signal received.

Figures 4.6(g), 4.6(h) and 4.6(i) demonstrate the superior performance of the BPSLAM

filter. The ghosting in the map has been reduced significantly, condensing the corresponding

histogram even further into the region of low registration error. As expected the BPSLAM

filter has identified a navigation solution that aligns all the pockmarks discovered in the

mission, without the need for feature detection algorithms or heuristics to identify loop

closures.

For the maps produced by DR, USBL fused DR and Grid Map BPSLAM the overall quality,

using the same offline FPS scheme described in Section 3.9, were calculated as 0.235 m,

0.216 m and 0.197 m respectively. Furthermore it took the Grid Map BPSLAM filter 3.1

minutes to process this mission, requiring 5.4 GB of RAM. This run time is 2.8 % of the total

mission duration, additionally validating the Grid Map BPSLAM filter’s computational

performance.

Accuracy, Consistency and Efficiency Analysis

As BPSLAM is a sampling based method the quality of the resulting paths and maps it

produces can vary from run to run, the extent of which is heavily governed by the number

of particles used in S. To investigate this behavior the BPSLAM filter was run repeatedly in

batches of 25 using a different fixed particle size for each batch (N = 10, 20, 40, 80, 160, 320, 640).

For each run the processing time, memory requirements and average registration error of

the map were recorded. These results are shown in Figure 4.7.

Figure 4.7(a) demonstrates how increasing the particle set size converges the BPSLAM

solution towards a more self-consistent map while also improving the repeatability of this

result from run to run. Additionally it can be seen that only a small particle set size

(N > 160) is required for the BPSLAM filter to repeatedly produce a more self-consistent

map than when using DR or the USBL fused DR solution. Increasing the number of

particles beyond this number shows significantly little improvement in the self-consistency

of the maps produced. Figure 4.7(b) also demonstrates the computational behavior of

BPSLAM for different particle sizes. As expected the implementation of DPM allows the
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Figure 4.7: a) Variation in the map error with a varying particle set size using Grid Map
BPSLAM. The large dots represent the mean map error measure in each batch of 25 runs
(shown by the smaller dots). The outer solid lines represent the ±2σ bound in each batch.
Results show an increase in the accuracy and consistency of the map produced by BPSLAM
when the number of particles is increased. In b) the run time and memory requirement of
Grid Map BPSLAM can be seen to scale linearly with the particle set size.

filter to maintain a run time that scales linearly with N (see Section 3.1). The memory

usage can also be seen to scale linearly with N .

Error Model Analysis

So far we have shown that the BPSLAM filter using grid maps can yield improvements in

navigation and map quality when compared to DR and USBL fused DR solutions. However

this is based on a mission where the DR solution is already fairly accurate due to the short

mission duration and the use of high precision velocity observations from a DVL sensor

(±3 mms−1). In this scenario the BPSLAM filter was only able to offer relatively small

adjustments to the map that are not immediately recognizable when comparing Figures

4.6(a), 4.6(d) and 4.6(g). For an AUV operating with less accurate navigation it remains to

be seen whether the BPSLAM filter remains as effective. To investigate this we separately

simulate two forms of error in our navigation: a heading dependent bias in our magnetic

compass and lower precision observations from our DVL sensor.
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As mentioned previously our magnetic compass suffers from a bias that changes with head-

ing, which was able to be corrected for through calibration (Jakuba et al. 2010). Disabling

this compass correction reintroduces this navigation error into the tracklines. Alternatively

we can artificially simulate a simple heading dependent compass bias of ≈ 1◦ caused by

hard iron interference. This is modeled by the first order harmonic:

bias = 1.15 ∗ (cos(ψ + δ) + sin(ψ + δ)) (4.10)

where δ is the phase. This type of navigation error is non linear and so cannot be modeled

properly as a Gaussian uncertainty in the heading observation, as is required by the EKF

filter. However as the error is dependent on heading and not on time (as is the case for states

x, y ) it is also difficult to model the error properly with the particle filter. Instead we leave

the BPSLAM filter setup unchanged and artificially increase the uncertainty introduced by

our constant velocity model. This caters for the navigation error introduced by the compass

bias as well as other navigation errors that may still be unmodeled, allowing the particle

set to expand appropriately. However this is an adhoc approach that overcompensates for

uncertainty, and so requires more particles than would be needed if the compass bias were

modeled by a more principled approach. This is the subject of future work.

Figure 4.8 presents both the model of our estimated compass bias and the artificial compass

biases described. We then repeatedly ran the BPSLAM filter in batches of 25 to successively

test the performance of DR, USBL fused navigation and the BPSLAM filter when subject

to each of these compass biases.

Figure 4.9 presents the maps generated by DR and BPSLAM when the compass bias is

left uncorrected (the USBL fused DR solution is not shown here as it is indistinguishable

from that shown in Figure 4.6). Figure 4.10 presents the results of our successive runs with

different simulated compass biases. As expected the uncorrected compass bias results in a

more inconsistent map when DR is used as the navigation solution. However BPSLAM is

still able to correct for this additional navigation error and produce (on average) a more

self-consistent map than the USBL fused DR solution. When the larger simulated heading

biases were applied it was found that the USBL fused solution performed (on average)

better than BPSLAM. However BPSLAM still consistently outperforms the use of DR as a

navigation solution. As this survey consists of two orthogonal grid transects the majority

of the mission is undertaken along four dominant headings. As expected the biases which
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Figure 4.8: Different biases that we simulate in our magnetic compass. Note that the bias
shown in dark blue is the estimated compass bias and is achieved by turning off our compass
correction. The dominant headings of the grid survey are shown by the large dots.
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Figure 4.9: Bathymetric maps generated when our compass bias is left uncorrected. The
corresponding error maps and histograms are also provided, detailing the misregistration
between overlapping swaths within each cell. While the DR solution suffers from a signifi-
cant increase in registration error the BPSLAM solution is still able to maintain the same
level of consistency.
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Figure 4.10: Results of simulating different heading dependent compass biases. BPSLAM
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Figure 4.11: Results of simulating a lower precision DVL sensor. BPSLAM consistently
out performs the DR solution. However for very high noise levels the USBL fused solution
emerges as the most self-consistent.
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produced the largest errors along these dominant headings produced the most inconsistent

maps.

The effect that the precision of our DVL sensor has on performance of the filter can be inves-

tigated by simulating less precise observations through the addition of zero mean Gaussian

noise. The levels of noise that we have chosen to use reflect the range of accuracies from

commercially available DVL systems (±0.003 ms−1 to ±0.03 ms−1). As an exploratory

measure we also model precisions much lower than this, as might be expected of a model

that relies on propeller counts to estimate velocity (±0.15 ms−1, ±0.3 ms−1). Again we

repeatedly run the BPSLAM filter in batches of 25 for each noise level.

Figure 4.11 shows that decreasing the precision of the DVL sensor results in a map which

is progressively more inconsistent. As the USBL solution is a fusion of DR and USBL

observations it too suffers from an increase in the average registration error, though this

increase is significantly smaller. Here the BPSLAM solution is shown to provide the most

self-consistent maps (on average) for the range of precisions that are currently available

in commercially available DVL sensors. Increasing the noise further results in a map that

is progressively less accurate than the USBL fused solution and is also less repeatable.

However the BPSLAM solution still consistently outperforms the DR solution, validating

the effectiveness of BPSLAM when dealing with lower precision velocity sensors.

4.3.2 Case Study 2: TAG Hydrothermal Vent

As alternative bathymetric SLAM filters currently exist it is instructive to provide a perfor-

mance comparison. In this case Roman’s Sub-mapping bathymetric SLAM filter (Roman

& Singh 2005) was chosen as it is also featureless in its approach and suited to mapping in

open underwater environments (see Section 2 for more details). In addition this comparison

is made on a large deployment to test the scalability of BPSLAM to a mission timescale

more common in industry.

This is achieved by utilising bathymetric and navigation logs from a survey undertaken by

JASON, a ROV operated by the US National Deep Submergence Facility (Roman 2005).

The survey covers part of the Trans-Atlantic Geotraverse (TAG) Hydrothermal field and

contains several crossing tracklines over a large hydrothermal vent spanning over 17, 500 m2

in area, collected over a time span of 11 hours. The navigation suite installed on JASON
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Figure 4.12: The JASON ROV is a research vehicle capable of exploring the ocean down to
6,500 meters depth. Similar to Sirius it can be used to collect high resolution bathymetry
and stereo imagery.

is similar to that described in Section 4.3 in that three axis attitude, three axis bottom

relative velocity and surface relative depth sensors were available. However JASON also

receives heading observations from a Fiber Optic Gyroscope (FOG) that delivers ≈ 0.1◦

accuracy. High precision pitch and roll observations of ≈ 0.1◦ precision were also available.

As such the vehicle states x, y remain the most prone to drift and so no change was made

to the state setup of the filter.

Acoustic LBL navigation fixes from external beacons were also available at 10 second inter-

vals using a vehicle mounted transponder. These fixes delivered position estimates accurate

to ≈ 4 m and are only used by the BPSLAM filter to initialise the ROV’s position. Similar

to Section 4.3 they were used as measurement updates in an EKF filter separate to BP-

SLAM, so as to produce a navigation solution by which to evaluate the performance of the

BPSLAM filter.

The bathymetric sensor used by JASON is a SM2000 200 kHz multibeam sonar (Kongsberg-

Mesotech Ltd), providing 128 beams uniformly across 120◦. This corresponded (for this

mission) to an average spatial separation of 0.239 m and 0.126 m in across track and

along track respectively. Additionally imposing our maximum resolution bound specified
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by Eq. 4.8 gives us 0.783 m. Based on this we run our BPSLAM filter using a grid size of

1.0 m. The parameter γoverlap remained set at 100 %.

Navigation and Mapping Comparison

To ensure a good result we demonstrate the BPSLAM filter performance during the mission

using the aforementioned parameters with a relatively large number of particles (N = 640).

The corresponding navigation solution produced by the BPSLAM filter is shown in Fig-

ure 4.13 along with the behavior of the particle set in Figure 4.14. Unfortunately the

Sub-mapping algorithm does not currently output a navigation solution so this cannot be

shown. Figure 4.15 presents the multibeam data collected during the mission.
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Figure 4.13: Tracklines produced by three different navigation solutions; the start and
end position/direction of the BPSLAM solution is shown by the light and dark arrows
respectively. The evolution of the particle cloud is also shown, changing from light to dark
as the mission progresses.

Comparing navigation solutions in Figure 4.13 shows how BPSLAM significantly shifts

the tracklines away from the DR solution towards the LBL fused DR solution, as much

as 25 m in some places. This shift is also evident when viewing the LBL innovations

(the difference between the raw vehicle position observations reported by the LBL system
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Figure 4.14: Variation in the 95% confidence interval of the vehicle’s x, y position, with
(solid line) and without (dotted line) particle resampling.

and the predicted position from the trajectory) for each navigation solution, as shown in

Figure 4.16. As expected the LBL fused DR solution retains the smallest LBL innovations,

as its filter uses these observations as measurement updates. Note though that the LBL

observations are subject to error and cannot be treated as ground truth. For this reason

the difference in the innovations between the BPSLAM and LBL fused DR solutions are

too small relative to the precision of the LBL observations (≈ 4 m) to judge which is more

accurate. However the innovations observed by the DR solution are large enough to signify

greater navigation error, verifying that LBL fused DR and BPSLAM have improved the

accuracy of the navigation solution.

