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PART A: Preface 
 

My Role 

I completed both projects through a part-time secondment to the Monitoring, Evaluation and 

Research Unit (MERU) at the Cancer Institute NSW, between June 2010 and April 2011. This 

arrangement was formally endorsed by the Chief Cancer Officer. Both projects were 

supervised by Dr Stephen Morrell (statistical supervisor), and Ms Deborah Baker, Manager of 

MERU.  

Both projects were taken from the MERU workplan, using data from the NSW Central Cancer 

Registry (NSW CCR) and were not familiar to me beforehand. While the projects both used the 

same dataset, they were not related.  

The first project built upon previous work within MERU to explore patterns of second cancer 

occurrence for urinary cancers. The intention was to increase our knowledge regarding bladder 

cancers occurring as secondary primary cancers and publish the results as a journal article. A 

draft manuscript was completed and is currently in the process of review within the CINSW 

prior to being finalised and submitted.  

The second project was focussed on a particular issue that had been identified with coding of 

the degree of spread variable within the NSW CCR. The aim was to explore, test and report on 

a technique to address the issue. A report summarising the findings was completed and 

submitted to MERU. This focussed on lung cancer as a test case and the wider applicability of 

the technique to other cancers will now be explored further.  

This was my first exposure the Central Cancer Registry Dataset.  I completed both projects 

independently, seeking input where required to understand the dataset, coding, existing SAS 

programs and formats and discuss issues as they arose.  

 

Reflections on Learning 

Communication 

Both projects helped me develop communication skills in two key areas. Firstly, throughout 

the course of the projects, it was essential to negotiate time and communicate with key 

individuals to gain a thorough understanding of the database and existing resources such as 

supporting documentation, SAS codes and formats. For both projects, I drew heavily upon the 
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expertise of other biostatistical staff as well as key staff involved in the coding and 

management of the NSW CCR. Clear communication of my queries, including the background 

and context to the project was essential in gaining the information required.  

Secondly, both projects required me to communicate complex statistical concepts and results 

in written and graphical form, as well as verbally when presenting findings to my supervisors 

and others within the institute. One of the biggest challenges was doing so in a succinct 

manner and isolating the key results that most directly addressed the questions of interest.  

 

Work Patterns/Planning 

Given my part time working arrangements on these projects, setting work patterns and 

planning ahead were essential in allowing me to balance my time on the projects with my 

other quite different work requirements.  

Completing both projects within reasonably tight timeframes required self-discipline, 

motivation as well as a flexible approach. I set deadlines for sections of work as well as overall 

completion of the projects. However, I found that both projects included unanticipated 

complexities due to coding which meant that I had to revisit the scope of the projects in 

consultation with my supervisors and revise my approach and timeframes where necessary.  

Both projects have helped me to realise that working with administrative data often requires 

compromise and more questions can often be raised than answers generated. Within project 

1, it was only after gaining a more thorough knowledge of the dataset and the limitations of 

some variables that I felt that I could adequately design specific analyses that would address 

the research questions. This meant that the project evolved somewhat from start to finish. 

Similarly within project 2, understanding the complex relationships between variables within 

the NSW CCR was essential before being able to make informed decisions regarding the most 

appropriate approach to be taken. Both projects have generated many new questions and it 

was difficult at times to contain the scope of the projects within a manageable limit.  

Statistical Principles, methods and computing 

The Central Cancer Registry was the main dataset used within both projects. This dataset is 

population-based and aims to capture all registrations of invasive cancers for NSW. The 

importance of this dataset is in monitoring trends in cancer registrations over time and as such 

it requires a census of cancer registrations rather than a sample and requires rigid and 

consistently applied data collection procedures.  
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Both projects gave me a very good insight into the importance of understanding the NSW CCR 

data collection and coding practices in detail. While some variables on the NSW CCR are 

reasonably straight-forward, others such as coding site of cancer, histology of cancer and 

degree of spread are governed by complex international classifications and coding rules. 

Additionally, the information provided from notifying sites for these variables is not always of 

sufficient quality to be able to code as accurately as would be desired. Communicating with 

experts from both a pathology and coding perspective was essential to understanding and 

using these variables in a valid and informative manner.  

It is also essential that inferences related to trends in cancer registrations are made with 

reference to trends in the underlying population. As such, population estimates from the 

Australian Bureau of Statistics (ABS) are an important component of any population-based 

cancer estimates.  

 

Project 1

Another important epidemiological principle for this project was the concept of “person years 

of observation”. When monitoring a population for the occurrence of a particular 

disease/event it is very important to consider the time period for which they were at risk of 

the event. For this project the event of interest was a second cancer and people were at risk 

from the time they entered the registry (at diagnosis of a first cancer) to the time they died, 

were diagnosed with a second cancer or until the end of the follow-up period. It was essential 

that time of death could be taken into account as this was highly likely to be related to the 

type of cancer with which they were initially diagnosed.  

 

Project 1 examined patterns of increased risk of a second cancer among those with a prior 

diagnosis of kidney cancer compared to the general population. The ability to draw a 

comparison between this sub-group and the underlying population was only possible because 

of the population based approach of the NSW CCR.    

Two main statistical methods were employed in this project: (i) the calculation of Standardised 

Incidence Ratios (SIRs); and (ii) Survival Analysis. Both were chosen because of their ability to 

account for biases in person years of observation due to data censoring. However, the first 

technique allowed examination of patterns of second cancers and to compare these with the 

underlying population, while the second was used to examine predictors of second cancer 

occurrence within a sub-group of people who had a specific cancer diagnosis.  
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I had come across the concept of SIRs previously within epidemiology courses undertaken and 

within journal articles and understood the principle of the calculation, although I had not 

previously undertaken such calculations using the retrospective cohort approach. I had access 

to a SAS program that had been previously created within MERU to calculate SIRs on CCR data, 

so did not need to start from scratch. However, in order to make any modifications to this 

program I needed to understand in a reasonable amount of detail how it worked.  

In undertaking the survival analysis component, I drew heavily upon the survival analysis unit I 

had completed in first semester 2010. There were some major differences though when 

undertaking this type of analysis on a large-scale administrative dataset. The potential length 

of survival time was much longer than any previously encountered, and because the CCR has 

now been operating for almost three decades, the potential issues with data inconsistency on 

some variables were much more complex than I anticipated. A major challenge with this part 

of the analysis was maintaining a connection to a relevant clinical or epidemiological question 

while balancing this with the limitations of the data.  

Comparing these two techniques provided a very good insight into the benefits and limitations 

of each. While SIRs provided a very good overview of elevated risk of a second cancer 

compared to the population level this technique could not be used to examine the significance 

of covariates in predicting second cancers within the population sub-group. A clear example of 

this was the relationship between sex and occurrence of bladder cancers following initial 

upper urinary tract cancers (eg. of the renal pelvis). SIRs showed the occurrence of bladder 

cancers to be much more markedly elevated for females compared to males. However, 

survival analysis showed that there was no difference between males and females in the rate 

of second cancer occurrence. SIRs were influenced by the underlying sex-specific population 

incidence of both first and second cancers whereas survival analysis only took account of sex-

specific incidence of second cancers within the population of interest. This was an important 

lesson in drawing conclusions from each technique. 

One of the major challenges I faced when commencing this project was using SAS for all 

analyses. While I had used SAS previously, including for multivariate analyses, there had been a 

period of at least two years where my use of SAS had been limited with use of other software 

packages instead during this time such as STATA. This was particularly an issue in conducting 

survival analysis which I had only ever previously undertaken in STATA and in which the BCA 

Survival Analysis unit I had completed was entirely based. I could have taken the option of 

installing STATA and using this, but chose to persist with SAS given it is so widely used at 

CINSW and there were existing SAS resources for CCR data such as programs and formats that I 
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could draw upon.  While SAS provided powerful options for the programming required for SIR 

calculations and also survival analysis, I found generating useful data and plots to assess model 

diagnostics to be less elegant and more time consuming within SAS compared to STATA.  

 

Of particular importance in project 2 were the principles of random and non-random variation 

and, in terms of missing data, the differences between Missing Completely at Random (MCAR), 

Missing at Random (MAR) and Missing Not at Random (MNAR). The issue under investigation 

involved data with a partially known missing data mechanism. The missing data was within a 

discrete period of time; however it was also related to the notification method used.  

Project 2 

It was evident that for many variables being investigated, including the main variable of 

interest degree of spread, there had been non-random variation in coding and notification 

practices over time. The use of imputation to address missing data assumes the data are not 

MNAR, therefore considerable deliberation was required to choose an approach that best 

reflected this assumption based on the known relationships between variables. However, it 

was also important to clearly articulate where assumptions had been made.  

In building a valid logistic model, it was important to consider the predictive power of the 

model. To do so, I drew upon principles of test evaluation which consider the sensitivity and 

specificity of a test in predicting an outcome. This provided a useful basis for assessing in what 

contexts the imputation process may be valid and where caution may need to be exercised in 

using this approach.   

The main statistical methods employed within this project were focussed on two areas: (i) 

categorical data analysis, using chi-square tests and logistic regression; and (ii) data imputation 

using Proc MI in SAS. Additionally, to validate the effect of the imputation process, modelling 

of imputed results against ‘test’ cases was conducted, and Kaplan-Meier survival curves were 

constructed.  

The first part of this project required building a logistic regression model to predict whether a 

lung cancer case had localised or unknown degree of spread. For the model building process, I 

drew upon courses such as Categorical Data and Generalized Linear Models. However, in most 

courses model building focussed on investigating relationships between covariates and an 

outcome variable rather than on predictive power. The process of building a model, given the 

specific aim and data limitations within this project, was a balance between gaining predictive 
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power and gaining consistency across the two variables that were related to the missing data 

mechanism: time period and notification method. This process reinforced the opinion that 

model building is not an exact science and that many different choices could be made. The end 

result was achieved by finding a model that could be defended as appropriate given the 

assumptions, but also provided adequate prediction. This was a much more difficult process 

than I originally anticipated.  

While missing data were acknowledged in many of the BCA courses as being problematic in a 

real world setting, no course specifically addressed the issue. In practice, there is often no ideal 

solution to addressing the issue and instead the best option must be chosen based on the 

extent of the problem and the type of mechanism causing the missing data. This project 

highlighted the importance of getting the data collection process right in the first place so as to 

avoid complex missing data patterns. Multiple imputation appeared a useful tool to address a 

complex missing data problem, but it was clear in the current project that the usefulness of 

this approach is dependent on understanding the missing data pattern and being able to 

construct a valid predictive model. 

SAS was used for all analyses with graphs produced either within SAS or via Excel. A variety of 

different procedures were used including Proc Logistic, Proc MI, Proc MIanalyze and Proc 

Lifetest. Much of the investigation of potential predictors was quite repetitive and one of the 

main time-saving mechanisms I developed was to output files directly to excel using the output 

delivery system (ods) within SAS. I also explored this approach for directly outputting graphs 

required for the report, but in the end found it quicker and more effective to produce the 

graphs within excel from the outputted data using a graph template. I would like to develop 

further my knowledge and expertise with using the output delivery system, as can see many 

advantages, both in terms of saving time and setting up efficient and standardised processes 

for running routine or repetitive data analysis.  

The Proc MI and Proc MIanalyze procedures were new to me for this project and I relied 

heavily on the SAS documentation to understand how to correctly apply these procedures. The 

missing data mechanism within this project meant that I had to think creatively about how to 

adapt the procedure to use prototype cases from one period of time to predict values for 

missing data in another period.  

 

Teamwork 

Communication with other team members 
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To complete both projects I drew upon the expertise of multiple other people within MERU 

and also within the Central Cancer Registry. I built key relationships with the biostatistics team 

to ensure correct understanding and use of databases, SAS programs and SAS formats. In 

particular, for project 1 this included the understanding of the SAS program for creation of 

SIRs. I found the most efficient way to work with this team was to outline my queries in writing 

via email and then book meeting times when necessary to go through processes or code in 

more detail.  

I also liaised with the coding manager and consultant pathologist advising on coding for the 

Central Cancer Registry. For project 1, communication with the consultant pathologist in 

particular was essential in gaining an understanding of the cell types and histological sub-types 

of cancers and also for assessing the relevance of particular questions to the clinic. For project 

2, the coding manager was an essential resource to understanding current and past coding 

practices for the degree-of-spread variable. I was extremely fortunate that she has been 

involved with the NSW CCR for many years, including during the 1990’s when the data 

collection issue for degree of spread occurred.  

Communication on progress with my supervisors was conducted mostly by email with regular 

meetings scheduled every two-three weeks. Again the most effective means of communicating 

was to ensure material was sent in advance and flag any particular questions for discussion. 

 

Negotiating Roles and Responsibilities 

As I was the only resource for both projects, there was little need to negotiate roles and 

responsibilities for the key tasks within the project. However, as the projects proceeded there 

was continued communication with my supervisors on the progress made and where input 

was required from others. This input was mostly in the form of expertise/advice or feedback. 

For project 2, I required assistance with correct extraction and creation of a variable that 

would provide me with the method of notification. This required negotiating some time with 

one of the biostatisticians during a very busy period.   

As I was only seconded part time to work on this project, I also needed to negotiate carefully 

with my Director as well as supervisors to ensure everyone was comfortable with the amount 

of time I would be allocating to the projects and other tasks. This continued throughout the 

projects as needed.      
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Working within timelines 

I initially set my own timelines for the projects in consultation with my supervisors. I worked 

on the two projects in sequence, setting a deadline for project 1 in November 2010 and a 

deadline for project 2 in April 2011. The tight timeframe for project 2 was necessitated due to 

my personal circumstances, as I discovered I was expecting a baby in May 2011.  Further 

consultation and discussion regarding project 1 has continued since November, with some 

further revisions planned for the manuscript prior to submitting this to a journal for publishing.  

The main mechanism for adhering to timelines was preparing a plan in advance of what 

milestones would be reached by each supervisory meeting. Timeframes required re-setting 

slightly and the scope of the projects required adjusting once work commenced due to un-

anticipated complexities in the coding of data. For project 1, this meant that more time was 

spent up-front understanding the issues so as to avoid incorrect or misleading use of the data. 

So as to still complete within the timeframe and provide a better focus for the project, it was 

decided that some analyses initially included in the project scope were better left out of the 

final manuscript. These will be followed up separately. For project 2, after initial exploration of 

the data and relationships between variables it was decided that some extra input from one of 

the other biostatisticians was required to create a variable that indicated the notification 

method for cases as this was a key aspect of the missing data mechanism. As it was a very busy 

period for the biostatistics team, this meant timelines had to be adjusted to fit with their 

workload.   

One of the major challenges in keeping the projects on time was that as well as my own part-

time input into the project, one of my supervisors was only available two days per week and 

the consultant pathologist was only available one day a week. This meant that planning of 

meetings had to be made well in advance to ensure input from all people.  

 

Helping others to understand statistical issues 

As I worked independently on both projects my main focus was on ensuring that I understood 

the statistical issues and could communicate these to my supervisors in a clear and informative 

manner. Prior to meetings, I wrote a summary of the issues and my proposed response to the 

issues so that we could then discuss the alternatives in an informed manner. Additionally, 

when meeting with others, such as the coding manager or other biostatisticians, I tried to 

summarise the problem I wanted to discuss in a very concise manner. I found in many 
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circumstances being able to graphically represent the problem was the most effective way to 

do this, particularly for discussions with the non-biostatisticians.  

