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Abstract  

Direct measurements of airway lumen and wall areas are potentially useful as a 

diagnostic tool and as an aid to understanding the pathophysiology underlying lung 

disease. Direct measurements can be made from images created by high resolution 

computer tomography (HRCT) by using computer-based algorithms to segment airways, 

but current validation techniques cannot adequately establish the accuracy and 

precision of these algorithms.  

A detailed review of HRCT airway segmentation algorithms was undertaken, from which 

three candidate algorithm designs were developed. A custom Windows-based software 

program was implemented to facilitate multi-modality development and validation of 

the segmentation algorithms.  

The performance of the algorithms was examined in clinical HRCT images. A centre-

likelihood (CL) ray-casting  algorithm was found to be the most suitable algorithm due to 

its speed and reliability in semi-automatic segmentation and tracking of the airway wall. 

Several novel refinements were demonstrated to improve the CL algorithm’s robustness 

in HRCT lung data. 

The performance of the CL algorithm was then quantified in two-dimensional simulated 

data to optimise customisable parameters such as edge-detection method, interpolation 

and number of rays. Novel correction equations to counter the effects of volume 

averaging and airway orientation angle were derived and demonstrated in three-

dimensional simulated data.  

The optimal CL algorithm was validated with HRCT data using a plastic phantom and a 

pig lung phantom matched to micro-CT. Accuracy was found to be improved compared 

to previous studies using similar methods. The volume averaging correction was found 

to improve precision and accuracy in the plastic phantom but not in the pig lung 

phantom. When tested in a clinical setting the results of the optimised CL algorithm was 

in agreement with the results of other measures of lung function.  

The thesis concludes that the relative contributions of confounders of airway 

measurement have been quantified in simulated data and the CL algorithm’s 

performance has been validated  in a plastic phantom as well as animal model. This 

validation protocol has improved the accuracy and precision of measurements made 

using the CL algorithm.  
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CHAPTER 1 

Introduction 

For many years, the diagnosis of asthma and other lung diseases has relied on global 

pulmonary function tests (PFTs). PFTs such as spirometry are insensitive to changes in 

regional lung structure and function.  

Early detection and treatment can lower the cost of lung disease and potentially 

enhance the survival of patients (Gomez, Rodriguez-Roisin et al. 2002). In order to detect 

lung disease in its earliest stages, the lung structure and function must be measured on 

both global and localised levels (Hogg, Macklem et al. 1968). 

The Woolcock Institute of Medical Research’s Monitoring Devices program has been 

exploring alternative diagnostic techniques that might allow regional analysis within the 

lung. Modern imaging techniques, and High Resolution Computed Tomography (HRCT) in 

particular, now provide the capability to measure airway dimensions in vivo. Direct 

assessment of the the magnitude and distribution of airway lumen narrowing and airway 

wall thickening is potentially useful as a diagnostic tool and as an aid to understanding 

the pathophysiology underlying lung disease  (King, Muller et al. 1999; King, Carroll et al. 

2004).  

The HRCT image analysis algorithms used in this thesis began as software support for the 

Monitoring Devices program within the Woolcock Institute of Medical Research. As the 

project developed, it became apparent that the program needed a validation protocol 

for the algorithms used to evaluate airway changes found in asthma and chronic 

obstructive pulmonary disease (COPD). This thesis describes the development of a 

suitable algorithm and the validation protocol to establish its precision and accuracy. 
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1.1 Lung structure and function 

The lungs consist of respiratory airways within a sponge-like structure, the parenchyma. 

The airways are tubes, known as bronchioles, which continually divide from the trachea 

downwards to form an inverted tree-like structure (Burrowes, Swan et al. 2008). As the 

main airway divides, the branches become smaller, terminating at alveoli as shown in 

Figure 1.1 below.  

  

Figure 1.1: Simplified representation of bronchi, bronchial tree and lungs 

Source: http://training.seer.cancer.gov/anatomy/respiratory/passages/bronchi.html;  last accessed 20/3/09. 

The trachea and larger bronchi contain c-shaped rigid bars of cartilage in their walls 

(Reid 1976). The cartilage helps to keep the airway from collapsing when there is 

negative pressure in the airway, as occurs during inhalation. The walls of the bronchi 

contain smooth muscle that can cause the airway to expand or contract (Beachey 2007). 

For example, during exercise, the airway expands to increase airflow ventilation. 

Conversely, when exposed to polluted or very cold air, the airway contracts to protect 

the downstream tissues from injury.  

In addition to muscle, the normal bronchial walls contain many other types of cells 

(Figure 1.2). The innermost layer, the epithelial lining, contains goblet cells, which 

secrete mucous to lubricate the airways and trap inhaled foreign material such as 

bacteria, viruses, and pollutants (Catallo, Kennedy et al. 2001).  

http://training.seer.cancer.gov/anatomy/respiratory/passages/bronchi.html
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Figure 1.2: Microscopic section of a normal bronchial wall  

Source: http://www.medicinenet.com/smokers_lung_pathology_photo_essay/article.htm; last accessed 3/02/09 

Beneath the lining of the airway, inflammatory cells such as neutrophils, lymphocytes, 

and macrophages destroy or engulf any inhaled foreign material that becomes trapped 

in the mucus. In doing so, however, the inflammatory cells create debris. To help dispose 

of the debris, most of the cells that line the airway have fine hair-like projections known 

as cilia. These ciliated cells sweep and push the foreign material and debris up into the 

larger airways where they can be coughed up or spat out (Beachey 2007). 

In humans the trachea divides at the level of the fifth thoracic vertebra into two main 

stem bronchi (the first generation), which continually subdivide into shorter and 

narrower airways, down to the 23rd generation that ends with the alveoli (Weibel and 

Gomez 1962). Assuming airways have dichotomous branching there will be 

approximately 8 million airways and 14 million alveolar ducts. Gaseous exchange via the 

pulmonary arterial blood supply occurs in the lower part of the airway tree, from the 

17th generation. Here, the airways have become deeply embedded in the lung 

parenchyma and are kept open to maintain airflow by the elastic recoil of the 

surrounding tissue (Saetta, Turato et al. 2000).  

The function of the lungs is optimised by aligning ventilation and pulmonary blood flow 

at a regional level, allowing the satisfaction of the metabolic requirements of the body at 

the lowest energy cost (Wilson 1967). The efficiency of this system is highly dependent 

on the structure and shape of the airways. Efficiency decreases with disease because 

lung disease alters the structure of the lungs, leading to changes in pulmonary airflow 

and reduction of the ventilation and perfusion matching (Beachey 2007). 

http://www.medicinenet.com/smokers_lung_pathology_photo_essay/article.htm
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1.2 Airway disease 

Diseases of the airways are a common and significant cause of illness and death, with 

around 15 per cent of the global burden of all disease (Khaled, Enarson et al. 2001). 

 The two most common airway diseases, asthma and chronic obstructive pulmonary 

disease (COPD), are considered here. 

1.2.1 Asthma  

Asthma is a chronic or recurring inflammatory condition in which the airways develop 

increased responsiveness to various stimuli. The disorder is characterised by bronchial 

hyper-responsiveness, inflammation, increased mucus production and intermittent 

airway obstruction. During an asthma attack, the lining of the bronchial tubes swells, 

causing the airways to narrow and reducing the flow of air into and out of the lungs.  

The symptoms of asthma, which can range from mild to life threatening, can usually be 

controlled with a combination of drugs and environmental changes.  

Asthma has a relatively low fatality rate compared to other chronic diseases, but 

worldwide 255,000 people nevertheless died of asthma in 2005 (WHO 2008). Recurrent 

asthma symptoms frequently cause sleeplessness, daytime fatigue, reduced activity 

levels and school and work absenteeism. According to World Health Organization (WHO) 

estimates, 300 million people suffer from asthma (WHO 2008). Asthma is the most 

common chronic disease among children.  

Public attention in the developed world has recently focused on asthma because of its 

rapidly increasing prevalence, affecting up to one in four urban children. However, 

asthma is a public health problem for all countries, regardless of development. Over 80 

per cent of asthma deaths occur in low and lower-middle income countries. Asthma 

deaths will increase by almost 20 per cent in the next 10 years if urgent action is not 

taken (WHO 2008). 

Asthma is under-diagnosed and under-treated, creating a substantial burden to 

individuals and families and possibly restricting individuals’ activities for a lifetime.  

Although the fundamental causes of asthma are not completely understood, the 

strongest risk factors for developing asthma are inhaled asthma triggers (Dougherty and 

Fahy 2009). These include:  

 

 indoor allergens (for example, house dust mites in bedding, carpets and stuffed 

furniture, pollution and pet dander)  

 outdoor allergens (such as pollens and moulds)  

http://en.wikipedia.org/wiki/Chronic_%28medicine%29
http://en.wikipedia.org/wiki/Inflammation
http://en.wikipedia.org/wiki/Lung
http://en.wikipedia.org/wiki/Bronchus
http://en.wikipedia.org/wiki/Allergic_Inflammation
http://en.wikipedia.org/wiki/Mucus
http://en.wikipedia.org/wiki/Medication
http://en.wikipedia.org/wiki/Developed_country
http://en.wikipedia.org/wiki/Prevalence
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 tobacco smoke  

 chemical irritants such as plicatic acid and isocynates in the workplace.  

Allergy is only one risk factor for asthma. Other triggers can include cold air, extreme 

emotional arousal such as anger or fear, and physical exercise. Even certain medications 

can trigger asthma, such as aspirin and other non-steroid anti-inflammatory drugs, and 

beta-blockers (used to treat high blood pressure, heart conditions and migraine). Family 

history, early childhood infection and urbanisation has also been associated with an 

increase in asthma, although the exact nature of these relationships are unclear 

(Mansour, Lanphear et al. 2000). 

In most cases, a physician can diagnose asthma on the basis of typical findings in a 

patient's clinical history and examination. Asthma is strongly suspected if a patient 

suffers from eczema or other allergic conditions—suggesting a general atopic 

constitution—or has a family history of asthma. However, physiological testing to find 

evidence of reversible airway obstruction is recommended to confirm the diagnosis 

(Sugiyama, Sagara et al. 2008).  

Spirometry  

In adults, the most reliable method of asthma diagnosis is by spirometry. This pulmonary 

function test (PFT) uses a spirometer to measure the amount of air entering and leaving 

the lungs. The patient exhales and inhales deeply, then seals his or her lips around the 

mouthpiece and blows as forcefully and for as long as possible until all the air is exhaled 

from the lungs. 

Ideally, the patient should exhale for at least 6 seconds. The spirometer measures the 

amount of air exhaled and the length of time it took to exhale it. The amount of air 

exhaled in the first second, expressed as "FEV1", is measured and compared to the total 

amount exhaled. If the amount exhaled in 1 second is disproportionately low to the total 

exhaled, the patient has an obstruction. To test for reversibility, the patient then inhales 

a bronchodilator and the spirometry is repeated. If the values of the test performed 

after administration of the bronchodilator are significantly better than the pre-

bronchodilator values, the obstruction is considered reversible. 

Sometimes a patient with asthma does not demonstrate reversibility after the inhalation 

of a bronchodilator. In this case, the patient may be treated for a few weeks with anti-

inflammatory medications and then returns for another spirometry test. If the post 

treatment spirometry results are better than the initial results, the obstruction is 

considered reversible. 

http://en.wikipedia.org/wiki/Diagnosis
http://en.wikipedia.org/wiki/Eczema
http://en.wikipedia.org/wiki/Allergy
http://en.wikipedia.org/wiki/Atopy
http://en.wikipedia.org/wiki/Atopy
http://en.wikipedia.org/wiki/Atopy
http://en.wikipedia.org/wiki/Family_history_%28medicine%29
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Bronchial challenge testing 

Occasionally, a patient with a suspected asthma-related airway obstruction does not 

demonstrate obstruction in spirometry or peak flow monitoring. In this circumstance, 

the diagnosis of airway obstruction may be provided by bronchial provocation. 

Bronchial provocation, also known as bronchoprovocation and bronchial challenge, 

identifies and characterises hyper-responsive airways by having the patient inhale an 

aerosolised chemical, called a broncho-spastic agonist, that triggers a hyper-responsive 

reaction (Minasian, Wallis et al. 2008). The chemicals most often used are histamine and 

methacholine. 

Patients perform spirometry without inhaling the agent and then inhale increasingly 

higher doses of the agent. After each incremental dose inhalation, spirometry is 

performed. Patients who demonstrate a reduction in FEV1 of 20% with a low dose of 

methacholine or histamine have nonspecific hyper-responsiveness. Although some 

patients without asthma demonstrate hyper-responsiveness, most patients with a 

positive reaction have asthma. 

The other common bronchoprovocation test is the exercise challenge test, which is used 

primarily with patients whose asthma is triggered by exercise. The patient performs 

spirometry and then exercises, usually on a treadmill or exercise cycle. The exercise test 

should resemble as closely as possible the conditions under which the symptoms are 

usually triggered. After the patient exercises, spirometry is repeated. This may be done 

several times, immediately after exercise and periodically, until there is a drop in the 

FEV1 greater than 20% or until 30 minutes have elapsed. 

Testing peak flow at rest (or baseline) and after exercise can be helpful, especially in 

young asthmatics, who may experience only exercise-induced asthma. If the diagnosis is 

in doubt, a more formal lung function test may be conducted. Once a diagnosis of 

asthma is made, a patient can use peak flow meter testing to monitor the severity of the 

disease (Enright and McCormack 2008). 

Problems with current tests 

While measurement of lung function is possible for adults, most new cases of asthma 

are diagnosed in children who are unable to perform such tests. Diagnosis in children is 

based on a careful compilation and analysis of the patient's medical history and 

subsequent improvement with an inhaled bronchodilator medication. Enright and 

Enright (2008) have suggested that spirometry-based testing is poorly understood, hard 

to administer and evaluate, and has both false positive and false negative results. 

http://en.wikipedia.org/wiki/Exercise-induced_asthma
http://en.wikipedia.org/wiki/Spirometry
http://en.wikipedia.org/wiki/Peak_flow_meter
http://en.wikipedia.org/wiki/Medical_history
http://en.wikipedia.org/wiki/Bronchodilator
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1.2.2 Chronic obstructive pulmonary disease  

Chronic obstructive pulmonary disease (COPD) is an umbrella term for a group of airway 

diseases that are characterised by airflow obstruction or limitation, including chronic 

bronchitis, emphysema and bronchiectasis (Gomez, Rodriguez-Roisin et al. 2002). The 

most common cause is tobacco smoking, but COPD can also be caused by exposure to 

other airway irritants like coal dust or solvents. In some cases, the cause is unknown 

(idiopathic COPD), or the disease may arise due to congenital defects. 

COPD is a major public health problem internationally. It is the fourth leading cause of 

chronic morbidity and mortality in Australia (Berend 2001), and the World Health 

Organisation (WHO) predicts that COPD will become the fourth leading cause of death 

worldwide by 2030. According to WHO estimates, 80 million people have moderate to 

severe COPD and three million people died of COPD in 2005 (WHO 2008).  

At present just over 2 million Australians are estimated to have COPD, equating to nearly 

1 in 5 (18.6 per cent) people aged 40 or over (Poulos, Toelle et al. 2005). Of these, 1.2 

million people have COPD severe enough that its symptoms are starting to or have 

already affected the way they live their daily lives. The other 900,000 people will have a 

mild form of COPD where symptoms are often ignored or mistaken for ageing or even 

asthma. Many of these will go on to develop more severe forms of COPD if they do not 

take appropriate action (Asia Pacific 2005). 

Almost half of all those with COPD are still in the prime of their working lives, and 57 per 

cent of all people with COPD are women. COPD is more common in any given year than 

the most common types of cancer, road traffic accidents, ear disease or diabetes. If 

nothing is done to change the current trends, in 2050 an estimated 4.5 million 

Australians will have COPD — with 2.6 million of those having moderate to very severe 

COPD (Frith, Cafarella et al. 2008).  

There is general agreement in the literature that COPD has long been under-diagnosed 

both in Australia and across the world (Lamprecht, Schirnhofer et al. 2008). Under-

diagnosis is a significant issue because the earlier COPD is diagnosed, the earlier steps 

can be taken to improve lung health and to prevent further damage to the airways. Early 

intervention is the key to reducing the progression of the disease into stages that cause 

significant impacts on quality of life and costs to the health system (Access Economics 

Report, 2008). This has ensured that more accurate, and early diagnosis will remain a 

research priority in the field of respiratory health.   

COPD is primarily caused by noxious particles or gases, most commonly from smoking, 

which trigger an abnormal inflammatory response in the lung (Rennard 2002; Rabe, 

Hurd et al. 2007). Smoking damages the cilia. The damaged cilia cannot efficiently move 

http://en.wikipedia.org/wiki/Respiratory_tract
http://en.wikipedia.org/wiki/Chronic_bronchitis
http://en.wikipedia.org/wiki/Chronic_bronchitis
http://en.wikipedia.org/wiki/Chronic_bronchitis
http://en.wikipedia.org/wiki/Emphysema
http://en.wikipedia.org/wiki/Bronchiectasis
http://en.wikipedia.org/wiki/Tobacco_smoking
http://en.wikipedia.org/wiki/Solvents
http://en.wikipedia.org/wiki/Idiopathic
http://en.wikipedia.org/wiki/Congenital
http://en.wikipedia.org/wiki/Smoking
http://en.wikipedia.org/wiki/Inflammatory_response
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the mucus and, as a result, mucus builds up in the lungs and thickens. When this occurs 

the lungs become vulnerable to infections. The airways become swollen and begin to 

narrow when irritants stay in the lungs for an extended period of time. Over time, it is 

thought that proteolytic activity from the resultant inflammatory cells destroy the lung 

elastic ability, and making breathing harder (Rabe, Hurd et al. 2007). The loss of elasticity 

causes the lungs to become flaccid, decreasing their ability to exhale resulting in air 

becoming trapped. This “hyperinflation” of the lungs makes it difficult and 

uncomfortable to breathe (Saetta, Turato et al. 2000). 

While PFTs are considered the gold standard for assessing several lung properties, they 

only provide global information describing lung function and structure. Some 

researchers believe COPD-related changes occur at the small airways (Hogg, Macklem et 

al. 1968). Since small airways have a relatively minor contribution to the overall airway 

resistance, early changes are small and may be undetectable by such tests. Currently, 

based on symptoms and patient history, different PFTs are indicated to confirm or rule 

out certain pathologies. For instance, a combination of spirometry, before and after a 

bronchodilator challenge, followed by a diffusing capacity test, could help differentiate 

between a case of COPD and bronchitis (West 1998). 

1.2.3 Airway remodelling 

Both asthma and COPD have now been shown to be associated with irreversible changes 

in airway structure known as airway remodelling (McParland, Macklem et al. 2003). 

Airway remodelling is defined as changes in the composition, content and organisation 

of the cellular and molecular constituents of the airway wall.  

To date, the little that is known about the pattern of these changes has been detected 

and quantified using histological examination. Airway remodelling has been documented 

not only in the large but also in small asthmatic airways (James, Maxwell et al. 2002). 

The structural changes that have been documented in asthmatic airways include 

increased smooth muscle mass (Carroll, Elliot et al. 1993) and increased airway 

vascularity in the form of increased size of airway wall vessels and angiogenesis (Tanaka, 

Yamada et al. 2003). Evidence suggests that airway restructuring occurs early and is 

likely to be involved in the development and progression of asthma. Such studies require 

access to surgical or autopsy samples of the airways and are necessarily cross-sectional 

in design.  

Noninvasive methods are required to further investigate the pathogenesis of airway wall 

remodelling, to assess changes over time, and to allow the assessment of new 

therapeutic interventions designed to attenuate or reverse these structural changes. 

Therefore, the development and application of relatively simple and safe methods for 
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assessing markers of inflammation and alterations in the airways are vital, especially for 

children (Djukanovic and Djukanovic 2002). 

Although results from PFTs have been used to represent airway remodelling, they have 

limited use since they are affected by concomitant disease or medication and in any case 

provide only a global measure of lung function (Niimi, Matsumoto et al. 2004).  

Technical advances in computed tomography (CT) allow an assessment of airway wall 

thickness and cross-sectional area in vivo that may be soon comparable to histological 

examination. However, the information that can be currently obtained from CT is 

currently less detailed than that obtained from histological examination (Bergeron, Tulic 

et al. 2007). CT cannot distinguish which components of the airway wall are thickened, 

for example. Despite this limitation, the ability to measure multiple airways relatively, 

noninvasively and repeatedly offers major potential advantages. 

1.3 X-ray imaging techniques 

X-ray imaging is one of the fastest and easiest ways for a physician to view the internal 

organs and structures of the body. Two-dimensional (2-D) radiography has been 

available for over 100 years (Kraft and Finby 1980) and is used for a wide range of clinical 

applications, including but not limited to, assessing skeletal trauma (Cooper and Little 

1979), the gastro-intestinal system,  mammography, and the thoracic cavity including 

the lungs and heart. 

Radiography is by far the most commonly performed diagnostic X-ray examination, 

accounting for approximately half of all X-ray procedures obtained in medical 

institutions. The number of chest X-rays estimated from surveys taken in the U.S., 

Europe, and Japan is in the range of 200 to 330 per thousand of population per year. As 

the combined population of these areas is around 760 million, and using the average 

figure of 265 X-rays per thousand population, this equates to over 200 million chest X-

rays taken in these geographic areas per year, or approximately 550,000 chest X-rays 

each day of the year (Fatz 2004). 

1.3.1 X-ray computed tomography 

Developed in the 1970s, computed tomography (CT) is a relatively new technique 

(Hounsfield 1973) for the nondestructive visualisation of the internal structure of 

objects.  CT, like radiography, is based on the attenuation of X-rays with matter 

producing grayscale images corresponding to the material’s X-ray linear attenuation 
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coefficient, which is primarily a function of density and atomic number. However, there 

are several advantages that CT has over traditional 2-D medical radiography.  

First, CT completely eliminates the superimposition of images of structures outside the 

area of interest. It is impossible to display within the framework of a conventional 2-D X-

ray radiogram all the information contained in the three-dimensional (3-D) scene under 

view. Objects situated in depth, that is, in the third dimension, superimpose, causing 

confusion to the viewer.  

Secondly, conventional X-rays cannot distinguish between soft tissues. In general, a 

radiogram differentiates only between bone and air, as in the lungs. Variations in soft 

tissues such as the liver and pancreas are not discernible at all and certain other organs 

may be rendered visible only through the use of radio-opaque dyes. Because of the 

inherent high-contrast resolution of CT, differences between tissues that differ in 

physical density by less than 1 per cent can be distinguished. 

Thirdly, with CT, it is possible to measure the separate densities of the individual 

substances through which the X-ray has passed. This is because CT uses radiographic 

images of the object collected from different angles and a back-projection algorithm 

(Cormack 1963) to reconstruct virtual ‘slices’ through the object. Individual CT images 

are sometimes referred to as ‘slices’ because they correspond to what would be 

observed if an object were sliced open along the scan plane. Consecutive slices can be 

reconstructed to create a 3-D volumetric data set, overcoming the main disadvantage of 

radiography, that is, the superposition of the body’s different internal structures in one 

image, which complicates visualisation and quantification. This allows data from a single 

CT imaging procedure to be viewed as images in the axial, coronal, or sagittal planes, 

depending on the diagnostic task required. 

These advantages have become more pronounced since the technique was first 

developed. First generation CT systems, which used a single X-ray beam and a single 

detector element to acquire the X-ray projection data necessary for image 

reconstruction, quickly evolved into a third generation system, using a fan-shaped X-ray 

beam combined with a rotating X-ray tube and detector. With the development of 

helical CT systems in the late 1980s (Mori 1986), large sections of anatomy could be 

scanned quickly using linear, continuous table motion.  

Density is measured in Hounsfield Units (HU), where water is arbitrarily set to +1000, 

and a range of density values can be measured from air at 0, to dense bone at +2000. HU 

is related to density by the following formula: 

  (1.1) 

http://en.wikipedia.org/wiki/Medical_radiography
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Figure 1.3 shows the range of density values given to a variety of substances.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Typical tissue densities found in HRCT data 

Adapted from http://nobelprize.org/nobel_prizes/medicine/laureates/1979/hounsfield-lecture.pdf 
expressed in Hounsfield units (HU+1000)  

The fundamental CT data unit is the voxel, a volume element on a regular grid in 3-D 

space, which corresponds to the volume bounded by the edges of a pixel and the 

thickness of the image slice. The CT value of a voxel is ideally a function of the 

attenuation coefficient of the material enclosed within it, although unavoidable blurring 

causes surrounding material to also have an influence on the CT value. 

CT has become an important tool in medical imaging supplementing radiography and 

medical ultrasonography. Although it is still quite expensive, it is the gold standard in the 

diagnosis of a large number of different disease entities. With several key technological 

developments (Walter, De Man et al. 2004), it has more recently begun to be used for 

preventive medicine or screening for disease, for example colonography for patients 

with a high risk of colon cancer. Although a number of institutions offer full-body scans 

for the general population, this practice remains controversial due to its lack of proven 

benefit, cost, radiation exposure, and the risk of finding 'incidental' abnormalities that 

may trigger additional investigations (Maher, Kalra et al. 2004). The greatly increased 

availability of CT, together with its value for an increasing number of conditions, has 

been responsible for a large rise in popularity. So large has been this rise that, in the 

most recent comprehensive UK survey, while CT scans constituted 7 per cent of all 

radiologic examinations they contributed 47 per cent of the total collective dose from 

medical X-ray examinations in 2000–01 (Hart and Wall 2004). 
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1.3.2 High resolution X-ray computed tomography 

High resolution computed tomography (HRCT) is a specialised CT protocol where 

imaging parameters are chosen to maximise spatial resolution in the lungs. A high-

spatial frequency reconstruction algorithm is used and field of view is minimised, to 

maximise the resolution of each voxel. Other scan factors (for example, focal spot) may 

be optimised for increased resolution at the expense of scan speed.  