Figure 4.17 presents a comparison of the resulting maps produced by the DR, LBL fused

DR, BPSLAM and Sub-mapping filters. Corresponding maps and histograms plotting the

offline registration error described in Section 3.9 are also provided. For this mission the Sub-

mapping filter was able to maintain self-consistency in its map by temporally dividing the

generated point cloud into 62 submaps, whose translation and rotation relative to each other

were then tightly constrained through the filter’s identification of 130 terrain registrations

between the submaps.
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Figure 4.15: Waterfall display of the multibeam observations (depth relative to ROV) col-
lected during the TAG mission. Note that sharp changes in the waterfall are caused by the
ROV performing 90◦ turns in areas of large relief, such as around the rim of the vent.

The use of DR as a navigation solution has produced the map with the most artifacts, as

shown in Figure 4.17(a). This is particularly evident along the northern rim of the vent

where a crosshatch pattern is clearly visible. Comparing these artifacts to the tracklines

shown in Figure 4.13 suggest that they are of the same shape as the scan pattern. This

and the tendency for these artifacts to be localised around areas with large depth gradients

(see Figure 4.17(b)) further suggest that they are caused by misaligned swaths produced by

navigation error. The inclusion of LBL observations into the navigation solution resolves

many of these artifacts, as can be seen in Figures 4.17(d), 4.17(e) and 4.17(f). However it

has also introduced artifacts in places where there were none before. This highlights the

ability for LBL observations to remove low frequency error from navigation while causing

problems by introducing high frequency error.

Figures 4.17(g)-4.17(l) demonstrate the superior performance of both the BPSLAM filter
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Figure 4.16: Innovation of raw LBL observations during the TAG mission for three different
navigation solutions. Comparison shows a distinct divergence of the DR solution away from
the LBL observations, whereas the LBL fused DR and BPSLAM solutions retain a much
closer proximity, confirming an improvement in navigational accuracy.

and the Sub-mapping filter when compared to LBL aided navigation. All of the prominent

artifacts distorting the non SLAM approaches have been successfully resolved, although

both approaches still retain a small amount of registration error. For the Sub-mapping

filter these correspond to areas where the ROV was “yanked” by its tether, producing

vehicle motion that significantly diverges from the constant velocity model it uses within

each local submap. This poses a particular problem for the Sub-mapping filter as it creates

misregistration within the local submap that cannot be resolved. However the BPSLAM

filter is still capable of resolving this type of misregistration, though it was not able to

completely resolve the misalignment in the steepest areas of the survey e.g. the tip of the

hydrothermal vent. Comparing Figures 4.17(i) and 4.17(l) shows similar performances by

both SLAM filters. However when regarding the self-consistency of the whole map it can

be seen that the sub-mapping filter offers a slightly better solution. This is also confirmed

by the average registration error for the DR, LBL fused DR, BPSLAM and Sub-mapping

solutions, calculated as 1.733 m, 1.490 m, 0.585 m and 0.515 m respectively.

Comparing the computational performance of each SLAM filter however reveals a significant

difference. The BPSLAM filter required 9.76 GB of RAM and took 8.7 minutes to process

the mission, which is 1.2 % of the mission time. The Sub-mapping algorithm however

required overnight processing to provide its mapping corrections for this mission. This

effectively demonstrates the run time efficiency of the BPSLAM algorithm and its potential
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Figure 4.17: Bathymetric maps generated using four different navigation solutions. The cor-
responding error maps are also provided, detailing the misregistration between overlapping
swaths within each cell. Comparison shows the two SLAM filters providing a significant
reduction in the mapping error when compared to the map produced by DR and the LBL
fused DR solution.
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for real time implementation on surveys of this scale or smaller.

4.4 Limitations

While Section 4.3 has successfully demonstrated the ability of the BPSLAM filter to impart

corrections to navigation and mapping it has also highlighted some drawbacks to using a

grid map representation. In particular the memory requirements of this representation,

while scaling well with particle set size, would start restricting its use if missions larger

than the ones presented so far were to be attempted. Furthermore, by bounding the survey

with a rectangular grid a significant amount of memory can be wasted providing cells in the

areas of the grid that the survey does not reach. As mentioned in Section 4.2.1 quadtrees

provide a memory efficient approach to this problem but come at the cost of increasing the

complexity of the map querying and updating operations.

Another problem with the grid map representation is that some map resolution will always

be lost by discretising the map into a collection of cells. In this case the loss of resolution

cannot be simply overcome by increasing the resolution, as this increases the memory re-

quirement quadratically but also reduces the chance of incoming observations landing in

cells that have been previously observed, thereby reducing the ability to resample. For

sparse datasets or for missions with minimal overlap this is particularly problematic and

will reduce the performance of the BPSLAM filter back to Dead Reckoning. Resolution is

also limited by the data association problem mentioned in Section 4.2.3, whereby an ob-

servation may be incorrectly matched to a cell due to its uncertainty in range creating a

corresponding uncertainty in its x, y location.

This motivates the creation of a new map representation that is memory efficient and better

models the uncertainty that is introduced in the map by range observations. Most impor-

tantly though this discussion highlights compelling reasons to move to a map representation

that accommodates for the spatial correlation in the environment instead of treating each

estimate as independent, as has been done here. While this is more than likely to increase

the computational run time of the approach the afore-mentioned characteristics will serve

to make BPSLAM suitable for a much wider range of mission scenarios. In this way a new

map representation would complement the grid map approach rather than replace it, as the

computational run time of the latter has great potential for real time operations.
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4.5 Summary

This chapter has presented the grid map representation that is paired with RBPF SLAM

to form the BPSLAM filter. A description of the map structure along with the procedures

used to weight and update each particle’s map were provided.

Results showed an improvement in both the map and the trajectory when compared to using

state of the art fused navigation and low cost sensors without SLAM, both in small scale

and large scale missions, as well as demonstrating a robustness to compass biases and noisy

velocity observations. Its performance was also compared against Roman’s Sub-mapping

approach to SLAM (Roman 2005). While only a slight difference was found in the map

qualities produced by both SLAM filters, the BPSLAM algorithm was able to demonstrate

a significant improvement in computational efficiency. BPSLAM also achieved this with

fewer tuning parameters, which were shown to translate well between the small and large

scale missions presented here. These parameters included the number of particles, map

resolution and γoverlap.

Lastly a discussion of the limitations faced by the grid map representation were presented,

motivating the creation of a new map representation that addresses these shortcomings.



Chapter 5

Bathymetric Particle Filter SLAM

Using Trajectory Maps

5.1 Introduction

In Chapter 4 a grid map representation was presented that could be paired with the RBPF

SLAM technique described in Chapter 3 to form a means of SLAM with superior com-

putational run time, provided that the mission contained dense bathymetry and maximal

overlap with previously explored areas.

In this chapter the BPSLAM approach is extended by presenting an alternative map rep-

resentation that is not bound by these limitations. This is achieved by utilising Gaussian

Process(GP) Regression to provide loop closures in areas where little to no overlap with pre-

viously explored terrain is present. In this way the spatial correlation in the environment is

fully exploited, allowing the filter to not only enforce self-consistency in overlapping sections

of the map but additionally enforce self-consistency between neighboring map borders.

In itself this does not form a new map representation but rather a new method of parti-

cle weighting that could still be implemented using the current grid map representation.

However to make the memory requirements of this approach more tractable to datasets

larger than the ones presented so far, as well as to recover the map resolution lost through

discretisation, we forego the grid map representation for another more memory efficient

approach.
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As discussed in Section 4.1, grid map representations offer relatively fast map access at the

cost of losing map resolution through discretisation. Alternatively, storing each particle

map as a cloud of 3D points does not incur this loss of resolution but unfortunately imposes

even greater memory requirements for storage when compared to the grid map approach.

An important observation is now made about both of these map representations, namely

that each particle map is generated from an identical log of bathymetric observations. It

is only the underlying particle trajectories that are different. A considerable amount of

redundancy can therefore be removed from the maps if, instead of storing each particle’s

point cloud or grid map, the trajectory of each particle is stored and simply linked to a

corresponding log of observations shared by all particles. The memory requirements of this

map representation is therefore approximately N times less than using separate point clouds

for each particle. Technically this in itself is not a true “map” representation but rather

an efficient manner in which the raw components to build a particle’s map can be stored

and accessed without loss of information. Once constructed a particle’s map is simply a

2.5D point cloud. However, in the interests of highlighting the novel methods by which the

particle maps are maintained we refer to this setup as the trajectory map representation.

This new type of map representation will be paired with GP Regression and RBPF SLAM to

perform BPSLAM. While this will mean that computational run time will be sacrificed (as

a particle’s point cloud will need to be reconstructed locally every time particle weighting

is required) the results presented in Section 5.4 serve to validate this tradeoff.

In the remainder of this chapter an introduction to Gaussian Process Regression is provided,

along with a description of the trajectory map representation and the map weighting and

updating procedures particular to this approach. The two case studies presented in Chap-

ter 4 are then revisited to validate the performance of BPSLAM using trajectory maps, and

to compare the new performance against that previously attained from using the grid map

representation. Lastly a new case study is presented that investigates the added capabilities

of Trajectory Map BPSLAM in missions with minimal map overlap.

5.2 Gaussian Process Regression

As each particle’s map (once reconstructed from its trajectory) is a point cloud with uncer-

tainty in depth, a form of regression will be required to extract depth predictions from it.
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These predictions need to be made at the precise locations of the new multibeam observa-

tions so that particle weighting can occur. In addition the uncertainty in these predictions

will also be required if the consistency between observation and prediction is to be properly

judged during this stage.

To perform these predictions some assumptions about the seabed must be made. Firstly

it is assumed that, to a good approximation, the seafloor can be modeled as a continuous

function g(x, y). As with the grid map representation this restricts the scope of operations

to marine environments that are approximately 2.5D (as is the case for the majority of the

seafloor). If it was further assumed that g(x, y) could be represented by a specific model

(e.g. an nth order polynomial or spline) then data fitting techniques (such as least squares

minimisation) could be used to learn g(x, y) and hence provide predictions at any given

x, y coordinate. However choosing the most appropriate model is a non-trivial problem and

can lead to under or over-fitting the data if done incorrectly. This approach also requires

heuristics to additionally calculate the uncertainty in the predictions. For these reasons

a Gaussian process is instead used to model g(x, y) as it places less assumptions on the

function, allowing an appropriate model to be learnt by letting the data “speak for itself”.

A Gaussian process is a multivariate gaussian distribution generalised to infinitely many

variables. Using this as a model for g(x, y) effectively represents the function as an infinite

2D matrix (both in range and resolution) of correlated variables, where each cell specifies the

distribution of g(x, y) for that given x, y coordinate. Naively, utilising this infinite dimen-

sional model would be computationally impractical. Fortunately GPs possess an important

marginalisation property that bypasses this issue i.e. if the distribution of g(x, y) is only

required at a finite number of points (variables), then inference in the Gaussian process

will give the same answer whether or not all the other infinitely many points are taken into

account (Rasmussen & Williams 2006). Inference can therefore be made computationally

tractable by safely ignoring all points that are not of interest.

While this model is more flexible than polynomial or spline fitting it still requires some more

subtler assumptions to be made in terms of the correlation between neighboring predictions.

This is specified in the form of a covariance function k(x, y, x′, y′), of which many different

models are available. In addition covariance functions often contain a set of hyperparameters

that can be learnt to improve the accuracy of the model, based on the dataset and some

optimisation criteria.
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The mean function m(x, y) of the GP also needs to be specified (though is normally set to

zero). This function describes the expected value of g(x, y) a priori i.e. the value predictions

will converge to in the absence of training data within proximity. Once chosen these two

functions completely define the GP.