In preparing the manuscript and report that resulted from these projects, I focussed on trying 

to clearly communicate the statistical issues involved and provide a clear explanation for the 

approach taken. For example, in the report for Project 2, I included a discussion regarding the 

background to the NSW CCR and the different types of missing data to try to provide some 

context to the problem being addressed.  

 

Ethical Considerations 

At the beginning of these projects, I ensured I was familiar with the NHMRC National 

Statement on Ethical Conduct on Research Involving Humans and also the NSW Health Act and 

Privacy Act to understand the context in which NSW Cancer Registry data is collected and how 

this fits within the National Statement. Both projects utilised NSW CCR data only and did not 

require any identifiable variables or data linkage. They were carried out within the remit of the 

core functions of the Monitoring Evaluation and Research Unit at the CINSW, and as such, 

were determined to be low risk projects that did not require ethical review.  

However, I was still conscious of my obligations in maintaining the confidentiality and privacy 

of the data. This included ensuring that data security was considered by carrying out all 

analyses within password protected secure servers at the CINSW. It also included 

consideration of confidentiality in reporting. As some of the combinations of cancers under 

investigation had few observations, the decision was made to report any cells with values less 

than 5 as approximate only (ie. “<5”). 

Throughout the project I was also aware of my professional responsibility to carry out accurate 

analyses and provide correct and relevant interpretation. This was especially important after 

uncovering certain limitations with the coding of the data and I made it a priority to 

understand these limitations in detail, adjust the analyses accordingly, and report the 

limitations of the study.    
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PART B: Project 1 – Bladder and non-bladder urinary cancers: 
examining patterns and risk factors for second cancers using data 
from the New South Wales Central Cancer Registry (Australia) 
Location and Dates: 
 

Cancer Institute NSW, Sydney, June-November 2010 

Context: 
 

This project was completed as part of the approved program of work 
within the Monitoring Evaluation and Research Unit at the Cancer 
Institute NSW. Heidi was seconded to MERU from another area of 
the CINSW to work on this project on a part-time basis. This project 
extended previous work completed within MERU assessing the 
excess risk of second primary cancers following an initial primary 
cancer diagnosis.  
  

Contribution of 
student: 
 

Heidi completed all review of literature, design of study, analyses, 
and write-up/presentation of results.  The calculation of SIRs utilized 
an existing SAS program created within the CINSW. The Survival 
Analysis component was completed independently.  
 

Statistical issues 
involved: 
 

• Calculation of Standardised Incidence Ratios (SIRs) 
• Kaplan-Meier survival analysis 
• Cox Proportional Hazards Regression 

 
Declaration: I declare that I have undertaken this project independently and have 

not submitted this work for previous academic credit.  

Signed:  
 

 
 

Supervisors Name: 
 

Dr Stephen Morrell (Co-supervisor with Ms Deborah Baker) 

Statement: This is to state that Heidi Welberry has conducted the statistical 
analyses, as outlined above, and writing for this project 
independently and in a very competent manner. After reading the 
relevant literature, Heidi has also conceived the research questions 
for the project in terms of the relevant issues. Consequently, the 
work has a high probability of being publishable. 
 
 

Signed: 
 

 
 

 

  



12 
 

Bladder and non-bladder urinary cancers: examining patterns and risk factors for second 

cancers using data from the New South Wales Central Cancer Registry (Australia) 

Introduction 

Study of the incidence of second primary cancers can be informative in identifying cancers 

with common etiologic factors or cancers that may arise as a consequence of treatment for the 

initial primary cancer. Following kidney cancer, the observation of excess invasive cancers of 

the bladder previously has been reported using data from the NSW Central Cancer Registry for 

the period 1972-1991 (1). McCredie et al. reported an elevated risk of invasive bladder cancer 

following cancer of the renal parenchyma in women only (Risk Ratio (RR)=3.4, 95% CI=1.1-8.0), 

and an elevated risk of invasive bladder cancer following cancer of the renal pelvis in both men 

(RR=8.7, 95% CI=5.4-13) and women (RR=39, 95% CI=26-56). They postulated that the pattern 

of excess cancers following cancer of the renal pelvis supported tobacco as a common risk 

factor, but not for cancer of the renal parenchyma. They suggested that the increased 

elevation of risk of bladder cancer in women reflected the high incidence of analgesic-

associated disease from use of products containing Phenacetin.   

The renal parenchyma and the renal pelvis have distinctly different morphological features. 

The renal parenchyma comprises nephrons, the functional tissue of the kidney, and cancers 

occurring in this region are most commonly renal cell carcinoma.  The renal pelvis acts as the 

funnel for urine flowing to the ureter and comprises urothelial tissue. Urothelial tissue (the 

urothelium) covers the surface of the urinary tract from the renal pelvis through the ureter 

and the bladder to the proximal urethra. The urothelium is characterized by transitional cells, 

and in Western countries more than 90% of cancers of these organs are transitional cell 

cancers (2). Another characteristic of urothelial tumors is that they are frequently multifocal in 

nature, commonly occurring either synchronously or asynchronously in different regions of the 

urothelium.  

There have been two main hypotheses put forward to explain the multifocal nature of 

urothelial cancers. The concept of field cancerisation first proposed in 1953 by Slaughter et al. 

suggests that the entire urothelium is exposed to a common risk factor putting the entire 

‘field’ of the urothelium at risk of developing tumours (3). These tumours subsequently 

develop independently. Alternatively, a more recent theory of intraluminal ‘seeding’ has been 

proposed. This suggests that cells from a single tumour or lesion can dislodge and implant at 

another site. Molecular studies have supported the ‘seeding’ hypothesis by showing identical 

mutations in tumours from multiple locations (4). A recent review suggests that the seeding 

hypothesis is now well supported but that both mechanisms are likely to occur (2).     
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Two distinct questions can be posed: does the pattern of second urinary cancers support the 

theory of field cancerisation and/or intraluminal seeding? And what factors are predictive of 

the rate of second cancer occurrence within the urinary tract? For the first question in 

particular, the likelihood of a second cancer ‘downstream’ from the kidney can be compared 

with the converse, for instance a bladder cancer followed by kidney cancer, to shed light on 

which mechanism is more likely. NSW Central Cancer registry data provide an opportunity to 

explore the patterns of urinary cancers occurring together at a population level. 

 

Materials and Methods 

All data used were extracted from the NSW Central Cancer Registry. Notifications for invasive 

cancers are mandatory for pathology laboratories, hospitals and other treatment centres 

under the NSW Public Health Act 1991. All first and second invasive cases of cancer for an 

individual were included with third and subsequent cancers excluded from analyses. Two 

analysis techniques were used to address the research questions: the calculation of 

standardized incidence ratios to compare observed versus expected numbers of second 

cancers; and Cox Proportional Hazards regression modelling to investigate predictive factors 

for second cancer occurrence. SAS version 9.2 was used for all statistical analyses.  

Two sets of analyses were undertaken: i) non-bladder urinary cancers as the first cancer sites 

(renal parenchyma, renal pelvis, ureter, and urethra) and bladder cancer as the second cancer 

site;  ii) bladder cancer as the first cancer site and non-bladder urinary cancers as the second 

cancer sites. The first 3 digits of the ICD10 coding system were used to separate organ sites 

with urethra defined at the 4 digit level. Second cancers diagnosed within three months of the 

first cancer were excluded.  

Standardised Incidence Ratios 

A cohort model was used where person-years following diagnosis of the first cancer were 

categorised by single year of age (with an open-ended category from 85 years), sex and 

calendar year of diagnosis. For each analysis, the event was diagnosis of a second primary 

cancer of interest (the target cancer). The follow-up period started at 3 months following first 

diagnosis and was censored at time of death, date of diagnosis of a second primary non-target 

cancer, or 31 December 2007, whichever occurred first. Expected numbers of cases were 

calculated based on the age- and sex-specific incidence rate for each calendar year within the 

follow-up period. Standardised Incidence Ratios (SIRs) were calculated by dividing the 

observed number of second cancers by the expected number of second cancers and 95% 



14 
 

confidence intervals were calculated based on the Poisson distribution. The expected number 

of second cancers was based on the incidence of that cancer in the population overall. 

All persons diagnosed from 1986 to 2007 with an invasive upper urinary tract cancer (Renal 

Pelvis: ICD10 code C65 and Ureter ICD10 C66) as a first cancer were included in the cohort. 

Cases without histological verification at the NSWCCR were excluded. An event was the 

occurrence of a histologically verified invasive bladder cancer (ICD10 C67) as a second cancer 

at least 3 months following diagnosis of the first cancer. Individuals were censored at death, 

diagnosis of a non-bladder cancer or 31

Cox Proportional Hazards Regression 

st

Covariates included sex of individual and characteristics of the first cancer diagnosis: age at 

diagnosis (in years); period of diagnosis (in 4-yearly groups); degree of spread of first cancer at 

diagnosis (localised; regionalised; distant and unknown); site of first cancer (renal pelvis vs 

ureter); histology of first cancer (papillary TCC (81303, 81313) vs TCC (81203, 81223)); socio-

economic status at diagnosis (approximated using the index of relative advantage and 

disadvantage based on postcode of residence at time of diagnosis). Proportionality of Hazards 

was assessed by including time dependent forms of each covariate in the model. A full model 

was initially tested with all covariates included as predictors of time to event. A final reduced 

model was constructed by removing non-significant predictors in a step-wise fashion until all 

variables remaining were significant at P<0.05 level.  

 Dec 2007 whichever occurred first. Due to a low 

number of events in non-transitional cell cancers, the cohort was further restricted to include 

only Transitional Cell Carcinoma (TCC, histology codes 81203, 81313, 81303, 81223). The 

cohort comprised 1,700 cases. It should be noted that the inclusion criteria for the Cox 

regression cohort was much stricter than that used in the SIR analysis, focussing on a shorter 

time period (starting at 1986 rather than 1972) and a more specifically defined group (only TCC 

that had been histologically verified). Follow-up began at time of diagnosis of first cancer 

 

Results 

Table 1 presents observed and expected numbers of second cancers by sites of first and 

second cancer and sex. With the exception of bladder cancers following cancers of the renal 

parenchyma for men, all standardized incidence ratios (SIRs) were significant. No bladder 

cancers were observed following cancers of the urethra for women. The largest SIRs observed 

Standardised Incidence Ratios 
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were for bladder cancer following cancers of the renal pelvis (63.8; 95% CI: 52.3-77.1) and 

ureter (80.1; 95% CI: 56.1-111) for women, and urethral cancer following bladder cancer for 

men (58.3; 95% CI: 38.7-84.2).  

For bladder cancers following non-bladder urinary cancers, SIRs were larger for papillary TCC 

compared to TCC. SIRs trended downwards over time with the SIRs for bladder cancer 

following Papillary TCC remaining significant for both males and females at more than 10 years 

of follow-up whereas for bladder following TCC, SIRs at 10+ years dropped to non-significance 

(Table 2).  

All SIRs for combinations of cancers in which the second cancer could be considered 

‘downstream’ of the first were larger than for the corresponding ‘upstream’ combination of 

cancers excepting for cancer of the renal parenchyma. Non-overlapping confidence intervals 

for upstream compared to downstream combinations demonstrate the significance of this 

relationship with the exception of bladder/urethra for women related to the very low numbers 

of urethral cancers in females.  

1,700 patients were included in the cohort with a median follow-up after diagnosis of an upper 

urinary tract cancer as a first cancer of 1.8 years. There was a slight over-representation of 

females, more renal pelvic cancer cases than ureter and most cases had either localised or 

regionalised spread at time of diagnosis. Of the 1,700 patients, 137 (8.0%) developed an 

invasive bladder cancer as a second cancer with a median time to second cancer development 

within this group of 1.0 year.  

Cox Proportional Hazards Regression 

Of the seven variables investigated as predictors of time to bladder cancer, age group, tumour 

site and histological sub-type were significant at the univariate level (Table 3). Those with 

cancer of the renal pelvis developed bladder cancer at a lower rate than those with cancer of 

the ureter (HR=0.65, p=0.02), and those diagnosed with a papillary TCC (histology code 81303, 

81313) were more likely to develop a cancer of the bladder compared to those with TCC 

(histology code 81203, 81223) (HR=1.58, p=0.01). Those in the two oldest age groups were 

more likely to develop bladder cancers compared to those in the youngest age group 

(HR=1.88, p<0.01).  

At a multivariate level, after controlling for all other factors, age group at first cancer diagnosis, 

tumour site and histological sub-type remained as significant as predictors. Results from the 

full model are presented in Table 4 and results from the reduced final model are presented in 

Table 5.  Based on the final model, those aged 65-74 years at diagnosis experienced second 
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cancers at almost double the rate of those younger than 65 years (HR=1.91). Those aged 75+ 

years had  a 68% increased rate of second cancers compared to the < 65 age group. The 

difference between the 65-74 year group and 75+ group was not significant (p=0.36). Initial 

cancers of the renal pelvis were followed by second bladder cancers at only two thirds the rate 

of initial ureter cancer. Initial cancers classified as Papillary Transitional Cell Carcinomas 

(histology code 81303) had a 59% higher rate of second bladder cancers compared to initial 

cancers classified as Transitional Cell Carcinoma (histology code 81203). 

The overall test for non-proportionality of hazards was non-significant (Wald 𝜒𝜒2=3.25, p=0.52). 

