
The University of Sydney

"pc.' rll.O

l'k1

Keith Jennings
Registrar

"'Thesis' includes 'treatise', 'dissertation' and other similar
productions.

The Act, by Section 36(1) provides: 'Subject to this Act, the
copyright in a literary, dramatic, musical or artistic work is in­
fringed by a person who, not being the owner of the copyright
and without the licence of the owner of the copyright, does
in Australia, or authorises the doing in Australia of, any ad
comprised in the copyright'

Section 31(1)(0)(i) provides Ihat copyright includes the exclu­
sive right to 'reproduce the work in a material form', Thus,
copyright i infringed by a person who, not being the owner of
the copyright and without the licence of the owner of the copy­
right, reproduces or authoris~ the reproduction of a work, or
of more than a reasonable part of the work, in a material form,
unless the reprodudion is a 'fair dealing' wilh the work 'for the
purpose of research or study' as further defined in Section 40
and 41 of the Act.

Copyright in relation to this thesis·

Under the Copyright Act 1968 (several provisions of which are
referred to below). this thesis must be u ed only under the
normal conditions of scholarly fair dealing for the purposes of
research, criticism or review. In particular no results or con­
clusions should be extracted from it, nor should it be copied
or closely paraphrased in whole or in part withoul the writ­
ten consent of the author. Proper written acknowledgement
should be made for any assistance obtained from this thesis.

Under Section 3S(2) of the Copyright Act 1968 the 'author of a
literary. dramatic, musical or artistic work is the owner of any
copyright subsisting in the work'. By virtue of Section 32(1)
copyright 'sub~islS in an original literary, dramatic, musical
or artistic work that is unpublished' and of which the author
was an Australian citizen, an Australian prolected person or a
person resident in Australia,

a.



THEORY OF COMBINATORIAL DESIGNS WITH APPLICATIONS
TO

ENCRYPTION AND THE DESIGN OF EXPERIMENTS

by
Dinesh Gopalrao Sarvate

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

in the

Department of Applied Mathematics
The University of Sydney

March 1987

© Dinesh G. Sarvate 1987



Dedicated to my grandparents

Mr. Laxman N. Golwalkar

Mrs. Saraswatibai Golwalkar

and

Mr. Ramchandra D. Sarvate

Mrs. Sumatibai Sarvate



This. thesis is my own work, ellcept where specifically acknowledged.
I have not previously sUbmitted any part of this work for a degree at this
or any other university.

j). G S<u.\1'I\k
~

(Dinesh G. Sarvate)

i.



ACKNOWLEDGEMENTS

It is a great pleasure for me to acknowledge the encouragement.
guidance and support - financial. emotional and above all. educational ­
which Dr. Jennifer Seberry has extended towards me, from the day I first

met her.

Thank you. Jennie, for your now well-known enthusiasm and
constructive guidance to your students in general and to me. in particular.

One of the best things to happen to me in Sydney was my introduction
to Mr. J. Hammer. with whom I have had numerous discussions, to my great
benefit. I sincerely thank him ~or his help.

I am indebted to Professor Anne Penfold Street in more than one
way. I take this opportunity to gratefUlly thank her.

I am thankful to my co-supervisor, Associate Professor D. E. Winch,

for his support and cooperation.

Dr. Elizabeth J. Billington and Dr. D. R. Breach very kindly reviewed
the manuscript. Their helpful suggestions and remarks have greatly

improved the thesis.

I wish to thank Mr. Warwick de Launey and Or. Jeremy E. Dawson for
their help. particularly in the early stages of the work.

Thanks are due to Mr. John Limnios. Mrs. Swati Sarvate and Mr. David
Sim for their help in the preparation of the thesis.

ii.



PUBLlCATIQNS

1. "All directed GDDs with block size three, Al=O, exist", Uf!IJ/as

tfall7emalica, 26, 1984, 311-317.

2. "A note on equi-neighboured block designs", UIIII/as tfall7emalica, 28,

1985, 91-98.

3. "Some results on directed and cyclic designs", Ars Combinaloria, 19A,

1985, 179-190.

4. "All simple BIBDs with block size 3 exist", Ars Combinaloria, 21A,

1986, 257-270.

5. "Block designs without repeated blocks", Ars Combinaloria, 21, 1986,

71-87.

6. "On a BlBD construction", ArsCombinaloria, 22, 1986, 165-169.

7. "Non-existence of certain GBRD's", Ars Combinaloria, 18, 1984, 5-20,

with W. de Launey.

8. "Generalised Bhaskar Rao designs with block size 3 over Z4", Ars

Combinaloria, 19A, 1985, 273-286, with W. de Launey and J. Seberry.

9. "Encryption using Hungarian rings", Oiscrele Applied tfall7emalics, 16,

1987, 151-155, with J. Hammer.

10. "On the introduction of block designs by graphs", submitted, with J.
Hammer.

11. "A note on orthogonal designs", ArsCombinaloria, to appear, with J.

Hammer and J. Seberry.

12. "Colourable designs. new group divisible designs and pairwise balanced

designs", J. ofSlat. Plan. and In!., 15. 1987, 379-389, with CA R(~ber and

J. Seberry . ,..

iii.



iv.

13. "Encryption methods based on combinatorial designs", Ars
ComlJinatoria, 21A, 1986, 237-246, with J. Seberry.



Table of contents

~

INTRODUCTION 1.1

Chapter 1: Introduction of Block Designs by Graphs 1.1

Chapter 2: Directed and CyClic Designs 2.1

. 2.1 Some results on directed and cyclic designs 2.2

2.3 An observation 2.24

Chapter 3: Equi-neighboured Designs 3.1

Chapter 4: Simple Designs 4.1

Chapter 5: Colourable Designs 5.1

5.1 Introduction 5.1

5.2 Application and a general construction 5.3

5.3 Recursive colourability theorems 5.16

5.4 Colourability construction theorems 5.20

5.5 The case k =2 5.28

5.6 The case k =3 5.30

Chapter 6: Some Constructions of PBIBDs and BIBDs 6.1

6.1 Construction of PBIBDs from directed graphs 6.1

6.2 Construction of B1BDs 6.2

v.



vi.

Chapter 7: Orthogonal Designs 7.1

7.1 Generalized Bhasker Rao designs 7.1

7.2 Or thogonaI designs 7.33

Chapter 8: Applications to Encryption 8.1

8.1 Encryption using combinatorial designs 8.1

8.2 Encryption using Hungarian rings 8.14

CONCLUSION C.l

BIBLIOGRAPHY B.l



INTRODUCTION

A pairwise balanceddesign, PBD [K, A ; vl, is a pair (5, ll) where 5 is
a v-set (of points), II is a class of subsets of 5 (called blocks) such that
for any block B in ll, IBI E K and any pair of distinct points of 5 is
contained in exactly A of the blocks of ll. If K ={k } then the design is
called a balancedincomplete block design, BIBD (v, k, A). The constant A is
called the index of the design. If any t-set of distinct points of 5 is
contained in exactly A of the blocks of ll, then the design is called a
t-design The necessary conditions for the existence of BIBD(v. k, A) are

vr =bk

A(V-I) = r(I<-I).

1.1

and b ~ v.

An association scheme with m associate classes on a v-set 5 is a
family of m symmetric anti-reflexive binary relations on 5, such that:

(j) any two distinct elements of 5 are i th associates for exactly one
value of i, where 15 i 5 m ;

(ii) each element of 5 has ni ith associates, 15 i 5 m ;
.
1.

(iiD for each, 15 i 5 m, if x and y are ith associates then there are
• A

P]k elements of 5 which are both jth a~sociates of x and I<th associates of..
y. The numbers v, nj (I 5 i 5 m), and Pjk (1 5 i. j, k 5 m ) are called the

parameters of the association scheme. . ., ~

From the above definition, we see that Pjk = Pkj·

A partiallf! balanced incomplete block design with m associate
classes (PBIBD(m» is a design based on a v-set 5, with b blocks each of



1.2

size k and replication number r, such that there is an association scheme

with m classes on S satisfying the following: if elements x and y are ith

associates. 1::s i::s m, then they occur together in Ai blocks. The numbers v.

b, r, k, Ai (l ::s i ::s m) are called the parameters of the PBIBD(m).

i.
The association matrices Bi = (bjk), 1 ::s i ::s m, 1 ::s j, k ::s v, of a

PBIBD(m) are defined by

i = {I if j and k are ith associates,
bjk

o otherwise.

The incidence matrix N of a design (e.g. a BIBD) is a v x b matrix
where v is the number of points of the design and b is the number of blocks
of the designs. The rows of the matrix correspond to the points si, 1::s i ::s v

and the columns correspond to the blocks Bi' 1::s i ::s b. The 0, j)th entry aij

is determined as follows:

1 if si f. Bj

=
o otherwise.

If N is the incidence matrix of a PBIBD(m) then it is well known that

m
NNT =rl + 2: AjBi,

i=l

We define group divisible designs as in Hanani(l975). Let S be a v-set
and let G1, G2•.•. Gn be a disjoint partition of S where each Gi is of size m.

The sets Gi'S are called groups. A group divisible design, GD[k, A, m; vI. is a

collection of k-subsets (called blocks) of the v-set S such that each block
intersects each group in at most one element and a pair of elements from
different groups occurs in exactly A blocks. In a similar way we define a
GD[K, A, M; vI. where the size of each block is an element of K and the size
of each group is an element of M.



These designs have interesting applications in different areas in
industry (see e.g. Roberts (1984)). An extra effect can be obtained if we
consider the block as an ordered set and/or consider that a block contains a
particular number of pairs. which occur in a particular way. For example.
we may think of a block. say. {a. b. c. d} as an ordered set which contains
only the ordered pairs (a. b). (a. c). (a. d). (b. c). (b. d) and (c. d) instead of
the six unordered pairs (a. b). (a. c). (a. d). (b. c). (b. d) and (c. d). Such a
design is called a directed design These designs have applications in
computer networks (Skillicorn (1981)). in experimental design theory and
medical experiments where the order of treatments (points) in time is
significant (Street (1981)). In a c!Jclic design we think of the block as an
ordered set which contains only the ordered pairs (a. b). (b. c). (c. d) and
(d. a). whereas in an equi-neighboured design we think of the block as an
ordered set which contains only the pairs (a. ~). (b. c) and (c. d).

Let W=[ Wij ] be a matrix of order n with Wij E {a, 1. -t}o W is called
a weighing matrix of weight p and order n. if WWT =WTW =pi!) where In

denotes the identity matrix of order n. Such a matrix is denoted by W(n.p).
If squaring all its entries gives an incidence matrix of a SBIBD then W is
called a balanced weighing matrix.

An orthogonaldesign. (OD). say A. of order n and type (SI. S2..... St)

on the commuting variables (:tXl..... :tXt) and O. is a square matrix of order n
with entries from (:tXl..... :tXt) and O. Each row and column of A contains s~

entries equal to x~ in absolute value. the remaining entries in each row and
column being equal to O. Any two distinct rows of A are orthogonal. In
other words

AN = ( SlX12 + ... + StXt2) In.

An Hadamard matrix A = [aij) is a Wen, n), Le. it is a square matrix of
order n with entries aij E (1. -H, which satisfies

AN =AT A =n In.

1.3
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Suppose we have a matrilt Wwith elements from an abelian group
G = {hI. h2•...• hgl where W=hlAI +h2A2 + ... +hg"1l; here Al•...• Ag are v x b

(0. 1) matrices. and the Hadamard product Ai *' Aj (i ;z: j) is zero. Suppose

(ail ..... aib) and (bjl •...• bjb) are the ith and jth rows of W; then we define

WW+ by

-\ ~I

(WW+)ij = (ail •...• aib)' (bjl ..... bjb)

with ": designating the scalar product. Then W is a generalized Bhaskar Rao
design or GBRD over G if:

m

(j) WW+ = rl +l: (CjG)Bi;

i=1

(H) N= Al + ... + Ag satisfies

m
NNT = rl +l: AjBi.

i=1

that is. N is the incidence matrix of a PBIBD(m). and (CiG) gives the number

of times a complete copy of the group Goccurs.

Such a matrix is denoted by GBRDc;(v. b. r, k; Al...., Am; Cl..... Cm) .
When m = I. c = A/g and Bl = J - I. N is the incidence matrix of a BIBD. In
this case W is a GBRDc;(v. b. r, k; A) or GBRDc;(v. k. A).

In Chapter 1some elementary theory of designs using graph theory is
introduced. A construction of PBIBDs using complete bipartite graphs is
given (joint work with Hammer).

In Chapter 2 it is proved that the necessary conditions are sufficient
for the existence of:

(j) directed group divisible designs with block size 3;



(ii) directed group divisible designs with block size 4;

(iii) cyclic group divisible designs with block size 3 except v =6 and
group size 1;

(iv) cyclic BIBD(v. b, r, 4, (4t)*) for v > 4

and it is proved that a cyclic BIBD(v, b, r, 4, (4t+2)*) exists for
v ;; 0, 1(mod 4).

The "*" on (4t) and (4t+2) indicates that we count the occurrence of
the ordered pairs.

In Chapter 3 recursive constructions for equi-neighboured BIBDs of
block size 3 are given and it is proved that every group divisible design of
block size 3 with A = 3t underlies an equi-neighboured group divisible
design, Le. every group divisible design of block size 3 and A = 3t can be
ordered in such a way that it becomes an equi-neighboured group divisible
design.

In Chapter 4, a new proof is given that the necessary conditions are
sufficient for the existence of simple, (without repeated blocks), balanced
incomplete block designs with block size 3. Some embedding theorems for
simple balanced incomplete block designs with block size 3, based on a
method of graph factorization, are given.

In Chapter 5 crypto designs and colourable designs are defined. A
crypfo orcolourable design is an incidence matrix of a block design where
the non zero entries of the incidence matrix are labeled by a set of symbols
called colours. An application of colourable designs to construct group
divisible designs is given. The edge colouring of bipartite graphs is used, in
the proof of the main existence theorem of colourable designs, which says
that every block design is colourable. This theorem does not tell us how to
do the colouring and hence the rest of the chapter is devoted to the
methods and constructions for colourable designs (joint work with Rodger
and Seberry).

I.5



1.6

Chapter 6 gives constructions for families of BIBDs and PBIBDs.
These constructions are based on directed graphs and t-designs.

Chapter 7 (joint work with de Launey. Hammer and 5eberry) deals
with orthogonal designs. In particular. Chapter 7 deals with the non­
existence of GBRD(7, 4, 4, Z2 x Z2) (with de Launey), the existence of GBRDs
with block size 3 over Z4 (with de Launey and 5eberry) and a construction
for weighing designs extended to orthogonal designs (joint work with

Hammer and 5eberry).

Chapter 8 explores the use of combinatorial designs in encryption. A
systematic method to permute the message block, while scrambling in the
message, a number of arbitrary message symbols. is given (joint work with

Hammer and 5eberry).

Preprints and slightly modified reprints of papers. some written by
the author and some as a joint author have been used, to form the main
body of the present thesis. This has reduced the manual work involved in
the thesis but it has some drawbacks, viz. the lack of uniform notation: for
example the use of BIBD(v. k, A), BIBD[k. A; vl and 5A(2, k. v) to denote a·

BIBD and repetition of some definitions and known theorems. Please note
that reference numbers contained in papers included in this thesis indicate
the references at the end of the each individual paper.



CHAPTER 1

It:HRODUCTlON OF BLOCK DESIGNS BY GRAPHS

A graph (V, E) is a non-empty finite set V of points and a finite set E
of edges consisting of pairs of distinct points. Graphs can be used as very
effective tools to prove theorems in the theory of block designs and to
give existence theorems and constructions for block designs. Such
applications will be seen in the present Chapter and in Chapters 3, 4, 5 and....
6. Hence,Jpreprint of a joint paper with J. Hammer is attached here. This
paper contains many known results. The construction of partially balanced
incomplete block designs found by this author is a modification of that of
Alltop (1966) and is new. The p'!per has been submitted to The Mathematical
Gazette.

1.1



1.2

ON THE INTRODUCTION OF BLOCK DESIGNS BY GRAPHS

Joseph Hammer and Dinesh G. Sarvate

Introduction

The history of combinatorial designs has remarkably humble
beginnings. In 1781 Euler encountered the following problem which led to
the development of Latin squares:

There are thirty six officers, six officers of six different ranks from
each of six regiments. The officers wish to parade in a 6 x 6 square
formation such that each row and each column contains one and only one
officer of each rank and one and only one officer from each regiment. Can

this be done?

Euler conjectured that there does not exist such an arrangement. This
conjecture was proved as late as 1901 by Terry (14). Much later in 1850
Kirkman (8) also encountered a "marching" problem (probably influenced by
Euler's problem) which led to the development of the block designs:

A school-mistress wishes to take fifteen girls on a daily walk for
seven successive days, three girls in each row: to avoid boredom she wants
to arrange them so that no two girls shall walk in the same row more than

once. Can this be done?

Unlike the Euler's problem, this arrangement does exist. In fact there
are 845 essentially different solutions to the problem. Curiously Kirkman
published this problem as a puzzle in the obscure magazine, Lady's and
Gentleman's Diary among such queries as this: What is the origin of the
custom of making fools on;the first day of April?

A few years later, in 1853, Steiner (12) proposed a similar problem
and these types of designs are called todays Steiner triple sI/stems
Interestingly some people (see e.g. Erdos (5 » suspect that Steiner did



know about Kirkman's problem. Moreover in 1844 WooIhouse (17) also

proposed a similar problem.

These seemingly light-hearted problems are the origin of a huge and

fertile area of combinatorics. generally called design tlJeoru They arise in

many parts of combinatorial mathematics; from group theory to finite

geometries. from number theory to coding theory. The problems also have

useful important applications in various areas of industry. Apparently the

first such application was done in 1926 by Sir Ronald Fisher (6) who

applied Latin squares for the very practical purpose of statistical

experimentation in agriculture. Subsequently Frank Yates (18) in 1936

introduced balanced incomplete block designs for similar purpose. It turned

out that this latter design became probably the most interesting and

influential in the development of design theory. It also has a wide range of

applications in a surprising number of different areas in industry. For

example. psychology (see. e.g. Ourbin (4)). virus research (see. e.g. Youden

(19)). agriculture (see. e.g.• Wellhausen (17)). A formal definition of a

balanced incomplete block design is the following:

A block design (v. b. r. k) is an arrangement of v objects into b

blocks so that

co each object appears in exactly r blocks;

(ij) each block contains exactly k distinct objects.

The block design is balanced. if in addition. each pair of distinct

objects appears in exactly A blocks. It is incomplete if k < v. that is

every object does not appear in every block.

One often refers to a balanced incomplete block design (BIBO) as a

(v. b. r. k. A)-design. i.e. a (v. b. r. k. A)-design is a BIBO with v objects (or

varieties). b blocks each of size k with replication mmber r and index
A :z' O.

1.3



1.4

As an example. consider a (4. 6. 3. 2.l)-design on objects

{S1. s2. S3. S4} and blocks

Bl = {SI. S2}. B2= {SI. S3}.

B3={SI. S4}. B4 = {S2. S3}

Bs = {S2. S4}. B6 = {S3. S4}'

This is a BIBD with 6 blocks each of size 2 based on 4 objects with

replication number 3 and index 1.

Instead of a list of the blocks a BIBD can also be described by the
incidence matrix. Mof the design. This is a v x b matrix. The rows of the
matrix correspond to the objects SI. S2' ...• Sv and the columns correspond

to the blocks Bl, B2•.... Bb. The (i.j) entry aij is determined as follows:

aij =fl if Si E Bj.

la otherwise.

For example the above BIBD has incidence matrix as follows.

Bl B2 B3 B4 Bs B6

S1 a a a

S2 a a a

S3 a a 0
,

S4 0 0 0

Several results about block designs can be easily proven in terms of

their incidence matrices. The incidence matrix may also be used to

represent the block design in a computer.



In this paper block designs are represented by graphs. Graphs are a
very useful tool for describing and analysing situations consisting of a set
of elements in which various pairs of elements are related by some
property. The advantage of using graphs to describe a block design instead
of listing the sets element by element is that the structure of the design
can be seen more clearly. Perhaps the nearest comparisons are the use of
Venn diagrams in set theory or employing vectors in mechanics.
Surprisingly the authors have not seen such a useful application of graphs
in any standard text of graphs or combinatorics.

Note that only those theorems are proved, which can be established
elegantly by graph theoretic methods, otherwise theorems are merely

0\:0
quoted and references ef the proofs are provided.

For convenience, those definitions and results of graph theory, which
will be needed, are presented. Further explanations of these terms and the
proofs of stated theorems can be found in any standard text, e.g. [71.

Basjc results

A graph Gis a pair (V(G), E(G)) consisting of a finite nonempty set V
of elements called vertices and a finite set Eof edges consisting of pairs
of distinct points. If e = (u, v) is an edge of C, then e is said to join the
vertices u and v, and these vertices are then said to be adjacent. We also
say that e is incIdent to u and v. In this paper there will be at most one
edge connecting any two given vertices.

Let us represent the block design in the example given above by a

graph.

Let the four objects ,and the six blocks be vertices. An object will be
adjacent with a block if the object appears in the block. For instance, Sl

and S2 are adjacent to B1 ; S4 is adjacent to B3, Bs and B6'

1.5



1.6

Thus the block design has the following graph representation:

Fig. 1

The degree d(v) of a vertex v is the number of vertices to which v is
adjacent, formally

d(v) = 1(u E V(G) : (u, v) E E(G)} I.

The following result is very useful:

In any graph, the sum of the degrees of all vertices is equal to twice
the number of edges, formally:

l: d(v) = 21EI·
VEV

Some call this result the handshaking lemma since it implies that if several
people shake hands, the total number of hands shaken must be twice the
number of people who shake hands.

In the example we can see that d(Si) =3 and d(Bj) =2 for all

i =1, ...• 4 and j =1•...• 6. and by the handshaking lemma we have

Le.

21 EI =l: d(Si) +l: d(Bj) =24,

1EI = 12.



A graph is said to be regular if the degree of every vertex is the
same.

A subgraph of a graph G =(V(G), E(G)) is a graph H = (V(E), E(H)) suct)

that V(B) is a subset of V(G) and E(H) is a subset of E(G).

An important subgraph is a sequence of edges of the form

(vo. Vl). (VI. V2)•...• (VH. Vk) and is called an edge-sequence of graph G

from Vo to vk. A path is an edge-sequence in which the vertices are

distinct. The length of a path is the number of edges in the path. For

instance. the lengtll of the path from SI to S2. in the example is 2.

We say. that the distance from si to Sj is P if it is the length of a

shortest path between si and sF

A graph in which each pair of vertices is adjacent is called a

complete graph. A complete graph on n vertices is denoted by Kn. Kn is a

regUlar graph of degree n - 1.

A bipartite graph G = G(VI. V2) is one whose vertex set V can be

partitioned into two subsets VI and V2 so that each edge has one end in VI

and one end in V2. Consequently no pair of vertices in VI is adjacent;

likewise for V2. If each vertex of VI is adjacent to each vertex of V2 then

it is called a complete bipartite graph. denoted Km•n where Ivd = m and

Iv21= n.

In the case of bipartite graphs we have an important special property

of the handshaking lemma: If G = G(V1• V2) is bipartite then no edge of G

can be incident to two vertices in VI or to two vertices in V2' In other

words every edge in G is incident to exactly one vertex in VI and one vertex
in V2. So. we have

L d(VI) =L d(V2) = IEI·

The graph which represents the BIBD in the example is a bipartite

graph of bipartition (VI. V2) where VI = {SI' s2. S3. S4} and

1.7



1.8

V2 = {Bl• B2• B3• B4• Bs• B6}. Every vertex of VI is of degree 3 and every
vertex of V2 is of degree 2. In fact. any block design can be represented by
a bipartite graph. In particular, a BIBD of parameters (v. b. r. k. A) is a
bipartite graph G(V. B) where V corresponds to the objects and B
corresponds to the blocks. Vertex Vi E V is adjacent to a vertex Bj E B if

and only if object Vi appears in block Bj. Each vertex Vi E V is of degree r

and each vertex Bj E B is of degree k.

A block design is called symmetric if v = band k = r. The
corresponding graph G(V. B) is a regUlar graph. It is known that any two
distinct blocks of a symmetric BIBD have exactly A points in common. (For
a proof see Street and Wallis (12) p.164.)

We say that a block design is complete if each block contains all
objects. In this case we have a complete bipartite graph. KV.b. If v =b then

Kv,b represents a latin square based on v elements which is a particular

block design.

In an incomplete block design. r < band k < v and the corresponding
graph G(V. B) is a subgraph of KV.b.

The block design is balanced if for any pair of vertices of V there are
exactly A vertices of B which are adjacent to both vertices of the pair.
(Thus any two vertices of V are joined by exactly A paths of length 2.) It is
called a t-design if there are exactly A vertices of B which are adjacent to
all the members of a given t-subset of V.

The adjacency matrixA(G) of a graph Gon vertex set
X(G) = {Xl. X2..... xnJ is a sy~metric n x n matrix A(G) =(aij) such that

aij =r
o

if Xi is adjacent to Xj.

II otherwise.



The (i,j)th entry of A2 is the number of paths of length 2 from xi to

Xj in G ( Le. the number of vertices adjacent to xi and Xj) and the

(i,nth (L e. the diagonal) entry is the degree of the vertex xi in G.

We have the following relationship between the adjacency matrix
A(G) of the bipartite graph corresponding to the (v, b, r. k, A)-design and its

incidence matrix M:

A(G) =[? _!__M~
MT' 0. .

The edge-adjacency matriK U(G) of a graph Gon edge set

e(G)' = {e,. e2..... em}

is an m x m matrix U(G) = (eij) such that

eij =Fif ej and ej have a vertex in common.

lo otherwise.

The line graph L(G) of a graph G is the graph with vertex set E(G) in
which two vertices are joined if and only if they are adjacent edges in G.
The edge-adjacency matrix U(G) of G is the (vertex) adjacency matrix of

L(G).

Now we are ready to prove a few basic theorems.

