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Abstract 

 
This paper reviews evidence and theories concerning the nature of stimulus representations in 
Pavlovian conditioning. It focuses on the elemental approach developed in Stimulus Sampling 
Theory (Atkinson & Estes, 1963; Bush & Mosteller, 1951b) and extended by McLaren and 
Mackintosh (2000; 2002), and contrasts this with models that that invoke notions of 
configural representations that uniquely code for different patterns of stimulus inputs (e.g., 
Pearce, 1987, 1994; Rescorla & Wagner, 1972; Wagner & Brandon, 2001).  The paper then 
presents a new elemental model that emphasizes interactions between stimulus elements. This 
model is shown to explain a range of behavioral findings, including those (e.g., negative 
patterning and biconditional discriminations) traditionally thought beyond the explanatory 
capabilities of elemental models.  Moreover, the model offers a ready explanation for recent 
findings reported by Rescorla (2000; 2001; 2002b) concerning the way that stimuli with 
different conditioning histories acquire associative strength when conditioned in compound. 
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Pavlovian conditioning has come to be viewed 
as the cardinal example of associative learning 
– the process by which an organism represents 
the correlations between the events it 
experiences.  Efforts to describe this process 
have typically approached the task by breaking 
it into two separable but related problems.  
The first concerns the nature of associations 
themselves: what is the content of 
associations, what are the conditions that 
promote their formation, and how are they 
expressed in the organism’s behavior?  The 
second problem concerns the nature of the 
stimulus representations between which 
associations form, since any understanding of 
associative learning will depend on an 
appropriate description of these represen-
tations.  It is this second problem that forms 
the focus of the present paper. 

Empirical evidence about the nature of 
stimulus representations is largely derived 
from experiments examining how the 
conditioned response (CR) to one stimulus, or 
a compound of two or more stimuli, 
generalizes to another stimulus or stimulus 
compound (Kehoe & Gormezano, 1980). 
Based on such evidence, different theoretical 
positions have been put forward to describe 
the mechanisms underlying stimulus 
representation, but essentially all operate 
within one (or both) of two frameworks.  One 
framework, most clearly exemplified by 
Stimulus Sampling Theory (Atkinson & Estes, 
1963; Bush & Mosteller, 1951b; Estes, 1950), 
treats stimulus patterns as comprised of 
elemental units each of which enters into the 
associative structure.  The other framework 
treats stimulus patterns as distinct 
configurations, such that associations operate 
on the configuration as a whole.  An 
intermediate approach combines aspects of 
both frameworks.  For example, the Rescorla-
Wagner model adopts an elemental framework 
to explain the interaction between stimulus 
representations and associations, but 
incorporates the notion that compounds of two 
or more stimuli are represented by a configural 
element unique to the compound in addition to 
the individual elements that comprise each of 
the stimuli (Rescorla & Wagner, 1972; 
Wagner & Rescorla, 1972). 

The objective of the present paper is to 
describe how stimulus representation can be 
understood within a strictly elemental frame-

work, and how to reconcile evidence that has 
traditionally been held to contradict the 
elemental view.  The paper begins with a brief 
description of Stimulus Sampling Theory and 
the Rescorla-Wagner model that incorporated 
a similar elemental approach to stimulus 
representation. I then review findings that have 
been held up as evidence against the elemental 
approach, and as support for the alternative 
configural view.  The main focus of the paper 
is the presentation of a new elemental model 
in which stimuli are represented as an array of 
elemental units that correspond to different 
stimulus features.  The model describes 
mechanisms by which individual elements 
interact to influence each other’s activation 
and entry to a limited-capacity attention 
buffer.  These interactions affect both 
conditioning to the individual elements and 
responding provoked by those elements. 

Stimulus Sampling Theory 

Stimulus Sampling Theory, in its various 
formulations, constituted the first comprehen-
sive treatment of stimulus representations in 
Pavlovian conditioning (Atkinson & Estes, 
1963; Bush & Mosteller, 1951b; Estes, 1950).  
It remains the most successful account of what 
is the most fundamental problem for any 
model of stimulus representation – 
discrimination versus generalization between 
stimuli.  Responding to a conditioned stimulus 
(CS) often generalizes to other stimuli, and the 
degree of this generalization follows what 
might be described as the similarity of these 
stimuli to the CS.  Stimulus Sampling Theory 
formalized the notion that stimuli are 
represented by arrays of elemental features, 
each of which can independently enter into an 
association with the unconditioned stimulus 
(US), and that generalization from one 
stimulus to another is attributed to overlap in 
the population of elements that comprise the 
two stimuli (Bush & Mosteller, 1951b; Estes, 
1950).  That is, a new stimulus is expected to 
elicit CRs to the extent that it contains 
elements that are also present in the CS and so 
will have undergone conditioning. The 
generalization gradient is a direct function of 
the number of elements common to the CS and 
test stimulus.  The absence of an alternative 
coherent account for stimulus generalization 
has ensured that this basic mechanism is 
retained even within theories that invoke 
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configural representations of stimuli (e.g., 
Pearce, 1987, 1994; Wagner & Brandon, 
2001). 

In its original form, Stimulus Sampling Theory 
had a number of serious limitations, stemming 
largely from its description of the associative 
changes provoked by the presence or absence 
of reinforcement. Its simple linear-operator 
rule assumed that elements gain or lose 
associative strength as a function of the 
discrepancy between their existing state 
(conditioned or non-conditioned) and that 
afforded by the current reinforcement (Bush & 
Mosteller, 1951b; Estes, 1950). In other 
words, conditioning of any element was 
independent of the associative status of other 
elements.  Not surprisingly, the theory had no 
means of anticipating interactions between 
CSs, such as in Kamin’s (1968) demonstration 
that conditioning to a stimulus could be 
blocked if the stimulus were reinforced in 
compound with a previously conditioned 
stimulus.  Of particular relevance to the 
current review, the theory was unable to offer 
a satisfactory description of how animals 
could show errorless performance after 
training on a simple discrimination between 
stimuli with overlapping representations (Bush 
& Mosteller, 1951a; Pearce, 1994).  Not 
surprisingly, the model was also unable to 
explain how animals solve the more complex 
tasks, such as feature negative discriminations 
or negative patterning, that have played a key 
role in shaping recent theories of stimulus 
representation.  As discussed in the next 
section, many of these limitations can be 
overcome if the theory is combined with a 
more sophisticated rule for describing changes 
in the strength of CS-US associations, such as 
that proposed by Rescorla and Wagner (1972). 

Elemental representations in the Resorla-
Wagner model 

A key feature of the associative learning 
model proposed by Rescorla and Wagner 
(1972) is its treatment of CS representations as 
distinct units that form independent 
associations with the US.  The model proposes 
an error-correction rule (Equation 1) to 
describe how CSs gain or lose associative 
strength (V) across the course of conditioning. 

 

On a trial-by-trial basis, the strength of the 
association between a given CS, x, and the US 
changes in proportion to the discrepancy 
between the existing associative strength of all 
n CSs present on that trial (V) and the 
maximum associative strength supported by 
the US (): Small discrepancies provoke small 
changes in V whereas large discrepancies 
provoke larger changes in V; a positive 
discrepancy provokes excitatory learning, a 
negative discrepancy provokes inhibitory 
learning or extinction.  The actual change in 
strength (V) is a product of this discrepancy 
and parameters related to the salience of the 
CS in question () and US ().  The 
significant advance of the Rescorla-Wagner 
model was to recognize that, on any 
conditioning trial, a single discrepancy is 
calculated based on all CSs present.  If two 
CSs, each with an existing association with the 
US, are presented together, then further 
learning will be limited by their summed 
associative strengths, and thus each CS 
effectively reduces conditioning to the other.  
By constraining learning to the computation of 
this common error term, the model provides an 
immediate explanation for Kamin’s (1968) 
blocking effect.  It also provides the means by 
which a stimulus could acquire net inhibitory 
strength, a property that has proved crucial to 
explaining performance in many 
discrimination tasks. The “additivity rule” on 
which the common error term is based 
assumes that the representations of each CS 
are separate and form independent associations 
with the US.  In this sense, the Rescorla-
Wagner model adopted a basic elemental 
approach.  But because the model was not 
concerned with providing a detailed 
description of stimulus representations, it 
treated each stimulus as a single elemental unit 
(rather than an array of component elements as 
assumed in Stimulus Sampling Theory). 

The basic elemental approach inherent in the 
Rescorla-Wagner model means that its 
associative rule can be readily combined with 
more detailed models of stimulus represen-
tation.  Indeed, soon after the Rescorla-
Wagner model was proposed, Blough (1975) 
and Rescorla (1976) showed how its 
associative learning rule could be successfully 
combined with Stimulus Sampling Theory to 
generate a number of novel, empirically 
verified, predictions. In addition to the benefits 

Vx = x   (Vi)     (1)



J. A. Harris  Elemental representations of stimuli 

 4

identified by Blough and Rescorla, the 
combination of these models can be seen to 
provide a comprehensive explanation for 
overshadowing – the decrease in conditioning 
to each of two CSs that are conditioned in 
compound compared with that produced when 
the CSs are conditioned individually 
(Mackintosh, 1976; Pavlov, 1927).  The 
Rescorla-Wagner model explains overs-
hadowing as due to the fact that conditioning 
to each of two CSs in compound is limited by 
the associative strength already acquired by 
the other CS.  However, this mechanism 
cannot explain instances of overshadowing 
between CSs after a single conditioning trial 
(James & Wagner, 1980; Mackintosh & 
Reese, 1979).  In this regard it is fortunate that 
Stimulus Sampling Theory offers a 
complementary mechanism for overshadow-
ing, one that explains competition between 
CSs early in the course of conditioning, but 
cannot explain the persistence of 
overshadowing across extended conditioning.  
Stimulus Sampling Theory can explain 
overshadowing by assuming that, on a trial 
when two CSs are presented in compound, the 
resultant increase in the total number of 
elements present in the conditioning situation 
decreases the probability of sampling elements 
of each CS (e.g., Bush & Mosteller, 1951b; 
Estes, 1950), thus reducing the opportunity for 
elements of either CS to undergo conditioning. 

Two problems for elemental theories 

The core assumption of any elemental theory, 
including Stimulus Sampling Theory and the 
Rescorla-Wagner model, is that stimulus 
elements become independently associated 
with the US.  But the soundness of this 
assumption is seriously questioned by demon-
strations that animals can learn certain 
conditional discriminations between stimulus 
compounds that cannot be solved by a simple 
elemental process (Spence, 1952). Two 
examples are negative patterning and 
biconditional discrimination. In negative 
patterning, two CSs (A and B) are presented 
on separate trials and each is followed by the 
US (+).  Intermixed among these A+ and B+ 
trials are trials in which the two stimuli are 
presented simultaneously but not followed by 
the US (AB−).  A simple elemental view 
predicts that the associative strengths of A and 
B will increase on A+ and B+ trials, and will 

decrease on AB− trials.  However, responding 
should always be greater on the AB− trials 
because the combined associative strengths of 
A and B will provoke more responding than 
will that elicited by either stimulus alone.  In 
view of this prediction, it is important that, in a 
variety of conditioning paradigms, animals 
have been shown to master negative patterning 
discriminations, albeit with considerable 
difficulty: They learn to respond more on A+ 
and B+ trials than on AB− trials (e.g., Pavlov, 
1927; Rescorla, 1972, 1973; Whitlow & 
Wagner, 1972). 

Biconditional discriminations present an even 
more complex task.  Four distinctive stimuli 
(A, B, C, and D) are presented in four different 
pairwise combinations, two of which are 
reinforced (AB+ and CD+) and the other two 
are not reinforced (AC− and BD−).  Thus each 
of the four CSs is reinforced when presented 
in one compound and not reinforced in another 
compound.  Therefore, all stimuli have 
equivalent reinforcement history and so 
provide no differential information to cue the 
animal to respond or not respond.  In other 
words, like negative patterning, biconditional 
discriminations are not solvable by a simple 
elemental mechanism.  Nonetheless, animals 
can solve such discriminations, learning to 
respond more on AB+ and CD+ trials than 
AC− and BD− trials (Rescorla, Grau, & 
Durlach, 1985; Saavedra, 1975). 