Table 1: Observed and expected numbers of second cancers: kidney, renal pelvis, ureter and 
urethral cancers following bladder, and bladder cancers following kidney, renal pelvis, ureter 
and urethra; by sex, 1972-2007 

Sex First Cancer 

Person 
years of 

observati
on 

Second 
cancer 

Observed 
number of 

second 
cancers 

Expected 
number 

of second  
cancers* SIR 95% CI 

Second 
cancer up 
or down-
stream 

 
Male 

Renal 
Parenchyma 

102,991 

Bladder 
 

21 22.5 0.93 (0.58-1.43) Down 

 

Renal Pelvis 11,876 79 3.8 21.0 (16.6-26.1) Down 

Ureter 5,612 35 1.9 18.7 (13.1-26.1) Down 

Urethra 863 3 0.2 13.2 (2.70-38.4) Up 

 
 

      

Bladder 
 

245,315 

Renal 
Parenchyma 

56 41.1 1.36 (1.03-1.77) Up 

Renal Pelvis 71 5.6 12.6 (9.80-15.9) Up 

Ureter 46 2.5 18.4 (13.4-24.5) Up 

Urethra 28 0.5 58.3 (38.7-84.2) Down 

  
 

      

Female
  

Renal 
Parenchyma 

66,348 

Bladder 
 

11 5.1 2.14 (1.07-3.83) Down 

Renal Pelvis 16,222 107 1.7 63.8 (52.3-77.1) Down 

Ureter 3,682 36 0.4 80.1 (56.1-111) Down 

Urethra 287 - 0.0 - - Up 

 
 

      

Bladder 
 

88,796 

Renal 
Parenchyma 

24 8.9 2.71 (1.74-4.03) Up 

Renal Pelvis 34 3.0 11.4 (7.90-16.0) Up 

Ureter 26 0.7 37.1 (24.2-54.4) Up 

Urethra 3 0.1 39.4 (8.10-115) Down 
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Table 2: SIRs by time period following diagnosis and overall for non-bladder urinary as first 
and bladder as second cancer; by histology of first cancer and sex 

 (3mo-<5yrs) (5-<10yrs) (10+ yrs) (overall) 

First Cancer SIR 95%CI SIR 95%CI SIR 95%CI SIR 95%CI 

Female 
        

Papillary TCC 
(8130/3) 

136 (105, 174) 26.6 (10.7, 54.8) 22.2 (8.9, 45.8) 74.3 (58.7, 92.7) 

TCC (8120/3) 113 (85.1, 146) 23.7 (7.7, 55.4) 2.90 (0.10,16.1) 58.8 (45.1, 75.4) 

ALL TCC 124 (103, 148) 25.3 (13.1, 44.2) 12.1 (5.2, 23.8) 66.6 (56.0, 78.5) 

 
        

Male 
        

Papillary TCC 
(8130/3) 

52.5 (40.1, 60.0) 10.6 (3.88, 23.0) 7.70 (2.8, 16.8) 22.6 (22.6, 36.4) 

TCC (8120/3) 26.0 (18.2, 35.9) 7.80 (2.87, 17.0) 1.00 (0.0, 5.40) 9.74 (9.70, 18.1) 

ALL TCC 38.0 (30.7, 46.3) 9.00 (4.65, 15.7) 3.80 (1.60,7.90) 16.7 (16.7, 24.3) 

 

Table 3: Demographic and clinical characteristics of first upper urinary tract cancer diagnosis 
and univariate relationship of covariates to second bladder cancer diagnosis 

Variable Number of observations Unadjusted Hazard 
Ratio (95% CI) 

P value (Log-rank 
Test) 

N %   
Age     
 <65yrs 481 28.3 - 

0.03*  65-74yrs 645 37.9 1.95 (1.26, 3.02) 
 75+yrs 574 33.8 1.79 (1.11, 2.89) 
Sex     
 Male 691 40.6 - 

1.00 
 Female 1009 59.4 1.00 (0.71, 1.41) 
Tumour Site     
 Renal Pelvis 1305 76.8 - 

0.02 
 Ureter 395 23.2 0.65 (0.46, 0.94) 
Degree of spread     
 Localised 737 43.4 - 

0.37 
 Regionalised 644 37.9 0.67 (0.21, 2.14) 
 Distant 162 9.5 0.88 (0.59, 1.30) 
 Unknown 157 9.2 1.40 (0.85, 2.32) 
Histological Sub-type     
 TCC 937 55.1 - 

0.01 
 Papillary TCC 763 44.9 1.58 (1.11, 2.24) 
Period of Diagnosis     
 1986-1989 305 17.9 - 

0.19* 
 1990-1994 373 21.9 1.39 (0.79,2.44) 
 1995-1998 337 19.8 1.89 (1.08, 3.29) 
 1999-2003 393 23.1 1.50 (0.85, 2.66) 
 2004-2007 292 17.2 1.14 (0.56, 2.32) 
IRSAD quintile     
 Lowest 213 12.5 - 

0.39* 

 Second 269 15.8 1.79 (0.92, 3.47) 
 Third 477 28.1 1.40 (0.75, 2.62) 
 Fourth 374 22.0 1.35 (0.70, 2.57) 
 Highest 360 21.2 1.13 (0.57, 2.23) 
 Missing 7 0.4 - 
*indicates a log-rank test for trend, all other values based on log-rank test for difference 
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Table 4: Cox Proportional Hazards Regression – Full Model: Time from upper urinary tract 
TCC diagnosis to diagnosis of bladder cancer as a second cancer– sex, age, site of first 
primary, period of diagnosis, degree of spread, histology, socioeconomic status as predictors  

Definition of Model: 
Cohort All persons with a diagnosis of the ureter or renal pelvis who survived at least 1 day and 

were diagnosed using method 6 (histological verification at CCR) 
Entry Date of diagnosis of upper urinary tract TCC 
Event Diagnosis of bladder cancer occurring >=3 months post first cancer diagnosis 
Censoring Diagnosis of non-bladder cancer, death or 31st

Variable 
 Dec 2007 whichever occurred first 

Categories  Hazard Ratio (95%CI) P(Wald) 
      
Site Ureter  1.00  

0.03 
 Renal Pelvis  0.66 (0.46, 0.96) 
      
Sex M  1.00  

0.84 
 F  1.02 (0.68, 1.37) 
      
Year of diagnosis 1986-1989  1.00  

0.27 
(ydg) 1990-1994  1.32 (0.75, 2.32) 
 1995-1998  1.69 (0.96, 2.97) 
 1999-2003  1.26 (0.71, 2.24) 
 2004-2007  0.92 (0.44, 1.89) 
      
Degree of spread at 
diagnosis 

Localised  
1.00  

0.76 (stage) Regionalised  0.94 (0.63, 1.40) 
 Distant  0.81 (0.25, 2.61) 
 Unknown  1.25 (0.75, 2.09) 
      

Histology TCC  1.00  
0.01 

(hist) Papillary TCC  1.60 (1.12, 2.29) 
      
Age <65yrs  1.00  

0.01 (age) 65-74yrs  1.95 (1.25, 3.05) 
 75+ yrs  1.85 (1.12, 3.04) 
      
IRSAD quintile Lowest  1.00  

0.30 
 Second  1.74 (0.90, 3.37) 
 Third  1.36 (0.73, 2.54) 
 Fourth  1.26 (0.66, 2.41) 
 Highest  1.00 (0.50, 1.98) 
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Table 5: Cox Proportional Hazards Regression – Reduced Model: Time from upper urinary 
tract TCC diagnosis to diagnosis of bladder cancer as a second cancer– age, site of first 
primary, degree of spread, histology 

Definition of Model: 
Cohort All persons with a diagnosis of the ureter or renal pelvis who survived at least 1 day and 

were diagnosed using method 6 (histological verification at CCR) 
Entry Date of diagnosis of upper urinary tract TCC 
Event Diagnosis of bladder cancer occurring >=3 months post first cancer diagnosis 
Censoring Diagnosis of non-bladder cancer, death or 31st

Variable 
 Dec 2007 whichever occurred first 

Categories  Hazard Ratio (95%CI) P(Wald) 
      
Site Ureter  1.00  

0.02 
 Renal Pelvis  0.66 (0.46, 0.94) 
      
Histology TCC  1.00  

<0.01 
(hist) Papillary TCC  1.59 (1.12, 2.24) 
      
Age <65yrs  1.00  

0.01 (age) 65-74yrs  1.91 (1.24, 2.95) 
 75+ yrs  1.68 (1.04, 2.69) 
      

 

 

Discussion 

The present study examined the elevated risk of experiencing a second invasive cancer 

diagnosis within specific sites of the urinary tract following an initial invasive urinary cancer. It 

also explored several potential factors that may elevate risk in the specific example of bladder 

cancer following cancer of the upper urinary tract.  

There was a clear elevation of risk of bladder cancer following cancers of the renal pelvis and 

ureter in both males and females. This contrasted with less clear findings for bladder cancer 

following cancer of the renal parenchyma (with significantly elevated risk for females but not 

males) and of the urethra (with elevated risk for males, but indeterminate risk for females due 

to no observed second cancers). The differences between males and females in terms of 

standardised incidence ratios for second urinary cancers, reflects an underlying difference in 

incidence patterns between cancers of the upper urinary tract and cancers of the bladder, with 

most bladder cancers in NSW diagnosed in men, but a more even distribution of renal pelvis 

and ureter cancers between the sexes. This suggests a difference in causal factors between the 

two sites. McCredie et al. postulated that this could reflect underlying differences between the 

sexes in exposure to phenacetin containing analgesics which were removed from the market in 

the 1980’s. (1).  

When examining the reverse relationships, risks of renal parenchyma, renal pelvis, ureter and 

urethra cancers were all elevated following initial bladder cancer diagnosis for both males and 
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females. However, for all cancer sites that comprise the urothelium (including the renal pelvis, 

ureter, bladder and urethra), risks were highest when the second cancer was ‘downstream’ of 

the first. For example, risk of bladder cancer following renal pelvis was significantly higher than 

renal pelvis following bladder and risk of urethra cancers following bladder was significantly 

higher than bladder following urethra. However, this relationship did not hold for cancers of 

the renal parenchyma.  

At the time of reporting, McCredie et al. did not examine the increased risk of renal cancers 

following invasive bladder cancer. It would be expected that field cancerisation caused by 

exposure to a common etiological factor would increase the risk of cancer across the entire 

urothelium. This theory does not propose a reason why cancer might develop more rapidly in 

one area of the urothelium compared to another, suggesting an equally elevated risk of renal 

pelvis cancer following invasive bladder cancer compared to the reverse relationship. 

Alternatively intraluminal seeding suggests a mechanical action of spread by which cancer cells 

move within the urinary tract and ‘seed’ to another area. It would be expected that the risk of 

cancers occurring ‘downstream’ of a first cancer would be greater than the risk of second 

cancers in ‘upstream’ sites due to the directional flow of urine. 

This pattern of excess risk supports the theory that second cancers of the urothelial tract may 

manifest due to a ‘seeding’ of cells from a prior cancer, assisted by the flow of urine. The 

influence of urinary flow in transporting cancerous cells is also supported by findings that 

patients who experienced urinary ‘reflux’ from the bladder to the ureter were more likely to 

develop cancers in the upper urinary tract (5). However, the significantly elevated risks for 

second cancers that were located upstream of the first also suggests that other mechanisms 

such as field cancerisation are important.  

Several studies have examined risk factors for the occurrence of second cancers in the urinary 

tract, but most have been retrospective examinations of case series or small cohort studies 

within single institutions.  Commonly cited factors predictive of bladder tumours following 

cancer of the upper urinary tract include tumour grade, multifocality, location (ureteric 

tumours having higher risk of recurrence than renal pelvic) and surgical procedure, with other 

factors such as sex and tumour size reported only on occasion (6) (7) (8) (9). Fewer studies 

have examined the risk of upper urinary tract cancers following bladder cancer, although one 

population-based analysis using data from the SEER database in the US found that tumour 

grade, stage and location were predictive of upper urinary tract recurrence (10).  

As well as site of initial cancer, both the examination of SIRs and survival modelling 

demonstrated initial cancer histology as an important predictor of second cancer occurrence. 
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Those diagnosed with an initial papillary transitional cell carcinoma were more likely to 

develop a second bladder cancer than those diagnosed with a transitional cell carcinoma not 

otherwise specified. This is the first study that the author could locate that has examined 

histological sub-type as a predictor of a second urinary tract cancer.  

Risk factors for bladder cancer in the general population would also be expected to be risk 

factors for second bladder cancers. Age at diagnosis was a positive predictor of second bladder 

cancer occurrence after controlling for other factors. As urothelial cancer incidence is rare 

under the age of 60, it is unsurprising that the risk of second bladder cancers increases with 

age. However, sex is also generally a risk factor for bladder cancer, with males more likely to 

be diagnosed than females, but sex was not significant in predicting second bladder cancers 

following cancers of the transitional cell carcinomas of the upper urinary tract. Factors such as 

smoking rates and to a lesser extent workplace exposure to aromatic amines are thought to 

increase the risk of bladder cancer for males, and are also risks for urothelial cancers in 

general. It seems likely that those diagnosed with an upper urinary tract cancer had a more 

equal distribution between the sexes of known bladder cancer risk factors than the population 

in general. Due to the high level of censoring due to death in some sub-groups in this study 

(such as the elderly) it is may be beneficial to re-examine the relationship of covariates using a 

competing risk model which will allow a more sophisticated inclusion of death within the 

model. 

There are limitations in the registration practices of urinary cancers that need to be considered 

in the context of this study. Errors in the identification and coding of invasive versus non-

invasive bladder cancers have been previously documented including within the SEER program 

and the NSW Central Cancer Registry (11) (12).  Due to the variability over time in the coding of 

invasive versus in situ cancers, the SEER program has routinely reported incidence inclusive of 

both invasive and in situ to avoid what would otherwise result in an artefactual decrease for 

invasive cancers and increase for in situ cancers over time as coding practices were improved 

(11). Within NSW the reporting of in situ cancers is not mandatory, but following internal 

review of notifications many cancers have been recoded from invasive to in situ. A review in 

2008 suggested that as many as 30% of transitional cell carcinomas and 70% of papillary 

transitional cell carcinomas were no longer classified as invasive following pathological 

verification (12). From 2006 onwards, bladder cancer registrations within the NSW CCR data 

were made more consistent, with all localised or unknown cancer registrations histologically 

verified. 
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In situ cancers and non-invasive low grade papillary carcinomas have been speculated to 

follow separate mutational pathways but both potentially leading to invasive cancers (2). As 

reporting of in situ urothelial cancers to the NSW Cancer registry is not compulsory, it is 

difficult to include in situ cases in any analyses due to the unknown coverage of this type of 

cancer. The present study was limited to invasive cancers which were histologically verified 

within the NSW Central Cancer Registry.  It should be noted that this will have excluded a 

proportion of potentially eligible cases. Exclusion of both non-invasive cancers and non-

verified invasive cancers is likely to reduce the power of any analysis, but is only likely to bias 

the results if exclusion of these cancers is related to the location of the tumour or the other 

covariates of interest.  

Previous studies have found cancer stage to be a significant predictor of urothelial cancer 

recurrence with Carcinoma in Situ (CIS) to be associated with more frequent occurrence of 

subsequent cancers (8). The present study excluded all CIS and therefore had no scope to 

examine this relationship. When examining the order of cancer occurrence between different 

sites in the urothelial tract, it is important to recognize that a first cancer may have been 

preceded by a non-invasive cancer in another location. This may bias the results if non-invasive 

cancers are related to site of cancer. Additionally non-verified registrations may be linked to 

other factors such as year of diagnosis and the exclusion of these cases may interfere with the 

ability to examine this as a predictor of second cancer occurrence.  

The elevated risk of bladder cancer following cancer of the renal pelvis and ureter clearly 

reflects the multifocal nature of urothelial tumors, and in 2004 it was proposed that rules for 

reporting ‘second primary cancers’ from cancer registries be adjusted to count the entire 

urothelium including the renal pelvis, ureter, bladder and urethra as one organ site (13). Thus, 

a second cancer occurring in any of these organs of the same histological group would be 

counted as a multiple cancer rather than as a second primary cancer and therefore excluded 

from incidence and mortality statistics. Previously, the renal pelvis and ureter were included 

with the renal parenchyma as one organ site and bladder was a treated as a separate organ 

site. 

Further analysis using registry data from other jurisdictions such as the SEER database in the 

USA is warranted to validate the findings here and extend the study to include non-invasive 

cancers. This study also underlines the complex and recurring nature of cancer diagnoses in 

the urothelial tract and the importance of accurate histological coding in cancer registries.  
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Appendix: Overview of Statistical Analyses 
 

A1  Data Management 

Three datasets were utilised for this study: 

• The NSW Central Cancer Registry (CCR) reporting dataset accessed via the Cancer 

Institute NSW which included all registrations of invasive cancers in NSW from 1972 to 

2007, linked to death information from the national death index.  