Theorem 1. For a (v. b. r. k)-design vr =bk.

Proof. Let the block design be represented by the bipartite graph
G = G(V, B). We count the number of edges of G in two ways. The sum of
the degrees of vertices in V. L d(vj) = vr, and the sum of the degrees of

vertices in B. L d(Bj) =bk. By the counting principle we have IEI =vr =bk.

o

1.9
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Theorem 2. Let the number of blocks in a t-design containing a given t-set
be A. If A is the number of blocks containing a given i-set, then

Ai (k-J ) = A (V-j 1
f,-l 1:,-"

where At =A and Ao is the number of blocks in the design.

Proof. Let G(V,B) be the graphical representation of the t-design. Let I be
the fixed i-subset of V. We count in two ways the number of K1,t with
single point in B and the t-set in V containing I, in other words we are
counting the number of stars of size t+1 with center in B and containing the

set I in two ways as shown below.

First there are Ai blocks containing I. The block size is k, hence the

number of t-sets in V containing I in each block is ( tl ~ Therefore the

number of the required K1,t is Ai( t~ )on the other hand, the number of t­

sets containing I is (r~ )and each t-set occurs in At blocks. Therefore

the number of K1,t 's is AC~.::~ ~ Hence the required result.

o

Corrollary. In a (v. b, r. k, A)-design A(v-l) = r(k-l).

Remark: Notice that a path of length 2 is a K1,2 where At = A and Ao is the

number of blocks in the design.

Theorem 3. If M is the incidence matrix of a (v. b, r. k. A)-design then

MMT =(r - A)lv +AJv.

where Iv is the v x v identity matrix and Jv is a v x v matrix with every

entry 1.

Proof. The adjacency matrix of the bipartite graph G(V, B) corresponding

to the (v, b, r, k, A)-design is



A(G)= [?- f ~J
MT; 0 .

Since A is symmetric. A =AT and we can write

1.11

= =

where MMT is of size v xv and MTM is of size b x b.

Since each vertex v E V is of degree r and Vi is connected to every

other vertex of V by A distinct paths of length 2. we have that each
diagonal entry of MMT is r and all the other entries are A. This gives us

MMT =rlv + AJv - A1v =(r - A)lv + AJV

as required.

o

On the other hand, MTM has no analogous relationship between its
entries unless b = v. For the number of paths of length 2 between pairs of
vertices of B is not constant. However the diagonal elements are all equal
to k.

In the case b =v, MMT =MTM. In this case all vertices are of degree r
and the number of vertices adjacent simultaneously to any two vertices in
V or in B is A. Le. in A2 all diagonal entries are r and all other entries in

MMT and in MTM are A. The line graph of this graph is a strongly regular
graph. It is a regular graph with the additional property that any two
adjacent (non-adjacent) vertices are joined simultaneously to exactly AI
(AZ) vertices. There are interesting connections between such graphs and
certain block designs. Some of these can be found in [21. [3) and [4).
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CQnstructjQns Qf blQck designs

In this sectiQn we shall cQnstruct new designs frQm Qld. TQ dQ that

we need a few mQre cQncepts Qf graphs.

TWQ graphs G and H are isomorphic if there is a Qne-Qne
cQrresPQndence (bijectiQn) between the vertices Qf G and thQse Qf H, with
the prQperty that tWQ vertices are adjacent in G if and Qnly if the

cQrresPQnding tWQ vertices are adjacent in H.

let G and Hbe blQck designs with parameters (v. b. r. k) and
(v'. b', r', k') respectively and let G(V. B) and H(V'. B') be their respective
bipartite graphs where V = {VI..... vv1. V' = {VI'..... vv'l. B = {bl..... bbl and

B' = (b1'..... bb'l. The blQck designs G and H are isomorphic if there exist

tWQ bijectiQDS , and '1':

,: V -> V'; '1': B -> B'

with the prQperty that tWQ vertices Vi f V and bj f B are adjacent in G

if and Qnly if '(Vi) and 'I'(bj) are adjacent in H.

let G be a graph Qn n vertices. The complement G Qf G is a graph
which has the same vertex set as G has and in which tWQ vertices are
adjacent if and Qnly if they are nQt adjacent in G. Gcan be cQnstructed by
deleting frQm Kn all the edges Qf G. Le. G = Kn - E(G). In Qther wQrds the

edge set Qf Gis the cQmplement Qf the edge set Qf G in the edge set Qf Kn·

let G(X.Y) be a bipartite graph such that IXI =m and IYI =n. Then
we say that the cQmplement Qf G in the cQmplete bipartite graph Km•n•

denoted G(Km.n). is a bipartite graph with the same bipartitiQn as G such

that G = Km•n - E(G). Le. it is fQund by deleting frQm Km.n all the edges Qf

G.

If e is an edge Qf G. then G- e is a graph Qbtained frQm G by deleting
the edge e. We can say that G- e is the cQmplement Qf e in G. MQre



generally if H is any set of edges in G then G - H is the graph obtained by

deleting the edges in H or we say that G - H is the complement of H in G,and

we denote it H(G). If G is bipartite, H(G) is also bipartite. If u is a vertex

of G, then G - u is a subgraph of G obtained from G by deleting the vertex u

together with all the edges incident with u. More generally, if X is any set

of vertices in G then G - X is the graph obtained by deleting the vertices in

X and all the edges incident with them. Again, if G is bipartite then G - X is

also bipartite.

Now we are ready for a few basic constructions.

1. The dual design

Let G(V, B) be the bipartite graph of a (v, b, r, k, A)-design. Then by

interchanging the two partition sets V and B we obtain a new design

G'(B, V) called the dual design.

It is obvious that G' is also an incomplete block design with b

objects, v blocks, block size r, and replication number k. But it is not

necessarily pairwise balanced. It is balanced only if v = b. ( see for example

Street and Wallis (13) p. 162 ).

We can see that the two graphs G'(B, V) and G(V, B) are isomorphic

but the corresponding designs are not isomorphic. The two graphs are

isomorphic if and only if v = b.

2. The complementary design

Let G(V, B) represent a (v, b, r, k, A)-design. The complementary
design is the complement of G(V, B) in Kv,b ; Le. edge e ( G if and only if

e ( Kv,b and e does not belong to G(V, B).

Theorem 4. The complementary design of a (v, b, r, k, A)-design is a BIBD

with parameters (v, b, b-r, v-k, b-2r+A), F'To.,ided ~-'-1t.-t'il ~o.

1.13
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Proof. (i) In G(V. B) any vertex vi E V is adjacent to r vertices of B;

therefore in G. vi is adjacent to b - r vertices of B. Thus the replication

number is b - r.

(ii) In G any vertex bj EB is adjacent to k vertices of V and so, in G
any bj is adjacent to v - k vertices of V. Hence the block size is v - k.

(iii) Gis incomplete since v - k < v.

(iv) In G each pair of vertices. say vI and V2. in V is adjacent to A
vertices of B. Now VI is adjacent to r vertices of B so there are r - A
adjacencies between VI and vertices of B. which are not adjacent to V2'
Similarly there are r - A adjacencies between V2 and vertices of B. which
are not adjacent to VI' SO the number of vertices in Bwhich are adjacent to
neither v, nor V2 is b - 2(r - A) - A = b - 2r + A. Hence there are b - 2r + A
vertices in B' of G which are adjacent to both VI and v2' Hence the index is

b - 2r + A.
o

3. Derived design

Consider a symmetric (v. v. k. k. A)-design. If BI. B2..... Bv are the

blocks. then for any i.

B
1

n Bi. B2 n Bi ..... Bi-l n Bi. Bi+l n Bi ..... Bvn Bi

form a BIBI' called the derived design with respect to Bi·

Consider a bipartite graph G(V. B) where V = {VI..... vvl.

B = {B
I
..... Bvl and the degree of each vertex is k. The derived design is

obtained by deleting a vertex Bi from vertex set B and all vertices in V not

adjacent to Bi (and of course all edges incident to all of these vertices.)



Theorem 5. The derived design of a (v. v. k, k, A)-design is a BIBD with

parameters (k, v-I, H, A, A-1) provided A ;0: 1.

Proof. Denote the bipartite graph of the derived design with respect to a

block Bi by G'(V', B').

co The size of V' is k since only k vertices in V adjacent to Bi

remain; all others are deleted.

(ii) The size of B' is v - I as vertex Bi has been deleted.

(iii) In G(V, B) there are J\ vertices of V adjacent to both vertices Bi

and, say Bj of B. Recall that any two bloCks of a symmetric BIBD have

exactly A points in common. By construction. Bj' is adjacent to the A

vertices of V' which, in G(V. B), are adjacent to the Bi and the Bj. Hence

each vertex of B' has degree A. Thus the block size is A.

(iv) In G a vertex Vi is adjacent to k vertices of B; in G' one of these

vertices, namely Bi, is deleted from G. Hence Vi' E V' has degree k-l, Le.

the replication number is k-1.

(v) Finally, any pair of vertices, Vi, Vj in G are adjacent to A vertices

of B. Suppose Vi, Vj are adjacent to Bi in G and so they become, say Vi', Vj'

in G'. Then the deletion of Bi reduces the number of vertices of G' adjacent

to both vi', vi' by one. Hence, Vi' and vi' are adjacent simultaneously with

A-I vertices of B'; Le. the index of the derived design is A-I.

(vi) Since k < v in G, k - 1 < v - I in G', hence G' represents an

incomplete block design.

o

l.15
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4. Res/dual design.

Let B,• B2•.... Bv be the blocks of a (v. v. k. k. A) symmetric design.

Then for any i. the blocks given by :
Bj-Bi. B2-Bj •...• Bj-l -Bi. Bi+1 -Bi •...• Bv-Bi

form a BIBD with objects V-Bi. called the residual design with respect to

Bj.

Consider the bipartite graph G(V. B) corresponding to the above
symmetric design. Then the bipartite graph of the corresponding residual
design with respect to block Bi may be obtained by deleting from G(V.B)

vertex Bi and those vertices which are adjacent to Bi·

Theorem 6. The residual design of a(v. v. k. k. A)-design is a
(v-k. v-I. k. k-A. A)-design.

We have mentioned that a complete bipartite graph may represent a
complete BIBD. An important special C(lse of this complete block design is
the latin square in which the elements in each of the blocks are ordered.
There are v blocks each containing all the v elements. The ith element
occupies the jth position (1 < j < v) exactly once. Thus if the elements in
one block are standardised to read in order I. 2. 3. ...• v then the other
blocks are obtained from this by permutations which leave no element
fixed. Furthermore if 11'1 and 11'2 are any two of these permutations then
11'10) ;z: 11'20) for any i.

5. Construction ofpartiallybalancedincomplete block designs (PBIBO)

In this section we will construct partially balanced incomplete block
designs. PBIBDs. using complete n-partite graphs. In a PBIBD. each block
has the same number of elements. and each element is in the same number
of blocks; but certain pairs of elements occur with one frequency and
others occur with another frequency. or there may even be several



prescribed frequencies for certain pairs. Accordingly all ( ~ ) unordered
pairs of elements are divided into association classes such that any pair
belongs to exactly one class. For a formal definition of a PBIBD. see..
Ragha,*,ao [91.

An n-partHe graph is one whose vertex set can be partitioned into n
subsets so that no edge has both ends in anyone of the partitions; Le. in a
complete n-partite graph each vertex is joined to every other vertex that is

not in the same subset of the partition.

Assume that v is an mn-set of vertices and V =V, U V2 U ... U Vn

is a partition of V into n disjoint subsets each of m vertices. Let Edenote
the set of edges of a simple. cbmplete n-partite graph G(V,..... Vn; E). Let

Sn denote the symmetric group of permutations· of the set V. Let

5 = hx ESn: G'O( is a subgraph of Gfor each subgraph G' of G}. 5 also acts

naturally on the class of the sets of subsets of V. Let Bbe a subset of E
and X = {BO' : 0' E S}. Consider X as a set of blocks and Eas the set of
vertices; then as we will see (E, X) Is a PBIBD wIth 5 assocIation classes
denoted by PBIBD(S). In particular. when G is a complete bipartite graph.

(E,X) is a PBIBD(2). Let us construct the
PBIBD (v = 4. b = 2, r = 1. k = 2. Al = 1. A2 = 0) from the complete bipartite

graph as shown.

1.17
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·In this section we are using a few elementary concepts in group theory.

which can be found in any text on the sUbject.
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Here E = {(a. b). (a. d). (c. b). (c. d)} and 5 consists of those

permutations in 54 which do not map any edge of E into edge (a. c) or (b. d).

For example permutation (a b c d) does not belong to 5. We start with

B = {(a. b). (c. d)} so then X = {{(a. b). (c. d)}. {(a. d). (b. cm which is the

required PBIBD. where the two association classes are

{(a. b). (c. d)}. {(a. d). (b. c)}.

Since E and X are orbits under the action of 5. (E. X) admits 5 as a

group of automorphisms. Let T denote the set of 2-sets of E. The action

of 5 on T decomposes T into five orbits T1. T2. T3. T4 and T5. where the

members of T1 are isomorphic to {(a. b). (a. c)} where band c are vertices of

the same class of the partition subset. The members of T2 are isomorphic

to Ha. b). (a. c)} where band c are from different partition subsets. The

members of T3 consist of pairs of the type {(a. b). (c. d)} where a. care

from one class of the parition and b. d are from another class of the

partition. The members of T4 are Ha. b). (c. d)} where b. c are from the

same class of the partition subset and a. d are from different classes of

the partition. The members of T5 are {(a. b). (c. d)} where a. b. c and dare

from different classes of the partition. We notice that when n = 2 we have

only two orbits T1and T3 and when n = 3 we have four orbits T1• T2. T3 and

T4. Let ti be a member of Ti and let Ai denote the number of blocks in X

containing ti. If t is any other member of Ti. then t is also contained in

exactly Ai members of X because 5 acts as an automorphism group of (E. X)

and 5 is transitive on Ti. In other words (E. X) is a

PBIBD (v. b. r. k. Ai; i = 1. 2. 3. 4. 5). v = m2n(n-l)/2. b = IXI and k = IBI·
If all Ai coincide we get a BIBD. Let A(B) ={o< f 51 Bo< = B}. B is an element

of orbit X so that IXI = [5: A(B)l. We can check that 151 = (ml)n(nl) and

hence we have b =(ml)n(nl)/g where g = IA(B) I and (m!)nnl divides (mn)1 as

5 is a subgroup of 5n·



Let Uj = ITin BI. nj = ITi I. t E Ti. c E X. t ~ c. If we count the

number of ordered pairs (t, c) in two ways we obtain on the one hand niAi

and on the other hand bUi. hence Ai = bUi/nj.

There are ( ~ ) ways to choose a pair Vi. Vj of the partition subsets.

For some fixed a E Vi. there are ( T.) pairs of edges {(a. b). (a. c)} where

b. c E Vj. Now as a varies we get m( T)such pairs of edges. Similarly

there are m( ~ ) pairs {(b. a). (c. a)} for a E Vj and b. c E Vi. As the number

of pairs {Vi. Vj} is ( 'l) we have nl = 2m( ~ X~ ) = m2(m-l)n(n-l)/2. By

similar counting arguments we obtain

n2 = n(n-l)(n-2)m313.

n3 = n(n-l)m2(m-l)2/4.

n4 = n(n-l)(n-2)m3(m-l)/2

and ns = n(n-l)(n-2)(n-3)m4/8.

If all the Ai coincide we get the following relations:

Ut = (m-l)u2/m(n-2)

= 2U3/(m-l)

= U4/m(n-2)

= 4(m-l)us/(n-2)(n-3)m2.

Example

When n = 2. we have only two orbits T1 and T3 and nl = m2(m-l) and

n3= m2(m-l)2/2. Let B be a cycle of length 2L. then Ul = 2L and U3 = L(2L-3).

The A's coincide if

m2(m-l)/2L = m2(m-l)2/2L(2L-3)

1.19
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Le.

2L-3 =m-l

or 2L = m+ 2.

Table 2 gives the parameters of the first four values of L. Counting
the number of distinct cycles of length 2L gives

b = m2(m-1)2 ... (m-L+1)2 / 2L.

Table 2.

L

2

v

4

b r k

4

3

4

5

16 96

36 16200

64 125440

36

1800

19600

6

8

10

12

360

2800

ApPlications of colouring

A graph G is said to be k- colourable if, to each of its vertices. we
can assign one of the k colours in such a way that no two adjacent vertices
have the same colour. In such a case we also say that G has a properk­
colouring. It is well known that G is 2-colourable if and only if it is
bipartite. The chromatic number, X(G), of G is the minimum k for Which G .
is k-colourable.

G is said to be k-edge-colourable if its edges can be coloured with k
colours in such a way that no two adjacent edges have the same colour. In
such a case we also say that G has a proper k-edge-colouring. The edge­
chromatic number or the chromatic inde/(, X'(G), of G is the minimum k for
which G is k-edge colourable. A classical theorem of Konig says that if G



is bipartite, then X'(G) = p where p is the maximum vertex-degree of G (see
for example Wilson[16]).

First we apply vertex colouring for constructing resolvable designs.

A BIBD whose blocks can be partitioned into sets in such a way that every

set contains every object exactly once is called resolvable design. The

set of blocks is called a resolution class. The set of resolution classes is

a resolution. A design may be resolvable in several ways, each manner of

resolving is a resolution. Kirkman's schoolgirls problem is to find a (15,

35, 7, 3, 1) resolvable design: the 35 blocks with block size 3 can be

partitioned into 7 resolution classes such that each resolution class

contains every object exactly once. All affine planes are resolvable

designs: the set of all blocks in one parallel class forms a resolution, for

every point belongs to one and only one line in a parallel class. In addition

any two lines which are not in the same parallel class have exactly one
common point. We can see that Kirkman's design is not affine resolvable.

Our example, in the Introduction, is also a resolvable design. A resolution

is the following.

(B1, B6), (B3, B4 ), (B2' Bs)·

Now we show how to find such a set of resolutions by applying

vertex colouring. We construct a graph G', called a block graph, whose

vertices are the b blocks of the design. Two vertices are joined by an edge
if the two blocks have an object in common. If the chromatic number of G'
is X(G') = r, then the r colours used define the r resolutions.

1.21
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The block graph of our example is shown below.

This is a regular graph of degree 4. The vertices B1 and B6 are not
adjacent. neither are B3 and B4 , or B2 and B5. Hence the non-adjacent pairs
of vertices can be coloured with three colours.

If the block graph of a BIBD(v, b, r, k, l) is r-chromatic then it is
resolvable with r resolution classes, and each containing v/k blocks.

Now we present some more applications with edge colourings.

We have mentioned that an n x n latin square can be regarded as a
labelled complete bipartite graph Kn,n. By Konig's edge colouring

theorem the chromatic index of Kn,n is n. The matrix interpretation of the

coloured graph is that the colour of the edge ui, Vj is the 0, j) entry of the

latin square. Similarly, consider the bipartite graph G(V, B) which
corresponds to the BIBD(v, b, r, k, >"). G has chromatic index r. A matrix
representation, of this coloured graph, shall be such that the colour of the
edge (Si, Bj) is the 0, j)th entry of a v x b matrix, and all other entries are



O. In fact we replace the entries 1 by the corresponding colour in the

incidence matrix M of the BIBD. The coloured (incidence) matrix

corresponding to our BIBD(4, 6, 3, 2, 1) is

1. 23

x

Mc =I y

o

o

y

o

z

o

z

o

o

x

o

z

x

o

o

x

o

y

o

o

y

z

In general the coloured matrix, Mc of a (v, b, r, k, A) design is a

modified (v x b) Latin rectangle. Each row has r different labels (colours)

and the other v-r entries are all O. Each column has k different labels out

of the r labels and all other entries are O.

It turns out that coloured matrices are very useful in producing new

block designs. Due to lack of space we cannot go into particulars in this

paper. We refer the reader to the papers of Hammer, Sarvate and Seberry

[7], Rodger, Sarvate and Seberry [101 and Sarvate and Seberry [111.

There are several other graph representations of block designs for

constructing new block designs. For instance, Alltop [11 has constructed

block designs by representing the v objects by the edges of a complete

graph Kv and the blocks by the sets of edges of subgraphs. Generalizing

Alltop's method, we construct block designs by means of a complete

directed graph Kv". Another graphical representation of a block design is

where the v objects are the vertices of Kv and the blocks consist of the set
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of complete subgraphs Kk such that each edge of Kv occursexactly A times.

We will not present applications of these graph representations in this

introductory paper.
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DIRECTED AND CYCLIC DESIGNS

A directed balanced incomplete block design. denoted by
DBIBD(v. b. r. k. A"). is a BIBD(v. k. 2A) in which every block is arranged so
that each ordered pair occurs A times. The ..... on A indicates that the
occurrences of ordered pairs are counted. A block < al. a2.....ak > is said to

have k(k-0/2 ordered pairs viz. (ai. aj) i = 1. 2..... H. j = i+1..... k.

A directed group divisible design. DGD[k. A". m; vl. is a group
divisible design. GD[k. 2A. m; vl. in which each ordered pair of elements
from different groups occurs in exactly A" blocks where each block is said
to have k(H)/2 ordered pairs as in a DBIBD. Similarly we can define a
directed partially balanced incomplete block design.

A cyclic BIBD. denoted by CBIBD[v. k. A"l is a BIBD(v. k. (H)A) in
which every block is arranged so that each ordered pair occurs A times. A
block [at. a2..... akl is said to have only k ordered pairs. viz. (ai. ai+l ). i = I.

2..... Hand (ak. at)·

Acyclicgroup divisible design. CGD[k. A". m; vl. is a group divisible
design. GD[k. (H)A". m; vl. in which each ordered pair of elements from
different groups occurs in exactly A" blocks. As in a CBIBD each block is
said to have only k ordered pairs.

The word ·cyclic· may cause some confusion. We do not mean a
design developed cyclically from a starter block. As Dr. Breach has
suggested ·circular" might have been a better word but cyclic is well
entrenched in the literatur~. Cyclic BIBDs with block size 3 and A =1 are
also called Mendelsohn triple systems (see e.g. Rodger(1986)). A paper by
Bermond. Haung and Sotteau (1978) uses the term "balanced circuit designs"
for what is termed a cyclic BIBD. They have also proved Theorem 2.1.3 but
not any other result mentioned below.
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Directed designs have applications in the development of computer

networks and data flow machine architecture (Skillicorn (1981)) and in

experiments, where the order of the treatments in time is significant

(Street (1981)).

The definition of a group divisible design can also be given as

follows:

A group divisible design (GD[k,A,m;v]) is a PBIBD(2) with parameters

v =mn, b, r, k, Al =0 and A2 =A for which the points (set x) may be divided

into m groups of n distinct points such that the points that belong to the

same group are first associates and two points that belong to different

groups are second associates.

Consider a PBIBD(2), say P, with parameters v = mn, b, r, k, Al and A2

for which the points (set X) may be divided into m groups of n distinct

points such that the points that belong to the same group are first

associates and two points that belong to different groups are second

associates. If A1 =r, then P is called a singular GDD. On the other hand if

r-Al> 0 and rk - VA2 > 0, then P is called a regular GDD.

2,1 Some results on directed and cyclic designs

The main results proved in the attached published papers

(a) "All directed GDDs with block size 3, Al = 0, exist", Utilitas

Mathematica, 26, 1984, 311-317

and (b) "Some results on directed and cyclic designs", Ars Combinatoria,

19A, 1985, 179-190

are the following:

Theorem 2,1.1: The necessary conditions are sufficient for the existence of

directed group divisible designs with block size 3 and block size 4 ,



Proof. Theorem 13 of (a) and Theorem 3.4 of (b).

o

Theorem 2.1.2: The necessary conditions are sufficient for the existence of

cyclic group divisible designs wl/h block size 3 .

Proof. Theorem 4.10 of (b).

o

Theorem 2.1.3: A CBIBD(v, 4, (4t+2)") exists for v ;; 0, 1 (mod 4) and a

CBIBD(v, 4, (40") exists for all v ~ 4 .

Proof. Theorem 2.9 of (b).

o

Theorem 2.1.4: (i) If a directed partially balanced incomplete IJ/ock

design DPBIBD(v, b, r, k=3, A1" = 0, A2'" nl' n2) exists, then

DPBIBD(Nv, N3b, N2r, k=3, A1" = 0, NA2'" Nnl' Nn2) exists.

(il) If directed group divisible designs DGD(k, A", m; v)

and DGD(k, A", v; kv) exist, then DGD(k, A", m; kv) exists.

Proof. Lemmas 14 and 15 of (a).

o

Note that, according to the definition of GDD in Hanani (1975), we do

not have to mention Al = 0 in (a). For notation used in the attached papers

please refer Hanani (1965). e. g. GD(K, A, M) is defined (on page 264) as the

set of integers v for which a GD[K, A, M; v] exists.

In these papers, we pursue similar lines to those of Street and

Seberry (1980) and Street and Wilson (1980). Designs are specified by

giving one or more initial blocks and instructions on how they should be

developed. Thus 'mod p' means "to each element of the initial block, add in

2.3
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turn each of the non-zero elements of GF(p). using addition in GFCp); 'mod
(P. q)' means "to each ordered pair in the initial block, add in turn each non­
zero element of GF(P) )( GF(q)"; 'mod (P. -)' means "to each ordered pair in
the initial block. add in turn each non-zero element of GF(p) )( {DJ".



All directed GDDs with block size three, Al =0, exist

Dinesh. G. Sarvate

1. Introduction,

A directed design (see D, B. Skillicorn, [8]) is a collection of sUbsets
of cardinality k from {I, 2, ' , , • v} with the property that each ordered
t-subSet appears in a k-subset (of block) exactly A times, Such a directed
design is described by a sextuple of the form Hv. b, r, k, Alf

) where b is the
number of blocks required and r is the number of times that any element
occurs, The star on A indicates that it counts the occurrences of ordered
t-sets, These designs can be used in the development of computer networks
and data flow machine architecture [71. They also have application to
agricultural or medical experiments where the order of treatment in time
might be significant.