With conventional lung CT, in order to cover the chest in a single breath-hold, it was 

necessary to use thick sections (10–20mm) in order to ensure contiguous coverage. With 

HRCT a narrow slice thickness is used (usually 1–2mm) but these slices are spaced  10–

40mm apart. The result is a few images which are representative of the lungs in general, 

but which cover only approximately one-tenth of the lungs. 

HRCT can depict the fine structures of pulmonary parenchyma not normally visible on 

conventional CT or radiograms and is therefore useful for evaluating both acute and 

chronic changes associated with diffuse infiltrative lung diseases (Nakata, Kimoto et al. 

1985; Corcoran, Renner et al. 1992). Direct measurements of airway structures can be 

made from HRCT image data making it useful for studying asthma (Brown 2008; Carroll 

2008), cystic fibrosis (Martinez, Llapur et al. 2005) and COPD (Camiciottoli, Bartolucci et 

al. 2006). HRCT may be diagnostic for conditions such as emphysema (Gevenois, De 

Vuyst et al. 1996) and bronchiectasis (Dodd and Muller 2006). Where HRCT is unable to 

reach a definitive diagnosis, it is able to provide information on the pattern and 

distribution of the abnormality, so can allow planning of a biopsy which may provide the 

final diagnosis. In the United States in 1999 more than 62 million CT scans were ordered 

(Brenner, Hall et al. 2007) of which 31 per cent were used for lung HRCTs.  

Initially, HRCT was developed using relatively slow CT scanners that did not make use of 

multi-detector technology. The parameters of scan duration, z-axis resolution and 

coverage were interdependent. Recently introduced multi-detector CT scanners are able 

to overcome this interdependence and are capable of imaging at full resolution yet 

retain very fast coverage. Acquisition time of HRCT with multi-detector CT is so short 

that whole-lung HRCT can be performed in one breath-hold. These modern CT scanners 

now provide slice thicknesses less than 1 mm, so a CT data set covering the chest may 

contain more than 300 slices. Manual analysis of these images is not only time-

consuming, tedious and error-prone due to the increasing number of scans being made, 

it is increasingly becoming impractical (Aykac, Hoffman et al. 2003). 

State-of-the-art medical CT scanners allow up to 0.25mm in-plane and 0.5mm through-

plane resolution (Wang, Zhao et al. 2005). However, this level of resolution has been far 

superseded by parallel technological advances which have extended the resolution 

capability well below the mm resolution limits of clinical systems. 

http://en.wikipedia.org/wiki/Biopsy
http://en.wikipedia.org/wiki/Computed_tomography#Multislice_CT
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1.3.3 Micro X-ray computed tomography 

Technological advances in the 1980s enabled the construction of microfocus X-ray tubes. 

Using these tubes, micro-tomography (micro-CT) systems could be developed. Micro-CT 

instruments are based on the same principles as other CTs, but have the advantage of an 

enhanced resolution up to 0.001 mm. To create a micro-CT image, a series of projection 

images are taken around the animal or sample in equally spaced angular intervals 

(Holdsworth and Thornton, 2002). This collection of images is reconstructed with a 

backprojection algorithm to produce a stack of 2-D cross-sectional images with each 

pixel corresponding to a spatial location within the sample (Bushberg et al., 1994). 

In contrast to HRCT, because the slice thickness of each image in the stack is equal to the 

pixel size, the image set is a true 3-D volumetric data set with isotropic voxels. This  

allows for reslicing the image data to provide the orthogonal or oblique views and 

visualisation of the spatial orientation of tissues with no loss of resolution within the 

sample (Ford, Thornton et al. 2003). However, due to the limitations of the sample 

chamber, the specimen examined must either be relatively small, such as a live rodent, 

or excised from biopsy material (Holdsworth and Thornton 2002).  

Early investigations of micro-CT focused on the technical and methodological aspects, 

whereas more recent investigations have stressed the practical application aspects of 

this technology. Feldkamp et al (1989) established a micro-CT system to image a 3-D 

object at spatial resolution of 0.05mm. In the past decade, micro-CT has become a 

powerful technique in laboratory investigation as technical advances in computer speed 

and memory size and availability of megapixel charge-coupled device (CCD) detectors  

have enabled micro-CT systems to generate high-spatial-resolution images of small 

specimens (Langheinrich, Leithauser et al. 2004). High-resolution serial images of organ 

micro-architecture have been obtained for biomedical drug testing. Visualisation of a 

specimen can be obtained quickly and intact specimen analysis is non-destructive.  

Micro-CT is currently used for studying the 3-D structure of a wide range of small objects 

in microscopic detail, such as the microstructure of coke (Jones, Reztsov et al. 2007) and 

receptor structures of the inner ear (Uzun, Curthoys et al. 2007) but its use in lung has 

only recently began to be explored (Sera, Fujioka et al. 2003; Shofer, Badea et al. 2007). 

Micro-CT resolution is almost two orders of magnitude greater than HRCT, where 

resolution is at best 0.25mm. The resolution of micro-CT should allow airway 

measurements of similar or greater accuracy to morphometry (San Jose Estepar, Reilly et 

al. 2008), but in three dimensions, which would allow validation of segmentation 

algorithms used to measure airway dimensions in vivo. 
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1.3.4 CT artifacts 

CT images are inherently more prone to artifacts than conventional radiographs because 

the image is reconstructed from something in the order of a million independent 

detector measurements (Voros and Voros 2009). 

There are also several known artifacts in CT imaging, each of which can interfere with 

quantitative analysis, and therefore some of the more important ones are briefly 

discussed below. 

Beam hardening 

The phenomenon referred to as ”beam-hardening” results from using polychromatic 

radiation which is attenuated by the  object being scanned in a non-linear way. X-ray 

attenuation processes in matter are energy dependent. The lower energy X-rays in the 

beams are more strongly absorbed than the higher energy X-rays such that the energy 

spectrum of the beam changes as it passes through the object. The emerging beam 

contains a higher proportion of high-energy X-rays. Hence, the attenuation of an 

homogeneous object is not strictly proportional to its thickness and the standard 

reconstruction techniques, which assume a monochromatic source, produce some 

distortions (Figure 1.4). 

Figure 1.4: Example of beam hardening across a micro-CT image of a uniform air phantom  

Pixel intensity profile can be seen on the right corresponding to the pixel profile across the image. Notice the 'cupped appearance' 
due to more attenuation in the centre of the object than around the edge. 

 

 

http://en.wikipedia.org/wiki/Attenuation_(electromagnetic_radiation)
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Many methods are used to minimise the effects of beam hardening. These include:  

 Filtration: a flat piece of attenuating material such as aluminium or copper ‘pre-

hardens’ the beam by filtering out the lower energy components before it passes 

through the patient. An additional ‘bowtie’ filter further hardens the edges of the 

beam which will pass through the thinner parts of the patient. 

 Calibration corrections: some manufacturers provide phantoms in a range of 

sizes which allow the detectors to be calibrated with compensation tailored for 

the beam hardening effects of different parts of the patient. This provides an 

effective means of minimising cupping artifacts. 

 Beam hardening correction software: an iterative correction algorithm may be 

automatically applied when images of bony regions are being reconstructed. This 

helps minimise blurring of the bone/soft tissue interface in brain scans and also 

reduces the appearance of dark bands in non-homogeneous cross sections. 

Ring artifact  

Ring artifacts in reconstructed images appear as sharp rings with a width of one pixel. 

They arise as a result of badly calibrated or defective detector elements , for example, 

from dead pixels in a Charged Coupled Detector (CCD).  Such detector elements have 

non-linear responses to incoming intensity. The arrow appearance of this common 

mechanical artifact has facilitated the development of algorithms to effectively remove 

it with negligible loss of information (Raven 1998). 

Aliasing  

Aliasing appears as dark lines or ‘streaks’ which radiate away from sharp corners. It is 

usually associated with images of extremely dense objects, such as bone or metal 

because it is impossible for the scanner to 'sample' or take enough projections of the 

object. It can also occur when an insufficient X-ray tube current is selected, and 

insufficient penetration of the X-ray occurs. It is also closely tied to motion during a scan. 

Although rarely seen in clinical images, it commonly occurs in test objects such as 

phantoms. Algorithms to counter the effects of aliasing by locally reconstructing the 

image from truncated data have been effectively demonstrated  (Wang, Vannier et al. 

1999). 

Motion artifact 

Patient motion can cause misregistration artifacts, which appear as blurring or streaking 

in the reconstructed image. Steps can be taken to prevent voluntary motion, but some 

involuntary motion may be unavoidable during body scanning. There are, however, 

special features on some scanners designed to minimise the resulting artifacts: 
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 use of as short a scan time as possible to help minimise artifacts when scanning 

regions prone to movement 

 breath-holds for the duration of the scan to prevent respiratory motion 

 cyclical scanning at a single moment of the movement’s phase, for instance 

cardiac gating to avoid cardiac motion and respiratory gating to avoid breathing 

motion (Farncombe 2008). 

Software corrections can also be applied. The maximum discrepancy in detector 

readings occurs between views obtained towards the beginning and end of a scan. Some 

scanners have special software corrections which apply reduced weighting to these 

views to suppress their contribution to the final image. 

Volume averaging 

Volume averaging  appears as 'blurring' over sharp edges. Due to a mismatch between 

the spatial resolution of CT and the structural dimensions of the materials being 

measured each voxel is large enough to contain more than one type of material. In this 

case, the resulting voxel density is made up of the relative contributions of the density of 

each of the materials in space occupied by that voxel.  

For instance, if a voxel contains a small amount of high-density material (for example, 

bone) and a larger amount of lower density (for example, cartilage), then the resultant 

voxel density will be averaged somewhere between the two densities.  The higher the 

amount of the low-density material, the lower the resultant voxel density will become. 

The main consequence is that the distinction in gray levels between materials is blurred 

and boundaries between them are not well defined (Figure 1.5).  

             

Figure 1.5: Thick slice versus thin slice CT images of pig lung tissue 

Volume averaging artifacts are negligible only if the spatial resolution of the CT scanner 

is much higher than the structural dimensions of the object being measured. For 

example, with a spatial resolution of 0.05mm, only the centre slice of a 0.15mm 

A.      B. 



1.4 HRCT airway segmentation algorithms  Introduction 

17 

trabecula tissue reaches the correct density (Cowin 2001).  Even though the problem of 

volume averaging is omnipresent, it particularly affects the HRCT modality, where the 

voxel size in the z-axis is often much larger than that in the x- or y-axes. Volume 

averaging artifacts are particularly prominent in images of any part of the body where 

the anatomy is changing rapidly in the z-direction, such as in the posterior fossa.  

Segmentation algorithms that rely on density levels are known to be adversely affected 

by volume averaging effects (Berry 2008). Volume averaging can be partially reduced by 

using a thin acquisition slice, but unfortunately this increases the noise in the image. To 

reduce image noise, thicker slices can be reconstructed from the acquired data. Because 

of the non-linear nature of volume averaging it has been suggested that the use of 

adaptive interpolation might reduce the effects  of volume averaging (Wang and Vannier 

1994; Chiverton and Wells 2004). 

1.4 HRCT airway segmentation algorithms 

HRCT airway segmentation algorithms seek to provide an objective and repeatable 

measures of the airway lumen and wall dimensions, such as those shown in Figure 1.6. 

Recent interest has arisen from technical improvements in HRCT which have made it 

theoretically possible to examine small airways, and because qualitative and semi-

quantitative measures have been shown to be open to subjective bias (King, Muller et al. 

2000). 

 

 

 

 

 

 

 

 

 

Figure 1.6: Schematic of HRCT calculated airway dimensions most commonly reported  

Dimensions are: airway lumen area and airway wall area, outer wall area, outer wall and lumen diameters, wall thickness, airway 
perimeter, percentage wall area and square root of wall area. The centroid position can be used to calculate and correct for the angle 
at which the airway is observed.  

Wall Area (WA) = OWA-LA 

Wall Thickness (WT) = (OWD-LD)/2   
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1.4.1 Algorithm types 

Many algorithms have been proposed and used for the measurement of airway size 

from HRCT images. Initial studies relied on manual tracing of the airway images either on 

film (Webb, Gamsu et al. 1984), computer screen (Seneterre, Paganin et al. 1994) or via 

projected image (McNamara, Muller et al. 1992) by the investigators. These techniques 

are time consuming and error-prone. For example, (King, Muller et al. 1999) noted that 

error was introduced from the adjustment of window viewing-brightness and contrast 

for better visualisation. This variation in observer interpretation has been stated as 

being the weakest area of clinical imaging (Brealey 2001).  

In an attempt to increase the precision and accuracy of airway measurement, computer-

based methods have been devised to measure airway lumens and walls.  

A simple and common computer-based method for lumen segmentation is the seeded 

region-growing algorithm, where the algorithm is terminated based on a Hounsfield unit 

(HU) threshold cut-off value. The main problem with this type of algorithm is how to 

determine the value for the threshold. Some researchers (McNitt-Gray, Goldin et al. 

1997) have reported that the airway lumen area could be accurately measured by 

including all pixels beyond a threshold cut-off of -500 HU, whereas others (King, Muller 

et al. 2000) contend that a threshold of -577 HU produced the least error. Still others 

have found the threshold to be dependent on the size of the airway being measured 

(Nakano, Whittall et al. 2002).  

The difficulty in choosing a suitable threshold led to the development methods to 

circumvent the problem. One such method was introduced by (Mori, Hasegawa et al. 

1996) is aptly called “explosion controlled region growing”. This method iteratively 

increases the Hounsfield Unit threshold value used to define lumen in adjacent voxels 

until the total number of growing voxels increases too much in one single evolution step. 

Only adjacent voxels below this CT attenuation value will therefore be defined as lumen.  

Other types of algorithms have been developed to overcome this problem, including 

score-guided erosion (King, Muller et al. 2000), Gaussian fit (Berger, Perot et al. 2005, 

Venkatraman, Raman et al. 2006), and fuzzy connectivity (Tschirren, Hoffman et al. 

2005).  

The most common successful approach has been the ‘‘full-width-at-half-maximum’’ 

(half-max) edge-detection method. The user creates a pixel profile allowing the 

computer to  set the threshold at exactly halfway between the wall and the lumen 

density (Figure 1.7).  
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Figure 1.7: Airway measurement using the full-width at half-maximum algorithm 

A representative X-ray attenuation curve for a ray that passes from the lumen through the airway wall and into the parenchyma is 
shown. The thickness of the wall is determined using the half-maximum point of the change in X-ray attenuation as the ray enters 
and exits the wall. From (de Jong, Muller et al. 2005). 

This method of choosing a threshold is more objective, but it does not overcome 

inherent inhomogeneity found in airway walls in HRCT images, so that a different 

threshold must be defined for different parts of the airway wall. 

The ray-casting algorithm was developed to address this lack of airway wall 

homogeneity. The algorithm requires that a seed point be placed in the lumen and the 

X-ray attenuation values be measured along rays cast from this point outward toward 

the airway wall in all directions. As a ray enters the wall, the attenuation will initially 

increase, and then decrease as it passes into the lung parenchyma. The distance 

between the point at which the attenuation is halfway to the maximum on the lumen 

side and the point halfway to the local minimum on the parenchymal side is considered 

to be the wall thickness. 

Although the more sophisticated ray-casting algorithm does provide a standardised and 

objective measurement, it was also found to have limitations. When HRCT algorithm 

measurements were compared with measurements from phantoms and anatomical 

specimens, the algorithm consistently overestimated WA and underestimated LA 

(Nakano, Whittall et al. 2002). These systematic errors were thought to be due to a 

combination of factors including: the spatial resolution of the HRCT scanner; the angle of 

orientation of the airway within the HRCT slice; the point-spread function; the 

reconstruction algorithm used; the algorithm used; and inability to visualise the folding 

of the epithelium.  
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1.4.2 Validation phantoms 

Before HRCT segmentation algorithms can be accepted into clinical practice, validation 

to establish the accuracy and precision of these methods is crucial (San Jose Estepar, 

Reilly et al. 2008). In previous studies, a number of validation methods have been 

proposed for HRCT segmentation algorithms (summarised in Table 1.1). These validation 

methods are designed to provide a comparison between the “airway” measurement 

obtained from HRCT and the true airway size. 

TABLE 1.1: ALGORITHMS AND VALIDATION USED FOR HRCT AIRWAY MEASUREMENTS 

Reported by Segmentation 
algorithm used 

Validation used Structure 
measured 

(Tschirren, Hoffman et al. 2004) Fuzzy connectivity 
region growing  

Human expert LA 

(Reinhardt, D'Souza et al. 1997) Ray-casting 2-D simulated data 
plexiglass phantom 

LA/OWA 

(Palagyi 2003) 
(Palagyi, Tschirren et al. 2006) 

Skeletonisation 3-D simulated data 
plastic phantom 

LA 

(Wood, Zerhouni et al. 1995)  Region-growing Plexiglass phantom LA 

(King, Muller et al. 2000) Region-growing 
Score-guided erosion 

Plastic phantom 
Pig lung 

LA/OWA 

(Ohara, Hirai et al. 2006) Ray-casting Plastic phantom LA/OWA 

(Venkatraman, Raman et al. 2006) Gaussian fit 
 

None LA/OWA 

(Saba, Hoffman et al. 2003) Ray-casting 
elliptical model 

Plexiglass phantom LA/OWA 

(Aykac, Hoffman et al. 2003) Region-growing Human expert LA 

(Nakano, Whittall et al. 2002) 
(Nakano, Muller et al. 2002) 

Ray-casting Morphometry LA/OWA 

(Berger, Perot et al. 2005) Gaussian fit Silicone tubes 
Sheep lung 

LA/OWA 

(Dame Carroll, Chandra et al. 2006) Ray-casting Plastic tubes 
Pig lung 

LA/OWA 

(Sera, Fujioka et al. 2003) Skeletonisation Micro-CT LA 

(McNitt-Gray, Goldin et al. 1997) Contour following Low density material 
with water filled 
holes 

LA 

(McNamara, Muller et al. 1992) Manual Sweet potato 
embedded in sponge 

LD 

(Amirav, Kramer et al. 1993; 
Brown, Scichilone et al. 2001; 
Brown, Kaczka et al. 2008) 

Ray-casting Plexiglass disk with 
holes 

LA 

(Nakano, Muro et al. 2000) Ray-casting Polystyrene  LA/WT 

(Matsuoka, Kurihara et al. 2005) Thresholding Polystyrene  LA/WT 

(Webb, Gamsu et al. 1984) Thresholding Lucite tubes  LD 

(Wiemker, Blaffert et al. 2004) Region growing None LA/OWA 
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The most popular validation method uses airway phantoms of known dimensions 

constructed from non-animal materials such as plexiglass and sweet potatoes (Amirav, 

Kramer et al. 1993; McNitt-Gray, Goldin et al. 1997; King, Muller et al. 2000) to simulate 

transverse sections of airways found in the lung. The more advanced versions of these 

phantoms simulated airways surrounded by parenchymal tissue by using hollow air-

filled, high-density tubing embedded in a lower-density material.  

Other HRCT validation studies of airways have used explanted animal lungs as gold 

standards, particularly porcine lungs that were either wet-fixed in formalin (King, Muller 

et al. 2000) or inflation-fixed in formalin vapour (Dame Carroll, Chandra et al. 2006). 

Explanted lung preparations have some advantages for validation because they more 

closely approximate the range of tissue densities and dimensions, and the complex 

structure of  in vivo lung tissue.  

However, gold standard measurements made from planimetric measurements of a cut 

surface of the phantom or explant assume that dimensions would be completely 

uniform along the length of the airway phantom and that the orientation in the z-axis of 

the scanning plane could be accurately controlled. Hence a proportion of the error 

estimates of segmentation algorithms derived from these excised lung and phantom 

based studies is due to inaccuracies of the ‘gold standard’ measurements made by 

planimetry (Dame Carroll, Chandra et al. 2006).  

Orientation of airways 

Webb and coworkers (Webb, Gamsu et al. 1984) were the first investigators who 

reported airway lumen measurements from HRCT when the airways were imaged at 

angles other that 90 degrees. Their data showed that airway angle, airway size and slice 

thickness interact to produce measurement error. 

Other researchers have also established that the magnitude of the measurement error 

depended on how acutely the airways were angled and it was thought that this error 

was due to volume averaging (King, Muller et al. 1999; de Jong, Nakano et al. 2005). This 

finding led most researchers to restrict HRCT airway measurement to airways that were 

scanned in cross-section (that is, orthogonal), ruling out analysis in the majority of 

airways. Few algorithms have attempted to compensate for the angle. King and 

colleagues (2000) defined the angle of deviation of each airway from the perpendicular 

using the centroid of the same airway the two sections on each side of the section on 

which the measurements are made. Saba and colleagues (2003) developed an alternate 

technique for measuring airways that were not cut in cross-section. This fitted an ellipse 

to the airway lumen and wall, and may correct errors in measurement of obliquely cut 

airways.  
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These techniques claim to be more accurate than the more commonly used techniques, 

but have not been generally applied. 

While HRCT airway segmentation algorithms have been in development for over a 

decade, judging their relative accuracy and precision is complicated by a lag in the 

development of standardised validation protocols. The lag may result from a lack of 

common data sets with which to compare algorithms (San Jose Estepar, Reilly et al. 

2008); difficulty in defining performance metrics and statistics (Brealey 2001); and the 

difficulty in establishing a true airway segmentation (Udupa, Leblanc et al. 2006). 

1.5 Aims and scope of thesis 

Thesis statement 

This thesis contends that HRCT airway segmentation algorithms can be validated using a 

combination of simulated, artificial and animal phantoms measured using micro-CT and 

that the validated algorithm can be applied in a clinical setting to provide improved 

accuracy and precision of airway measurement. 

Aims 

To support the achievement of this goal, the following objectives were proposed for this 

study: 

 develop HRCT airway segmentation algorithms that are easily applied and which are 

anchored in current best practice  

 implement prototype computer software that incorporates the algorithms to make 

quantitative measurements of airway lumen and walls from HRCT images of the 

lungs 

 select the most suitable algorithm to optimise its performance in terms of speed and 

robustness 

 develop  a validation protocol for HRCT airway segmentation algorithms using multi-

modality data sets of simulated airways, phantom standards and animal models 

measured with micro-CT and to use this to test the accuracy and precision of  the 

most suitable algorithm  

 determine the effects of airway orientation and volume averaging found in HRCT 

data 

 demonstrate the usefulness of the algorithms by examining the relationships 

between lung structure and pathophysiology in clinical data. 
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Structure 

This thesis is divided into eight chapters: 

Chapter 1 provides background information to HRCT airway segmentation algorithms, 

including previous work done in the area as well as the significance of the proposed 

research, its hypothesis and aims. This chapter introduces lung anatomy and diseases, 

lung function testing and CT-based imaging techniques to provide a broad appreciation 

of the current challenges in making direct airway measurement. 

Chapter 2 describes the algorithms that were tested and their results in terms of their 

speed and robustness in the context of noisy HRCT data. The algorithms are compared 

to identify a fast, robust and relatively parameter-free algorithm (the CL algorithm) for 

the measurement of airway lumen and walls. 

Chapter 3 describes the construction and function of winImageBase, a Microsoft 

Windows application developed around the algorithms which enabled practitioners from 

any field to make airway measurements with the minimum of effort. 

Chapter 4 develops a 3-D simulated model data set to eliminate the experimental and 

biological induced variance found in clinical data. The model contains different sized 

simulated airways and allowed testing of the effect of a number of parameters on the 

performance of the CL algorithm. The parameters tested included edge-detection 

mechanism, number of rays, and the effect of various degrees of interpolation. The aim 

was to validate the algorithm against computer-generated experimental data, thereby 

establishing the optimal parameter selection. 

Chapter 5 tests the performance of the CL algorithm on simulated 3-D data with volume 

averaging at different airway sizes and orientations. The goal of this study was to model 

volume averaging effects, derive a method for correction and demonstrate its use.  

Chapter 6 compares CL algorithm measurements from HRCT data in an artificial and 

tissue phantoms where airway dimensions have been established using light microscopy 

and micro-CT. The goal was to identify whether the performance of the algorithm in 

HRCT data had been improved by optimal parameter selection and volume averaging 

correction. 

Chapter 7 considers clinical HRCT data, where the effect of mannitol on airway 

dimensions in patients with bronchiectasis is compared to pulmonary function testing. 

Chapter 8 draws conclusions from the thesis. 
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CHAPTER 2 

Algorithm development 

Diagnosis of lung diseases using HRCT requires objective airway measurement, which 

can only be achieved using computer-based segmentation algorithms. In this chapter 

the selection and development of an optimal HRCT segmentation algorithm is 

described.  The Monitoring Devices program within the Woolcock Institute of Medical 

Research needed the algorithm for fast, objective and repeatable measurement of 

airway lumen and walls from HRCT images. The algorithm had to be robust to the 

typical problems occurring in HRCT images, such variations in intensity, size and shape 

of the airways. To increase objectivity, user initialisation needed to be minimal, but the 

user was to be given the opportunity to review results and intervene if necessary. 

Algorithm development proceeded by testing candidate algorithms within a software 

support platform (winImageBase, described in Chapter 3). As part of the development 

process, each iteration of the algorithm was qualitatively evaluated for its robustness 

in the context of randomly selected patient HRCT data, with the aim of defining a 

reliable and efficient algorithm requiring as few settings as possible.  

Since the clinical applicability of the algorithm is largely dependent on the time needed 

to obtain the result this criterion was also examined. Development here proceeded 

empirically in consultation with the team from the Monitoring Devices program, 

adapting the algorithms to address perceived problems as they appeared.  