• ABS resident population estimates for NSW for the years 1972 to 2007, accessed via 

the NSW Health Outcomes Statistical Toolkit (HOIST). 

• Indices of Relative Socioeconomic Advantage and Disadvantage (IRSAD) for NSW 2006 

(by postcode), accessed via the ABS.  

The NSW CCR reporting dataset was made accessible through my secondment to the 

Monitoring, Evaluation and Research Unit at the Cancer Institute NSW for the purposes of the 

project.   

The Estimated Resident Population for NSW by sex and single year of age (grouped for 85+) 

was used in the first analyses to calculate expected numbers of second cancers. The IRSAD 

indices were linked to the CCR dataset based on postcode of residence at time of diagnosis.  

For both parts of this project the CCR dataset required transforming to link first and second 

cancer diagnoses for an individual based on the order of date of diagnosis. Third and later 

cancers were excluded for the purposes of this project.  

The CCR variables used included: 

• Registration number (to enable linking of first and second cancers) 

Person level characteristics 

• Sex (covariate of interest) 

• Month of death (to allow for censoring at time of death, day was set at “15”) 

• Year of death (to allow for censoring at time of death) 

• Age at diagnosis (covariate of interest) 

First cancer diagnosis characteristics 

• Month of diagnosis (to allow calculation of date of entry to a cohort. Day was set at 

the “15th” of the month)  
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• Year of diagnosis (date of entry) (covariate of interest) 

• Site of tumour (ICD-10 coding at a four digit level) (covariate of interest) 

• Histology of cancer (ICD-03 coding at a four digit level) (covariate of interest) 

• Method of diagnosis (to allow selection of cases where histology sighted at CCR 

(Method=6)) 

• Stage at diagnosis (highest degree of spread of cancer within 4 months of diagnosis 

(1=localised; 2=regionalised; 3=distant; 9=unknown)) (covariate of interest) 

• Postcode of residence at time of diagnosis (to allow linkage to IRSAD index) (covariate 

of interest) 

• Month of diagnosis (to allow calculation of date of event. Day was set at “15

Characteristics of second cancer diagnosis 

th

• Year of diagnosis (date of event)  

” of each 

month)  

• Tumour site (to allow selection of events of interest) 

• Tumour histology (to allow selection of events of interest) 

• Method of diagnosis (to allow selection of events of interest) 

 

A2:  Evaluating excess risk of other urinary tract cancers following an initial urinary tract 

cancer diagnosis 

Primary: To explore estimates of the elevated risk of second urinary cancers of different organ 

sites following an initial urinary cancer diagnosis.  

Aim of the analysis: 

Secondary: To explore patterns of excess risk based on site of first cancer, histology of first 

cancer and sex 

Selection and definition of cancer sites  

Rationale for the approach taken: 

Distinct urinary organs were split into non-bladder and bladder for pragmatic reasons. Non-

bladder urinary cancers included: Renal Parenchmya (main body of the kidney); Renal Pelvis 

(neck of the kidney that adjoins the Ureter); Ureter (joining the renal pelvis to the bladder); 

and Urethra. Due to coding rules, second primary cancers of the same organ site are excluded 
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from the CCR reporting database. In the case of urinary cancers, non-bladder cancers have 

historically been classed as the same organ site and bladder cancers as a separate organ site. 

This classification has changed since 2004 to include Renal Pelvis, Ureter and Urethra with 

Bladder and Renal Parenchyma as a separate organ site. Coding rules within the CCR have 

remained the same with reporting allowing for the change in rules. These historic rules allow 

examination of relationships between second primary bladder cancers following primary non-

bladder cancers and vice versa, but do not allow investigation of multiple primary cancers of 

different sites within the non-bladder cancer group.  

Calculation of Standardised Incidence Ratios (SIRs) 

SIRs were calculated to allow investigation of rates of cancers within the population of interest 

(those diagnosed with an initial primary cancer of specific type) compared to the ‘healthy’ 

population (those not diagnosed with an initial primary cancer). The retrospective cohort 

approach is a commonly used epidemiological approach to calculate the number of observed 

versus expected cases required in the calculation of SIRs. This approach has also been the 

focus of previous work within the Cancer Institute NSW to develop a standard SAS program 

that can be adapted to explore second cancer occurrence for cancer types of interest.  

The existing SAS program allowed flexible investigation of different combinations of cancers. 

This program operates by the following steps: 

Existing SAS program to calculate SIRs: 

1. CCR data is read in (using the re-shaped dataset with only first and second diagnosis 

and using all diagnoses from 1972 to 2007)  

2. NSW population counts by age, sex and calendar year are downloaded for the period 

1972-2007 

3. Three cohorts are created based on the specification of the initial cancer of interest 

and sex: 

• Cohort C:  >2 months post entry date to study end date; 

• Cohort B:  >2 to 119 months; and 

• Cohort A:  >2 to 59 months 

Where study entry date is the date of diagnosis of a person’s first cancer diagnosis. A person 

enters the cohort on this date and contributes person years of observation until diagnosis of a 

second cancer, death or study end (31 December 2007).  
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The construction of three separate cohorts allows calculation of SIRs for three distinct time 

periods, 3mo-<5yrs (cohort A), 5yrs-<10yrs (Cohort B-Cohort A) and 10 yrs plus (Cohort C-

Cohort B) as well as an overall SIR (Cohort C). Diagnoses of second cancers made within the 

first three months were excluded to allow for multiple ‘synchronous’ diagnoses in which the 

order of occurrence may be uncertain. 

4. Observed cases of each cancer type within each cohort are counted for each stratum 

(stratified by age last birthday, sex and calendar year of diagnosis). 

5. Population incidence of each cancer type is calculated within each cohort for each 

stratum 

6. Person years of observation are calculated within each cohort for each stratum 

7. Expected cases of each cancer type are calculated within each cohort for each stratum: 

 Expectedstratum = Incidencepopulation ∗ pyo stratum
py opopulation

 

8. SIRs are calculated in each cohort:  

 SIRcohort = ∑ Observe dcohortstrata
∑ Expecte dcohortstrata

 

9. 95% confidence intervals are constructed based on the Poisson distribution.  

 

The existing SAS program could be used to calculate SIRs for each of 54 programmed second 

cancer types for the specified initial cancer type and results could be output either individually 

for each sex or combined. Slight modification of the program was required to disaggregate the 

grouping of “Kidney” for definition of second cancer type which initially included all non-

bladder urinary sites of Renal Parenchyma, Renal Pelvis, Ureter, Urethra and other urinary 

organs not otherwise specified. These were re-defined as separate cancer types.  

Adapting the existing SAS program: 

Additional factors such as histology were also included in the definition of initial cancer type to 

allow more specific investigations to be carried out.  

One of the main potential limitations of the SAS algorithm used is the issue of interpreting 

multiple comparisons. With a large number of combinations of cancers able to be investigated 

Potential limitations of this approach 
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and then also broken down into sub-groups such as by sex and histology, it would be expected 

that a number of ‘significant’ findings in such a large number of comparisons could occur by 

chance alone. However, in the present study the number of analyses were limited and based 

on a priori hypotheses which reduce the significance of this issue.  

 

A3:  Determining predictors of second cancer occurrence through Cox Proportional 

Hazards regression modelling 

To determine what factors predict the occurrence of an invasive bladder cancer following an 

upper urinary tract cancer. 

Aim of the analysis:  

Survival analysis was considered an appropriate technique for examining predictors of second 

cancer occurrence. The main reason for this was that the ability to observe the occurrence of a 

second cancer could be highly biased due to censoring when a person dies. As cancers can 

have quite high death rates, and most covariates of interest could potentially be related to 

death rates, the impact of censoring could be significant. It was possible for one person to be 

diagnosed with many cancers. So as to allow examination of the relationship between just two 

cancers of interest, a person was considered censored at the date of a non-bladder cancer. 

Survival analysis provides more information on the rate of cancer occurrence over time that 

could not be gained by just examining SIRs.  

Rationale for the approach taken: 

The potential issue with this approach given the dataset included the possibility of missing 

data due to loss of follow-up when people move interstate or overseas. However, due to the 

co-operation between jurisdictions within Australia and the efforts made in matching death 

records, this issue is likely to have minimal effect.  

Another issue is that a high proportion of cases of first cancers in older age groups will have 

died before having the chance to acquire the second cancer. As there are differences in death 

rates at different levels of covariate, it may be misleading to regard deaths as the same as 

censored observations. Accordingly, proportional hazards regression incorporating competing 

causes/risk is likely to be a more appropriate approach. It is the intention that this method of 

analysis will be undertaken over the coming months to increase to validity of the findings 

before further considering this paper for publication. 
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SAS Version 9.2 was used for all analyses. SAS is the standard statistical analysis software 

supported within the Cancer Institute NSW and also allows for analysis of large datasets.  

 

a) Assessing the distribution of each variable 

Overview of the analysis steps taken: 

Each variable was inspected for outliers and distribution was assessed.  

There were 1700 observations with a valid time to event (>0.0yrs). Time to event was highly 

right skewed which is not unusual for this type of data, but the nature of the administrative 

dataset allows a very long follow-up period resulting in a large range of values from 0.04-21.8 

years with a median follow-up time of 1.8 years. 

Two covariates could potentially be included in the analysis as continuous variables: age and 

year of diagnosis (ydg). Histograms for these two variables are presented in Figure A1. Year of 

diagnosis, as expected had a fairly flat distribution and as there was no prior reason to assume 

that this variable would be linearly related to the occurrence of bladder cancer, it was treated 

instead as a categorical variable labelled “period of diagnosis” with 4-5 yearly groupings. Age 

appeared to be reasonably normally distributed with a slight tail to the left. Based solely on the 

distribution, it did not appear necessary to transform this variable and it was included in the 

continuous form for further investigation of the survivorship function by different levels of the 

covariates.   

An overview of the proportional distribution of categorical variables across groups was 

presented in table 3 on page 18.  No significant issues were identified.  

 

b) Assessing the overall survivorship function 

The Kaplan-Meier survival curve was calculated (Figure A2). This showed that the overall 

proportion of the cohort experiencing the event of interest (diagnosis of a bladder cancer) was 

quite low and that the rate of second cancers was fastest in the first 2.5 years following initial 

cancer.  

 

c) Assessing the survivorship function by each level of each covariate 
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Kaplan-Meier survival curves were examined for each level of covariate to examine potential 

predictors and log(-log) survivor functions were plotted against log survival time to help 

identify any potential issues with assuming proportionality of hazards (Figures A3). The only 

covariates that appeared to be clearly related to time to second cancer at the univariate level 

were age, site of first cancer and histology. A log-rank test confirmed these relationships to be 

significant (Table 3 on page 18). Year of Diagnosis (grouped into five periods) appeared not to 

be strongly related to second cancer occurrence and there was no uniform increasing or 

decreasing trend across periods. The lack of trend was supported by a non-significant log-rank 

test for trend (p=0.51). Age did appear to be related to time to second cancer with a significant 

log-rank test for trend (p=0.03). However, the trend did not appear linear with the oldest two 

age groups appearing to have similar survivorship. There was also an indication that hazards 

may not be proportional at all survival times for age. Based on these findings, and to aid in 

simplicity of interpretation, the decision was made to include age as a categorical variable and 

test the proportional hazards assumption further at a multivariate level.   

 

d) Building the Cox Proportional Hazards Model 

All potential covariates were initially included in the model. This “full” main effects model 

showed a significant effect of site, histology and age group on time to second cancer. All other 

covariates were non-significant at the 5% level. As the main purpose of the analysis was testing 

the significance of potential predictors, the full model was of interest and the results reported.  

However, a more parsimonious main effects model was also investigated. Covariates were 

removed from the full model one by one based on descending p values until only significant 

predictors remained. No further covariates became significant and the reduced model 

remained with three covariates site, histology and age group. There are some limitations in 

constructing a regression model in this way. For example, confidence intervals for effects may 

be overly narrow. However, both the full and reduced model are reported and effects for the 

three significant predictors remained reasonably consistent. 

Interaction effects were also investigated within this reduced model. There was no prior 

clinical rationale for examining particular interaction effects. However, it was possible that the 

effect of histology could vary by site and also that the effects of both histology and site could 

vary by age. Five interaction terms were constructed by creating dummy variables (Age_65-

74*HistTCC, Age_65-74*SiteRenalPelvis, Age_75+*HistTCC, Age_75+*SiteRenalPelvis, HistTCC 
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*Site_RenalPelvis) and were included individually one by one in the reduced main effects 

model. None were significant at the 5% level and so were not included in the model.  

 

e) Model Diagnostics 

(i) Assessing the Proportional Hazards assumption 

Schoenfeld residuals were used to assess the assumption of proportional hazards for each 

covariate in the reduced main effects model. The advantage of examining Schoenfeld residuals 

is that it allows examination of which covariates may be violating the proportional hazards 

assumption. Residuals were plotted against survival time (Figure A4). There were some slight 

deviations at low and high survival times for all covariates.  To further investigate this issue, 

time-dependent versions of the covariates were included in the model by including covariate 

by time interaction terms. None of the time-dependent interaction terms were significant at 

the 5% level and the overall test of non-proportionality was non-significant (Wald 𝜒𝜒2=3.25, 

p=0.52). This provides support for the appropriateness of the Cox model.   

(ii) Assessing overall model fit and influential observations 

Deviance and Martingale residuals were examined to assess overall model fit. Figure A5 shows 

the respective residuals plotted against the linear predictor. There was no overall skew 

towards high or low values of the linear predictor. However, there did appear to be a number 

of observations with very high positive residuals. Further examination of the deviance 

residuals plotted in conjunction with LMAX values (Figure A6- high LMAX values indicated by 

larger diameter circles) suggested that there were a number of observations with high 

influence and high positive residuals. Observations with residuals higher than 2.5 were 

inspected, but no obvious data errors existed. These were all observations that experienced 

the event of interest, had very short survival times and included a mix of covariate values. 

Removing the highest 5 values (with deviance >3) did not make any significant difference to 

covariate estimates.   

Overall, the residuals appeared to reflect the divergence between censored observations 

which tended to have longer survival times than predicted (negative residuals) and non-

censored which had shorter survival times than predicted by the model (positive residuals). 

This is consistent with a population that experiences a low event rate with most events 

occurring in the first few years but with potentially very long follow-up period for censored 

observations due to the passive nature of surveillance (determined by matching to death 

records rather than active participation).  
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The model explains only a small proportion of variation in time to event. However, there 

appears to be no overall bias for particular covariate values and towards particular survival 

times. Given the main purpose of the analysis was to examine potential covariate predictors 

rather than predict survival times, the model appears appropriate for this purpose.  

 

f) Final Model 

Following assessment of model diagnostics, the reduced main effects model was accepted as 

the most parsimonious model summarising the significant predictors of time to bladder 

cancer.  