These designs were studied by a number of authors including J, E.
Dawson, J, R, Seberry and D, B, Skillicorn l1l. J, R. Seberry and D, B,
Skillicorn [61. D, Street and J, Seberry [10], D, Street and W, Wilson 1111.
D, B, Skillicorn and R. G, Stanton [9]. S, H. Y, Hung and N, S. Mendelsohn [51.
C. J, Colbourn and M, J, Colbourn [21 and M, J, Colbourn and C. J, Colbourn

l3J.

We define a group divisible design as in [111 and [41, Let X be a v-set

. such that X =U Gi. Gi n Gj =~, i;z: j. IGI =m for all i. The Gi'S are called

groups, A group divisible design. GD(k. A. m; v). is a collection of k-subsets
of the v-set X

2.5
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(called btooks) such that each block intersects each group in at most

one element and a pair of elements of X from different groups occurs

in exactly A blocks. In a similar way we can define a GD[K,A,M;v),

where the size of each block is an element of K and the size of each

group is an element of M. GD(K,A,M) denotes the set of all v such

that a GD[K,A,M;v) exists.

A directed design with t· 2 is a directed balanced incomplete

block design (DBIBD). As in Hanani [4], B(k,A) is the set of all v

such that a BIBD(v,b,r,k,A) exists, DB(k,A*) is the set of all v such

that a directed BIBD(v,b,r,k,A*) exists. A directed group divisible

design, DGD[K,A*,M;v] is a GD[K,2A ,M;v] in which each ordered pair of

elements from different groups occurs in exactly A* blocks.

DGD(K,A*,M) denotes the set of all v such that a DGD[K,A*,M;v] exists.

Given a block (a,b,c) we say the three ordered pairs (a,b), (a,c) and

(b,c) occur in it.

In Section 2 we prove that thE necessary conditions for the

existence of GD designs are sufficient for the existence of DGD

with k. 3. In Section 3 we give some general results.

2. DGD with k = 3.

The existence of a GD[k,A,m;v] implies the existence of

DGD[k,Atm;v]. The DGD is obtained by writing each block of GD

twice - once in the given order and once in the reverse order - and

hence, using Hanani [4], we have the following results:

LEMMA

then

1. If v < GD(3, A,m) hotds and if r

rv < DGD(3,A',rm) hotds.

is a positive integer,

LEMMA 2. If n _ 0 or l(mod 3), then 2n < DGD(3,l',2) hotds.

•we notice that for n _ 2(mod 3), the necessary conditions are not

satisifed.

LEMMA 3.

LEMMA 4.

If n _ Hmod 2), then 3n < DGD(3.1·,3) hotds.

For every n 2: 3, 6n < DGD(3,l".6) hotds.



LEMMA 5.

LEMMA 6.

For every n ~ 3, 3n £ DGD(3,2',3) holds.

For every n ~ 3, 2n £ DGD(3,3',2) holds.

2.7

In [10] the following result is proved:

LEMMA 7. If n £ DB(K, A') and mK c: GD(k, A, m) , then

mn £ DGD(k, AA A,m).

We also have

LEMMA 8. (Lemma 2.20 [4]).

DGD(K, A '''M) is a subset of

If A' di vidss

DGD(K,A*,M).

A. then

LEMMA 9. If v £ DGD(3,l"x) and x E DGD(3,l',3), then

V E DGD(3,l A,3).

Proof. v E OGO{3.1*.x). so every ordered pair (a.b). where a

and b belong to different groups, occurs once. Writing together

the blocks of OGO{3.1*.3;IGi l) where Gi is a group and treatments
v

are the elements of G., for i· 1,2, ... ,-, we get the required
1 x

result.

We now give two examples for further reference,"",' \,1.<.'«

o.. ....e. L.),..i tl1t.l'\ "'-5 c....o\"'''''''V\\ ..

Example 1. 4 £ OB{3.1*)

1 2 3 4

2 4 1 3

3 1 4 2

Example 2. 6 E OB<3.1*)

o 2 324

4113,3

1 0 240

5 0

1 2

4 5

1

3

5

4 5

5 0

2 3

Using Examples 1 and 2 with Lemmas 7 and 3 we get

LEMMA 10. {12,18} 50 DGD(3,l"3).

Now we prove (Lemma 2.16. Hanani [4]):



2.8

LEMMA 11. Let n < E(K,") and mK c DGD(k,"',m), then

mn < DGD(k, AA "m).

LEMMA 12.

Proof·

B[K.",n]

Consider the groups of the required DGD(k,"*.m) as

and form a DGD(k,"*,m) on every block of B[K,",n].

Fop evepy n ~ 3, 3n < DGD(3,Z',3) hoZds.

points of

Proof. We know that, for every integer n ~ 3, n < B(K3,l) where

K
3

• (3.4,S,6,S) (see [4]). By Lemma 11 it suffices to show that

3n < DGD(3,l*,3) for every n (K. For n· 3,S this follows from

Lemma 3, whereas for n· 4,6 this follows from Lemma 10. For

n • 8, we give DGD(3,l*.3;24) (With the notations of [41).

Let the set of vertices be X· Z(3,2)X(Z(7,3) u~).

Blocks: < ($.$), (0,0'),(0.-0') > mod(3.7), 0'·1,2,3

< (0,0+4), (0,0+1), ($,$) > mod(3,7), 0·0,1

< ($,3), ($,~), ($,0) > mod(3,7l.

< ($.~), (1,0), (0,$) > mod(3.7),

< (1,3). (0,$), (4),~) > mod(3,7l.

THEOREM 13. Let m, ", and

and sufficient conditionl fop the

divisible design DGD[3,"',m;v]

v be positive

existence of a

Q.>--e.

integeps. Necessary

dipected group

and

v ;; O(mod m), v ~ 3m,

"v(v-m) ;; O(mod 3)

Proof. The necessity follows from Theorem 6.2 [4] and the fact that

a directed GD(3,"*.m) is a GD(3,2".m). In order to prove sufficiency,

as in [4], we consider only those values of A and of m which are,
factors of 6. In all these cases the existence of the relevant

directed group divisible designs is proved in the Lemmas listed in

Table 1. We notice that for m· 1. ~ directed CD is a directed

BIBD whose existence has been proved in [6].



TABLE 1

m ~* Proof

2 1 Lemma 2

2 t2 Lemmas 2 and 8

2 3 Lelllllla 6

2 6 LelllDas 6 and 8

3 1 Lelllllla 12

3 2 Lellllllas 12 and 8

3 3 Lemmas 12 and 8

3 6 Lemmas 12 and 8

6 1 Lelllllla 4 and using Lemma 8 for ~* - 2.3.6.

t
We observe that for A* = 2*, m • 2, necessary conditions

are satisfied only for n = 0 or l(mod 3). It is. in

fact. sufficient to prove for those values of ~ and m

which are factors of 3.

J. General Resu.Zts.

We can define directed partially balanced incomplete block

design in a similar way.

LEMMA 14. If a di"ected partially balanced incomplete block design

DPBIBD(v,b,r,k=J,~i=O'~2,nl,n2) exists, then

DPBIBD(Nv, N
3
b,n2r, k=J, ~i=O,N~2,Nnl,Nn2) erists.

2.9

Proof. Replace the treatments ul •••.• u byv .

and blocks (ut'Urn'Un ) by (u!.ul.u~). i,j.k­

easy to check that we get the required DPBIBD.

1 N 1 N
u1,···,u1,···,uv,···,uv
1.2 •••• ,N. It is
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LEMMA 15. Let DBIBD (v,b,r,k,A ') erist and r be even. Ther. the

corresponding singular group divisible design obtained by replacing

each treatment by a group of m treatments is directed.

first associates in one order r/2

and the first associates are also U 1 t u2 ' ... , um
times and in reverse order fOT

is directed up to the second associates

directed once we write

The corresponding SGDProof·

another r/2 times in the blocks in which they occur.

LEMMA 16. If DGD(k,A',m;v) = X and DGD(k,A',v;kv) = Y exist, then

DGD(k,A ',m;kv) exist.

Proof. Let the kv vertices be
1 1 2 2 k k Xi

ul' ...• uv,ul •... ,uv' ... ,ul' ... ,uv. Let

ut, ... ,u; vertices, i ~ 1,2, ... ,k. Then

denote the DGD with

1 2 k
X :X : ••• :X :Y

gives the required DGD.

Acknowledgement. I would like to express my thanks to Dr. Jennifer

R. Seberry for suggesting the problem and for her vsluable guidance.
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Some results on directed and cyclic designs

Dinesh G. Sarvate

1. Introductjon.

Directed and cyclic designs are studied by a number of authors

including Dawson, Seberry. Skillicorn [1], Colbourn and Colbourn [3,41.

Colbourn and Harms [5], Hung and Mendelsohn [ID], Sarvate [12) Seberry and

Skillicorn [13], Sl<illicorn [15], Sl<illicorn and Stanton [161. Street abd

Wilson [181. and Rodger [11].

A directed balanced incomplete blocl< design, denoted by

DBIBD(v. b. r. 1<. A") is a BIBD(v. 1<. 21..) in which every block is arranged so

that each ordered pair occurs A times. A blocl< <al.a2.····. al<> is said to

have I«H)/2 orderd pairs. viz. (ai. aj) i = I. 2..... H. j = i+l..... 1<. e. g.•

the blocl<s of DBIBD[4. 3. 1"1 are
<1. 2. 3>. <2. 1. 4>. <4. 3. 1>. <3, 4. 2>.

We define a group divisible design as in Hanani [7]: Let X be a v-set

such that X = U Gi. where the union is over i =1. 2•...• n; Gi n Gj =t. i ;.: j;

and IGi I =m for at I i. The Gi'S are called the groups. A group divisible

design. GD[I<. A. m; vI is a cqllection of I<-subsets (called the blocl<s) of the
v-set X such that each blocl< intersects each group in at most one element
and apair of elements from different groups occurs in exactly A blocl<s. In
a similar way we can define a GD[k. A. m; vI. where the size of each blocl< is

an element of K and the size of each group is an element of M.



A dir~cted group divisible design, DGD[k,~*,m;v], is a group

divisible design, GD[k,2~,m;vL in which each ordered pair of elements

from different groupS occurs in exactly A* blocks where each block is

said to have klk-l)/2 ordered pairs as in a DBIBD.

A cyclic BIBD, denoted by CBIBD[v,k,~*] is a BIBD(V,k,(k-l)A)

in which every block is arranged so that each ordered pair occurs ~

•times. A block [a1,a2 , ••• ,ak] is said to have only k ordered pairs

viz. lai,ai +l ) i = 1.2, ••• ,k-l and lak_l,a l ). e.g. the blocks of

CBIBD[5,4,1*] are

[1,2.3.4], [1.3,5,2]. [1.4.2,5], [1.5.4,3] and [2,4,5.3].

We use the notation [a •••• ,z] to denote a cyclic block of a CBIBD.

A cyclic group divisible design CGD[k.A*.m;v] is a

GD[k, (k-l)~*,m;v] in which each ordered pair of elements from different

groups occurs in exactly X* blocks. As in CBIBO each block is said

to have only k ordered pairs. We use the notation CGD[k.A*,m]

to denote CGD[k,~*,m;v] wher. there is no doubt about the value of v.

The set of v for which a CGD[k,A*,m] exist is denoted by CGD(k.~*,m).

For any other definition and ~otation the reader is referred to

Hanani [7] and street & Seberry [17].

Directed designs can be used in the development of computer networks

and data flow machine architecture [14] and cyclic designs Can be used

in virus research and animal husbandry experiments like neighbour designs
[8] • Neighbour designs are not the same as cyclic designs. In cyclic

designs we consider ordered pairs and the same treatment cannot occur

more than once in the same block, whereas in neighbour designs ordered

pairs are not considered and the same treatment can occur in the same

block more than once. We use the notation <a,···,z > to denote a block

of a directed design.

2. CYCLIC BIBD WITH, k - 4.

One can easily prove

Theorem 2.1. Suppose there exists a CBIBD[k.j,~·] and a BIBDlv,k,A').

then there exists a CBIBD[v,j,IA~')·].

Proof. We replace each block of the BIBD(v,k,~') by the corresponding

CBIBD[k,j,A*] to get the required CBIBD[v,j,(~~·)*].

e.g. CBIBDI4,3,1*) is given by the blocks [1,2.3], [1,3,4],

2.13
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[1,4,2], [2,4,3] and B1BO(5,4,3) is given by the blocks {1,2,3,4},

{l,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}. We replace each of these

blocks by the corresponding CB1BO(4,3,1*) and get CB1BO[5,4,3*]

as follows:

and CB1BO[15,4,4*] exist.

and B1BO(15,5,4) together with the

[1,2,3], [1,2,3], [1,2,4], [1,3,4], [2,3,4];

[1,3,4], [1,3,5], [1,4,5], [1,4,5], [2,4,5];

[1,4,2], [1,5,2], [1,5,2], [1,5,3], [2,5,3];

[2,4,3], [2,5,3], [2,5,4], [3,5,4], [3,5,4].

Corollary 2.2. Suppose there exists a PBO[K,A,V]

K = {k
1

,k2,···,kn} and a CB1BO[k,j,~*] for each

exists a CB1BO[v,j,(A~)*].

Corollary 2.3. CB1BO[ll,4,2*]

Proof. We use B1BO(11,5,2)

k € K, then there

CBIBD[S,4,1*1 given in the introduction.

using theorem 2.1 and de Launey and Seberry [6] we have

Theorem 2.4. (i) If u;: 0 or 1hood 4), u;'; 4 and there exists a
CB1BO[k,j,A*] for k € K~ = {4,5,8,9,12}, then there exists a

CB1BO[u,j,A*]. (ii) If u;: l(mod 3) and there exists a CB1BO[k,j,A*]
3for an k € H 3 = {4,7,10,19}, then there exists a CB1BO[u,j,A*].

(Hi) If u;,; 4 and if there exists a CB1BD[k,j,A*] for an

k € K~ {4,"',12,14,15,18,19,22,23}, then there is a CB1BO[u,j,A*].

Professor C. Colbournpointed out that the following theorem

can be proved immediately using the decomposition of complete directed

graphs into cycles. See [19].

Theorem 2.5.
Remark (1).

B1BO(v,k,A) => CB1BO(v,k,A*) except for k-4 and 6.

For the case k=p, a prime, we can get CB1BO(v,p,A*) from

(p-1) copies of B1BO(v,p,A) as shown below:

Let a particular block of B1BO(v,p,A) be {1,2, ••• ,p}. We

arrange its (p-1) copies, say B1, ••• ,Bp-1 as follows:
•The first treatment of each B. is 1 and the next treatment

1.

is obtained by adding i in the previous treatment for i-I, ••• , (p;l) •

The remaining blocks are obtained by taking the reverse of these blocks.

(The addition is under mod p.) For example, if p=5, the arranged

blocks are

[1,2,3,4,5], [1,3,5,2,4], [1,4,3,5,3], [1,5,4,3,2] •
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Remark (2). BIBD(v,4,~) • CBIBD(v,4,(2~)*). If we take an arbitrary

block, say {1,2,3,4}, of a BIBD(v,4,A) I its six copies arearranqed

as [1,2,3,4], [1,2,4,3], [1,3,2,4],[1,3,4,2], [1,4,2,3] and [1,4,3,2]

Remark (3). BIBD(V,6,~) _ CBIBD[v,6,(2~)*], the CBIBD is obtained by

taking ten copies of the BIBD, each block, say {1,"',6}, of the BIBD

is arranged as:

[1,2,3,4,5,6], [1,4,3,6,2,5], [1,3,2,4,5,6],

[1,4,6,2,5,3], [1,2,4,6,3,5]

and their reverses.

Examples.

mod 7:sets

[1,3,7,5]

[1,6,8,3]

[2,5,3,6]

[3,7,4,6]

[2,0,3,5]

[2,4,0,7]

[8,6,0,2]

[8,1,6,4]

[5,3,6,8]

[5,7,3,1].

[1,3,2,5]

[2,6,1,5]

(3,1,6,5]

[2,4,3,6]

[3,4,6,5].

[6,3,2,1]

[2,1,4,6]

[1,3,6,4]

[2,3,5,4]

[4,2,5,6]

[1,2,5,4]

[1,3,2,6]

(7,8,2,1]

[7,0,8,3]

[4,5,8,7]

[4,6,5,0]

Develop the complementary difference

[0,3,2,6] [2,0,4,6].

(1) CBIBD[9,4,1*],

[0,1,4,3]

[0,5,1,8]

[6,7,1,0]

[6,2,7,5]

[3,4,7,6]

[3,8,4,2]

(2) CBIBD[6,4,2*]:

[1,2,3,4]

[1,2,4,5]

[1,5,4,3]

[6,1,4,5]

[2,6,3,5]

(3) CBIBD[7,4,2*],

10,1,3,2]

(4) CBIBD[8,4,2*]:

[1,2,3,4] [1,'7,6,2]

[1,4,5,6] [1,5,2,8]

[1,8,4,7] [2,7,5,4]

[2,8,6,4] [2,3,8,7]

[3,5,8,4] [5,8,7,6]
and the same blocks in tpe reverse order. of ... B\B~(~.\()l"-'»))

Remark (4). If the complemelltary difference sets"can be arranged so that

the differences between the adjacent numbers are ~* times each nonzero
( ...~,IJ")

hIt e1 iT"" then we get a cyclic BIBD wi th ~*.

Theorem 2.6. A CBIBD[v,4,2*] e~sts for v =O,l(mod 4).

Proof. By theorem 2.4 (i) it is merely necessary to show the existence of
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v = 9 Two copies of example 1.

[0,1,7,3], [3,7,1,0], [0,2,8,7],

K~ which is done as follows:

w£th A=1. v - 5 Introduction.Remark (2)

Example 4.

v - 4

v - 8

a CBIBD for v.

CBIBD[v,4,4*]

theorem 2. 6 and

v -12 Developing the initial blocks

[7,8,2,0]. [m,O,3,1]. [l,3,0,m] mod 11.

Theorem 2.7. A CBIBD[v,4,4*] exists for all v ~ 4.

Proof. By theorem 2.4(iii) we have to show the existence of
2

for v. K4 • For v E O,l(mod 4) it is proved using

for remaining values of v the result follows by deve1op-

ing the initial blocks in table 2.1.

Table 2.1

Treatments Construction

6

7

10

Two copies of example (2).

Example (3). Take two copies.

[-,2,4,0]. [-,0,3,1]. [0,1,2,5]. [5,0,2,1]. [2,0,6,3] mod 9
and each initial block in r.everse order also.

11

14

[0,1,4,2], [0,2,8,4], [0,5,4,8],
mod 11 giving CBIBD(11,4,2*),

[-,0,1,3], [m,0,5,2], [0,2,8,4],
[0,1,8,5], [0,4,7,1] mod 13 and
order also.

[0,8,5,10], [0,10,5,9)
take two copies.

[0,3,7,2], [0,6,1,2],
each block in reverse

15 Corollary 2. 3.

18 [-,4,3,0], [m,7,O,5], [0,8,5,1], [0,6,13,8]. [0,5,8,6],
[0,8,6,13]. [0,6,14,13]. [0,13,14,2), [0,10,16,2) mod 17
and each block in reverse order also.

19 [0,1,3,9], [0,3,9,8], [0,9,8,5], [0,8,5,15], [5,0,7,15),
[0,15,7,23]. [0,6,2,7), [0,18,6,2]. [0,16,18,6] mod 19
and each block in reverse order also.

22 Theorem 2.4(ii).

23 [0,1,5,2]. [0,10,2,5]. [4,0,2,10], [4,10,0,20], [4,20,8,0),
[20,0,17,8), [0,8,17,16), [17,0,11,16], [11,16,0,9),
[0,11,9,22], [0,18,22,9] mod 23 and each block in
reverse order 41so.

Using Hanani's Lenuna 2."3 [7] we have

lellll1a 2.8. If A'IA then CB(K,A') 5. CB(K,A).

Using Lenuna 2.8 together with Theorems 2.6 and 2.7 we have

Theorem 2.9. A CBIBD[v,4(4t+2)*] exists for vEO,l(mod 4) and a

CBIBD[v,4,(4t)*] exists for all v ~ 4.



<19,15,10,4>

<20,18,8,4>

<17,22,11,4>

<16,12,4,19>

<14,7,4,20>

<24,13,9,4>

<20,16,11,5>

<18,9,21,5>

<13,23,7,5>

<17,12,5,20>

<15,8,5,21>

<24,14,10,5>

<15,7,22,6>

<23,16,8,6>

<9,17,19,6>

<13,10,20,6>

<21,11,14,6>

<24,18,12,6>.

3. DIRECTED GROUP DIVISIBLE DESIGNS WITH k = 4 AND A1 = O.

The existence of a GDlk,A,m;v] implies the existence of

DGD(k,A*,m,v]; the DGD is obtained by writing each block of the DGD

twice - once ,in the given order and once in the reverse order. Hence using

Hanani's results we have:

Lenma 3.1. (a) If A' divides A, then DGD(k,A' ,m) S DGD(k,A,m).

(b) If v € GD(4,A,m), then for r ~ {2,6}, rv € DGD(4,A*,rm).

(c) If n;; l(mod 3), then v· 2n € DGD(4,l*,2).

(d) If n;; 0 or l(mod 4), then v = 3n € DGD(4,l*,3).

(e) If n" 4, then v· 6n € DGD(4,l* ,6) •...
(f) For aU n" 4, n € B(K

4
,l) hoZds, blhere K4 = {4, .. • ,12,14,18,19,

23}.

Proof. Proof of (b) is a part of the proof of Theorem 6.3 of (2].

(c) can be proved by observing that for n;; l(mod 3), n ~ 4,

2n € GD(4,l,2) (refer [2)) and for n = 4, the DGD[4,l'l2;8] is given

below:

<1,3,2,4> <5,6,8,7> <2,7,1,8> <6,4,3,5>

<3,8,6,1> <7,5,4,2> <4,1,7,6> <8,2,5,3>.

For (e), if n> 4, then Lemma 6.15 of Hanani gives 6n € DGD(4,l*,6)

and for n = 4, DGD(4,l*,6;24] is given below:

<1,20,12,13> <4,14,22,8> <13,21,12,1>

<1,8,23,17> <4,12,16,23> <16,9,22,1>

<1,9,14,24> <4,11,21,15> <24,15,11,1>

<20,1,7,15> <4,7,17,24> <17,7,1,21>

<23,1,11,18> <23,4,10,13> <18,10,1,22>

<1,10,19,16> <21,4,9,18> <19,8,14,1>

<2,7,18,19> <5,14,19,'11> <22,14,12,2>

<2,11,20,17> <5,22,18,10> <17,10,23,2>

<2,12,14,21> <5,23,9,15> <24,16,7,2>

<19,2,9,13> <19,5,12,17> <13,8,2,22>

<2,10,15,24> <22,5,7,16> <18,11,2,23>

<21,2,8,16> '<5,8,13,24> <15,20,9,2>

<3,8,18,20> <6,7,23,14> <19,18,7,3>

<3,21,7,13> <6,8,15,19> <16,21,10,3>

<3,12,22,15> <6,9,16,20> <15,23,12,3>

<20,3,10,14> <6,10,21,17> <13,11,3,19>

<3,11,16,24> <6,11,22,13$ <24,17,8,3>

<22,3,9,17> <6,12,18,24> <14,9,3,23>
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From Street and Seberry [17] we have

Lenma 3.2. (a) If n € DB (K. A*) and mK c GD(k. A' .m), then

mn € DGD(k.A'A*.m). (b) If v = l(mod 3), then v € DB(4.1*).

Lenma 3.3. For aZZ n ~ 4. 3n € DGD(4.1*.3).

Proof. In view of lemma 3.1(f). it is sufficient to prove that for all

n € K
4

• 3n € DGD(4.1*.3). Lemma 3.1(d) proves this for n = O.l(mod 4).

For the remaining values of n the solution is given in table 3.1.

Table 3.1

n v=3n DGD(4.1*.3)

69

57

45

42

33

54

30

21

18

7

6 Initial blocks to be developed mod(3.5).
«1.1). (O.~). (1.4). (0.0». «0.0). (2.2). (O.~). (2.3».
«1.4), (1.1), (2.3). (2,2».

Lemma 3.2; 12 € GD(4.1.3).

Lemma 3.2, 12 € GD(4,l.3).

11 € DB(5.1*) (Table 1 of Street and Seberry [17] and
15 € GD(4.1.3».

Initial blocks to be developed mod(3.13).
«1.2), (1.11). (2,4), (2.9». «1.3). (1.10). (2.6). (2.7».
«2.5). (2.8). (1.1), (1.12». «1.11). (2.3). (1.2). (2.10».
«2.7). (2.6). (1.9). (1.4». «1.12). (O.~). (0.0), (1.1».
«0.0). (2.8). (O.~). (2.5».

Table 1 of Street and Seberry [17].

Initial blocks to be developed mod(3.17).
«2.12). (1.3), (1.14). (2,5», <(1.9). (2.7). (2.10). (1.8».
«2.6). (1.15). (1.2), (2.11». «1.14). (1.3). (2.8). (2.9».
«2.4). (1,10), (2.13). ll.7», «1.5). (2.2). (2,15). (1.12».
«2.16). (1.11). (2.1). (1,6». «1.1). (0.0), (O.~). (1.16».
< (2,13). (O.~). (0,0). (2.4) >.

Lemma 3.2; 12 € GD(4,l.3).

Initial blocks to be developed mod(3.23).
«1.22). (1.1). (2.5), (2.18». «1.18). (1.5), (2.2), (2,21»,
«1.21). (2,10). (2.13). (1.2». «2.4).(2.19). (1.13).(1.10».
«2.3). (1.19). (2.20). (1,4», «1.20). (2.15). (1.3), (2.8».
«1,8). (1.15). (2,6). (2.17». «1.17), (2.7). (1.6). (2.16».
«2.11). (2.12). ,ll.16). (1.7», «2.9),(2.14), (1.12).(1.11».
«2.1). (1,14). (2.22). (1.9».

Initial blocks of the directed designs are written as <a.b.···.k>.