The configural solution to conditional 
discriminations 

In light of demonstrations that animals can 
solve negative patterning and biconditional 
discriminations, Wagner and Rescorla (1972) 
adopted a notion put forward by Spence 
(1952) that stimulus compounds are 
represented by their components and an 
additional “configural element” that represents 
the conjunction of those stimuli.  These 
configural representations function like other 
elements, in that they enter into associations 
with the US in the same way that the 
individual stimulus elements do.  This 
principle is illustrated in Figure 1. 
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Figure 1. Elemental and configural representations 
in the Rescorla-Wagner model. Individual stimuli 
(A and B) activate representations (black circles) 
that become associated with the US. A compound 
stimulus (AB) activates these same representations 
but additionally activates a configural represen-
tation (black square) that specifically codes for the 
conjunction of A and B, and forms an independent 
association with the US. 

The inclusion of this configural representation 
allows the Rescorla-Wagner model to explain 
negative patterning and biconditional 
discriminations. In the case of negative 
patterning, the separate A and B elements 
acquire excitatory associative strength with the 
US, while the AB configural element acquires 
a strong inhibitory association that opposes the 
excitatory associations simultaneously activ-
ated by the A and B elements.  Similarly, a 
biconditional discrimination is solved by the 
acquisition of strong inhibitory associations 
from the configural elements of the non-
reinforced compounds (AC and BD in the 
above example) and excitatory associations 
from the configural elements of the reinforced 
compounds (AB and CD). 

The addition of a configural element to the 
representation of a stimulus compound 
enabled the Rescorla-Wagner model to explain 
how animals can learn to withhold responses 
to a non-reinforced compound whose 
component CSs are excitatory.  However, in 
the absence of such explicit training, the 
model predicts the summation of responding 
when two or more CSs are presented in 
compound.  While there are many demon-
strations that animals do respond to the 
compound of two CSs more than to each CS 
individually (e.g., Kehoe, 1982, 1986; 
Rescorla, 1997), there are also many reported 
failures to observe summation in Pavlovian 
conditioning paradigms. Many of these 
failures have arisen in autoshaping 
experiments with pigeons (e.g., Aydin & 

Pearce, 1995, 1997; Rescorla & Coldwell, 
1995), but both successes and failures to 
observe summation have been reported in 
other paradigms, such as the conditioned 
nictitating membrane response in rabbits 
(Kehoe, Horne, Horne, & Macrae, 1994) and 
conditioned magazine approach with rats 
(Pearce, George, & Aydin, 2002; Rescorla, 
1997).  Such mixed evidence is troubling for 
the Rescorla-Wagner model because of its 
commitment to predicting summation. 

The replaced elements theory 

Brandon and Wagner (1998; Wagner & 
Brandon, 2001) have recently presented a 
more elaborate elemental model of stimulus 
representation that is designed to deal with 
many of the difficulties that face the Rescorla-
Wagner model.  Like the approach originally 
adopted by Wagner and Rescorla (1972), this 
theory assumes that new configural elements 
are activated when stimuli are presented in 
compound, but it additionally proposes the 
inhibition of elements otherwise activated 
when the stimuli are presented in isolation.  
Thus, some elements activated by the 
individual stimuli are “replaced” by the 
configural elements activated by the stimulus 
compound.  In its original version, the model 
assumed a specific pairwise replacement that 
was different for different compounds 
(Brandon & Wagner, 1998; Wagner & 
Brandon, 2001).  A simpler and less restrictive 
replacement process has since been described 
by Wagner (2003).  In this scheme, a sample 
of elements representing stimulus A are 
replaced when A is compounded with B, and a 
statistically independent (and thus potentially 
overlapping) sample of A elements are 
replaced when A is compounded with C.  The 
replacement is not random, in that the sample 
of elements that is replaced is fixed for each 
presentation of a specific compound, but is 
statistically independent in the sense that the 
set of elements undergoing replacement is not 
mutually exclusive for each compound.  Thus 
no assumptions need be made about what the 
elements code for, nor are there restrictions on 
the number of elements undergoing replace-
ment. 

The replaced elements model accounts for 
negative patterning and biconditional 
discriminations in the same way that the 
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Rescorla-Wagner model accounts for these 
discriminations – the presence of unique 
configural elements ensures that the 
representation of any stimulus compound is 
distinct from the representations of its 
constituent stimuli. However, the model is 
particularly well-equipped to explain other 
findings concerning differences in responding 
between single and compound stimuli.  In 
particular, unlike the Rescorla-Wagner model, 
it provides a comprehensive account of 
response summation when two CSs are 
presented in compound.  As mentioned above, 
the evidence concerning summation is mixed.  
One factor shown to be relevant in 
determining summation concerns the relation-
ship between the two CSs.  Kehoe et al. (1994) 
observed summation of the conditioned 
nictitating membrane response in rabbits that 
had been trained with two CSs from different 
modalities (one auditory and one visual) but 
not when the two CSs were both auditory (see 
also Aydin & Pearce, 1997).  This interaction 
between CS type could extend to include the 
many failures to observe summation in 
autoshaping with pigeons (e.g., Aydin & 
Pearce, 1995, 1997; Rescorla & Coldwell, 
1995) since the CSs used in those experiments 
are from the same (visual) modality.  Like the 
Rescorla-Wagner model, the replaced 
elements model is readily able to predict 
summation.  However, unlike the Rescorla-
Wagner model, it also predicts that the amount 
of summation observed when two CSs are 
presented in compound should vary depending 
on how many elements undergo replacement – 
the larger the number of elements undergoing 
replacement, the smaller the amount of 
summation (Wagner, 2003).  Indeed, if 50% of 
elements are replaced, then no summation 
should be observed.  Therefore, any property 
that affects the amount of replacement 
between stimuli should impact on summation.  
According to Wagner (2003, also Myers, 
Vogel, Shin, & Wagner, 2001), one such 
property is whether the stimuli belong to the 
same or different sensory modalities. Stimuli 
in the same modality are assumed to inhibit 
more of each other’s elements (i.e., undergo 
greater replacement when compounded) than 
stimuli from different modalities.  This 
provides a ready explanation for the failures to 
observe summation between two auditory CSs 
in rabbit  nictitating-membrane conditioning 
and between two visual stimuli in autoshaping 

with pigeons.  It also provides an explanation 
for conflicting data reported by Pearce, Aydin, 
and Redhead (1997) and Myers, Vogel, Shin, 
& Wagner (2001).  Both groups conducted an 
experiment that compared responding to a 
triple compound, ABC, between animals 
trained with each CS individually (A+ B+ C+) 
and animals trained with the same CSs as three 
pairwise compounds (AB+ AC+ BC+).  In an 
autoshaping experiment with pigeons, Pearce 
et al. (1997) observed summation of 
responding to ABC in pigeons trained with the 
two-CS compounds but not in pigeons trained 
with the three single CSs.  In contrast, in an 
eyelid conditioning experiment with rabbits, 
Myers et al. (2001) observed greater 
summation in rabbits trained with the single 
CSs than rabbits trained with the compounds.  
Myers et al. suggested that the key factor 
distinguishing the two experiments was the 
similarity between the stimuli, since their 
stimuli were from different modalities (one 
visual, one auditory, and one vibrotactile) 
whereas Pearce et al. used all visual stimuli.  
As Wagner (2003) has shown, the replaced 
elements model can account for both sets of 
findings by assuming that the stimuli used by 
Pearce et al. underwent substantial replace-
ment when compounded (because they were in 
the same modality) whereas the stimuli used 
by Myers et al. underwent little replacement. 

Further challenges for elemental models. 

Retroactive interference in feature negative 
discriminations. Negative patterning and 
biconditional discriminations are not the only 
challenges facing elemental models. Pearce 
and colleagues have amassed empirical 
evidence that contradicts the basic elemental 
approach, including that of the Rescorla-
Wagner and replaced elements models that 
incorporate the notion of a unique configural 
element in the representational framework. 
One piece of evidence concerns the sensitivity 
of feature negative discriminations to 
retroactive interference.  Pearce and Wilson 
(1991; Wilson & Pearce, 1992) trained 
animals on an A+ AB− discrimination, and 
then followed this with B+ training.   The B+ 
training disrupted the previous discrimination 
performance but did not abolish it, in that the 
animals continued to respond to A more than 
to AB.  This is not the result predicted by the 
elemental models described above.  According 
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to the Rescorla-Wagner model, the original 
feature negative discrimination is solved by 
acquisition of excitatory associative strength to 
A and inhibitory strength to B.  The 
subsequent B+ training would imbue B with 
excitatory associative strength, and thereby 
reverse performance on the original 
discrimination (i.e., the animals should 
respond more to AB than A).  The replaced 
elements model proposed by Wagner and 
Brandon (2001) also tends to make the same 
prediction, although this prediction can be 
reversed if there is a large proportion (i.e. 
>50%) of elements that undergo replacement 
between the single stimuli and the compound.  
However, in this particular case the replaced 
elements model is constrained to expect much 
less replacement because the A and B stimuli 
used by Pearce and Wilson were from 
different modalities. 

The effects of redundant cues on feature 
negative and negative patterning discrimin-
ations. Further evidence against elemental 
models comes from experiments investigating 
the impact of irrelevant cues on complex 
discriminations. In an autoshaping experiment, 
Pearce and Redhead (1993) compared the 
performance of two groups of pigeons learning 
different feature negative discriminations.  For 
one group the discrimination was of the form 
A+ AB−, for the other group it was of the form 
AX+ ABX− (i.e., for the second group, X was 
added to both the reinforced and non-
reinforced stimulus configurations).  These 
authors found that the A+ AB− discrimination 
was learned faster than the AX+ ABX− 
discrimination.  Pearce and Redhead (1993) 
extended their investigation of the effects of a 
redundant cue, showing that it also impairs 
mastery of negative patterning.  Rescorla 
(1972) had previously made a similar 
demonstration: An AX+ BX+ ABX− 
discrimination is learned more slowly than an 
A+ B+ AB− discrimination.   

The detrimental effects of the redundant cue 
on feature negative and negative patterning 
discriminations are important because, as 
Pearce (1994) points out, the elemental 
approach inherent in the Rescorla-Wagner 
model makes the exactly opposite predictions, 
as does the replaced elements model of 
Wagner and Brandon (2001).  These models 
predict that the added cue, X, will facilitate the 
discriminations.  They make this prediction as 

a consequence of their assumption that the 
associative strengths of stimuli sum when the 
stimuli are presented in compound.  For 
example, in the feature negative design, these 
elemental models anticipate faster acquisition 
of responding to a compound CS (AX+) than 
to a single CS (A+) because the former has 
twice as many elements.  As a consequence, 
they also predicts that B will acquire inhibitory 
strength faster in the ABX− compound than in 
the AB− compound because the negative 
discrepancy between  (= zero) and V is 
larger in the former case.  For negative 
patterning the sum of associative strengths will 
be greater when CSs A and B are presented in 
compound (AB) than when the compounds 
AX and BX are presented as ABX.  As a 
consequence, animals should take longer to 
cease responding to AB− than ABX−, the 
opposite of what was found. 

Pearce’s configural model 

In a radical departure from elemental models, 
Pearce rejected the notion that associations 
form between stimulus elements (Pearce, 
1987, 1994, 2002). According to Pearce, any 
stimulus activates a single configural node that 
represents the entire pattern of stimulation at 
that time; this node and this node alone has the 
capacity to become associated with the US.  
Thus, presentation of a CS (A) will activate a 
node representing this event (realistically, this 
node should also contain information about the 
background and contextual cues, but for 
present purposes I will consider it to represent 
A in isolation), and presentation of a 
compound (AB) will activate a different node 
representing that event.  This process solves 
negative patterning and biconditional 
discriminations because each of the different 
stimulus configurations activates a different 
configural node that enters into an excitatory 
or inhibitory association with the US.  
However, the process is in danger of being too 
able to solve these difficult discriminations.  
For example, it must also account for the fact 
that these discriminations are more difficult 
than other discriminations involving the same 
stimuli: Negative patterning is learned more 
slowly than positive patterning (A− B− AB+; 
Bellingham, Gillette-Bellingham, & Kehoe, 
1985), and a biconditional discrimination is 
learned more slowly than a component 
discrimination (AB+ AC+ BD− CD−) in 
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which one stimulus (A) reliably predicts the 
US and another (D) predicts no US (Saavedra, 
1975).  Anticipating this criticism, Pearce 
(1987, 1994) proposed that any configural 
node is fully activated by its complete pattern 
of stimulus input, but is proportionally 
activated by part of the input pattern.  A 
product rule provides a simple mechanism to 
describe the similarity between stimulus 
compounds.  For example, A and AB have a 
similarity index (s) of ½ because their 
common component, A, constitutes 100% of 
one pattern and 50% of the other, and the 
product of these proportions is ½.  AB and AC 
have a similarity index of ¼ because the 
common component, A, constitutes 50% of 
each pattern, and so the product is ¼. 