 

Figure A1: Histograms - Age at first cancer diagnosis and year of first cancer diagnosis 

 

 

Figure A2: Kaplan-Meier survival curve for reduced main effects model 
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Figure A3: Kaplan-Meier survival curves and log(-log) survivor functions for each covariate 

a) Site of First Cancer 

 

b) Histology 

 

c) Age Group 
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d) Period of Diagnosis 

 

e) Index of Relative Advantage and Disadvantage 

 

f) Sex 
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Figure A4: Schoenfeld Residuals for each predictor 

 

  

 

Figure A5: Martingale and Deviance Residuals for model 
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Figure A6: Deviance Residuals plotted with influence diagnostics (larger diameter circles 
indicating higher LMAX scores). 
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Multiple Imputation to address a data artefact for the degree-of-spread 
variable in the NSW CCR for the period 1993 – 1998: Lung Cancer as a 
test case 
 

Abstract 

An artefact in degree-of-spread coding within the NSW Central Cancer Registry (CCR) data 

occurred for all solid-tumour cancers, excepting breast and melanoma, diagnosed for the 

period 1993-1998 (1). This resulted in a decrease of cases coded as localised and an increase in 

cases coded as unknown. The cause was the introduction of the Electronic Notification System 

(ENS). Cancers with regionalised or distant degree of spread were unaffected. This artefact has 

implications for using the degree of spread variable within the CCR and imposes limitations on 

analyses.  This paper outlines the scope of the problem for one cancer type – lung cancer – and 

investigates multiple imputation (MI) as a method for addressing the problem.  Cases with 

“unknown” degree of spread that included electronic notifications were classified as having 

missing values for the degree of spread variable for the period 1993-1998. Cases were then re-

allocated to the localised and unknown categories based on MI, using a logistic regression 

model as the basis for prediction. The model produced plausible results that appeared to 

correct the artefact and were consistent across sub-groups. Independent validation in a 

distinct time period suggested that the model had reasonable prediction accuracy (69%) for 

coding localised cases. Survival was significantly poorer for localised cases within the period 

1993-1998 based on imputed data compared to original coding, but imputation had no effect 

on survival when degree of spread was unknown. The MI model tested was specific for lung 

cancer but could also be modified and tested on other cancer types affected by the data 

artefact.     
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Section 1: An overview of the problem 
 

Background: The NSW Central Cancer Registry 

The NSW Central Cancer Registry (CCR) receives notifications of all malignant cancers 

diagnosed in NSW. The CCR is managed by the Cancer Institute NSW for the NSW Department 

of Health (NSW Health), and operates under the authority of the Public Health Act of 1991. The 

Registry maintains a record of all malignant cancer cases diagnosed in NSW residents since 

1972. However, notification of malignant neoplasms has been a statutory requirement for all 

notifying institutions in NSW since 1986.  

These institutions include public and private hospitals, departments of radiation oncology, 

nursing homes, pathology laboratories, outpatient departments and day procedure centres. 

When any of these institutions diagnose or treat someone with malignant cancer, they are 

required by law to notify the NSW Central Cancer Registry. Notifications of cancer in NSW 

residents are also received from cancer registries in other states and territories. 

The NSW Central Cancer Registry aims to monitor the number of new cases of cancer and 

deaths from cancer in NSW and assist in cancer prevention and control by producing 

descriptive analyses of cancer incidence and mortality trends, facilitating epidemiological and 

clinical research, and supporting planning, evaluation and monitoring of services and screening 

programs. 

To this end, the NSW CCR reporting database contains a mixture of demographic and clinical 

variables.  It records the year and month of birth, death and diagnosis of each cancer case in 

NSW, plus basic demographic variables such as sex, Aboriginal and Torres Strait Islander status 

and postcode. Clinical variables such as the site of cancer, histology of cancer, method of 

diagnosis and degree of spread are coded by medical coders within the NSW CCR based on 

information provided within notification reports. 

Degree of spread in the NSW CCR is a summary measure based on cancer staging at first 

presentation. It is derived by the CCR from the maximum extent of disease based on all reports 

and notifications dated within four months of the date of diagnosis. Degree of spread reported 

here follows the international coding guidelines for summary stage adopted by several 

international groups including the World Health Organization and the International Association 

of Cancer Registries (2).  
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Degree of spread is grouped as:  

(i) localised (assumed to predominantly consist of TNM Stage 1 but may include some 

Stage 2)  

(ii) regionalised (assumed to be predominantly TNM Stage 2 and most of Stage 3)  

(iii) distant (predominantly TNM Stage 4 cancers).  

(iv) Some cancers are classified as unknown degree of spread for which staging 

information is inadequate or has not been collected.  

 

Background: Data Artefact  

Barraclough et al. described an artefact in NSW Central Cancer Registry (CCR) data that 

occurred for all solid-tumour cancers, excepting breast and melanoma, diagnosed for the 

period 1993-1998 (1). For these cancers within this period, the proportion of ‘localised’ cancer 

cases reported was approximately 5% lower than expected and was mirrored by an artefactual 

increase in ‘unknown’ degree-of-spread cases. This was caused by the introduction of the 

Electronic Notification System (ENS) which only affected the accuracy of coding of localised 

cancers, with regionalised and distant degree-of-spread cancers unaffected. This artefact has 

implications for using the degree of spread variable within the CCR and imposes limitations on 

analyses. 

Figure 1 presents the proportion of lung cancer cases by degree of spread coding category for 

the years 1986-2004 based on year of diagnosis. There was a marked rise in unknown cases 

from 1992 to 1993, mirrored by a drop in localised cases. Lung cancer shows an under-

estimation of localised cases of almost 10 percentage points from what would have been 

expected during this period – much higher than the overall cancer artefact reported by 

Barraclough et al. These trends were caused by the absence of a ‘localised’ category within the 

ENS and were corrected in 1999 when the ENS was amended. This artefact can be even more 

clearly seen when considering just localised and unknown lung cancer cases (figure 2).  
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Figure 1: Percentage of Lung Cancer Cases by Degree of spread at diagnosis – 1986-2004 

 

 

It is possible to ascertain for each diagnosed case, the method(s) of notification received by 

the CCR using the batch number of each notification episode. Multiple notifications may be 

received for a single case, for example from both a hospital and pathology lab. All notifications 

dated within 4 months of diagnosis are used to assess the degree of spread at diagnosis, and 

the case is categorised based on available information. The introduction of electronic 

notifications was a gradual process with almost 100% of lung cancer cases based on manual 

notifications (M) prior to 1993 which then dropped to about 60% by 1994, 45% by 1999 and 

30% in 2004. This was mirrored by a gradual increase in cases notified by electronic means 

only (E) and a less gradual increase in cases notified by a mixture of manual and electronic 

means (EM) (Figure 3). There were a small number of cases diagnosed prior to 1993 that 

included electronic notifications. This is plausible given the possibility of a delay between an 

episode of care (eg. seeing a patient within a hospital) and a notification being sent. 

Additionally, as degree of spread is coded based on notifications within a four month window, 

cases diagnosed at the end of 1992 may have had notification episodes in 1993. 
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Figure 2: Percentage of Unknown and Localised Lung Cancer Cases by Degree of spread at 
diagnosis – 1986-2004 

 

Figure 3: Percentage of Unknown and Localised Lung Cancer Cases, by Method of 
Notification, 1986-2004 

 

 

Examination of trends in the ratio of localised versus unknown degree of spread by year of 

diagnosis (Figure 4), suggests that the known data artefact (evidenced by under reporting of 

‘localised’ cancers and over-reporting of ‘unknown’ cancers) includes cases notified by 

electronic means only (E) and cases where some manual episodes were recorded in addition to 

the electronic episodes (EM). The cause of the artefact was the exclusion of a category for 

‘localised’ cases on the ENS which meant that the notifying party could not select this 

response. For lung cancer, the information required for coding degree of spread was likely to 

have come from either: (i) imaging which would have been noted within hospital reports, or (ii) 
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pathology reports. Electronic notifications during this period would generally have comprised 

hospital reports, mostly from the public sector, with private hospitals commencing electronic 

notification at a much later time. Pathology reports are received manually which means that 

cases diagnosed based only on electronic notifications only would not have included 

pathology.   

The implication of the changeover to ENS was that some information regarding degree of 

spread based on imaging may have been lost if the hospital report was submitted using the 

ENS. However, information gained from pathology reports or from hospital reports not 

submitted via the ENS was still available for coding this category. For the EM-notified cases this 

means that during 1993-1998 there may have been information available to code degree of 

spread if the manual notifications included pathology or private hospital reports, but that once 

the ENS was amended, the information gained from public hospital notifications would have 

been included again, increasing the amount of information available within the EM category.  

For cases notified by electronic means only (E) only a very small proportion of cases were 

coded as localised during this period. In a very small number of situations there may have been 

adequate information provided elsewhere on the electronic notification to code the case.  

Figure 4 shows the clear and rapid increase in proportion localised between 1998 and 1999 for 

both the E and EM groups following the amendment of the ENS. From 1999 onwards, cases 

within the EM group show a much higher proportion of localised cases compared to either the 

E or EM groups. This can be explained by two factors. Firstly, these cases are more likely to 

have both imaging and pathology information which is likely to increase the chance of being 

able to accurately code degree of spread. The manual only group may have pathology but are 

less likely to have information from public hospitals and the electronic only group are less 

likely to have pathology. Secondly, the EM group were most likely to have a diagnosis made 

based on histopathology (including verified by CCR and unverified) rather than other means, 

compared to the E and M groups. Histopathology, particularly if it had been verified within the 

CCR, was a strong predictor of the ability to categorise cases as “localised” compared to 

“unknown” (data presented in section 2 and Appendix A).  

Those cases notified by manual means only (M) show a steady decline in proportion localised 

over time, but do not show evidence of a data artefact for the period 1993-1998. The decline 

in proportion localised must have been driven by non-ENS related factors prior to 1993, but 

following 1993 may also be explained by a proportion of cases ‘shifting’ into the electronic plus 

manual category. Within this category it is more likely that multiple notification episodes 
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occurred and a clear link was found between number of notification episodes received and the 

ability to categorise the cancer as “localised” (data presented in section 2 and Appendix A).   

 

Figure 4: Proportion of Localised cases (of all localised and unknown) by method of 
notification, 1986-2004 

 

 

These figures support the finding that the data artefact is linked to the introduction of the ENS 

in 1993, with manual cases unaffected during the period 1993-1998. Additionally it appears 

that cases were affected even if notifications were received manually and electronically (EM) 

rather than just by electronic means only (E).  

 

Missing data 

The proposed approach to dealing with this data artefact relies on the assumption that we can 
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(ii) the question was asked but the subject did not respond for various reasons including 
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(iii) the question was asked and the respondent did not know the answer but there was no 
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(iv) the question was asked and the respondent responded but for some reason the 

response was not recorded;  

(v) the question was asked, the respondent answered, the response was recorded but the 

data were not entered;  

(vi) the data are missing legitimately, as in a ‘not applicable’ response, but this category 

may not be in the data collection instrument or database.  

 

Missing data can cause problems with analyses by reducing statistical power and potentially 

introducing bias into estimates (3). If data are missing completely at random (MCAR), the cases 

with missing data are akin to a random sample of the observed cases.   While this may reduce 

power, it is unlikely to bias estimates. 

If data are not MCAR, then they are often classed as missing at random (MAR) or missing not 

at random (MNAR). Both are problematic as they will likely reduce power and bias estimates. 

MAR allows the probability of missing data for a variable 𝑋𝑋 to be dependent on other variables 

in the dataset but not on𝑋𝑋𝑖𝑖 , where i is the value of X for an individual observation. In the case 

of MNAR the probability of the data being missing will be dependent on the value of 𝑋𝑋𝑖𝑖  . 

MNAR data is difficult to address without further knowledge of the missing data, but MAR data 

can be addressed either through limiting analyses to subgroups related to the missing data 

pattern or via imputation processes. In practice it is often difficult to determine whether data 

are MAR or MNAR (4).     

 

Missing data for the degree-of-spread variable 1993-1998 

In normal circumstances, the ‘unknown’ category is a legitimate response for degree-of-spread 

and is coded by NSW CCR staff when the notifications received do not provide sufficient 

information to ascertain a degree of spread. The notifying party such as hospital or pathology 

lab may, given further testing/pathology, be able to determine degree of spread, but the NSW 

CCR coding staff,  are not privy to decision-making regarding further investigation.  

In the artefact period, there was an additional causal factor at play whereby the answer may 

have been known by the notifying party, but as there was no category for indicating degree of 

spread as ‘localised’ on the electronic notification system, this piece of information was not 

conveyed to the registry. This aligns most closely with cause (i) above – the question was not 

asked of the notifier, or cause (iv) the response was not able to be recorded.  
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In the period 1993-1998 all cases coded as ‘unknown’ based on electronic notifications (E or 

EM) are associated with an element of uncertainty. If the data collection problem had not 

existed then they may have been coded as localised rather than unknown. For E cases, all 

‘unknown’ cases could be considered missing. For EM cases, as some information was still 

received manually, a proportion of cases were likely to have been affected by the data 

collection issue with an unknown proportion unaffected. However, as there is an element of 

doubt associated with these values we could therefore consider all cases notified as unknown 

by E or EM means to be ‘missing’ rather than ‘unknown’.  From this point on, these cases will 

be referred to as ‘missing’ and the aim will be to re-distribute the cases to the categories 

‘unknown’ and ‘localised’ in a valid and informative manner.  

In the current situation we know the data is not MCAR, as the probability of missing data is 

known to be dependent on both year of diagnosis and notification method. We have 

knowledge of the missing data mechanism based on the knowledge of the introduction of the 

ENS in 1993 and the amendment of the system in 1999. However, particularly for cases that 

received both electronic and manual notifications in this period, the mechanism for identifying 

when adequate information was available for coding is not able to be clearly identified based 

on available data. While we assume that the missing data is MAR, there is a possibility that it is 

MNAR. It should be noted however, that the missingness of the localised or unknown degree-

of-spread category during the artefact period did not depend on whether the cancer’s true 

degree of spread was localised or unknown. In the current study, imputed data patterns will be 

assessed to determine the plausibility of the MAR assumption. Additionally, the MI model will 

be applied to data in a distinct time period with known values for localised and unknown to 

test the sensitivity of the model in a situation where the MAR assumption holds and one 

where it does not. Sensitivity analysis has been proposed as a useful technique to assess the 

appropriateness of the MAR assumption (4).   

 

Multiple Imputation to correct for missing data 

There are various ways of dealing with missing data in analyses. The most common method is 

complete case analysis, whereby only cases without missing data are included. In the current 

situation, this is not feasible due to both the number of cases that would be designated as 

missing and the relationship between missing data and both time period and notification 

method. A solution to the problem proposed by Barraclough et al. was to consider using 

grouped data only (eg. group unknown and localised cases together for this period). However, 

this limits any analyses that aim to investigate the effect or outcomes of localised cancer. 
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Alternatively, analyses could be limited to a time period outside the known artefact period, 

such as using cases diagnosed from 1999 onwards. Again this limits the types of analyses able 

to be undertaken as often trends over long time periods are required to examine 

epidemiological relationships.  

Imputation is a process by which the missing data are replaced with plausible values, often 

based on knowledge of other variables in the dataset. Single imputation can result in 

spuriously precise estimates. Multiple imputation takes into account the uncertainty 

introduced by estimating missing values. Generally only a small number of imputations 

(between 3 and 10) are required, and the inter-imputation variability can then be used to 

adjust the error component of subsequent analyses (5).    