23

19

18

14

15

11

10

Remark (4). If m =O(mod 2). the necessary conditions for the exist-

non-existing

are the same as for the existence ofGD[4.A,m]

DGD[4.A*.m]

GD[4.2A.m] and
.f...

except"twoGD[4.A.m] exists.

and T[4.1,6].

exists if and only if..,.
transv~sal designs T[4.1,2]

hence

ence of



Theorem 3.4. Let m, ). and v be positive integers. The necessary and

suffiaient conditions for the e:r:istence of a directed group divisib~e

design OOD[4,).* ,m,v] are
v = O(mod m) r ).*(v-m) = O(mod 3), ).*v(v-m) = O(mod 6) and v ~ 4m.

Proof. Theorem 6.1 of [7] gives the necessary conditions. By Theorem

6.3 of [2], lemma 3.l(b) and the above remark (4) we need to prove the

sufficiency only for m = 3. This is done in lemma 3.3 and lemma 3.l(a).

4. CYCLIC GROUP DIVISIBLE DESIGNS WITH k = 3.

The existence of a GD[3,).,m,v] implies the existence of

CGD[3,).*,m,v]. The CGD is obtained by writing each block of GD twice

_ once in the given order and once in the reverse order - and hence using

Hanani [7], we have the following resul ts:

Lemma 4.1. If v < GD(3,).,m) ho~de and if r is a positive integer,

then rv < CGD(3,).*,rm) ho~de.

Lemma 4.2. If n =0 or l(mod 3), then 2n < CGD(3,l*,2) ho~ds.

We notice that for n =2 (mod 3), the necessary conditions are not

satisfied.

Lemma 4.3. For every n ~ 3, 6n < CGD(3,l*,6) ho~ds.

Lemma 4.4. For every n ~ 3, 2n < CGD(3,3*,2) ho~ds.

Lemma 4.5. If n < CB(K,).*), mK c GD(k,).,m). then mn < CGD(k,).).*,m).

Proof. similar to the proof of Street and Seberry [17] except that, while

constructing GD[k,).,m] from the blocks of CB (K,).*), we write the

elements from the qroups Gi ' s in the same order as the Gi I shave

occurred in the block of CBtK,).*).

Lemma 4.6. If ).' divides )., then CGD(K,).'*,M) is a subset of

CGD(K,).*,M) •

Proof. Let ). = p.).' ·and v < CGD(K,).'*,Ml then there exists a

CGD[K,).'*,M,v), hence v < CGD(K,).*,M).

Lemma 4.~ If v < CGD(3,).*,x) and x < CGD(3,).*,3), then

v < CGD(3,).*,3).

Proof. For each group of the CGD[3,).* ,x,v) construct the corresponding

CGD[3,).*,3,v). We wriee the blocks of all the CGD[3,).*,3,x) to get

the CGD[3,).*,3,v).

Lemma 4.8. If n < B(K,).') and mK ~ CGD(k,).*,m), then

mn < CGD(k,).').*,m).
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Proof. There are n groups for the required CGO[k,A'A",m]. Consider­

ing these n groups as treatments we construct a B[K,X1;n]. Replace
the.each block byAcorresponding CGD[k,A",m], (which exist by the

hypothesis), to ge~ the required CGD[k,A'A",m].

lelTlJlil 4.9. For every n 2: 3, 3n E CGo(3,1",3).

Proof. We know that for every integer n 2: 3, n E B(K 3,l) where

K3 ~ {3,4,5,6,8}. (See [7].) By Lemma 4.8, it suffices to show that

3n E CGO(3,l",3) for every nE K
3

• For n = l(n~d 2), 3n E GC(3,l,3)

(see [7]) and hence for n = 3,5, 3n E CGO(3,1",3). For n=4, we

use Lemma 4.5 and the fact that 4 E CB(3,l) and 9 E GO(3,l,3). For

n-8 the required eGO is given below (with the notation of [7]). Let

the set of vertices be X = Z(3,2) x (Z(7,3) u =); tl.f..~o\I.""\~~ 1,1....l<.s chv<.I.,",-"
'YV\oe\ l~.l) C3iri -n..e. l)~O,-K..\ Cl\.;\..t.. dts'C\"'·

[(<P,<P) , (O,a'), (O,-a')] mod (3,7), a = 1,2,3;

[(O,a+4), (O,a+l), (<P,<P)] mod (3,7), a ~ 0,1;

[(<P,O), (<P,=) , (<P,3)] mod (3,7);

[(<P,=), (1,0), (O,<P)] mod (3,7);

[(1,3), (<P,=), (O,<P)] mod (3,7).

For n = 6, CGD(3,1*,3;18) is given below.

[0,6,9] [1,7,5] [2,8,6] [3,9,7] [4,5,8]

[5,11,14] [6,12,10] [7,13,11] [8,14,12] [9,10,13]

[10,1,4] [11,2,0] [12,3,1] [13,4,2] [14,0,3]

[0,7,8] [1,8,9] [2,9,5] [3,5,6] [4,6,7]

[5,12,13] [6,13,14] [7,14,10] [8,10,11] [9,11,12]

[10,2,3] [11,3,4] [12,4,0] [13,0,1] [14,1,2]

[8,7,0]~[9,8,1] [5,9,2] [6,5,3] [7,6,4]

[13,12,5] [14,13,6] [10,14,7] [11,10,8] [12,11,9]

[15,11,5] [15,12,6] [15,13,7] [15,14,8] [15,10,9]

[15,5,14J [15,6,10] [15,7,11] [15,8,12] [15,9,13]

[15,4,1] [15,0,2] [15,1,3] [15,2,4] [15,3,0]

[16,1,10] [16,2,11] [16,3,12] [16,4~13] [16,0,14]

[16,10,4] [16,11,0] [16,12,1] [16,13,2] [16,14,3]

[16,9,6] [16,5,7]'[16,6,8] [16,7,9] [16,8,5]

[17,6,0] [17,7,1] [17,8,2] [17,9,3] [17,5,4]

[17,0,9] [17,1,5] [17,2,6] [17,3,7] [17,4,8]

[l7,14,ll] [17,10,12] [l7,ll,l3] [17,12,14] [17,13,10]



Theorem 4.10. Let m. A and v be poei.tive i.ntegere. The necessary and

sufficient condition'for the e~stence of a cycZic group divisibZe design

CGD[3,A*,m;v] (v ~ 6 and m ~ 1) ~Ye

V =O(med m), v ~ 3m and Av(v-m) =O(med 3).

Proof. The necessity follows from the Theorem 6.2 of Hanani 17] and the

fact that a CGD[3,A*,m;v] is a GD[3,2A,m;v]. In order to prove the

sufficiency, as in [7] we consider- only those values of A and of m

which are factors of 6. In all these cases the existence of the relevant

CGD is proved in the Lemmas listed in table 4.1. For m - 1 CGD is a

cyclic triple system and hence the exception of v - 6 [ID].

Table 4.1

m A* Proof

2 1,2,3,6 Lemmas 4.2, 4.4 and 4.6

3 1,2,3,6 Lemmas 4.6 and 4.9

6 1 Lemma 4.3

Summary.
We have proved:

(i) CBIBO(v,b,r,4, (4t+2)*) exist for v = 0, 1" mod 4;

(H) CBIBD(v,b,r,4,(4t)*) exist for all v ~ 4;

(Hi) DGDDs with block size 4 exist;

(iv) CGDDs with block size 3 exist except v - 6

and group size 1.

Our proofs of the results mentioned above depend on the

various elementary results similar to those of Hanani and

recall that our definition of GDD is the one given by

Hanani. To prove the results for cyclic BIBDs we proved

the following intermediate results:

(i) existence of CBIBD[k,j,A*] and BIBD(v,k,A').

existence of CBIBD[V,j,(A'A)*];

(ii) existence of PBD[K,A,V] and CBIBD[k,p*,v]

for each k => existence of CBIBD[v,j,(AP)*];

(iii) CBIBD[k,4,2*] exists for k ~ {4,5,B,9,12}

and hence CBIBD[u,4,2*] exists for u =0 or 1 mod 4;
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(iv) CBIBD[k,4,4*] exist for k € {4, •.. ,12,14,15,

18,19,22,23} and hence CBIBD[v,4,4*] exist for v" 4.

Similarly to prove the existence of directed GODS

we proved: '

( i) For n - 1 mod 3, 2n € DGD(4,1*,2) :

(H) For n - o or 1 mod 4, 3n € DGD(4,1*,3):

(iH) For n € {4, ... ,12,14,18,19,23} 3n • DGD(4,1*,3)

and hence for all v " 4, 3v • DGD(4,1*,3).

For CGDDs with block size 3, we proved the similar results,

in particular, we proved that 3n l CGD(3,1*,31 for every

n € {3,4,5,6,8} and hence 3n € CGD(3,1*,3) for all n" 3.

Acknowledgement: I would like to express my thanks to Dr. J.R. Seberry

for suggesting the problems and for her valuable guidance.
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2,2 An observation

Replacing each block of a BIBD(v, 3, 2) =X by six directed blocks,
which are permutations of the original block, produces a DBIBD(v, 3, 6*),
We say that X underlies the DBIBD(v, 3, 6*), A decomposition of DBIBD(v, 3,
6*) into six DBIBD(v, 3, 1*) is denoted by DDBIBD(v, 3, 1*) and if such a
decomposition of a DBIBD(v, 3, 6*) exists, then we say that the
DBIBD(v, 3, 6*) underlies DDBIBD(v, 3, 1*), Harms and Colbourn (1983) have
conjectured that DBIBD(v, 3, 6*), obtained from a BIBD(v, 3, 2), underlies a

DDBIBD(v, 3, 1*),

Hanani's theory can be used to prove that, for the parameters
satisfying the necessary conditions for the existence of BIBD(v, 3, 2), there
exists a BIBD(v, 3, 2) = X such that the DBIBD(v, 3, 6*) obtained from X
underlies a DDBIBD(v, 3, 1*). We use the notation of Hanani (1975).

Lemma 2,2,1: If n E B(K, 1) andIf for each k E K there exists a BIBD(k, 3, 2)
which underlies a DDBIBD(k, 3, 1*), then there exists a BIBD(n, 3, 2) which

underlies a DDBIBD(n, 3, 1*),

Proof: Form the BIBD(k, 3, 2) Which underlies a DDBIBD(v, 3, 1*) on each
block of B[K, 1; nJ, Writing all these BIBD(k, 3, 2)'s together will give us a
BIBD(n, 3, 2) Which underlies a DDBIBD(n, 3, 1*),

o

Theorem 2,2,2: Necessar!l condItions are sufricient for the eKistence of a

BIBD(v, 3, 2) which underlies a DDBIBD(v, 3, 1*).

Proof. Using Lemma 2.2.1 ~nd the fact that for v ;: 0, 1(mod 3), with
v E B[{3, 4, 6}, 11 we need to prove that for k =3, 4,6 there exists a
BIBD(k, 3, 2) which underlies a DDBIBD(k, 3, 1*). For k =4, 6 this is proved
in Harms and Colbourn (1983). For k =3, we take the BIBD(3, 3, 2) as

{I 2 3, 12 3}

and the corresponding DDBIBD(3, 3, 1*) is:
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CHAPTER 3

EQUI-NEIGHBOURED DESIGNS

Kiefer and Wynn(198l) have defined an equi-neighboured BIBD (an

EBIBD[k, A"; vI) to be a BIBD[k, A; v,l in which the points in each block are
arranged along a line and each pair of distinct points is adjacent A"= 2A/k

times.

The following main theorems are proved in the attached published
paper"A note on equi-neighboured block designs", Util itas Mathematica, 28,

1985, 91-98.

Theorem 3.1: An equi-neighboured BIBD[3, 3; vI can be embedded into an
equi-neighboured BIBD[3.3; 2v+ 11 and an equi-neighboured BIBD[3, 3; 2v+31.

Proof Theorem 3.1 of the attached paper.
o

Theorem 3.2: If there exists an EBIBD[3, A: vI. then It can be embedded into

an EBIBD[3, A; 2v+1I.

Proof. Theorem 3.2 of the attached paper.
o

Theorem 3.3: Every group divisible design With A = 3t is an underlying
design for an EGDD[3. A. m; vI, where t is an integer and t ~ 1.

Proof. Theorem 4.1 of the attached paper.
o

We have given many embedding theorems in this thesis. Hence here we
will carry out a detailed count of occurences of the following pairs for a
BIBD(2v+3. 3. 3) Which is obtained by Lemma 2.4 of the attached paper. We
use the BIBD(v, 3. 3) on points H, 2, .... v} and three copies of the complete

graph over the new points {v+l..... 2v+3} :

3.1
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(i) pair (a. b) where a and b both are points of BlBD(v. 3. 3) (i. e. old­
old pair);

(ii) pair (a. b) where a is old point and b is a point in {v+l..... 2v+3}
(i. e. old-new pair);

(iii) pair (a. b) where a and b both are from {v+I..... 2v+3} ( i.e. new­
new pair).

Please refer to Figure 1and the proof of Lemma 2.4 of the attached
paper. for the notation, Av. B\. Cl. and C2 used below.

(i) old-old pair: The old-old pair can occur in the blocks obtained
from Av only. i.e. only in the blocks of BlBD(v. 3. 3). Hence every old-old

pair occurs only 3 times as required.

(ii) old-new pair: Each block obtained from the sUbmatrix

M = B\

C\

gives two old-new pairs. Consider a fixed old point a. There are 3(v+3)12
consecutive columns with I's in the ath row of M. These columns have two
l's in Cl corresponding to the three distinct one-factors of KV+I in C1( see

the arrangement of Fi'S in the proof of Lemma 2.4). Hence the point a has

occured with every new point only 3 times. Note that this also proves that
the blocks corresponding to Mare distinct.

(Hi) new-new pair: We have used up all the one factors of the three
copies of the complete graph KV+I and hence each new-new pair occurs 3

times as required.
If we start with a simple BIBD(v. 3. 3). then the blocks corresponding

to the matrix Av are distinct. The blocks obtained from C2 are distinct. as

they arise from 3one-factors and each block contains an edge from each
one-factor. Hence the BIBD(2v+3. 3. 3) will be simple.

o



A note on equi-neighboured block designs

Dinesh G. Sarvate

1. Introduction

A balanced incomplete block design BIBD(v, b. r, k, :A) is an
arrangement of v points into blocks of size k such that each point occurs r
times and each pair of points occurs in exactly :A blocks. Keifer and Wynn
[6J have defined an equi-neighboured BIBD (an EBIBD) as a BIBD in which the
points in each block are arranged along a line and each pair of points is
adjacent the same number of· times. These are useful in any experimental
situation where correlation of the errors of adjacent plots is suspected

[4,61.

3.3
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K!.fer and Wynn [6) and Cheng [2) have shown that the necessary

conditions are sufficient for the existence of EBIBDs with k = 3. Dawson

[4] proved that the necessary conditions are sufficient for the existence

of EBIBDs of block size 4. Hanani [5] has proved that the necessary condi­

tions are sufficient for the existence of BIBDs of block size 3 but the

designs have repeated blocks. Stanton and Goulden [8] proved the existence

of BIBDs with k = 3 and A = 1 without repeated blocks, using factoriza­

tion of complete graphs. Street [9), on the similar lines, proved the

existence of BIBDs with k = 3 and A = 2 and A = 3. She used the

embedding of a BIBD with v points into BIBDs of 2v+l and 2v+7 points

for A = 3. We use her embedding of 2v+l points together with our

embedding theorem for 2v+3 points to prove the existence of BIBDs with

k = 3 and A = 3. We use the graph factorization of Stanton and Goulden [8]

and by properly ordering the blocks we get embedding theorems for equi-neigh­

boured BIBDs. Such embedding theorems for directed designs are given by

Seberry and Skillicorn [7) and we extend their theorem for 2v+l points

to equi-neighboured designs.

We generalize the definition of equi-neighboured BIBD in a natural

way to define equi-neighboured group divisible designs. Then"using thensame

construction method as Kiefer and Wynn [6), prove that given a group divisible

design which satisfies the necessary condition, it can be ordered to get the

equi-neighboured GOD. Using the similar terminology used in Colbourn and

Colbourn 13), we can wri~e our results as:

Every group divisible design with A = 3t underlies a equi-neigh­

boured GDD.
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We define a group divisibk design as in Hanani [5]. Let X be

n
IGi I = ma v-set such that X= U Go, Gi n Gj = 4>, i "I j, for all i.

i=l 1

'!be Gi's are called the groups. A group divisible design, GDlk,A,m;v] ,

is a collection of k-subsets of the v-set X such that each block intersects

each group in at most one element and a pair of elements of X from different

groups occurs in exactly A blocks. In a similar way, we can define a

GDIK,A,M;v], where the size of each block is an element of K and the size

of each group is an element of the set M. GD{K,A,M) denotes the set of all

v such that a GD[K,A,M;v] exist.

An equi-neighboured BIBD EBIBD[K,A,A* v] is a BIBD[K,A;V] in

which each block is given a linear ordering and each pair of distinct points

is adjacent A* times. If K = {k}, then A* = 2A/k and we call it

an EBIBD[k,A;v].

In a similar way, we define an equi-neighboured [roup divisible

design EGDD[K,A,A*,M;v] system and when K = {k} and M = {m} we call it

an EGDD[k,A,m;v].

A complete graph K on n vertices consists of n vertices
n

and the (~) joining edges [refer 8]. A one-factor of K2n consists of n

vertex-disjoint edges. A one-factorization of K2n consists of 2n-l one-

factors such that the edges in the one-factors are all distinct. For examples

the reader is referred to 18].
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2. Recursive Constructions

A block design can also be written as a vxb incidence matrix

with (i.j1th entry equal to 1 if the element i belongs to jth block and 0

otherwise. For the sake of completeness and the point of view of the appli-

cation to the construction of equi-neighboured design. we reproduce the.

required theorems from Stanton and Goulden [8) and the proof of the embedding

theorem of Street [9].

All the edges of K
2n

fall into n disjoint classes Pl.P2.···· P n;

where the edge (i.jl is in Pk if and only if i-j = k (mod 2n). Stanton

and Goulden [8) called this splitting the difference partition of K2n'

Consider the triangles (1+i.2+i.4+i) for i = 1.2.···.2n. This gives a set

T of 2n triangles.

Theorem 2.1 [8): The set T of 2n triang~es contains exact~y those edges

Theorem 2.2 [8J: The graph K2n may be factored into a set of triang~es

and a set of (2n-7 ) one- factors covering the other p, 's.
'l-

Using Lemma 2 and Theorem 3.1 of [2] we get:

Theorem 2.3: The graph 'K
2n

may be factored into a set of 6 one-factors

and a set of (2n-7) one-factors covering the other p. 's'l- •

This observation immediately leads us to the embedding of a

BJ:BD[3.3;v] into a BIBr[3.3;2v+3].



Lemma 2.4: If there exists a BIBD[J.J;vn, then it can be embedded into a

BIBD [J.J;2v+J).

Proof: Let A denote the incidence matrix of the BIBD[3,3; vJ. For
v

v = 2v+3, the structure of the incidence matrix is given in figure 1.

(v+l) (2v+3)

+- v(v-ll/2 ... _lv (v+3)->+--v+3~
2

3.7

i
v

1
1

v+3

1

A Blv

Cl Cz

Fig. 1: Incidence matrix Ay of BIBD[3,3;2v+3].

Here B = I xJ ( )1 v 1, 3(v+3)/2
where I denotes the identity

v

matrix of order v and J in general denotes the mxn matrix of all
m,n

entries 1. Let Pll,P12,P(23)1,P(23)2,P(23)3,P(23)4 denote the one-factors

arising from P
l

,P
2
,P

3
• The remaining one-factors are denoted by Fl,F2,

••• ,F(v-4). The first 4 x (3(v+3)/2) columns of Cl correspond to

Pll,P(23)1,P(23)2,P12,P(23)2,P(23)3,Pll,P(23)3,P(23)4,P12,P(23)4,P(23)1

and the (v+3) columns of C
2

are filled by the set T of triangles. The

remaining columns of Cl correspond to the 3 sets of the one-factors Fi's.

The one-factors are arranged so that there are no repeated blocks. This can
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be done as follows: The remaining columns of Cl are filled by:

Fl.F2 ,F3;F2 ,F3,F4;F3,F4 ,F5,'" ,F (v-G) ,F (v-5) ,F (v-4) ;F(v-5) ,F (v-4) ,Fl;

F (v-4) .Fl ,F2;.

Notice that each one-factor has occurred at 3s
th

position only once for

some s = 1,2,"', (v-4l.

LeTlJTla 2.5 [9): If there exists a BIBD[S.3; v], then it can be erribedded

into a BIBD[J. 3. 2v+l].

Proof: Consider the incidence matrix A of the BIBD[~,3;v]. Letv

v = 2v+1. The structure of ~ is shown in figure 2.

v (2v+l)

+ v(v-l)/2 ~ + ~v(v+ll ~

A B
v

C

f
v

1
f

v+l

1

Fig. 2: The incidence matrix ~ of BIBD[3,3l 2v+1].

K
v+land if the one-factors ofHere B = I vxJ l • 3 (v+ll/2'

are Fl.F2,··',F(v+l). the columns of C correspond to:

Fl.F2.F3;F2,F3.F4, ••• ,Fv,F(v+ll,Fl,F(V+l) ,Fl,F2,.



Again the construction is such that each one-factor has occurred

thonce at the 3s place for some s = 1.2.···.(v+l).

Theorem 2.6: The necessary conditions are sufficient for the existence of

simple (no repeated bl.ocks) BIBD[3.3;v]. (v > 3).

Proof: The necessary condition for BIBD[3.3;v] is v = 1 mod 2. We use

induction to prove the sufficiency. To start the induction we need BIBD's

for V = 5.7.9 which is done in [9] and the references therein. Now lemmas

2.4 and 2.5 complete the proof.

3. Construction of Equi-neighboured Designs

Theorem 3.1: Equi-neighboured BIBDl3, 3;:.>] can be embecided into an equi-

neighbou:r'ed BIBD[3.3;2v+l] and an equi-neighboured BIED[3,3;2v+3].

Proof: The case of embedding in BIBD[3,3;2v+l] is obvious from the proof

3.9

of the lemma 2.5. We arrange the one-factors occurring at the 3s
th

place

such that the point l.···,v placed in the middle. In other words, if

(a,b) is an edge of one-factor occurring with the point i of the

EBIBD[3,3;v], then the ordered block will be [a.i.b]. The proof for the

case 2v+3 is similar except that the blocks corresponding to C2 are

arranged as [1+i.4+i,2+i].

We now extend the result of Seberry and Skillicorn [7] for the

equi.-neighboured designs.
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Theorem 3.2: If there e:cists an EBIBD[3. A;V]. then it can be erribedded

into an EBLBD[3. A;2v+l].

Proof: Recall that in &BIBD notation, A means we arrange the blocks such

that each pair occurs 2A/3 times. We take the blocks of EBIBD[3.A,V]

together with the blocks given by Seberry and Skillicorn A/3 times,

arranged as [j.v+i,v+i+j]. i = l,···,v+l; j = l.···.v. Where the elements

in the third position are reduced. when greater than 2v+l. by subtracting

v+1, so as to remain in the set {v+l.···,2v+l}. For fixed j, as i

varies. the resulting set of blocks cover once all pairs of the form (j.x)

and twice all pairs of the form (x.x+j); x and x+j in {v+l,···.2v+l}.

Now we take the one-factorization of Kv+1
as given by Stanton and Gou1den

[a] and form the blocks for i = l.···,v such that the pairs from the i th

one-factor come with the point i where i occurs in the middle of the

block. For example, one extends the EBIBD[3;3,3] on three elements

([1,2,3].[2,1,3].[2.3,1]) by adding first the blocks of the form

[j,v+i.v+i+j] viz.

[1,4,5], [1,5,6], [1,6,7], [1.7,4];

[2,4,6J, [2,5,7], [2.6,4]. [2,7,5];

[3,4,7], [3,5,4], [3,6,5], [3,7,6];

and then adjoining the blocks arising from one-factors of K4 viz.

Fl: (4,7), (5.6);

F2: (5,7), (6,4);

F3: (6,7), (4,5);

so that the blocks are:



[4,1,7], [5,1,6];

[5,2,7], [6,2,4];

[6,3,7], [4,3,5];

4. Equi-neighboured Group Divisible Designs

As mentioned in the introduction, we extend the proof of Keifer

and Wynn [6] for EGDD. Using the terminology of Colboum and Colbourn 13]

we write our result as:

Theorem 4.1: Every group divisible design Idth A = 3t is an underlying

design for a EBDD[3, A,m;v], LJhere t is an integer "",1.

Proof: Consider a group divisible design with v = mn points, where

n is t.'1e number of groups and m is the group size. As we know, there

are b = tv(v-m)/2 blocks, each point occurs r = 3t(v-m)/2 times and

each pair of points from the different groups occurs in 3t blocks.

The poi,-,ts from the same group do not occur together.

There are v(v-ml/2 pairs to be considered. If we can order the

blocks such that all these pairs occur at the end of the blocks t times,

then automatically we will get 2t times each of these pairs occurring

3.11

together in a block. Notice that there are only t(v(v-ml)/2 blocks.

Now write each block as a triple (t ,t',t I of subsets of size 2
~ . 2 3

contained in it. In what follows the two blocks with identical elements

are considered different.
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Let Sti be the set of all blocks containing a fixed subset t.
J.

of size 2. For any p different subsets t"./t ,···/t
1 2 P

of size 2,

1 " P ,,(v(v-m»)/2. the number of distinct blocks in VSti is greater

than or equal to t.p.

Using Agrawal's theorem of system of distinct representatives [1],

we can select a collection Hi of blocks in each Sti' with Hi n Hj = ~

for i t- j. Notice that U Hi' i = 1.···. v (v-m) /2, is the set of all the

blocks of the GDD. Each block of Hi is ordered so that the pair of

points in t
i

occurs at the end, which completes the proof.