The similarity between stimulus 
configurations effectively determines the 
difficulty of any discrimination because 
learning to discriminate between two input 
patterns is difficult to the extent that the 
configural node for each pattern is partially 
activated by the other pattern. Negative 
patterning is difficult because the non-
reinforced compound AB partially activates 
two nodes (A and B) that are associated with 
the US, and thus a substantial amount of 
responding generalizes to the non-reinforced 
trials.  Positive patterning is easier because the 
non-reinforced stimuli (A and B) partially 
activate only one node (AB) that is associated 
with the US. Similarly, a biconditional 
discrimination is difficult because each 
compound (e.g., AC) partially activates the 
nodes for two other compounds (AB and CD) 
that have the opposite reinforcement 
contingency; whereas in the simpler 
component discrimination, each compound 
partially activates the same two nodes, but 
only one of these (CD) has the opposite 
reinforcement history, while the other (AB) 
has the same reinforcement history.  Perhaps 
not surprisingly, Pearce’s (1994) configural 
model can also explain how a feature negative 
discrimination can survive the retroactive 
interference produced by excitatory 
conditioning of the inhibitory CS (Pearce & 
Wilson, 1991; Wilson & Pearce, 1992), and 
the detrimental impact of a redundant cue on 
feature negative and negative patterning 
discriminations (Pearce & Redhead, 1993; 
Rescorla, 1972).  Pearce (1987) also points out 
that his configural model provides an 

explanation for overshadowing and external 
inhibition: both are generalization decrements 
that occur when the configural node activated 
during conditioning is only partly activated by 
the stimulus configuration presented at test.   

Problems for Pearce’s configural model 

The work of Pearce and colleagues has 
identified several key problems for elemental 
models like the Rescorla-Wagner model.  
These problems derive from the assumption 
that responding to a compound is based on the 
summed associative strengths of all CSs.  
However, as already discussed, this very 
assumption means that those elemental models 
are able to predict response summation 
between two separately conditioned stimuli.  
In contrast to the ease with which Pearce’s 
model deals with complex discriminations, 
summation effects pose a greater challenge.  
According to that model, a compound 
composed of two previously conditioned CSs 
should activate the configural nodes of those 
CSs to half strength, and so the generalized 
associative strength should sum to V (= ½VA + 
½VB).  That is, the compound should produce 
the same average level of responding elicited 
by the individual CSs. 

Pearce (1994; 2002) has shown that his model 
can account for summation if one considers 
the standard procedure for conditioning two 
CSs as an AC+ BC+ C− discrimination 
involving the CSs (A and B) and the 
conditioning context (C).  This can lead to 
summation because it increases the 
generalized activation between the reinforced 
configurations, AC and BC, and the non-
reinforced configural unit C.  Briefly, the AC 
and BC units are partially activated on C− 
trials, causing the C unit to acquire inhibitory 
strength (to cancel the generalized excitation 
from AC and BC).  As a result, partial 
activation of the inhibitory C unit on AC+ and 
BC+ trials leads to superconditioning of the 
AC and BC units.  Therefore, on final test, 
ABC elicits a large response because it 
strongly activates the superconditioned AC 
and BC units (to ⅔ each if A, B, and C have 
equal salience), but activates the C unit 
relatively weakly (e.g., to ⅓). 

As already noted, summation of responding 
between two CSs has not been observed in 
every study to have investigated the 
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phenomenon (e.g., Aydin & Pearce, 1995, 
1997; Pearce et al., 2002; Rescorla & 
Coldwell, 1995), and the similarity between 
CSs appears to be a relevant factor in 
determining when summation occurs  (Aydin 
& Pearce, 1997; Kehoe et al., 1994).  In this 
regard, Pearce’s configural model can be seen 
to provide a successful account of summation 
effects. According to that model, the loss of 
summation between similar stimuli occurs 
because there is less generalization between 
the two CS configurations and the 
conditioning context, and thus less 
superconditioning of the CS configural units 
(Pearce, 2002).  However, Pearce’s model is 
troubled by the finding reported by Myers et 
al. (2001) of greater summation of eyelid CRs 
to a triple compound, ABC, in rabbits trained 
with each CS individually than rabbits trained 
with three two-CS compounds (AB, AC, and 
BC).  Pearce’s configural model predicts the 
opposite result because the compound ABC 
should activate the configural representations 
of each of the three two-CS compounds more 
strongly than it activates the configural 
representations of the three single CSs.  It 
should be noted that this specific result was 
observed by Peace et al. (1997) in their 
autoshaping experiment with pigeons.  
However, while the replaced elements model 
can account for the discrepant findings 
(Wagner, 2003), Pearce’s configural model 
cannot. 

Two further problems for Pearce’s configural 
model concern its explanation of external 
inhibition and overshadowing.  The model 
explains both as generalization deficits: The 
addition of the novel stimulus to a CS 
produces external inhibition because it reduces 
activation of the CS node; overshadowing 
occurs when two CSs are conditioned in 
compound because, when either CS is 
subsequently tested on its own, it only 
partially activates the configural node 
representing the compound and so only evokes 
a weak CR.  But this account is troubled by 
two findings.  The first is that the external 
inhibition is reduced if the added stimulus is 
rendered familiar (Brimer, 1970; Pavlov, 
1927).  Pearce’s model is not naturally 
equipped with a means of explaining this 
result because familiarity would not be 
expected to change the similarity between the 
added stimulus and the CS, and so should not 

affect the extent to which the CS node is 
activated by a configuration that includes the 
added stimulus.  Nonetheless the model can 
explain the above finding with the added 
assumption that pre-exposure to a stimulus 
reduces its salience and that this depresses the 
representation of that stimulus in the 
configural unit. The second and more 
problematic finding is that external inhibition 
produces a smaller deficit than that produced 
by overshadowing (Brandon, Vogel, & 
Wagner, 2000), a difference anticipated by the 
replaced elements model (Wagner & Brandon, 
2001).  Pearce’s model, by contrast, predicts 
equivalent deficits for overshadowing and 
external inhibition because they constitute 
symmetrical changes in stimulus configuration 
between conditioning and test.  To explain the 
observed difference, Pearce’s model would 
have to be revised to create such an 
asymmetry (e.g., reducing the activation of 
configural node AB by input A, and increasing 
the activation of node A by input AB).  
However, this revision would greatly alter the 
amount of generalization predicted to occur 
between compounds and single CSs, and 
thereby impact substantially on the model’s 
behavior in many discrimination tasks. 

Return to a purely elemental approach 

The principal objective of this paper is to show 
how purely elemental models of stimulus 
representation can overcome many of the 
shortcomings of previous elemental 
descriptions. The commitment to an elemental 
approach can be justified by the conceptual 
cost associated with the alternative configural 
approach.  First, it is worth noting that all 
recent models that incorporate configural 
representations retain the elemental 
framework.  This is obvious with hybrid 
models, such as the Rescorla-Wagner model 
and the replaced elements model of Wagner 
and Brandon (2001), that explicitly invoke 
both elemental and configural representations.  
But even Pearce’s theory does not substitute 
configural for elemental representations.  
Pearce requires that stimulus representations 
can be deconstructed into elemental nodes in 
order to operationalize stimulus similarity.  
Thus, the nub of Pearce’s approach is to retain 
elemental representations but deny them from 
directly entering the associative process, 
instead he adds a layer of (configural) 
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representation that becomes the locus for the 
associative mechanism.  Therefore, in terms of 
the representational structures they invoke, 
purely elemental models are more 
parsimonious than their configural cousins. 

More significantly, configural representations 
blur the distinction between associations and 
their arguments (the representations between 
which associations form). Configural represen-
tations, by definition, code for the conjunction 
of two or more stimulus elements, and as such, 
they implicitly include associative information 
(e.g., that stimulus A and stimulus B occurred 
together). Because this information remains 
outside the associative mechanism invoked to 
explain Pavlovian conditioning generally, it 
must rely on an additional and largely 
undefined associative mechanism.  The distin-
ction between associations and representations 
becomes blurred when the configural represen-
tation constitutes a type of “memory trace” of 
a stimulus pattern (Pearce, 1987, 1994, 2002), 
something that is used to recognise that pattern 
on subsequent encounters or can be partially 
retrieved by a similar pattern of sensory input. 
In this case, the associative information 
implicitly coded by the configural 
representation fulfills a similar function to that 
served by traditional associations, since both 
are essentially records of prior experience that 
guide future behavior. Moreover, models that 
include both elemental and configural units 
(Wagner & Brandon, 2001) are at risk of a 
combinatorial explosion created by the 
theoretical possibility of configural nodes that 
encode the conjunction of all pairwise 
combinations of elements within a stimulus.  
To avoid this risk, such models need to specify 
constraints on the circumstances that give rise 
to configural representations, such as may 
arise from the nature of the organism’s 
interaction with its environment. 

The challenge for a purely elemental approach 
to stimulus representation is to explain the 
variety of findings typically thought to be 
beyond the scope of elemental mechanisms.  
As reviewed above, those I take to be crucial 
tests of any elemental model are: 

 How animals master negative patterning 
and biconditional discriminations. 

 How a feature negative discrimination can 
survive retroactive interference caused by 
excitatory conditioning of the inhibitory CS. 

 The detrimental impact of a redundant cue 
on feature negative and negative patterning 
discriminations. 

These issues have been instrumental in 
persuading many theorists of the need to 
accept configural representations. The 
difficulty they pose for elemental models 
relates to assumptions about how stimuli 
combine.  A simple additivity rule, such as 
that applied in the Rescorla-Wagner model, 
means that the associative strength of a 
stimulus compound is a linear sum of the 
associative strengths of its stimulus 
components.  This assumption renders the 
model unable to apply the exclusive-OR rule 
required to solve negative patterning 
discriminations.  The solution adopted by 
Wagner and Rescorla (1972), that a compound 
of two CSs activates a unique configural cue, 
is one way to ensure that stimuli combine in a 
non-linear fashion because the compound of 
two CSs is more than the sum of its parts.  
However, as I describe below, there are other 
non-linear ways that stimuli may combine that 
do not depart from a strictly elemental 
framework and that enjoy considerable success 
in dealing with other issues that can arise in 
complex discriminations. 

There are two further issues that have featured 
prominently in the debate about elemental 
versus configural representations, and are thus 
issues that I will also consider as important 
tests of any model.  They are: 

 The summation of responding when two 
CSs are presented in compound, and the fact 
that summation is greater between CSs from 
different modalities than CSs from the same 
modality. 

 The difference in magnitude of response 
deficit caused by overshadowing versus 
external inhibition, and why a novel 
stimulus should be more effective than a 
familiar one at producing external 
inhibition. 

In the next section, I describe an elemental 
model of stimulus representation recently 
proposed by McLaren and Mackintosh (2000; 
2002) and how it deals with each of the above 
issues. The subsequent sections of the paper 
will focus on presenting a new elemental 
model and showing how it too deals with 
these issues.  I will also show how this new 
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model can explain some recent and otherwise 
troubling findings by Rescorla (2000; 2001; 
2002b) that reveal differences in the amount 
learned about CSs that are conditioned or 
extinguished together (in compound) if those 
CSs have different associative strengths prior 
to their treatment in the compound.  These 
findings are important because they have been 
taken as evidence against the assumption, at 
the core of contemporary learning models 
including the Rescorla-Wagner model, that 
stimuli conditioned or extinguished in 
compound suffer a “common fate”.  I will 
show how the new elemental model I propose 
below, unlike the other models reviewed here, 
can explain these findings while retaining the 
common-fate assumption. 

The McLaren and Mackintosh model 

McLaren, Kaye, and Mackintosh (1989), and 
more recently McLaren and Mackintosh 
(2000; 2002), have presented a detailed model 
of stimulus representation based on Stimulus 
Sampling Theory.  This model contains two 
crucial features that enable it to explain a wide 
range of findings about stimulus 
representation, including mastery of 
conditional discriminations.  First, like other 
elemental models, it attributes stimulus 
similarity (and thus generalization) to the 
extent that stimuli share elements in common, 
but it assumes that even very different stimuli 
(such as from different sensory modalities) 
share a large proportion (50%) of their 
elements in common1.  Second, the strength to 
which an element is activated is not a linear 
sum of the input strength.  Rather, the function 
relating input to activation strength follows a 
sigmoid curve characteristic of a cumulative 
Gaussian distribution.  As a result, when two 
stimuli are presented in compound, the 
activation strength of the many elements they 
share in common may be greater or less than 
the sum of their activation strengths in the 
individual stimuli.  This non-linearity in 
stimulus compounding provides two 
mechanisms that enable this elemental model 
to solve conditional discriminations.  First, an 
element that is weakly activated in each 
individual stimulus can become strongly 
activated in the compound.  Hence this 
element may effectively function as an added 
cue in the same way that the configural 
element incorporated into the Rescorla-

Wagner model is used to solve conditional 
discriminations (McLaren & Mackintosh, 
2002).  Second, elements that do not change 
activation strength between the single and 
compound stimuli can also assist in solving 
these discriminations (Rescorla, 1972).  For 
example, a negative patterning discrimination 
involving two stimuli, A and B, with 50% 
common X elements (with fixed activation 
weight) is solved when the unique A and B 
elements have associative strengths of - and 
the common X elements have an associative 
strength of +2 (at this point, the net 
associative strength for AX or BX is 2-  , 
and for ABX is 2- -  0).  The same 
approach can also solve biconditional 
discriminations, although the distribution of 
associative strengths among common and 
unique elements is far more complex. 