It is known that the degree of spread variable is related to other variables within the CCR 

database and is commonly used to monitor differences in survival patterns for most cancers 

(6). For this reason, it is likely that a logistic regression model will provide a reasonable level of 

prediction of localised versus unknown cases. The next section examines potential predictive 

variables and then potential logistic regression models that could be used within the multiple 

imputation process.   
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Section 2: Building a predictive multivariate model for localised versus unknown 
degree of spread for lung cancer 
 

Assessing potential predictors of localised versus unknown degree of spread 

A range of variables in the CCR database were investigated to assess their association with 

localised versus unknown degree of spread. The first aim was to identify variables that were 

significant predictors of localised versus unknown degree of spread. Associations were 

assessed for all localised and unknown degree-or-spread lung cancers diagnosed in years 

either side of the artefact period (1986-1992 and 1999-2004) and for all notification methods. 

Lung cancer cases were identified based on ICD10 codes C33-C34. The decision was made to 

exclude all cases diagnosed by death certificate only as very limited information is available for 

these cases and degree of spread is nearly always unknown. There were 25,082 cases of 

unknown or localised lung cancer diagnosed between 1986-2004, of which 16,922 fell in the 

two periods 1986-1992 and 1999-2004. Within these latter periods, 50.5% were localised and 

49.5% were unknown. 

Given the relationship of the missing data to two factors – diagnosis period and notification 

method – the second aim was to assess the consistency of variables as predictors of degree of 

spread. Firstly, association with degree of spread was assessed across three time periods 

(1986-1992 – period 1; 1993-1998—period 2; and 1999-2004—period 3) within manual 

notifications only, and secondly, across each notification method for time period three (1999-

2004).   

There were 16,467 cases diagnosed from 1986-2004 notified by manual means only, of which 

44.4% were localised and 55.6% unknown. Of these cases, 53.3% were in period 1, 27.7% in 

period 2, and 19.0% in period 3. There were 8,002 cases diagnosed in period 3 across all 

notification methods with 50.5% localised and 49.5% unknown. Of these cases, 19.3% were 

based on electronic-only notifications, 41.6% on electronic and manual, and 39.1% on manual 

only.  

The variables investigated fell into three categories: (i) Basic demographic variables (age, sex, 

socioeconomic status, area health service of residence, Aboriginal and Torres Strait Islander 

status); (ii) Clinical variables (two-year survival, site of cancer, histology of cancer, number of 

primary cancers); and (iii) Registration variables (method of diagnosis, number of notification 

episodes, type of notifying institutions).  

A summary of the distribution of each variable by localised and unknown degree of spread is 

included in Appendix A. Based on initial analyses variables were re-categorised to try to 
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achieve the best consistency across time period and notification method. All continuous 

variables were categorised when non-linear associations with localised degree of spread were 

found to maximise consistency of association. An overview of the categorisation, association 

and consistency of each association for each variable is presented in table 1. 

Based on univariate analyses, all variables except sex and number of primary cancers were 

significantly related to localised degree of spread. However, there appeared to be seven 

variables that maintained consistent association over time: age group; socio-economic status 

of area of residence (highest quintile vs lowest four quintiles); area of residence at diagnosis 

(metro vs non-metro); survival status (alive>2yr vs died <2yr); site of cancer (Lung& Bronchus 

NOS vs other sites); method of diagnosis; and number of notification episodes. Only three of 

these variables remained consistent across notification method (area of residence, site of 

cancer and number of notification episodes).   

Building a multivariate logistic model 

The predictive value of variables and consistency of association at a univariate level provides 

some indication as to which variables may be reliably included in a predictive multivariate 

model. However, variables can behave in a different manner when included in a multivariate 

model due to their associations with other covariates. Therefore, a similar process was used to 

build and assess a logistic regression model as for assessing univariate predictors. The aim was 

to build a model that would: 

• Provide a reasonable level of prediction; 

• Be a good fit of the data; 

• Behave in a similar predictive manner independently of time period ; 

• Behave in a similar predictive manner independently of notification method (electronic 

versus manual) 

A “reasonable level of prediction” was assessed by examining the area under the ROC curve 

which indicates the combined sensitivity and specificity of the model. The aim was to achieve 

at least 70% prediction accuracy based on this measure.  

A “good fit of the data” was assessed by examining the Adjusted R-square values and by using 

the Hosmer and Lemeshow Goodness of fit test. 
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Table 1: Association and consistency of association of variables with localised degree of spread 
Predictor Description Categorisation 𝝌𝝌𝟐𝟐 

(p(𝝌𝝌𝟐𝟐)>0) 
Consistent 
across time 
periods 
within 
manual 
notifications 

Consistent 
across 
notification 
method 
within time 
period 3 
(1999-
2004) 

Demographic variables 
Age Group Age at diagnosis, categorised into 3 age groups <65 

65-74 
75+ 

215.1 
(P<0.01) 

yes No 

Sex Sex M 
F 

0.28 
(p=0.60) 

yes yes 

Socio-
economic 
status of 
area of 
residence at 
diagnosis 

Based on SEIFA Index of Relative Disadvantage 
for postcode of residence at the time of 
diagnosis. Indexes were available for the years 
1986, 1991, 1996, 2001, and 2006 and the 
closest index to the year of diagnosis was used. 
Data were grouped into quintiles. 
 

Highest quintile 
Lowest four quintiles 

64.5 
(p<0.01) 

yes yes 

Area of 
residence at 
diagnosis 

Based on postcode of residence at time of 
diagnosis, cases are coded to one of the 8 Area 
Health Services (AHS) of NSW (2005 definition). 
The AHS were then re-grouped as Metropolitan 
(Hunter & New England, North Coast, Greater 
Southern, Greater Western) and Non-
metropolitan (Sydney South West, South Eastern 
Sydney & Illawarra, Sydney West, Northern 
Sydney & Central Coast) 

Metropolitan 
Non-metropolitan 

237.3 
(p<0.01) 

yes yes 

ATSI status Cases are coded as ATSI, Non-ATSI and 
unknown. ATSI and non-ATSI were grouped due 
to low case numbers 

Known 
Not Known 

48.8 
(p<0.01) 

no no 

Clinical variables 
Two year 
survival 

All cause survival from time of diagnosis Died <2 yrs 
Alive >2yrs 

538.9 
(p<0.01) 

yes no 

Site of cancer Based on ICD10 categorisation at a four digit 
level. Grouped as Lung & Bronchus NOS (C349) 
and all other sites within the Tumour Group 
“Lung” (C339, C340-C348). 

Lung & Bronchus NOS 
All other sites 

1145.7 
(p<0.01) 

yes yes 

Histology 
group 

Based on ICD-03 categorisation. Small Cell 
cancers and all other non-specific codes grouped 
due to low case numbers.   

Squamous Cell 
Carcinoma (SCC) 
Adenocarcinoma 
Small Cell and Other 

110.8 
(p<0.01) 

no No 

Number of 
primary 
cancers 

Number of primary cancers recorded at 
diagnosis 

One 
Two or more 

0.17 
(p=0.68) 

yes yes 

Registration variables 
Method of 
diagnosis 

The method used to code clinical aspects of the 
cancer diagnosis. Other includes clinical, 
cytology, post-mortem reports but no 
histopathology. Cases based on death certificate 
only were excluded from the analyses.  

Histopathology 
sighted at CCR 
Histopathology 
Other 

1828.3 
(p<0.01) 

yes no 

Number of 
notification 
episodes 

Count of notification episodes received for that 
case 

One-two 
Three or more 

657.8 
(p<0.01) 

yes yes 

Notifying 
facility type 

Based type of notifying institution. Multiple 
episodes can be received from public and 
private hospitals, pathology labs, nursing homes, 
outpatient clinics. Grouped as cases including a 
private hospital notification and those not 
including a private hospital notification. 

Includes private 
Does not include 
private 

577.3 
(p<0.01) 

no no 
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By “behaving in a similar predictive manner” it is meant that variables included in the model 

must have the same relationship with the outcome variable regardless of time period or 

notification method (broadly speaking this means they are always positive predictors or always 

negative predictors). Ideally all variables should also have roughly the same magnitude of 

prediction in all situations (indicated by similar sized regression coefficients). However, a 

reasonable prediction consistency was considered to be satisfied if the covariates had the 

same direction of relationship, with potentially differing strengths of relationship.  

A full main effects logistic model (labelled Model 1) was initially assessed across 5 separate 

datasets: manually notified cases (M) for periods 1, 2, and 3; and for Electronic only (E) and 

Electronic plus manual (EM) cases within period 3. The results of these regression analyses are 

presented in tables B1 and B2 in Appendix B.  

Five variables were significant predictors after controlling for other factors and behaved 

reasonably consistently across time periods: age; area of residence at diagnosis; histology; site 

of cancer; survival; and method of diagnosis.  Four of these five were identified as consistent at 

a univariate level with histology now appearing as reasonably consistent across time after 

controlling for other factors. The number of notification episodes no longer appeared 

consistent after controlling for other factors.  

Area of residence at diagnosis, and site of cancer remained consistent across notification 

methods. 

As notification method appeared to interact with most variables in predicting localised degree 

of spread, the decision was made to just focus on data available in period 3, in which all three 

notification method groups were available with no missing data. This allows models to take 

into account differences across notification methods. However, given that the missing data 

exist in a distinct time period, only variables shown to behave consistently across time periods 

were considered for analysis. Two further models were assessed:  

• Model 2: a reduced main and interaction effects model including only significant and 

consistent variables as main effects and significant interaction terms. This model was 

applied separately to E and EM cases in period 3. 

• Model 3: the same as model 2, but including notification method as a main and 

interaction effect. This model was applied to a combined dataset of all E and EM cases 

in period 3.  

Proc Logistic within SAS version 9.2 was used for all analyses. 
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Results  

Table 2 and Figure 5 provide a summary of the results from Model 2 applied separately to E 

and EM notified cases within period 3. These models were shown to have reasonable 

predictive power, although they were borderline for meeting the predictive benchmark 

established a priori. The model for EM notified cases was slightly more predictive with 71.5% 

prediction accuracy based on the area under the ROC curve. This compared to 67.0% 

prediction accuracy for E notified cases. The model also provided a better fit of the data for EM 

cases compared to E only. Both provided an adequate fit of the data based on the Hosmer and 

Lemeshow Goodness of Fit test.    

Table 3 provides a summary of results from Model 3 for the E and EM combined dataset for 

period 3. Only one interaction effect with notification method remained significant (method of 

diagnosis by notification method) so others were excluded. This model appeared to have good 

predictive power at 76% based on the area under the ROC curve and was an adequate fit of 

the data.  

Direct comparison of the model diagnostics between Models 2 and 3 is difficult given that 

model 3 is based on a larger combined dataset.  

Both Models 2 and 3 appear to provide reasonable prediction for localised versus unknown 

degree of spread and fit the data adequately. While Model 3 is more parsimonious, both were 

applied within a multiple imputation procedure to test the viability of this process. Two major 

assumptions are made in applying these models to impute the missing data: 

1) The variables included within the model have the same predictive effect within E and 

EM cases in 1993-1998 as they do within 1999-2004 

2) The underlying proportions of localised and unknown cases in 1993-1999 are similar to 

those in 1999-2004. 

There is no direct way to test these two assumptions. However, to support the validity of 

assumption 1, only variables consistent across periods based on the manual notification group 

were included. Assumption 2 appears reasonable based on the finding that the proportions 

were similar for the periods before and after the 1993 to 1998 period. 
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Table 2: Logistic Regression results for predicting localised lung cancer: Model 2 applied to a) 
E notified cases and b) EM notified cases in period 3 

  
Model 2(a) Model2(b) 

  
E EM 

Parameter Reference category Estimate Pr > ChiSq Estimate Pr > ChiSq 

Intercept 
  

-0.95 <0.01 0.51 <0.01 

Histology Adenocarcinoma SCC -0.41 0.02 0.15 0.16 

 
Sm. Cell and other SCC -0.46 <0.01 -0.27 0.01 

Method Histo sighted at CCR Other -1.36 0.08 0.78 <0.01 

 
Histopathology Other 0.41 0.00 0.63 <0.01 

Site Bronchus & Lobes NOS Other 0.83 <0.01 -0.72 <0.01 

AHS Non-Metro Metro -0.26 0.02 -0.62 <0.01 

Survival alive > 2yr Died<2yr -0.85 <0.01 -0.08 0.80 

Survival*Method alive > 2yr*Histo-CCR Died<2yr*Other 2.77 0.01 1.24 0.00 

 
alive > 2yr* Histopathology Died<2yr*Other 1.11 <0.01 0.45 0.19 

       
  

Adj r squared 0.11 
 

0.160 
 

  
% Concordance 63.9 

 
69.4 

 

  
% Discordance 30.3 

 
26.3 

 

  
Goodness of fit 10.68 0.15 6.40 0.70 

 

Figure 5: ROC curve for Model 2 applied to a) E notified cases and b) EM notified cases in 
period 3 

 

 

  

(b) (a) 
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Table 3: Logistic Regression results for predicting localised lung cancer: Model 3 applied to E 
and EM notified cases in Period 3 

  
Model 3 

  
E and EM 

Parameter Reference category Estimate Pr > ChiSq 

Intercept 
  

0.58 <0.01 

Histology Adenocarcinoma SCC -0.01 0.90 

 
Sm. Cell and other SCC -0.34 <0.01 

Method Histo sighted at CCR Other 0.70 <0.01 

 
Histopathology Other 0.58 <0.01 

Site Bronchus & Lobes NOS Other -0.80 <0.01 

AHS Non-Metro Metro -0.48 <0.01 

Notification method E EM -0.70 <0.01 

Survival alive > 2yr Died<2yr -0.52 0.01 

Survival*Method alive > 2yr*Histo-CCR Died<2yr*Other 1.72 <0.01 

 
alive > 2yr* histopathology Died<2yr*Other 0.84 <0.01 

Notification 
method*Method 

E*Histo-CCR EM*Other 
-1.81 <0.01 

 
E* histopathology EM*Other -0.18 0.26 

     
  

Adj r squared 0.27 
 

  
% Concordance 75.3 

 

  
% Discordance 22.6 

 

  
Goodness of fit 12.43 0.19 

 

Figure 6: ROC curve for Model 3 applied to E and EM notified cases in Period 3 
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Section 3: Multiple Imputation to correct the degree-of-spread data artefact for lung 
cancer cases 
 

Imputation Procedure  

The multiple imputation procedure within SAS 9.2 was used to produce new datasets based on 

the two models being tested: Model 2 as specified in table 2 and Model 3 as specified in table 

3. Five imputations were undertaken on missing data by specifying each model using the 

logistic option within the MI procedure. For both models, the missing data were defined by 

creating a new variable for degree of spread which included original degree-of-spread values 

but was deemed ‘missing’ if:  

• the value of stage was ‘unknown’; and  

• the notification method was electronic or electronic and manual; and 

• the year of diagnosis was between 1993- 1998.   

A further restriction was placed on the MI procedure: the ‘prototype’ cases to be used for 

predicting the missing data were limited to only those cases diagnosed in the period 1999-

2004 by electronic only (E) or electronic plus manual (EM) means. To produce the imputed 

data using the MI procedure in SAS, only the prototype cases and the cases with missing 

degree-of-spread data were included.  