Once the GP model is defined regression can be performed to predict the function value

of g(x, y) at the locations of the new observations. To do this the particle’s point cloud

map is treated as a training set D = {X,Y} with M input points X = {xi, yi}Mi=1 and

noisy output points Y = {zi}Mi=1 with noise covariance matrix W = diag(σ2
1...σ

2
M ). The

predictive distribution of the underlying function g(X∗) at test points X∗ is then calculated

based on our covariance function k(X,X ′) and mean function m(X). This is done using

the standard equations for GP Regression as given by Algorithm 5.

Algorithm 5 GP Regression Equations

1: L := cholesky(K(X,X) + W)
2: α := LT \(L\Y)
3: g(X∗) := k(X,X∗)Tα
4: v := L\k(X, X∗)
5: Cov(g(X∗)) := k(X∗, X∗)− vTv
6: log p(Y|X) := −1

2YTα− Σilog Lii − n
2 log2π

(Note: For multiple test points lines 4,5 are repeated.)

In summary GP Regression is a very powerful tool as it allows depth predictions to be

made in unobserved areas as well as providing a theoretically sound method of calculating

the corresponding uncertainty Cov(g(X∗)) in the predictions made. For a more detailed

description of the theory and applications of GPs, Rasmussen & Williams (2006) provides

an extensive review.

5.3 Method

5.3.1 Map Structure

To perform Distributed Particle Mapping an ancestry tree must be maintained. Similar to

Section 4.2.1 this is structured in the form of a list, where each particle (both current and

ancestral) has a record in this list that contains the following information:

• Parent ID - The ID of the parent that the particle was resampled from.
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• Child List - A list of all the particle’s children.

In addition to this, each particle’s trajectory map can also be stored by appending the

following information:

• Trajectory - A list of poses which forms the trajectory branch of this particle.

• Observations - A list of indexes (synchronized to the trajectory) that point to sonar

swaths in the multibeam log.

The ID of the particle is not stored as a field in this record but is encoded as the position of

the record in the list itself, allowing for fast access. A particle’s trajectory can therefore be

reconstructed at any time by backtracing through its lineage. A particle’s map is similarly

reconstructed by backtracing through a particle’s observations and then using the trajectory

(whose poses are synchronised to the observations) to transform them into the global frame.

This is demonstrated in Figure 5.1.

5.3.2 Map Initialisation

At the beginning of the mission each particle is initialised with an empty trajectory and

sonar swath index list. If a prior map is available this can be entered into the filter by

first calculating the location of each prior map estimate relative to the sensor frame at the

start of the mission. These transformed estimates can then be modeled as a single large

2.5D multibeam swath, with each beam observation having an along track, across track and

depth component. The uncertainty in depth is also stored. If this “prior map swath” is

stored in the bathymetric log as the first entry then all particles can automatically inherit

and reconstruct the prior map if the starting pose and index of 1 is added to the root

particle’s trajectory list and sonar swath index list respectively.

Compared to the grid map representation this approach allows for prior map localisation

without losing precision in the navigational corrections through map discretisation. In

addition this approach is also less sensitive to differences between the prior map resolution

and resolution of the current mapping sensor, as the use of GP Regression allows more

observations to be matched to prior estimates through interpolation/extrapolation.
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Figure 5.1: An example of the trajectory map structure with N=5 particles and 7 obser-
vations (A-G). The trajectory stored at index II in the particle set is reconstructed by
backtracing through the ancestry of the particle located at this index and connecting to-
gether each trajectory segment owned by the particle and its ancestors (shown by the broken
circles). This trajectory is then used to transform a list of observations, synchronised to
the poses contained within it, into the global frame to create the particle’s map.

5.3.3 GP Model Choice and Learning Scheme

In BPSLAM each particle’s map is progressively generated, meaning that the GP model

must be periodically relearnt as new bathymetry is received. Furthermore, each particle

will need to perform a separate regression based on its own map during particle weighting.

This poses a problem as one of the major drawbacks of using GPs is the need to invert

potentially large covariance matrices during learning and regression, corresponding to a

O(M3) computational cost. In terms of computational tractability this precludes the use of

more complex non-stationary covariance functions such as the neural network (Vasudevan,

Ramos, Nettleton & Durrant-Whyte 2009)(Rasmussen & Williams 2006) that can model
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both large scale trends and local anomalies relating to discontinuous data. Instead a simpler

stationary covariance function k(X,X ′; l, σ0) developed by Melkumyan & Ramos (2009) is

used. This is given below:

k(X,X ′; l, σ0) ={
σ0[

2+cos(2π d
l
)

3 (1− d
l ) + 1

2πsin(2π dl )] if d < l

0 if d ≥ l

(5.1)

where the distance d = |X − X ′|. The properties of this covariance function are similar

to the squared exponential kernel (Rasmussen & Williams 2006). However in this case the

covariance function falls to exactly zero for distances greater than the length hyperparam-

eter l. This means that the covariance matrices generated by this function are intrinsically

sparse, which allows for exact inference while providing faster computation using sparse

methods. It should also be noted that stationary covariance functions cannot account for

variable smoothness in the terrain without needing to be relearned. However, this is already

a requirement of our approach and Section 5.4 will serve to validate our choice.

The set of hyperparameters for this covariance function should be chosen to produce output

that matches the variances observed in the training data, while at the same time create

a model that is not too complex. Fortunately the first two terms of the log marginal

likelihood log p(Y|X) respectively provide quantitative measures of these criteria, presented

in Algorithm 5 on Line 6. The third term here is a normalising constant. Optimising on the

marginal log likelihood therefore produces a set of hyperparameters that provides a good

model for regression. However, as mentioned previously the hyperparameters will need to

be relearned periodically to ensure that they remain a good model for the local terrain.

This is accomplished by taking a square patch of the most recent bathymetry (with along

track distance equal to the swath width so as not to bias any particular direction) and

transforming it into the global frame using the Dead Reckoning trajectory. GP learning is

then carried out using this training subset.

What remains to be chosen is the mean function that will be coupled with the covariance

function to perform GP Regression. To improve the predictions outside the realm of the

training data the mean function is set to the mean of the training output i.e. m(X) =
M∑
i=1

Yi
M

.
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5.3.4 Map Weighting

As mentioned in Chapter 3, the map weighting stage judges each particle by the likelihood

that the current multibeam swath would be observed, given the particle’s current map.

Algorithm 6 details the steps involved to calculate this.

Algorithm 6 Step 6 from Algorithm 1:Trajectory Map Weighting

Require: Combined particle/EKF state hypothesis ~xvi(tk), Observations z, Map i
1: if Time since GP hyperparameters were relearnt ≥ τrelearn then
2: Relearn GP hyperparameters using recent observations and DR trajectory.
3: end if
4: if (GP length hyperparameter l ≤ lmax) then
5: ctr = 0
6: Bmin = Nbeams ∗ γoverlap
7: for b = 1 to Nbeams do
8: Transform zb into equivalent depth observation Ez.obs at coordinates

[Ex.obs, Ey.obs] relative to global frame.
9: if ([Ex.obs, Ey.obs] is within τlcl proximity of past observations) then

10: Perform GP Regression at [Ex.obs, Ey.obs] using past observations (be-
longing to both the current particle and its ancestors) within τtrainl prox-
imity as training data, returning depth estimate Ez.est.

11: Calculate the likelihood of Ez.obs matching the current estimate:
lklhd(ctr) = p(Ez.obs − Ez.est = 0).

12: Increment ctr.
13: end if
14: end for
15: if (ctr ≥ Bmin) then
16: return Joint Likelihood wi =

∏Bmin
j=1 lklhd(j)

17: else
18: return Do not include particle in resampling.
19: end if
20: else
21: Do not attempt particle resampling.
22: end if

This is very similar to the map weighting procedure used by the grid map representation in

Section 4.2.3. However, in this case GP Regression is used to predict estimates of seabed

depth, rather than recalling them from grid map cells.

Following from Algorithm 6 an observation model is required to first transform the obser-

vations z into the global frame. For the trajectory map representation we model each range
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observation (r) with zero mean Gaussian noise:

z = r = h(~xv(tk),E) + v, v ∼ N(0, σ2
r ), σ2

r = (λr)2 (5.2)

where r is the range and λ is a constant value given by the precision of the multibeam sensor.

The measurement function h is identical to the one described in Section 4.2.3 except that in

this case the bearing (α) and along track angle (β) are treated as known quantities, rather

than observations.

Using Equations 3.1 and 3.2 each observation r can be converted to an equivalent depth

observation Ez.obs. As was the case for the grid map representation the uncertainty in

range introduces uncertainty in the observations x, y location (Ex.obs, Ey.obs) through this

transformation, particularly for observations with large grazing angles. This in turn means

that uncertainty will exist in the training inputs used by our GP model, as these observations

form the training data for GP Regression in future calls of the map weighting procedure.

Methods of dealing with uniform uncertainty in the training input do exist (Girard &

Murray-Smith 2003) but this problem is further compounded by the xy uncertainty being

non-uniform and dependent on the vehicle pose at the time of observation.

Instead of directly modeling uncertainty in Ex.obs, Ey.obs this issue is bypassed using a prin-

cipled method that transforms a swath of multibeam observations, with uncertainty in

range, into an equivalent set of depth observations with uncertainties only in depth. This

is achieved by modeling the multibeam swath as a GP in the polar domain, allowing for

the angular correlation between observations to be exploited. The multibeam swath is

therefore represented as a single entity by this model, and through GP Regression can be

raytraced to determine the uncertainty of intersecting the seafloor along any given path

within the swath, which in this case is specified as a path that follows the z axes of the

original observations. For a full review of this technique see Section 5.3.6. Note that while

this method provides a principled approach to converting the range uncertainty it has been

found to produce a negligible improvement in the datasets shown when compared to the

simpler approach used by the grid map representation (see Section 4.2.3). However it is still

implemented here for completeness, as the corrections it may provide in future (such as in

more depth-discontinuous datasets) could prove to be very compelling. This investigation

is the subject of future work.
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It should also be noted that this approach assumes no uncertainty in the bearing and along

track angle of the observation, which is often not the case as a small uncertainty arises in

these angles from the finite beamwidth of the sonar aperture. As mentioned before there

are methods available for handling this uncertainty (Girard & Murray-Smith 2003) but

they were found to be computationally intractable. Despite this the results presented in

Section 5.4 serve to validate the corrections that can still be achieved in navigation and

mapping without taking this uncertainty into consideration.

With the swath of observations now transformed into the global frame the decision as to

whether to perform a loop closure or not i.e. particle weighting/resampling, can now be

made. As GP Regression allows for the prediction of depths in places that have not been

directly observed, this naively allows loop closures to be performed at any time during

a mission. However, regression far away from the training set will not be useful as all

predictions tend toward the mean function at this limit. The rate at which this occurs

decreases as the length scale hyperparameter of the GP model l increases, meaning that

extrapolated predictions can be performed further away from the training set when the

surrounding terrain is more spatially correlated. However performing particle weighting

using observations of highly correlated terrain, such as a flat plane, is less likely to discern

the particles with the most likely state hypotheses. A loop closure is therefore not attempted

if the current length scale is above the user defined threshold lmax. For length scales below

this threshold particles are only weighted and included in the resampling phase if they

possess at least Bmin observations that fall within τlcl distance of each of their respective

maps, where τlc is a scale factor. This effectively allows us to dynamically increase or

decrease the acceptable range of extrapolation based on the correlation in the local seabed.

For the observations that pass this criteria an estimate of seabed depth (µEz.est) and corre-

sponding uncertainty (σ2
Ez.est

) is calculated at the observations x, y location using GP Re-

gression based on training data taken from the particle’s map (see Algorithm 5). However,

while the GP covariance function provides the desired computational speedup for regression

in large sparse datasets this benefit reduces as the dataset gets smaller and denser relative

to l. In this case the posterior distribution of the GP is approximated by selecting a subset

of training points that are within proximity of the locations to be tested, the size of this

subset window equal to τtrainl, where τtrain is a user-defined constant. This ensures that any

errors introduced from this approximation are bounded during the operation, approaching
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zero as τtrain is increased.