For present purposes, the operation of the 
second mechanism is more interesting than the 
first because, as noted above, the first 
mechanism is functionally equivalent to the 
added configural element hypothesis adopted 
by Wagner and Rescorla (Wagner & Rescorla, 
1972). Therefore, it is the second mechanism 
that distinguished the McLaren and 
Mackintosh model from its forebears in 
dealing with the issues considered in this 
paper. For example, unlike the Rescorla-
Wagner and replaced-elements models, the 
McLaren and Mackintosh model can explain 
how a feature negative discrimination of the 
form A+ AB− survives excitatory conditioning 
of the inhibitory CS B.  The McLaren and 
Mackintosh model is also able to explain why 
a redundant cue impairs mastery of a feature 
negative discrimination (McLaren & 
Mackintosh, 2002).  However, like the 
Rescorla-Wagner and replaced elements 
models, it is unable to explain the disruptive 
effect of a redundant cue on negative 
patterning.  The model predicts that the added 
cue will have little impact, i.e., animals will 
master AC+ BC+ ABC− as quickly as A+ B+ 
AB−.  On the one hand, the model assumes 
there to be a small proportion of elements 
distinguishing ABC− from AC+ BC+, making 
this discrimination difficult, compared with 
the larger proportion of elements 
distinguishing AB− from A+ and B+.  But this 
advantage for the simpler discrimination is 
offset because A and B produce considerable 
summation when combined in the compound 
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AB, whereas AC and BC produce only modest 
summation when combined as ABC.  The 
result of these opposing effects is that the 
model predicts that the two discriminations 
will be learned at similar rates.2 

Like other elemental models, the McLaren and 
Mackintosh model anticipates summation of 
responding when two CSs are presented in 
compound, but the summed associative 
strength is not predicted to be double that of 
the individual CSs.  This is because the 
common elements that increase activation 
strength between the single CSs and the 
compound are only weakly activated by the 
single CSs during conditioning and thus 
acquire little associative strength. In contrast, 
the common elements that are strongly 
activated by the single CSs do not change 
activation strength in the compound and 
therefore do not support any summation.  
Conditioned responding is to a large extent 
controlled by this latter class of common 
elements because they acquire the majority of 
associative strength (being present on each 
conditioning trial, whereas the unique 
elements are reinforced only half as often).  
This mechanism explains why summation 
should be reduced between CSs from the same 
modality since the proportion of common 
elements should be greater for such CS 
combinations (McLaren & Mackintosh, 2002).  
The model also predicts greater summation of 
responding to a triple compound, ABC, if the 
component stimuli have been conditioned 
individually (A+ B+ C+) than if they have 
been conditioned in paired compounds (AB+ 
AC+ BC+), and is thus consistent with the 
findings reported by Myers et al. (2001) with 
rabbit eyelid conditioning.  Moreover, like the 
replaced elements model, the McLaren and 
Mackintosh model predicts this effect will be 
sensitive to the number of elements shared in 
common by the CSs, with the difference 
decreasing as the number of common elements 
increases.  However, the McLaren and 
Makcintosh model cannot predict a reversal of 
this effect – greater summation for ABC 
following AB+ AC+ BC+ training than 
following A+ B+ C+ training – as has been 
reported with pigeon autoshaping by Pearce et 
al. (Pearce et al., 1997). 

The McLaren and Mackintosh model 
anticipates external inhibition for exactly the 
same reasons as traditional Stimulus Sampling 

Theory – the novel stimulus adds to the 
number of stimulus features that can be 
sampled, and so reduces the probability that 
the conditioned elements of the CS will be 
sampled, thereby reducing the CR.  Familiarity 
with the added stimulus could be seen to 
reduce this effect by reducing the salience of 
the added stimulus, thereby reinstating the 
likelihood of sampling CS elements. However, 
unlike the replaced elements model and 
Pearce’s configural model, the McLaren and 
Mackintosh model makes no a priori 
prediction about the relative magnitudes of 
external inhibition and overshadowing because 
these are attributed to entirely independent 
mechanisms (variations in stimulus sampling, 
and the operation of the delta rule). Therefore, 
the demonstration that overshadowing 
produces a greater response deficit than 
external inhibition (Brandon et al., 2000) is 
neither support for nor evidence against this 
model. 

A new elemental model emphasizing 
interactions among stimulus elements. 

I now describe a new model of stimulus 
representation that emphasizes interactions 
between elements.  This model takes as it 
starting point key features of Stimulus 
Sampling Theory and the Rescorla-Wagner 
model.  It departs from those models in its 
description of the processes that govern 
activation of stimulus elements. 

In certain respects, the model is most similar 
to a modified Stimulus Sampling Theory 
considered (and dismissed) by Pearce (1994) 
and Wagner and Brandon (2001).  In that 
approach, the elements of different stimuli 
inhibit each another’s activation in such a way 
as to hold constant the number of elements 
activated by any stimulus pattern.  For 
example, if two stimuli, A and B, each activate 
n elements when presented separately, 
presentation of the AB compound would 
activate ½n of A’s elements and ½n of B’s 
elements.  Wagner and Brandon (2001) make 
the point that this “inhibited elements” 
approach is in many instances equivalent to 
Pearce’s configural model in terms of the 
computations that describe similarity between 
stimulus patterns.  However, this inhibited 
elements model lacks a clear mechanism that 
would determine which elements of a stimulus 
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become active in different instances (e.g., 
which ½n of A’s elements are activated by the 
compound AB and which are inhibited).  Any 
adequate description of the process is made 
even more difficult by the requirement that 
those elements of stimulus A that are activated 
by AB must be a statistically independent 
sample from the A elements activated by the 
compound AC.  The requirement of statistical 
independence means that the fate of an 
individual element cannot be linked to any 
property of the element itself (e.g., its 
salience), yet it cannot be randomly 
determined from trial to trial (as could occur in 
a stochastic sampling process) because the 
same ½n elements of A must be activated 
every time by the AB compound. 

Like the inhibited elements model just 
described, the model presented below assumes 
that the elements of different stimuli interact to 
affect one another’s activation. However, 
rather than preventing that activation, elements 
of one stimulus effectively reduce the 
activation of other elements.  Importantly, this 
process is identified with a property of the 
elements themselves – their activation strength 
– and is attributed to the operation of a 
limited-capacity attention buffer, a mechanism 
that has proved popular in previous elemental 
models (e.g., Bush & Mosteller, 1951b; 
Sutherland & Mackintosh, 1971; Wagner, 
1981).  The core features of the model are laid 
out below. 

1)  A stimulus activates a population of 
elements, corresponding to different micro-
features of the stimulus.  The different 
elements that constitute a stimulus are 
activated to different levels (weights) 
corresponding to the salience of that feature 
in the stimulus.  Similarity between two 
stimuli is a function of the proportion of 
elements they activate in common, and 
these common elements are activated more 
strongly when the two stimuli are presented 
together as a compound.  For simplicity, I 
assume that the activation weight of the 
common elements in the compound equals 
the sum of their activation weights in the 
individual stimuli, however non-linear 
combination rules are equally possible3. 

2) Activated elements compete for entry to a 
fixed-capacity analyzer (“attention buffer”) 
as a function of the change in their 

activation weights. An element that receives 
a large increase in its activation can displace 
a weakly activated element from the 
attention buffer, or prevent that element 
entering the buffer.  The attention buffer 
functions as a gain control, increasing and 
prolonging the activation of the elements it 
contains.  So that this can be operationalized 
in simulations, I will assume that the buffer 
doubles the increase in an element’s 
activation weight, although this is obviously 
a relatively arbitrary magnification factor. 
For example, if an element’s weight 
increases from 0.1 to 0.4, and this difference 
is above buffer threshold, the element’s 
weight becomes 0.7. Elements outside the 
buffer can nonetheless be conditioned and 
contribute to behavior, but their influence is 
weaker because their activation weight is 
not boosted.  Figure 2 illustrates the 
distribution of elements within and outside 
the attention buffer, and gives an example 
of how this distribution might change when 
a stimulus is presented alone versus in 
compound with another stimulus. 

3) The capacity of the attention buffer is 
defined by the sum of activation weights, not 
the number of elements.  Therefore, both the 
threshold for entry to the buffer and the 
number of elements in the buffer will vary 
depending on the average activation weight 
of its elements.  That is, for any array of 
activated elements ranked in descending 
order of weight, buffer threshold equals the 
weight of element n (n) for which 

 

The change in content of the buffer between 
single and compound CSs is best illustrated 
by an example. Consider two equivalent 
stimuli that each activates 20 elements into 
the attention buffer when presented alone.  
In this case the threshold is just below the 
activation weight of the weakest of the 40 
elements. When the two stimuli are 
presented simultaneously, only a subset of 
the elements (the strongest ones from each 
stimulus) will enter the buffer, and the total 
number will now be smaller than 20 – if the 
weights are randomly distributed according 
to a Gaussian density function, there will be 
on average 16 elements in the buffer, 8 from 
each stimulus. There are fewer elements in
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Figure 2.  An illustration of the elemental model of stimulus representation proposed here. In A & B, 
each small square or triangle represents an element with a particular activation weight (corresponding to 
its size). Two different stimuli are represented by distinct populations of elements (the squares versus 
triangles). Depending on the number and weights of other active elements, each element may enter an 
attention buffer (black shapes) or be displaced from the buffer (gray shapes), according to a rule whereby 
the summed weight of all elements in the buffer is fixed. A shows the two stimuli with all their elements 
in the buffer (as would be the case if each stimulus were presented on its own); B shows the same two 
stimuli presented together (thus only the more strongly activated elements of each enter the buffer). C & 
D: Histograms showing the activation weights for two stimuli, each consisting of 20 elements ordered 
according to their activation weight (the raw weights are sampled from a Gaussian distribution with a 
mean of 0.5 and SD of 0.167). C: When the stimuli are presented individually, all their elements are 
activated into an attention buffer which has the effect of doubling their raw weight. D: When the two 
stimuli are presented together, fewer than half of the elements of each stimulus enter the buffer (dark 
gray bars); most elements (light gray bars) remain outside the buffer without any boost to their raw 
activation weight. 

the buffer because the total weight must 
remain fixed yet the average activation 
weight of the elements in the buffer will 
have increased (because only the stronger 
elements will have entered).  As such, the 
effective threshold for entry to the buffer 
will have increased to the value equaling the 
weight of the 16th element out of the 40.  
This example serves to illustrate that the 
threshold does not determine which 
elements enter, rather the elements that have 
entered determine the threshold. 

4) Excitatory conditioning occurs when US 
elements are activated into the attention 
buffer; inhibitory conditioning or extinction 
occurs when US elements are activated 
outside the buffer.  In this regard, the 
distinction between elements inside versus 

outside the attention buffer is somewhat 
analogous to the distinction between the A1 
and A2 activation states described in 
Wagner’s (1981) SOP model. However, the 
current scheme differs from that model in 
two important regards.  First, the role of the 
buffer in determining excitatory versus 
inhibitory conditioning applies to the status 
of US elements only; the status of the CS 
elements will only affect the rate but not 
direction of conditioning. Second, the 
present model does not assume any 
difference in the rules governing associative 
changes for excitatory versus inhibitory 
conditioning. In each case, the change in 
associative strength is proportional to the 
increase in activation weight of the US 
element – a larger increase produces greater 
excitatory conditioning (if the US element 
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enters the buffer) or inhibitory conditioning 
(if the US element remains outside the 
buffer).  As such, changes in associative 
strength are accurately captured by a delta 
rule equivalent to that described in the 
Rescorla-Wagner model (Equation 1). 
Nonetheless, because US elements have 
greater activation weight when in the buffer 
than outside it, the rate of change of 
associative strength during excitatory 
conditioning should be greater than during 
inhibitory conditioning or extinction.  
Evidence consistent with this has recently 
been reported by Rescorla (2002a). 