Defining equi-neighboured partially balanced designs in the similar

way to equi-neighboured GDD, we obtain:

LeJTIDa 4.2: If an EPBIBD(v,b,r,k=J, 1.1=0, A2,n1,n2) exists, then

EPBIBD(Nv,NJb,~r,k=J,0,NA2,Nn1,Nn2) eixsts.

Proof: Replace the points ul,u2,···.uv by
1 N 1 N

uI, ··· ,uI ,··· ,uv '··· ,uv

and blocks [uR.,um,unl by
. . k

{u;,uJ,u },
Too m n

i,j,k = 1,2,···,N. It is easy

to see that we get the required EPBIBD.

Lemma 4.3: If EGDD[k,A,m;vl = X and EGDDlk,A,v;kvl = Y exists, then

a EGDDlk,A,m;kv] exist~.

Proof: 1 1 2 ... 2 ... k ... k
Let kv points be ul'

... ,uv'u1 , ,uv ' ,uI ' ,uv · Let X .
J.

with
i i i

points. Thendenote the EGDD ~1,u2'··· ,uv

x ,X ,x I···'x:. jY
1 2 3 -x

gives the required EGDD.
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CHAPIEB 4.

SIMPLE DESIGNS

A BIBD without repeated blocks is called a simple BIBD. The

motivation to study simple BIBDs came from reading A. P. Street (1980)

and the applications of simple designs to prove the existence of other

designs. For example, if simple designs are used in existence algorithms,

more elegant and efficient proofs can be obtained because of inherent

constraints imposed by the initial simple design. Two published papers are

attached:

(a) "Block designs without repeated blocks", Ars Combinatoria, 21,

1986, 71-87

and (b) "All simple BIBDs with block size 3 exist", Ars Combinatoria,

21A, 1986, 257-270.

Recall that the necessary conditions for the existence of a

BIBD(v, k, A) are
(j) A(v-I) =r(k-1),

(ii) vr = bk,

(iii) b ~ v.
For a simple BIBD(v, k, A), we have an additional condition

(iv) A ~ (kV- 2 ).
-'1.

In particular, the necessary conditions for the existence of a simple

BIBD(v, 3. A) are

(j) A ~ (v-2),

(ii) (a) if the greatest common divisor of A and 6 (G.C.D(A, 6))

is equal to I, then v ;: 1. 3 (mod 6);

(b) if GCD(A, 6) =2, then v ;: 0, 1(mod 3);

(c) if GCD(A, 6) =3, then v ;: 1(mod 2);

(d) if GCD(A, 6) =6. then no condition on v.

4.1
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For the notation used in the attached papers, please refer to

Hanani(l975).

The main result is:

Theorem 4.1: TIle necessarl/ condlliom are sufficient for tile existence of"

simple 8/80s wllll block size 3.

Proof Theorem 2.5 of (b).
o

The proof of the above theorem depends on the following lemma and some

theorems given in (a) and (b).

Lemma 4.2: For all t sucll tllat t ~ ( r.i )/ A. exceptpossibly for one value
of t. tile existence of a simple BIBD(v, k, A) Implies tile existence of" a

simple BIBD(v, k. At) and tile exceptional value of t satisfies

(i) t is odd,

and (H) tA < (~=i )< (t+l)A.

Proof Lemma 2.11 of (b).
o

In the proof of Theorem 3.7 of (b), the third sentence of the second

paragraph (which starts with "Observe that") can be rewritten for clarity

as follows.

Consider three distinct even numbers, say a, band c, where

2 < a. b. c < n-1. If n-l is even then apply Lemmas 3.3, 3.4 and 3.5 on Pl,

(P2 U P3)....• Pa+l.(Pa+2U Pa+3).···.Pb+l,(Pb+2 U Pb+3).···. Pc+l,

(Pc+2 U Pc+3)•... , (Pn-2 U Pn-l). We get 2n-8 one-factors. If n-l is odd.

then apply Lemmas 3.3. 3.4 and 3.5 on Pl, (P2 U P3).... , Pa+l.

(Pa+2 U Pa+3).. · . , Pb+l ' (Pb+2 U Pb+3)" ... Pc+l, (Pc+2 U Pc+3)•... ,

(Pn- 3U Pn-2). We get 2n-l0 one-factors.



The definition of s~distance apart arrangement of one-factor given

after the proof of Theorem 3.8 can be restated as follows.

An arrangement of one-factors, (not necessarily distinct), is called

Us-distance apart", if there are at least "s" other one-factors between the
occurences of the same one-factor.

In the proof of Theorem 3.9 of (b), the required sets of Pi'S are not

given for t =9. They are listed here:

t =9: Required sets of Pi'S =Sets of Pi'S as in the case of t =8 and

{PI, PG. P7}·

Obtain same Pi'S from the 1st to the 8th copy of K2n as in the

case of t =8 and from the 9th coPy obtain {PI. pG' P7}.

o
Please note that Lemmas 4.1 and 4.2 of the attached paper (a) are

true for simple BIBDs. The word "simple" is missing in the statements of
these two theorems.

¥ie use "induction" in the proof of Theorem 4.3. How the induction

works in the theorem is shown below. Similar arguments can be given at

other places in the thesis, where we use induction.

The necessary conditions require that v ;;; 0, 1 (mod 3). We have

shown that simple BIBDs exist for smaller values of v. Now for a larger v,
let v = 3t. Then v can be written as 2(3(s-0)+4 or as 2(3s+1)+1 depending

on whether t = 2s or 2s+1. Similarly when v = 3t+l, it can be written as

2(3s)+l or 2(3s)+4. Hence either Lemma 4.1 or Lemma 4.2 gives simple
BIBD(v. 3, 2).

o

4.3
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Block designs without repeated blocks

Dinesh G. Sarvate

]. Introduction

At-design SA(t, k, v) is a collection of k-subsets called blocks of

a v-set Esuch that every t-subset of E is contained in exactly A blocks.
An SA(t, k, v) is called simple if it has no repeated blocks. A Block design

can be written as a v x b incidence matrix, where b is the number of

blocks in the design, with (i, j)th entry 1 if the element i belongs to the

jth block and 0 otherwise.

Hanani [ll has proved that the necessary conditions are sufficient
for the existence of SA(2, 3, v) and SA(2, 4, v), but the designs have

repeated blocks. Van Buggenhaut [10,1ll has proved that for the existence
of simple SA(2, 3, v), A=2 and A=3, the necessary conditions are

sufficient.

The present work is motivated by the papers of R.G. Stanton and
I.P. Goulden [8] and AP. Street [9]. Stanton and Goulden[8] provide an
elegant proof for the existence of 51 (2, 3, v) based on factorization of

complete graphs and 5treet[9] extends the result for A = 2 and 3 by
giving recursive constructions for simple and irreducible 52(2, 3, v) and



S3(2,3,v) for all possible values of v (irreducible means not consisting

of unions of smaller designs). Recently Sarvate[5J has applied this
construction to obtain equi-neighboured designs. We give
straightforward recursive constructions for simple S:>,,(2,3,v) for:>" =

2,4,5 and 6 depending on the graph factorization of Stanton and Goulden
[8]. Our proof for the case:>" =2 is slightly different from Street [9J and
similar to the proof for the case:>" = 3 in Sarvate[5J. The results of this
paper are used in Sarvate[6J to prove that all simple BIBDs with block
size 3 exist.

In what follows In denotes the identity matrix of order nand Jm n,
denotes the m x n matrix of all entries 1. We use both the symbols
S:>,,(2,k,v) and BIBD(v,k,:>") to denote the balanced incomplete block design

with the parameters v,k,:>" .

2. Some observations:

Recently Lu [4J has shown that the maximum number (v-2) of
pairwise disjoint SI (2,3,v) can be attained for v > 7 and v =1,3 (mod 6),

except possibly for v = 141, 283, 501, 789, 1501 and 2365. However for
simple systems and small values of :>", the method given by Stanton and
Goulden[8J and Street(9) is preferable. As a consequence of Lu's result we
get:

Theorem 2/: The necessary conditions are sufficient for the
existence of simple S:>,,(2,3,v) for v>7, :>" ~ v-2, v =1,3 (mod 6) and except

possibly for v = 141, 283, 501, 789, 1501, 2365.

The study of simple block designs can be useful to prove the
existence of other combinatorial structures , e.g. in de Launey ,Sarvate
and Seberry [3] it was easy to prove that a generalised Bhaskar Rao
design (GBRD) over Z4, for v=15, exists, by using a simple 54(2,3,15). We

4.5



4.6

observe that the nonexistence result for a simple S2(2.k.v) leads to a

nonexistence result for GBRD over Z2 for k ~ 3.

The existence results of de Launey and Seberry [2], section 4.1.

give the following results for block size 4.

Theorem 22: (i) Let v,,1 (mod 6) be a prime power. Then there

exists a simple S2(2,4.v).

(ii) Simple S2(2,4.v) exist for v< 500. v " 1(mod

6) except possibly for v in {145.205.265.319.355,415,493}.

A very powerful theorem of Stanton and Collens [7. page 1361

together with results of Street[91 and Van Buggenhaut [10.111 gives us:

Theorem 23 : (i) Simple S:>,,(2.3.v) exist for v " 0.1 (mod 3) and

:>" =2n =:: v-2. In other words. the necessary conditions are sufficient for

the existence of simple S2n(2.3.v).

(ii) Simple S:>,,(2.3.V) exist for v" 1(mod 2) and

(iii) The existence of simple S:>,,(2.3.v) implies the

existence of simple S2n.:>,,(2.3.v) for 2n.:>" ~ v-2.

3. Graph factorization:

A complete graph Kn on n vertices consists of all ( ~ ) edges. A

one-factor of K2n contains n vertex-disjoint edges. A one-factorization

of K2n contains 2n-1 one-factors. which are all disjoint. For examples

and details please refer to Stanton and Goulden [81.

All the edges of K2n fall into n disjoint classes P1 .P2...·•P n;

where the edge (i.j) is in Pk if and only if i-j " k (mod 2n). Stanton and

Goulden [81 called this splitting the difference partition of K2n. Consider



the triangles (l+i,2+i,4+i) for i= 1,2, ... ,2n. This gives a set of 2n

triangles.

Theorem .!I[8) : The set of 2n triangles contains exactly those

edges from PI ,P2'p3.

We observe the following:

Theorem.12: Consider the set T of triangles (l+i,l+x+i,l+x+y+i)

for i= 1,2, ... ,2n. The set T contains exactly those edges from Px,Py,Px+y,

where x+y <: n.

Remark: This is an important observation as we get various sets

of triangles to be used in next sections, e.g. PI,P2,P3 and PI,P 4,P5

cover 4n triangles { (l+i,2+i,4+i) 1and { (1+i,2+i,6+i) 1, i =1,2, ... ,2n.

4. ThR caSR ). =2.

For the recursive constructions, it is SUfficient to be able to

construct an S2(2,3,V) from a given S2(2,3,v) for (i) V = 2v+l and

(ii) V = 2v+4 and to construct S2(2,3,v) for initial values of v.

The cases V = 2v+l ( v even) and V = 2v+4 ( v odd) have been

dealt with in Street [9). We give the proofs for V = 2v+l ( v odd) and

V = 2v+4 (v even).

Lemma 4./: If there exists a BIBO(v,3,2) then it can be embedded

into a BIBO(2v+1,3,2).

ProoF. The case v even Is proved in Street[9). Let v be odd. Let AV

denote the incidence matrix of the BIBO(V,3,2). For V=2v+I, the structure

of the incidence matrix is given in figure 1.

4.7
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<----------2v(2v+1)/3--------->

<--v(v-l)/3--><------v(v+ 1)---->
A

v

v+l

I
V

AV

o

B

C

Fig. 1Incidence matrix AV of BIBD(2v+l,3.2).

Here B = Iv x J 1v+l and the columns of C correspond to the one,
factors of Kv+1. In other words if F1,F 2•...,F v are the one-factors of

KV+l then the columns of Ccorrespond to

Lemma 4.2 : If there exists a BIBD(v,3,2),then it can be embedded
into a BIBD(2v+4,3,2).

Proor: The case v odd is done in Street[91. We consider the case

when V is even. The structure of the incidence matrix A2v+4 is shown in

figure 2.



<---------------(2v+3)(2v+4)/3----------->

<--vCv-l)/3--><------v(v+4)----><--(V+4) ->
A

4.9

v

l
"-

I
v+4

I
v

Av Bl 0

0 Cl C2

Fig. 2. Incidence matrix AV of BIBD(2v+4.3.2).

Here Bl =Iv x J l,(v+4) . The columns of C2 correspond to the set

of (v+4) triangles given by Theorem 3.1 above. The columns of Cl

correspond to the one-factors of 2Kv+4 (Le. two copies of KV+4) . but

since the columns of C2 account for 6 one-factors coming from Pt.P2

and P3 these must be excluded once each in considering the columns of

Ct. One trivial arrangement of the one-factors is given: Let the one­

factors corresponding to the set of (v+4) triangles be F1.F 2.···,F 6 and the

remaining one-factors be F7....,F v+3. Then the columns of Cl correspond

to

F7.....Fv+3 ; Fl .... .Fv+3·

Theorem 4.3 : The necessary conditions are sufficient for the

existence of simple BIBD(v.3.2) for v > 3.
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Proof. We use induction. To start with, we need designs for small

values of v > 3, viz. for v=6,7,9,10,12 which are easy to construct; we

have given these designs in Appendix A for the sake of completeness.

5. General results.

The following is proved in Street[9!. Van Buggenhaut[lll and

Sarvate [5].

Theorem 5./: The necessary conditions are sufficient for the

existence of simple S3(2,3,v).

We note that the necessary conditions for the existence of

S2n(2,3,v) are same as for the existence of S2(2,3,v) and hence as

mentioned in Theorem 2.3( i) the necessary conditions are SUfficient for

the existence of 5A(2,3,V) for A = 2n :s v-2.

Now we intend to give some direct embedding results:

Lemma 5.2 : If there exists a simple BIBD(v,3,A), A :s v-2, then,

for v odd, it can be embedded into a simple BIBD(2v+l,3,A).

Proor: The structure of the incidence matrix AV, V = 2v+l, is

given in figure 3.



<---------- :Av(2v+I)/3 --------- >

<---:A.v(v-I)/6---><:---:A.V(v+1)/2--->

"I

4.11

v

1

r
v+l

I
v

Av

o

B

c

Fig. 3. Incidence matrix AV of BIBD(2v+l,3,:A).

Here B :; Iv x Jl,:A(v+l)/2 . Now as in KV+l we can have at most

v(v+l)12 distinct edges and each column of C will correspond to some

edge, :A(v+l) $ v(v+l) and hence :A $ v is a necessary condition. Let the

one-factors of KV+l be Fl ,F 2, ... ,Fv. Then the columns of Ccorrespond to

:A copies of F1,F 2, ... ,Fv·

Lemma 5.3: If there exists a BIBD(v,3,4), v even, v ?: 8, then it can

be embedded into a BIBD(2v+4,3,4).

Proof: The structure of the incidence matrix A2v+4 of

BIBD(2v+4,3,4) is given in figure 4.
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~---------------2(2v+3)(2v+4)/3 ------------->
~--2v(v-l)/3-->~------2v( v+4)---->~-- 2(v+4)-->

/'

I
v

v+4

v

Av 51 0

0 Cl C2

Fig. 4. Incidence matrix AV of 515D(2v+4,3.4).

Here 51 = Iv x Jl,2(v+4) . We need to get 2 disjoint sets of (v+4)

triangles to fill up the columns of C2. The remark after Theorem 3.2

guarantees us the existence of such sets for those values of v for which

6 :5 (v+4)/2 Le. for v ~ 8. Let Fi'S denote the one-factors of K(v+4) . An

arrangement for the columns of Cl corresponds to:

F7•... ,Fv+3 ; Fl' ... .Fv+3 ; F3.F4.F5.F6.FII •... .Fv+3 ; F1 •... .Fv+3'

In other words, arrange the one-factors of the required Pi'S in the

following order:

P4.P5•... .P(v+4)/2 ; PI •... .P(V+4)/2 ; P2.P3.P6•...•p (v+4)/2 ; PI,

... ,P(v+4)12.

6. The case 1.=5.

As a corollary to Lemma 5.2 we have:



Lemma 6./: If there exists a BIBD(v.3.5). then it can be embedded

into a BIBD(2v+l.3.5).

Lemma 6.2: If there exists a BIBD(v.3.5) then it can be embedded

into a BIBD(2v+7.3.5) for v ~ 23.

Proof: The structure of the incidence matrix of BIBD(2v+7.3.5) is

given in figure 5.

<----------- 5(2v+7)(v+3)/3 ----------->

<--5v(v-t)/6--><-- 5v(v+7)/2 --><-5(v+7)->

4.13

"I
v

I
v
A-

I
v+7

I
v

Av B} 0

0 Cl C2

Fig. 5. Incidence matrix Ay of BIBD(2v+7.3.5).

Here Bl = Iv x JI.5(v+7)/2 . We take five copies of K(v+7). If v ~

23 Le. v+7 ~ 30. then we can use PI.P2....•P 15 to get 5 disjoint sets of

v+7 distinct triangles viz. the triangles {1+i,2+i.14+il. {1+i.3+i,9+il,

{1+i,4+i.lf+il. (l+i.5+i.16+H and {1+i.6+i.15+il ,i = 1. ... , v+7 • from

Pl.PI2 .PI3; P2.P6.P8; P3.P7.P1O; P4.Pll .P15 and P5.P9.PI4. We

use these triangles to form the columns of C2. The columns of Cl
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correspond to one copy of the one-factors from P16 •...•p(v+7)/2

followed by the four copies of the one-factors of Kv+7·

We observe that the blocks corresponding to the columns of C2 do

not intersect in more than one treatment. If we allow them to have at

most one pair of treatments in common then we get the following result.

Lemma 6.3: If there exists a BIBD(v.3.5) then it can be embedded

into a BIBD(2v+7.3.5) for v~ 9.

Proof: We take the triangles obtained from PI .P2.P3; PI ,P3,P4;

PI ,P 4,P5; P2.P3.P5 and P2.P4.P6 viz. (l+i,2+i,4+il, {1+i,2+i,5+il,

{1+i,2+i,6+il, {1+i,3+i,5+i} and {1+i.3+i,7+il, i = I, ... ,V+7, as the columns

of C2.

The columns of Cl correspond to the two copies of the one

factors from PI. P2. P3 and P4. three copies of the one-factors from P5.

and four copies of the one-factors from P6 and five copies of the one­

factors from the remaining Pi's. If Fl,x . F2.x are the one-factors obtained

from Px for x odd and x < v+7 then. "F1,7 .F2.7.F15 ...· .F v+6 ; Fl, ... ,Fv+6

; F1,5 .F2,5.F11 .... .Fv+6 ; Fl .....Fv+6 ; Fll .... .Fv+6". is an arrangement

for the blocks of Cl.

Lemma 6.4: If there exists a BIBD(v.3.5). v " 3 (mod 6).then it can

be embedded into a BIBD(2v+3.3.5).



Proof The structure of the incidence matrix AV. for V = 2v+3 ,of

the BIBD(2v+3.3.5) is given in Figure 6.

<--------- 5(2v+3)(v+1)/3 --------->

<--5v(v-1)/6--><---5v(v+3)/2---><--5(v+3)/3-->

4.15

A

v

I
v

"
I
v+3

I
v

Av Bl 0

0 Cl C2

Fig. 6. Incidence matrix AV of BIBD(2v+3.3,5).

We observe that we need ten one-factors to form 5(v+3)/3

triangles as 6 one-factors give (v+3) triangles. Let v+3 be equal to 65.

Form the 25 blocks of P2s viz. {a.a+2s,a+4s}. a =1.2.....25 :

1 2 3 25

25+1 45

45+1 65

Take any 5 blocks. Bl.B2 Bs. Now construct 65 blocks of the

form {a,a+s,a+2s}; a=I,2. ... • 65. Select 35 blocks from these 65 blocks

such that they do not have any pair common with any of the Bj's ; these

blocks together with 65' blocks from {Pl.P2.P3} correspond to the

columns of C2. The remaining 5v factors of the 5 copies of KV+3 count for

the columns of Cl (5v=5(v+2)-10).
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For example, if we take {a,a+2s,a+4s}, for a = 1,2 , ... , s, as our s

blocks B1 ' ... , Bs then we consider the following as our next 3s blocks:

{a,a+s,a+2s} a= s+ 1, ,2s

{a,a+s,a+2s} a=3s+I, ,4s

{a,a+s,a+2s} a=5s+1, ,6s.

The columns of Cl can be obtained by writing the one-factors of

Pi'S except PI .P2.P3.P2s followed by the four copies of the one-factors

of KV+3.

Theorem 6.5: The necessary conditions are sUfficient for the

existence of simple BIBD(v,3,5), v 2= 7.

Proal: We use induction and lemmas 6.1, 5.2 and 6.3. To start

the induction we have given simple BIBD(v,3,5) for small values of v ,viz.

v = 7,9,13 and 21 in appendix B.

7. The case >'=6.

For A = 6 there is no condition on v except v 2= 8. For v odd

Theorem 2.3 (ii) gives the existence of simple BIBD(v,3,6). For v even we

have fOllowing lemmas:

Lemflli/ 7./: If there exists a BIBD(v,3,5) then it can be embedded

into a BIBD(2v+2,3,6). v 2= 8.

Proal : The structure of the incidence matrix A2v+2 of

BIBD(2v+2,3,6) is given in figure 7.



<;----------- (2v+2)(2v+l) -----------;>
<;-- v(v-l) --><:---3v(v+2)---><:-- (v+2) -->

4.17

1
v

I
V

"-

I
v+2

v

Av Bl 0

0 Cl C2

Fig. 7. Incidence matrix AV of BIBD(2v+2,3,6).

Here Bl ;:: Iv x J l,3(v+2) and columns of C2 correspond to the v+2

triangles obtained from PI, P2, P3 and the columns of Cl correspond to

the one-factors of P4, ... ,P(v+2)/2 followed by five copies of the one­

factors of PI, ... , P(v+2)12 .

Lemma 7.2 : If there exists a BIBD(V,3.6) and v ;z: 10 then it can be

embedded into a BIBD(2v+4,3,6) .

Proof: The structure of the incidence matrix AV of the

BIBD(2v+4,3,6) is given in figure 8.



<----------- (2v+4) (2v+3) -----------~

<-- v(v-') --~ <-- 3V(V+4) --:><-- 3(v+4) -

v

v+4

I
"

Av BI 0

0 C, C2

Fig. 8. Incidence matrix AV of BIBD(2v+4,3,6).

Here SI = Iv x Jl,3(v+4) . The columns of C2 correspond to the

triangles obtained from P, ,P2.P3; PI ,P3.P4; P2,P4.P6; when v?: 12 and

P, ,P2.P3; PI .P3,P 4; P2.P3,PS; when v =8. The columns of C, correspond

to the one-factors obtained from Pi's as follows:

(i)v=8:

P6 ; PI .P2.P4.PS.P6 ; P, .P3.P 4.PS.P6 ; P1, ... .P6 ; P2, ... .P6 ;

PI ,P2.P 4.PS.P6·

(ii) v 2: 12:

PS,P7, ,P(v+4)/2 ; PI, ... ,P(v+4)/2 ; PI, ... ,P(v+4)12 ; P1, ...

,P(v+4)/2 ; P2, ,P(v+4)/2 ; P, ,P5.P6.P7, ... ,P(v+4)f2.



Notice that for v = 8, P2 gives two one-factors [8, Lemma 31 and

P6 provides one one-factor but for v=10 , P2 does not split into two one­

factors. This is a reason why the triangles given in the case for v = 8 can
not be used for v = 10. The construction for v ~ 12 does not work for v =
10 because P7 is 'special' for v = 10 and we need P6 to get three one-

factors from the pair P6.P7.[8, Lemma 41.

Theorem 7.3 : The necessary conditions are sufficient for the
existence of simple BIBD(v,3,6).

Proor: We use induction. To start the induction we need simple
BIBD(v,3,6) for v= 8,10,12,14,16,20,24 which are given in the Appendix C.
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AppendIx A
FollowIng Is the llst of sImple BIBOCv,3,2) requIred for the proof of

Theorem 4.3. For v = 7 and 10 the desIgns are gIven In Street [8]. The
blocks are wrItten In columns.

v=6.
1 I 1 1 1 2 2 2 3 3
2 2 3 4 5 3 4 5 4 4
3 4 5 6 6 6 5 6 5 6.

v=9.
1 1 I 1 1 1 1 1 2 2 2 2
2 2 3 3 4 4 5 5 3 3 4 5
6 9 7 8 7 8 6 9 4 9 5 8

2 2 3 3 3 3 4 4 4 5 6 6
6 7 4 5 5 6 5 7 8 7 7 8
7 8 6 7 9 8 6 9 9 8 9 9.

v=12.
1 1 1 I 1 1 I I 1 1
2 2 3 3 4 4 5 5 6 6
7 8 8 9 9 10 10 I 1 11 12

1 2 2 2 2 2 2 2 2 2
7 3 3 4 4 5 5 6 6 7
12 11 12 11 12 9 10 9 10 8

3 3 3 3 3 3 3 4 4 4
4 4 5 7 7 8 11 5 6 7
5 6 6 9 10 10 12 7 8 11

4 4 5 5 5 5 6 6 6 7
8 9 6 8 8 9 7 8 9 8
12 10 7 11 12 12 11 10 12 9

7 8 9 10
10 9 ,10 I 1
12 I 1 11 12.
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Appendix B.

Simple BIBD(v.3.5) for 7,9,13 and 21.

v=7.

Consider the set of all 3-sets of {I•...•v}. it forms a simple

BIBO(v.3.v-2).

v=9.

Consider the set of all 3-sets of {I, ...•9}; it forms a simple

BIBO(9,3,7); take out simple BIBO(9.3.2) which is given in Appendix A; we

get simple BIBO(9,3.5).

v=13.

Remove simple BIBO(13.3.6). which exists by Theorem 2.3(i0.

from the set of all 3-sets of {I, .... 13}.

v=21.

Let Fi ={(x, y) : y - X ;: i(mod 12), 1:S x. y :S12} for i = 1, ....6. Notice

that Fi's are disjoint and F6 contains only six pairs. viz.