2.1 Methods 

Three algorithms were developed in the C++ programming language based on a 

literature review of the current HRCT airway segmentation techniques currently 

employed to obtain quantitative measures of airway dimensions (Section 1.4.1).  The 

algorithms all relied on intensity values as a means of discriminating between the 

lumen-wall boundary and the wall-parenchyma boundary. Each algorithm used a 

different mechanism to achieve segmentation: 
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 thresholding 

 region-growing 

 ray-casting and centre-likelihood 

The theory underlying each algorithm’s mechanism is now considered. 

2.1.1 Thresholding 

Thresholding is one of the simplest and fastest algorithms for image segmentation 

(Berry 2008). It involves choosing a range of pixel intensities that represent the object 

to be segmented. If the object of interest in an image is brighter than the background, 

individual pixels are marked as “object” pixels where their value is greater than a 

nominated threshold value, and as “background” pixels otherwise. For HRCT images, 

the threshold can be chosen from the Hounsfield Unit scale (Figure 1.3) or based on an 

analysis of the image histogram (Figure 2.1)  

    Density (HU+1000) 

Figure 2.1: Typical histogram of pixels found in HRCT images of the lung  

When ‘thresholding’ a greyscale image with a fixed threshold t, each pixel p is assigned to one of two classes, P0 or P1, 
depending on whether I(p) < t or I(p) ≥ t. Pixel counts (blue) with threshold (red arrow) to separate the partitions 

Summation of the pixels in any one classification allows a simple calculation of the area 

taken up by that object. For instance setting the threshold as 2000 will allow the 

amount of bone in the image to be quantified. 

Used in this way, thresholding is known as image binarisation. In Figure 2.2 a single 

threshold has been set at 500, which has allowed all objects with density greater than 

air to be quantified. If the object of interest had an intermediate density, two 

thresholds can be chosen. The use of multiple thresholds is often referred as density 

slicing.  

  P
ix

el
 c

o
u

n
t 

Air 
Bone Fat 

Water 

Blood 

http://en.wikipedia.org/wiki/Pixels
http://en.wikipedia.org/wiki/Thresholding_%28image_processing%29
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Since the airway lumen contained air, a single threshold was used for this object. 

However, the airway wall had an intermediate density, so density slicing was applied in 

this instance.  

 

Figure 2.2: Illustration of image binarisation in an HRCT images of the lung 

Full HRCT image (top) and single airway (bottom):  
(A) original image of an airway with numerical representation of a small region on the wall edge.  
(B) segmentation result with all values mapped to either 0 (background) or 255 (object).  
Darker pixels are represented by lower values and lighter pixels are represented by higher value. 

2.1.2 Region growing 

The region-growing algorithm adds another level of complexity to the thresholding 

segmentation, partitioning the image into regions (Figure 2.3). The user defines a 

range of densities that represent the object of interest, and chooses a pixel that is 

known to be part of the region. The nearest neighbouring pixels to this ‘seed pixel’ are 

examined for their density to determine whether they should be added to the seed 

point or not. For every pixel that is added to the region, the process of examining the 

neighbouring pixels is repeated. 

A. B. 
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Figure 2.3: The region-growing algorithm process explained 

Airway is superimposed on a pixel grid. (A) start of a growing region, (B) growing process after a few iterations  

Many types of modification exist to the region growing method. The method tested 

during this study was to set a tolerance to the threshold, where any pixel value with 

density equal to the threshold ± tolerance is accepted as part of the region.  

2.1.3 Ray casting and centre likelihood 

The ray-casting and centre-likelihood (CL) algorithm was originally devised for 

delineation of blood vessels from 3-D angiographic images (Wink, Niessen et al. 2000).  

This project adapted this algorithm for airway lumen measurement by adding: 

 airway wall-parenchyma boundary measurement 

 rules for handling airway merging and ray termination 

 tracking using adaptive region of interest (ROI) and centroid displacement 

In the next subsections the most important steps of the process are described.  

Determination of the airway centroid 

The CL algorithm is initiated by defining the search ROI around the outside of the 

airway as is shown in Figure 2.18. Identification of the airway’s centroid (the geometric 

centre) relies on the CL algorithm being used at every pixel location in the ROI. At each 

pixel in the ROI, the CL algorithm casts a set number of equiangular rays from the pixel 

until they reach the edge of the ROI. The pixel intensity along each ray is used to create 

a pixel profile, which is used to identify the inner and outer airway walls using an edge 

detection technique, such as maximum rate of change in pixel intensity (Figure 2.5).  

This process is repeated at each pixel location to create a set of ray lengths. The 

opposing ray lengths are then divided and summed, and then divided by the total 

number of rays to give a probability (p) of this point being the centre where (0>p>100).  

 

Seed pixel 
 
Direction of growth 

Grown pixels 
 
Pixels being considered 

A. B. 
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The percentage p calculation is shown as follows: 

Percentage  (2.1) 

where every pair of rays ,  makes up a line and n is the number of lines. 

Computation of the centre likelihood at every ROI location allows the creation of a CL 

map, corresponding to the probability of each pixel being the centroid (Figure 2.6). The 

pixel with the highest centre likelihood is taken to be the centroid of the airway. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: CL probability map surface for the ROI  

Percentage probability against co-ordinates corresponding to the ROI as shown in Figure 2.18A 

Identification of airway wall boundaries 

To identify to airway walls a fixed number of equiangular rays are cast from the 

centroid pixel. A pixel profile is created from the intensity across the ray and an edge-

detection technique such as maximum rate of change in pixel intensity is used to 

identify the point at which the ray crosses the wall. In Figure 2.5 the wall-parenchyma 

boundary is identified in a similar way to the lumen-wall boundary, by examining the 

pixel profile between the lumen-wall boundary and the ROI edge for the maximum 

negative pixel gradient.     
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Figure 2.5: Boundary detection using pixel profile 

Along the ray, the gradient is computed (top). In the pixel profile (bottom), the maximum positive gradient (red) determines lumen-
wall boundary position and the maximum negative gradient (green) determines the wall-parenchyma boundary position. 

As each ray is cast another point on the airway wall is identified (Figure 2.6A). This 

process is repeated and the points at which each ray traverses the wall becomes the 

vertices of the polygon used to outline the lumen-wall and wall-parenchyma 

boundaries (Figure 2.6B).  

  

Figure 2.6: Screenshots of ray-casting from a central pixel to identify the airway wall 

Rays from centroid  to lumen-wall boundary, rays from lumen-wall boundary to ROI (yellow) shown in green: 
(A) the fourth ray is cast at 40/360 degrees from the pixel to the ROI  
(B) all rays have been cast. The ray endpoints are joined to define the walls.  

A. B. 
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Airway tracking 

The CL algorithm formed a central part of the semi-automatic method for delineation 

of the airway tree implemented in winImageBase. A schematic description of this 

process is given in Figure 2.8. The process was initiated by user-defined seeding of the 

visible airways in one image. After the CL algorithm has segmented these airways, an 

interactive tracking process was initiated.  At every iteration, each airway was 

extended into the next HRCT image. This was achieved using the shape and relative 

position of the airway and centroid in the previous image. In this image the candidate 

ROI was searched for the airway centroid, using the CL algorithm. If two or more 

airway lumens are found to overlap, then a new ROI is calculated by merging the ROIs 

from the overlapping airways.  

During the process, the centroid, ROI, airway-lumen boundary and wall-parenchyma 

boundary are displayed. This enables the user to monitor the process and take control 

if needed.  

2.1.4 Image selection 

To test the robustness of the algorithms an HRCT image series was examined for case 

images containing airways of the size and orientation required to be measured. A 

single airway was identified and the airway tracked and measured through 43 images. 

An example image containing typical airways and surrounding structures is shown 

Figure 2.7.   

Density values were obtained as HUs from the 12-bit image data stored within each 

HRCT dicom file.   

  

Figure 2.7: An example HRCT image used for testing  

(A) original HRCT image, (B) zoomed to show two individual airways and surrounding structures   

Airway of interest 

Blood vessels 

Nearby airway 

Parenchyma A. B. 
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Figure 2.8: Flow diagram showing the steps of airway tree delineation by the CL algorithm 
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2.2 Results 

The three algorithms were tested on a qualitative basis, where their mechanism and 

settings were modified in order to improve performance. 

2.2.1 Thresholding 

On testing the thresholding algorithm for lumen and wall segmentation with a number 

of airways, it became obvious that many pixels from surrounding, similarly dense 

tissues were included in the segmentation. In the case of the lumen segmentation, the 

inclusion of pixels from nearby airways and parenchyma was the problem (Figure 2.9).  

Since removal of the parenchyma was required, the effect of increasing the threshold 

was investigated. At increased thresholds it was not possible to remove the nearby 

airway, since it had very similar pixel values to the airway of interest. Also, as the 

threshold was reduced, holes started to appear in the lumen segmentation (Figure 

2.9B). 

  

Figure 2.9: Screenshots of thresholding for airway lumen segmentation  

Segmented pixels shown in red. (A) lumen at threshold of 10, (B) lumen at threshold of 35  

In the case of the wall segmentation surrounding blood vessels and connective tissues 

were included (Figure 2.10). In an attempt to remove these structures, both upper and 

lower thresholds were modified to improve the wall segmentation specificity. With 

increasing lower threshold, removal of surrounding connective tissue was achieved.  

Increasing the lower threshold values resulted in removal of the extraneous 

surrounding pixels, but also removed the airway wall pixels (Figure 2.10B). Reduction 

of the upper threshold removed some of the pixels in the surrounding blood vessels, 

but also removed some of the airway wall pixels (Figure 2.10C). Combining both upper 

A. B. 
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and lower threshold changes resulted in no improvement, since the segmentation still 

did not include parts of the wall and included parts of surrounding structures of similar 

density such as blood vessels and connective tissue. 

 

 

Figure 2.10: Screenshots of density slicing for wall segmentation  

Segmented pixels shown in red, with settings as follows:  
(A) wall at thresholds of between 2000 and 400   
(B) connective tissue removal with thresholds of between 2000 and 686 
(C) unsuccessful blood vessel removal with thresholds of between 1330 and 400 
(D) wall at thresholds of between 1330 and 686 
 

To help prevent the non-specificity of the segmentation and to improve its 

discrimination, the algorithm was limited to a user-defined ROI (Figure 2.11). For 

lumen segmentation, a ROI that encompassed the airway wall and did not include any 

other structures allowed successful segmentation of the airway lumen (Figure 2.11A). 

However, if the ROI included any nearby airway lumen or parenchyma, the 

segmentation became non-specific (Figure 2.11B). For wall segmentation, the ROI 

position and size determined how much of the walls and other structures were 

included in the segmentation. As is illustrated by comparing Figure 2.11C to Figure 

A. B. 

C. D. 
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2.11D, increased ROI size simply results in increased wall area, due to the inclusion of 

non-discriminated pixels from blood vessels and the nearby airway. 

 

 

Figure 2.11: The effect of ROI position and size on thresholding segmentation 

Airway segmentation shown in red, with ROI in yellow. Settings as follows: 
(A) lumen threshold at 130 resulting in area of 119 pixels 
(B) lumen threshold at 130 resulting in area of 176 pixels 
(C) wall threshold between 2000 and 400 resulting in area of 148 pixels  
(D) wall threshold between 2000 and 400 resulting in area of 190 pixels 

2.2.2 Region growing 

On testing the region-growing algorithm for measuring lumen area in HRCT data, in the 

majority of airways a reasonable segmentation was produced (Figure 2.12). However, 

the threshold and tolerance values selected had large effects on the size of 

segmentation, with increasing tolerance increasing the segmentation area (Figure 

2.12B), to the point where a “leaking” from the lumen through the wall into the 

parenchyma occurred (Figure 2.12C).  With smaller airways and thinner-walled 

airways, leaks into large areas of parenchyma became very common. This leakage was 

initially prevented by reducing the threshold and/or tolerance, but since the 

A. B. 

C. D. 
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computation time for this algorithm was much higher than thresholding, leakage of the 

algorithm caused delays to the display of the result, resulting in small airways taking a 

long time to measure. In an attempt to overcome the leaking of the segmentation in a 

more objective way, a mask to filter the holes or outlier was created (Figure 2.12D). 

Although this prevented the leak, it introduced another user-defined setting, so that 

the measured area varied as the position of the limiting mask was changed. 

 

 

Figure 2.12: Screenshots of region growing for lumen measurement 

Segmented pixels shown in green:  
(A) lumen at 138 pixels with threshold at 100 and tolerance at 150 
(B) lumen at 150 pixels with threshold at 100 and tolerance at 350 
(C) ‘leaking’ problem with threshold at 100 and tolerance at 450 
(D) prevention of leaking by application of a limiting mask (yellow) 

Wall area measurement by region growing was found to be error-prone (Figure 2.13). 

Since the variability in density between different parts of the walls was very high, 

partial wall segmentation occurred unless the threshold tolerance was set high (Figure 

2.13A). At higher thresholds, the algorithm tended to include all structures of similar 

density (Figure 2.13B). 

A. B. 

C. D. 
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Figure 2.13:  Screenshots of region growing for wall measurement 

Segmented pixels shown in green:  
(A) partial segmentation resulting from reduction in threshold tolerance  
(B) inclusion of connective tissue into segmentation result  

2.2.3 Ray-casting and centre-likelihood 

On testing the CL algorithm for measuring lumen area in HRCT data, a reasonable 

segmentation could be produced in all of the airways tested. Furthermore, intra- and 

inter-user reproducibility was very high for larger airways, with almost identical 

segmentations occurring on almost every repetition (Figure 2.14D).  

However, with smaller airways in particular, centroid identification was problematic. If 

the ROI size was too large the centroid might be identified outside of the airway. If 

there were two airways inside the ROI then the incorrect airway might be identified 

(Figure 2.14B) in preference to the airway of interest. It was noted that in some small 

airways, the centroid position was identified at positions that did not accurately 

represent the geometric centre of the airway lumen (Figure 2.14D).  

In addition, there was an occasional leak where one of the rays missed the wall-

parenchyma boundary and terminated at the edge of another more remote structure 

(Figure 2.14C).  

A. B. 
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Figure 2.14: Problems resulting from ROI size in CL algorithm measurements 

The airway lumen is outlined in red and wall-parenchyma boundary in green. (A) highly repeatable segmentation, (B) selection of 
the incorrect airway (C) leakage of lumen-wall boundary from one ray (D) centroid position (yellow X)  

To quantify these effects, a user-defined ROI that encompassed the whole airway was 

created on each of the 43 airway images. The CL algorithm result for LA and WA from 

the user-defined ROI was defined as being the true size.  

For each airway, ten observers of increasing inability to estimate the airway size were 

simulated by automatically creating ten increasing sized elliptical ROIs, each with 

diameters of six pixels more than the previous ROI. The position of the ROI was not 

altered since the centroid calculation was in no way dependent on the position of the 

ROI. Changes in area measurement with increasing ROI were calculated from the 

difference between measured airway at the computer-based ROI size and the user-

defined ROI in all 43 airway images.  

A. B. 

C. D. 
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Figure 2.15: Systematic increases of the ROI  

The airway lumen is outlined in red and wall-parenchyma boundary in green.  
(A) Segmentation largely invariant to ROI size,  
(B) Centroid identification outside the airway.  

The airway size range was from 71 to 721 pixels OWA, with corresponding user-

defined ROIs of 166 to 1225 pixels, and computer-based ROIs ranged from 3730 to 

5965 pixels. 

Airway measurement accuracy with increasing airway size was estimated in Figure 

2.16. Structures of over 100 pixels were accurately measured irrespective of ROI size. 

Structures less than 100 pixels tended to be over-estimated. When the effect of ROI 

size on measurements of all 43 airways was investigated, it was found that highly 

accurate and precise results were obtained where the ROI size was less than 1500 

pixels. At ROI sizes greater than this measurement accuracy and precision decreased.  

-100.0

-50.0

0.0

50.0

100.0

150.0

200.0

250.0

0 100 200 300 400 500

e
rr

o
r 

(p
ix

e
ls

)

original size (pixels)

A. structure size

LA

WA

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

0 1000 2000 3000 4000 5000

e
rr

o
r 

(p
ix

e
ls

) 

mean ROI size (pixels)

B. ROI size

LA

WA

 

Figure 2.16: Mean error in the CL algorithm 

(A) Comparison to true structure size where point represents a mean error of 10 ROI of different sizes (N=43). 
(B) Comparison to ROI size where each point represents the mean of 43 airways at each ROI size (N=10) 

B. A. 



2.2 Results  Algorithm development 

39 

2.2.4 Refinements to the CL algorithm 

Since the problems affecting the accuracy and precision of the CL algorithm occurred 

sporadically, deletion of the ROI and redrawing it often produced the desired result. To 

handle the instances when redrawing did not solve the problem, refinements were 

implemented in the following parts of the CL algorithm: 

 centroid identification 

 edge detection 

 ROI size 

Centroid identification refinement 

Centroid identification accuracy was most commonly increased by reducing the size of 

the ROI so it encompassed the airway to be measured and little or no other structures. 

In some cases, particularly with very small airways, the centroid could not be identified 

inside an airway. Two solutions were found to this: 

1) User-identified centroid. Instead of the relying on the computer-based centroid 

calculation, the user drew an elliptical ROI around the airway with the centroid 

defined as being the centre point of the ROI ellipse. This had the benefit of 

improving the speed of the algorithm, since it bypassed the centroid 

identification step. However, this introduced an unacceptable level of user-

intervention that gave rise to additional variability. 

2) Mass centre centroid. This extended the previous solution by using the user-

identified centroid as the seed pixel for a region-growing algorithm with a 

threshold slightly above the value of the seed pixel. The advantage of this 

solution was that it improved the objectivity of the previous solution and was 

fairly robust to leaking. 

Although these refinements were examined, they were only required very occasionally 

and therefore they were not used in the thesis. The algorithm performance was 

satisfactory for the purposes described in later chapters.  

Edge detection 

On repeatedly testing the CL algorithm on a number of airways, the LA and OWA 

measurements obtained were largely invariant to ROI size and position.  
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The only exceptions were as follows: 

 where the ROI didn’t completely encompass the wall-parenchyma boundary of 

the airway of interest because the ROI was poorly drawn by the user  

 where the airway wall boundary joined to another structure such as a blood 

vessel or where the airway wall appeared to be stratified by other higher 

density tissue such as cartilage  

In the first case incomplete airway wall (and lumen, in extreme cases) segmentation 

occurred leading to area underestimation. This was partially countered by calculating 

the average wall thickness over the wall that could be calculated and then setting the 

ROI position for that ray to a value greater than this position. 

In the second case, a over-segmentation of the airway wall was obtained (Figure 

2.17A). To prevent this an additional criteria was required in the ray casting algorithm 

to prevent this from affecting the result. This was achieved by examining the ray that 

was cast between the lumen-wall boundary and the ROI for further increases in 

intensity. As soon as there was any portion of increase the ray was terminated (Figure 

2.17B). 

 

Figure 2.17: Airway wall measurement refinement by early termination of rays 

The airway lumen is outlined in red and wall-parenchyma boundary in green. (A) before refinement, (B)after refinement.  
Notice the refinement has prevented inclusion of a nearby airway wall in the airway of interest’s wall measurement (green arrow) 
and leakage into surrounding non-uniform tissues.  

ROI size refinement 

For the first measurement the CL algorithm is initiated by the user defining the ROI by 

outlining an area around the airway (Figure 2.18A), allowing the CL algorithm to 

calculate the centroid and wall boundaries (Figure 2.18B). In the subsequent image the 

ROI shape and position is automatically defined by dilation of the previous slice’s inner 

airway boundary and the x-y displacement between centroids (Figure 2.18C).  

 

A. B. 
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This method provided advantages as follows: 

 automation of the ROI size prediction allowed the tracking of the airway both 

up and down the airway tree 

 decreased ROI size resulting in reduced time taken to find the centroid and 

reduced chance of finding the wrong airway. Therefore, users who create 

smaller ROIs are given quicker results, which encouraged them to make more 

accurate decisions of where the airway wall lied when creating ROIs. 

Image 1           Image 1 

   
Image 2           Image 2 

  

Figure 2.18: Screenshots illustrating the steps in adaptive ROI definition  

The screenshots show the use of the CL algorithm in two adjacent slices as follows:  
(A) slice 1’s user-defined ROI ellipse drawn around airway (yellow) 
(B) slice 1’s lumen-wall boundary (red) with centroid (yellow cross) defined by CL algorithm 
(C) slice 2’s ROI defined automatically by dilation of the Slice 1’s lumen-wall boundary 
(D )slice 2’s lumen-wall boundary (red) and wall-parenchyma boundary (green) with centroid (yellow cross) defined by CL 
algorithm 

B. A. 

D. C. 
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2.3 Discussion 

2.3.1 Thresholding and region growing 

Airway lumens and walls can be segmented by thresholding and region-growing 

algorithms under certain circumstances. However, these algorithms were found to 

require a high degree of user intervention to obtain acceptable results. This 

intervention was most often necessitated by ‘leaking’ into non-relevant structures, 

something that has been frequently reported in the literature (Wood, Zerhouni et al. 

1995; Aykac, Hoffman et al. 2003; San Jose Estepar, Reilly et al. 2008). Prevention of 

this ‘leaking’ by altering the threshold and limiting the ROI was attempted with both 

algorithms. 

Since the thresholding algorithm does not take into consideration the fact that the 

airway is putatively a sealed structure, inclusion of similarly dense non-relevant 

structures can only be limited by limiting the ROI. Airways are often located in close 

proximity to other structures of similar density, so the ROI must be accurately 

determined to include only those pixels making up the airway structure. Since creating 

this ROI can only be performed by a segmentation algorithm or by a user (Udupa, 

Leblanc et al. 2006), then this algorithm is either not appropriate or highly subjective.  

The region-growing algorithm when applied to LA measurement was also found to leak 

through the wall from the lumen into the parenchyma.  This is due to the sensitivity of 

the threshold to pixel intensity inhomogeneity and the volume averaging effect often 

found in low spatial resolution data such as HRCT (Berry 2008). If the threshold is set 

too low, an incomplete or partial segmentation will occur. If too high, then the 

algorithm will leak into neighbouring structures. In extreme circumstances this leak 

grew unbounded into the parenchyma leading to delays in obtaining visual feedback. 

Noise or variation of intensity resulted in ‘holes’ or over-segmentation. Although other 

researchers have managed to choose an appropriate threshold for lumen 

segmentation, they have done so to find the central axis rather than measure LA 

(Wood, Hoford et al. 1995).  

Ultimately, for quantitative image analysis, the threshold for edge detection must be 

objective and justifiable. Since the threshold appears to be sensitive to many variables, 

such as volume averaging and motion-related artifacts (Grenier, Beigelman-Aubry et al. 

2003) these techniques will be too limited and subjective for reliable airway 

measurement.  
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2.3.2 Ray casting and centre likelihood 

The CL algorithm represents a more sophisticated approach to allow for the more 

realistic intensity variations found in clinical data. Given a seed point, it can 

successfully determine the centroid of the airway, and use that information to reliably 

and repeatedly define the lumen-wall boundary. By defining the lumen-wall boundary 

in each ray, this algorithm overcomes the problem of selecting a single threshold to 

identify the whole lumen-wall and wall-parenchyma boundaries. This should prevent 

the under-estimation of LA often found in region-growing algorithms (Wood, Hoford et 

al. 1995), resulting from too low a threshold.  

Furthermore, in this chapter the CL algorithm has been extended to include novel 

methods for preventing over-segmentation of the airway wall. As recently 

demonstrated by (San Jose Estepar, Reilly et al. 2008) the half-max edge-detection 

method can be somewhat sensitive to airway ‘leaking’ into surrounding structures if 

the ROI encompassed those structures. Later iterations incorporated refinements 

which reduced the algorithm’s sensitivity to this problem.  

Similarly, if the wall could not be identified in some rays perhaps due to the ROI being 

inaccurately positioned or created too small, this resulted in omission of part of the 

wall. Although this caused problems for earlier iterations of the CL algorithm, this 

problem was rectified with a novel refinement, on this occasion by expanding the ROI 

to include an area greater than the average airway wall thickness.  

The application of airway boundary size and position to create ROIs for subsequent 

images has been coined “Adaptive Regions of Interest” (Tschirren, Hoffman et al. 

2004). It was found to successfully contain ‘leaks’ into the surrounding parenchyma 

and reduce the overall computing time by analysing the volume locally instead of over 

the entire data set. The current study used a similar idea to predict the shape of the 

airway in subsequent slices. However, it extended the work of Tschirren, Hoffman et 

al. 2004 who used elliptical ROIs, by using the more advanced technique of dilating the 

lumen-wall boundary to create the ROI shape. Since the CL algorithm’s reliability was 

found to be largely invariant to ROI size, the main advantage of this was to accurately 

localise the airway position in 3-D during the tracking process. 

The experiment in Section 2.3.2 examined the effect of increasing ROI size on airway 

measurements gave some indication of the precision, but not the accuracy, of the CL 

algorithm since no true measure of airway lumen or wall was possible from this clinical 

data. However, the CL algorithm was found to be robust in the face of increasing ROI 

size and now provides automatic ROI size prediction, and as a result offers great 

potential for fully automatic 3-D segmentation of the airway tree.  
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In the context of this thesis, the CL algorithm provides a simple, fast and robust 

technique to determine the airway centroid when given an image of an airway and a 

seed point. In Chapter 4 the effect of parameter choice on CL algorithm accuracy and 

precision will be examined. 
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CHAPTER 3 

Software implementation 

The winImageBase software was created to provide a support platform for developing 

and validating HRCT airway algorithms described in this thesis. winImageBase has been 

subsequently used by researchers at the Woolcock Institute of Medical Research as a 

research and teaching tool for academics and students. The software is now a 

commercial product available to physicians who require state-of-the-art analysis and 

imaging techniques to measure airway dimensions from HRCT scans. 