5) During conditioning, the change in 
associative strength (excitatory or 
inhibitory) of a CS element is a product of 
its activation weight ().  Thus,  has the 
same function as the salience () of a CS in 
the delta-rule, and means that any CS 
element will be conditioned as long as it is 
activated (i.e.,  > 0), whether it is inside or 
outside the buffer.  The large effect of the 
attention buffer on activation weight means 
that elements inside the buffer undergo 
much more rapid conditioning than 
elements outside the buffer. Nonetheless, 
because elements can undergo some 
conditioning when outside the buffer, even 
an associatively activated CS can acquire 
(or lose) associative strength, as occurs in 
demonstrations of mediated conditioning or 
extinction of an absent CS (Hall, 1996; 
Holland, 1990). 

The above description does not take account 
of the impact of US elements on activation 
of CS elements inside the buffer.  Given 
their salience, we can assume that the US 
elements will displace many CS elements 
from the buffer, such as might explain the 
failure to observe effective conditioning in 
many paradigms with simultaneous CS-US 
presentations (see Rescorla, 1988 for a 
review).  Nonetheless, the model could be 
in danger of predicting that conditioning 
would be very slow with very salient USs, 
such as shock, because the US would 
potentially displace all CS elements from 
the buffer. To circumvent this problem, the 
model is obliged to allow some temporal 
slack between the activation of US elements 
into the buffer and the displacement of CS 
elements. That is, I assume that displaced 
elements do not exit from the buffer 

instantaneously, but follow a decay 
function, as is often assumed in real-time 
models of stimulus representation (e.g., 
Brandon & Wagner, 1998; Kehoe, Horne, 
Macrae, & Horne, 1993; Wagner & 
Brandon, 2001).  Therefore, while a very 
salient US like a shock will displace many 
or even all CS elements from the buffer, the 
brief overlap of CS and US elements in the 
buffer should ensure effective conditioning. 

6) An excitatory association between two 
stimuli means that the elements of one 
stimulus will activate the elements of the 
other stimulus; an inhibitory association 
will suppress that activation.  The 
associative activation of US elements by a 
CS is responsible for the CR (e.g., 
Konorski, 1967).  However, as explained in 
point 7 below, the weight of an element that 
is associatively-activated is necessarily less 
than the weight of that element when 
activated by the stimulus itself. Therefore, 
although associatively activated elements of 
a US can elicit a response, this CR will 
always be weaker than, and potentially of 
different form to, the unconditioned 
response elicited when those elements are 
fully activated by the US itself. 

7) Because excitatory conditioning is 
proportional to the increase in activation of 
US elements, and depends on those 
elements entering the attention buffer (point 
4), conditioning is reduced to the extent that 
the US elements are associatively activated 
by the CS. This point reiterates the delta 
rule, but also explains why the activation of 
a US element by a CS will always be 
weaker than the activation of that element 
by the US itself. This is necessarily the case 
because the CS-US association will only 
increase as long as the US elements gain 
entry to the attention buffer. The US 
elements will cease entering the buffer, and 
conditioning will stop, as soon as the CS 
activates them to a level (L) above which 
the US itself cannot provoke sufficient 
increase in their weight to exceed the buffer 
threshold (i.e., when US – L = buffer 
threshold). This means that L represents 
the maximum excitatory conditioning that 
can be supported by a US element, and 
therefore, in the terminology of the delta 
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rule, L.  By combining these two 
statements, we can say 

 = US – buffer threshold. 

Because a CS will activate the elements of a 
US relatively weakly, those elements are 
unlikely to enter the attention buffer, and 
thus would not normally support excitatory 
conditioning (but would provoke inhibitory 
conditioning or extinction).  However, the 
description just offered does anticipate an 
exception to this rule: An extensively 
trained CS could prime US elements into 
the attention buffer if the self-generated 
activation weight of the US element (US) is 
more than twice the buffer threshold (i.e.,  
> threshold), as could occur with either a 
very strong US or a low threshold.  This 
provides a means of explaining the 
demonstration by Dwyer, Mackintosh, and 
Boakes (1998) of de novo flavor-preference 
conditioning between an associatively 
activated CS (a flavor) and an associatively 
activated US (sucrose).  The reader might 
recognize that, by permitting a CS to 
activate US elements into the attention 
buffer, this undermines the mechanism by 
which that CS-US association could be 
extinguished.  In this regard, it is pertinent 
that a characteristic of conditioned 
preferences for flavors paired with sucrose 
is their substantial resistance to extinction 
(Harris, Shand, Carroll, & Westbrook, 
2004).  In other words, by attributing these 
effects to a common cause, the model 
anticipates that behavioral paradigms that 
can support excitatory conditioning with an 
absent US will also show resistance to 
extinction of the primary CS.  However, it is 
not clear at this stage why the flavor-
preference paradigm should possess these 
particular properties. 

8) Just as associations are strengthened 
between elements of different stimuli (e.g., 
between CS and US elements), they are also 
strengthened between elements within a 
stimulus following the same associative 
rules.  This provides a further means by 
which stimulus elements can influence each 
other’s activation.  This is important 
because there are many demonstrations that 
prior exposure to a stimulus affects 
learning.  Latent inhibition is the cardinal 
example: conditioning to a CS is retarded if 

animals have been extensively exposed to 
that stimulus prior to conditioning (Lubow, 
1973).  At the same time, familiarity 
improves discrimination between stimuli 
(Hall, 1991; Mackintosh & Bennett, 1998).  
Thus simple exposure to a stimulus leads to 
changes in the way the stimulus is 
represented. 

In the current model, when a very familiar 
stimulus is presented, the elements activated 
by the onset of the stimulus could 
associatively prime the later elements, 
thereby preventing those later elements 
from gaining entry to the attention buffer.  
This would reduce any response elicited by 
the stimulus (i.e., cause habituation) and 
decrease the ability of the stimulus as a 
whole to undergo conditioning (i.e., produce 
latent inhibition; see McLaren et al., 1989; 
McLaren & Mackintosh, 2000 for a detailed 
description of this process).  Conditioning 
could be reduced even further if the 
stimulus elements are associatively primed 
by the context in which the stimulus has 
been presented previously (Wagner, 1981), 
giving rise to context-specific latent 
inhibition (e.g., Lovibond, Preston, & 
Mackintosh, 1984; McLaren, Bennett, 
Plaisted, Aitken, & Mackintosh, 1994; 
Westbrook, Jones, Bailey, & Harris, 2000).  
Note that this predicts slower conditioning 
to a pre-exposed CS, but not a failure of 
conditioning, because conditioning can 
proceed slowly when CS elements are 
activated outside the attention buffer.  
Further, the model enables post-
conditioning manipulations (such as testing 
in a different context) to recover some 
responding to a pre-exposed CS because it 
assumes latent inhibition to be a 
combination of an acquisition deficit and a 
performance deficit (both caused by the 
associative priming of CS elements). 
Therefore, post-conditioning manipulations 
that oppose the performance deficit can still 
increase responding (e.g., Westbrook et al., 
2000). 

With regard to perceptual learning, the 
model permits familiarity to improve 
discriminability between similar stimuli via 
two mechanisms proposed by McLaren and 
Mackintosh (McLaren et al., 1989; 
McLaren & Mackintosh, 2000).  The first of 
these mechanisms relies on greater latent 
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inhibition of their common elements than 
their distinctive elements. This would arise 
because the common elements are exposed 
twice as much as the distinct elements, and 
therefore greater associative priming would 
develop among the common elements, and 
those elements would also receive greater 
associative priming by the context. The 
second mechanism is the development of 
mutual inhibition between the distinctive 
elements of the similar stimuli.  Briefly, 
once associative links have formed between 
the common and distinctive elements of 
each stimulus, presentation of one stimulus 
will associatively activate the distinctive 
elements of the other stimulus via their 
common elements.  Inhibitory associations 
will thus form between the distinctive 
elements because the distinctive elements of 
the presented stimulus are active in the 
buffer while the distinctive elements of the 
other stimulus are active outside the buffer. 

9) Pre-existing links connect elements, and the 
strength of these connections changes 
across the course of conditioning or 
extinction (i.e., they would normally have 
an initial value of zero).  An important 
detail for any connectionist model is to 
specify constraints on the connectivity 
between elements.  The simplest position is 
to assume there are no constraints – that all 
elements are equally inter-connected, and 
thus any element can be associated with any 
other element. Although simple, a strong 
version of this assumption is implausible.  
Despite the extensive interconnectivity of 
the nervous system, it is not exhaustive 
(each neuron is not connected to every other 
neuron; or, at an even more restricted level, 
each cortical column is not connected to 
every other column).  Even if each 
functional unit, corresponding to an 
individual element, were connected to every 
other unit, the pervasiveness of variability 
in biological systems would guarantee that 
the connections would not be homogenous. 
Therefore, a more realistic approach 
assumes variability either in the distribution 
or the effectiveness of connections between 
elements.  Although this assumption has 
little bearing on the mechanics of the model 
as it applies to most situations considered 
here, it becomes important in accounting for 
Rescorla’s (2000; 2001; 2002b) recent 

observations that CSs conditioned or 
extinguished in compound may acquire or 
lose associative strength at different rates. 
This important topic is taken up later in the 
paper. 

As presented here, the model assumes 
partial connectivity between elements – 
each element is connected to a subset of the 
total number of elements (both across and 
within stimuli). This is comparable to 
assuming complete interconnectivity 
between elements but with variability 
among those connections in terms of their 
effectiveness to support associations (e.g., 
variations in ).  Differences in connectivity 
may constitute a means of explaining 
differences in the rate of conditioning for 
different CS-US combinations.  The 
textbook example of this is that rats acquire 
aversions to flavors paired with illness 
much more readily than lights or noises 
paired with illness, and conversely learn to 
fear lights and noises paired with shock 
much more readily than a flavor paired with 
shock (Garcia & Koelling, 1966).  This 
apparent bias to learn certain associations 
may reflect variations in the connectivity of 
the nervous system – olfactory and 
gustatory centers may be more extensively 
connected to visceral centers than 
nociceptive centers, while auditory and 
visual centers might be more extensively 
connected to nociceptive centers than 
visceral ones. 

Based on the assumptions outlined above, I 
have conducted computer simulations to 
provide a more quantifiable measure of how 
the model behaves in circumstances where it is 
difficult to work through the mechanics of the 
model using a purely verbal description of the 
process.  To conduct these simulations, further 
details and assumptions must be made explicit, 
as described below. 

Each single stimulus (CS or US) is represented 
by 20 elements of varying weight – that is, 
when the stimulus is presented in isolation, it 
activates 20 elements into the attention buffer.  
This is an obviously arbitrary number, but I 
have confirmed that the simulated results are 
comparable when using larger or smaller 
numbers of elements.  For convenience, the 
activation weight of each stimulus element is 
sampled randomly from a Gaussian 
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distribution with a mean of 0.5 and SD of 
0.167 (thus confined to a range from 0 to 1).  
This means that CS and US elements were 
given equivalent weight – not a realistic 
assumption for many conditioning paradigms, 
but of little importance here since the model 
does not attempt to account for interactions 
between CS elements and US elements. Unless 
otherwise specified, the different stimuli used 
in the simulations have no elements in 
common.  Where two stimuli share common 
elements, the compound of those stimuli 
activates each common element to a weight 
equal to the sum of its weights as activated by 
the individual stimuli. If an element’s 
activation weight increases by an amount that 
is greater than the buffer threshold, the 
increase is doubled. 

In most instances, I have run multiple 
simulations with different proportions of 
interconnectivity between elements (from 10% 
to 100%).  However, there are seldom 
meaningful differences between simulations 
generated assuming different levels of 
connectivity, other than the rate at which 
conditioning proceeds. Therefore, I will report 
here only the results of those simulations 
where the interconnectivity was set at 50% 
(i.e., each of the 20 CS elements is on average 
connected to 10 US elements and/or 10 
elements of any other CS, including itself).  
Also, rather than assuming a fixed level of 
interconnectivity (that each CS element is 
connected to exactly 10 US elements), I adopt 
a simpler mechanism that incorporates 
variability between elements in the extent of 
their interconnectivity.  I have operationalized 
this by giving each element a fixed probability 
(0.5) of being connected to any other element. 