Once the GP regression has been performed the observation Ez.obs can be weighted based

on how consistent it is with Ez.est using the same formula implemented in the grid map

representation:

likelihood = p((Ez.est − Ez.obs) = 0) =
e
− 1

2

(µEz.est
−µEz.obs

)2

σ2
Ez.obs

+σ2
Ez.est√

2π(σ2
Ez.obs

+ σ2
Ez.est

)
(5.3)

As was the case for the grid map representation each particle included in the resampling

phase will have a different number of observations that have been successfully assigned

likelihood measures, the minimum number in this case tracked by the variable Lmin. A

single weighting factor can therefore be generated for each particle by calculating the joint

likelihood of Lmin of the likelihood measures available to each particle i.e. the product.

An example of the new map weighting procedure is shown in Figure 5.2(a). Here previous

particle resampling has caused the set to collapse down onto a single past trajectory be-

longing to the root ancestor Particle 0. Upon receiving the new multibeam swath a loop

closure is detected, as the particles have observations that fall within proximity to their

maps, shown in Figure 5.2(b). Each particle then uses a local patch of their own map to

generate a prediction (even when no overlap exists) and compares it against the observation.

The joint likelihood of these observation/estimate pairs is then calculated. Note that the

joint likelihood is a relative measure that only holds meaning if it is generated from the

same number of observations for each particle. As such only two observations are used in

this case, as increasing this number would require some particles to extrapolate predictions

beyond the window where they remain accurate enough for use. This effectively shows how

loop closures can be performed with little to no overlap by using GP Regression to generate

predictions.

5.3.5 Map Updating

As each particle stores its map as a simple list of trajectories and associated sonar swaths it is

relatively straightforward to update each particle’s map once particle weighting/resampling

has been completed. All that is required is to simply add the particle’s current pose and
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(a) Loop Closure Geometry (b) Particle Observations and Generated Predic-
tions

Figure 5.2: An example of the GP method used to weight each particle given a set of N = 3
with a swath of 11 multibeam observations. In part a) the trajectories for Particle’s 1, 2, 3
are shown in blue, red, green respectively. The trajectory of ancestor Particle 0, which
they all inherit, is shown in black. The local map section that each particle uses to match
its observations against is shown in grey. This map section is different for each particle
if it is generated from a trajectory section in the particles ancestry that is not shared.
However, in this case the neighboring trajectory within proximity belongs to Particle 0,
so the corresponding map is common to all (useful for illustrative purposes). The colored
broken lines indicate the slices of the predicted map that are within the plane of each
particle’s observations, displayed in Part b). Here GP regression is used by each particle
to generate predictions to compare against their observations. For illustrative purposes
the GP regression is only shown in 2D, where in practice the full 3D map is utilised to
generate these predictions. Equation 5.3 is then used to weight the particles based on these
observation/estimate pairs.
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swath index to the back of these respective lists, as described in Algorithm 7.

Algorithm 7 Step 9 from Algorithm 1:Grid Map Updating

1: Access ancestry tree record for current particle.
2: Add current state hypothesis of particle [xvi , yvi ] to end of trajectory list held by

particle.
3: Add index of sonar swath to end of observation list held by particle.

5.3.6 Raytracing Uncertainty from Correlated Observations

This section details a technique by which range observations from a multibeam swath with

uncertainty in range are converted into equivalent depth observations with uncertainty in

depth through the use of GP Regression in the polar sensor frame (range/bearing/along

track angle). To begin with the GP model is learned using the multibeam swath as training

data. In this case the training inputs are the bearing and along track angle of each ob-

servation Θ = {αi, βi}Bi=1 and the training outputs are the range observations Z = {ri}Bi=1

with covariance matrix W = diag(σ2
r1...σ

2
rB). This is demonstrated in Figure 5.3(a) where

a multibeam swath has been modeled by a GP in the polar domain and GP Regression

has been used to generate the probability distribution of the range to the seafloor for every

angular coordinate Θ∗ within the swath. For clarity each beam in this example possesses

zero along track angle, allowing us to represent the swath in 2D.

Each vertical slice of the plot in Figure 5.3(a) corresponds to the probability distribution

of the predicted range at that angular coordinate Θ∗ i.e.:

P (Z∗|Θ,Z,Θ∗) ∼ N(µZ∗ , cov(Z∗)) (5.4)

where µZ∗ and cov(Z∗) are calculated using the standard regression equations described in

Algorithm 5.

By further specifying a particular range value rtest the probability that the seafloor intersects

between rtest and rtest + dl for that angle Θ∗ can be estimated:

P (Z∗ ∈ {rtest, rtest + dl}|Θ,Z,Θ∗) =
dl√

2πcov(Z∗)
e
−(rtest−Z

∗)2
2cov(Z∗) (5.5)

where dl is the distance between successive test inputs in polar space.
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(a) GP Regression in the polar domain (b) GP Regression mapped into the cartesian
domain

Figure 5.3: An example of how polar observations with uncertainty in range are converted
to depth observations with uncertainty only in depth, using GP Regression in the polar
domain. In part a) the observations received from the multibeam are shown by black
crosses, the corresponding 95% confidence bounds indicated in white. These are used to
train a GP, resulting the predicted seafloor and 95% confidence bounds indicated by the
black solid and broken lines respectively. Overlayed is the corresponding likelihood measures
of the seafloor intersecting at any given range and polar coordinate. In part b) these trends
are mapped from the polar domain into the cartesian domain. The uncertainty in depth
assigned to each original range observation is calculated by sampling the probability of
seafloor intersection up the depth line that passes through it. This is shown for the 7th
observation by the vertical red line, corresponding to sampling along the red contour in
a). Conditioning these sampled probabilities on one seafloor intersection along this contour
results in the probability distribution shown by the vertical black line, scaled and reflected
in the plane for clarity. A Gaussian is then fitted to this distribution, the mean and 95%
confidence bounds of which are indicated by the solid and empty red circles respectively.

If the probabilities of the swath intersecting the seafloor at different range values were

sampled while keeping Θ∗ fixed, a discrete probability distribution would be produced that

converged to P (Z∗|Θ,Z,Θ∗) as dl was decreased. It is here that the main observation

that is the basis of this approach is made, namely that these calculated probabilities are

still meaningful if sampling instead occurs along the contour C that maps to the vertical

line at the x, y location of any given observation in the local-level frame. For the 7th

observation in the current example this corresponds to sampling along the red contour

shown in Figure 5.3(a) that maps to the red depth line shown in Figure 5.3(b). For clarity
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no pitch or roll is present in this example, which allows the scenario to be represented in

2D as any given depth line will map to a contour that is within the range/bearing plane.

In instances where pitch and roll does exist the mapping of the depth line [xobsll, yobsll, ztest]

(defined in the local level frame where only ztest varies) into the sensor frame is achieved by

first transforming the current sample point into along track (b), across track (a) and depth

values (d). Similar to Equation 4.4 this is given as:


b

a

d

 = s
lR


xobsll

yobsll

ztest

 (5.6)

where s
lR is the local-level to sensor frame Directional Cosine Matrix derived from the pose

of the vehicle. These are then transformed into range, bearing and along track angles using

the geometry described by the measurement function h:

(r, α, β)T =
( √

b2 + a2 + d2 arctan(ad) arctan( bd)
)T

(5.7)

Incrementing ztest therefore corresponds to sampling along C which produces a set of prob-

abilities that describe the chance of the seafloor intersecting this depth line at different

depths. However it is important to note that this is not a true probability distribution.

The GP in the polar sensor frame models range observations as a continuous function of

bearing, providing a one to one mapping. This still allows for the possibility of a surface

with overhang i.e. one that could intersect a chosen depth line multiple times. As such

integrating this probability set along C will often result in a value greater than one.

Fortunately this problem is overcome by enforcing the condition already assumed by the GP

model in the cartesian frame Fglobal i.e. that the depth of the surface can also be modeled as

a continuous function of x, y, which assumes no overhang. This criteria is therefore enforced

in the probability set by conditioning it on the event that only a single intersection along

the chosen depth line occurs. For the unconditioned discrete probability set Pz consisting
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of D samples at depths {zi}Di=1 this corresponds to:

Pzi|single intersection =
Pzi∩Psingle
Psingle

=
Pzi

∏D
j=16=i(1−Pzj)∑D

k=1 Pzk
∏D
j=16=i(1−Pzj)

(5.8)

Note that the denominator of Equation 5.8 is simply the sum of the numerator over all

samples and hence normalises the new probability set, creating a valid probability distribu-

tion. This distribution is then approximated by fitting a Gaussian to it, which forms the

observation (µzO) with uncertainty (σ2
zO

), now transformed into the cartesian frame along

the depth axis. Note that this also invokes a correction to the observation itself, inferred

from the angular correlation between observations.

Referring back to Figure 5.3(b) demonstrates the benefit of using this technique. At the

highlighted observation there is significant slope that, due to the position of the multibeam,

creates significant uncertainty in the slope’s across track coordinate. Intuitively this should

therefore create a large uncertainty in depth if a test point within this region is specified,

as at this point it is uncertain whether the top or bottom of the slope will be observed.

Using this new procedure a probability distribution can be extracted that encodes this

behavior. While this distribution is not Gaussian (e.g. there is a very slight increase in

probability of surface intersection at zero depth) modeling it as such can be seen to be a

good approximation, which is necessary if this observation is to be used for weighting and

later as training data.

In summary the uncertainty that the range observations create in x, y is effectively accounted

for by modeling the swath as a collection of inter-dependent observations. This allows

them to work together to infer probability distributions along any arbitrary contour within

the observed space, provided that the chosen contour is guaranteed to only intersect the

observed surface once. Sharp edges and discontinuities in depth are effectively handled as

these often map to smooth continuous trends in the range domain where GP Regression is

performed. Extending this approach to instances where overhang does occur is the subject

of future work and is discussed in Chapter 6.
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5.4 Results

In the previous chapter the BPSLAM algorithm utilised a grid map representation and

demonstrated how observations of the seafloor structure improved the estimated trajectory

and resulting map when compared to dead reckoning fused with USBL or LBL observa-

tions (Barkby, Williams, Pizarro & Jakuba 2011). Results were also compared with a

pre-existing state of the art bathymetric SLAM technique, confirming that similar results

could be achieved at a fraction of the computational run time. Here the same trials are

repeated using the new trajectory map representation to see how the performance of BP-

SLAM differs. Descriptions of the missions can be found in Section 4.3. For these trials the

setup of the particle filter remains unchanged.

5.4.1 Case Study 1: Butts Reef Pockmarks

As this survey mission does several complete passes over previously explored terrain the

scaling factor τlc of the trajectory map is set to zero, meaning that particle weighting based

on extrapolated predictions will not be attempted. This is done to increase the computa-

tional speed of the filter, as there is already ample opportunities for resampling available

(the extrapolative ability of the trajectory map is tested separately in Section 5.4.3). In

addition the maximum log length scale allowed for loop closing is set to (lmax = 7). This

value was chosen as it effectively prevents the filter from attempting loop closures within

flat plane regions and has shown to translate well across missions.

Based on the noise characteristics of the multibeam sensor, the uncertainty in range will

be modeled as 1.5% of the measured range to account for attenuation in the water column

and possible uncertainty in the speed of sound.