The software design, prototyping and programming were undertaken using some of 

the techniques now described as Agile Methods and explained in 

http://www.agilemanifesto.org/  

These can be summarised as follows: 

 satisfy the customer through early and continuous delivery of valuable software 

 welcome changing requirements, even late in development 

 deliver working software as frequently as possible since this is the primary 

measure of progress 

 work together daily throughout the project 

 build projects around motivated individuals 

 continuous attention to simple and good design 

 effective communication with the team on a face-to-face basis. 

 These practices ensured that high quality software was delivered quickly, and to 

specification. However, there are some limitations in the software design that have 

come to light, particularly involving scalability, maintainability and platform 

independence when used in clinical settings. These aspects are considered towards the 

end of this chapter and new judgments are presented to show how to proceed with 

the design of the next version of the software.  

http://www.agilemanifesto.org/
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3.1 Requirements definition and specification 

The winImageBase specification focuses on code re-use (Madau 2008) and the 

development of a quality user interface to provide an easy-to-use system, designed for 

use by researchers. This broad starting point enabled the requirements to be more 

formally defined. 

3.1.1 Requirements definition 

Meetings were conducted with the key members of the Clinical Mechanisms team to 

determine the goals, functions, and constraints of the new software system. From 

these meetings a brief statement was defined as follows:  

The software must provide a means of making measurements from a series of images 

using various image analysis algorithms. The software must be of commercial quality 

and compatible with Microsoft Windows. 

3.1.2 Requirements specification 

The requirements definition was developed into a flexible requirements specification, 

with the final scope of the project limited by the ability to develop the algorithms and 

provide a suitable graphical user interface (GUI) using the tools available and within 

the time-limits imposed by the research: 

 develop an environment for experimenting with and further developing various 

airway segmentation algorithms. 

 provide a commercial quality interface compatible with current versions of 

Microsoft Windows (2000/XP and Vista) 

 re-use existing algorithms where possible 

 provide viewing of image files generated by various medical imaging platforms. 

 interface with MS-Excel for additional statistical analysis. 

3.2 Development environment 

After the specification of winImageBase had been agreed by the Clinical Mechanisms 

team, the development language and environment were chosen. The high number of 

images to be processed and numerical content of the image analysis algorithms 

required a language that offered favourable execution speed from compiled code. 

Speed was chosen as the criterion since there is little to choose between most high-
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level languages regarding accuracy. Some languages such as Java or any one of the 

languages utilising the .NET framework did not, at least at the time, provide suitable 

performance. In the end C++ was chosen as the development language for several 

reasons: 

 C++ offered the best combination of execution speed, object-oriented features 

and memory management 

 the original CL algorithm code was written in C 

 suitable Microsoft Windows-based development tools exist for C++ including 

Microsoft Visual C++ and Borland C++ Builder 

 Third party tools, for example for charting and reporting, are widely available 

with C++ and Microsoft Windows interfaces. 

The two potential software development tools - Microsoft Visual C++ and Borland C++ 

Builder - were compared. Both development environments provide integrated 

development environments (IDEs). They offer good project management facilities with 

a project dialogue box showing all the files and components of a system. Both have 

strong editors, incremental compilers and good debuggers but with varying 

capabilities. Both systems support the latest C++ extensions such as bool, namespaces 

and the Standard Template Libraries and each support Microsoft foundation classes 

(MFC), essential for programming native Microsoft Windows applications. 

However, visual GUI building is absent from Microsoft Visual C++ and this is a major 

drawback for rapid application development (RAD). Conveniently, Borland has also 

abstracted Microsoft’s MFC to provide a simpler programming interface through their 

visual component library (VCL). 

Borland C++ Builder was chosen as the development environment because it was more 

comprehensive, especially regarding GUI development. The GUI building capability and 

the VCL abstraction of the MFC library combine to produce a well-designed RAD tool. 

3.3 Design and prototyping 

Instead of having a fixed architecture for winImageBase at the start of the project, the 

software was constructed incrementally in small stages. This allowed continuous 

review of the application and addition of new features in response to new user 

requirements identified during prototyping. For example: 

  there were no initial plans to write code to perform synchronised pre/post-

treatment analysis on the data using two executables  
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This requirement was added towards the end of the project, during the 

assessment of the CL algorithm’s performance in clinical datasets  

 after implementing the synchronisation function, it was realised that it would be 

a small extension to allow the user to perform registration between two 

corresponding data sets in synchronised winImageBase executables.  

The main benefits of this approach to programming winImageBase were that the 

project was flexible enough to adapt as new techniques and skills were developed. 

Now that winImageBase has been produced and has been used for some time by a 

number of research groups, it is possible to determine what features would be useful 

and how the application should be developed in the future.  

3.3.1 Prototyping winImageBase 

Several ‘throwaway’ prototype systems were developed to understand how an 

integrated environment could work. One such prototype can be seen in Figure 3.1.  

Although this prototype is no longer used, it was useful at the time to highlight several 

important requirements: 

1. users wanted to be able to interactively review the immediate data around the 

ROI by zooming and panning the image and by examining adjacent images. Also 

altering the Window level and width was considered important  

2. standardisation: the position, zoom, level and width as set to one image should 

be applied to all images in the volume/series 

3. results of HRCT image algorithm should be superimposed onto the images  

4. all the airway measurements from a single airway (i.e. between branch points) 

and their relationship to the images from the HRCT series need to be easily 

collected together and viewed 

5. it was desirable to be able to automate obtaining results from the software to 

some extent.  This would be mainly by propagating the results from one image to 

the next in the series.  In this way the airways through the CT series so 

measurements of whole airways could be more objectively computed  

6. an export facility should be provided to allow results to be analysed in standard 

applications. These included spreadsheets, such as Microsoft Excel, databases 

such as Microsoft Access and statistical analysis packages such as SAS) 

7. locating and measuring the same airway in different patients or in the same 

patient pre/post treatment was particularly time consuming. Some method of 

alignment of two volumes was required 

8. it was important to be able to close the program and resume from the position. 
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Figure 3.1: Three screenshots of prototype software tracking 

Overlay shows an early region growing segmentation algorithm being used to measure and track two airways in adjacent HRCT 
images 

A. Image 1  

Two airways (shown in 

black) are measured 

by a region growing 

algorithm, separated 

by a rectangular ROI 

(red) and a limiting 

tool (white) 

 

 

 

B. Image 2 

The ROI position and 

size have been 

transferred from the 

previous image to 

create candidate ROI 

positions (orange) 

 

 

 

C. Image 2 

The user clicks in each 

candidate ROIs and 

the ROI have been 

successfully measured 

allowing the semi-

automatic delineation 

of the airway tree 
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Project-based operation 

Analysis of a data set can involve many experiments. The first iteration of the software, 

CT Image Reconstructor, allowed single experiments to be run, where it was up to the 

user to manage the results as they were produced. Since analysis of the performance 

of image analysis algorithms on an image data set can involve many experiments, it 

soon became clear that it would be beneficial to manage repeated experimentation on 

a data set within the context of a database environment. This lead to the proposition 

that experimentation should be recorded for a given data set and that the resultant 

database should be able to be saved to disk and loaded back into winImageBase at a 

later time. 

Data set management 

One of the requirements that came from developing a prototype system included the 

facility to view multiple data sets. Data sets fall into three categories: (1) the simulated 

data used to develop the algorithms, (2) the phantom data sets used to validate the 

algorithms, and (3) patient data set used to test the algorithms in a clinical setting. 

A number of components are available within Borland C++ Builder for retrieving and 

displaying data, ranging from reading the data into a text box (the simplest) to a full 

database option (the most complex). The database solution introduced additional 

complexity to the software, requiring either a database engine to be shipped with 

winImageBase or by providing an Open Database Connectivity (ODBC) interface to the 

user’s existing databases. 

For this first version of winImageBase it was more important to provide the core 

functionality of HRCT image analysis algorithms so the database development was 

dropped. Ultimately, a user’s data would most likely be available in spreadsheet, 

database or plain text format. 

Although this approach requires the user to export their data to an ASCII format file, it 

was felt that it provided the greatest flexibility for the least development effort 

leaving, as a priority, the main task of developing the analysis algorithms. A method to 

retrieve the text files and display the data in the TreeView component mimicking the 

airway tree structure was chosen.  

Results visualisation 

Initial prototypes used a commercial version of LeadTools ActiveX Component Library 

since it supported many image types, and had many tools for loading and manipulating 

image data. However, over time as more sources of medical images were included, 

more sophisticated image handling was required. It became apparent a large amount 
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of development effort was being devoted to learning to use LeadTools. The pixel data 

stored within each of the data files could also easily be displayed in the standard 

Windows visual component that Borland C++ Builder encapsulated, the Timage. 

However, this proved to be cumbersome to program and slow to execute. Other 

problems included flickering images during zooming and panning. Although the 

learning curve was very high, it was found that the Windows Application Protocol 

Interface (API) provided very fast and flexible graphic display capabilities. Optimised 

routines were written to load and manipulate many file format types in memory 

including dicom, bitmap, interfile, raw, and tiff. 

Although standard numerical results from the algorithms, such as wall and lumen area 

were easily displayed in any of the standard Windows visual components, it was also 

desirable to include additional graphical information about the images. The charting 

components available in Borland C++ Builder were compared during prototyping. The 

TeeChart component was chosen because the component includes the ability to 

display scatter plots, histograms, three-dimensional charts, line charts, real-time charts 

and custom drawing routines. In addition to these visualisation techniques, methods to 

zoom/pan, print/preview, export and customise the charts were also provided. 

Exporting results 

To enable statistical analyses and modelling of the algorithm results, an export facility 

was built into the software. This allowed results to be directly transferred into 

spreadsheet, database, presentation and mathematical software. All components that 

contain data, charts and results were implemented with an export facility. It was 

decided to export charts as either a chart image (in a number of standard image 

formats) or as raw data for re-generation in another application. These routines 

provided enough flexibility to analyse the results and re-create the charts in most 

readily available software. 

Handling user interaction 

Handling normal user interaction with the GUI had to be maintained even when 

winImageBase was performing processor-intensive tasks and this was achieved using 

threads. Although this produces a slight computational overhead in terms of thread 

management and multi-tasking, it is not onerous and is more desirable than removing 

all user interaction with the application while computation is being performed. 

Feedback was provided to the user with a progress bar and a cancel button which the 

user could press to cancel the current operation, if required.  

It became apparent that the software was often used to examine different types of 

scan of the same object, for instance a pre-/post-treatment clinical data sets or Micro-
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CT/HRCT scans of a pig lung phantom. This meant that quickly locating and measuring 

the same airway in different datasets was important. The advent of multi-core CPUs 

and cheaper liquid crystal display units made development of a system designed to be 

used with a dual screen workstation with a dual-core CPU feasible. An inter-process 

communication protocol was developed using the MS-Windows API to enable 

bidirectional communication between two (or more) distinct winImageBase 

executables (Figure 3.2), with the following advantages: 

 synchronisation during zooming and panning of images 

 synchronised measurement. When the user creates a ROI on one winImageBase 

executable, the same ROI is automatically created on the other winImageBase 

executable. Each executable initiates the CL algorithm and both ROIs are measured 

without any loss in speed because each executable’s processing is automatically 

performed by a different core. This effectively allows the user to measure and track 

two airways in the same time as it took to measure a single airway 

 the ROI for both airways is defined over the same part of the image, so any user-

introduced measurement error will be the same on both datasets. This may further 

decrease subjectivity of the CL algorithm   

 

 

Figure 3.2: Inter-process communication between two winImageBase executables 

Communication was achieved by updating a text file on a monitored directory with changes to zoom, panning position, addition of 
removal of ROIs and other settings.   

An extension of this protocol allowed semi-automatic registration two-dimensional 

alignment of two datasets. By setting user-defined fiducial ROI to serve as markers of 

reference on the same structure in two datasets, it was a simple task for either 

executable to automatically compute the required zoom and panning position 

automatically align the datasets in either direction. 

Monitored 
directory

winImageBase

Zoom Zoom

Panning position Panning position

Measurements Measurements

Settings Settings

winImageBase



3.4 Discussion  Software implementation 

53 

3.4 Discussion  

winImageBase is a fully functional application that meets the original design 

specification. It enables practitioners from any field to make airway dimension 

measurements with the minimum of effort. 

In the evolution of the project it has become apparent that many other features could 

be useful and these are introduced here. 

The winImageBase interface evolved through various prototypes and in its current 

form has proven very usable. It has provided a development environment for 

integrating, testing and debugging several HRCT image analysis algorithms. 

There are some structural improvements that could be made to the code as 

complications have been introduced as winImageBase has evolved. The original code 

has been repeatedly adapted as the algorithms have been modified and improved. This 

creep effect has been very hard to eliminate because many of the features now in 

winImageBase were not envisioned during the preliminary design stage. 

3.5 Future development 

This section considers features to assist with image analysis algorithms and model 

building, or technological approaches that could be adopted to improve the 

performance of the software. 

3.5.1 Fully automatic airway segmentation 

Operation of the winImageBase program requires a suitably qualified analyst to locate 

the airways and interpret the segmentation results. This dependency on skilled users 

could be reduced by automating the airway recognition part of the process.  

winImageBase was constructed as an image analyst’s workbench and, as with any such 

tool, there is a learning curve which must be ascended to acquire the necessary skills 

to apply the tool effectively. However, as more experience in the use of winImageBase 

was gained, an initial analysis protocol was developed. It has become apparent that 

much of the analysis process could be automated with relatively small loss in 

effectiveness. It thus appears quite practical to construct an automated tool which 

presented with a data set and some general data-semantics could perform a complete 

airway tree analysis and return the results to the user in the form of a report and 

models in the form of, for example, MS-Excel macros. 
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To produce such software may be a requirement to construct a rule base extracted 

from the experience of many winImageBase experiments and this would require some 

further research. Such a tool might well form a useful and commercial product.  

3.5.2 Three-dimensional analysis 

The current design of winImageBase has limitations preventing true 3-D analysis. Since 

each image is considered separately, all the images in a dataset are not required to 

load into memory, facilitating fast program startup and data set retrieval. To carry out 

true 3-D analysis, the dataset would have to be loaded into memory, allowing 

processor intensive calculations such as tri-linear interpolation for reslicing of the data 

to execute without disk access. Techniques such as 3-D registration require both data 

sets to be loaded into memory, and the allocation of a temporary memory buffer of 

the same size as the largest data set, which in the case of the latest micro-CT 

technology can be in excess of 10 GB. This is not feasible in 32-bit operating systems, 

and while 64-bit hardware and operating systems are now available, they are not yet 

in widespread use.  

Since another piece of software used extensively throughout the thesis (win3D 

described in Section 5.3.1) already contains many of the functions to perform 3-D 

image manipulation, it is a matter of integrating the functionality of win3D with the CL 

algorithm into a 64-bit operating system to allow for large data sets to be processed 

within a reasonable time. 

3.5.3 Visualisation 

In the current iteration of the software no 3-D volumetric data visualisation was 

provided.  3-D airway tree visualisation, although not necessary for the current study, 

has several advantages in a clinical setting, such as aiding diagnosis by depicting the 

airway anatomy in any orientation (Remy-Jardin, Remy et al. 1998), and virtual 

bronchoscopy (Suter, Reinhardt et al. 2008). Research is currently being conducted to 

measure the impact of these methods in a clinical setting (McLennan, Namati et al. 

2007). 

Graphical routines in winImageBase were implemented using TeeChart. Although this 

software component provides some very flexible features, it is virtually impossible to 

extend the usability of TeeChart beyond that envisioned by the authors. This is a 

limiting factor of the component when additional visualisation routines are required. 

The TeeChart component is also bonded to the Microsoft Windows environments, 

making the transition to a platform independent version of winImageBase more 
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problematic. At present some or all of these limitations would be overcome by 

choosing new or additional charting components. 

3.5.4 Platform independence 

The goal of platform-independent software is primarily to extend the market audience. 

Importantly this goal provides a secondary benefit over multiple platform 

implementations in that only one variant of the source code is maintained and 

developed.  

At the time when winImageBase was being specified it was decided to use C++ 

because that produced the fastest code. Additionally Borland C++ Builder was chosen 

to provide the best way of coupling the algorithms to an interface. At the time Java 

was considered it did offer platform independence, but was not a serious contender 

regarding execution speed, because it required a virtual machine to interpret the Java 

code. However, there have been massive performance improvements since the project 

was specified and Java would now provide a more credible development language. 

However, using a single development language is not necessarily the only solution. The 

speed of C++ code still makes it superior to Java, and is available for most computer 

architectures. Providing development follows standard conventions, such as those 

specified by American National Standards Institute (ANSI), then a single 

implementation of the code can be compiled for multiple architectures. In this way, 

the next version of winImageBase may benefit from the speed of the C++ algorithms 

and a platform independent Java interface. 

3.5.5 Distributed/parallel algorithm implementation 

One of the limitations of the current implementation of winImageBase is that it cannot 

handle very large data sets in reasonable time due to the required computation.  

3.5.6 Database support 

Linking winImageBase to a database could provide two important improvements. The 

first is that a database could be used to store all of the experimental results. The 

second is that a lot of commercial data is stored within a database and this could be 

accessed directly rather than requiring the user to export data from the database prior 

to image analysis algorithms. 

ODBC (open database connectivity) and JDBC (Java database connectivity) provide 

industry standard interfaces for database access. If Java or C++ is used as the 

development language then these tools could be employed accordingly. 
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The volume of data held on corporate databases can be very large, so if winImageBase 

is turned into a data mining application accessing large hospital databases then the 

image analysis algorithms would have to be speeded up using some of the ideas 

discussed in the previous section. 

3.5.7 Internet access 

Internet access to winImageBase provides a number of attractive solutions. Firstly this 

approach provides an attractive way to handle software licensing because the user 

would be required to connect to a license server that would validate the authenticity 

of the user/software. Secondly it is feasible to implement the interface to 

winImageBase as a Java or ActiveX application that could be accessed using a web 

browser. This could provide a method of analysing data via an internet connection, 

perhaps providing access to a powerful remote machine that would otherwise not be 

available to the user. 

However, there are still technological limitations to such an implementation where the 

bandwidth would limit how much communication could be made to the remote 

machine. In the case of running winImageBase remotely, only modestly sized data files 

could be transferred in reasonable time. 
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CHAPTER 4 

Parameter selection 

To be clinically useful, HRCT segmentation algorithms must be accurate and precise, 

and deliver airway measurements with minimum delay. Chapter 2 established the CL 

algorithm as a robust HRCT segmentation algorithm for measuring airway narrowing 

and airway wall thickening in pulmonary diseases such as COPD and asthma. This was 

based on observations of reliability and speed in areas such as leak prevention. Now 

that a suitable algorithm has been selected for airway measurement, a more rigorous 

and objective approach is required to assess its performance and select optimal 

parameters for its use.  

The use of computerised airway models has been stated as being the crucial first step 

for the purposes of HRCT segmentation algorithm validation (San Jose Estepar, Reilly et 

al. 2008). This is because artificial data eliminate the experimental and biological 

variance found in clinical data, and therefore establish a ground truth for airway 

dimensions.  

The model developed in this chapter contains simulated airways of known size, 

referenced from the literature on airway dimensions. This model is used to evaluate 

the effects of the following user-defined parameters on the CL algorithm’s 

performance: 

 edge detection mechanism 

 number of rays 

 amount of interpolation. 

The performance indicators were the effect of these parameters on the algorithm’s 

accuracy, precision and speed.  The aim was to validate the algorithm against 

computer-generated experimental data, thereby simplifying optimal parameter 

selection.  

The theory underlying ray-casting was reviewed to help explain its effect on the 

algorithm’s performance, and this is now shown. 
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4.1 Ray-casting approximation theory 

Assuming the airway centroid has been identified, the first step in measuring lumen 

area (LA) is casting n rays from the airway centroid to the lumen-wall boundary. The 

lumen area (LA) is calculated by joining each of the edges together to form a polygon 

of n vertices. Assuming the airway to be measured is a circular object of radius r, its 

area can be approximately represented by the equation shown in Figure 4.1.  

 

 

 

 

 

 

Figure 4.1: Ray-casting approximation theory 

Area calculations and areas shown in grey: (A) Circular airway, (B) hexagonal n=6 approximation of circular airway.  
Notice that the number of vertices is equivalent to the number of rays cast. 

From Figure 4.1, the difference between the true and measured areas can be 

expressed as an error in estimation: 

error =   (4.1) 

 

 

 

 

 

 

 

 

Figure 4.2: Theoretical effect of number of rays cast on area estimation 

Area percentage errors resulting from equation (4.1) and shown as graph (A) and as table (B).  

Number 
of rays 

Area % 
error 

2 100.00 

4 36.34 

8 9.97 

12 4.51 

16 2.55 

20 1.64 

28 0.84 
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100 0.07 
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Using equation (4.1) the extent of the area percentage error can be evaluated (Figure 

4.2). For any number of rays, the area is always under-estimated. However, the 

percentage error in lumen area estimation rapidly decreases to near zero with 

increasing ray number, so that from 12 rays onwards the error is less than 5 per cent.   

Since ray casting is used to calculate LA, OWA and WA in the same way, the same 

percentage error will occur for all measurements.  

4.2 Methods 

The CL algorithm’s performance in terms of accuracy, precision and execution speed 

was evaluated on simulated data of known dimensions and density. The following 

steps were carried out to construct and manipulate the model dataset, measure its 

airways and evaluate the CL algorithm’s performance. 

4.2.1  Simulated CT data preparation 

In order to create a model of HRCT airways, reference values were required for the 

intensity and size of structures typically found in lung HRCT images. 

Airway intensity selection 

The intensity values for the simulated airway lumen, airway walls and surrounding 

parenchyma were obtained from HRCT images of a random selection of patient data.  

Using the winImageBase software, a line was drawn through different structures in the 

HRCT images. These were used to create a profile from which the average intensity 

through this structure was calculated. In Figure 4.2 the process of creating airway 

lumen and bone pixel profiles is illustrated. The mean density value of parenchyma 

was determined as 725 HU, whereas the mean value in the airway lumen was found to 

be 135 HU. These values were normalised against bone (2700 HU) and air (0 HU) to 

create reference values for the model data (Table 4.1).  

TABLE 4.1: REFERENCE VALUES USED TO SELECT PHANTOM AND MODEL DATA PIXEL 
INTENSITY 

Structure measured Intensity value range 
(HU+1000) 

Mean normalised 
value (% of bone) 

Wall 1300-1800 57.6 

Parenchyma 500-950 26.9 

Lumen 0-185   3.4 
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Figure 4.3: HRCT image and pixel profiles used to create reference values 

Mean intensity value across pixel profile shown with green arrow. 

Commonly available office software (Microsoft Office 2007) was used to create airway 

simulation data using the reference values from Table 4.1. The circle object was used 

to create 72 simulations of HRCT airways. HRCT structure density was simulated using 

the nearest available shading values. Therefore, “black less 5 per cent” shading was 

used to represent near zero density airway lumen and “white, darker 40 per cent” 

shading was used to simulate airway wall. The circle objects were superimposed onto a 

rectangle object set with fill of ‘black, 25 per cent lighter’ shading representing the 

density of parenchyma (Figure 4.4).  

Bone 

Airway 
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Airway size selection 

Circle object size and line point size were varied for each airway allowing the creation 

of differently sized airway lumen and walls (Figure 4.4). Airway dimensions were 

converted to millimetres (using the conversion where 1 Didot point = 0.352mm). Sizes 

were chosen to be representative of airway generations 19 and smaller (Table 4.2). 

TABLE 4.2:  HUMAN AIRWAY AREAS FOUND AT DIFFERENT GENERATIONS 

Airway 
generation 

Count Lumen diameter 
(mm)* 

Lumen area 
(mm2) 

25 (trachea) 1 16 201.1 

19 6 6.6 25.5 

18 8 4.9 18.8 

15 20 3.3 8.6 

10 85 2.4 4.5 

5 499 1.51 1.8 

3 1104 0.93 0.7 

1 2843 0.79 0.5 

* Lumen diameters were obtained from cast of the lung (Horsfield and Cumming 1968) 

The literature does not refer to the range of human airway wall dimension 

measurements, so for each row of airways, the airway wall thickness was 

systematically varied. In Table 4.3 it can be seen that increasing the wall line thickness 

reduced the lumen diameter. This encroaching of the wall resulted in a negative lumen 

diameter in row f, which necessitated removal of these artifacts from the simulated 

model in Figure 4.4.  

TABLE 4.3:  SIMULATED AIRWAY AREAS  

Model airway 
row 

Lumen 
point size (mm) 

Wall thickness 
range (mm) 

Resulting LD 
range ( mm) 

A 6 9.0  1.5 5.5  2.8 

B 5 5.0 1.5 4.5 3.2 

C 4 5.0  1.5 3.5 2.2 

D 3 5.0 1.5 2.5 1.2 

E 2 5.0 1.5 1.5 0.2 

F 1 5.0 1.5 0.5 -0.8 

G 2 1.0  0.1 2.0 1.6 

H 1 1.0  0.1 1.0 0.6 

I 0.5 1.0  0.1 0.5 0.1 



4.2 Methods  Parameter selection 

62 

The image was converted to a 12-bit 512x512 bitmap. The calibration line as shown in 

Figure 4.4 was 442 pixels and measured as 73.2mm, allowing the calculation of the 

pixel x-y size as 0.1629mm and the field of view of 88.3mm.  

 

Figure 4.4: Image of the HRCT airway simulation data 

High density airway walls (white), low density lumen (black) and parenchyma external to airway (gray). A numbering system 1 to 8 
horizontally and A to I vertically was used to identify airways. Airways 1f to 6f bounded by red dashed box were excluded due to 
overlapping airway wall artifact.  