W. 7). (2. 8). (3, 9). (4, 10), (5. 11), (6. 12)} and other Fi 's contain twelve

pairs. Let 61 = { (I. 2). (2. 3). (3. 4), (8, 9). (9, 10), (10. 11), (11. 12),

02. I). (I. 7). (2. 8), (3, 9), (4. ID)}, 64 = {(9. 3), (ID. 4). (11. 5), (12. 6),

(5. 9). (6. 10). (7. 11), (8. 12), (9. I), (ID, 2). (11. 3), 02. 4)}. Let F1.3 =

{(I. 4). (2, 5). (3. 6), (7. 10), (8, 11). (9. 12)} and F2,3 = {(4. 7). (5. 8). (6.

9). (10. I). (11, 2). (12. 3)}. Let 61.3 = {(5, 11). (6, 12). (7. 0, (7. ID). (8.

11). (9. 12)} and 62.3 ={(8, 2). (5. 8). (6. 9). (10. 0, (11. 2). (12, 3)}. The

following blocks form simple BIBO(21.3.5):



The blocks of a simple BIBO(9.3.5) over {13. 14•...• 21l;

m. x, y}: (x. y) in 61 • F2. F1,3 ; 04. x. y}: (x. y) in F2.3. 64. F5;

{15, x. y}: (x, y) in Fl. F2. 61.3 ; 06. x. y}: (x. y) in 62.3. F4. F5;

M. x. y}: (x. y) in Fl. F2. F6 ; {18. x. y}: (x. y) in F3. F5. F6;

09, x. y}: (x. y) in Fl. F2. F1,3 ; {20. x. y}: (x. y) in F2. 3. F4. F5;

{21. x. y}: (x. y) in F4. F5. F6 ;

{i. l+i. 3+i}. i = 1. 2. ...• 12;
{I. 4. 5}. {2. 5. 6}. n. 6. 7}. {4. 7, 8};

{I. 5. 9}. {2. 6, 10}. {3. 7. Ill. {4. 8. 12}.

Appendix C:

Simple BIBD(v.3.6) for v= 8.10.12,14,16.20 and 24.

v=8

As in Appendix B for v = 7.

v=IO.

Remove simple BIB0(10.3.2) from the set of all 3-sets of
O•...•10}.

v=12

Remove simple BIB0(12.3,4). ( which exists by Theorem 2.30) ).
from the set of all 3-sets of O..... 12}.

4.23

v=14.
1 1 1

222
3 4 5

1

2
6

1

2
7

1 I
2 3
8 9

1 I
3 3
10 11

1

3

12
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1 1 1 1 1 1 1 .. 1 1 1

3 4 4 4 4 4 5 5 5 5

13 14 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1

6 6 6 6 7 7 7 8 8 8

7 8 13 14 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 2

9 9 9 10 10 11 11 12 13 3

10 11 12 13 14 12 14 13 14 4

2 2 2 2 2 2 2 2 2 2

3 3 3 3 4 4 4 4 5 5

5 6 7 8 9 10 11 12 6 7

2 2 2 2 2 2 2 2 2 2

5 5 6 6 6 7 7 7 8 8

13 14 8 9 10 11 12 13 9 10

2 2 2 2 2 2 2 2 2 2

8 9 9 9 10 10 10 11 11 12

14 11 13 14 11 12 14 12 13 13

2 2 3 3 3 3 3 3 3 3

12 13 4 4 4 4 4 5 5 5

14 14 5 6 7 8 9 10 11 12

3 3 3 3 3 3 3 3 3 3

5 6 6 6 6 7 7 7 8 8

13 7 8 9 14 10 11 12 9 13



3 3 3 3 3 3 3 3 3 3
8 9 9 10 10 11 11 12 12 13
14 10 11 12 14 13 14 13 14 14

4 4 4 4 4 4 4 4 4 4
5 5 5 5 6 6 6 6 7 7

11 12 13 14 7 8 9 10 11 13

4 4 4 4 4 4 4 4 4 4
7 8 8 8 9 9 10 10 10 11

14 10 11 12 13 14 11 12 14 13

4 4 4 5 5 5 5 5 5 5

12 12 13 6 6 6 6 6 7 7

9 13 14 7 8 9 10 11 8 12

5 5 5 5 5 5 5 5 5 5

7 7 8 8 8 8 9 9 9 10
13 14 9 10 13 14 10 11 12 13

5 5 6 6 6 6 6 6 6 6

11 12 7 7 8 9 9 10 10 10
14 14 11 12 13 12 14 11 12 13

6 6 6 6 6 6 7 7 7 7

11 11 11 12' 12 13 8 8 8 8

12 13 14 13 14 14 9 10 12 13

7 7 7 7 7 7 7 7 8 8

8 9 9 9 9 10 10 12 9 9

14 10 11 13 14 13 14 14 11 12

4.25
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8 8 8 8 8 9 9 9 9 10
10 10 11 11 11 10 10 12 13 11
11 12 12 13 14 13 14 13 14 12

v=16

10 11
11 12
13 14.

Remove simple BIBO(16.3.8), which exists by Theorem 2.3(0. from
the set of all 3-sets of {I, ...• 16}.

v=20

Apply Lemma 7.2.

v=24

Simple BIBO(24.3,16) exists by Theorem 2.3(i); remove it from
the set of all 3-sets of {1, ..., 24}.



All simple BIBDs with block size 3 exist

Dinesh G. Sarvate

1. Introduction

A balancedincompleteblockdesign BIBD(v,k,A) is an arrangement of
v points into sets of size k (k-sets) such that each pair of points occurs A
times. We call a BIBD simple if it has no repeated blocks.

It is well known that the necessary conditions are sufficient for the
existence of BIBDs with block size 3; for a list of references the reader is
referred to Doyen and Rosa [2}. A number of authors. including Lindner and
Rosa [51. Lu [7]. Rosa [81. Schreiber [121 and Teirlinck [161. have discussed
the existence of large sets (partition of the complete design into copies of
block designs with specified A). Their results immediately give simple
designs(designs without repeated blocks). A number of authors. including
Lindner and Rosa [61. Rosa [9) and the references therein. have studied BIBDs
having a prescribed number of triples in common. The present note gives an
elementary

4.27
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proof to show that the necessary conditions are sufficient for the

existence of simple BIBDs with block size 3. The known results about

the existence of simple BIBDs include the existence of U) simple

BIBDlv,3,A) for A = 2 and A = 3 (Street [15], Van Buggenhaut [17,

18]), for A = 6 (Sarvate [11]), (ii) simple cyclic 3-designs for

v = 2 Unod 4) (Kohler [4]) and (iii) simple BIBD(v,k,A) implies
n n

existence of simple BIBD(v,k,2 A) for 2 A less than or equal to

~=;) (Stanton and Col lens [13]). In the next section we will show

that the known results for block size 3 are sufficient to prove

that all simple BIBDs with block size 3 exist.

The study of simple block designs can be useful ~n'proving the

existence of other combinatorial structures, e.g. in de Launey, Sarvate

and Seberry Il] the existence of a generalized Bhaskar Rao design over Z4

for v = 15 was easily proved by using a simple BIBD(15,3,4).

Another application of simple designs is demonstrated in Sarvate {lO]

to prove the existence of equi-neighboured designs with block size 3.

This note was motivated by the papers of Stanton and Goulden [14]

and Street [15]. Stanton and Goulden gave an interesting proof of the

existence of BIBD(v,3,1) by using embedding theorems based on a

graph factorization. Street extended their result to obtain irreduc­

ible (not consisting of smaller designs) and simple BIBD(v,3,A) for

A = 2 and 3. We give some general embedding theorems on a

similar line.

2. The result

We observe that, in general, we cannot apply Hanani-Wilson theory

of pairwise balanced desighs to obtain simple BIBDs but if we can

construct appropriate small generating sets in certain cases, for

example, when k = 4 and A = 2, the theory can be very useful.

We first restate some results of Hanani for simple designs. For

the notation, the reader is referred to Hanani 13].



Lemma 2.1: If n € GD(S,l,R),

mS S simrle GD(k,X,m), then

mR I;; simple

mn € simple

B(k,X)

B (k, X) •

and

4.29

Lemma 2.2: If v € simple B(K,X) suah that for any two blocks BI

and B2 of B(K,X), IBlnB21 < k, and for eaah ki in K there

exists a simple BlBD(ki,k,l), then a simple BlBD(v,k,X) exists.

Note that for X = 1 and for any value of ~ we have

Corollary 2.3:
exists a simple

If v € B(K,l)

BlBD (k. ,k,)J),
1.

and, for each

then a simple

k. in K,
1.

BlBD(v,k,~)

there

exists.

For easy reference, we give two observations:

Lemma 2.4: (i) If a simple BlBD(v,k,X) exists, then a simple

BlBD(V,k,{~=;)-X) exists. (Formed by taking complement of the block set).

(ii) If a simple BlBD(w,k,A) exists, then a si~le

BlBD(w,w-k,b-2r+A) ~~sts, where b is the number of blOCKS and r

is the re?lication number of BlBD(w,k,A).(Formed by taking complement of

the blocks with respect to the point set).

As mentioned in the introduction, the known results on the exist-

ence of simple BlBDs with block size three are used here to prove:

Theorem 2.5: The necessary aonditions are sufficient for the exist­

ence of simple BlBDs with block size 3.

The proof depends heavily on the following theorem of R.G.

Stanton and R.J. Collens [13]:

Theorem 2.6:
A < (V-2}/2

- k-2 '
{1,2,"',v}

If D is a design without repeated blocks and

then it is pbssible to ahoose a permutation P

suah that DU PD has no repeated blocks.

if

of

As an obvious corollary, we have
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Corollary 2.]:
then a s:'''ljJle

If a simple
n

BIBD(v,k,2 A)

BIlilD(Y,k,A)

ex-Zsts.
e:r:ists and

To introduce the notation, we prove the above corollary. Let Dj

be a simple BIBD(v,k,A), then

is a simple BIBD(v,k,2A) for some permutation Pj' In general,

D. :;;
J.

is also aP (i_ll D(i-I)Notice that

D(i_l) is a simple

is a permutation of {l,"',v}

where

P (i-I)
obtained by using Theorem 2.2.

(i-2 )
simple BIBD(v,k,2 A).

is a simFle BIBD(V,k,2i - l A),

BIBD(V,k,2(i-~)A) and

Immediately we can prove

LellJlla 2.8: If a simple

BIBD(v,k,At) exists for

BIBD(v,k,A) e-~sts, then a simple

t which satisfies the inequality

for some integer m.

n-l n rv- 2 )Proof. Let 2 S t < 2 S lk-2 lA. Then, by Corollary 2.7, there

exists a simple BIBD(v,k,2n A) = D = D 1 + P ID l' Let the binaryn n- n- n-
. f 2n b ,n-l 2i N' 1representatlon 0 -t e Li=O a i . OW, 1n case a i = t remove

P.D. from D. We obtain a simple BIBD(v,k,tA).
J. J. n

Corollary 2.9: For A even, if a simple BIBD(2A+2,3,2) exists,

then a simple BIBD(2A+2,3,A) e-~sts.

Proof. Let m be such that



t"-l ,; >'=2s < t" ,; 2>' •
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Then. as a simple BlBD (2A+2.3. 2) exists. a simple BlBD (2),+2. 3.2s=>.)

also exists.

Lemma 2.10: If >. divides

then for all t such that

(~=;) and a simple BlBD(v.k,»

o

exists,

t ,; rv- 2) I>.
\k-2

a simple BlBD(v.k,>.t) exists.

Proof· If (V-2) mlA = 2 for some m.
k-2

then Lemma 2.8 proves the

result. Now let n be such that

2
n

< ~=;) I>. < 2
n
+

l
•

We need to prove that. for t greater than

(
V-2)k-2 lA. a simple BIBD(v.k.At) exists.

2n and less than

Observe that

((~=;)I>') - t ,; 2n+l _ 2n
= 2

n
.

Therefore, by Lemma 2.4. D = simple BIBD(V,k,(~=;)-tA) exists,

hence. taking out the blocks of D from the set of all k-sets of

{l.···.v}. we get a simple BIBD(v.k.t>.). o

If a simple BIBD(v.k.>') exists, then for all t,; (~=;)/A. a

simple BIBD(v.k,At) exists except for t such that (i) t is odd

and (ii) tA < (~=;) < (t+l)A. In other words.

Lemma 2.11: FaX' qU t. sucliJ #lqt. t'; (~=~) I>., exaept pOBsibZy fat'

one value of t, the existence of a simple BIBD(v.k.>') ~plies

the existenae of a simple BIBD(v.k.At) and the exaeptional value of

t satis:ies (i) and (ii) given above.
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n.. f (vk _-22) I'" 2 dr,-OO. If A ~s an ~nteger, Lemmas .8 an 2.10 prove the

result. If (~=~)I>' is not an integer, then for integers t and n

such that

(V-2)
k-2

<

a simple

a simple

2n- l +q <

hence, by Theorem 2.6, a

for t

BIBD(v,k,t>') exists by Lemma 2.8. We have to prove that

{ n n n} n (V-21 nin 2 +1,2 +2,···,2 +s, where (2 +slA < k-2) < (2 +s+l)>',

BIBD(v,k,>'t) exists. Now if t = 2
n

+2q, then, as
n n-l

2 by Lemma 2.8, a simple BIBD(v,k, (2 +q)>.) exists and
n-lBIBD(v,k,2(2 +q)>.=t>.) exists. Observe

that in the proof of Lemma 2.8 we have not removed at any stage the

initial simple BIBD(v,k,>.) and hence the sliople BIBD(v,k,>.t) constructed

in the Lemma has a simple subdesign BIBD(v,k,>.). By removing it
n

from a simple BIBD(v,k,>'t), we get a simple BIBD(v,k,2 +2q-l),
n n

hence we have proved the result for all t in {2 +1,···,2 +s}
n

except for t = 2 +s when s is odd. 0

Lemma 2.12: If a simple BIBD(v,3,>') exists for >. = 1,2,3,6, then

for all integers t such tr~t

t>. ,; (v-2)

a simple BIBD(v,3,>.t) e=-Zsts.

Proof. In view of Lemmas 2.8, 2.10 and 2.11, it is sufficient to prove

that, when t is odd and

tl < (v-2) ,; (t+l)l,

a simple BIBD(v,k,tl) exists.

When 1 = 1, v _ 1,3 (mod 6) and Lemma 2.10 implies that we have

a simple BIBD(v,3, t) for all t,; (v-2)1 1



When A = 2 and v is even, v-2 is even and we apply Lemma

2.10. If v is odd, then v = 1,3 (mod 6) and so a simple

BIBD(v,3,2t) exists.

When A = 3, v satisfies v = 1,3,5 (mod 6). If

v = 1,3 (mod 6), a simple BIBD(v,3,3t) exists and for

v = 5 (mod 6), v-2 = 0 (mod 3) and hence we apply Lemma 2.10.

When A = 6, v = 0,1,2,3,4,5 (mod 6). For v = 0,4 (mod 6), 2

divides (v-2) and, as a simple BIBD(v,3,2) exists, a simple

4.33

BIBD(v,3,6t) exists. When v = 1,3 tmod 6),

implies the existence of a simple BIBD(v,3,6t).

a simple BIBD(v,3,l)

When v = 5 (mod 6),

v-2 = 0 (mod 3) and hence, as a simple BIBD(v,3,3) exists, a simple

BIBD(v,3,6t) exists. When v = 2 (mod 6), 6 divides (v-2) and

hence Lemma 2.10 implies that a simple BIBD(v,3,6t) exists for all

t such that 6t ~ (v-2). o

Theorem 2.13: The necessary cor4itions aPe sufficient for the exist­

ence of a simple BIBD(v,3,A).

Proof· The necessary conditions are:

(i) A ~ (v-2) ;

(ii) (a) if (A,6) = I, then v = 1,3 (mod 6),

(b) if (A,6) = 2, then v = 0,1 (mod 3),

(c) if (A,6) = 3, then v = 1 (mod 2),

(d) if (A,6) = 6, then no condition on v.

Now Lemma 2.12 proves the Theorem.

3. Graph factorization

o

n

In what follows,

and J denotes
m,n

I
n

the

denotes that the identity matrix of order

mxn matrix with all entries 1.



4.34

( n
2

) edges.

A one-facto-

vertices consists of all

vertex-disjoint edges.

one-factors, which are all disjoint.

n

nongraph K
n

K
2n

contains

contains 2n-l

A corrrplete

A one-factor of

rization of

For examples details, the reader is referred to Stanton and Goulden

114J.

P ,
n

2n) .

All the edges of K
2n

fall into

where the edge (i,j) is in Pk
Stanton and Goulden called this

n disjoint classes P1,P Z'···'

if and only if (i-j) = k (mod

splitting the difference parti-

tion of K
2n

. Consider the triangles (1+i,2+i,4+i) for i = 1,2,"',

2n. This gives a set of 2n triangles.

Theorem 3.1 {14J: The above set of 2n triangZ62 contains exactly the

edges from P j ,P2 ,P 3 .

Theorem 3.2 [11]: Consider the set T of tria':gZ~2 (l+i,l+x+i,l+x+y+

il for i = l,2,···,2n. The set T contains exactly the edges from

p IP,P I where x+y < n.x y x+y

LelMla 3.3 114]: The pairs in P 2,,+1
(2x+l < n) 2~Zit into ~~O one-

factors.

Lemma 3.4 114]: If 2x+l < 2n, then P 2x u P 2x+l solits into four

one- factors.

Lemma 3.5 1l4]: If n is even~ then P is a si'i:~Ze one-factor.
n

If
n is odd, then PIU P can be split into three one-factors.n- n

Theorem 3.6 [14J:

ang les coverZng

the other P, 's.
1

The graph K
2n

may be factol'ei ':nto a set of tri­

P j ,P2,P 3, and a set of 2n-7 one-factors covering

K -x
2n

from

Suppose X is a subset of {Pj,"',p J, by one-factors of
n

we mean the one-factors of K
2n

except the one-factors obtained

P, 's in X. If X is a singleton {p,J, then we write K -x as
1 1 2n

K
2n

-P
i

• We assume hereafter that the one-factors of K
2n

are arranged
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in some fixed order and when we say that "let .x. be the one-factors
~ 1

of i copy of K
2n

", we mean that the one-factors are arranged accord-

ing to ~e same fixed order. Similarly, the one-factors of K2 -P.n 1

are arranged in the same fixed order except that one-factors obtained

from the P. are removed.
1

Theorem 3.7: For t suoh that t ~ 4,6 and 1 < t < (n-l),

t oopies of the graph K
2n

may be faotored into t disjoint sets of

2n triangles oovering (Pl,P
l

"P2 .), i = 1,2,"',t-l, and+1 +1
(P

2
,P

4
,P

6
) ard t(2n-7) one-faotors, and for all t, 1 < t < n-l,

(t+l) oopies of the graph K2n may be faotored into t disjoint sets

of m triangles and t(2n-7) + (2n-l) one-faotors.

{P
2

,P
4

,P
6

},

triangles.

K
2n

Notice

ofcopy

is even.

Proof. For t ~ 4,6, obtain Pl,P2i,P2i+l from the (2i-l)th and (2i)~
copies of K for i = 1,"', (t-l)/2 and P ,P ,P from ~e2n 4 6 t+1 . j:h

tt~ copy ~f K
2n

when t is odd and {Pl,P2i,P2i+l} from the (2i-l) and th

(21)~ cop1es of K for i = 1 ••• (t-2)/2' {p pp} from ~e (t-
l

)2n ", l' t' t+l
th

and {P
4

,P
6

,P
t

} from the t copy of K2n when t

that ~e Pi'S form {Pl,Pl+i,P2+i} and

i = 1,2,'··,t-l. Theorem 3.5 gives the required set of

[14], we get

Observe
~e

that for

• When t is even,

ifa,b,c

As in the proof of Theorem 3.2 of Stanton and Goulden

2(2n-7) one-factors from the (2i-l)~and (2i)~ copies of K

(t_l1th copy of K
2n

gives (2n-7) one-factors.

distinct even numbers(~ereforewe have t ~ 4,6)

we use Lemmas 3.3, 3.4 and 3.5 on PI' (P2UP3)"",Pa+l,(Pa+2UPa+3)'

•• , ,P
b

+
l

' (P
b

+
2

UP
b

+3) ,"',pc+l' (Pc+2UP c+3) ,"',pn_2 UPn-l {or

p
n

_
3

uP
n

_
2

when n is odd} we get 4(((n-21/2J-3)+S = 2n-S, {(2n-lO),

when n is odd} one-factors. Now, as in Theorem 3.2 of [14], we get

(2n-7) one-factors from {Pl""'p} ~ Jp ,Pb,p}, ~erefore, from
th n a c

the t copy of K
2

, we get (2n-7) one-factors. For t = 4,6,
n ~

we take the one-factors of K - {p ,p} from the t copy and ~e
2n 4 6 ~

one-factors of K _ {p} from ~e (t+l) copy. 0
2n t
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Definition: An arrangement of one-factors is called s-distanae apart.

if between any pair of the same one-factor there are at least s other

one-factors.

For example. if Fl'···.F2n_l:Fl.···,F2n-l are the one-factors

obtained from 2 copies of K
2n

• then the arrangement is (2n-2)-

distance apart.

Lemma 3.8: Let x. denote the (2n-7) one-faators of the i
th

aopy
J.

of K
2

obtained aaaordino to Theorem 3.7 for i = l.···.t-l. Let
n v

denote the (2n-l) one-faators of K2n - Pi and x denote all

(2n-l) one-faators of K
2n

, then the arrangement

where j = t when t is even and j = t+l when t is odd, is

(2n-8)-distanae apart.

The above result can be checked easily. Suppose we have the

following arrangement:

The minimum distance will be the distance between the one-factors

obtained from P
4

.P
S

. Let F
1

.F
2

.F3 ,F4 denote the one-factors from

P4' P S:

Clearly. p ••• P contribute (2n-ll) one-factors and F. 's
6' I n J

contribute 3 one-factors b~tween any pair (Fi' Fi) , hence the total

distance is (2n-8) . 0

One disadvantage of Theorem 3.10 is that we have used up to

Pt +l
and the number of P. t s is n. We improve upon the restriction

J.

"t < n-l ll by giving the following theorem:
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Theorem 3.9: For t, t < 2n-lO, t aopies of the graph K2n may be

faatored into t disjoint. sets of 2n triangles aovering {Pl,Pl +i ,

P
2

.}, i; 1,"',(t+l)/2; {P
2

,P
3

"Ps ,}, i; 1,"', (t-l)/2; for
+1 +1 +1

t odd and {Pl,Pl+i,P2+i}' i; 1,"',t/2; {P2,P3+i,PS+i}'

i; 1,"',t/2; for t even, and t(2n-7) one-faators.

Iroof. For small values of t, no general pattern can be given but

we will see that, after t; S, the general pattern will be clear.

Obtain the required P. IS
:l.

in the following manner:

Required set of P, 's
:l.

We obtain these

t ; 1:

t ; 2:

t ; 3:

; {P
l

,P
2

,P 3}·

P, 's from the first copy of K2 .
:l. n

Required sets of Pi's; {Pl,P2,P3},{P2,P4,P6}'

We obtain from the first copy of K2n the first set

{P
l

,P
2

,P
3

} and from the second copy of K2n the second set

of P.'s.
:l.

Required sets of Pi's; {Pl,P2,P3},{P2,P4,P6};{Pl,P3,P4}'

Obtain from the first copy of K2n , Pl ,P 2 ,P 3 ,P4 , from

the second copy of K
2n

, P
l

,P
2

,P
3

, and from the third copy

t ; 4for the casep. IS
:l.

sets of

P 4 ,P6 ·

sets of Pi'S ; {Pl,P2,P3},,{P2,P4~P6};

{Pl,P3,P4},{P2,PS,P7}'

Obtain from the first two copies of K2n {P l ,P 2 ,P3 };

of K
2n

{P
2

,P
4

,P
S

} and from the fourthfrom the third copy

copy {P
2

,P
4

,P7}·

Required sets of P,'s;
:l.

of K
2n

,

ReqUired

t ; S:

t ; 4:

t ; 6:

t ; 7:

and {P
l

,P
4

,P
S

},

Obtain P,'s as in the case
:l.

copy obtain {P
l

,P4 ,P S},

Required sets of P,'s; sets of
:l.

and {P
2

,P
6

,PS}';

Obtain P,'s as in the case
:l.

copy obtain {P 2 ,P6 ,PS}'

Required sets of P, 's ; sets of
:l.

t ; 6 and {P
l

,P
S

,P6 }·

Obtain P,'s as follows:
:l.

t ; 4 and from the fifth

P, 's in the case t; S
:l.

t ; S and from the sixth

P,'s as in the case of
:l.
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t,

and from

so that

of K2th n
t copy

case of

except from 6 th

with P
2i

from K
2n

•

as in theP. 's
'-

sets of

p, 's as in case of t = 7
'-

of K Obta'n from the 6
th

copy P P P2n' ~ 2' 6' 7
copy of K

2n
, obtain {P

2
,PS,Pg }. Now, for even

the pattern is clear.. when required set of P.' s is
'-

{P2,P2s,P2S+2} obtain from 1
st

to (t_l)th copies

same P. 's as in the case of (t-l) and from the
'-

obtain {P2,P2s,P2s+2}. When the required set of Pi's is
st th

{P2,P2S+1,P2s+3} obtain same
h

Pi's from 1 to (t-l)
t th

copies of K
2n

except (t-2) copy and from (t-2) copy

instea~ of {Pl,P2S,P2s+2}' obtain· {Pl,P2s,P2s+1} and from

the tt copy obtain {Pl,P2s+2,P2S+3}'

copy

Sth

Required sets of P.'s:
'-

t : 7 and {P
2

,P
7

,P
9

}·

Obtain

From the 1
st

copy: P
I

P
2

P
3

P
6

" " 2
nd

" PIP 2P3

" " 3
rd

" P
I

P
4

P
s

" " 4
th

" P
I

P
4

P
s

" " sth " P
2

P
4

Ps

" " 6
th

" P
2

P
6

P
S

" " 7
th

" P
6

P
7

.
Notice that P2i+l

is always taken out

we can obtain the required one-factors

t : S:

t : 10: t is even.
t : 10

K
2n

o

t: 7,S,9,10,

as in the case

hence for

P. 's
'-

t : 7

from 2nd to (t_l)th copy of

P. 's : set of
'-

P. IS
'­

in the case of

{pI' P 7 ' Ps}.