Navigation and Mapping Comparison

Figure 5.4 demonstrates how similar navigation solutions are achieved for both variants of

the BPSLAM filter, using a particle set size of N = 640. This is due in part to their similar

resampling behavior, shown in Figure 5.5. Here both BPSLAM variants share the same

cloud growth rate and collapse during similar time periods.
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Figure 5.4: The tracklines produced by three different navigation solutions are shown; the
start and end position/direction of the BPSLAM solution is shown by the light and dark
arrows respectively (longest tracklines belong to the initial grid survey). The evolution of
the particle cloud for BPSLAM with trajectory maps is also shown, changing from light to
dark as the mission progresses.

Figure 5.6 presents a comparison of the resulting maps produced by USBL fused navigation

and the two BPSLAM solutions (see Appendix A for larger reproductions). Corresponding

maps and histograms of the registration error described in Section 3.9 are also provided.

Figures 5.6(a)-(f) correspond to Figures 4.6(d)-(i) from Section 4.3 respectively. Comparing

Figures 5.6(g)-(i) with the previous results produced by Grid Map BPSLAM show how

the same level of correction is produced by Trajectory Map BPSLAM, condensing the

corresponding histogram into the region of low registration error. For the USBL fused DR,

Grid map BPSLAM and Trajectory map BPSLAM solutions the average mapping error

were calculated as 0.216 m, 0.197 m and 0.195 m respectively. For this run Trajectory Map

BPSLAM required 1.2 GB of memory and took 45 min to run, which is 40 % of the total

mission time.
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Figure 5.5: Variation in the 95% confidence interval of the vehicle’s x, y position for both
variations of BPSLAM.

Accuracy, Consistency and Efficiency Analysis

To investigate the consistency and repeatability of these results the BPSLAM was run

repeatedly in batches of 25 using a different fixed particle size for each batch

(N = 10, 20, 40, 80, 160, 320, 640). For each run the processing time, memory usage and

average registration error of the map were recorded. This procedure was repeated for both

map variations of the BPSLAM filter, producing the results shown in Figure 5.7.

Figure 5.7(a) demonstrates how increasing the particle set size converges the BPSLAM

solution towards a more self-consistent map while also improving the repeatability of this

result from run to run. Additionally it can be seen that only a small particle set size

(N > 160) is required for the BPSLAM filter to repeatedly produce a more self-consistent

map than when using DR or the USBL fused DR solution.

Comparing both map variants of BPSLAM shows no significant difference in the consistency

and repeatability of the maps deliverable. However Figure 5.7(b) demonstrates a significant

difference in the computational resources required for each approach to run. Whereas

BPSLAM using grid maps is significantly faster than the new trajectory map approach,
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(a) USBL Fused DR Bathy. Map (b) USBL Fused DR Error Map (c) USBL Fused DR Error Hist.
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(d) BPSLAM Grid Bathy. Map (e) BPSLAM Grid Error Map (f) BPSLAM Grid Error Hist.

0 0.5 1 1.5
10

0

10
1

10
2

10
3

10
4

Registration Error (m)

F
re

q
u

en
cy

 

 

Histogram
99th Percentile
Median

(g) BPSLAM Traj. Bathy. Map (h) BPSLAM Traj. Error Map (i) BPSLAM Traj. Error Hist.

Figure 5.6: Bathymetric maps generated using three different navigation solutions. The
corresponding error maps and histograms are also provided, detailing the misregistration
between overlapping swaths within each cell. Comparison shows both variants of the BP-
SLAM filter providing a reduction in the mapping error, the most prominent circled in
black, when compared to the map produced by the USBL fused solution. This is also re-
flected in the histograms, shifting the registration error measurements of the map towards
lower values.
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(a) Variation in map error with particle set size.
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Figure 5.7: a) Variation in the map error with a varying particle set size using both grid
map and trajectory map representations. The large dots represent the mean error used in
each batch of 25 runs (shown by the smaller dots). The outer solid lines represent the ±2σ
bound in each batch. Results show an increase in the accuracy and consistency of the map
produced in both variations of the filter when the number of particles is increased, though
no significant improvement can be seen between the two methods. In b) BPSLAM with
the trajectory map demonstrates a significant increase in computational run time when
compared to the grid map approach. However this is compensated by a relatively lower
memory requirement.

this is countered by the former requiring significantly larger memory. In this way the two

approaches complement each other in their abilities. For this mission using BPSLAM with

grid maps can be thought of as the best choice, since full overlap is available and the memory

requirements (∼4GB) are achievable by most computers available today. However for larger

scale missions, or for missions containing less overlap, the proceeding case studies will serve

to validate the use of the trajectory map as a more appropriate choice.

5.4.2 Case Study 2: TAG Hydrothermal Vent

As was done in Section 5.4.1 the scaling factor τlc of the trajectory map is set to zero for

this mission as abundant map overlap exists for this mission (some areas are revisited by

the ROV up to ten times). Based on the noise characteristics of the multibeam sensor the

percentage uncertainty in the range observations will be modeled as 1.0%.
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Navigation and Mapping Comparison

Figure 5.8 demonstrates again how similar navigation solutions are achieved for both vari-

ants of the BPSLAM filter, using a particle set size of N = 640. The resampling behavior

shown in Figure 5.9 is also similar, sharing many of the resampling events that cause large

reductions in the size of the particle cloud.
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Figure 5.8: Tracklines produced by three different navigation solutions for the TAG mission;
the start and end position/direction of the BPSLAM solution is shown by the light and dark
arrows respectively. The evolution of the particle cloud for BPSLAM with trajectory maps
is also shown, changing from light to dark as the mission progresses.

To investigate the error in the Trajectory Map BPSLAM navigation solution the LBL

innovations are again analysed, shown in Figure 5.10. As discussed in Section 4.3.2 the

precision of the LBL observations (≈ 4 m) is not accurate enough to discern the most

accurate solution between LBL fused DR and the two BPSLAM solutions in this case.

However it is accurate enough to conclude that the Trajectory Map BPSLAM navigation

solution is more accurate than that produced by DR.

Figure 5.11 presents a comparison of the resulting maps produced by the LBL fused DR,

Grid Map BPSLAM, Trajectory Map BPSLAM and Sub-mapping filters. Corresponding

maps and histograms plotting the offline registration error measure described in Section 3.9
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Figure 5.9: Variation in the 95% confidence interval of the vehicle’s x, y position for both
variants of the BPSLAM filter.
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Figure 5.10: Innovation of raw LBL observations during the TAG mission for four different
navigation solutions. Comparison shows a distinct divergence of the DR solution away from
the LBL observations, whereas the LBL fused DR and both BPSLAM solutions retain a
much closer proximity, confirming an improvement in navigational accuracy.

are also provided. As expected both BPSLAM variants were equally successful in removing

mapping artifacts created by errors in navigation, providing superior performance when

compared to LBL aided navigation. This is also confirmed by the average registration error

for the LBL fused DR, Grid map BPSLAM, Trajectory map BPSLAM and Sub-mapping

solutions, calculated as 1.490 m, 0.585 m, 0.590 m and 0.515 m respectively.
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(a) LBL Fused DR Bathy. Map (b) LBL Fused DR Error Map (c) LBL Fused DR Error Hist.
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(d) Grid BPSLAM Bathy. Map (e) Grid BPSLAM Error Map (f) Grid BPSLAM Error Hist.
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(g) Traj. BPSLAM Bathy. Map (h) Traj. BPSLAM Error Map (i) Traj. BPSLAM Error Hist.
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(j) Sub-mapping Bathy. Map (k) Sub-mapping Error Map (l) Sub-mapping Error Hist.

Figure 5.11: Bathymetric maps generated using both BPSLAM map variations. The cor-
responding error maps are also provided, detailing the misregistration between overlapping
swaths within each cell. Comparison shows the three SLAM filters providing a significant
reduction in the mapping error when compared to the map produced by the LBL fused DR
solution.

The above results show no significant difference in the level of map corrections attained

when running the BPSLAM filter with different map representations. However in terms

of computational run time the grid map representation took 8.7 minutes to run, whereas

the trajectory map took 156.8 minutes (22.4% of mission time). While this new approach
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is significantly longer its memory requirement was found to be only 2.45 GB whereas the

former required 9.76 GB. As this memory requirement significantly exceeds the capabilities

of most computers the trajectory map can be thought of as the best choice for this mission,

whose computational run time is still far improved over the Sub-mapping algorithm which

required overnight processing to achieve its result.

BPSLAM with Sparse Bathymetry

While the preceding section has shown how BPSLAM can improve navigation and mapping

it remains to be seen whether similar corrections can still be achieved without requiring a

dedicated multibeam depth profiler, as this sensor can be absent from vehicles with mission

goals other than bathymetric mapping.

To investigate this the TAG survey was repeated, except in this case the multibeam depth

profiler was replaced by the DVL as the mapping sensor. In contrast to the multibeam

(which provides 120 beams over 120◦) the DVL bathymetry is extremely sparse, consisting

of 4 beams as shown in Figure 5.12. To select an appropriate τlc scaling factor we specified

Figure 5.12: Four beam pattern provided by DVL.

that predictions should be at most no further than 1.25 m from their training set. Given

lmax this corresponded to a scaling factor of τlc = 0.18. For this run N = 320 particles were

used.
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Figure 5.13 presents the navigation solution generated by Trajectory Map BPSLAM using

DVL bathymetry for mapping. As can be seen BPSLAM is still successful in providing

corrections to navigation, creating a clear visible shift of the tracklines away from the DR

solution and towards the corrected solutions. The resampling behavior seen in Figure 5.14

demonstrates that the particle cloud in this case is significantly less constrained than when

using the multibeam, due to the sparse bathymetry providing less opportunities to resam-

ple. However some resampling events are still evident, which are enough to produce the

corrections shown.
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Figure 5.13: Tracklines produced by four different navigation solutions for the TAG mission;
the start and end position/direction of the BPSLAM solution is shown by the light and dark
arrows respectively. The evolution of the particle cloud for BPSLAM with trajectory maps
is also shown, changing from light to dark as the mission progresses.

Figure 5.15 analyses the LBL innovations observed for Trajectory Map BPSLAM when only

DVL bathymetry is available. As shown the innovations generated by this new trajectory is

larger than that produced by Trajectory Map BPSLAM when the full multibeam is available,

bordering on magnitudes that suggest a reduction in navigational accuracy when compared

to the latter. Despite this Figure 5.15 confirms that the accuracy of this navigation solution

still exceeds that produced by DR.

Figure 5.16 presents a comparison of the resulting maps produced by the DR, LBL fused
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Figure 5.14: Variation in the 95% confidence interval of the vehicle’s x, y position for BP-
SLAM with different mapping sensors.
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Figure 5.15: Innovation of raw LBL observations during the TAG mission for four different
navigation solutions. Comparison shows a distinct divergence of the DR solution away from
the LBL observations, whereas the LBL fused DR and both BPSLAM solutions retain a
much closer proximity, confirming an improvement in navigational accuracy.

DR and BPSLAM solutions using the DVL bathymetry. In addition we compare the map

that is produced when the previous Trajectory Map BPSLAM navigation solution (created

using the multibeam) is applied to the DVL bathymetry. In Figure 5.16(a) the registration
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error in the map caused by DR can be seen. In comparison to Figures 5.16(c),(e) and (g) a

significant amount of this error is resolved. However due to the sparse bathymetry it is not

clear how self-consistent these maps are compared to each other. Figures 5.16(b),(d),(f) and

(h) provide a more clear comparison of these registration errors. As can be seen BPSLAM

using DVL bathymetry creates less registration error in these sparse maps than compared

to DR or LBL fused DR. However the using multibeam bathymetry still provides the most

self-consistent map, suggesting that its navigation solution is the most accurate.