The MI process produces five datasets for each model representing the five iterations of the 

imputation process. An analysis dataset is created for each model which combines the five 

datasets and Proc MIAnalyze was used to combine estimates from the five imputed datasets.  

 

Results - Imputation 

Based on original coding the proportion of localised cases of lung cancer (within all localised 

and unknown) diagnosed in 1993-1998 was 32.0%. Following multiple imputation the 

proportion was 50.6% with a 95% Confidence Interval of 49.3 - 52.0%.  

Table 4 shows the proportion of unknown cases re-coded to localised following imputation. 

There was an increase in recoding from 1993-1997 which reflects the rapid increase in 

frequency of electronic notifications. The proportion of cases recoded by year was similar for 

both models. 
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Table 4: Percentage of unknown cases re-coded to localised following imputation, by year of 
diagnosis 

 
 1993 1994 1995 1996 1997 1998 

Model 2 % 21.9 26.2 28.0 29.8 30.3 26.7 

Model 3 % 22.5 26.9 27.4 29.6 31.2 26.9 

 

Figure 7 shows the percentages localised and unknown prior to any imputation and following 

imputation based on Model 2. The model appears to correct the artefact. Figure 8 shows the 

same following imputation based on Model 3. This model also appears to correct the artefact, 

following a very similar trend as per Model 2. Figure 9 compares the two models, and shows 

that the results are almost identical.  

Given the similarities between the two models, Model 3 was the more parsimonious and was 

the preferred model for further investigations.  

 

Figure 7: Model 2 – percentage localised and unknown pre and post imputation 
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Figure 8: Model 3 – percentage localised and unknown, pre and post imputation 

 

Figure 9: Percentage localised pre- imputation and post- imputation, Models 2 and 3 

 

 

Validation of the MI model 

The results produced using MI are plausible in terms of correcting the data artefact. However, 
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Instead cases within a distinct time period for just E and EM cases were used. In doing so, we 

are assuming that the relationships between predictors and degree of spread within the E and 

EM groups are the same within the 1993-1998 period as they are within the 1999-2004 period. 

We are also assuming that the ratio of localised to unknown cases is similar in the two periods.   

Two additional sets of analyses were undertaken to assess the validity of the imputation 

model. Firstly, the effect of imputation by covariates was examined to identify any potential 

biases introduced within sub-groups. Secondly, the same MI process using 1999-2004 cases 

was applied to predict all localised and unknown E and EM data in the period 2005-2006. This 

enabled direct comparison between actual values and predicted values. While it does not 

directly assess the assumptions made for the period 1993-1998 it provides an alternate 

mechanism for testing the validity of applying the model in a different time period.  

 

Results - validation 

Imputed data patterns by covariate 

The effect of imputation by covariates is presented for Model 3 in figures 10(a)-(f). The effect 

of imputation appears consistent across all levels of covariates with the exception of Method 

of diagnosis = ‘Other’. For this grouping there appears to be a possible ‘over-compensation’ 

with an increase in proportion localised during the artefact period. However, closer analysis of 

this grouping by method of notification (figure 11) shows that there was an increase in 

proportion localised for manually notified cases also, which suggests that other factors may 

have influenced this trend. 

 

Figure 10a: Model 3 – pre and post imputation by NOTIFICATION METHOD 
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Figure 10b: Model 3 – pre and post imputation by METHOD of DIAGNOSIS 

 

Figure 10c: Model 3 – pre and post imputation by SURVIVAL 

 

Figure 10d: Model 3 – pre and post imputation by HISTOLOGY 
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Figure 10e: Model 3 – pre and post imputation by SITE of LUNG CANCER 

 

Figure 10f: Model 3 – pre and post imputation by AREA 

 

Figure 11: Model 3 – pre and post imputation by NOTIFICATION METHOD for METHOD of 
DIAGNOSIS = Other 
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Two scenarios were tested using cases diagnosed within 2005-2006. Firstly, a sample of 1,000 

test cases was randomly selected from all E and EM notified localised and unknown cases 

within this period. These test cases reflected the underlying proportion of 53.8% localised 

versus 46.2% unknown degree of spread for these years. This was a different proportional split 

from the ‘prototype’ cases within the period 1999-2004 in which 60.7% were localised. 

Secondly, a sample of test cases was purposefully selected to ensure the proportion localised 

matched that of the prototype cases (with 60.7% localised). 

The test cases were designated as having missing data for degree of spread. Data was then 

multiply imputed for the degree-of-spread variable for test cases and imputed values 

compared with original ‘known’ values.   

Table 5 indicates the effectiveness of the MI model in correctly predicting cases of unknown 

and localised cases (E and EM notified) for the period 2005-2006 based on scenario 1.  

Prediction was reasonable for localised cases, with the model correctly predicting 69.0% with a 

95% confidence interval of 63.7-74.4% based on the multiply imputed datasets. In terms of 

predicting localised cases, this shows the model as having high sensitivity. However, the model 

was poor for predicting unknown degree-of-spread cases, only correctly predicting 48.3% (95% 

CI: 42.8-52.8%) showing poor specificity.  
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Table 5: prediction of E and EM notified, localised and unknown cancers for 2005-2006 
    Original Coding 

    Localised 
Not Localised 

(Unknown) All cases 

Test 
Outcome 

Localised 371 239 610 

Not Localised (Unknown) 167 223 390 

All cases 538 462 1000 
          

 
Sensitivity (prediction of localised) 69.0% 

    Specificity (prediction of unknown) 48.3% 
 

  

 

Table 6 presents the results from this analysis based on scenario 2. For scenario 2, the data is 

missing at random, as the probability of a case being localised within the sample is 

independent of whether the missing data are included or excluded. The predictive power for 

localised cases is 69.5% (95% CI: (63.1-76.0), which is similar to that found within scenario 1. 

Again, the specificity is poor at 48.2% (95% CI: 40.0-59.4).  

 
Table 6: Prediction accuracy for E and EM notified, localised and unknown cancers – 2005-
2006, sample meeting the MAR assumption 

    Original Coding 

    Localised 
Not Localised 

(Unknown) All cases 

Test 
Outcome 

Localised 422 204 626 

Not Localised (Unknown) 185 190 375 

All cases 607 394 1000 
          

 
Sensitivity (prediction of localised) 69.5% 

    Specificity (prediction of unknown) 48.2% 
 

  

 

Overall, the model appeared to predict localised cases with reasonable sensitivity in a distinct 

time period. However specificity of the model was poor. These data suggest that the model 

performs moderately in a distinct time period but does not perform as well as it does in the 

1999-2004 period on which it is based. The results of this validation showed that prediction 

accuracy was not affected to a large extent by differing proportions of localised versus 

unknown degree of spread in the test period.   

The results of this validation suggest that caution should be exercised in applying this 

procedure in the manner described and the assumptions inherent in the process should be 

clearly articulated.     
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Section 4: Impact of correcting the data artefact on survival estimates  
 

Due to the relationship between survival and degree of spread, it is likely the data artefact will 

have impacted upon this type of analysis. To assess whether the data artefact could impact 

survival estimates, trends in survival by time of diagnosis were examined using the original 

pre-imputation data.  

For localised cases, Kaplan-Meier survival curves were computed by three year period based 

on original degree-of-spread coding (Figure 12a). The two time-of-diagnosis periods within the 

artefact period – 1993-1995 and 1996-1998 – had the third lowest and lowest mortality rates, 

with median survival of 20 and 27 months respectively. This is out of step with the overall 

pattern of survival across time periods, where there is evidence of a trend towards increasing 

survival over time with median time to death of 12, 13, 18 and 21 months for the periods 

1986-89, 1990-92, 1999-01, and 2002-04 respectively. For regionalised cancers, which were 

unaffected by the artefact, a similar trend in increasing survival is evident across all six time 

periods (Figure 13).   

Post-imputation, the survival trend across time for localised cancers appears more in 

accordance with that seen for regionalised cancers, with survival increasing uniformly with 

each time period (Figure 12b). Comparing the survival curve for localised cases pre and post 

imputation for the artefact period (1993-1998), we can see that survival is significantly lower 

following imputation (Figure 14a). Based on originally coded data, median time to death was 

23 months (95% CI 22-24), which reduced to 15 months (95% CI 15-16) based on imputed data.   

Survival from lung cancers diagnosed with ‘unknown’ degree of spread was not similarly 

affected by the data artefact, with very little difference in survival evident across time periods 

and imputation had little impact on estimates for the artefact period (Figure 14b). Median 

survival from unknown lung cancer diagnosed within the period 1993-1998 was 9 months 

based on original data and 8 months based on imputed data, which was not significantly 

different (p=0.23).    

The reason for the difference in impact of imputation for localised cancers compared to 

unknown cancers can be explained by the differences in survival by degree of spread and 

notification method. Based on data from 1999-2004 for localised cancers diagnosed within the 

M group, survival appears substantially better than for both the E and EM groups (Figure 15a). 

However, for cases with unknown degree of spread, survival differences by notification 

method were substantially less (Figure 15b). This means that when cases from the E and EM 

groups are re-categorised from unknown to ‘localised’ they tended to be cases with worse 
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survival than those in the M group and therefore reduced the survival rate of the group as a 

whole.  

This may be linked to the fact that pathology reports (which are manual notifications) are 

generally received for lung cancer when surgery has been undertaken, and that surgery for 

localised lung cancer is an indicator of better outcomes (7).   

 

Figure 12a : Kaplan-Meier survival curve for lung cancer cases with localised degree of 
spread, by period of diagnosis, PRE-IMPUTATION 

 

Figure 12b: Kaplan-Meier survival curve for lung cancer cases with localised degree of 
spread, by period, POST-IMPUTATION 
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Figure 13: Kaplan-Meier survival curve for lung cancer cases with regionalised degree of 
spread, by period of diagnosis 

 

 

Figure 14a : Kaplan-Meier survival curve for lung cancer cases diagnosed 1993-1998 with 
localised degree of spread, Pre- and Post- imputation 
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Figure 14b : Kaplan-Meier survival curve for lung cancer cases diagnosed 1993-1998 with 
unknown degree of spread, Pre- and Post- imputation 

 

Figure 15a : Kaplan-Meier survival curve for lung cancer cases diagnosed 1999-2004 with 
localised degree of spread, by notification method 
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Figure 15b : Kaplan-Meier survival curve for lung cancer cases diagnosed 1999-2004 with 
unknown degree of spread, by notification method 
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Section 5: Discussion and Conclusions 
 

The MI procedure using the logistic option based on model 3 appears to provide a reasonable 

approach to correcting the data artefact for degree of spread for lung cancer. Plausible results 

were produced that are consistent across levels of other covariates in the database. This 

model requires that cases are categorised into groups based on method of notification, but 

aside from this relies only on readily available variables within the CCR reporting database. 

The data artefact that currently exists for the period 1993-1998 appears to significantly impact 

on survival from localised lung cancer for this period. Correction of the data artefact based on 

the imputation process used here produces significantly lower survival estimates for localised 

lung cancer cases within the 1993-1998 period; however, survival trends by time of diagnosis 

appear more consistent. The imputation process did not appear to impact on survival 

estimates for unknown cases.  

In order to implement this procedure, cases recorded originally as having unknown degree of 

spread were designated as “missing” for all Electronic (E) and Electronic plus manual (EM) 

notifications within a distinct time period (1993-1998) based on year of diagnosis. This meant 

that the predictive model had to be based either on cases notified by a different means 

(manual only), or on cases notified within a different time period (1999-2004). Given the 

observed differences in ratio of localised-to-unknown cases for different methods of 

notification, the chosen approach was to use cases from a different time period for E and EM 

notifications only. Two major assumptions are therefore made: the overall ratio of localised to 

unknown cases is similar across time periods; and the relationship between predictors and 

localised degree of spread within the E and EM groups are the same within the 1993-1998 

period as they are within the 1999-2004 period.  

Validation of the chosen imputation process using cases from 1999-2004, but applied to cases 

diagnosed in a independent time period (2005-2006) with known degree-of-spread coding, 

suggested that the model still had an adequate ability to predict localised cases. However, the 

results suggested that some sensitivity and specificity was lost since model parameter 

estimates developed from the 1999-2004 period were applied to 2005-06.  

The MI procedure appears a useful approach to correcting the known data artefact for degree 

of spread in lung cancer. However, given the major assumptions made and level of prediction 

achieved, it is recommended that caution is applied in using the imputed data. While values 

appear plausible when examined holistically and across broad levels of covariates, it is not 

considered appropriate to use the data at a case level.  For analyses of small sub-groups 
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further investigation of the validity of this model would be required. In all instances, 

appropriate methods should be used to account for the increased error that is introduced via 

imputation.  

This study describes the application of this procedure to one cancer type – lung cancer. The 

data artefact in the NSW Central Cancer Registry is known to exist to varying degrees for all 

solid tumours, excepting breast and melanoma. The model used here includes some variables 

that are specific to lung cancer, including ‘site of cancer’ and ‘histology’ of cancer. For both 

these variables there appeared to be a relationship between categories that were non-specific 

such as ‘not otherwise specified’ and the increased likelihood of ‘unknown’ degree of spread. 

For this reason, it is likely that these variables will remain useful predictors for other cancer 

types, but categories would need to be specified on a cancer-by-cancer basis.   
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Appendix A: Summary of potential predictors for degree of spread 
 

Demographic variables 

Age 

Age was significantly associated with unknown versus localised degree of spread. The mean 

age of localised cases was 68.3 years which was lower than for cases with unknown degree of 

spread (70.8 years) (t=-19.3; p<0.01). Age did not appear to be linearly related to degree of 

spread with those in the 75+ age group showing much lower levels of localised cancer than 

those in younger age groups. The effect of age appeared reasonably consistent across time, 

but not across notification methods. Due to the non-linear association, age was treated as a 

categorical variable for further analyses.  

Figure A1: Age distribution for localised and unknown cases  

 

Figure A2: proportion localised by age group: (a) by period of diagnosis for M notified cases; 
(b) by notification method within period 3 
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Sex 

Sex of patient was not significantly associated with degree of spread of lung cancer at 

diagnosis (𝜒𝜒2 = 0.28, p=0.60).  

Table A1: Distribution of Localised and Unknown cases, by sex 

Sex 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Female N 2567 2546 5113 

0.60 
 % 50.2 49.8   
Male N 5981 5828 11809 
 % 50.6 49.4   

 

There was very little difference between males and females in all periods and across all 

notification methods.  

Figure A3: proportion localised by sex: (a) by period of diagnosis for M notified cases; (b) by 
notification method within period 3 

  
 
 
Socio-economic status 

Socio-economic status (SES) was measured by SEIFA Index of Relative Disadvantage for 

postcode of residence at the time of diagnosis. Indexes were available for the years 1986, 

1991, 1996, 2001, and 2006 and the closest index to the year of diagnosis was used. Data was 

grouped into SEIFA quintiles. SES showed a significant association with degree of spread 

(𝜒𝜒2 = 98.69, p=<0.01). The proportion of cases with unknown degree of spread was highest in 

the second lowest SES quintile and tended to lower proportions in the higher SES quintiles. 

There were also a small number of cases for which SES was undetermined due to missing 

postcode information.  