Obtain same

Notice that,
stfrom the 1 copy of K

2n
, we have obtained the set

{P
l

,P
2

,P
3

,P
6

}. Nowobtain {P
l

,P
2

,P 3 ,PS } and from the 11
th

copy obtain {P
l

,P
6

,P
7

}. Now the pattern is obvious ° If,

for odd t, the required set of Pi's is {Pl,P2S,P2S+1}'
thobtain from t copy the same set, else the required set is

{Pl,P2S+1,P2S+2}' Obtain from the 1
st

copy of K2n the set
th

{Pl,P2,P3,P2s+2}' from the t copy {Pl,P2S,P2S+1} and

from other copies obtain same P.'s as in the case of t-l.
'-

Required sets of

and

t : 11:

o



Lel1J11a 3.10: Let K
6s

be a complete graph. Then

(iJ P
s

uP
2s

fOT'Tf/ 45 distinct triangles;

(iiJ P2s
foT'Tf/ 25 distinct triangles.

Proof. Consider the triangles {a,a+s,a+2s}, a = 5+1,"'25;35+1,"',

45+1;55+1,'.',65 and {a,a+2s,a+4s} for a = 1,"',5. Observe that

{a,a+s,a+2s} account for all the pairs of P and for the pairs5

(a,a+2s) of P
2s

except for a = 1,'·',5;25+1,···,35;45+1,"',55

and the triangles {a,a+2s,a+4s} cover only these pairs.

For (ii), observe that the triangles {a,a+2s,a+4s}, a = 1,'·',25
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form the 25 triangles of P 2s '
o

Lemma 3.11:
gement

Let Xi' Yj
be the same as in Lemma 3.8, then the arran-

Y4'Y6'Yj'Y2S'Y4S,X1XX2XX3X".Xt-1X,

where x has occurred (2t-4) times, is (2n-8) distance apart.

The proof is on a similar line as for Lemma 3.8.

4. Embedding theorems

In this section we will give some general recursive constructions.

The following theorem is proved in Sarvate [11]:

Theorem 4.1: If there exists a simple BIBD(v,3,A), A $ v-2, v odd,

then it can be embedded into a simple BIBD(2v+1,3,A).

Theorem 4.2: A simple BIho(v,3,3t) can be embedded into a simple

BIBD(2v+3,3,3t), for v ~ 3t+4.

Proof. The case t = 1 is proved in [10,15]. We deal with t > 1.

The structure of the incidence matrix of BIBD(2v+3,3t) is given in

Figure 1 where B1 = IvxJ1,3t(v+3)/2·
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t (2v+3) (v+l) •
_ tv(v-l)/2 - +- 3tv(v+3)/2 ...... - t(v+3) ---+-

1
v

1
1

v+3

1

A B
l

0
v

0 Cl C2

Fig. 1 The incidence matrix Av of BIBD(V=2v+3,3,A).

Apply Theorem 3.7 on the first t copies of KV+3 (v is odd),

and obtain t disjoint sets of (v+3) triangles and use them as

columns of C2 •

Notice that the

The arrangement given in Lemma 3.8 accounts for Cl'

arrangement is at least (3t-l) distance apart as

3t $ v-4 (and hence 3t-l $ (v+3)-8). o

Theorem 4.3: If there exists a simple BIBD(v,3,A), v = 3 (mod 6),

then it can be embedded into a simple BIBD(2v+3,3,A), v ~ A+4.

Proof. For A $ 6, see [10,11,15]. For A = 0 (mod 3) Theorem 4.2

gives the result. The structure of the incidence matrix is given in

Figure 2, where Bl = I vxJ l ,A(V+3)/2'

Let A = 3t+i, i = 1,2. Obtain t sets of (v+3) triangles

using Theorem 3.9. Let v+3 = 6s. Obtain i times 2s triangles

using Lemma 3.10. These triangles fOnD columns of C2 • Arrangement

of the one-factors, similar to Lemma 3.11, gives Cl' Notice that the

arrangement is v+3-B = v-5 ~ A-I distance apart.



+ A(2v+3) (v+l)/3

+_ AV (v-I) /6 -+ +- AV (v+3) /2 -+ +- A(v+3) /3 ---+
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1
V

1
1

v+3

1

A B
l

0
V

0 Cl C2

Fig. 2 The incidence matrix Ay of BIBD(V=2v+3,3,A). 0

Theorem 4.4: If there exists a simpLe BIBD(v,3,A), A ~ v-2, V odd,

then it can be embedded into a simpLe BIBD(2v+7,3,A).

Proof. Let

BIBD(v,3,A).

A denote the incidence matrix of the simple
V
For V = 2v+7, the structure of the incidence matrix

Ay is given in Figure 3.

, A(v+3) (2v+7) /3 l

+-- Av(v-l)/6 -+ +-- Av(v+7)/2 -+ <-- A(v+7) --

1
v

1
i

v+7

1

A B
l

0
v

;

0 Cl C2

Fig. 3 The incidence matrix Ay of BIBD(V=2v+7,3,A).
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Here Bl ; I v xJ l ,A(V+7)/2. Consider

disjoint sets of (v+7) triangles and

copies of K
v

+
7

. Obtain

A(2n-7) one-factors using

Theorem 3.7. The columns of Cl correspond to the arrangement given

in Lemma 3.8 and the columns of C
2

correspond to A(v+7) triangles.

Notice that A $ v-2 and the arrangement used for Cl is (v+7)-8;

(v-l) distance apart.

Similarly we can prove

o

Theorem 4.5: A simple BIBD(v,3,6t), v even, can be embedded into a

simple BIBD(2v+2,3,6t) fop v ~ 6t+5.

Theorem 4.6: A simple BIBD(v,3,6t), v even, can be embedded into a

simple BIBD(2v+4,3,6t) fop v ~ 6t+3.

Theorem 4.7: Fop t such that (t,3); 1,

(i) a simple BIBD(v,3,2t), v = 0 (mod 6), aa~ be e~~edded

into a simple BIBD(2v+6,3,2t);

(ii) a simple BIBD(v,3,2t), v = 4 (mod 6), v ~ 2t+5, can be

embedded into a simple BIBD(2v+2,3,2t).

Notice that if v - 0 (mod 6), then 2v+2 =2 (mod 6), so a

simple BIBD(2v+2,3,2t) does not exist. If v = 4 (mod 6), then

2v+2 _ 4 (mod 6), so a simple BIBD(2v+2,3,2t) exists, but

2v+6 _ 2 (mod 6), so a simple BIBD(2v+6,3,2t) does not exist.
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Chapter Fiye

Colourable Pesigns

The work in this chapter was done mainly with Pr. Jennifer Seberry.

The exposition owes much to her.

!il Introduction

In a recent paper which appears in Chapter 8 of this present thesis.
Sarvate and Seberry (1986) introduced a method for encrypting secret
messages using crypto designs. These designs are often hard to find. but
designs with some relaxed conditions can be used for encryption in a
fashion similar to crypto designs. In this chapter we stUdy a class of such
crypto designs. which we call colourable designs (CPs). CPs have another
important application besides encryption - they can be used to produce new

group divisible designs.

The following definitions introduce an area of further research for
which almost no constructions and existence results are known.

By an (s,t)-crl/pto design we mean a matrix M(O. a. b..... c) of zeros
and some message symbols a. b..... c such that each s-set of message
symbols occurs at least once in the rows and each t-set of message
symbols occurs at least once in the columns.

By an ideal crI/pto design we mean a crypto design obtained by
assigning (colouring) to each 1 in the incidence matrix of a BIBP (PBIBP) a
message symbol so that at least one of the following properties holds:

(i) each t-set occurs at least once. but a minimum number. say Cl.
of columns accounts for all the t-sets of the message symbols;

(iD each s-set occurs at least once. but aminimum number, say RI.

of rows accounts for all the t-sets of the message symbols;

5.1



5.2

(iii) each s-set and t-set occurs at least once in the rows and
columns respectively, but two minimum numbers Rand C of rows and
columns account for all the s-sets and t-sets of the message symbols

respectively.

In a crypto design the number of t-sets per column is equal to ( ~ )

and the total number of t-sets is ( ~ ~ where c is the size of the message

symbol set. Therefore we will need at least ( l) I (~ ) columns. Hence

(Pi (U ~ Cl'

Naturally Cl ~ C.

Similarly, we can see that

(i )I (n ~ RI ~ R.

By a cololJralJ/e design we mean a coloured incidence matrix of a
BIBD or PBIBD with block size k and replication number r, which satisfies
the following properties:

(i) the matrix is coloured with r symbols;

(ii) all symbols in any row and in any column are different. If the
underlying matrix is the incidence matrix of a BIBD(v, b, r. k. A) we denote
the colourable design by CD(v, b. r, k, A) or by CD(v, k, A). Similar notation

is used for PBIBDs.

Naturally each row of the colourable design will be coloured by all

the r symbols.

•By an r-c%lJrab/e ma/riK we mean a matrix with r non-zero entries
in each row, which can be coloured by using r symbols, such that all
coloured symbols in any row and in any column are different.

Latin squares ( see Denes and Keedwell (1974) ), graeco-latin designs
( see, for example, Preece (1976), Seberry (1979), Street (1981), Sterling



and Wormald (1976) or Youden (1937) ) and balanced Room squares (see
Wallis, Street and Wallis (1972) ) can immediately be used as coloured
designs.

Coloured designs are used in Seberry (1987) and Rodger, Sarvate and
Seberry (1987) to construct new families of BIBDs and GDDs. A general
existence theorem is given in the attached reprint of Rodger, Sarvate and
Seberry (1987) in the section 5.2. In the following sections, Le. in the
sections 5.3, 5.4, 5.5 and 5.6, we will give our own constructions as they
may be useful in applications to encryption and also because the general
existence theorem does not tell us that how to do the colouring.

5,2 ApPlication and a general construction

Attached is a joint paper with CA Rodger and J. Seberry, which
appeared in the J. Stat. Plan. and Inference. The paper owes its existence
especially to J. Seberry. The following existence theorem was
independently and almost simultaneously observed by this author and J.

Hammer together, and by C.A . Rodger.

Theorem 5.2.1: Atyblock design (V, B) WIth point set V andset ofblocks

B canbecolouredw!fh R colourswhere R =max (rv, kb), where rv is the

/lUmber ofoccurrences oftreatment v and kb is the /lUmber of elements in

blockb.

Proof. Theorem 2.1 of the attached paper.

o

The following theorem is due to J. Seberry.
,

Theorem 5.2.2 :/f there exists a CD(v. b, r, k, A). where r-l =q is a prime

power, then there exists a group divisible design

GDD(v(r-J)2, b(r-J)2, r(r-J), k(r-J), 1..1 =r-l, 1..2 =A, m =q2, n =v ).
Proof. Theorem 3.1 of the attached paper.

o

5.3
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The bulk of the paper is due to mutual discussion and this author

produced the tables in the Appendix of the paper.



Colourable designs. new group divisible designs

and pairwise balanced designs

C. A. Rodger. D. G. Sarvate. J. Seberry

1, Introduction

For the definitions of a balanced incomplete block design (BIBD). a

partially balanced incomplete block design (PBIBD) and a mutually

orthogonal Latin square we refer the reader to Raghavarao (1971). A group

divisible design (GDD) is a BIBD with 5 being the set of symbols and

B =G U X being the set of blocks. where G is a partition of 5 and where

each block in X intersects each block in Gin at most one point.

In a recent paper Sarvate and Seberry (1986) introduced a method for

encrypting secret messages using crypto designs. These designs are often

hard to find. but designs with some relaxed conditions can be used for

encryption similar to crypto

5.5
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designs. In this note we study a class of such crypto designs, which we call coloured
designs (CD). CD's have an important application besides encryption: they are used
to produce new group divisible designs.

A matrix is x-coloured if each non-zero entry is replaced with one symbol from
a given set of x symbols; it is properly x-coloured if each of the x symbols occurs
at most once in each row and at most once in each column. A coloured design
CD(v, b, r, k, ,I.) or a CD(v, b, r, k, A., ,1.2' ••• ) is a properly r-coloured incidence
matrix of a BIBD(v, b, r, k, ,I.) or a PBIBD(v, b, r, k, AI' ,1.2' ••• ) respectively. (This
has been called a colourable design elsewhere (Seberry (1987), de Launey and
Seberry (1987».)

Of course each symbol occurs exactly once in each row of a coloured design.
Latin squares (see Denes and Keedwell (1974», Graeco-Latin designs (see, for

example, Preece (1976), Seberry (1979), Street (1981), Stirling and WormaId (1976»
and balanced Room squares (see WaIlis, Street and Wallis (1972» can immediately
be used as coloured designs.

2. Main theorem

Theorem 2.1. The incidence matrix of any block design, (V, Bl, with treatment set
V and set of blocks B can be coloured with R colours where

R = max (rv, kb )
LIe V. beB

with rv the number of occurrences of treatment v and kb the number of elements
in block b.

Proof. Form a bipartite graph, 0, with vertex sets Vand B. Join i e V to j e B if
and only if i ej. Then, since each symbol i occurs in rjs R blocks, each vertex i has
degree rj and since each block contains kj S R symbols, each vertex j has degree kj •

We can edge-colour 0 with .1(0) =R colours. This edge-colouring induces a colour­
ing of the design of the required form (that is, colour symbol i in blockj with colour
c iff the edge {i, j} is coloured with c).

Corollar)" 2.2. If there exists a BIBD(v, b, r, k, ,I.) or a PBIBD(v. b, r, k, A., ,1.2' ••• ),

then there exists a CD(v, b, r, 'k, ,I.) or a CD(v, b, r, k, AI> ,1.2' ••• ) respectively.

Coloured designs are used in Seberry (1987b), and de Launey and Seberry (1987)
to construct new families of BIBD's and GOD's.

3. Main application

The matrices described in the following proof can also be constructed from
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generalized Hadamard matrices and latin squares but here we use a simpler for­
mulation.

Theorem 3.1. If there exists a CO(v. b. r. k.)') where r-I =q is a prime power. then
there exists a group.divisible design

GOO(vq2. bq2. (q+ I)q. kq. ).I=q. ).2=).. m=q2. n=v).

Remark. We can apply the same technique as in the following proof for coloured
PBIBO's to obtain families ofPBIBO's with more associate classes.

Proof. Take the q+ I matrices of order q2. Ro..... Rq • defined by Seberry (1986).
(and which have appeared earlier in many forms; for example see Wallis (1971) and
Glynn (1978». which satisfy

5.7

q

.~ R;R;=q2I+qJ.
,=0

R;RJ =J• R;1=qJ.

These matrices exist whenever q is a prime power. Now replace symbol i of the CO
by R; and each 0 by the zero matrix of order q2 to obtain the result.

Example 1. Consider the CO(9. 12.4. 3. 1) given in Table I.

Table I

a b c d

b c a d

c d a b

c a b d

d b c a

a c d b

c d b a

a d b c

d a c b

Here r-l = 3 =q (for notation, see Wallis (1971) and Seberry (1987b». and hence
we can define

[
0 I 0] [I I I]

T= 0 0 I and J3 = I I I

100 I I I
and Ro> RI. R 2• R) \>y

[
I1I]

Ro= 1 1 1

1 { 1
[

I T T
2

]
RI = T 2 1 T

T T 2 1
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Now we replace a by Ro• b by RI. C by R2 and d by R3 in the CD(9. 12.4.3. I) to
obtain the GDD(8I, 108. 12.9.3, 1,9,9) given in Table 2. which is not listed in Clat­

worthy (1973) (Clatworthy lists GDD's with rS 10).

Table 2

Ra RI R2 RJ
RI R2 Ra RJ
R2 RJ Ra RI

R2 Ra RI RJ
RJ RI R2 Ra

Ra R2 RJ RI

R 2 RJ RI Ra

Ra RJ RI R2

RJ Ra R2 RI

Corollary 3.2. (i) If q = 3u - 4~ 5 is a prime power then there exists a

GDD(q2(q+4)/3, q2(q+ 1)(q+4)/9. q(q+ I), 3q,ll=q, A2=6. m=q2, n=(q+4)/3).

(ii) If q = 3t - I is a prime power then there exists a

GDD«2t+ 1)(3t-I)2. t(2t+ 1)(3t-I)2. 3t(3t-I), 3(3t-I),l. = 3t - I.

12=3. m=(3t-I)2. n=2t+ I).

(Hi) If q = lu -1- I is a prime power then there exists a

GDD(uq2. Au(u-l)q2I2, q(q+ I), 2q.l.=q. A2=1. m=q2. n=u).

(iv) If q = (lu -1- 3)/3 is a prime power and 4 divides lu(u -I) then there exists a

GDD(uq2. Au(u-l)q2/12. q(q+ I). 4q.ll=q,12=1. m=q2, n=u).

(\.) If q = (lu - A- 4)/4 is a prime power and 5 divides AU(U - I) then except when

u= 15 and 1 = 2 there exists a,

Proof. (i) For al1 v~ 3 there exists a CD(u. u(u - I). 3(v -1). 3. 6).
(ii) For al1 u = 2t + I ~ 3 there exists a CD(v. tu, 3t. 3. 3).

(iii) For all v there exists a CD(v. lv(v - 1)12. l(u - 1).2, A).
(iv) If 4 divides lu(v-I) and 3 divides l(v -I) then there exists a

CD(v.lv(v - 1)/12, r. 4.1).
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(v) If 5 divides ).0(0 - 1) and 4 divides ).(0 - 1) then there exists a
CO(o, ).0(0 - 1)/20, r, 5, ).) unless v = 15 and), = 2.

For example, using v= 3 in Corollary 3.2(i), there exists a

000(75, 150, 30, 15, ).. = 5, ).2 = 6, m = 25, n = 3).

Using t = 1 and then 2 in Corollary 3.2(ii) shows that there exists a

000(12,12,6,6,).. =2, ).2=3, m=4, n=3)

which is SR68 in Clatworthy and a

000(125, 250, 30, 15, ).. = 5, ).2 = 3, m = 25, n = 5).

Corollary 3.3. (i) If q = 20 - 3 is a prime power then there exists a

000(oq2, 0(0-I)q212, 2(0-3)(0-1), 4(20-3)').1 =20-3, ).2=6,

m = q2, n = (q + 3)/2).

(ii) If q = 4u - 1 is Q prime power then there exists Q

000«3u+l)l, u(3u+l)q2, 4u(4u-l), ).1=4u-l, ).2=4, m=l, n=3u+l)

(iii) If q = 4u - 1 is a prime power then there exists Q

000«q+2)q2, q2(q+ 1)(q+2)/4, q(q+ I), 4q, )..=q, ..1. 2=3, m=q2, n=q+2).

Proof. Use Corollary 3.2(iv) with (i) ). = 6, (ii) ..1. = 4 writing 0 = 3u + 1 and (Hi) ..1. = 3
writing 0 = 4u + 1.

For example, using v = 4 and then 5 in Corollary 3.3(i), there exists a

000(100,150,30,20, A. =5, ..1. 2 =6, m=25, n=4)

and a

000(245,490, 56, 28, A. = 7, ..1.2= 6, m = 49, n = 5).

Using u = 1 and then 2 in Corollary 3.3(ii) there exists a

000(36,36, 12, 12, A, = 3, ..1.2 =4, m = 9, n =4)

and a

000(343,2401,196,28, A. =7, ..1. 2 =4, m=49, n=7).

Using q= 3 and then 7 in Corollary 3.3(iii) there exists a SBIBO(45, 12, 3) and a

000(441,1764,56,28, A. =7,..1. 2 =3, rn=49, n=9).

5.9
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Corollary 3.4. (i) If q = Su - 2 or Su - I and is a prime power then there exists a

GDD(q2(q+2), q2(q+I)(q+2)/S, q(q+I), Sq, Al=q, A2=4, m=l, n=q+I).

(ii) If q = 5u - I is a prime power then there exists a

GDD(q2(4u+ I), q2 u(4u+ I), q(q+ I), Sq, Al=q, A2=S, m=q2, n=4u+ I).

Proof. Use Corollary 3.2(v) with A= 4 writing v as Su or Su + I and with A= 5
writing v = 4u + I respectively.

Remark. If q =4 this gives a

GDD(80, 80, 20, 20, AI =4, A2 = 5, m = 16, n = 5)

which can be easily extended to an SBIBD(8S, 21, 5).

Remark. This method can always be used to give

(
p"+I_1 p"_1 pn-l_l)

SBIBD , , !:..---=-
p-I p-I p-I

but, as v v '. '" known, we do not pursue this construction.
d."... 'O.. , "",t" -\i.~~.. \>".... ~"'~tt,\.s o.JI.... ""~~.\..~

Appendix I gives a listing of GDD's obtained by these methods using BIBD's
listed in Mathon and Rosa (1985) for rS IS. We have a computer listing for rs41 ..

4. Other designs

We note that a symmetric CD(v, k, A) always exists whenever an SBIBD(v, k, ,1.)

exists. Thus Theorem 3.1 can be reformulated as:

Theorem 4.1. Let q be a prime power. Suppose an SBIBD(q(q+ I)/A + I, q+ I, ).)
exists, then there exists a regular

GDD(q3(q+ I)/A+q3, q(q+ I), AI =q, A2=A, m=q2, n=q(q+ I»), + I).

Trivially an SBIBD(q + 2, q + I, q) always exists and so does an
SBIBD(q2(q + 2), q(q + 0, q) for q a prime power.

Also, suppose that we are interested in pairwise balanced designs: we note that
an SBIBD(3I, 6, I) exists and a B BD(6, 9, 9, 6, 9) exists. These give regular

GDD(31.2S, 3D, AI = 5, A2 = I)

GDD(6.2S, 9.25, 45, 3D, AI = 5, A2 = 9).
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Thus we have a

PBD(6.25, 40.25, 75, k l =30, kz=6, A=10).

For convenience, we state the generalization as a theorem noting that a
BBD(q+ I, 2q-A, 2q-A, q+ I, 2q-A) always exists .for /I <. 1.'\-. IAk u.s~d "BB:P'

-for '.>"'\Co~~~ ~1.L"- d.aJ<':1""

Theorem 4.2. Let q be prime power. Suppose an SBIBD(q(q+ ItA + I, q+ I, A) ex-
ists: then there exists a pairwise balanced design

PBD(qz(q+ I), qZ(A(qz+q_l)+2q+ I), q(3q+ I-A),

k. =q(q+ I), kz=q+ I, A'=2q).