The 67 remaining airways had a wide distribution of airway areas (Figure 4.5A) with LA 

ranging from 23.5mm2 to 0.1mm2, OWA ranging from 45.1mm2 to 0.2mm2 and WA 

ranging from 33.2mm2 to 0.1mm2. Similarly, a wide distribution of LD from 5.4mm to 

0.12mm and OWD from 7.5mm to 0.05mm and WT from 6.2mm to 0.26mm was 

obtained (Figure 4.5B). The increased number of airways with smaller dimensions 

Calibration line 
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reflected the need to characterise the performance of the algorithm near the limits of 

detection. 
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Figure 4.5: Simulation data frequency distributions 

(A) LA, OWA and WA areas and (B) LD, OWD and WT in the model data. 

4.2.2 Model measurement by CL algorithm 

The winImageBase software was modified to include methods that allowed the user: 

 to change the number of rays cast by the CL algorithm 

 to set whether interpolation was ON or OFF during ray-casting. If interpolation 

was ON, the amount of interpolation per pixel could also be chosen 

 to define the edge-detection method as either the maximum gradient (max-

grad), or full width half max (half-max).  

Bitmaps of the simulated airways (Figure 4.4) were imported into the winImageBase 

software and one CL measurement was made from each airway.   

The speed of execution of the CL algorithm from user-initalisation to completion was 

measured on a desktop PC with an Intel Core 2 Duo 2.33Ghz.   

4.2.3 Data manipulation 

Settings within winImageBase were used to modify parameters such as the mechanism 

for edge detection, the number of rays cast during edge detection and the degree of 

interpolation. To determine the effect of rotation, the image data was rotated in 3-D at 

15, 30, 45, 60 and 75 degrees using the Win3D software (see Section 5.3.1 for 

description) prior to CL measurement in winImageBase. To determine the effect of 

volume averaging in rotated airways, 2, 4, 6 and 8 rotated adjacent images were 
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combined in winImageBase. To determine if measurement was more precise and 

accurate on straightened airways, averaged and rotated data was re-rotated back to 

orthogonal prior to measurement in winImageBase. 

Statistical analysis 

Error from actual size was calculated for each individual measurement. Accuracy (bias) 

was calculated as percentage error in size from true size; negative bias represents 

measurement under-estimation whereas positive bias represents measurement over-

estimation. Individual measurements were grouped by size, allowing calculation of 

mean bias and standard deviation. Precision (standard error or uncertainty) for each 

group was calculated as standard deviation divided by the square root of the number 

of measurements within each group. Groups were compared for significant differences 

using a paired, two-tailed T-test. 

4.3 Results 

In each of the following sections the effects of CL algorithm parameter choice on 

airway measurement accuracy, precision and speed were considered. 

4.3.1 Effect of edge-detection method 

LA and OWA areas appeared slightly different when comparing the two edge detection 

methods that were investigated, with the half-max method producing a more true 

circular approximation of the inner and wall-parenchyma boundaries (Figure 4.6). 

 

Figure 4.6:  Examples of airways measured with different edge detection methods 

(A) Half-max and (B) max-grad edge detection methods compared in airway 2D. The airway lumen is outlined in red and wall-
parenchyma boundary in green. 

A.      B. 



4.3 Results  Parameter selection 

65 

However, when the results of the two algorithms were compared, very little difference 

could be observed in the spread or magnitude of the measurement errors (Figure 4.7A 

and Figure 4.7B). For the smallest airways OWA and WA were over-estimated and LA 

was under-estimated by similar amounts. However, with increasing airway size 

increasing measurement error was noted to occur from the max-grad method, so for 

instance OWA was increasingly over-estimated with increasing airway size. This 

contrasted strongly with the half-max method, where no size dependency was 

observed. Both methods appeared to have increased error spread with increasing 

airway size. Overall, the max-grad method appears to have a slightly larger spread of 

errors than the half-max method. 
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Figure 4.7: Measurement errors from model data 

LA, WA, and OWA errors with the two types of edge detection on all 67 measurements with (A) max-grad and (B) half-max 
methods of edge detection. Results collected using the following CL parameters: 40 rays, interpolation 10 samples/pixel. 

 

To further elicit any differences between the two methods percentage errors were 

considered in Figure 4.8. In terms of all measurements both algorithms have similar 

performance, with large bias at small sizes tending towards zero with increasing size. 

For OWA (Figure 4.8C and Figure 4.8D) and WA (Figure 4.8E and Figure 4.8F) both 

algorithms have increasing positive bias with decreasing size whereas LA has 

decreasing negative bias with decreasing size (Figure 4.8A and Figure 4.8B). However 

with the max-grad method at very small sizes, further size reductions resulted in a 

swap in the direction of the bias, whereas with the half-max method the bias 

continues to follow the trend. At very small sizes the LA bias was less than the WA and 

OWA bias. 
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Figure 4.8: Effect of edge-detection method on all percentage errors 

Percentage errors from max-grad in (A) LA, (C) OWA, (E) WA and half-max in (B) LA, (D) OWA, and (F) WA  on 67 individual 
measurements. Results collected using the following CL parameters: 40 rays, interpolation 10 samples/pixel. 
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In Figure 4.9 the relative performance of the two algorithms are considered on all the 

measurements as a group. Overall, both algorithms underestimate LA and 

overestimate OWA and WA (Figure 4.9A). LA is measured with more precision than 

OWA and WA by both methods. When tested for significance between these 

algorithms no difference was found. Overall LA bias was close to zero with both 

methods (Figure 4.9B), with the max-grad method having more uncertainty. OWA bias 

was positive for both methods, with similar levels of uncertainty. Both methods 

measured WA with a relatively small positive bias and high precision.  
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Figure 4.9: Effect of edge-detection method on mean errors 

(A) Mean LA, WA, and OWA errors and (B) % errors with the two types of edge detection on all 67 measurements. Results 
collected using the following CL parameters: 40 rays, interpolation 10 samples/pixel. Results presented with error bars 
representing ± standard error. 

In Figure 4.10 the results have been grouped by size, allowing further investigation of 

size-dependency in the measurement error. When the LA percentage errors obtained 

from the two edge detection methods were tested using a two-tailed, unpaired T-test, 

no significant difference (p>0.05) was found (Figure 4.10A). On comparing the OWA 

results obtained from the two methods, no significant difference was found except for 

the smallest group (p=0.019) (Figure 4.10B). Similarly, when WA results were tested all 

differences were non-significant except for the smallest group (p=0.0004). 
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Figure 4.10: Effect of edge-detection method on mean errors (grouped) 

(A) Mean LA and OWA errors and (B) % errors in model data with the two types of edge detection on all 67 measurements 
presented with error bars representing standard error. Results collected using the following CL parameters: 40 rays, interpolation 
10 samples/pixel.  

To investigate why these significant differences occur in the smallest group, this group 

was separated into 10 subgroups based on the lumen diameter so they could be 

examined further (Table 4.5).  The max-grad method appeared to produce a similar 

bias irrespective of airway size whereas the half-max method tended towards 

increased under-estimation with decreasing size. However, with the max-grad method 

there were much larger increases in the uncertainty with decreasing size. 

TABLE 4.4 COMPARISON OF LA BIAS AND UNCERTAINTY IN THE SMALLEST AIRWAYS 

Mean LA 
(mm2) 

Mean LD 
(mm)   

Half-max method Max-grad method 

   Mean % 
error 

Standard 
error 

 Mean % 
error 

Standard 
error 

0.01 0.2 175.30 245.74 -5.51 1008.94 

0.07 0.4 -26.46 21.47 -4.46 59.64 

0.18 0.6 -31.29 9.68 -4.04 57.64 

0.42 0.8 -9.34 2.74 -1.94 41.69 

0.62 1.0 -12.91 4.62 -1.56 584.00 

0.86 1.2 -15.10 7.76 -2.29 1.61 

1.26 1.4 -3.33 0.39 -1.09 5.77 

1.64 1.6 -4.89 2.11 -1.14 42.35 

2.22 1.8 -1.94 1.24 -1.10 5.11 

2.80 2.0 -6.05 1.43 -1.57 5.02 

 

 

*P<0.05 
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4.3.2 Effect of interpolation 

With increasing airway size, similar airway size-dependent trends were observed in LA 

and OWA bias irrespective of the amount of interpolation (Figure 4.11A and Figure 

4.11C). Over the size ranges tested, the max-grad method produced a large under-

estimation of LA and OWA if no interpolation was used. However, this negative bias 

was markedly reduced by using 1 interpolation per pixel. Furthermore, with increasing 

sampling frequency of the interpolation there was a trend of decreasing bias, although 

this difference rapidly tailed off with increasing interpolation, to the point where the 

difference between 40 and 100 samples/pixel appeared very small.  

LA and OWA uncertainty followed similar trends in both LA and OWA (Figure 4.11B and 

Figure 4.11D), with a similar baseline uncertainty being achieved at all but the smallest 

grouping. This baseline’s uncertainty was largely unaffected by interpolation. However, 

much higher uncertainty was observed in the smallest airways group, especially with 

LA uncertainty. Interestingly, interpolation appeared to have the reverse effect on LA 

uncertainty as compared to OWA uncertainty. Increased LA uncertainty was observed 

with increasing interpolation. 
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Figure 4.11: The effect of various degrees of interpolation on model data 

(A) mean LA bias, (C) mean OWA bias, (B) LA uncertainty, (D) OWA uncertainty. Grouped measurements in model data with all 
67 airways. Results collected using the following CL parameters: 40 rays, max-grad edge detection. 
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4.3.3 Effect of number of rays 

On examination screenshots of simulated airway images overlaid with measurements, 

ray number did appear to have an effect on LA and OWA measurement (Figure 4.11). 

Increasing ray number appeared to produce a more true circular approximation of the 

inner and wall-parenchyma boundaries and hence a more accurate approximation of 

the areas being measured.  

 

Figure 4.12:  Example screenshots of airways measured with different numbers of rays 

(A) Ten and (B) six rays with max-grad edge detection in airway 2D. In images the airway wall appears grey. Rays (blue) from the 
centroid (yellow) pass to the ROI (not shown). The LA is calculated as the area spanned by the vertices (red) obtained from 
joining the measured airway lumen boundary as measured at each ray. Similarly OWA is calculated by joining the vertices as 
defined (green) by measuring the wall-parenchyma boundary.  

This observation was confirmed when LA and OWA bias were examined. Decreasing 

ray number increased the under-estimation of both LA (Figure 4.13A) and OWA (Figure 

4.13C). The pattern of the bias introduced from reducing the number of rays was 

similar to that from interpolation but was much larger in magnitude than the 

interpolation bias. Similar to the bias results from interpolation, the LA and OWA 

uncertainty did not appear to be affected by ray number, except in the smallest group 

where there was a much greater degree of uncertainty (Figure 4.13B and Figure 

4.13D).  

 

 

A.      B. 
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Figure 4.13: The effect of ray number on bias and uncertainty on model data 

(A) mean LA bias, (C) mean OWA bias, (B) LA uncertainty, (D) OWA uncertainty. Grouped measurements in model data with all 
67 airways. Results collected using the following CL parameters: 40 rays, max-grad edge detection. 

In Table 4.5 the bias from largest airway group is compared against the theoretical 

deduced bias as shown in Figure 4.2. Excellent agreement with the theory was found in 

all cases, with difference in bias of less than 2 percent.  

TABLE 4.5: OWA RAY NUMBER BIAS COMPARED TO THEORETICAL PERCENTAGE ERRORS 

number of 
rays 

% theory 
error 

% actual 
error 

% 
difference 

4 -36.3 -37.6 1.3 

6 -17.3 -17.6 0.3 

8 -10.0 -10.0 0 

10 -6.5 -7.3 0.8 

14 -3.3 -3.2 -0.1 

20 -1.6 -2.2 0.6 

40 -0.4 -0.4 0 

100 -0.1 -0.5 0.4 
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4.3.4 Algorithm speed of execution 

The effect of edge detection was firstly assessed on all 67 airways by measuring the 

time taken to perform each of the tasks involved in making a measurement, namely: 

 centroid identification 

 airway segmentation 

 drawing annotations and overlaying segmentation results. 

The method chosen for edge detection appeared to have no effect on the time taken 

to perform centroid identification or airway segmentation (Figure 4.14). Centroid 

identification took longer than airway segmentation for airways at any size. Drawing of 

the results was constant at 0.1 second. For very small airways centroid identification 

took a relatively smaller proportion of the total time taken, since airway segmentation 

was fairly invariant to the effects of increasing ROI size. 
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Figure 4.14: Time taken to make a single measurement using CL algorithm 

 Results collected using the following CL parameters: 40 rays, 10 samples/pixel. 

Next, the effect of ray number was quantified. Centroid identification took much 

longer than drawing, which took longer than airway segmentation. Increasing the ray 

count caused proportional increases in the time taken to perform each of the tasks 

(Table 4.6). However, since the centroid identification took so much longer, the effect 

of increasing ray number on the total time taken was much larger. 
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TABLE 4.6  EFFECT OF RAY COUNT ON TIME TAKEN IN SECONDS IN AIRWAY A2 

Ray count Centroid 
identification 

Airway 
segmentation 

Drawing 

100 11.89 0.08 0.27 

40 4.74 0.04 0.10 

20 2.41 0.03 0.06 

  

Finally, the effect of interpolation on CL algorithm speed was quantified (Table 4.7).  

Interpolation has no effect on centroid identification or on drawing the results, but a 

large effect on airway segmentation. With increasing interpolation there were 

proportional increases in time taken to segment the airways. Since airway 

segmentation takes up a very small proportion of the total time taken, the effect of 

interpolation on total time taken was small.   

TABLE 4.7  EFFECT OF INTERPOLATION ON TIME TAKEN IN SECONDS IN AIRWAY A2  

Ray count Centroid 
identification 

Airway 
segmentation 

Drawing 

20 4.72 0.09 0.10 

10 4.71 0.06 0.10 

8 4.71 0.06 0.10 

6 4.71 0.04 0.10 

4 4.71 0.04 0.10 

2 4.72 0.03 0.10 

1 4.70 0.03 0.10 

0 4.73 0.02 0.10 

4.4 Discussion 

Since Nyquist sampling theory (Nyquist 1928) states that approximately 2.3 pixels are 

required across a structure for its detection, the minimal detectable diameter for any 

structure to be measured in this simulated data set is approximately 0.32mm. 

Structures of less than this value are not theoretically detectable, so they could have 

been excluded from the analyses. This would have reduced the number of lumen 

measurements to 66 and wall measurements to 49.  

Structures below the minimum detectable limit were not removed because it was 

important to quantify the CL algorithm performance below these limits. HRCT scanning 

technology is currently undergoing a revolution; although existing scanners currently 

cannot exceed 0.25mm x-y dimensions, this is likely to improve greatly in the near 

future. 
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4.4.1 Effect of edge detection 

The two edge-detection methods appear to have broadly similar performance in most 

of the airways tested. Both methods perform accurately in larger airways, with a bias 

less than 5 per cent for measuring airways in most cases.   

Small airways 

With relatively small airways (for instance with LA between 1mm2 and 10mm2) there 

was an under-estimation in LA with both methods, which can be attributed to the 

errors in the estimation of the centroid position. Inaccurate placement of the centroid 

in small lumen airways potentially increases the baseline intensity value from which all 

the rays are cast. With both methods, if the pixel value at the wall is less than the value 

at the centroid for some rays, then these rays will not find the wall boundary. Any rays 

that cannot find the wall boundary are set to zero length and an under-estimation in 

the lumen area will result. 

When the methods were given the task of measuring airways close to the minimum 

detectable size, they performed in very different ways. The max-grad method became 

less precise but maintained its overall accuracy, whereas the half-max method 

retained its precision but lost its accuracy. The max-grad method had both negative 

and positive bias randomly occurring in these small sized airways, resulting in a less 

precise measurement at small airway size. This is in agreement with the findings of 

previous studies using the half-max method (Reinhardt, D'Souza et al. 1997; Nakano, 

Whittall et al. 2002), who found loss of accuracy in thinned walled structures with this 

method. The max-grad edge detection may be more sensitive than the half-max 

method to noise across the smaller centroid–wall differential found in thinner wall 

structures (Reinhardt, D'Souza et al. 1997; Vasiljevic and Khalil 2008).  

A high degree of precision is required since the clinician must have confidence in the 

algorithm’s repeatability and since inaccurate measurements can be easily corrected 

for by calibrating the measurement, it is of less concern than reduced precision.  For 

these reasons the method recommended for edge detection is the half-max.   

However, the differences observed between the half-max and max-grad performance 

warrant further exploration since the number of airways with very small dimensions in 

this study was small, and it was not possible to test for significant differences between 

these small groups.  

To improve the algorithm, a more accurate method of determining the centroid is 

required—such as a modified mass centroid or ray casting with interpolation methods.  
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However, both these methods have problems. The modified mass centroid method 

relies on a flood-fill inside one of the airway’s boundaries, which may not be reliably 

found, making it more suitable for a ‘quick and dirty’ assessment. Ray casting with 

interpolation has a high processing overhead and will slow the CL algorithm, making 

this the approach to take where accuracy is paramount. 

4.4.2 Effect of interpolation 

This study observed that any form of interpolation was beneficial to measurement 

accuracy and precision. This benefit was observed across all airway sizes but was most 

marked in the smaller airways groups. This was because when there was no 

interpolation the placement of each ray was subjected to a stepping effect, causing a 

loss of precision in estimation of the rays’ position and therefore the position of the 

wall. With one interpolation per pixel, the exact intensity value of any point within a 

pixel can be better estimated using the relative contributions of the surrounding pixels. 

This resulted in a much better approximation of the ray’s intensity than with no 

interpolation. With greater degrees of interpolation, benefits to observed errors were 

also obtained but the benefits were reduced in magnitude. The optimal amount of 

interpolation was 10 samples per pixel, since this provided a good improvement with a 

relatively small increase in computation time.  

This study presented one form of interpolation with the max-grad edge detection. 

Other forms of interpolation, such as bi-cubic or tri-linear, may better represent the 

true airway wall boundary, allowing for improved accuracy at smaller sizes. The current 

study found decreasing precision with increased interpolation with very small airways 

using the max-grad method. This is because the edge-detection method depended on 

the wall thickness, which is not directly taken into account with the simulated data. To 

better understand the effects on interpolation on edge detection a more detailed 

study is required where the wall thickness is kept constant.  

4.4.3   Effect of number of rays 

Increasing the number of rays reduces bias by better approximating the true boundary 

of the airway walls (Figure 4.12). However, the effects of increasing ray number rapidly 

diminished after a certain point in accordance with the theory presented earlier in the 

chapter. 

The optimal number of rays is 40; increasing the number of rays beyond this provides 

little or no further reduction to the CL algorithm’s measurement bias. Although the 

effect of ray numbers could effectively be countered in all cases by applying the 

correction equation, this equation makes the assumption that the airway is an 
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idealised circular structure presented orthogonally. Real airways do not present in this 

way, and therefore a larger number of rays might better allow for airways that are not 

circular. 

This comparison of the results with theoretical bias assumes that all airways are large. 

With smaller airways, this agreement may not be as good, since parameters errors will 

start to have a greater effect. These errors include those arising from the edge-

detection method, as was discussed in the previous section. 

4.4.4 Speed of execution 

The ray-casting part of the algorithm was fast, and largely unaffected by the size of the 

ROI, whereas the centroid identification part of the algorithm was by-far the slowest to 

execute. Centroid identification execution time could be reduced by using region 

growing to create a segmented area inside the lumen and a mass centroid calculation 

to identify the centre of this segmentation. However the robustness of this adaptation 

and its effect on centroid estimation accuracy and precision has yet to be established 

(Tschirren, Hoffman et al. 2004). 

Now that optimal parameters have been determined for idealised 2-D airways, the 

techniques developed during this chapter for exploring accuracy and precision will be 

used as a foundation for testing the CL algorithm performance in 3-D data in  

Chapter 6. 
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CHAPTER 5 

Handling confounders 

Having established that half-max was the edge-detection method of choice, this 

chapter examines the effect of confounders on CL algorithm performance. The CL 

algorithm was tested on a 3-D version of the simulated data presented in Chapter 4, 

after the addition of some of the known confounders found in HRCT data.  

Modelling the common problem of airway orientation, simulated airways were 

presented at different orientations to the scanner by rotating them in three 

dimensions before assessing the performance of the algorithm. To simulate another 

problematic effect  — volume averaging in angled airways (Hopper, Iyriboz et al. 1998) 

— the rotated dataset was averaged to various degrees, before assessing the 

performance of the algorithm. In both cases, the effect of the confounder was 

compared before and after the application of theoretical correction equations.  

Lastly, to determine whether the performance of the algorithm could be improved by 

rotating the airways back to orthogonal before measurement, the rotated and 

averaged data was re-rotated back to orthogonal prior to measurement.  

Before investigating the ways these confounders affect the algorithm’s performance, 

the theoretical effects of angle change and volume averaging are now considered.   

5.1 Angle theory 

As reported by (King, Muller et al. 2000), when an airway is rotated relative to the 

scanning plane, the measured lumen diameter and thus the measured lumen area 

increases. This area can be calculated in an idealised circular airway as the deviation 

from circular to elliptical (Figure 5.1). 
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Figure 5.1: An idealised circular airway undergoing rotation 

Airway lumen (black) and wall (white) superimposed onto parenchyma (grey) with true lumen diameter d and measured diameter 
d1 at angle α. (A) longitudinal orthogonal, (B) longitudinal rotated, (C) transverse orthogonal, and (D) transverse rotated views. 

If we rotate this airway by angle α, the diameter d in the measurement plane becomes 

d1. The true lumen area LA is now measured as lumen area LA1. 

Hence, 

 

Therefore the measured diameter: 
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Substituting this value into the equation of a circle, A=πr2, where r is the radius of the 

lumen, the measured lumen area can be expressed: 

  (5.2) 

Similarly if rotation occurs in both planes, the measured lumen area can be expressed: 

  (5.3) 

Assuming the airway is circular and no other effects are present, we can state the 

measured lumen area LA1 in terms of the actual area A as follows: 

 LA1  (5.4) 

where α and β are the angles to the scanning plane. 

Since area and radius measurements are proportional in Equations (5.3) and (5.4), we 

can state that percentage change in area is equal to percentage change in radius. 

Similarly, it follows that when measuring wall area or wall thickness, the percentage 

change is always the same. 

Eliminating π, measured lumen area can be expressed simply when only one angle 

changes:  

 LA1 =  (5.5) 

Similarly, if rotation occurs in both planes, the measured lumen area is: 

 LA1 =  (5.6) 

5.1.1 Effect of angle theory 

As the angle of rotation increases the airway lumen area is increasingly over-estimated 

(Figure 5.2). If the angle in one plane is kept at zero and the angle in the other plane is 

increased, the measured area doubles at an angle of 60 degrees and triples at an angle 

of 75 degrees. If the angle in both planes changes then this over-estimation is 

compounded, so that if both angles are 75 degrees the area is over-estimated 

approximately 14-fold. 
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Figure 5.2: Theoretical effect of angle change on airway area 

 (A) one angle using Equation (5.5) and (B) two angles using Equation (5.6). 

5.2 Volume averaging theory 

In addition to the effect of angle change, an additional consideration with HRCT data is 

volume averaging, which takes place due to averaging in the z-axis in 3-D data. Volume 

averaging is always present in 3-D data, however the extent of its effect is particularly 

apparent in HRCT data, since the image’s z resolution  is often poor relative to the x 

and y resolution. Because each voxel is made up of a large amount of z-dimensional 

surrounding material this problem manifests as excessive blurring of structures in 

otherwise relatively high resolution images. 

In Figure 5.3, obtaining measurements with and without volume averaging is 

considered. Figure 5.3A shows the idealised situation of a rotated airway where the y-z 

plane of each voxel is exactly bisected by the airway wall boundary. When the two-

dimensional pixel profile of the rotated airway is taken (that is, with no volume 

averaging), the calculated value at each pixel is made up from either containing only 

lumen or wall or parenchyma. Since the edge-detection method of the CL algorithm 

finds the point at which half the maximum intensity occurs, the airway wall is 

measured at exactly two pixels in diameter in both cases.  

However, if the 3-D voxel profile (that is, with volume averaging) is considered  

(Figure 5.3C), then the calculated value at each voxel is made up of contributions of 

more than one structure. For instance, in Figure 5.3C the airway wall voxels are 

reduced in value because they are made up of 7/8 wall and 1/8 lumen or parenchyma. 

This blurring of the wall intensity into the surrounding structures causes the walls to 

appear larger.           
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Figure 5.3: Partial volume effects in longitudinal rotated airway  

Longitudinal airway section (A) with voxel grid (blue) superimposed, 2-D pixel profile along green line (B) and 3-D voxel profile 
across red area (C) from pixel/voxel intensity allowing estimation of inner and outer airway wall. In (C) volume averaging effect 
has altered lumen-wall and wall-parenchyma boundary positions by ½ pixel/voxel width in both cases. 
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In Figure 5.4 the lumen-wall boundary position is under-estimated by  because the 

edge-detection method of the CL algorithm finds the point at which half the maximum 

intensity occurs, that is, half-way along L. Similarly, the wall-parenchyma boundary 

position is over-estimated by   because the point at which half the maximum intensity 

occurs is found is exactly half-way along L. Since these effects occur in both walls, 

lumen diameter will be under-estimated by L, and outer wall diameter over-estimated 

by L. 

 

Figure 5.4: Idealised airway wall section illustrating calculation of volume averaging effect  

Voxel grid (blue) representing dimensions (x, y, z) as (L, L, Z). Angle of rotation as α. Contribution of volume averaging (red) to 
measured wall thickness (green). 

From Figure 5.4, since  

 L = z .tan α (5.7) 

where α is angle of rotation. 

Therefore, substituting into Equation (5.1), measured lumen area is: 

 LA1 = π . (Lrx- ) . (Lry - ) (5.8) 

Where Lrx and Lry are the radii of the lumen in each plane. 

Similarly, measured outer wall area is: 

 OW1 = π . (Wrx+ ) . (Wry + ) (5.9) 

where Wrx and Wry are the radii of the outer wall in each plane. 