Note that using DVL bathymetry has created maps with significantly less registration error

measurements on which to base comparisons on. To additionally verfiy the performance of

the Trajectory Map BPSLAM filter running off DVL bathymetry, its navigation solution is

applied to the multibeam bathymetry, creating a dense map that can be compared to those

previously presented in Section 5.4.2. These are shown in Figure 5.17, which provide the

same conclusions concerning performance between navigation solutions, though the differ-

ences between the maps created by BPSLAM based on multibeam bathymetry, LBL fused

DR and BPSLAM based on DVL bathymetry are more distinguishable. This validates the

use of BPSLAM with DVL bathymetry as a means of improving navigation during missions

where multibeam bathymetry is not available, providing a level of correction comparable to

using LBL fused DR.

For this trial the BPSLAM filter took 13.3 min to process the mission (1.9% of mission

time). This is a significant improvement when compared to the 156.8 min that was required

when using the full multibeam, due mainly to the reduction of observations that had to be

processed. Similarly the memory requirements were also reduced from 2.45 GB to 0.81 GB

when compared to using full multibeam bathymetry.
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(c) LBL Fused DR Bathy. Map (d) LBL Fused DR Error Map
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Figure 5.16: Bathymetric maps generated using four different navigation solutions with
DVL bathymetry from TAG mission. The corresponding error histograms are also provided,
detailing the misregistration between overlapping swaths within each cell.
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(d) LBL Fused DR Bathy. Map (e) LBL Fused DR Error Map (f) LBL Fused DR Error Hist.
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(g) BPSLAM DVL Bathy. Map (h) BPSLAM DVL Error Map (i) BPSLAM DVL Error Hist.
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Figure 5.17: Bathymetric maps generated using four different navigation solutions with
multibeam bathymetry from TAG mission. The corresponding error maps are also pro-
vided, detailing the misregistration between overlapping swaths within each cell. Compar-
ison shows that performing BPSLAM based only on DVL bathymetry provides navigation
corrections comparable to LBL fused DR, in terms of mapping quality. However perform-
ing BPSLAM based on multibeam bathymetry still provides the most self-consistent map,
suggesting superior navigational accuracy.
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5.4.3 Case Study 3: Haakon Mosby Mud Volcano

The purpose of this case study is to investigate the ability of BPSLAM to provide corrections

to navigation and mapping when the amount of map overlap available during a mission is

progressively reduced. To this end we test our algorithm on a large scale mission using

bathymetric and navigation logs from a real survey undertaken by the research class AUV

Sentry, operated by the National Deep Submergence Facility (NDSF) at the Woods Hole

Oceanographic Institution (WHOI) (Catanach & German 2011).

Figure 5.18: The Sentry AUV is a research vehicle capable of exploring the ocean down to
4,500 meters (14,764 feet) depth. Sentry’s hydrodynamic shape allows faster ascents and
descents and is also capable of collecting oceanographic and benthic data for a wide range
of applications. It features an extensive suite of sensors, including multibeam sonar, CTD,
camera’s and magnetometers (Image Source:www.whoi.edu)

The survey is of the Haakon Mosby Mud Volcano, located 1250 m deep south of Svalbard.

Figure 5.19 presents a bathymetric map of this region generated from an older survey. As

indicated by the black box in Figure 5.19 the desired size of the new survey is ≈ 1.65 km2.

To achieve full coverage of this area the tracklines navigated for this mission are a standard

“lawnmower” pattern, running primarily North to South and carried out underwater at

20 m altitude to produce swath widths of ≈ 60 m. To ensure full coverage the survey was

designed with trackline spacings of 50 m and trackline lengths of ≈ 1.65 km. This took

10.3 hours to complete and produced on average 11.5 m of overlap between multibeam
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Figure 5.19: Previous bathymetric survey of the Haakon Mosby Mud Volcano taken by the
ROV Victor 6000. The size of the new survey is indicated by the solid black box, carried
out using a lawnmower pattern designed to provide 122% coverage (major tracklines in the
North/South direction). The small colored boxes indicate regions where the map corrections
produced by BPSLAM are more closely investigated in Figures 5.23 and 5.25. (Image
Source:www.uib.no/geobio)
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swaths from neighboring tracklines, which corresponds to 122% coverage.

The navigation suite installed on Sentry is similar to that described in Section 4.3 three

axis bottom relative velocity (±3 mms−1 precision) and surface relative depth sensors were

available. However Sentry receives pitch, roll and heading observations from a PHINS Ring

Laser Gyro (RLG) that delivers ≈ 0.01◦ accuracy. As such the vehicle states x, y remain

the most prone to drift and so no change was made to the state setup of the filter.

Acoustic LBL navigation fixes were also available. These fixes delivered position estimates

accurate to ≈ 4 m and are only used by the BPSLAM filter to initialise the AUV’s position

and for measurement updates in an EKF filter separate to BPSLAM, so as to produce

a navigation solution by which to evaluate the performance of the BPSLAM filter. The

bathymetric sensor used by Sentry is a Reson 7125 400 kHz multibeam sonar, providing

480 beams uniformly across 120◦.

The bathymetric sensor used by Sentry is a Reson 7125 400 kHz multibeam sonar, providing

480 beams uniformly across 120◦. Based on the noise characteristics of the multibeam sensor

the percentage uncertainty in the range observations will be modeled as 1.0%.

Navigation and Mapping Comparison

Figure 5.20 demonstrates the navigation solutions achieved by DR, LBL fused DR and

BPSLAM with trajectory maps, using a particle set size of N = 160. This was chosen based

on the precision of the navigation estimates available and the duration of the mission. As

this survey retains consistent overlap (albeit partially) with previously explored terrain the

scaling factor τlc of the trajectory map is set to zero for this run, meaning that particle

weighting based on extrapolated predictions will not be attempted.

The resulting resampling behavior of the BPSLAM filter is shown in Figure 5.21, consistently

constraining the size of the particle cloud through subsequent resampling.

In Figure 5.20 the use of BPSLAM has resulted in a navigation correction that slightly

contracts the trackline spacings of the mission when compared to the DR solution. This

is also evident in the LBL fused DR solution, producing a similar large scale correction to

that achieved by BPSLAM.

At the end of the mission BPSLAM provides a final position estimate that is 14.5 m SW

of the DR solution. Given that the AUV has traveled ≈ 36 km over a period of 10.3 hours
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(a) Navigation Solutions (b) Zoomed in View 1 (c) Zoomed in View 2

Figure 5.20: In (a) Tracklines produced by three different navigation solutions for the
Haakon Mosby mission are presented; the start and end position/direction of the BPSLAM
solution is shown by the light and dark arrows respectively. The evolution of the particle
cloud is also shown, changing from light to dark as the mission progresses. In (b) and (c)
the zoomed in sections of the navigation solution bordered in blue are provided. For both
figures four arbitrary BPSLAM poses were chosen and matched to the corresponding DR
and LBL fused DR estimates at that time, shown by the large colored dots.

Figure 5.21: Variation in the confidence bound of the particle cloud with and without
resampling for the Haakon Mosby Mission.
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this error is relatively small, demonstrating an exceptional performance by the DVL/RLG

navigation suite to produce accurate velocity estimates.

Despite this, the accumulation of this small error in DR navigation over time is enough to

produce significant error in the corresponding map. Unfortunately, Sentry’s bathymetric

map and its geological interpretation has yet to be published in a scientific journal. Because

of this, we can not show the full AUV-based map. However the registration errors detected

in the full map for each case can be presented, along with zoomed in bathymetric maps of

two regions where the registration errors in the DR and LBL fused DR map solutions were

largest. These are shown in Figures 5.22 and 5.23 respectively.

From Figures 5.22(a),(b) it can be seen that the use of DR as a navigation solution produces

the map with the most artifacts, again localised around areas of steep descent, which sug-

gests misalignment between overlapping swaths caused by navigation error. The inclusion

of LBL observations into the navigation solution resolves many of these artifacts, shown

in Figures 5.22(c),(d). However, as seen in Chapter 5, this can also introduce artifacts in

places where there were none before. This is evident in Figures 5.23(b) and 5.23(e), which

highlight two main regions in the map where the inclusion of LBL observations has had a

negative effect on mapping accuracy.

Figures 5.22(e),(f) demonstrate the performance of the BPSLAM filter when compared to

LBL aided navigation. All of the prominent artifacts distorting the non-SLAM approaches

have been successfully resolved. This is particularly evident in the tail of the histogram

in Figure 5.22(f) which is significantly reduced when compared to the two non-SLAM ap-

proaches.

A close examination of Figure 5.23 demonstrates how BPSLAM achieved this correction.

In Figure 5.23(c) BPSLAM has identified a navigation solution that, compared to the

DR solution in Figure 5.23(a), shifts its East trackline 2.28 m southwards relative to its

West trackline, creating the correct match between neighboring swaths. In comparison the

LBL fused DR solution has overcompensated, shifting its East trackline 5.45 m southwards

relative to its West trackline. As can be seen in Figure 5.23(b) this in turn creates a more

pronounced registration error than originally seen in the DR solution. These artifacts in

the LBL solution may be owing to the difficult acoustic environment present around the

main slope of the volcano. The same effect is also seen in Figure 5.23(f), where the use of

BPSLAM shifts its East trackline 3.73 m southwards relative to its West trackline, whereas
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(c) LBL Fused DR Error Map (d) LBL Fused DR Error Hist.
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(e) Traj. BPSLAM Error Map (f) Traj. BPSLAM Error Hist.

Figure 5.22: Registration error maps generated using three different navigation solutions,
detailing the misregistration between overlapping swaths within each cell. Comparison
shows the LBL fused DR and BPSLAM filters providing a significant reduction in the
mapping error when compared to the map produced by DR. The rectangles indicated by
the broken lines indicate the positions of the zoomed in plots shown in Figure 5.23.
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(a) DR Zoom 1 (b) LBL Fused DR Zoom 1 (c) Traj. BPSLAM Zoom 1

(d) DR Zoom 2 (e) LBL Fused DR Zoom 2 (f) Traj. BPSLAM Zoom 2

Figure 5.23: Zoomed in bathymetric maps generated using three different navigation solu-
tions within Area 1 and 2. The section of the AUV trajectory which creates each map is
also shown and timestamped (by minutes from mission start) for reference. Comparison
shows a visible misalignment in the maps produced by DR and LBL Fused DR. The map
produced by BPSLAM however successfully resolves these errors.
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the LBL fused DR solution in Figure 5.23(e) has its East trackline shifted by 11.40 m

southwards in this regard, again creating a more pronounced registration error than the

original DR solution, shown in Figure 5.23(d).

The average of the registration errors in the maps produced by DR, LBL Fused DR and

Trajectory Map BPSLAM were calculated as 0.371 m, 0.348 m and 0.344 m respectively.

Lastly, for these trials the BPSLAM filter required 2.1 GB of RAM and took 79 minutes to

process the mission, which is 13.2 % of the mission time.

Accuracy and Consistency Analysis with Reduced Map Overlap

The preceding section has demonstrated how BPSLAM with trajectory maps can perform

corrections to navigation and mapping in large scale missions when provided with only

≈ 11.5 m of overlap between multibeam swaths from neighboring tracklines, corresponding

to 122% coverage. What remains to be seen is how the BPSLAM filter performs if the

amount of overlap is progressively reduced.