Equation 2 was used to calculate changes in 
associative strength (V) between element x 
(e.g., of a CS) and element y (of a US) on a 
trial-by-trial basis. For trials on which feature 
Y is present, 

 

Note that the associative strength between x 
and y (Vx-y) increases as long as y, the 
difference between the self-generated weight 
of y (y) and the associatively-activated 
weight of y, is greater than the buffer threshold 
(t), and that V is proportional to twice this 
difference (as per the effect of the buffer). 
Otherwise, Vx-y decreases proportional to y 
(and not twice y because y is not in the 
buffer). Therefore, during normal 
conditioning, Vx-y will oscillate around its 
asymptote as y alternates between a value 
above and below t.  However, if y is well 
below buffer threshold, as would occur when 
two extensively-conditioned CSs are presented 
in compound and reinforced, this could lead to 
a sustained decrease in Vx-y despite the 
presence of Y, giving rise to an over-
expectation effect (Lattal & Nakajima, 1998). 

For trials on which feature Y is absent (i.e., y 
= 0), Vx-y decreases according to Equation 3 

 

In all simulations, the learning rate parameter 
 was set at a nominal value (0.01), selected to 
give appropriate control over the rate of 
change in performance. 

Finally, all simulations give the expected level 
of responding to the CS or compound CS on 
each trial.  Thus responding is determined by 
the sum of the products of the activation 
weights of the elements and their current 
associative strength.  That is, for stimulus A 
with n elements, responding (R) is given by  

 

where VAi is the sum of Vs of each connection 
from Ai to the US elements. Similarly, 
responding to a compound, AB, is the sum of 
i·Vi for all elements of A and B, but in this 
case  is reduced by half for most of the 
elements of each CS.  The plots for all 
simulations presented in this paper are the 
average of at least 20 separately run 
simulations. 

n 

R(A) = (Ai  VAi)  (4) 
i=1 

m 

Vx-y = x y  [0 – (i  Vi-y)]       (3) 
i=1 

    m 
let y = [y – (i  Vi-y)] 
  i=1  

if y  t 

Vx-y = x y  2  y           (2) 

else Vx-y = x y  (- y) 
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To illustrate how associative learning is 
simulated by the proposed model, Figure 3 
shows the acquisition of conditioned 
responding in a simple Pavlovian conditioning 
preparation.  Equations 2 and 3 were used to 
calculate the change in strength of the 
connections between the elements of a CS and 
US. Conditioning was set in a “context” that 
comprised twice as many elements as each CS 
but with the same average activation weight as 
the higher CS.  These context elements 
competed with the CS and US elements for 
entry to the attention buffer. Responding, 
calculated according to equation 4, is seen to 
increase according to a standard monotonic 
curve, and the rate of acquisition is faster for 
the more salient CS. 

 

Figure 3. Simulation of a simple Pavlovian 
conditioning preparation using the elemental model 
proposed in the present paper.  The black lines 
shows the predicted strength of the conditioned 
response (CR) to two CSs that differed in salience 
– the activation weights of the elements of the 
“high CS” were 50% greater than those of the “low 
CS” (separate simulations were run for each CS). 
The figure also shows the sum of activation 
weights of the CS elements (CS; gray lines). 
Across the course of conditioning, the weights 
decreased as the CS elements became associatively 
primed by the context. 

Figure 3 also shows how the average weight of 
the CS elements decreased across the course of 
conditioning as the CS elements became 
associatively primed by the context (and by 
other CS elements) thus reducing their entry to 
the buffer. The decrease in activation obliges 
the model to predict that responding to the 
high CS should increase if it were presented in 
a different context (because, in the new 
context, the CS elements would not be 

associatively primed and therefore they would 
gain greater entry to the attention buffer).  
However, the fact that this is not typically 
observed  (Hall & Honey, 1990; Harris, Jones, 
Bailey, & Westbrook, 2000) may be because 
the predicted increase in responding is offset 
by the loss of associative strength that had 
been acquired by the conditioning context 
itself. 

Negative patterning and biconditional 
discriminations 

The mechanisms by which elements interact to 
influence each other’s activation equip the 
current model with the means to solve 
negative patterning discriminations (see Figure 
4 for a simulation).  Many elements of each 
stimulus (constituting exactly half the total 
activation weight) are active in the attention 
buffer when the stimulus is presented alone 
but are displaced when the two stimuli are 
presented in compound.  Thus the A+ B+ AB− 
discrimination can be thought of as Aa+ Bb+ 
AB−, where a and b represent the weaker 
elements that only enter the buffer on single 
stimulus presentations, and A and B are the 
stronger elements active in the buffer during 
both single and compound stimulus 
presentations.  It should be clear that a and b 
will ultimately acquire all of the associative 
strength.  Ordinarily, there would still be 
substantial responding on AB− trials because 
the a and b elements are active, even though 
their activation is not boosted by the attention 
buffer.  However, across the course of AB− 
trials, inhibitory associations would be 
acquired between the stronger elements of 
each CS and the weaker elements of the other 
CS (i.e., from A to b, and B to a) because the 
stronger elements are active in the attention 
buffer while the weaker ones are active outside 
it. Thus, mastery of the discrimination depends 
on two things: (1) the excitatory associative 
strength becoming confined to the weaker 
elements; and (2) the inhibition of the weaker 
elements by the stronger elements of the other 
CS on the AB− trials. Within the current 
model, there is also opportunity for unique 
interactions between stimuli such as might 
support biconditional discriminations (AB+ 
CD+ AC− BD−; simulations of this are 
presented in Figure 5).  The opportunity arises 
because different stimuli are assumed to have 
different   populations  of  elements   and   thus 
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Figure 4. Black lines: Response strength to 
reinforced stimuli (A+/B+) and a non-reinforced 
compound (AB-) in a negative patterning 
discrimination, as simulated by the elemental 
model proposed in this paper.  For comparison, 
simulated response strength is also shown (gray 
lines) for single and compound stimuli in a positive 
patterning discrimination (A- B- AB+). 

different distributions of activation weights.  
Therefore, the threshold for entry into the 
attention buffer will vary for different 
compounds.  For example, if there are fewer 
salient elements in stimulus B than C, then 
there will be some elements of A that are 
above threshold in the AB compound but are 
below threshold in the AC compound.  While 
appropriate counterbalancing of stimuli across 
an experiment will prevent systematic 
inequalities (i.e., counterbalancing between B 
and C will ensure that B has fewer salient 
elements than C for half the subjects, but more 
salient elements than C for the other subjects), 
there will always be an inequality in each 
individual case to support mastery of the 
discrimination. 

The possibility that different stimuli might 
share elements in common provides another 
means by which elements could combine in 
distinct ways in different stimulus compounds.  
Specifically, if common elements have 
increased activation weight when stimuli are 
presented in compound because of the 
combined input they receive from both stimuli, 
they would have increased likelihood of 
entering the attention buffer when stimuli are 
presented in compound.  This would enhance 
the distinctiveness of different stimulus 
compounds because the different stimulus 
combinations should share different elements 
in common. The right plot in Figure 5 shows 

how as little as 10% overlap between stimulus 
pairs can assist the model in solving the 
biconditional discrimination.  This mechanism 
would also assist with solving negative 
patterning discriminations by facilitating the 
acquisition of inhibitory associative strength to 
the common elements (because these elements 
would be more strongly activated in the non-
reinforced compound than in the reinforced 
single CSs). 

 

Figure 5.  Black lines: Response strength to 
compound stimuli in a biconditional discrimination 
(AB+ CD+ AC− BD−), as simulated by the 
elemental model proposed in this paper.  For 
comparison, simulated responding strength is 
shown (gray lines) for a component discrimination 
(AB+ AC+ BD− CD−).  In these simulations the 
four stimuli either had no common elements (left) 
or shared 10% of their elements in common (right). 

Retroactive interference in feature negative 
discriminations 

The current model correctly predicts the 
finding by Pearce and Wilson that feature 
negative discriminations can survive 
retroactive interference when the inhibitory CS 
undergoes excitatory conditioning (Pearce & 
Wilson, 1991; Wilson & Pearce, 1992).  The 
prediction emerges from the manner in which 
excitatory associative strength is distributed 
among the elements of A and B (again I’ll use 
A and B to denote the stronger elements of 
each CS that enter the attention buffer in the 
AB compound, and a and b to denote the 
weaker elements active in the buffer during 
single stimulus presentations but displaced on 
trials with the AB compound).  Crucially, by 
completion of the initial feature negative 
conditioning, most of A’s associative strength 
will have been acquired by the a elements, 
while the B elements will have acquired 



J. A. Harris  Elemental representations of stimuli 

 21

inhibitory strength against both the US and the 
a elements.  When B undergoes excitatory 
conditioning in phase 2, the majority of its 
excitatory strength will be acquired by the b 
elements because they start phase 2 with zero 
associative strength, whereas the B elements 
start with inhibitory strength.  In other words, 
much of B’s excitatory associative strength 
will be reduced when it is again presented in 
compound with A because the b elements will 
not enter the attention buffer.  Further, even 
though the B elements will have lost their 
inhibitory strength against the US, they will 
have retained their inhibitory strength against 
the a elements, thus preserving the ability of B 
to reduce responding to A. 

The effects of redundant cues on feature 
negative and negative patterning 
discriminations 

As shown in Figure 6, the model proposed 
here correctly predicts that a redundant cue 
will impede learning of a feature negative 
discrimination (Pearce & Redhead, 1993).  
The prediction can be understood by 
considering the proportion of stimulus weights 
that are active in the attention buffer during 
reinforced and non-reinforced trials.  With the 
standard A+ AB− discrimination, only half of 
A’s activation weight is in the buffer during 
both A+ and AB− trials, leaving the other half 
to acquire the excitatory associative strength.  
With the AX+ ABX− discrimination, ⅔ of 
AX’s activation weight is in the buffer during 
AX+ and ABX− trials, leaving only ⅓ to 
acquire the excitatory associative strength. 

The disruptive effect of an added cue on 
negative patterning (Pearce & Redhead, 1993; 
Rescorla, 1972) constitutes a crucial challenge 
for elemental models since each of the other 
elemental models reviewed here failed to 
predict that the AX+ BX+ ABX− 
discrimination is harder than the A+ B+ AB− 
discrimination.  Unlike those other models, the 
current model does correctly predict this 
result, as confirmed by the simulation shown 
in Figure 7.  As described earlier, mastery of 
an A+ B+ AB− discrimination depends on two 
things: (1) the excitatory associative strength 
becoming confined to weaker a and b elements 
of each CS, and (2) the inhibition of those a 
and b elements by the B and A elements.  But 
this second process is undermined in the AX+ 

BX+ ABX− discrimination, and particularly so 
for the x elements (here, because no stimulus 
is presented alone, I use lower case italicized 
letters, such as x, to stand for elements that are 
in the buffer during the reinforced compounds 
AX and BX, but are displaced from the buffer 
in the non-reinforced triple compound ABX, 
and I used upper case italicized letters to stand 
for those elements active in the buffer for both 
double and triple compounds).  The x elements 
do not become inhibited by the A and B 
elements on ABX− trials because those same 
A and B elements are positively paired with 
the x elements during each AX+ and BX+ trial 
(i.e., the A and x elements are co-active in the 
attention buffer on AX+ trials, and the B and x 
elements are co-active in the buffer on BX+ 
trials).  As a result, the x elements will 
continue to support generalized responding on 
ABX− trials.  This generalized responding will 
be substantial because the x elements will take 
up much of the excitatory associative strength 
on AX+ and BX+ trials, being reinforced 
twice as often as the a and b elements. 

 

Figure 6. Left (reproduced from Pearce, 1994, with 
permission of the author): Results of an experiment 
by Pearce & Redhead (1993) comparing the rates 
of responding between two groups of pigeons 
trained on different feature negative 
discriminations: one group (broken lines) was 
trained with a standard A+ AB− discrimination, the 
other group (solid lines) was trained on an 
equivalent discrimination that included a redundant 
cue (i.e., AX+ ABX−). Right: Response strength on 
the same two discriminations, simulated using the 
model proposed here. Like the pigeons, the model 
takes longer to discriminate between AX+ and 
ABX- than between A+ and AB-. 
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Figure 7. Left: Results of an experiment by Pearce 
& Redhead (1993, reproduced with permission of 
the authors) that trained one group of pigeons on a 
standard negative patterning discrimination (A+ B+ 
AB−) and a second group on an equivalent 
discrimination with a redundant cue (AX+ BX+ 
ABX−). Pigeons in both groups had been 
pretrained with the reinforced stimuli. Right: 
Simulated performance on the same 
discriminations according to the elemental model 
proposed here.  The model captures the basic 
observation from the experimental study that the 
standard negative patterning discrimination (black 
lines) is mastered more quickly than the 
discrimination with the redundant cue (gray lines). 