With increasing angle, an increasing under-estimation of the lumen area and an 

increasing over-estimation of outer wall area are obtained (Figure 5.5). With higher z-

axis resolution, the relative contribution of volume averaging error to the overall error 

Z 

L           L 

α 

LUMEN    WALL         PARENCHYMA 
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is less. Therefore, at small z-dimension, the volume averaging-induced error is small 

even at large angles. However, when rotation has occurred in two angles then the 

error is compounded. Comparing the effects of volume averaging to angle theory 

effects (Figure 5.2), it can be seen that the contribution of volume averaging to overall 

error is less than that of angle theory.  
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Figure 5.5: Theoretical volume averaging effect on airway area  

 (A) one angle and (B) two angles on area with z=r. 

5.2.1 Combined effect of confounders 

Since we have already established with angle theory the true radius of the airway, we 

can substitute into Equation (5.8) values for r1 and r2, where: 

rx =      ry =   

Therefore, the measured lumen area can be expressed: 

 LA1 = π .(    -   ) . (  -   ) (5.10) 

Expressing this in terms of the true LA, the measured lumen area is as follows: 

 LA1 = π .(   -   ) . (  - ) (5.11) 

Since the volume-averaging effect is small relative to the angle effect for any one 

angle, the combined effect is similar to the angle effect alone (Figure 5.6). Increasing  

z-dimension has increasing effects on the over-estimation, but in the quantities 

examined here, even at large angles, the change in error is small. 
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Furthermore, the volume-averaging effect is additive to the angle theory effect in 

outer wall area and reductive to the angle theory effect in lumen area, a larger spread 

in over-estimation is found when comparing lumen, outer wall, and wall area errors. 

Lumen over-estimation is much smaller than outer wall area over-estimation. With 

increasing angle, both effects combine to increase the over-estimation of OWA, 

whereas they counter each other in LA estimation. Since WA is obtained by subtracting 

LA from OWA, the OWA over-estimation is partially countered.  
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Figure 5.6: Combined volume averaging and angle theory effect  

(A) Effect of angle change on lumen airway area with various z-dimension and (B) lumen, outer wall, and wall areas at constant  z.  

5.3 Methods 

Investigation of the effects of angle and volume averaging used the simulated data 

produced in Chapter 4. It required new software for three-dimensional rotation and 

measurement using the CL algorithm. These steps are presented below. 

5.3.1 Software 

A custom MS-Windows C++ software program was created for these experiments. 

Briefly, the win3D software incorporated a tri-linear interpolation algorithm, allowing 

rotation of any three-dimensional dataset from any point in three dimensions. Three 

viewing windows allowed the data to be visualised in x-y, x-z and y-z orientation. Post-

rotated datasets were saved in the same format as the original, allowing the data to be 

easily imported into and measured by the winImageBase software. Datasets were 

averaged in various z dimensions by reading the density information of each of the 

adjacent voxels in each image.  
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Figure 5.7: Win3D software screenshot showing airway simulation data in rotation 

Three views of 512x512x764 volumetric dataset rotated at 15 degrees are presented to the user. Each view has been zoomed 
[using the zoom button], panned [using the scrollbars] and traversed [using the trackbar at the bottom of each view]. Functions are 
grouped into 4 categories: (A) loading and manipulating a dataset, (B) averaging and reslicing the data, (C) saving the data in 
various formats, (D) rotating the data in three dimensions.  



5.4 Results  Handling confounders 

86 

5.3.2 Data manipulation  

To determine the effect of rotation on airway measurement, the image data was 

rotated in 3-D at 15, 30, 45, 60 and 75 degrees in the x-z plane using the win3D 

software (Figure 5.7). The images were saved in bitmap format, and then imported 

into winImageBase for CL algorithm measurement. 

To determine the effect of volume averaging in rotated airways, pixels from between 

two and eight adjacent images were averaged and saved using winImageBase. To 

determine if measurement was better on straightened airways, averaged and rotated 

data was re-rotated in 3-D back to orthogonal before measurement in winImageBase.  

The 67 airways present in the model dataset were separated into 10 groups based on 

LA, OWA and WA. Example airway images from representative groups were taken 

directly from winImageBase as screenshots.  

5.3.3 Statistical analysis 

Error from true size was calculated for each individual LA, WA and OWA measurement. 

Bias was calculated as percentage error in size from true size; negative bias 

represented measurement under-estimation whereas positive bias represented 

measurement over-estimation. Individual measurements were grouped by size, 

allowing calculation of mean bias and standard error (uncertainty) for each group. The 

group measurements were compared for significant differences using unpaired, two-

tailed T-tests. 

5.3.4 Model measurement by CL algorithm 

The bitmap data was imported into the winImageBase software. For each of the 

airways a ROI was selected and one CL measurement was made from each. The image 

data was saved as 8-bit bitmap. One hundred (100) identical images were created, 

simulating a 3-D data set. 

5.4 Results 

In each of the following sections screenshots of three example airways are presented 

before and after the application of volume averaging and airway rotation. These 

airways are representative of the large and small airway groups in terms of LA, OWA 

and WA. Graphs showing the LA, OWA and WA bias and uncertainty at various angles 

and how these change with volume averaging were then considered. The effect of 
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applying correction equations was calculated and finally the relative contributions of 

the LA and OWA bias and uncertainty to WA bias and uncertainty were examined.  

5.4.1 Effect of rotation 

When the images of the rotated airways were examined, rotation caused the airways 

to appear elliptical with larger airway lumen and walls (Figure 5.8) as expected. The 

greater the rotation angle the greater this effect appeared to be. Furthermore, with 

increased angle there was increased blurring of the airway walls both into the airway 

lumen and into the surrounding space. 

 

    

 

   

 

Figure 5.8: Example screenshots of airways showing the effect of rotation  

Three airways: 2a (top), 7f (middle) and 7h (bottom) were rotated to 0, 15, 45, 75 degrees (left to right). Algorithm measurements 
are superimposed on the airways as follows: centroids shown in yellow, lumen-wall boundary in red, wall-parenchyma boundary in 
green.  

The algorithm measurements followed the contours of the wall boundaries well, with 

the blurring having little or no visible effect on the wall position. 

These observations were confirmed when the algorithm measurements were 

examined (Figure 5.9). There was a similar angle-dependent bias in both LA and OWA, 

so that at larger angles, greater over-estimation took place (Figure 5.9A and Figure 

5.9C). However, there was no size dependency with either LA or OWA bias, except in 

the smallest sized groups. 

 For example, with OWA there were size-dependent increases in bias below 

approximately 8mm2 (Figure 5.9C), so that the bias in smaller airways moved from 

near zero to progressively larger with decreasing OWA. For LA, there were size-
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dependent decreases in bias from approximately 8mm2 (Figure 5.9A), so that smaller 

airways were progressively under-estimated.  

When examining the LA and OWA uncertainty size dependency (Figure 5.9B and Figure 

5.9D) it was observed that in both cases they rapidly converged to near zero at similar 

sizes to that found with LA and OWA bias. Further increases in size had small effect. In 

all cases there was angle dependency in the uncertainty, so that increasing angle 

increases the uncertainty. 

The LA and OWA effects combined in WA to reduce size-dependent bias, so that little 

or no-size dependency could be observed in any of the groups (Figure 5.9E). However, 

the angle dependency remained at similar levels to that of LA and OWA. WA 

uncertainty was also similar to LA and OWA uncertainty for a particular size, except for 

the smaller groups, where WA uncertainty was much smaller (Figure 5.9F). 
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Figure 5.9: Bias and uncertainty before correction 

LA, OWA and WA with increasing airway size at 0, 15, 30, 45, 60 and 75 degrees of airway rotation. 

Effect of angle theory correction 

After the application of the angle theory correction (Equation (5.4)), the angle-

dependent bias of the measurements decreased substantially in all cases (Figure 

5.10A, Figure 5.10C, and Figure 5.10E). The bias remaining was angle dependent; 

increased angle resulted in increasing negative bias.  
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Also, for smaller airways, the remaining LA, OWA and WA bias was still dependent on 

the size of the structure being measured. Indeed, the smaller groups followed a similar 

pattern to the corresponding pre-corrected bias (Figure 5.9A, Figure 5.9B, Figure 5.9C). 
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Figure 5.10: Bias and uncertainty after angle correction  

LA, OWA and WA with increasing airway size at 0, 15, 30, 45, 60 and 75 degrees of airway rotation. 

The uncertainty was largely unaffected by the application of the angle theory 

correction (Figure 5.10B, Figure 5.10D, and Figure 5.10F). With the smallest group of 

airways WA uncertainty at all angles was increased after correction. 



5.4 Results  Handling confounders 

91 

5.4.2 Effect of volume averaging on rotated airways 

Volume averaging was observed primarily as blurring during examination of the 

rotated and averaged airways (Figure 5.11). At increased rotation angles there was 

visibly more blurring of the wall boundaries in that plane.  

The CL algorithm measurements followed the contours well, except for small airways, 

where the lumen-wall boundary was sometimes not completely measured. Volume 

averaging appeared to have a much greater effect on smaller airways than larger ones 

for any given rotation. In larger airways there was little or no change in estimated wall-

parenchyma boundary position whereas, in smaller airways, large increases were 

observed. In smaller airways this increased the measured airway wall area. 

To quantify the effects of volume averaging the second smallest group of airways was 

selected for further investigation (3.0mm2 LA and 6.6mm2 OWA groups). These airways 

represented the smallest structures that could be expected to be discriminated by the 

CL algorithm since their diameters were approximately two pixels or over.  

Observations from visual inspection were confirmed when the algorithm 

measurements in these groups were examined (Figure 5.12). Increased volume 

averaging resulted in reduced positive bias in LA and increased positive bias in OWA 

(Figure 5.12A and Figure 5.12C). However, these effects were much less than that 

resulting from increasing angle and mostly occurred in the 75 and 60 degree groups. 

Increased volume averaging results in increased uncertainty in LA and OWA in all 

rotated groups: groups at larger angle had greater changes in uncertainty with 

increasing volume averaging (Figure 5.12B and Figure 5.12D). At angles of 45 degrees 

and above there was a sigmoidal relationship between LA and volume averaging, 

whereas for OWA and volume averaging, the relationship was linear.  
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Figure 5.11:  Example screenshots of airways showing the effect of volume averaging  

Three airways: 2a (top), 7f (middle) and 7h (bottom) rotated at 15, 45 and 75 degrees with averaging of 2, 4 and 8 images. 
Algorithm measurements are superimposed on the airways as follows: centroids shown in yellow, lumen-wall boundary in red, 
wall-parenchyma boundary in green. 
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Figure 5.12:  Effect of combined angle and volume averaging before correction 

 LA, OWA and WA bias and uncertainty with increasing averaging of images at 0, 15, 30, 45, 60 and 75 degrees in the 3.0mm2 LA 
and 6.6mm2 OWA grouped data. 

Angle theory correction on averaged airways 

As with non-averaged images, the application of the angle theory correction reduced 

the bias in all cases (Figure 5.13). However, the bias that remained after correction 

with angle theory was larger with averaged airways.  

In LA the bias was negative. The magnitude of the bias was dependent on both the 

degree of volume averaging and the rotation angle (Figure 5.13A). There was a strong 

linear relationship between the remaining LA bias and volume averaging, with angle 
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increasing the steepness of the slope. Similar relationships were observed in the OWA 

estimation, except that the remaining bias was positive rather than negative (Figure 

5.13C).  These effects combine to increase the bias found in WA (Figure 5.13E). 

Application of the angle theory correction equation had no effect on LA or OWA or WA 

uncertainty (Figure 5.13B and Figure 5.13D and Figure 5.13F), except for airways at WA 

uncertainty at 75 degrees, averaged at 8 images, where it was reduced. 
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Figure 5.13:  Effect of volume averaging after angle theory correction  

LA, OWA and WA bias and uncertainty with increasing averaging of images at 0, 15, 30, 45, 60 and 75 degrees in the 3.0mm2 LA 
and 6.6mm2 OWA grouped data. 



5.4 Results  Handling confounders 

95 

Combined correction on averaged airways 

When the effect of angle theory correction (Figure 5.13) was compared to the 

combined effect of both equations (Figure 5.14), a further decrease in LA and OWA 

bias was observed—the bias was reduced to less than ± 8% for LA and ± 20% for OWA 

in all cases (Figure 5.14A and Figure 5.14C). As expected, increasing volume averaging 

with orthogonal airways (that is, at 0 degrees rotation) did not affect the bias which 

consistently remained at approximately -3% for LA and 4% for OWA. Similarly, when 

volume averaging had not been performed, angle had little effect on the corrected 

algorithm’s performance (x=1 in Figure 5.14A and Figure 5.14C). The exception to this 

was at 75 degrees, where the bias increased to -7% in LA and -16% in OWA.  

With increasing angle and volume averaging the remaining LA bias became more 

positive and the OWA became more negative. The combined effect of both equations 

on WA was to remove much of the volume averaging-dependent bias. Increasing the 

rotation angle resulted in increasingly negative bias (Figure 5.14E).  

The combination of the two equations had no effect on LA or OWA uncertainty (Figure 

5.14B and Figure 5.14D). However, WA uncertainty was reduced (Figure 5.14F), 

although increasing angle and increasing volume averaging still resulted in increasing 

uncertainty.  
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Figure 5.14:  Effect of volume averaging after both corrections  

LA, OWA bias and uncertainty with increasing averaging of images at 0, 15, 30, 45, 60 and 75 degrees in the 3.0mm2 LA and 
6.6mm2 OWA grouped data.  

5.4.3 Measurement after rotation back to orthogonal 

To determine the effect of volume averaging on orthogonal airway measurement, the 

rotated and averaged data was re-rotated back to orthogonal prior to measurement.   

Three example airways can be seen in Figure 5.15. Increased volume averaging caused 

the airway wall to appear blurred over a larger area.  
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Figure 5.15:  Screenshots of volume averaging effect after re-rotation back to orthogonal  

Three airways: 2a (top) , 7f (middle) and 7h (bottom) rotated at 15, 45 and 75 degrees, then averaged with 2, 4 or 8 images and 
finally re-rotated back to orthogonal. Algorithm measurements are superimposed on the airways as follows: centroids shown in 
yellow, lumen-wall boundary in red, wall-parenchyma boundary in green. 

Stair-step artifacts were also observed in some of the airways that were more 

pronounced at high angles. For instance, in Figure 5.15 a stair-step is visible in airway 

7h at 75 degrees. The size and the number of the steps appeared to be related to the 

number of images used for averaging.  

In some cases the algorithm measurements were not able to discriminate between the 

wall and the parenchyma boundaries. There was an increased measurement over-

estimation of the wall-parenchyma boundary and to a lesser degree, measurement 

under-estimation of the lumen-wall boundary. These effects were more noticeable in 

smaller airways.  

These observations were confirmed when the algorithm measurements were 

examined (Figure 5.16). LA bias became more negative with increasing angle and 

volume averaging (Figure 5.16A) and OWA bias became more positive with increasing 

angle and volume averaging (Figure 5.16C). LA and OWA uncertainty also increased 

with increasing angle and volume averaging especially for volume averaging greater 

than 4 and angles greater than 45 degrees (Figure 5.16B and Figure 5.16D). However, 
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the bias and uncertainty of the orthogonal measurements was much smaller than 

those found in comparable measurements made directly on rotated airways. 
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Figure 5.16:  Volume averaging in re-rotated airway before correction 

LA and OWA bias and uncertainty at 0, 15, 30, 45, 60 and 75 degrees in the 3.0mm2 LA and 6.6mm2 OWA grouped data. 

Correction in airways rotated back to orthogonal 

Since the airways had already been rotated back to orthogonal before measurement, 

no angle theory correction could be applied. Therefore the volume averaging 

correction only was applied to the measurements (Figure 5.17). 

After correction, at high angles there was a tendency to underestimate the OWA and 

overestimate the LA. With LA bias, at angles of 60 degrees or more, under-estimation 

became over-estimation with increasing volume averaging (Figure 5.17A). With OWA 

bias the opposite relationship was found; at angles of 60 degrees or more, over-

estimation became under-estimation with increasing volume averaging (Figure 5.17B). 

Overall, the volume-averaging correction on the straightened airways reduced LA and 

OWA bias in all but the 75 degree groups. LA uncertainty was largely unaffected by the 

correction (Figure 5.17C) whereas OWA uncertainty was slightly reduced (Figure 

5.17D).  
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Figure 5.17:  Volume averaging in re-rotated airways after correction 

LA and OWA bias and uncertainty at 0, 15, 30, 45, 60 and 75 degrees in the 3.0mm2 LA and 6.6mm2 OWA grouped data. 

Comparison between orthogonal and angled measurement 

To determine whether rotating airways back to orthogonal would result in any 

significant improvement in CL algorithm performance compared with measuring the 

airways at an angle, an unpaired T-test was performed using the two groups of 

measurements. Correction was performed as follows: 

 airways measured at an angle corrected by combined angle and volume 

averaging 

 airway measured after re-rotation back to orthogonal corrected by volume 

averaging equation  

In Table 5.1 these two approaches to airway measurement are compared. For this 

particular airway group with this amount of volume averaging, it was found that at low 

angles there was no significant difference between the two approaches. However at 

angles of 60 degrees or more for LA and 30 degrees or more for OWA, the orthogonal 

method performs with significantly less bias and uncertainty.   



5.5 Discussion  Handling confounders 

101 

Furthermore, with increasing volume averaging, the difference between the two 

measurement techniques was exacerbated. For example at volume averaging of four 

images at 45 degrees or more for LA, and 15 degrees or more for OWA, the 

approaches were found to be significantly different (data not shown).  This contrasted 

with the effect of airway size: with increasing airway size, the angle at which a 

significant difference between the two measurement techniques was found to grow 

larger. For instance, with the larger (5.8mm2) LA group at volume averaging of two 

images a significant difference was found for 30 degrees or more.     

TABLE 5.1: COMPARISON OF THE ROTATED VS STRAIGHTENED MEASUREMENT 

Area Rotated Re-rotated T-test 

 
 
 

LA 
 

Angle Bias SD Bias SD Probability 

0 -4.46 4.86 -4.46 4.86 0.9999 

15 -5.67 5.75 -5.09 6.03 0.8131 

30 -6.40 6.42 -4.59 6.93 0.5127 

45 -8.14 8.33 -3.40 7.27 0.1520 

60 -12.23 12.27 0.00 7.39 0.0084 

75 -26.16 23.81 9.71 7.83 0.0002 

 
 
 

OWA 

0 3.46 1.53 3.46 1.53 0.9999 

15 3.52 1.71 2.16 1.50 0.2166 

30 3.73 2.00 1.01 1.35 0.0394 

45 4.53 2.14 -0.75 1.61 0.0027 

60 6.31 3.07 -3.11 1.00 0.0014 

75 9.97 5.22 -10.51 1.80 0.0004 
Bias, standard deviation and statistical probability between the two measurement techniques with volume averaging of two images 
at different angles in the 3.0mm2 LA and 6.6mm2 OWA grouped data after correction.  

5.5 Discussion 

5.5.1 Rotation 

As indicated in the theory and previously published work (King, Muller et al. 1999; 

Saba, Hoffman et al. 2003), LA, OWA and WA measurement bias was increased by 

rotation. This angle-dependent bias and uncertainty was largely removed using the 

angle theory correction equation.  

With small airways, a size-dependent bias was introduced in LA and OWA. 

Interestingly, the LA and OWA size-dependent biases counter each other when 

calculating WA, resulting in a size-independent bias being present in WA 

measurements.  
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5.5.2 Volume averaging 

As indicated in the theory, when volume averaging was introduced into rotated 

airways the airway lumen bias was reduced whereas wall areas bias was increased. 

Furthermore, the lumen-wall and wall-parenchyma boundaries became blurred and 

uncertainty was increased. The bias introduced by increasing the volume averaging 

and angle could be largely removed using a combination of both the correction 

equations. This was because the ‘blurring’ could be largely countered using the volume 

averaging correction equation, so that a combination of both correction equations 

largely eliminated the bias and reduced the uncertainty. However, some bias still 

remained and since the LA tended to be over-estimated and the OWA under-estimated 

by similar amounts for any given angle or volume averaging, the WA was under-

estimated by approximately twice as much as the OWA. Both volume averaging and 

angle increased the uncertainty of the measurement but much of that was reduced 

post-correction.  

At high levels of volume averaging, a stair-step (or saw-tooth effect) was observed on 

airway walls that were orientated at high angles. This aliasing artifact could have been 

reduced by smoothing and anti-aliasing techniques such as adaptive interpolation 

(Wang and Vannier 1994) or by Bayesian classification (Chiverton and Wells 2004). 

Although other correction equations have been developed to correct for the non-linear 

volume effect found in HRCTs of the human skull (Hsieh 1999) this is the first volume 

averaging correction that has been developed for airway measurement.  

In this chapter no attempt was made to use the centroid’s position to re-rotate the 

airways back to orthogonal. Instead, the re-rotation angle was simply the inverse of 

the original rotation angle. However, in HRCT airways this angle must be calculated 

using the relative position of the airway centroid in contiguous images. The angle’s 

precision and accuracy and therefore the correction  will be dependent on the 

accuracy and precision of the centroid calculation.  

5.5.3 Airways re-rotated to orthogonal 

In the majority of the studies to date measurements of airway lumen and wall area 

have been restricted to airways that appear to have been cut in cross-section (King, 

Muller et al. 2000). This was to minimise the effect of volume averaging in rotated 

airways.  

Interestingly, the bias and uncertainty of the orthogonal measurements before 

correction was much smaller than those found in comparable measurements made 

directly on rotated airways. This implies that straightening the airways before 
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measurement will be more reliable than measuring them as they are presented in the 

HRCT data. After correction, the difference between the two approaches was found to 

be much smaller, and in the cases of larger airways at smaller angles insignificant. 

Therefore, the decision as to which approach to use depends on the size of the airway 

relative to the scanner z-axis resolution and the presenting angle of the airways to be 

measured.  

LA and OWA measurement bias after straightening is not significantly different from 

measurement bias of rotated and averaged airways. It is, however, less uncertain. This 

may be because less correction needs to be applied, but it is more likely that it is 

because the algorithm performs with greater reliability with circular rather than 

elliptical structures.  At high angles both approaches have low measurement accuracy 

and precision because data loss occurs due to averaging.  

The equations presented in this chapter have been effectively used to reduce errors 

produced when measuring airways data, but errors still remain. These result from: 

(a) the CL algorithm, which casts rays and then estimates the LA and OWA area 

based on a straight line between the rays. As discussed in the previous chapter 

the error obtained can be reduced by increasing the number of rays. It is 

possible that rotation and volume averaging may affect the number of rays 

required to obtain a small error.  

(b) Pixel size-dependent sampling error. It was observed that measurement error 

reduced with increased structure size. There is a threshold at which airway 

measurement uncertainty is too large to allow the calculation of a size. This 

chapter has established that the airway wall area measurements have less 

uncertainty than the airway lumen measurements, and this may be a due to 

the smaller size of the airway lumens. 

(c) Errors during rotation from tri-linear interpolation and rounding 

The correction equations deduced in this chapter have been successfully used to 

calibrate the results from simulated data. However, the measurements obtained to 

this point do not take into account the fact that it may not be possible to measure the 

angle with high accuracy and precision. This is something which will be investigated in 

the next chapter when the correction equations will be applied to HRCT data to 

establish their viability in this technology. 
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CHAPTER 6 

Validation using phantoms 

Chapter 5 concluded that in simulated data, airway orientation had a bigger impact on 

measurement accuracy than volume averaging. Equipped with this finding, this chapter 

makes novel use of both artificial and tissue phantoms to test the CL algorithm’s 

performance in data obtained directly from HRCT. It extends the work of previous 

chapters by establishing the effect of airway angle and volume averaging on airway 

measurement, but on this occasion, in HRCT images of phantoms. The purpose is to 

validate the CL algorithm in HRCT data, identifying the underlying differences between 

the simulated model from the previous chapter and HRCT phantom results. 

CT scanner performance is often tested using artificial phantoms. Artificial phantoms 

are made from materials that have approximately the same density and dimensions of 

the structure they are simulating. Less common is the use of tissue phantoms, where a 

whole piece of the tissue of interest is explanted and scanned. The advantages of using 

tissue over artificial phantoms for CT validation arise from the fact that they more 

closely approximate the range of tissue densities and dimensions, as well as the 

complex structure of in vivo tissue. However, existing measurement techniques, such 

as planimetry, have been found to be inadequate for obtaining accurate 3-D 

measurements of tissue phantoms, limiting their usefulness (Dame Carroll, Chandra et 

al. 2006).  

The newly emerged technique of micro-CT provides an ideal way of validating HRCT 

measurement accuracy in tissue phantoms since it effectively has the same X-ray 

absorptive basis as HRCT, but provides a fully 3-D isotropic data set and has two to 

three orders of magnitude higher spatial resolution, allowing volume averaging effects 

to be discounted. Thus micro-CT may provide the foundation for more effective use of 

a tissue phantom with airways of known dimensions. 
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6.1 Methods 

Volumetric datasets from HRCT data were obtained using two novel phantoms: 

(a) plastic tubing embedded in high density sponge; and  

(b) explanted lung preparations from porcine lungs that were inflation-fixed in 

formalin.  

True airway dimensions were obtained from: 

(a) light microscopy for the artificial phantom; and   

(b) micro-CT for the animal lung phantom.  

Bias and uncertainty were examined for the same systematic trends as observed with 

the simulated model data in Chapter 5, and whether those trends could be corrected 

for using angle theory and volume-averaging equations.  

By examining the accuracy and precision of the algorithm at various angles and airway 

sizes, the optimal method of measuring angled airways was determined from either: 

(a) measurements made directly from the HRCT data with subsequent angle 

theory and volume-averaging correction to calibrate the ‘measured area’; or 

(b) reorientation of the airways to make them orthogonal to the scanning plane 

before measurement, with subsequent volume-averaging correction. 