To investigate this behavior the BPSLAM filter was run repeatedly in batches of 25 for a

particle set size of N = 160. For each batch the maximum width of the multibeam swath

was trimmed to a different value, corresponding to 11.5 m, 4.0 m and 0.0 m of swath overlap

between neighboring tracklines. Lastly, as an exploratory measure the swaths were trimmed

even further so that an average separation of 1.0 m between swaths (i.e. −1 m overlap) was

achieved. For these trials the scaling factor τlc was set to 0.3. Given lmax this corresponds

to a minimum proximity of 2.1 m that had to be achieved between observation and map

before a depth prediction was allowed. To measure the performance of each run the offline

registration error measure proposed in Section 3.9 is again used. So as not to bias the runs

with less overlap the full swath is made available at the end of all runs to compare the

maps generated by BPSLAM, DR and LBL fused DR navigation. However it is important

to note that since the FPS process is part of the filter, rather than an evaluation of it, only

the trimmed swaths are used in this step to properly simulate the reduction in mapping

coverage. For this reason the online FPS scheme is utilised instead as its offline counterpart

requires map overlap (see Section 3.9). The performance of the filter is also shown when

using the offline FPS scheme operating on the untrimmed swaths, though this is only done

to demonstrate the performance of the filter if the actual best particle had been correctly

chosen from the final set during each run.
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Figure 5.24: Variation in the map error as the amount of swath overlap between neighboring
tracklines is reduced. The large dots represent the mean error used in each batch of 25 runs
(shown by the smaller dots). The outer solid lines represent the ±2σ bound in each batch.
For reference the results of using the offline Final Particle Selection (FPS) scheme based on
the full multibeam is also shown. This extracts the actual best particle that has survived
in the set, as opposed to the predicted best particle based on the online FPS scheme, which
must be used when overlap is minimal or non-existent.

Figure 5.24 presents the results of this investigation. For 11.5 m overlap between swaths

the map self-consistency produced by BPSLAM rivals and often exceeds that produced

by LBL fused DR. For this amount of overlap the online version of the FPS scheme also

performs well in estimating the best particle to extract (the actual best particle pointed to

by the offline version). As the amount of swath overlap is reduced the BPSLAM mapping

solution starts to converge towards the map quality produced by DR. However, as shown

the BPSLAM filter is still capable of producing mapping corrections even when no overlap

between neighboring swaths exists, consistently out performing Dead Reckoning in this case.

This is further demonstrated in Figure 5.25, which presents a comparison of the maps pro-

duced during this investigation within the third zoomed-in area highlighted in Figure 5.19.

Here four maps created by the BPSLAM filter are presented, corresponding to the runs from

Figure 5.24 that possessed the median error measure (using the online FPS scheme) of each

batch. The corresponding maps produced by DR and LBL fused DR are also provided. As
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an added measure the center of the trough in this region was hand matched to the beams

that observed it, once when the vehicle was traversing southwards on the western side of

this trough, and again when it was traversing northwards on the eastern side. The locations

of these beams based on the navigation solution therefore provides a good indicator of the

relative misalignment in this section of the map.

(a) DR 11.5 m overlap (b) BPSLAM 1.0 m separation (c) BPSLAM 0.0 m overlap

(d) BPSLAM 4.0 m overlap (e) BPSLAM 11.5 m overlap (f) LBL Fused DR 11.5 m overlap

Figure 5.25: Zoomed in bathymetric maps generated using six different navigation solutions
around Area 3. Four of these navigation solutions are from the BPSLAM filter, taken from
the median of each batch of runs shown in Figure 5.24. The green circles indicate where
both eastern and western swaths map (or would map for those with reduced overlap) the
deepest part of the trough in this area. The edge of each multibeam swath is shown by the
small black dots, the black arrows indicating whether the edge line belongs to those from
the eastern or western side.

In Figure 5.25(a) the inconsistency in the overlapping swaths is clearly evident, creating

pronounced artifacts. This is also demonstrated by the misalignment in the green circles,

indicating a 3.06 m difference between where eastern and western portions of the map

believe the center of the trough to be. Figure 5.25(b) shows how BPSLAM is able to reduce
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this alignment error to 1.42 m , even when a 1.0 m gap between neighboring swaths exist.

Figures 5.25(c)-(e) demonstrate how this misalignment is further reduced to 1.06 m, 0.80 m

and 0.60 m respectively when the overlap between neighboring swaths is increased. Finally

Figure 5.25(f) demonstrates LBL fused DR creating a misalignment of 0.47 m. For this

section of the map LBL fused DR therefore provides a slightly better result in terms of map

self-consistency, though as was shown in Figures 5.22 and 5.23 creates gross misalignments

elsewhere that BPSLAM fortunately resolves.

5.5 Limitations

Currently the major limitation faced by the new trajectory map representation is its com-

putational efficiency in terms of run time. This arises from the need to potentially invert

large covariance matrices each time GP learning or GP regression is to be attempted. For

the framework presented here this problem is overcome by restricting the training data used

to points within close proximity to the places we wish to test. In doing so we introduce

an approximation error into the resulting predictions. Computing the inverse of these large

covariance matrices using sparse methods may provide the computational speed up required

to remove the need for this approximation. Implementing a neural network covariance func-

tion also has the possibility of speeding up computation, provided that the neural network

only be learned once with all the multibeam data at hand. This would also allow for a more

principled treatment of large scale trends and local anomalies in the seabed but comes at

the cost of reducing the scope of the BPSLAM filter to a post-processing algorithm.

Lastly BPSLAM using the trajectory map representation is restricted to environments that

can model seabed depth as a continuous function of x, y location and hence cannot properly

take into account overhang or ceilings. Implementing BPSLAM in a full 3D environment

using this approach is the subject of future work and will be discussed in Chapter 6.

5.6 Summary

This chapter has presented the trajectory map representation that is paired with RBPF

SLAM to form another variation of the BPSLAM filter. A description of the map structure

along with the procedures used to weight and update each particle’s map were provided.
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Results showed an improvement in both the map and the trajectory when compared to using

state of the art fused navigation and low cost sensors without SLAM, both in small scale

and large scale missions. Its performance was also compared against Roman’s Sub-mapping

approach to SLAM (Roman 2005).

Comparing the performance of the BPSLAM filter with trajectory maps against the BP-

SLAM filter with grid maps demonstrated that both were equally proficient at providing

corrections to navigation and mapping. While the grid map approach demonstrated a

superior computational run time the trajectory map approach required significantly less

memory. The ability of the trajectory map approach to run off sparse bathymetry obtained

from the DVL sensor was also presented. Results demonstrated that such a setup could

yield significant improvements to navigation, similar to what was achieved using LBL fused

DR. Finally the performance of Trajectory Map BPSLAM was tested in a mission where

little to no map overlap was present, verifying that corrections to navigation and mapping

can still be produced even when no map overlap exists.



Chapter 6

Conclusions and Future Work

6.1 Introduction

This thesis has presented an in-depth analysis of the BPSLAM algorithm, demonstrating

how the map and navigation solution generated during bathymetric surveys can be improved

by enforcing map self-consistency. The main theoretical framework that BPSLAM used

as its foundation was the Rao-Blackwellized Particle Filter, efficiently maintained using

Distributed Particle Mapping. New map representations were then described that coupled

with this framework to form a method of SLAM that did not require features in the seabed to

be explicitly identified or tracked. The first was a 2.5D grid map representation efficiently

stored by exploiting redundancies between different maps. The second was a trajectory

map representation that, instead of directly storing estimates of seabed depth, recorded the

trajectory of each particle and synchronised it to a common log of bathymetric observations.

The contributions of this thesis are summarised in Sections 6.2. Section 6.3 then proposes

directions for future work.
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6.2 Summary of Contributions

6.2.1 Primary Contributions

2.5D Grid Map Representation

A new 2.5D grid map representation for BPSLAM was proposed. In this approach any

new map estimates were first keyed with the ID of the particle that made them and then

entered into a single global grid. Each particle then maintained and updated their estimates

of seabed depth using a 1D Extended Information Filter. Through the implementation of

Distributed Particle Mapping the need to copy maps during resampling was removed, as

any new particles could simply point to the map of the particle they were resampled from

instead. Applying BPSLAM with this map representation to the missions described in

Section 6.2.2 demonstrated that the corresponding map weighting and updating operations

could be carried out with exceptional computational speed, allowing BPSLAM to process

each mission in significantly less time than it took to execute.

Trajectory Map Representation

A new trajectory map representation for BPSLAM was proposed. In this framework a

significant amount of memory was saved by storing each particle map as a trajectory linked

to a bathymetric log of raw observations that is shared by all particles. Each particle then

updated its map by progressively adding its current pose to the end of its trajectory list.

Applying BPSLAM with this map representation to the missions described in Section 6.2.2

demonstrated that the corresponding map weighting operation was significantly slower than

that of the grid map representation, made computationally expensive by requiring Gaussian

Process Regression to be performed for each particle. However the trajectory map approach

still retained a computational speed faster than the original mission time and provided

exceptional memory requirements that allowed for the processing of very large datasets. In

addition it allowed BPSLAM to additionally enforce self-consistency between neighboring

map borders in situations where no map overlap existed.
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6.2.2 Secondary Contributions

BPSLAM Implementation on Real Mission Scenarios

Investigations into the use of BPSLAM to improve navigation and mapping during bathy-

metric surveys were carried out on three different case studies. The first focused on an

AUV deployment at Butts Reef over a short timescale (∼ 2 hours) in a region that con-

tained minimal relief but possessed several distinct pockmarks in the seabed. The second

case study then focused on an ROV deployment within the TAG hydrothermal field that in

comparison observed significantly higher relief in the seabed over a much longer timescale

(∼ 11 hours). Applying the BPSLAM filter to these first two case studies with either map

representation demonstrated an improvement in both the map and the trajectory when

compared to using state of the art fused navigation and low cost sensors without SLAM, as

well as demonstrating a robustness to compass biases and noisy velocity observations. For

the second case study the performance of the BPSLAM filter was also compared against

Roman’s Sub-mapping approach to SLAM (Roman 2005). While only a slight difference

was found in the map qualities produced by both SLAM filters, the BPSLAM algorithm was

able to demonstrate a significant improvement in computational efficiency. BPSLAM also

achieved this with fewer tuning parameters, which were shown to translate well between

the small and large scale missions presented here.

These trials revealed no significant differences in the navigation and mapping corrections

provided by both map variations of the BPSLAM filter. The computational performances of

the two map variants were however significantly different. Whereas the grid map represen-

tation used by BPSLAM possessed a computationally superior run time the new trajectory

map representation required significantly less memory.

The added ability of the trajectory map representation to produce map corrections using

sparse bathymetry was then tested by repeating the TAG survey using only the bathymetry

provided by DVL sensor (4 beams) as mapping observations. Results showed that in this

setup the BPSLAM filter was still able to improve upon the navigation and map produced

by the LBL fused DR solution, though as expected did not produce as good a result as

when the full multibeam sonar was utilised.

Finally a third case study was investigated that focused on an AUV deployment over the

Haakon Mosby Mud Volcano, carried out over 10 hours. In this survey no loop closure
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manoeuvres were performed. However partial overlap between swaths from neighboring

tracklines did exist. Applying the BPSLAM filter to this case study demonstrated an im-

provement in both the map and the trajectory when compared to state of the art navigation

fused with external position estimates from an LBL transponder net. By successively trim-

ming the width of the multibeam swaths it was also shown that the BPSLAM filter using

trajectory maps could still provide some corrections to navigation and mapping even when

no overlap existed between neighboring swaths, outperforming DR (but not LBL fused DR)

in this situation.

Map Self-Consistency Measures

A technique for selecting the final navigation and map solution from BPSLAM was pre-

sented. This was based on a method described by Roman & Singh (2006) and involved

splitting the bathymetry into a sequence of submaps and then calculating the maximum

registration error between submap portions located in the same cell. An alternative method

of selecting the best particle map was also proposed for situations where little to no map

overlap existed, where the best particle map is instead chosen based on the average regis-

tration error observed so far by each particle during the map weighting procedure.