  

0

10

20

30

40

50

60

%
 lo

ca
lis

ed

Period of Diagnosis

F M

0
10
20
30
40
50
60
70
80

%
 L

oc
al

is
ed

Notification Method

F M



74 
 

Table A2: Distribution of Localised and Unknown cases, by socio-economic status 

IRSAD quintile 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Lowest N 1960 1962 3922 

<0.01 

 % 50.0 50.0   
Second N 1781 2058 3839 
 % 46.4 53.6   
Third N 1682 1825 3507 
 % 48.0 52.0   
Fourth N 1579 1392 2971 
 % 53.1 46.9   
Highest N 1507 1103 2610 
 % 57.7 42.3   
Unknown N 39 34 73 
 % 53.4 46.6   

 
When considering manual notifications only, the association between SES and degree of 

spread was reasonably consistent across periods. The majority of difference in percentage 

localised appears to be occurring for the highest quintile compared to the lowest four. There 

was little difference between the lowest three quintiles in all periods and, within period 3, 

there was little difference between the lowest four quintiles across all notification methods. 

For this reason, the four lowest categories were collapsed for multivariate analyses. 

 

Figure A4: proportion localised by SES: (a) by period of diagnosis for M notified cases; (b) by 
notification method within period 3 

  
 

Area Health Service (AHS) of Residence at time of diagnosis 

AHS at diagnosis showed a significant association with degree of spread (𝜒𝜒2 =
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Table A3: Distribution of Localised and Unknown cases, by Area Health Service of residence 

AHS of residence 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
South Western Sydney n 1756 1355 3111 

<0.01 

  % 56.4 43.6  
South Eastern Sydney/ Illawarra n 1531 1531 3062 
  % 50.0 50.0  
Western Sydney n 1266 852 2118 
  % 59.8 40.2  
Northern Sydney/ Central Coast n 1380 1122 2502 
  % 55.2 44.8  
Hunter / New England N 1219 1271 2490 
  % 49.0 51.0  
North Coast N 516 1022 1538 
  % 33.5 66.5  
Greater Southern N 523 728 1251 
  % 41.8 58.2  
Greater Western N 355 493 848 
  % 41.9 58.1  
Unknown N <5 - <5 
  % 100 0 100 

 

Figure A5: proportion localised by AHS: (a) by period of diagnosis for M notified cases; (b) by 
notification method within period 3 

  

 
Aboriginal/ Torres Strait Islander (ATSI) status 
 
ATSI status is known to be under-reported in the CCR, but is recorded where sufficient 

information is available. “Unknown” ATSI status was treated as a separate category of interest. 

ATSI status was significantly associated with the proportion of unknown versus localised 

degree of spread cases (𝜒𝜒2 = 49.08 , p=<0.01). Those persons of ATSI background had higher 

proportions of unknown degree of spread compared to those known to be non-ATSI. For those 

with unknown ATSI status there was an even higher proportion of unknown degree of spread 

cases.  Due to low cell sizes, for further analyses, ATSI and Not ATSI were grouped as “known”. 
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There were distinct differences in the pattern of association across time periods and 

notification methods based on this re-grouping.  

Table A4: Distribution of Localised and Unknown cases, by ATSI status 

ATSI status 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
ATSI n 45 44 89 

<0.01 

 % 50.6 49.4   
Not ATSI n 4481 3940 8421 
 % 53.2 46.8   
Unknown n 4022 4390 8412 
 % 47.8 52.2   

 

Figure A6: proportion localised by ATSI status: (a) by period of diagnosis for M notified cases; 
(b) by notification method within period 3  

 

Two Year Survival 

Two year survival was significantly associated with degree of spread with those surviving to 2 

years more likely to have localised degree of spread compared to unknown degree of spread 

(𝜒𝜒2 = 538.92, p<0.01).  

Table A5: Distribution of Localised and Unknown cases, by two year survival status 

Two Year Survival 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Did not survive to 2 years n 5546 6764 12310 

<0.01 
 % 45.1 54.9   
Survived to 2 years n 3002 1610 4612 
 % 65.1 34.9   

 

The association between two year survival and degree of spread was reasonably consistent 

across periods with the magnitude of effect increasing in later periods. However, the effect 

was inconsistent across notification methods, showing no effect within electronic only and a 

substantial effect within EM and M categories. 
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Figure A7: proportion localised by survival status: (a) by period of diagnosis for M notified 
cases; (b) by notification method within period 3 

  

 

Site of Cancer 

The site of the cancer within the lung was significantly associated with degree of spread 

(𝜒𝜒2 = 1228.1, p<0.01). Cancers of the lung and bronchus that could not be otherwise specified 

(NOS) to a site were associated with much higher proportions of unknown compared to 

localised degree of spread. For further analyses, this NOS category was compared against a 

grouping of all other sites. This re-categorisation appeared to produce consistent effects across 

both diagnosis period and notification methods. 

 

Table A6: Distribution of Localised and Unknown cases, by site of Lung cancer 

Site of Cancer 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Trachea n 27 20 47 

<0.01 

 % 57.4 42.6   
Main Bronchus n 751 577 1328 
 % 56.6 43.4   
Upper Lobe n 3464 2135 5599 
 % 61.9 38.1   
Middle Lobe n 359 258 617 
 % 58.2 41.8   
Lower Lobe n 1659 1004 2663 
 % 62.3 37.7   
Overlapping Lesion n 83 39 122 
 % 68.0 32.0   
Lung and Bronchus NOS n 2205 4341 6546 
 % 33.7 66.3   
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Figure A8: proportion localised by site of cancer: (a) by period of diagnosis for M notified 
cases; (b) by notification method within period 3 

 

 

Histology 

Cancers of the lung were grouped as Squamous Cell Carcinomas, Adenocarcinomas or Small-

cell carcinoma. Histology group was significantly associated with degree of spread (𝜒𝜒2 =

162.5, p=<0.01). Squamous cell carcinomas were most likely to have unknown degree of 

spread with adenocarcinomas most likely to have localised degree of spread. The effect of 

histology did not appear to be consistent over time or notification method. 

 
Table A7: Distribution of Localised and Unknown cases, by histology 

  
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Squamous cell carcinoma n 5308 5588 10896 

<0.01 

 % 48.7 51.3   
Adenocarcinoma n 2112 1518 3630 
 % 58.2 41.8   
Small-cell  carcinoma n 1023 1017 2040 
 % 50.1 49.9   
Other n 105 251 356 
 % 29.5 70.5   
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Figure A9: proportion localised by histology: (a) by period of diagnosis for M notified cases; 
(b) by notification method within period 3 

  

 
Registration variables 
 
Number of primary cancers 

The number of primary cancers per person was not significantly associated with unknown 

versus localised degree of spread (𝜒𝜒2 = 0.17, p=0.68). This variable showed slightly more 

association within period 2, but overall appeared to consistently show no or weak association 

with degree of spread across period and notification method.  

 
Table A8: Distribution of Localised and Unknown cases, by number of primary cancers 

Number of primary cancers 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
1 n 7253 7086 14339 

0.68 
 % 50.6 49.4   
2 or more n 1295 1288 2583 
 % 50.1 49.9   
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Figure A10: proportion localised by number of primary cancers: (a) by period of diagnosis for 
M notified cases; (b) by notification method within period 3 

 

 

Method of diagnosis 

Method of diagnosis showed a highly significant association with degree of spread (𝜒𝜒2 =

657.8, p=<0.01). If diagnosis was based on methods such as cytology only, clinical notes, 

imaging or biochemistry only (grouped as other), it was more likely that degree of spread was 

coded as “unknown”. If histopathology was available and particularly if the histology was 

sighted by staff at the Central Cancer Registry then it was much less likely that a cancer was 

coded as unknown. 

This variable demonstrated reasonably consistent effect across period but not across 

notification methods. Histology being sighted within the CCR was related to a higher degree of 

localised cancers for both EM and M notified cancers but not for E notified cases in period 3.  

Table A9: Distribution of Localised and Unknown cases, by Method of diagnosis  

Method of diagnosis 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Other n 996 3247 4243 

<0.01 

 % 23.5 76.5   
Histopathology  n 2939 2610 5549 
 % 53.0 47.0   
Histo sighted at CCR n 4613 2517 7130 
 % 64.7 35.3   
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Figure A11: proportion localised by method of diagnosis: (a) by period of diagnosis for M 
notified cases; (b) by notification method within period 3 

 

 

Number of Notification Episodes 

Number of notification episodes was categorised as “one-two” and “three or more”. Initial 

examination of association suggested that there was most difference between receiving only 

one notification versus receiving multiple notifications. However, the notification method 

grouping of electronic plus manual by definition requires at least two notification episodes, so 

maintaining a single notification category or treating this variable as continuous would be 

problematic. Based on this grouping, the number of notification episodes received was 

significantly related to degree of spread (𝜒𝜒2 = 1828.3 , p=<0.01). Having received three or 

more notifications compared to one or two only was associated with a higher proportion of 

localised cases.   

This variable behaved reasonably consistently across both period of diagnosis and notification 

method. 

Table A10: Distribution of Localised and Unknown cases, by number of notification episodes 

No. notification episodes 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
One-Two n 3304 4887 8191 

 
 % 40.3 59.7   
Three or more n 5244 3487 8731 
 % 60.1 39.9   
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Figure A12: proportion localised by number of notification episodes: (a) by period of 
diagnosis for M notified cases; (b) by notification method within period 3 

 

 

Notification – Facility type 

Multiple notifications could be received regarding a single cancer case and these could come 

from many different types of notifying institutions, including public hospitals, private hospitals, 

pathology labs and nursing homes. As there were many different combinations of responses 

possible, these were rationalised into three mutually exclusive groupings: those that included a 

private hospital notification; those that included a public hospital notification (but no private); 

and those that included neither a public or private hospital notification (classed as other).  

The type of facility type grouping submitting the notification(s) was significantly related to 

degree of spread (𝜒𝜒2 = 577.3 , p=<0.01). If a notification was received from a private hospital, 

the degree of spread was most likely to be localised, with cases where no hospital (public or 

private) provided a notification much more likely to be “unknown”. Facility type was related to 

notification method with “other” notifications always submitted manually. For this reason, 

categories were re-grouped as “includes private” and “does not include private”. 

This variable did not appear to behave consistently across period or notification method.  

Table A11: Distribution of Localised and Unknown cases, by notifying facility type   

Notification – Facility type 
 

Localised Unknown 
Total (localised 

+ unknown) P value (𝜒𝜒2) 
Includes public but no private n 7374 6936 14310 

<0.01 

 % 51.5 48.5   
Includes private n 1032 629 1661 
 % 62.1 37.9   
Other (no public or private) n 142 809 951 
 % 14.9 85.1   
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Figure A13: proportion localised by types of notifying facility: (a) by period of diagnosis for M 
notified cases; (b) by notification method within period 3 
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Appendix B: Logistic Regression results for full model (model 1) 
Table B1: Logistic Regression results for Model 1 applied to M notified cases in a) 1986-1992, b) 1993-1998 c) 1999-2004 

    Model 1 

Consistent 
across 
period 

    M - 1986-1992 M - 1993-1998 M - 1999-2004 

Parameter 
Reference 
category Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 

Intercept 
  

-0.17 0.02 -0.28 0.00 -0.76 <.0001 
 

Age Group 65-74 <65 0.05 0.14 0.03 0.51 0.02 0.73 
yes 

 
75+ <65 -0.14 0.00 -0.07 0.19 0.00 0.97 

Sex F M -0.04 0.11 0.03 0.48 0.07 0.15 yes 

SES Other Highest -0.13 0.00 -0.17 0.00 0.03 0.66 no 

Area of Residence Non-metro Metro 0.16 <.0001 0.26 <.0001 0.23 <.0001 yes 

ATSI status Known Not known 0.15 0.00 -0.09 0.05 -0.02 0.73 no 

Survival alive > 2yr Died<2yr 0.15 <.0001 0.39 <.0001 0.47 <.0001 yes 

Histology Adenocarcinoma SCC -0.26 <.0001 -0.38 <.0001 -0.43 <.0001 
yes 

 
Sm. Cell and other SCC 0.04 0.30 0.28 <.0001 0.34 <.0001 

Site 
Bronchus & Lobes 
NOS 

Other -0.07 0.11 -0.29 0.00 -0.51 <.0001 yes 

Number Primary 
Cancers 

One Two + 0.01 0.70 -0.01 0.75 0.07 0.21 yes 

Method Histo sighted at CCR Other 0.46 <.0001 0.42 <.0001 0.69 <.0001 
yes 

 
Histopathology Other 0.37 <.0001 0.08 0.16 0.15 0.04 

Episodes One-two Three + -0.16 <.0001 -0.11 0.00 0.11 0.03 no 

Facility type Includes private No private -0.20 0.00 0.15 0.00 0.59 <.0001 no 

                    

  
Adj r squared 0.18 

 
0.25 

 
0.39 

  

  
% Concordance 70.2 

 
75.4 

 
82.3 

  

  
% Discordance 29.2 

 
24.2 

 
17.5 

  
    Goodness of fit 21.38 0.01 18.40 0.02 19.95 0.01   
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TableB2: Logistic Regression results for Model 1 applied to a) M notified cases, b) EM notified cases and c) E notified cases in period 3 

    Model 1 

Consistent 
across 
notification 
method 

    M - 1999-2004 EM - 1999-2004 E - 1999-2004 

Parameter 
Reference 
category Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 

Intercept 
  

-0.76 <.0001 0.01 0.98 -1.20 0.02 
 

Age Group 65-74 <65 0.02 0.73 0.02 0.75 0.03 0.70 
yes 

 
75+ <65 0.00 0.97 0.03 0.60 0.13 0.10 

Sex F M 0.07 0.15 0.03 0.49 -0.01 0.86 no 

SES Other Highest 0.03 0.66 -0.01 0.87 -0.17 0.05 no 

Area of Residence Non-metro Metro 0.23 <.0001 0.30 <.0001 0.09 0.14 yes 

ATSI status Known Not known -0.02 0.73 0.65 0.05 0.06 0.90 yes 

Survival alive > 2yr Died<2yr 0.47 <.0001 0.39 <.0001 -0.03 0.69 no 

Histology Adenocarcinoma SCC -0.43 <.0001 -0.35 <.0001 -0.45 <.0001 
no 

 
Sm. Cell and other SCC 0.34 <.0001 0.21 0.00 -0.11 0.37 

Site 
Bronchus & Lobes 
NOS 

Other -0.51 <.0001 -0.26 0.00 -0.17 0.13 yes 

Number Primary 
Cancers 

One Two + 0.07 0.21 0.09 0.10 0.11 0.12 yes 

Method Histo sighted at CCR Other 0.69 <.0001 0.43 <.0001 -0.19 0.53 
no 

 
Histopathology Other 0.15 0.04 0.10 0.08 0.41 0.01 

Episodes One-two Three + 0.11 0.03 -0.10 0.08 0.01 0.92 no 

Facility type Includes private No private 0.59 <.0001 0.14 0.03 -0.26 0.27 no 

                    

  
Adj r squared 0.39 

 
0.16 

 
0.11 

  

  
% Concordance 82.3 

 
71.4 

 
66.8 

  

  
% Discordance 17.5 

 
28.1 

 
32.5 

  
    Goodness of fit 19.95 0.01 15.51 0.05 19.12 0.01   
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