Summation 

The summation of responding when two CSs 
are presented in compound does not present 
any difficulty for elemental models, including 
the present one.  The model anticipates 
summation because all elements from each CS 
are activated by the compound, even though 
half the elements are activated outside the 
attention buffer and will thus make a smaller 
contribution to responding.  The predicted 
amount of summation is best illustrated by an 
example involving two CSs, A and B, for 
which the associative strength is split equally 
among A and a elements, and B and b 
elements.  If the activation weight of the a and 
b elements inside the attention buffer is twice 
their weight outside the buffer, the CR to the 
compound AB will be 50% greater than the 
CR elicited by A or B alone (this answer 
comes about because the CR is the product of 
V, which for the compound is twice that of the 
single CSs, and the average activation weight, 
which for the compound is ¾ that for the 
single CSs). 

As mentioned earlier, there are numerous 
reported failures to observe summation in 
Pavlovian conditioning paradigms.  Thus any 
model that is committed to predicting 
summation has little more empirical support 
than a model incapable of prediction 
summation.  Clearly the most desirable feature 
of any model that purports to deal with this 
topic is to explain both the occurrence and 
absence of summation and identify the crucial 
factors that determine which outcome will be 
observed in a given case. A factor that has 
already been identified concerns the similarity 
between the two CSs: Summation is frequently 
observed between CSs from different 
modalities, but is not observed between CSs 
from the same modality (Aydin & Pearce, 
1997; Kehoe et al., 1994). The current model 
can explain this pattern by appealing, once 
again, to the role played by common elements.  
Conditioning of two similar stimuli, A and B, 
would involve alternating AX+ and BX+ trials 
(where X are the common elements).  In 
addition to excitatory conditioning of A, B, and 
X elements, this will lead to the acquisition of 
inhibitory associations between the unique A 
and B elements (via the mechanism described 
earlier in the discussion of perceptual learning, 
see point 8).  As a result each will suppress 
responding to the other when presented 
together in compound, thus undermining the 
basis for response summation.  The same 
process could be engaged by the conditioning 
context, with the context serving the same role 
as the common elements in fostering the 
development of inhibition between the two 
CSs.  This latter mechanism predicts that 
summation, measured as the difference in 
response strength to the compound versus the 
individual CSs, will be greater when two CS 
are conditioned in different contexts than 
when they are conditioned in the same context. 

The predicted effect of stimulus similarity on 
summation is illustrated in Figure 8: the left 
plot shows the amount of summation produced 
by combining two CSs that have no common 
elements, the right plot shows the summation 
produced by two CSs sharing ⅓ of their 
elements in common.  It is clear that the 
presence of common elements has served to 
reduce summation. It is also clear that, despite 
the presence of these common elements, some 
summation is observed initially, but disappears 
with extended conditioning. This prediction is 
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problematic because the available 
experimental evidence shows that CSs from 
the same modality produce no summation 
across the entire course of conditioning 
(Kehoe et al., 1994). The model makes this 
prediction when it assumes that the excitatory 
CS-US associations that support summation 
are acquired earlier than the inhibitory 
associations between CS elements that 
suppress summation.  In general, this is a 
reasonable assumption because the latter 
inhibitory associations can only be acquired 
after excitatory associations are acquired 
between common and distinctive CS elements.  

 

Figure 8. Top: Simulated response strength, 
generated by the elemental model proposed here, 
when two separately conditioned stimuli (A+/B+) 
are presented in compound (AB). The two upper 
plots show predicted response strength when the 
two CSs are assumed to share either no common 
elements (left) or ⅓ of their elements in common 
(right).  Common elements serve to reduce 
summation by allowing the distinctive elements of 
each CS to acquire mutually inhibitory links.  
However, this effect is sensitive to the proportion 
of common elements, as shown in the bottom plot: 
Summation (the difference in response strength 
between the compound and the single CSs) first 
decreases as the overlap between the CSs increases, 
but the expected summation increases again as the 
overlap exceeds 30%. 

However, the prediction changes if different 
parameters are selected for the acquisition of 
associations among CS elements versus 
associations between CS and US elements, 
differences that might arise because of the 
simultaneous versus sequential nature of the 
events themselves. For example, for Pavlovian 
paradigms in which conditioning proceeds 
slowly, within-CS associations may be 
acquired early in training and thus be available 
to suppress summation from the first 
appearance of the CR. By extension, 
paradigms that support rapid conditioning 
should be particularly likely to show 
summation in early stages of training.  
Nonetheless, intermixed presentations of the 
CSs prior to such conditioning would serve to 
reduce summation by establishing in advance 
inhibitory associations between the distinctive 
elements of the CSs. 

Figure 8 also shows how the prediction of 
summation is sensitive to the proportion of 
overlap between the CSs – summation is 
suppressed when the two CSs share 50% or 
fewer of their elements in common, but 
summation progressively returns if the CSs 
share a large proportion of elements in 
common (e.g., 90%).  Summation reappears 
under these circumstances because the 
mechanism that suppresses summation – 
mutual inhibition between distinctive elements 
– affects only a small proportion of the 
associative strength of the two CSs.4 

Differences in the development of mutual 
inhibition between distinctive elements are 
also relevant to the conflicting results 
regarding the summation of responding to a 
triple compound, ABC, when the three stimuli 
are conditioned individually (A+, B+, and C+) 
versus as three pairwise compounds (AB+, 
AC+, and BC+).  Pearce et al. (1997) observed 
summation of keypeck responses to the 
compound ABC in pigeons trained with the 
two-CS compounds but not in pigeons trained 
with the single CSs; whereas Myers et al. 
(2001) observed greater summation of 
conditioned eyelid responses to ABC in 
rabbits conditioned with the three CSs 
separately than in rabbits conditioned with the 
two-CS compounds.  In general, the current 
model predicts greater summation when the 
three CSs are conditioned individually than as 
paired compounds (consistent with the results 
reported by Myers et al., 2001).  However, this 
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difference is sensitive to the presence of 
common elements because, as in the case of 
simple summation between two CSs, the 
common elements will serve to establish 
mutually inhibitory associations between the 
distinctive elements of the CSs when they are 
conditioned individually, thereby reducing the 
amount of responding elicited by the 
compound ABC.  Note that this process will 
not occur when the CSs are conditioned as 
paired compounds because any inhibitory 
associations between the distinctive elements 
will be prevented every time those elements 
occur together in one of the compounds.  
However, as in the case of simple summation, 
the current models predicts that the above 
difference will only emerge later in the course 
of training.  In other words, early in training 
animals trained with the single CSs should 
show always greater summation than animals 
trained with compound pairs, whereas with 
extended training, this difference should 
disappear and may even reverse if the stimuli 
share many elements in common. 

External inhibition and overshadowing. 

Like the replaced elements model and Pearce’s 
configural model, the elemental model 
proposed here attributes external inhibition to 
a loss of CS activation (CS elements that 
would otherwise receive a boost in weight by 
entering the attention buffer are displaced 
from it by elements of the added stimulus).  
The current model is also readily equipped to 
explain why a familiar stimulus is less able 
than a novel stimulus to induce external 
inhibition (Brimer, 1970; Pavlov, 1927).  
Across the course of exposure to the stimulus, 
associations would form between its elements 
(and between the context and the stimulus 
elements) with the consequence that elements 
of the stimulus would be associatively primed 
and thus prevented from subsequently entering 
the attention buffer.  Thus the familiar 
stimulus places less demand on the attention 
buffer and so is less effective at producing 
external inhibition because it displaces fewer 
elements of the CS from the buffer. 

 The current model can be seen to 
predict that external inhibition will decrease as 
the similarity between the CS and added 
stimulus increases. For example, the response 
deficit should be smaller when the two stimuli 

are in the same modality than from different 
modalities. This is predicted because an added 
stimulus from the same modality will have 
fewer distinctive elements that can displace 
the conditioned elements of the CS from the 
buffer.  In addition, their common elements 
will have increased representation in the buffer 
due to the summed inputs from the two 
stimuli. Since the common elements will have 
been conditioned, their increased activation in 
the compound will serve to maintain the CR.  
Essentially the same prediction is made by 
Pearce’s configural model and the McLaren 
and Mackintosh model. In the former case, the 
more similar the added stimulus and CS, the 
more their compound will activate the 
configural node of the CS. According to the 
McLaren and Mackintosh model, the response 
deficit is determined by the increased 
probability that CS elements will not be 
sampled when the new stimulus is added to the 
CS. This probability is a positive function of 
the number of distinctive elements in the 
added stimulus, and is therefore reduced as the 
number of common elements increases. In this 
respect, these three models can be 
distinguished from the replaced elements 
model of Wagner and Brandon (2001) which 
makes the opposite prediction.  According to 
that model, there will be greater external 
inhibition between stimuli in the same 
modality because there will be a greater 
replacement of CS elements when those 
stimuli are compounded compared to stimuli 
from different modalities. 

The current model can also explain the 
asymmetry between external inhibition and 
overshadowing reported by Brandon et al. 
(2000).  When a novel stimulus is presented 
with a CS, those CS elements that are 
displaced from the attention buffer remain 
active (but with smaller weight), and so 
continue to contribute to responding.  In other 
words, even if half the elements of the CS 
were displaced by the novel stimulus, the CR 
would be reduced by only ¼.  But the 
equivalent calculation does not apply in the 
case of overshadowing: Because the 
acquisition of associative strength for all 
elements is governed by a single error term, 
the elements of each CSs will gain, on 
average, only half the available associative 
strength. 
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The current model also predicts a difference 
between overshadowing and external 
inhibition in terms of the effects of stimulus 
similarity.  As described above, there should 
be less external inhibition when the CS and 
added stimulus are similar (e.g., from the same 
modality).  By contrast, the amount of 
overshadowing between two CSs should not 
be affected by their similarity.  When two CSs, 
A and B, are conditioned in compound, 
associative strength will be distributed among 
the distinctive elements of each CS and their 
common elements. Therefore, the 
generalization of responding to A or B alone 
will be reduced by two factors: (1) the amount 
of associative strength that has been taken up 
by the distinctive elements of the other CS; 
and (2) the drop in activation weight of the 
common elements.  While the relative 
influence of these two factors will change as 
the similarity increases (the importance of the 
first factor will decrease and the 2nd will 
increase), they are effectively complementary 
such that the net effect on responding remains 
constant (a conclusion confirmed by 
conducting simulations of the process).  In this 
regard, the current model can be distinguished 
from the other models considered here.  The 
replaced elements model predicts that 
overshadowing increases as the similarity of 
the CSs increases, because of the greater 
number of elements that undergo replacement 
between single and compound presentations. 
Pearce’s configural model makes the opposite 
prediction – as two CSs become more similar, 
their ability to activate the compound 
configural node increases, thus reducing the 
generalization deficit. Like Pearce’s configural 
model, the McLaren and Mackintosh model 
predicts less overshadowing between similar 
CSs because the deficit in responding to either 
single CS is only reduced to the extent that the 
distinctive elements of the other CS have 
acquired associative strength during 
compound conditioning. 

Changes in associative strength when CSs 
are conditioned in compound. 

Much of the discussion thus far has been 
concerned with how the elements of different 
stimuli compete for access to an attention 
buffer and the consequences this has for the 
CR.  I have said comparatively little about the 
consequences of this competition for 

conditioning.  In the simplest case, when two 
neutral CSs are presented in compound and 
reinforced, the outcome is straightforward – 
their elements share the available associative 
strength, and those elements that enter the 
attention buffer acquire much more associative 
strength than those excluded from the buffer.  
Thus, if two CSs have equal salience they will 
acquire equal associative strength, and this 
will be half the strength acquired by either 
stimulus if it were conditioned alone.  This is a 
direct effect of the delta rule proposed by 
Rescorla and Wagner (1972) and adopted by 
almost all contemporary models of associative 
learning.  But this view has been seriously 
challenged by Rescorla’s recent discovery that 
CSs conditioned or extinguished in compound 
do not undergo equal changes in associative 
strength if their initial strengths differ 
(Rescorla, 2000, 2001, 2002bb).  Below, I 
describe these findings and show how the 
current model can explain them. 