Online Gaussian Process Regression for SLAM

An online method of extracting depth estimates in unobserved regions using Gaussian Pro-

cess Regression was proposed and, through suitable approximations and choices of GP mod-

els, was made computationally tractable for SLAM. This method implemented a stationary

covariance function proposed by Melkumyan that allowed for exact Gaussian Process Infer-

ence in large datasets, should the entire training set be used. Periodic relearning was then

undertaken to continuously update the GP model based on incoming bathymetry. Particle

weighting was then performed or prevented based on the proximity of new observations to

the current map and the amount of spatial correlation in the surrounding seabed.

Uncertainty Raytracing using Correlated Observations

A principled method of transforming uncertainty in a set of range observations to an equiva-

lent set of observations with uncertainty only in depth was introduced. This was achieved by
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modeling each multibeam swath as a collection of inter-dependent observations that could

be used to train a GP in the polar domain. By exploiting the angular correlation between

observations in this way GP Regression was used to infer the probability distribution of the

observations along each of their depth axes.

6.3 Future Research

Throughout this thesis several issues have presented themselves, providing potential future

research.

6.3.1 Modeling Heading Error in the Particle Set

For UUV operations that rely on a magnetic compass for navigation the heading state must

be included in the particle filter if the compass is poorly calibrated. This is of particular

concern as compasses are easily corrupted by local anomalies in the magnetic field that can

change with the heading of the vehicle. Since this type of error varies with heading it cannot

be modeled in the same way as the x, y states, whose error varies with time. Instead the

heading error is more suitably modeled as a 3rd order harmonic in heading. Initialising each

particle with a random sampling of coefficients to this harmonic could therefore provide a

way of modeling this heading error in the particle filter, as well as providing a calibrated

heading sensor model that can be extracted at the end of the mission.

6.3.2 Iterative BPSLAM

BPSLAM utilises the same sensor observations used to create DR navigation, creating parti-

cle trajectories that remain densely sampled around this solution until the first resampling

event occurs. An opportunity therefore exists to improve the sampling strategy of the

BPSLAM filter by recording the navigation observations sampled by the winning particle.

A new run of the BPSLAM filter can then be performed, using these augmented sensor

observations instead of the original observations that created the DR solution. This cre-

ates a denser sampling of trajectories around the previous winning solution, allowing the

navigation and mapping solutions to be iteratively refined through subsequent runs.
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6.3.3 Full 3D BPSLAM

Both the current grid map and trajectory map representations used by BPSLAM assume

that no overhang exists in the environment, restricting its use to missions where the seabed

can be modeled as 2.5D. Extending BPSLAM to a full 3D environment would require

that the grid map approach be extended to a 3D grid, though this is computationally

expensive. However there is the potential to extend the trajectory map approach to 3D

environments if we represent each trajectory map in polar space, where the seafloor would

instead be modeled as a continuous function in angular coordinates, thereby allowing cliffs

and ceilings to be accounted for. However this approach in turn cannot model features that

cause “overhang” in the polar domain, such as observing troughs from a large grazing angle.

Finding a way to combine or interchange GP Regression between these two domains has

the potential to remove this limitation.

6.3.4 Real Time Operations

There is a great potential to implement the BPSLAM filter, particularly with the grid

map representation, in real time. This will first require an investigation into the addi-

tional computational overhead involved in beamforming the multibeam observations, de-

tecting/removing bad pings and potentially reducing the memory requirements further.

Real time BPSLAM will also require that a corrected navigation solution be available on

the fly, as opposed to using our offline final particle selection scheme. As such a more thor-

ough investigation into different online techniques for finding the particle with the most

accurate navigation solution would be useful.

This capability would also allow for active SLAM to be additionally performed, whereby the

UUV periodically directs itself towards previously explored areas to induce loop closures and

thus improve its navigation and map. Additional metrics such as the choice of candidate

regions for loop closures based on map saliency and uncertainty in the vehicle state would

need to be explored.

6.3.5 Investigation into Map Saliency

The ability of BPSLAM to provide corrections to navigation is completely dependent on

there being enough variation in the particle weights generated during a loop closure attempt,
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as this allows the most likely state hypotheses to be discerned. This variation naturally

decreases as the seabed being mapped becomes less “feature rich” i.e. less salient. As such

it would be instructive to investigate and quantify how much the saliency in the seabed can

be reduced before the corrections provided by BPSLAM become insignificant.

To this end running BPSLAM on simulated test data may offer the best approach to this

investigation, as it allows the saliency of the seabed to be precisely controlled, along with the

size of the maps and the sensor resolution and accuracy. However choosing a quantitative

metric to represent map saliency is a non trivial problem. Spatial correlation (such as that

measured by the length hyperparameter l in the GP model) is one such potential candidate,

though is only a good measure if the spatial correlation in the simulated seabed is roughly

uniform. To simulate a more natural environment, where the spatial correlation is itself

spatially dependent, a more complex metric for map saliency will be needed.

6.3.6 Investigation into Tuning Parameters

While the main tuning parameter of the BPSLAM filter i.e. the number of particles, was

thoroughly investigated for its effect on mapping, there exists other tuning parameters that

could also warrant investigation. These include the minimum overlap required for particle

weighting (γoverlap), the grid resolution, the proximity required for loop closure (τlc) and

the maximum spatial correlation allowed for resampling (lmax). Furthermore it may also

be useful to investigate other sampling/resampling strategies than that currently used, as

this is still an active area of research that proposes many approaches. Lastly the effects

that these tuning parameters have on navigation could also be thoroughly explored with

the implementation of a ground truth system, either through simulation or in a controlled

and accurately surveyed test chamber.

6.4 Summary

This thesis has addressed the problem of performing SLAM in unstructured underwater en-

vironments using bathymetric observations. It has contributed to featureless SLAM theory

and has provided practical guidelines as to how UUVs can improve their navigation and

mapping by enforcing self-consistency in the bathymetric maps they create. For small scale
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missions with ample overlap BPSLAM with a grid map representation was shown to be the

best choice for providing these corrections. However for larger scale missions, or for missions

that contain minimal overlap, performing BPSLAM with a trajectory map representation

became the best choice. This was all accomplished without requiring the additional infras-

tructure, time and expense of setting up USBL or LBL acoustic positioning systems, even

outperforming these methods of navigation in regards to the quality of the maps produced.



Appendix A

Auxiliary Maps

In the preceding chapters there have been several bathymetric maps presented that contain

rich structure but were reduced in size so as to allow for a proper comparison between

mapping methods. These maps are now reproduced here in full size, so that this structure

can be more easily viewed.



Auxiliary Maps 106

Figure A.1: Bathymetric map of Pockmark mission using DR
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Figure A.2: Bathymetric map of Pockmark mission using USBL fused DR
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Figure A.3: Bathymetric map of Pockmark mission using Grid Map BPSLAM
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Figure A.4: Bathymetric map of Pockmark mission using Trajectory Map BPSLAM
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Figure A.5: Bathymetric map of TAG mission using DR

Figure A.6: Bathymetric map of TAG mission using LBL fused DR
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Figure A.7: Bathymetric map of TAG mission using DVL based Trajectory Map BPSLAM

Figure A.8: Bathymetric map of TAG mission using Grid Map BPSLAM



Auxiliary Maps 112

Figure A.9: Bathymetric map of TAG mission using Trajectory Map BPSLAM

Figure A.10: Bathymetric map of TAG mission using Submapping Filter
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Figure A.11: DVL Bathymetric map of TAG mission using DR

Figure A.12: DVL Bathymetric map of TAG mission using LBL Fused DR
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Figure A.13: DVL Bathymetric map of TAG mission using DVL based Trajectory Map
BPSLAM

Figure A.14: DVL Bathymetric map of TAG mission using Multibeam based Trajectory
Map BPSLAM



Appendix B

Adaptive Particle Sizing

B.1 Method

Adaptive particle sizing attempts to reduce the computational complexity of the particle

filter by adaptively adding or removing particles from S(tk) as the uncertainty (represented

by the volume of the particle set in state space) grows or shrinks respectively. To provide

a method of sizing S(tk) we can enforce the condition that the probability distribution

represented by S(tk) remain a good approximation of the true distribution. More formally

we specify that their Kullback-Leibler Divergence (KLD) (Fox 2001), which is a (non-

symmetric) measure of the difference between two probability distributions, remain within

a given threshold (ε). Although the true distribution is unknown the minimum number of

particles required to achieve this can still be approximated using the formula:

N ≈ k − 1

2ε

(
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

)3

(B.1)

where k is the number of bins (user defined resolution) the particles occupy in state space and

z1−δ is the upper 1− δ quartile of the standard normal distribution. Fox (2001) provides a

full derivation of this result. This provides a principled approach to using particles efficiently

while also allowing the particle filter to naturally adapt to different mission scenarios.

Note that Equation B.1 estimates the number of particles required to adequately sample

the current state probability distribution. In the case of pure localisation, i.e. where each
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particle is referencing a prior map, this is acceptable as the filter need only consider the

current state distribution and observations to localise. However in the case of SLAM each

particle’s map is governed by their own past trajectory. Therefore, in addition to ensuring

the current state distribution is adequately sampled we need to further ensure that all past

state distributions also remain adequately sampled, i.e. maintain a diverse sample of maps.

For this reason it is incorrect to reduce the number of particles using this technique as doing

so will often violate this additional condition, resulting in the premature removal of maps

which may prove to be the most self-consistent. Adaptive downsampling of the particle

set could be properly achieved but would require that the KLD be recalculated for every

previous iteration of the filter using only the particles that are currently surviving. Doing

this in an efficient way is the subject of future work. The resizing of S(tk) is therefore

prevented when Equation B.1 dictates a reduction in the number of particles (increasing

the number of particles is still allowed as it does not affect the map diversity of the current

particle set).

B.2 Results

To analyse the effect adaptive particle sizing has on the performance of the Grid Map

BPSLAM filter the Pockmark mission detailed in Section 4.3 is repeatedly run in batches of

25, gridding the state space with 1.0 m resolution bins and using a different KLD threshold

for each batch ε = [0.85, 0.7, 0.55, 0.3, 0.25]. Note from Equation B.1 that lower values of ε

encourage greater numbers of particles in S(tk). For each run the average particle set size,

processing time and average registration error of the map were recorded. The performance

of the adaptive particle filter was then directly compared to the fixed particle size case in

Section 4.3.1 by plotting their performance measures against the average particle set size

used in each run. These results are shown in Figure B.1.

Comparing the results achieved from fixed particle sizing to that achieved using adaptive

particle sizing confirms that the repeatability and accuracy of the BPSLAM filter is still

maintained when less particles are used during periods of low uncertainty in the vehicle

state. However using adaptive particle sizing has not created a significant difference in

the accuracy and repeatability of the maps produced, though it has increased the run

time of the filter slightly, due to the added complexity of the algorithm, as seen in Figure
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Figure B.1: a) Variation in the map error with a varying average particle set size using
both particle set sizing methods (a smaller ε threshold produces a larger average particle
set size). The large dots represent the mean error and mean average particle set size used
in each batch of 25 runs (shown by the smaller dots). The outer solid lines represent the
±2σ bound in each batch. Results show an increase in the accuracy and consistency of the
map produced in both variations of the filter when the average particle size is increased.
b) Variation in the run time with a varying average particle set size using both particle set
sizing methods.

1(b). However this comes with the advantage of removing particle size selection from the

initial calibration process (the tuning parameter ε is much more robust to multiple mission

scenarios). This potentially justifies its use in future trials, provided an efficient method of

adaptively downsampling the particle set can be found.
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