Plastic phantom construction  

A lung airway phantom was constructed by embedding 10 plastic tubes in a high 

density Styrofoam (Clark Rubber, Bayswater, Vic, Australia). The plastic tubes were 

selected for similar size and density to airway wall (Table 4.1). The Styrofoam was also 

selected based on its similar density to lung parenchyma (Kitaoka and Kitaoka 2002).  

Lung preparation and fixation 

Excised porcine lungs were obtained from a local butcher and examined for intact 

lobes. Two lobes were removed and the main bronchus cannulated in both cases. A 

syringe was used to inflate each lobe to physiological pressure with air, examining the 

lobe for leaks. Both inflated lobes were immersed in a bath of formalin for four weeks 

to ensure complete fixation. After fixation, the lung lobes were scanned by HRCT as 

indicated below and airways of interest were identified. The lung was then cut into 2-

cm cubes in a plane approximately perpendicular to the z-axis of the airways of 

interest. The cut surfaces of the lung cubes were photographed. Finally, the 2-cm lung 

cubes were wrapped in plastic wrap for protection (Paraplast; Tyco Healthcare, 

Mansfield, MA, USA). 
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HRCT phantom scanning 

All phantoms were scanned in the HRCT scanner (GE 4-slice Lightspeed, GE Medical 

Systems, Minneapolis) at 0, 20, 40, 60, 90 degree angles to the scanning plane. 

Standard clinical HRCT settings were used; 100kV and 100mAs at a slice thickness of 

0.625mm in helical mode. Images were reconstructed using the GE high spatial 

frequency ‘Lung’ and ‘Bone’ algorithm at two different field of views (FOV) of 36 cm, 

which yielded a voxel size of 0.703 x 0.703 x 0.625 mm. Images were recorded in 12-bit 

dicom format and recorded to CD for later analysis.  

Plastic phantom measurement by light microscope 

Orthogonal sections of the tubes were affixed to a slide and the horizontal lumen 

diameters (LDx) and vertical lumen diameters (LDy) were measured using a optical 

micrometer and light microscope (LM). The mean Wall Thickness (WT) was obtained by 

measuring the wall cross-sectional distance twice and taking the mean. These 

measurements allowed lumen area (LA) and outer wall area (OWA) to be calculated as 

follows: 

If the tube is considered to have radius, r, area of the tube . However since the 

tubing was not circular, but instead elliptical: 

   (6.1) 

where  is radius in the two planes.  

For the lumen area calculations: 

         and     (6.2) 

Similarly, outer wall area calculations: 

      and    (6.3) 

As indicated previously, WA was calculated by subtracting LA from OWA. 

Micro-CT scanning 

The pig lung cubes were scanned with a micro-CT SkyScan 1072 desktop system 

(SKYSCAN, Aartselaar, Belgium). Micro-CT settings were 100kV and 100mAs at a slice 

thickness of 0.019mm and a FOV of 19mm, which yielded a voxel size of 0.019 x 0.019 

x 0.019 mm. Each cube was scanned every 0.23 degrees as it rotated around its vertical 

axis until it had rotated 180 degrees, at an exposure time of 0.9 seconds per scan. 

Images were reconstructed using ConeRec software (provided by SkyScan). 
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Reconstructed image data were recorded in 8-bit bitmap format onto DVD for later 

analyses. 

Registration 

For the pig lung phantom, stereotactic matching was performed to accurately align the 

HRCT and micro-CT data sets to a common frame of spatial reference. Airways were 

matched between the HRCT and micro-CT images using two synchronised copies of 

winImageBase and airway branch points as fiducial anatomical markers (Figure 6.1).  

 

Figure 6.1: Screenshot of two synchronised copies of winImageBase  

Airways matched between (A) HRCT and (B) micro-CT datasets. The HRCT airways were measured using the CL algorithm and 
the micro-CT airways traced using the wand tool. Zoom, panning and traversing between the two datasets was handled by 
communication between the two programs automatically. Superimposed CL algorithm measurements of lumen-wall boundary 
(red) and wall-parenchyma boundary (green), and (right) manual tracings of lumen-wall boundary (red) and wall-parenchyma 
boundary (green). 

 

If approximate manual alignment of the datasets was found to be insufficient, the 

winImageBase software was used to calculate the mean difference in x-y, x-z, and y-z 

angles between stereotactically matched airways. This allowed the win3D software to 

rotate the micro-CT dataset for 3-D registration (Figure 5.7). 

3-D rotation and registration 

To perform 3-D rotation of the HRCT phantom data, a preliminary step was required. 

The dicom images previously recorded onto CD were converted from 12-bit to 8-bit 

A.      B. 
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bitmaps using contrast shrinking with VgStudioMax (Volume Graphics GmbH 

Heidelberg, Germany). The bitmap data was imported into win3D and 3-D rotation of 

the micro-CT dataset was performed using the x-y, x-z, and y-z angles so that it aligned 

with the corresponding HRCT dataset.  

Airway measurement by CL algorithm 

For both the pig lung and plastic phantom, HRCT data was imported into the 

winImageBase software, where airway lumen and wall area measurements were made 

using the CL algorithm with standard settings of 40 interpolated rays and half-max 

edge detection. For each of the 10 plastic tubes, 11 random images were selected and 

one CL measurement was made from each. Thus, a total of 110 measurements were 

made at each scanning angle 0, 20, 40, 60 degrees. 

Image analysis 

Micro-CT datasets were imported into winImageBase where airway lumen and wall 

areas were measured by manually tracing the lumen-wall and parenchyma-wall 

boundaries (Figure 6.1). Two copies of winImageBase were run simultaneously on a 

dual-screen workstation allowing visual matching of corresponding airways in both the 

HRCT and micro-CT datasets. All airways that were visible in each of the HRCT images 

were measured, allowing the creation of a contiguous branching airway tree. The 

centroid of each airway in adjacent images was used to calculate the angle changes 

within the airway (Figure 6.2). 

image a          

      

            z        

image b       

 

Figure 6.2: Schematic of airway angle measurement between two adjacent HRCT images.  

(xa, ya) represents the centroid of the airway in image a and (xb, ya) the centroid of the same airway in image b, with z being the 
distance between adjacent images. 

The x-z and y-z angle calculations used in the correction were obtained from the 

perimeter mass centroid from the micro-CT data as follows: 

  (6.4) 

 

(xa,ya) 

α 

(xb,yb) 
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The angle information was used to correct the LA, OWA and WA as previously 

demonstrated in Chapter 5. 

Statistical analysis 

Mean and standard deviation of the measurement error were calculated. Percentage 

error was calculated using the following equation: 

  (6.5) 

 

The degree to which these measurements agreed when the lumen and wall algorithms 

were applied in micro-CT and HRCT was calculated by the method of Bland & Altman 

(Bland and Altman 1986; Bland and Altman 1996; Bland and Altman 2003). Bias and 

uncertainty were calculated as in Chapter 5. All data are shown as mean ±95% 

confidence interval unless otherwise specified. The 95% limits of agreement were 

calculated as t0.05 x standard deviation of the differences between micro-CT and HRCT 

measurements where t0.05 is the critical t-value corresponding to the sample size at the 

0.05 level of significance.  

6.2 Results 

6.2.1 Plastic phantom before correction 

After importing the HRCT images into winImageBase, CL algorithm measurement of 

the 10 plastic tubes at all the scanning angles was possible, with the exception of 90 

degrees.  

When the plastic tubes were measured by LM, the LA ranged from 3.3mm2 to 42.2mm2 

and the wall area from 4.0mm2 to 45.7mm2. 

During examination of the tube images it was observed that scanning at different 

angles had caused the airways to appear elliptical with larger airway lumen and walls 

(Figure 6.3) as expected. The greater the scanning angle, the greater this effect 

appeared to be. Furthermore, with increased angle there was increased blurring of the 

airway walls both into the airway lumen and into the surrounding space. 

The CL algorithm measurements followed the contours well in all cases, LA, WA and 

OWA visibly increased with increasing rotation.  
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Tube 0 degrees 20 degrees 40 degrees 60 degrees 

1 

    

2 

    

3 

    

4 

    

5 

    

6 
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8 

    

9 

    

10 

    

Figure 6.3: HRCT images of plastic phantom scanned at various angles 

10 plastic tubes scanned at 0, 20, 40 and 60 degrees. CL algorithm measurements superimposed: lumen-tube boundary (red), 
wall-sponge boundary in green and centroid in yellow. 
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These observations were confirmed when examining the effect of scanning angle on 

the measurement of LA (Figure 6.4A), OWA (Figure 6.4C) and WA (Figure 6.4E). In all 

cases increasing angle caused increased measurement size, with size increases 

becoming progressively larger with larger angles. Furthermore, with increasing angle 

increasing measurement uncertainty was observed, particularly at 60 degrees. 

When percentage errors were investigated, a similar angle-dependent error 

relationship was obtained for all tubes in LA (Figure 6.4B), OWA (Figure 6.4D) and WA 

(Figure 6.4F), where increasing angle caused increasing over-estimation. 

The major difference between individual tubes appeared to be a size-dependent error 

at any one scanning angle, where smaller structures were progressively under-

estimated. This relationship is further explored in Figure 6.5. With LA error (Figure 

6.5A) and LA %error (Figure 6.5B) there was a strong linear size-dependency. For OWA, 

although there was also a linear size-dependent error (Figure 6.5C), when this was 

converted to percentage error, there was no size dependency present (Figure 6.5D). 

When these measurements were used to calculate WA, the error (Figure 6.5E) and 

%error (Figure 6.5F) largely followed that of OWA.  

At 0 degrees, the smaller the airway structure being measured, the larger the LA 

under-estimation. Furthermore, although LA was under-estimated, WA and OWA were 

over-estimated. With increasing scanning angle, the bias became less negative to the 

point where under-estimation became over-estimation. Since the bias was largely 

independent of airway size, the bias depended on the amount of under-estimation at 

 0 degrees and the angle only. 

Overall, the estimation of the OWA was less precise than for the LA. With increasing 

angle, over-estimation of OWA was obtained. However this over-estimation does not 

appear to be dependent on airway size. 
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Figure 6.4: The effect of rotation on measurement area and bias   

(A), (C), (E) error and (B), (D), (F) % error of measured LA, WA, OWA areas with increasing angle in 10 phantoms. Each point is 
the mean of 11 repeat measures, error bars represent ± standard deviation.  
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Figure 6.5: The effect of phantom size on error and bias before correction 

mean LA (A), OWA (C) and WA (E) error and % error (B, D, F) with increasing structure size at 0, 20, 40, 60 angles. Each point is 
the  mean  from 11 repeat measures a single phantom. 
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6.2.2 Plastic phantom after correction 

Using the combined angle theory and volume averaging equation presented in  

Chapter 4, the LA and OWA for each tube at 20, 40 and 60 degrees were calculated 

from the LM measurements at zero degrees (Table 6.1).  

 

TABLE 6.1: CALCULATED PHANTOM AREAS AT 20, 40 AND 60 DEGREES  

Tube 0 20 40 60 

 LA WA OWA LA WA OWA LA WA OWA LA WA OWA 

1 13.7 8.0 21.7 13.9 10.2 24.1 16.3 14.8 31.1 24.1 28.0 52.1 

2 6.6 13.3 19.9 6.5 15.6 22.1 7.5 21.2 28.7 10.8 37.5 48.3 

3 14.7 18.4 33.2 15.0 21.4 36.4 17.7 28.8 46.5 26.3 50.1 76.4 

4 27.9 37.7 65.6 28.7 42.9 71.5 34.1 56.3 90.4 51.0 95.3 146.2 

5 38.1 47.9 86.0 39.5 53.7 93.2 47.4 69.6 117.0 71.5 115.7 187.1 

6 7.1 9.7 16.7 7.0 11.7 18.7 8.0 16.3 24.3 11.6 29.7 41.3 

7 12.0 17.8 29.8 12.1 20.8 32.9 14.0 28.2 42.2 20.7 49.4 70.1 

8 2.0 6.2 8.2 1.8 7.5 9.4 2.0 10.5 12.4 2.7 19.2 21.9 

9 12.3 18.6 30.9 12.5 21.6 34.0 14.6 29.0 43.6 21.5 50.6 72.1 

10 26.5 22.7 49.2 27.2 26.6 53.8 32.3 36.0 68.3 48.2 63.1 111.3 

LA=lumen area, WA=wall area, OWA=outer wall area  

 

Comparison of the corrected LM measurements with the mean CL algorithm measured 

areas is shown in Figure 6.6. Before correction, the expected scanning angle-

dependent bias and uncertainty were observed in the mean measurements (Figure 

6.6A and Figure 6.6B). After angle correction, these were removed (Figure 6.6C and 

Figure 6.6D). Following the combined angle and volume averaging correction, 

increasing angle resulted in decreased measurement bias (Figure 6.6E). However, no 

difference could be observed between the uncertainty after angle correction and the 

uncertainty after combined correction (Figure 6.6F). As expected, no effect was 

observed at zero degrees.  

In summary, the effect of correction was to remove the scanning angle-dependent 

nature of the error and uncertainty.  This resulted in reduced mean measurement 

error of -18.8% ± 7.1% for LA, 15.0% ± 4.0% for WA, and 41.2% ± 12.6% OWA at angles 

up to 60 degrees.  
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Figure 6.6: Correction in the plastic phantom at various angles 

(A), (C), (E) mean bias and (B), (D), (F) uncertainty in measured LA, WA, OWA areas with increasing angle in 10 phantoms with 
11 repeat measures: before (top), after angle correction (middle,) and after combined angle and volume averaging correction 
(bottom) 
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Figure 6.7: Effect of phantom size before and after combined correction  

% error LA (A), OWA (C) and WA (E) before and after (B, D, F) with increasing structure size at 0, 20, 40, 60 angles. Each point is 
the  mean  from 11 repeat measures a single phantom. 

. 
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In Figure 6.7 the size-dependent nature of the errors before and after correction was 

compared. With increasing angle there is a linear increase in both LA and OWA area 

error, although the size-dependency is reduced from previous . There appears to be no 

relationship between size and WA. The uncertainty of the LA error appeared to be size 

dependent, so that with small areas at high angles, we obtain increased uncertainty in 

the degree of estimation. 

6.2.3 Measurement after rotation back to orthogonal 

To determine whether rotating the phantom back to orthogonal significantly improves 

the CL algorithm performance compared with measuring the airways at an angle, the 

HRCT data must be rotated. 

To do this, the data were first converted from 12-bit, since win3D required 8-bit 

images. The effect of converting the data to 8-bit was found to be non-significant in 

this data with excellent agreement between measurements obtained from 8-bit and 

12-bit data (Figure 6.8).   
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Figure 6.8: Effect of converting 12-bit dicom data into 8-bit bitmap data 

 Effect of converting the HRCT plastic phantoms at zero degrees with (A) LA, and (B) OWA. Each point is the mean of 11 
measurements with error bars presenting standard error.  

After rotation to orthogonal, inspection of HRCT images was carried out (Figure 6.9). 

No differences were observed between the control airways (scanned orthogonally) 

and those that had been rotated to orthogonal from their scanning plane.  

When the effect of angle on mean LA and OWA bias was examined  mean LA was 

under-estimated whereas OWA was over-estimated at all angles. With increasing 

angle, both biases increased slowly. Similar to OWA, WA was over-estimated, and 

over-estimation increased with increasing angle. When examining the uncertainty of 
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these measurements a similar pattern was observed both in the magnitude, direction 

and effect of angle in LA, WA and OWA.  

Tube    0 degrees     20 degrees     40 degrees     60 degrees 90 degrees 
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10 

     Figure 6.9: Re-rotation to orthogonal in HRCT images of plastic phantom 

10 plastic tubes scanned at 0, 20, 40 and 60 degrees and then rotated back to orthogonal before measurement. CL algorithm 
measurements superimposed: lumen-tube boundary (red), wall-sponge boundary in green and centroid in yellow. 
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After the volume-averaging correction had been applied to the orthogonally rotated 

airway measurements, the effects of scanning angle on bias and uncertainty were 

examined. Since the volume-averaging correction was dependent on a scanning angle 

being present, the equation had no effect on the airways at zero degrees. However, 

angle-dependent bias increases in LA were prevented by the use of the volume-

averaging equation and reduced bias and uncertainty with increasing angle was 

observed in OWA and WA. A similar pattern was observed with uncertainty; angle-

dependent increases in LA and OWA were prevented, leading to a reduction in WA 

uncertainty with increasing angle.  
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Figure 6.10: Effect of scanning angle on re-rotated phantom before and after correction 

 (A), (C) mean bias and (B), (D) uncertainty in measured LA, WA, OWA areas with increasing angle in 10 phantoms with 11 repeat 
measures: before (top), after volume averaging correction (bottom) 
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6.2.4 Pig lung phantom before correction 

A total of 140 micro-CT and HRCT measurements from two pig lungs scanned on 

different occasions were compared. The two cubes had airways of different size 

ranges.  The airways measured from cube 1 had larger airways than those measured 

from cube 2 (Table 6.2).  

TABLE 6.2: INITIAL RESULTS FROM THE PIG LUNG CUBES  

  LA OWA WA 

 
CUBE 1 

 error mean (mm2) -0.5 1.7 2.2 

 error 95% CI limits 2.8 4.2 4.6 

 range max 18.9 50.3 36.9 

 range min 0.4 1.7 1.0 

 
CUBE 2 

 error Mean (mm2) -0.2 1.7 1.8 

 error 95% CI limits 0.7 1.6 1.5 

 range max 3.9 9.2 5.7 

 range min 0.3 1.1 0.3 

 

No size-dependency in errors in LA (Figure 6.11A), OWA (Figure 6.11C) or WA (Figure 

6.11E) were revealed in either cube. However, errors were systematic in distribution 

so that for any sized airway LA was under-estimated, whereas OWA and WA were 

over-estimated.  Furthermore, mean errors were similar for both cubes, but the 95% CI 

was lower for the second cube, demonstrating more precise area estimation in this 

cube.  

Figure 6.11B, Figure 6.11D and Figure 6.11F show the relative errors in LA, OWA and 

WA.  For both cubes a similar pattern in relative error distribution was observed. With 

increasing airway size, relative errors became smaller. In addition, with OWA and WA, 

decreasing airway size resulted in increasing over-estimation.   

Further analysis was continued with the second cube.   
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Figure 6.11: The effect of pig lung airway size on error and bias in 2 pig lung cubes 

LA (top), OWA (middle) and WA (bottom) errors(A, C, E) and % errors (B, D, F) in various sized airways  

. 

6.2.5 Pig lung phantom after correction 

Application of the angle theory correction and volume averaging equations to the 

measurement results introduced a size dependency in LA, OWA and WA errors (Figure 

6.12). In all cases the mean error decreased, but the 95% CI increased (Table 6.3). 
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TABLE 6.3: PIG LUNG CUBE 2 AFTER CORRECTION  

Mean error LA OWA WA 

Before correction (mm2) -0.2 1.6 1.8 

95% CI limits before calibration  0.7 1.5 1.4 

After calibration (mm2) -0.1 1.4 1.5 

95% CI limits after correction 1.9 4.0 5.5 
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Figure 6.12: Comparison between pre and post corrected pig lung airways 

LA (top), OWA (middle) and WA (bottom) errors in various sized airways  
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6.3 Discussion 

6.3.1 Plastic phantom  

The results from the plastic phantom validated those from the simulated data. The 

same patterns of bias and uncertainty were observed. In HRCT images of plastic tubing, 

the effect of scanning angle on bias and uncertainty followed a similar pattern to the 

effect of rotation that was hypothesised and then observed in simulated data (Chapter 

5).  The effect of volume averaging was also similar to that observed in the simulated 

data.  

However, LA, OWA and WA bias at zero degrees was larger than previously observed in 

Chapter 5 in simulated airways of equivalent size. This was due to the large field of 

view necessitated by the size of the phantom sponge. The large field of view increased 

the voxel size imposed during HRCT scanning, reducing the voxel resolution and 

introducing the size-dependency previously observed in the model data in larger 

airways. Although redesign of the phantom to allow for a smaller field of view would 

effectively solve this problem, this does not affect the underlying principle investigated 

in the thesis. Simply, the smallest detectable structure size is increased, and the 

correction equations still hold. 

Application of the angle and volume averaging correction equations in combination 

successfully reduced the angle-dependent error in all cases. This was combined with a 

reversal of the increasing uncertainty associated with pre-corrected area 

measurements.   

Further improvement could have been found by refinement of the experimental 

technique used during this study.  

Measurement errors resulted from difficulty obtaining an accurate estimation of the 

tube angle. As has been demonstrated with the angle theory in Chapter 4, small 

changes in the angle at which an airway is measured will have large effects on the 

airway size measurement. Errors in estimating the true tube size were not expected 

since they were measured by LM, which can provide an accurate measure of small 

structures. However this ability depends on the tubing being cut and mounted exactly 

orthogonally, which was difficult to achieve manually.  

In addition, the angle of the phantom during HRCT scanning was estimated using an 

image of a protractor on the scanning bed. This rough angle estimation was 

compounded by the residual curvature of the plastic tubes as they passed through the 

styrofoam, so the angle at which they passed through the Styrofoam was dependent 

on where in the styrofoam the airways were measured. Both these errors could have 
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been addressed by an improved phantom. Using plexiglass rather than plastic would 

ensure a constant angle and mounting the phantom on a pivot would ensure more 

accurate angle estimation. Additionally, the blurring results in increasing variability 

which results in angle-dependent uncertainty. This can be countered to some extent 

by the correction equations or by rotation of the airways back to orthogonal prior to 

measurement. 

Conversion of the HRCT data from 12 bit to 8 bit was found to have no effect on 

measurement error. This is due to the relatively large differences in density between 

the wall, the parenchyma and the lumen. 

The phantom construction was fairly simple. A phantom such as that created by 

(Tzeng, Hoffman et al. 2007) would have enabled better measurement of branching 

patterns. However this was not part of the current study. 

6.3.2 Pig lung phantom 

Micro-CT validation of HRCT measurements allows quantification of the true airway 

dimensions found in tissue. Since the dimensions of the airways being measured are 

much larger than the spatial resolution of the micro-CT, volume averaging effects can 

be discounted. 

This study is the second study to the use of micro-CT in an animal model to validate 

HRCT airway measurement. The first study by (Dame Carroll, Chandra et al. 2006) used 

an earlier iteration of the CL algorithm which used max-grad edge detection and did 

not incorporate the interpolation or the refinements. (Dame Carroll, Chandra et al. 

2006) found accuracy 3.2mm2 LA and 11.2 mm2 WA, whereas this study improved on 

this by increasing accuracy to 0.5mm2 LA and and 5.7 mm2 WA. 

Two pig lung cubes were investigated in this study. One cube was found to have 

smaller airways than the other. Contrary to expected findings, the cube with larger 

airways was found to have larger errors. The similar pattern of errors between the 

different sized airways in the two cubes indicated the repeatability and the suitability 

of the micro-CT validation technique. The measurement errors observed especially in 

the first cube could have resulted from poor experimental technique.  In future 

studies, alignment differences between the micro-CT and HRCT datasets could be 

addressed by the development of automatic registration. Inherent variability in the 

manual tracing, could be improved by the use of a graphics tablet rather than a mouse. 

Prior to correction, little or no size dependency was demonstrated in the algorithm’s 

errors. Deformation and/or drying of the tissue between micro-CT and HRCT scans 

could be addressed by paraffin-embedding the tissue. 
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Using a similar validation technique, a previous iteration of the algorithm was 

demonstrated to have a larger size-dependency (Dame Carroll, Chandra et al. 2006). In 

addition the algorithm’s 95% CI was much higher than the previous iteration. This 

indicates an improvement in the algorithm’s performance.  

The bias found in the measurements was indicative of LA under-estimation, and OWA 

and WA over-estimation. This in accordance with the hypotheses that volume 

averaging will cause under-estimation of lumen-wall boundary and over-estimation of 

wall-parenchyma boundary. However, the bias was not found to be size dependent. 

This is in strong contrast to other similar studies (Dame Carroll, Chandra et al. 2006; 

(King, Muller et al. 2000) that found systematic size-dependent under-estimation.  

In this study the volume averaging relationships were uncovered. Rather than using 

empirical ‘black box’ calibrations to correct the errors inherent in the data, the 

deduced equations governing the confounders found in HRCT data were used to 

correct the errors. However, after correction, the error 95% limits of agreement 

increased. This may have been due to errors in the angle calculation, which were 

dependent on the precision with which the centroid location was estimated. Since the 

current centroid estimation calculation is inaccurate with small airways, volume 

averaging corrections cannot currently be performed in these airways 

6.4 Conclusions 

The results from both phantoms were in accordance with the thesis hypothesis that 

volume averaging will cause under-estimation of lumen-wall boundary and over-

estimation of wall-parenchyma boundary. Use of the deduced correction equations 

(5.8) and (5.9) presented in the previous chapter has effectively reduced the angle 

dependent error present in the HRCT phantom data.  

The LA measurements were very precise and accurate, which was as expected since 

the inner lumen wall was easy to define. The OWA was slightly over-estimated, but this 

may due to the small sample size. 

The effect of application of the angle correction was to reduce the accuracy and 

precision of both the LA and OWA measurements. This was not as expected, but 

possible explanations for this are as follows: 

 airways were found to not be cylindrical although this could have been a result 

the tissue drying out over time or an artifact produced by the fixation method 
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 airways are known to taper along their length which would have changed the 

effect of volume averaging  

 alignment problems with the two data sets resulting in increased measurement 

error 

 angle calculations were based on polygon mass centre, which is not an accurate 

estimate of the airway centroid; this was found to be a problem in airways from 

the animal lung because airways were bifurcating, leading to a skewing of the 

angle calculation from the mass centre  

 current study only used airways at less than 50 degrees and in these airways 

angle theory and volume averaging have fewer effects 

 airways may have mucosal folding which may not be able to be measured. 