Kamin’s (1968) blocking paradigm is the 
clearest example of a design in which stimuli 
with differing associative strengths are 
conditioned in compound: one stimulus (A) is 
conditioned before it is combined with a 
second stimulus (B) and the compound 
reinforced (i.e., A+ followed by AB+).  The 
significant finding Kamin reported was that B 
underwent less conditioning during AB+ trials 
than if A had not been pre-conditioned. The 
Rescorla-Wagner model readily explained this 
finding by asserting that changes in the 
associative strength of any CS is determined 
by the summed associative strength of all CSs 
present on the trial.  Thus conditioning to A 
and B during AB+ trials in phase 2 is curtailed 
by the associative strength already acquired by 
A in phase 1.  Note that, according to the 
Rescorla-Wagner model, conditioning to A 
and B is curtailed – if A and B have equal 
salience, then each will acquire half of what 
limited associative strength remains available.  
It is this prediction that is falsified by 
Rescorla’s recent investigations. 

Rescorla (2001) showed that, in a blocking 
paradigm similar to that described above, B 
acquired greater excitatory conditioning than 
did A during AB+ trials. (Note, this difference 
refers only to the change in associative 
strength that occurred during compound 
conditioning in phase 2. The terminal 
associative strength of A would still be greater 
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than that of B as a result of the prior 
conditioning of A in phase 1.) The effect was 
not confined to the standard blocking design in 
which B is neutral prior to AB+ training; 
Rescorla (2000) observed the same effect if B 
had been pre-trained as a conditioned inhibitor 
(i.e., animals were trained on an A+ X+ BX− 
discrimination in phase 1, and AB+ in phase 
2). Nor did it depend on the same US being 
used during phases 1 and 2: Greater excitatory 
conditioning to B than A was also observed if 
animals had been trained on an A++ AB− 
discrimination prior to AB+ conditioning 
(Rescorla, 2002bb).  Clearly the inequality in 
conditioning to A and B depends on their 
difference in associative strength at the 
beginning of compound conditioning. Rescorla 
reported comparable effects when the AB 
compound was not followed by a US in phase 
2 (Rescorla, 2000, 2001, 2002bb).  In this 
case, however, the change (decrease) in 
associative strength was greater for A than B. 

The above findings are particularly difficult 
for configural theories, like that of Pearce, in 
which conditioning involves a single 
associative change because this excludes the 
possibility of differential changes to the 
components of a compound. Elemental 
models, on the other hand, are better equipped 
to deal with such findings because compounds 
contain multiple sources of associative change, 
thus providing the opportunity for differential 
conditioning of stimulus elements. 
Nonetheless, conventional elemental accounts, 
including the Rescorla-Wagner model, are also 
seriously challenged because these models 
assume that the same associative change is 
applied to each element (ie, they assume a 
“shared fate” for stimuli conditioned or 
extinguished in compound). As such, the 
findings have been taken as support for models 
that use separate error terms to determine the 
change in associative strength of different CSs 
(e.g., Mackintosh, 1975), and have encouraged 
revisions to the Rescorla-Wagner model such 
as Rescorla’s (2000; 2001) suggestion that the 
change in associative strength of a CS, A, 
during compound conditioning is determined 
by the common error term ( – V) multiplied 
by that CS’s own error term ( – VA). 

It is of some significance that the elemental 
model proposed here can readily explain these 
recent findings while retaining the principle 
that changes in associative strength for all 

stimuli are determined by a common error 
term.  The process by which this occurs is 
shown in Figure 9, and depends in large part 
on the assumption (#9) of variability in the 
connectivity between elements. This 
assumption is implemented here as random 
variability in the distribution of connections – 
two elements have a certain probability of 
being connected.  However, the operations 
described below would equally apply if one 
assumed complete interconnectivity between 
elements but random variability in the efficacy 
of those connections to support associative 
learning. 

As illustrated in Figure 9, the associative 
strength of a CS is represented by an array of 
associations between CS and US elements.  
Each US element supports a particular level of 
associative strength, and the strength of any 
single connection between a CS element and 
US element will be determined by the 
activation weight of its CS element relative to 
the weights of the other CS elements that 
converge on the US element.  When stimulus 
A is conditioned, its associative strength is 
distributed equally among the stronger A 
elements (those that enter the attention buffer 
when A is presented in compound with B) and 
the weaker a elements (those displaced from 
the buffer in the AB compound).  Therefore, 
when A is presented in compound with B, half 
of A’s acquired associative strength is reduced 
(to the extent that activation of the a elements 
is now weaker).  This means that many US 
elements can support further conditioning 
during this second phase, even if conditioning 
of A had proceeded to asymptote in phase 1. 
However, the recovered associability is not 
uniformly distributed across the US elements, 
but is largely confined to the US elements that 
receive few connections from the stronger A 
elements.  This is because V remains high for 
the US elements that receive many 
connections from the A elements, so there is 
less opportunity for further conditioning with 
those elements.  In other words, the 
distribution of the residual US associability is 
negatively correlated with the distribution of 
connections from A.  In contrast, there is no 
correlation between the US associability and 
the connections from B.  This difference 
means that B will acquire the greater share of 
the available associative strength.  The same 
logic explains why the pre-trained stimulus A 
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should undergo greater loss of associative 
strength than the novel stimulus B if the 
compound AB is not reinforced.  In this case, 
the A elements are better connected than the B 
elements to those US elements with the 
strongest associative input (and hence support 
the greatest decrease in associative strength). 
These arguments have been confirmed by 
computer simulations shown in Figure 10. 

The account offered above can be extended to 
generate a novel and testable prediction.  As 
described above, when a CS, A, and a neutral 
stimulus, B, are presented in compound and 
not reinforced, the associative strength of A 
decreases more than that of B because the US 
activation is preferentially distributed among 
those US elements with strong input from the 
A elements but is not correlated with the input 
from the B elements.  It follows that the 
opposite result will be observed if the US 
activation becomes preferentially distributed 
among those US elements with more 

connections from the B elements than from the 
A elements.  In such a case, there should be a 
greater decrease in associative strength for B 
than A.  One way to achieve this uses an over-
expectation design (Lattal & Nakajima, 1998).  
Animals are first trained with a compound, 
AB, followed by further conditioning of one of 
the CSs, A, before returning to conditioning of 
the compound (i.e., AB+ then A+ then AB+). 
The return to AB+ conditioning in phase 3 
should give rise to an over-expectation effect 
because the elements of A (A and a) should 
have reached asymptote () by the end of 
phase 2 while the B elements should also have 
associative strength of ½ from conditioning 
in phase 1. Crucially, however, the “excess” 
associative strength acquired during A+ 
training in phase 2 will be preferentially  
distributed among the US elements that 
receive more connections from the elements of 
B than A. This will necessarily occur because 
the associative strength that becomes available 

 
Figure 9. Illustration of how the associative strength between two CSs (A and B) and a US changes 
across phases of a blocking paradigm, according to the elemental model proposed here. The stimuli are 
comprised of 15 elements (circles) of varying activation weight (corresponding to their size). Each CS 
element is connected to 3 US elements. Across conditioning, the strength of each connection grows as 
per the error-correction rule proposed by Rescorla and Wagner (1972). The left diagram depicts the 
connections between A and the US after A+ conditioning in phase 1. The center diagram shows the 
associative connections at the beginning of phase 2 when A and B are presented together. Half of the 
previously established associative strength is reduced because many A elements are displaced from the 
attention buffer (shown as gray circles) effectively halving their activation weight.  As a result, many 
US elements are able to support further conditioning in phase 2.  But because these US elements 
receive few connections from the A elements that remain in the attention buffer, the associative 
strength acquired de novo during phase 2 is biased towards elements in B, as shown in the diagram on 
the right. 
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Figure 10. Response strength, as simulated by the elemental model proposed here, for four 
experimental designs investigated by Rescorla (2000; 2001; 2002b). A: The left plot shows the 
predicted response strength during conditioning of a compound, AB, following pre-conditioning of CS 
A. The gray lines show the response strength that would be elicited by CS A or CS B alone. The right 
plot shows the predicted change in response strength to those CSs during the compound conditioning 
(i.e., their response strength across compound conditioning minus their response strength at the 
beginning of that conditioning). B shows predicted responses for the same design as A except that 
responding to the compound is extinguished (AB-). C and D: The left plots show predicted response 
strength to CS A and CS B during conditioning (C) or extinction (D) of the compound, AB, following 
pre-training on an A+ X+ BX- discrimination. The right plots show the change in response strength to 
CS A and CS B. The dotted horizontal lines in B, C, and D mark zero response strength – negative 
values indicate inhibitory conditioning. 

for conditioning in  phase 2 is distributed 
in large part among those US elements that 
had received strong input from the B 
elements in phase 1.  Therefore, these 
same US elements will be “over-activated” 
by the AB compound in phase 3, and as a 
result will produce the greatest decrease in 
associative strength.  Thus B will lose 
associative strength faster than A in phase 
3, a prediction I have confirmed with 
computer simulations.   

Concluding remarks. 

The present paper has reviewed previous 
elemental and configural models of 
stimulus representation and presents a new 
elemental model based on the approach 
laid out by Stimulus Sampling Theory.  

The new model differs from previous 
elemental models in its assumptions about 
how stimulus elements interact for entry to 
a limited capacity analyzer (attention 
buffer) and its description of the fate of 
elements excluded from the attention 
buffer.  I have shown how this new model 
can explain a large number of behavioral 
findings that previously have been taken 
as evidence contradicting the basis of the 
elemental approach.  Most importantly, it 
permits a solution to negative patterning 
and biconditional discriminations without 
appealing to notions of configural 
representations.  The current model also 
fares better than most elemental models in 
explaining a variety of findings by Pearce 
and colleagues concerning the detrimental 
impact of a redundant cue on negative 
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patterning and feature negative 
discriminations.  This is important because 
these findings have been used to argue for 
the need to invoke the notion of configural 
representations in addition to elemental 
representations.  Another advantage of 
elemental models, such as the one 
presented here, is that they are well-
equipped to explain how stimulus 
representations change with experience, 
thus providing a mechanism by which 
familiarity with a stimulus may reduce its 
associability (i.e., latent inhibition). 

Finally, by allowing elemental 
stimulus units to enter directly into the 
associative process, the current model can 
explain recent findings about differences 
in the fate of stimuli conditioned (or 
extinguished) in compound.  These 
findings have been interpreted as evidence 
against the assumption, at the core of the 
Rescorla-Wagner model, that stimuli 
conditioned in compound undergo the 
same change in associative strength.  The 
explanation provided by the current model 
retains that core assumption, and attributes 

the evidence for differences in the rate of 
conditioning to specific biases in the 
distribution of available associative 
strength across US elements. 

Ultimately, the worth of any 
proposed scheme for stimulus 
representation will depend not only on its 
explanatory power, but how satisfactorily 
the mechanisms it invokes can be 
described and tested. The model proposed 
here explicitly avoids invoking configural 
representations.  Instead, it uses a limited-
capacity attention buffer as the mechanism 
responsible for the non-linear interactions 
between stimulus elements.  An advantage 
of this approach is that it maintains a clear 
distinction between associative and 
representational processes, making 
investigation of their interactions 
potentially more tractable.  On the other 
hand, the accessibility of detailed 
elemental models such as the present one 
is limited by the potential complexity of 
the computations required to reveal the 
model’s behavior. 
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Notes  
                                                 

1 This is because the model assumes that any stimulus occupies approximately half the available 
representational space. So two distinct stimuli, each of which independently activates half the total 
populations of elements, will share 25% percent of the total representational space, constituting 50% of 
their number of elements. 

2 I have confirmed this conclusion by conducting computer simulations of the two discriminations 
based on the McLaren and Mackintosh model. 

3 An attractive, and only marginally more complex, alternative describes element activation strength by 
a power function.  In this scheme, the activation weight of an element is not linearly related to the 
physical intensity (I) of that feature, but is compressed as approximated by a power function with an 
exponent less than 1 (e.g.,  = I½).  If the activation weight of an element were to correspond to the 
perceived intensity of that feature in the stimulus, then framing that relation in a power law is neither 
new nor controversial, it complies with long-standing psychophysical evidence concerning the 
relationship between the physical and perceived magnitudes of sensory events (Stevens, 1962). In this 
case, at the input level the physical intensity of a common element in a compound would still be the 
sum of its intensities in the two stimuli, but the activation weight of the corresponding element would 
be less than the sum of its weights in the single stimuli. 

4 It is worth noting that the associative strength that accrues to common elements under these 
circumstances is also limited in the amount of summation it can support. In the extreme case, where 
two identical CSs are conditioned (i.e, with 100% overlap), the input strength of all elements doubles in 
the compound (in this case, “the compound” being the same CS but with twice the intensity).  
However, since only half the elements can now enter the attention buffer, this will produce only a 50% 
increase in total activation weight.  This is the same limit placed on summation when two CSs with no 
common elements are presented in compound. 