 

The effect of the derived correction equations have been demonstrated using the CL 

algorithm in a variety of data sets. In the next chapter it will be applied in a clinical 

setting with the aim of establishing whether these corrections provide improved 

accuracy and precision of airway measurement.
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CHAPTER 7 

Application to clinical data 

Many studies have compared airway dimension measurements to PFTs, including 

studies into asthma (Niimi, Matsumoto et al. 2004), COPD (Nakano, Wong et al. 2005) 

and cystic fibrosis (de Jong, Nakano et al. 2005; Martinez, Llapur et al. 2005). Trials 

have also investigated the effects on airway dimension of inhaled pharmacological 

agents, such as methacholine (Brown 2000; Brown, Kaczka et al. 2008), anaesthetics 

(Brown 2000) and corticosteroids (Niimi 2003). 

Chapter 7 tests the usefulness of this thesis’ calibrated CL algorithm in a clinical 

setting. This study used HRCT data obtained as part of a clinical trial evaluating the 

effect of mannitol in bronchiectasis.  

Bronchiectasis is a disease that causes localised, irreversible dilatation of part of the 

bronchial tree. Involved bronchi are dilated and inflamed, resulting in airflow 

obstruction and impaired clearance of secretions. Subjects with bronchiectasis usually 

have increased  and persistent mucus secretion (Lourenco, Loddenkemper et al. 1972) 

and impaired mucociliary transport which results in mucus accumulation, cough and 

recurrent infections (Currie, Pavia et al. 1987). Bronchiectasis is a debilitating disease 

and reduces patients’ quality of life  (Wilson, Jones et al. 1997).  

Mannitol dry inhalation powder, under the name Bronchitol, has been approved in the 

United States by the FDA for use in cystic fibrosis patients with or at risk for 

bronchiectasis. The original orphan drug indication approved in February 2005 allowed 

its use for the treatment of bronchiectasis. The original approval was based on the 

results of Phase II clinical studies showing the product to be safe, well-tolerated, and 

effective for stimulating mucus hydration/clearance, thereby improving quality of life 

in patients with chronic obstructive lung diseases like bronchiectasis. Long-term 

studies are underway as of 2007 to ensure the safety and effectiveness of the 

treatment (Waknine 2005). 

Studies to date have focused on using mannitol for the treatment of asthma (Daviskas, 

Robinson et al. 2002) and for other diseases (Daviskas, Anderson et al. 2008). As 

http://en.wikipedia.org/wiki/Bronchi
http://en.wikipedia.org/wiki/Airway_obstruction
http://en.wikipedia.org/wiki/Airway_obstruction
http://en.wikipedia.org/wiki/Airway_obstruction
http://en.wikipedia.org/wiki/Food_and_Drug_Administration
http://en.wikipedia.org/wiki/Orphan_drug
http://en.wikipedia.org/wiki/2005
http://en.wikipedia.org/wiki/Clinical_trial
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mannitol is an osmotic agent, it drives water from the airway wall, into the lumen, 

reducing the viscosity of any mucous present in the lungs and facilitating expellation of 

the mucous via coughing (Daviskas, Anderson et al. 2008). Although it is clear that 

mannitol is effective in improving the clearance of mucous, it is not known if there is 

any effect on airway wall inflammation or airway lumen area. The hypotheses to be 

tested are that: 

 mannitol treatment will result in decrease airway wall area and  

 airway lumen area will be increased in patients with bronchiectasis 

 the CL algorithm’s discriminatory ability would be improved by correction.   

7.1 Methods 

The study was conducted at the Royal North Shore Hospital as part of a multi-centre 

clinical trial evaluating the effectiveness of mannitol in the treatment of 

bronchiectasis. The structure and subject of the study made it suitable for a 

comparison of the sensitivity and specificity of the candidate airway segmentation 

algorithm against conventional methods for diagnosing lung disease. 

The comparison was made within the mannitol study by conducting both conventional 

lung function testing (spirometry) and analysis of CT images using the CL algorithm. 

7.1.1 Subjects 

A sub-group of twelve subjects with stable non-cystic bronchiectasis agreed to 

undergo baseline and post-treatment HRCT treatment in the clinical trial. Subject 

characteristics are shown in Table 7.1.  

This study was approved by the Ethics Review Committee of Sydney South West Area 

Health Service (Australia; Protocol No. X05 0259) and was performed under the Clinical 

Trial Notification Scheme of the Therapeutic Goods Administration of Australia (CTN 

No. 2005/602). Written informed consent was obtained from all subjects. 

7.1.2 Study design 

The subjects were randomized into active and placebo groups at a 2:1 ratio. Both 

groups underwent a 12-week double-blind study of twice daily mannitol or placebo 

inhalation for 12 weeks.  Subjects underwent several types of lung testing including 

spirometry, mucous clearance studies, and HRCT at the start and the end of the trial. 
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TABLE 7.1: SUBJECT DETAILS AND BASELINE LUNG FUNCTION VALUES 

Subject 

number 

Sex Age 

(years) 

Height 

(cm)  

Weight 

(Kg) 

FEV1  FVC FEF 

25-75 

%fall 

FEV1 post 

mannitol 

3 M 76 166 54 1.6 2.16 1.19 8.8 

4 M 58 163 48 1.3 1.86 0.85 0.8 

11 M 59 168 61.5 1.92 3.1 1.05 -16.1 

14 F 60 169 76 1.51 1.96 1.27 4.6 

16 F 71 156 64 1.54 1.99 1.4 10.4 

17 F 56 168 74 1.71 2.6 1.01 -4.1 

19 F 65 165 56 1.22 1.78 1.03 3.4 

31 M 66 171 85 2.93 3.49 2.67 9.9 

5 M 79 174 66 1.44 2.01 0.94 5.6 

10 M 64 154 61 1.4 2.03 0.82 5.0 

15 F 67 177 87 2.38 3.55 1.41 -4.6 

20 F 61 165 88 1.72 2.26 1.38 -4.1 

FEV1: forced expiratory volume in one second, FVC: forced vital capacity, FEF25-75: mean forced expiratory flow between 25 
and 75% of FVC, F: female, M: Male 

Dry powder mannitol  

Dry powder mannitol (Pharmaxis Ltd, Frenchs Forest, Australia) was inhaled from 

capsules using the low resistance dry powder inhaler Osmohaler (RS 01 Plastiape, 

Osnago-Lecco, Italy). Mannitol was delivered in a dose of 320 mg. 

Measurement of lung function  

Spirometry was measured using the SpiroScore+ software (Bird Healthcare Australia). 

All subjects were clinically stable and had reproducible spirometry.  

Measurement of mucous clearance and quality of life 

Clearance of mucus was measured by each subject collecting  all expectorated sputum 

over the 24 hours of the day before the visit. Quality of life was assessed using the 

SF36 self-administered questionnaire scoring system that includes eight independent 

scales and two main dimensions and has been widely used and validated. 

Digital imaging of the lung 

HRCT scans were performed with the GE 4-slice Lightspeed HRCT Scanner  (GE Medical 

Systems, Minneapolis) from Aortic arch to diaphragm over 35cm of the whole lung at 

total lung capacity using a helical protocol (120 kVp, 100 mA and 1.0mm collimation). 

Images were reconstructed using the GE high spatial frequency ‘Lung’ algorithm at 
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field of views ranging from (FOV) of 21 cm to 26 cm. Images were archived in 12-bit 

dicom format and recorded to CD for later analyses.   

Airway measurement by the CL algorithm 

In each subject approximately 50 airway measurements from all visible airways from 

generation three downwards in the right lung presenting at angles less than 75 

degrees were measured using the CL algorithm. Branch point identification across a 

number of adjacent HRCT images in pre- and post-treatment lung scans allowed 

manual alignment and semi-automatic measurement of airways as described in Figure 

3.2. Algorithm parameters were as defined optimal in Chapter 4. Measurements were 

corrected for angle and volume averaging using the equations presented in Chapter 5. 

7.1.3 Statistical analysis 

Since the image locations were matched pre- and post-mannitol or placebo treatment, 

changes in LA and WA could be calculated for each subject. Paired T-tests were used to 

examine the changes within each subject for significance. Results grouped by 

treatment (active or placebo) were presented as mean ± standard error the mean, and 

differences between these groups were tested for significance using unpaired t-tests.  

7.1 Results 

7.1.1 Primary outcomes 

There were no significant changes in FEV1 following treatment with mannitol (1.79 ± 

0.54 and 1.75 ± 0.51L) or with placebo (1.74 ± 0.45L and 1.74 ± 0.54L).  

However,  highly significant improvement in quality of life after 12 weeks of treatment 

with Bronchitol (p< 0.005) and a significant improvement in quality of life compared to 

placebo (p< 0.05) was obtained. 

In addition, there was a highly significant difference in mucus clearance at 12 weeks 

for patients receiving Bronchitol versus those patients receiving placebo (p<0.001). 

7.1.2 HRCT visual inspection 

On examination of HRCT images of the subjects’ lungs, the airways were 

characteristically thickened and dilated. It was noted that airway plugging with mucous 

often occurred (Figure 7.1). Airways with plugging were not measured with the CL 

algorithm.  
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Figure 7.1: Example HRCT images of mucous plugging in bronchiectasis  

Airway segmentation with the outer wall in green and inner wall in red. Notice the apparent disappearance of the airway seen on 
the left (A) airway partially obscured by mucous and (B) airway fully obscured by mucous.  These airways were excluded from 
analysis. 

Distribution of airway dimensions 

When the distributions of LA and OWA were examined, it was evident that neither the 

airway lumen nor the airway walls were normally distributed. Before and after 

A 

B 
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treatment the median lumen area was 2.7mm2 and the wall area was 3.6mm2. The 

treatment appeared to have little or no effect on the distribution of lumen area.  

 

7.1.3 HRCT wall caliber 

To test whether treatment had affected airway caliber the relative amount of wall was 

calculated.  

In Figure 7.2 it can be seen that the proportion of the total area that the wall area 

makes up is dependent on the size of the airway. Both results are comparable with the 

existing literature, for instance in subjects with cystic fibrosis (Martinez, Llapur et al. 

2005). 
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Figure 7.2: Effect of treatment on airway calibre 

When the data was further stratified into the active and placebo groups, due to the 

small number of samples in the groups no significant difference could be observed 

(Figure 7.3). This relationship was not affected by the treatment (graph not shown). 
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Figure 7.3: Effect of treatment on airway calibre (grouped) 
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7.1.4 HRCT wall to lumen relationship 

To investigate whether the treatment had any effect on the lumen to wall area 

relationships in these subjects, the active and placebo groups were plotted as 

correlations in Figure 7.4. There was a strong linear relationship between lumen and 

wall area (R-squared >0.88) but no effect was observed with treatment in either group.  
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Figure 7.4: Treatment has no effect on WA to OWA relationship 

 

Figure 7.5 was plotted to investigate whether correction had improved the correlation 

between the pre-treatment and post-treatment measurements. It appeared that both 

lumen and wall areas appeared more widely distributed as a result of correction, 

although some of the outliers were removed by the correction process. 
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Figure 7.5: Effect of correction on regression relationship in LA and WA in all data 
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HRCT analysis by subject 

Table 7.2 below presents a summary of the mannitol study results, separating the 

subjects into two groups, ‘Active’ and ‘Placebo’. Table 7.2 over-leaf presents the 

‘Direction of change’ as ‘up’ or ‘down’ if the magnitude of the mean differences were 

greater than the 95% CI identified for the corrected CL results when applied to the 

animal model in Chapter 6 (Table 6.3). The table is separated into two parts, before 

correction and after correction to assess the effect of correction on the results. 

Before correction, of the eight subjects that form the Active group, five increased in 

lumen area and three decreased. After correction, two increased in lumen area, one 

decreased and five showed no change. Similarly, in the placebo group before 

correction, three subjects had decreases in LA and one increased. After correction in 

the placebo group, one increased, two decreased, and one showed no change. Before 

correction in the active group, six had no change in WA and two decreased, whereas in 

the placebo group two had no change and two decreased. Interestingly, after 

correction no changes were observable in the WA measurements. 

When paired T-tests were used to test the changes in wall and lumen area between 

the two groups, Active and Placebo, for significance, post-treatment differences 

(P<0.05) emerged, both up and down, in the LA and WA in some subjects in both 

groups.  

Before correction, two of the subjects in the active group had significant decreases in 

LA. Four had significant increases in LA, with two of these four also having significant 

increases in WA. All of the placebo group had significant changes in LA, with one 

subject having an increase and three having decreases.  One subject had a significant 

decrease in WA. Correction had little effect on the significance of these changes, 

except in WA where there was no significant change. 

Both before and after correction, the subjects’ LA and WA measurements compared 

pre- and post-treatment in Table 7.2 reflect variable study results. After correction the 

results become clearer since the signal: noise ratio becomes higher. That is although 

the correction results in higher noise it also increases the signal. For example, when 

examining the placebo subjects we can see that before correction there are significant 

differences both up and down between the pre and post treatment groups. After 

correction, the significance was removed and so was the direction of change.  
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TABLE 7.2: LA AND WA IN BRONCHIECTASIS PATIENTS BEFORE AND AFTER MANNITOL 
TREATMENT 

Before correction 

Patient Lumen area (mean)  Wall area (mean)  

ID Treatment Pre Post T-test Direction 

of change 

Pre Post T-Test Direction 

of 

change 

3 Active 33.7 34.6 0.32703 Up 27.8 26.9 0.13028 None 

4 Active 28.6 27.7 0.00027 Down 24.2 23.8 0.16526 None 

11 Active 44.9 41.4 0.01714 Down 34.6 34.4 0.71316 None 

14 Active 23.8 30.8 0.00000 Up 25.1 26.6 0.01949 Up 

16 Active 26.4 27.5 0.03256 Up 27.7 27.4 0.40529 None 

17 Active 19.7 20.9 0.00061 Up 23.5 28.3 0.00000 Up 

19 Active 42.5 42.0 0.21187 Down 36.5 37.1 0.19402 None 

31 Active 31.1 35.9 0.00000 Up 28.5 29.4 0.06439 None 

 

 

   

 

   

 

5 Placebo 25.7 24.6 0.00625 Down 24.9 23.6 0.02666 Down 

10 Placebo 24.1 19.5 0.00000 Down 29.9 29.5 0.33365 None 

20 Placebo 43.8 39.0 0.00097 Down 36.5 36.8 0.72862 None 

15 Placebo  21.0 27.8 0.00000 Up 31.3 27.6 0.16573 Down 

After correction 

Patient Lumen area (mean)  Wall area (mean)  

ID Treatment Pre Post T-test Direction 

of change 

Pre Post T-Test Direction 

of 

change 

3 Active 32.1 32.2 0.92484 None 26.3 24.7 0.23426 None 

4 Active 26.4 25.3 0.01918 Down 20.1 19.8 0.50562 None 

11 Active 41.6 38.2 0.01738 Down 29.4 29.0 0.66356 None 

14 Active 21.5 27.9 0.00003 Up 22.1 25.0 0.00380 None 

16 Active 25.3 26.3 0.07170 None 24.2 22.2 0.00909 None 

17 Active 18.0 18.9 0.04102 None 20.2 24.6 0.00000 None 

19 Active 39.1 38.6 0.41746 None 31.6 32.8 0.07364 None 

31 Active 26.0 31.7 0.00001 None 26.2 27.9 0.10434 None 

 

 

   

 

   

 

5 Placebo 23.9 22.3 0.01172 None 21.6 20.1 0.07581 None 

10 Placebo 20.7 16.6 0.00003 Down 24.5 24.4 0.86006 None 

20 Placebo 39.9 35.6 0.00144 Down 31.7 32.1 0.64725 None 

15 Placebo  15.8 23.6 0.00009 Up 24.2 23.4 0.67917 None 
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7.1.5 HRCT analysis by group 

To evaluate whether any difference was observable as a result of correction between 

the active and placebo groups, the mean and standard error of LA, OWA and WA was 

calculated for each group (Figure 7.6).  

Before correction, significant increases were found in LA, OWA and WA in the active 

group (Figure 7.6A) and significant decreases in OWA and WA in the placebo group 

(Figure 7.6B). After correction, significant increases remained in the active group 

(Figure 7.6C) but were absent from the placebo group (Figure 7.6D).  
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Figure 7.6: Effect of treatment on airway dimensions in the mannitol study 

Mean LA, OWA and WA in Active (A, C) and the eight Placebo (B, D) subjects pre and post treatment with and without correction 
Values expressed as mean size for 311 (active) and 129 (placebo) individual measurements, with error bars as standard error.  

 

*P < 0.05 

*P < 0.05 

*P < 0.05 

*P < 0.05 

*P < 0.05 
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*P < 0.05 
*P < 0.05 
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To test whether the correction allowed any greater discrimination between the two 

independent active and placebo groups, unpaired t-tests were carried out (Table 7.3).  

In the uncorrected measurements before treatment there was no detectable 

significant difference between the active and placebo groups for LA and OWA. 

However there was a significant difference in the WA measurements. After treatment 

with mannitol, no significant difference could be observed between the active and 

placebo groups. 

In the corrected measurements no significant difference was found between the active 

and placebo groups before treatment. However, after treatment with mannitol, the 

corrected measurements indicated that there was a significant difference between the 

active LA and placebo LA.  

TABLE 7.3: DIFFERENCES BETWEEN ACTIVE AND PLACEBO GROUPS  

 PRE-TREATMENT POST-TREATMENT 

 LA OWA WA LA OWA WA 

Uncorrected 0.265 0.890 0.044 0.063 0.257 0.763 

Corrected 0.094 0.425 0.368 0.031 0.095 0.619 

unpaired T-Test comparison (0<p<1). Significant changes are shown in red 

 

To probe the reasons for these significant changes further analysis was performed. 

Percentage changes were calculated for the two groups (Table 7.4). Correction caused 

an increase in both the magnitude and standard deviation of the LA change. It was 

notable that the effect of correction was larger in the active group than the placebo 

group.  

TABLE 7.4: % CHANGE FOR THE ACTIVE AND PLACEBO GROUPS BEFORE AND AFTER 
CORRECTION 

 Active Placebo 

 LA OWA WA LA OWA WA 

Uncorrected -2.3 15.2 0.2 12.5 0.3 13.4 -5.2 26.0 -4.6 16.0 -4.3 15.7 

Corrected -6.9 24.0 -3.3 19.9 -4.2 24.5 -6.1 41.1 -5.5 27.2 -6.0 31.2 

Results expressed as mean  standard deviation 
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7.2 Discussion  

7.2.1 Effect of mannitol  

Visual inspection of the images clearly showed mucous plugs in the airways before and 

after treatment with mannitol. As with similar HRCT studies where mucous secretions 

are present (de Jong, Nakano et al. 2005) airways that were plugged with mucous were 

excluded from analysis. Since airway measurement was not carried out on airways that 

were plugged, some of the mannitol-induced change may have been missed by the CL 

algorithm.  

The effect of the mannitol on airways was not detectable using routine lung function 

testing but with the CL algorithm, significant increases in the LA of the active group 

and no change in WA were detected. This may have not been as a result of the 

mannitol but instead an artifact of the low patient number and the high number of 

airways measured. These results were interesting but not definitive, and the 

significance of the changes observed with mannitol needs further clarification from a 

larger study. This pilot data, although not conclusive, is the first step in larger multi-

centre study which will be undertaken shortly. 

7.2.2 Effect of correction   

Correction of the CL algorithm increased the variability of the data. It also increased 

the differences between the active and placebo groups, resulting in a significant 

difference in LA between the active and placebo groups. Interestingly, after correction 

of the CL algorithm, the differences remained significant for the mannitol treated 

group but became non-significant for the placebo group. Despite the low subject 

numbers, this result may indicate that the correction equations have increased the 

discriminatory ability of the HRCT test.  

 As stated in the discussion of the previous chapter, the correction assumes accurate 

placement of the airway centroid and the method for centroid identification needs 

further refinement. The noise variance in the correction method may have masked 

part of the mannitol-induced change. Further study is required with a larger group of 

subjects and a pharmacological agent (such as methacholine) with known effects on 

airway lumen and wall area. This will allow measurement changes to be correlated 

against standard lung function test results and the effect of correction to be better 

quantified facilitating an improved correction technique. 
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CHAPTER 8 

Conclusion 

This thesis has revealed relationships between variables that were not separable in 

previous studies. By examining the volume averaging and angle of rotation 

relationships separately and in total, the thesis has enabled a better understanding of 

the relative contributions of each confounder to the total error. The finding that even 

when airway orientation angles are relatively high, the contribution of volume 

averaging to overall measurement error is relatively small is important and significant. 

Better understanding of the confounders of HRCT measurement error will enable 

future airway measurement studies to be designed and carried out with more 

certainty.  

Many previous studies have used variations of the ray-casting technique but to date 

none have examined the effect of the underlying parameters governing this algorithm, 

with qualitative best-guesses being used. The thesis sought to characterise and 

improve the performance of the ray-casting algorithm in HRCT data. Selection of 

parameters such as interpolation, edge-detection and the number of rays used as well 

as the development of novel refinements enabled optimal performance, in terms of 

speed, accuracy and precision from this algorithm in 2-D simulated data. When tested 

in pig lung phantom data this resulted in a large improvement in algorithm precision 

and accuracy when compared to a non-optimised ray-casting algorithm (Dame Carroll, 

Chandra et al. 2006) and similar algorithms that were tested in this way (King, Muller 

et al. 2000; Nakano, Whittall et al. 2002). 

A series of validation steps were carried out in 3-D simulated and phantom data. Novel 

correction equations were demonstrated in rotated and averaged airways from a 

number of types of data. In all cases in simulated data the equations effectively 

removed the measurement error, validating the derivations. The correction equations 

presented here could be used for calibration of the airway measurements obtained 

from HRCT data. To date, HRCT data has not been used for airway measurement unless 

the airways present orthogonally to the scanning plane. These corrections open up the 

possibility of using angled airways for the first time. However, important constraints 
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relating to the angle and airway size at any level of averaging apply. For instance, this 

investigation has found that whichever measurement technique is used, airways at an 

angle of 75 degrees or more will have a disproportionate measurement bias.  At this 

level of rotation, further bias created by increased volume averaging could not be 

countered. Therefore in highly averaged data such as HRCT, airways oblique to the 

scanning plane should be avoided. 

In HRCT plastic phantom data similar airway orientation and volume averaging error 

relationships were also found. Application of the correction equations resulted in 

increased precision and accuracy. However, in the micro-CT dataset, correction 

resulted in increased measurement precision and accuracy. This reflected the need to 

improve the micro-CT validation method by registration of the micro-CT data set onto 

the HRCT data. Misalignment errors were found to exacerbate the angle estimation 

errors, resulting in decreased precision and precision after correction.  

This thesis has uncovered that post-processing of the HRCT data to re-orientate the 

data back to the orthogonal angle is more effective than measuring airways as they 

present in the simulated data and the plastic phantom. However, due to difficulties in 

calculating the airway angle with high accuracy, this step was not carried out in the pig 

lung phantom and it is not clear whether this step translates well into clinical usage. 

Correction in the Bronchitol data increased the variance in WA measurements, and this 

finding is in keeping with the  pig lung data. Before the correction equations can be 

applied in clinical data, the angles need accurate calculation. Until this is achieved the 

Bronchitol data should be interpreted using the uncorrected values. 

The validation protocol developed in this thesis can be used for comparative studies of 

algorithm performance. In particular, the micro-CT validation technique provides a 

true 3-D dataset, which has been used to validate HRCT airway measurements (Dame 

Carroll, Chandra et al. 2006). This thesis extended the micro-CT validation previously 

developed by using a simpler approach to fixation, although further studies are 

required to establish the reproducibility of the technique.  

The advent of winImageBase has enabled researchers to explore airway disease in new 

ways (Brown 2008; Carroll 2008). As winImageBase emerged as a commercially viable 

product it became apparent that most users were interested in pre/post treatment 

analysis. Here the most promising avenue for further studies are to identify the 

airways that can act as leading indicators of treatment effect. Although winImageBase 

can be used very successfully for pre/post treatment analysis it was not designed 

specifically for this role. Most of the actual work for pre/post treatment analysis 

involves the identification of suitable study volunteers and collection of appropriate 
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data sets; combining leading airways and identifying bifurcations. For this we really 

require a separate 3-D software tool which can act as an image reslicer. Moreover, this 

thesis has shown that for activities such as determining the centroid other, possibly 

faster, algorithms, for example mass centre, can also be profitably used. There is also 

the interesting question of extending the CL algorithm to identify bifurcations. Ideally, 

all these analysis tools should be combined into a software platform specifically 

designed for airway tree analysis. 

Continued improvement in quantitative image-analysis techniques and the use of 

spirometrical control of the lung volume at acquisition make it possible to more easily 

assess airways lumen and wall areas and lung density. This quantitative assessment of 

the airways will lead to the increasing use of CT as a research tool for better insights in 

physiopathology of obstructive lung disease, particularly in COPD and asthma, with an 

ultimate benefit in clinical practice. 

CT analysis of airway dimensions in asthma provides additional data to that derived 

from traditional measures of lung function. Although much work remains to be done in 

terms of standardising the approach to image acquisition and analysis, there is some 

evidence that CT may be a more sensitive end-point in clinical trials. As important 

questions remain to be answered for this common disease, the use of CT in research 

settings seems justified. The relationship between airway hyper-responsiveness and 

airway wall dimension (as assessed by CT) remains unclear and is a topic that requires 

more study, as does the contribution of airway wall dimensions to the wide variation in 

airway responsiveness that can be demonstrated in normal individuals. Further work is 

needed that relates the degree of airway remodelling (as measured by histology) to 

the degree of airway wall thickening (as measured by HRCT) in subjects with asthma 

and COPD. 
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