Appendix I

BIBD parameters GOD parameters

No. v b r k A vi bl rI kl AI Az m

I 7 7 3 3 I 28 28 6 6 2 I 4
2 4 4 3 3 2 16 16 6 6 2
3 9 12 4 3 I 81 108 12 9 3 I 9
4 13 13 4 4 I 117 117 12 12 3 I 9
S 7 7 4 4 2 63 63 12 12 3 2 9
6 S S 4 4 3 4S 4S 12 12 3
7 6 10 S 3 2 96 160 20 12 4 2 16
8 16 20 S 4 I 2S6 320 20 16 4 I 16
9 21 21 S S I 336 336 20 20 4 I 16

10 11 11 S S 2 176 176 20 20 4 2 16
11 6 6 S S 4 96 96 20 20 4
12 13 26 6 3 I 32S 6S0 30 IS S I 2S
13 7 14 6 3 2 17S 3S0 30 IS S 2 2S
14 10 IS 6 4 2 2S0 37S 30 20 S 2 2S
IS 2S 30 6 S I 62S 7S0 30 2S S I 2S
16 31 31 6 6 I 77S 77S 30 30 S I 2S
17 16 16 6 6 2 400 400 30 30 S 2 2S
18 IS 3S 7 3 I S40 1260 42 18 6 I 36
19 8 14 7 4 3 288 S04 42 24 6 3 36
20 IS IS 7 7 3 S40 S40 42 42 6 3 36
21 8 8 7 7 6 288 288 42 42 6
II 9 24 8 3 2 • 441 1176 S6 21 7 2 49
23 2S SO 8 4 I IllS 24S0 S6 28 7 I 49

24 13 26 8 4 2 637 1274 S6 28 7 2 49

2S 9 18 8 4 3 441 882 S6 28 7 3 49

26 49 S6 8 7 I 2401 2744 S6 49 7 I 49
27 S7 S7 8 8 I 2793 2793 S6 S6 7 I 49

28 19 S7 9 3 I 1216 3648 72 24 8 I 64

29 10 30 9 3 2 640 1921) 72 24 8 2 64

30 7 21 9 3 3 448 1344 72 24 8 3 64

Note that GOD's with rl areater than 10 are not listed in Clatworthy (1973).
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Appendix I (continued)

BIBD parameters GOD parameters

No. /) b r k A /)1 bl rl kl A, A2 m

31 28 63 9 4 I 1792 4032 72 32 8 I 64
32 10 18 9 5 4 640 1152 72 40 8 4 64
33 46 69 9 6 I BIBD unknown "
34 16 24 9 6 3 1024 1536 72 48 8 3 64
35 28 36 9 7 2 1792 2304 72 56 8 2 64
36 64 72 9 8 I 4096 4608 72 64 8 I 64
37 73 73 9 9 I 4672 4672 72 72 8 I 64
38 37 37 9 9 2 2368 2368 72 72 8 2 64
39 25 25 9 9 3 1600 1600 72 72 8 3 64
40 19 19 9 9 4 1216 1216 72 72 8 4 64
41 21 70 10 3 I 1701 5670 90 27 9 I 81
42 6 20 10 3 4 486 1620 90 27 9 4 81
43 16 40 10 4 2 1296 3240 90 36 9 2 81
44 41 82 10 5 I 3321 6642 90 45 9 I 81
45 21 42 10 5 2 1701 3402 90 45 9 2 81
46 11 22 10 5 4 891 1782 90 45 9 4 81
47 51 85 10 6 I BIBD unknown
48 21 30 10 7 3 1701 2430 90 63 9 3 81
49 81 90 10 9 I 6561 7290 90 81 9 I 81
50 91 91 10 10 I 7371 7371 90 90 9 1 HI
51 31 31 10 10 3 2511 2511 90 90 "9 3 81
52 12 44 11 3 2 1200 . 4400 110 30 10 2 100
53 12 33 11 4 3 1200 3300 110 40 10 3 100
54 45 99 11 5 1 4500 9900 110 50 10 I 100
55 12 22 11 6 5 1200 2200 110 60 10 5 100
56 45 55 11 9 2 4500 5500 110 90 10 2 100
57 100 110 11 10 I BIBD unknown
58 III 111 11 11 I BIBD unknown
59 56 56 11 11 2 5600 5600 110 110 10 2 100
60 23 23 11 11 5 2300 2300 110 110 10 5 100
61 25 100 12 3 I 3025 12100 132 33 11 I 121
62 13 52 12 3 2 1573 6292 132 33 11 2 121
63 9 36 12 3 3 1089 4356 132 33 11 3 121
64 7 28 12 3 4 847 3388 132 33 11 4 121
65 37 III 12 4 I 4477 13431 132 44 11 I 121
66 19 57 12 4 2 2299 6897 132 44 11 2 121
67 13 39 12 4 3 1573 4719 132 44 11 3 121
68 10 30 12 4 4 1210 3630 132 44 11 4 121
69 25 60 12 5 2 3025 7260 132 55 11 2 121
70 61 122 12 6 I BIBD unknown
71 31 62 12 6 2 3751 7502 132 66 11 2 121
72 21 42 12 6 3 2541 5082 132 66 11 3 121
73 16 32 12 6 4 1936 3872 132 66 11 4 121
74 13 26 12 6 5 1573 3146 132 66 11 5 121
75 22 33 12 8 4 BIBD unknown
76 33 44 12 9 3 3993 5324 132 99 11 3 121
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Appendix I (continued)

BI BD parameters GDD parameters

No. " b r k A "I bl rl kl A, A2 m

77 121 132 .12 11 I 14641 15972 132 121 11 I 121
78 133 133 12 12 I 16093 16093 132 132 11 I 121
79 45 45 12 12 3 5445 5445 132 132 11 3 121
80 27 117 13 3 I 3888 16848 156 36 12 I 144
81 40 130 13 4 I 5760 18720 156 48 12 I 144
82 66 143 12 6 I 7986 17303 132 66 11 I 121
83 14 26 13 7 6 2016 3744 .156 84 12 6 144
84 27 39 13 9 4 3888 5616 156 108 12 4 144
85 40 52 13 10 3 BIBD unknown
86 ·66 78 13 11 2 9504 11232 156 132 12 2 144
87 144 156 13 12 1 BIBD unknown
88 157 157 13 13 I BIBD unknown
89 79 79 13 13 2 11376 11376 156 156 12 2 144
90 40 40 13 13 4 5760 5760 156 156 12 4 144
91 27 27 13 13 6 3888 3888 156 156 12 6 144
92 15 70 14 3 2 2535 11830 182 39 13 2 169
93 22 77 14 4 2 3718 13013 182 52 13 2 169
94 8 28 14 4 6 1352 4732 182 52 13 6 169
95 15 42 14 5 4 2535 7098 182 65 13 4 169
96 36 84 14 6 2 6084 14196 182 78 13 2 169
97 15 35 14 6 5 2535 5915 182 78 13 5 169
98 85 170 14 7 I BIBD. unknown
99 43 86 14 7 2 7267 14534 182 91 13 2 169

100 29 58 14 7 3 4901 9802 182 91 13 3 169
101 22 44 14 7 4 3718 7436 182 91 13 4 169
102 15 30 14 7 6 2535 5070 182 91 13 6 169
103 169 182 14 13 I 28561 30758 182 169 13 I 169
104 183 183 14 14 I 30927 30927 182 182 13 I 169
105 31 155 15 3 I 6076 30380 210 42 14 I 196
106 16 80 15 3 2 3136 15680 210 42 14 2 196
107 11 55 IS 3 3 2156 10780 210 42 14 3 196
108 7 35 15 3 5 1372 6860 210 42 14 5 196
109 6 30 15 3 6 1176 5880 210 42 14 6 196
110 16 60 15 4 3 3136 11760 210 56 14 3 196
III 61 183 15 5 I 11956 35868 210 70 14 I 196
112 31 93 15 5 2 6076 18228 210 70 14 2 196

•113 21 63 15 5 3 4116 12348 210 70 14 3 196
114 16 48 15 5 4 3136 9408 210 70 14 4 196
115 13 39 15 5 5 2548 7644 210 70 14 5 196
116 11 33 15 5 6 2156 6468 210 70 14 6 196
117 76 190 IS 6 I 14896 37240 210 84 14 I 196
118 26 65 15 6 3 5096 12740 210 84 14 3 196
119 16 40 15 6 5 3136 7840 210 84 14 5 196
120 91 195 15 7 I 17836 38220 210 98 14 I 196
121 16 30 15 8 7 3136 5880 210 112 14 7 196
122 21 35 15 9 6 4116 6860 210 126 14 6 196
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Appendix I (continued)

BIBD parameters GOD parameters
No. v b r le 1 vI bl rl lel 1. 12 m

123 136 204 15 10 I BIBD unknown
124 46 69 15 10 3 BIBD unknown
125 28 42 15 10 5 BIBD unknown
126 56 70 15 12 3 10976 13720 210 168 14 3 196127 71 71 15 15 3 /3916 13916 210 210 14 3 196128 36 36 15 15 6 7056 7056 210 210 14 6 196
129 31 31 15 15 7 6076 6076 210 210 14 7 196
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5,3 Recursive Colourability Theorems

In the style of Hanani (1975), Wilson (1975) and many others we firSt

state a general recursive theorem, due to Dr, J. Seberry (personal

communication). The proof of the theorem is based on the proofs of

Theorem 3 of Seberry (1984) and Theorem 2.4 of Lam and Seberry.

Theorem 5.3.1: Suppose tllere exists a CD(v, b3, r3' k. A), B. and a

CD(u. b2' rl+r2, k, A). A, wltll a colourable sulJdesign on w treatments, X.

w/licll is a CD(w, b1, r" k, A) or w = 0, 1. Furtller suppose !!lat tllere exist

k-2 mutuallf! ortllogonal Latin squares of order u-w. Tllen tllere exists a
CD(Vl, k, A) wllere VI = v(u-w)+w Wltll a colourable subdesign on w

treatments.

o

We will now develop Hanani's theory (1975) for CDs,

Theorem 5,3.2: Supposew/?Ilavea BIBD(v. b. r. k. A) and CD(k, b1• r,. j. jl),

Tllen tllere exists a CD(V.j.Ajl) over r.rl colours,

Proof. Let RI. R2, ..., Rr be disjoint coloured sets of rl symbols, Let Qj be

the CD(k.j,jl) obtained by using the colour set Ri. i = 1, 2, .... r, Replace each

block of the BIBD(v.k.A) by the underlying BIBD(k.j,jl) of CD(k.j.jl). This is

done by relabelling the points of each block. say B, of the BIBD(v. k. A) in

order by I. 2...., k. Now. if the point which is labelled by, say s. has already

appeared in. say. j-I blocks of the BIBD(v. k. A). before it appeared in said

B, then replace s with the sth row of Qj.

o
Example 1 . Let the CD(3, 2, 1) be

[~
b

o
a



Let Ri ={ai. bi} ; then

[a; bi

~;]Qj = bi 0

0 ai bj

Let the BIBD(4. 3. 2) be

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1
~

then a CD(4. 2. 2) is given by

al b1 0 a2 b2 0 a3 b3 0 0 0 0

bl 0 al b2 0 a2 0 0 0 a3 b3 0

0 al b1 0 0 0 b2 0, a2 b3 0 a3

0 0 0 0 al b1 0 a2 b2 0 a3 b3

Theorem 5.3.3: Suppose there exists a pairwise balanced design
PBD[K. A; vl. where K ={kl• k2. ,,'. kb} anda CD(ki. j. Jl) (oreach ki E K,

Tllen there exists a CD(v. j. AJl),

Proof. We suppose that each CD(ki. j. Jl) is coloured with colours

dli • d2i . ,,'. dri and that the final CD(v. j. A) is to be coloured with colours
•

Cl. C2..... cr .

Recall the construction of a BIBD(v. j. AJl) from a PBD[K. A; vl. where
colouring is not considered: any block with kj elements from the pairwjse

balanced design PBD[K. A; vl has its kj non-zero elements replaced by the
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rows of the corresponding BIBD(k i. bi. ri. j. J!) and the zero elements are

replaced by the 1 x bi zero matrix (see for example Hanani(1975». The

number of elements in each block of the new design is j because only

BIBD(k i. j. J!)'s are used and the inner product of two distinct rows of the

incidence matrix is AJ!. because each original pair is now duplicated J!

times.

We now consider the Question of colouring the design. Consider the

tth block of the PBD[K. A; vl. Y. We suppose that the blocks of the required

coloured design obtained from the previous H blocks have been processed

and coloured. If the tth block has ki elements. then replace it by the rows

of the BIBD. X. underlying the CD(ki. j. J!) (as explained in the above

paragraph). Suppose that the nonzero entries in. say sth row. obtained by

the previous (H) blocks. are already coloured with colours Cl..... csx. We

wish to colour the nonzero entries in the sth row obtained by X. by ri

colours from Cs ={csx+1 ..... cr }.

We proceed as follows. We colour the first non-zero row obtained

from the current block by Cl ={Clx+l ..... cr} as follows: define a one-to-

one map f1 : Cl -> n. 2..... ri} and replace the non-zero elements by f l- 1(a).

if dai is the corresponding non-zero entry (colour) in CD(ki .j.J!) . Now let C

=Cl n C2; define f2 : C2 -> n.2. ... .ri } such that f 2(y) = f l(y) for y € C.

Replace the non-zero entries of the second row by f 2-I (a) if dai is the

corresponding entry of the CD(ki. j. J!).

In general. we let 0 = ~Cl n C2 n .... n Cn-l) n Cn and define

fn : Cn -> {1..... rj } such that f n(y) =fk(y) if y € Ck . k = 1..... n-1. We note

that jf y € Cj n Ck . then f j (y) = fk(y) so the mapping is well defined. We

colour the non-zero entries of the nth row. say y. by fn- I (y) if dyi is the

colour of the corresponding entry of the CD(ki. j. J!). Thus. in a finite



number of steps, k , all non-zero rows obtained from the tth block of the

PBD[K, A; v] will be coloured. Note that all the required colours in each row

have been used by the definition of the fn '5.

We now show that in any column no colour has been used more than

once. Suppose that in some column the same colours occur at the 51th and

52th rows. Then fSl-
1(q) = f S2- 1(p) for some p and q. Without loss of

generality. we assume 51 < 52 and consider f Sl (fS1- 1(q)) = f Sl (f 52-1(p)~

But, by the definition of f52 '

f S2 (fS2- 1(p)) = fSl (f 52-1(p)).

Thus,

q = f 51 (f 51-1(q)) = f 51 (f 52-1(p)) = f 52 (f 52-1(p)) = p ,

that is, the same colours dpi and dqi are used in a column of the CD(ki, j, J.l)

which is a contradiction.

o

Theorem 5.3.4: /f n E GD(S, I, R), mR is a subset of CD(k, A) and mS is a

subset of CGDD(k, A, m), tllen mn E CD(k, A), where CD(k, A) is tile set of

all v's for whicll a CD(v, k, A) exists, and CGDD(k, A, J.l) is a coloured

group divisible design.
The proof of this theorem is on similar lines to the proof of

Theorem 5.3.2 and Hanani (1975. Theorem 2.25).
o

Lemma 5.3.5 : Tile residual design ofa coloureddesign CD(v, v, k, k, A) is a

coloureddesign CD(v-k, v-I, k, k-A, A).

Proof. The definitions of residual design (Raghavarao (1971)) and coloured

design immediately give the result.
o
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5.4 Colourabllity Construction Theorems

The dimensions of all matrices in this section will be assumed to be
compatible and should be determined from the context.

Lemma 5.4.1 : (a) IfA and B are two colollra/)/e matrices over rl andr2 .
distinct symbols, then

[A : B 1
and [~ ~]

are colollrablematrices over rl + r2 symbols.

(b) IfAl. A2..... An are colollrablematrices over rl. r2•.... rn

symbols respectively, then

Al A2 .An

.An Al .An-I

is colollra/)/e over rl + r2 + r3 + .... + rn symbols.

For the definitions of supplementary difference sets. cyclic and type
1 incidence matrices refer to Wall is. Street and 5eberry Wallis (1972).

Let 51, 52, ..., 5n be supplementary difference sets with elements

from an additive group G of order v. Then the type 1 (or cyclic if G is

cyclic) incidence matrices Al =(alij)..... An =(anij) are given by

aPij ~i if SPj -SPi ESp. Sp ={SP1. SP2•.... SPkp}.

Lo otherwise.



The idea of the following theorem arose in conversation with Dr. J.
Seberry.

Theorem 5.4.2 : AI7!f design which is formed by developing supplementary

difference sets to form lis cyclic or type I incIdence matriK is colourable

and lis complement is also colourable.

Proof. (i) If the supplementary difference sets contain no element 00.

then one of the r colours is attached to an element of one of the initial
sets and the same colour cycled with the element as it is cycled.

(ii) Suppose one initial set. say D contains the element 00. We
proceed by way of the incidence matrix to show how the design should be
coloured. Attach r colours to the elements of the initial sets other than 00

and cycle as before (see(i». Notice that we also colour the 1<-1 elements of
the set D.

Now attach a zeroth row containing rI's and b-r O's. viz.
0, .... 1. O..... 0) to the matrix obtained by developing 1<-1 elements of D
other than 00. Let us call this matrix C. We colour the r elements of the
zeroth row with the r different colours. Thus we have the following
auxiliary matrix of the required coloured design (we assume that the matrix
C is in the begining of the incidence matrix of the design):

5.21
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Cl

Cl

C2

Cl

Ck-l .

Ck-l

Cri 0 ..... 0

I

I
I
I

I
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Now in (H) columns of C, there will be two elements labelled with the

same colour. Let the colours used for labelling H elements of D other

than co be Cl•....• ck-l ,but. as the design has at least than 2k-j colours

(k-j for k-j elements of D other than co and k for each sUbsequent initial

set). we now interchange as follows: in the column where ci ' i = 1..... H,

occurs we swap. in the row of the second Cj , the colour ci with the colour

Ck+j-J •

If a second, different, co occurs the process can be repeated. This
completes the proof.

o

Corollary 5.4.3 : If tl7ere eKists a cyclic (v. k. ,,) difference set. Tl7en tl7ere

eKists a CD(v. k. ").

Example 2. The BIBD(7, 7, 3, 3, 1) formed by developing the initial block
{I. 2, 4} mod 7 is colourable:

A B 0 D 0 0 0
0 A B 0 D 0 0
0 0 A B 0 D O·

0 0 0 A B 0 D
D 0 0 0 A B 0
0 D 0 0 0 A B
B 0 D 0 0 0 A

and its complement BIBD(7. 7, 4. 4. 2) is colourable:

o 0 C 0 E F G
G 0 0 C 0 E F

F GO 0 C 0 E

E F G 0' 0 C 0

o E F G 0 0 C
CO E F GO 0

o C 0 E F G 0



fkOjihOOOgO
OfkOjihOOOg
gOfkOjihOOO
OgOfkOjihOO
OOgOfkOjihO
OOOgOfkOjih
hOOOgOfkOji
ihOOOgOfkOj
jihOOOgOfkO
OjihOOOgOfk
kOjihOOOgOf

It is easy to see that we could have obtained a CO(7. 3. 1) and a
c..~L\: (.

CO(7. 4. 2) by using any latin square of order 7 as follows: Colour the
"

nonzero 0, j)th entry of the incidence matrix of BIBO(7. 3. 1) by the (i. j)th

entry of the Latin square. Similarly we get CO(7. 4. 2) from the incidence
matrix of BIBO(7, 4. 2). Notice that every latin square of order n is a

CO(n. n. n. n. n).

Example 3. We construct the CO(l2. 6. 5), developed from the initial sets
(00, 1. 3, 4.5. 9) =0 and (0. 2.6. 7. 8. 10). Attach colours a. b. c. d. e to
k-l (= 5) points of O. Attach colours f. g. h, i. j and k to the points of the

second initial set. We get:
o 0 0 e 0 0 0 d c bOa
1 a 0 0 e 0 0 0 d c b 0
2 0 a 0 0 e 0 0 0 d c b
3 bOa 0 0 e 0 0 0 d c
4 c bOa 0 0 e 0 0 0 d
5 dcbOaOOeOOO
6 OdcbOaOOeOO
7 OOdcbOaOOeO
8 OOOdcbOaOOe
9 e 0 0 0 d c bOa 0 0
10 0 e 0 0 0 d c bOa 0

Now we attach to the above matrix a row of r (=11) l's and b-r (=11)

O's(called the zeroth row). We colour the I's in by all the colours a to k. We

obtain:
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00 abc defg hijk

o 0 0 e 0 0 0 d c bOa

1 a 0 0 e 0 0 0 d c b 0
2 0 a 0 0 e 0 0 0 d c b
3 bOa 0 0 e 0 0 0 d c

4 c bOa 0 0 e 0 0 0 d

5 d c bOa 0 0 e 000

6 OdcbOaOOeOO
7 OOdcbOaOOeO
8 0 0 0 d c bOa 0 0 e
9 e 0 0 0 d c bOa 0 0

10 OeOOOdcbOaO

o 0 0 0 0 0 0 0 0 0 0

f kOj ihOOOgO
Of kOji hOOOg
gO fkOji hOOO

OgOf kOji hOO
OOgOf kOji hO

OOOgOf kOji h

hOOOgOfkOji
ihOOOgOfkOj

j ihOOOgOfkO
Ojl hOOOgOfk

kOj ihOOOgOf

As we can see that in the first k-l (=5) columns two colours are same. We

interchange the colours as in the theorem and obtain the required

CO(12. 6. 5):

00 abc defg hijk

o 0 0 e 0 0 0 d c bOa
1 fOOeOOOdcbO

2 OaOOjOOOdcb

3 bOa 0 0 e 0 0 0 d c
4 c 9 0 a 0 0 e 0 0 0 d
5 d c bOa 0 0 e 0 0 0
6 OdhbOaOOeOO

7 OOdcbOaOOeO
8 OOOicbOaOOe

9 e 0 0 0 d c bOa 0 0
10 0 e 0 0 0 d cbI:) a 0

00000000000

fkqlihOOOgO
OakOji hOoog
gOfkOe ihOOO

OgOfkOj ihOO

OObOfkOj ihO
OOOgOfkOj ih
cOOOgOfkOj i

i hOOOgOfkOj
jd hOOOgOfkO

OJ ihOOOgOfk

kOj ihOOOgOf



Example 4. CO(8. 3. 6). this example shows the application of the theorem

when there are more than one initial sets with 00 :

A BIBO(8.3.6) can be obtained by developing (modulo 7) the initial
blOCKS (00, 1. 6), (00, 2. 5). (00, 3, 4), (0, I, 2), (0. 1. 4), (0, 2. 4), (1. 2, 4)

and 0, 2.4). The CO(8. 3. 6) is obtained as follows:

00 Ial a2 ... a1 aa ... a13 a14 a15 ... a21 ° ... ... ... °
°I aa a9 a14 a15 a1 a2 a3 a4 as .,.

1

2.1 develop the blocKs with the colours assigned

3

4

5
6

We can write a CO(8,3.6) with colour set (at ,.:.• a21} as
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(00". la. 69 ).

(06, 11• 410 ),

(00" • 21S• 516 ). (00" .31 .42 ). (03. 14. 25 ),

(011. 212• 413 ). (114. 211• 41a). (119, 220.421)

where Xi means that the colour ai is assigned to the entry X of the initial

blOCK. and '00.. ' means that the nonzero entries in the row corresponding to

00 are coloured by al ..... a21' We again assume that the initial blOCKS with 00

are developed first.

Example 5, A CO(s2+s+1. s+l. 1) and its complement CO(s2+s+1. S2. S2-S).
where s is any prime power, exist because (s2+s+1. s+l. 1) difference sets

exist.

Example 6, CO(s. s. s-I, s-l. s-2) exist for all s.
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Example 7. To illustrate how the methods are applied to type 1matrices we

9ive an example, usin9 the additive 9roup of a Galois Field, viz.

CD(9,18,8,4,3) exist :

Consider the additive 9roup GF(32) which has elements 90 = 0, 91 = I,

92 = 2.93 = x, 94 = x+l . 95 = x+2. 96 = 2x, 97 = 2x+l, 98 = 2x+2. Define the set

X = (y: y = Z2 for some z E GF(32) } = {x+l, 2, 2x+2, l} = {94' 92, 98, 91}, usin9

the irreducible equation x2 = x+1. Let Y = {x, x+2. 2x, 2x+l} = {93' 95. 96, 97}'

Let A =(aij) and B =(bij) be defined as follows:

aij =

=

if 9j - 9j =9t EX.

otherwise

if 9j - 9i =9s E Y.

otherwise.

Then lA :B 1is the required CD, 9iven below:

012 0 4 0 0 0 8 0 0 0 3 0 5 6 7 0

2 0 1 0 0 4 8 0 0 0 0 0 5 3 0 0 6 7

1 2 0 4 0 0 0 8 0 0 0 0 0 5 3 7 0 6

008 0 1 2 0 4 0 6 7 0 0 0 0 3 0 5

800 2 0 1 0 0 4 0 6 7 0 0 0 5 3 0

080 1 2 0 4 0 0 7 0 6 0 0 0 0 5 3

040 o 0 8 0 1 2 3 0 5 6 7 0 0 0 0

0048002015 3 0 0 6 7 0 0 0

1000801200 5 3 7 0 6 0 0 0



Theorem 5.4.4 :/f a CD(4t-l, 4t-l. 2t-l. 2t-l, t-l) = C and lis complement
CD(4t-l, 4t-l. 2t, 2t, t) =D exisl, then a CD(4t, 8t-2, 4t-l, 2t. 2t-l) = Cl

exists.

Proof. Let the incidence matrix N of a BIBD(4t, 8t-2, 4t-l, 2t, 2t-l) be

partially coloured by using the colouring C and D over disjoint sets of

colours RI and R2 to get
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N ~ r 1

C

• . • 1 o o
D

. 0J

Now colour the (2t-l) non-zero entries of the first row of N with

the corresponding non-zero entries of the first row of C and colour

remaining 2t entries using 2t colours of R2. Swap any (2t-l) non-zero

entries of the first row of Dwith non-zero entries of the first row of C to

get the required coloured design.

Example 7. a CD(8, 14, 7. 4, 3) :

Using the CD(7,7.3.3,1) and CD(7,7,4,4.2) of Example 1 we get a

CD(8,14,7,4,3) as follows:

Rl = (A, B. D}

ABCDEFG

C E 0 F 0 0 0
OABODOO

OOABODO

o 0 0 ABO D

D 0 0 0 ABO.

ODOOOAB

B 0 D 0 0 0 A

R2 =( C, E, F, G}
000 0 000
OOAOBDG

GOOCOEF

F G 0 0 C 0 E
EFGOOCO

OEFGOOC

COEFGOO

OCOEFGO
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The construction given by Shrikhande (1962) can be extended for
colourable designs as follows:

Theorem 5.4.5 : If CD(vi .bj .r i ,k i ,:}q) =Ni. i = 1. 2 and tlleir colourable

complements, Mi.exist. tllen a CD(v = V,v2. b = b1b2. r = r,r2+(b,-rl) (b2-r2).

k = k1k2+(v,-kl)(V2-k2). A = r-b/4) exists, wllen bi = 4(ri-Ai) .

Proof. Let N, and N2be the coloured incidence matrices of the
CD(Vi. bi, ri. kj, Ai), i =1. 2.

Suppose NI is coloured with the colours Xl ..... Xrl and M, is coloured

with the colours Xr,+l ..... Xb, . Further. suppose N2 is coloured with the

colours Y, ,.... Yr2 and M2 is coloured with the colours Yr2+1 ..... Yb2.

The required coloured design is

N =

where the 0, j)th element is coloured (xs. Yt) according to the way N" M1,. .
N2, M2 are coloured. with the assumption that the zero element is never
coloured. Thus N is coloured with the r,r2+(b,-r,)(b2-r2f) colours. (xs, Yt)

where either s E {1..... r,} and t E {I, ... .r2} or s E {rl+1..... bl} and
t E {r2+1..... b2}.

o

5.5 The case k =2

,
This simple case can be useful for practical purposes. for example

sending secret messages and in the construction of GD designs with larger
block size.

Theorem 5.5.1 : Tile necessary conditions are sUfficient for tile existence of

a CD(v. 2. A).



Prool. Let N be the incidence matrix of BIBO(v. 2. I). Without loss of

general ity. let
1 1 ... 1
1 11 ... 1 ...

N =

1

1

Colour the first row by 1. 2.....(v-I) = r. second row by 2. 3..... (v-1). 1.
and so on. It is now easy to check that N is colourable.

Now let NI be the CO(v. 2. 1) over symbol set {11• 2j•...• rj l. then

[NI : Nz : ... : N).l

gives a CO(v.2.:A).
o

Example 8. CO(5.2.1) :

1 1

5.29

N =
1

1 1

1

1 2 3 4
2 3 4

Q = I 3 , 4 1 2
4 1 2 3

2 3 4
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5,6 The case k =3

First we give the necessary colourable GDDs.

Lemma 5.6.1: (a) 6 E CGDD(3, A, 2) A =2, 3, 6.

(b) 8 E CGDD(3, A, 2) A =1, 2, 3, 6.

Proof. (a) 6 E CGDD(3, 2, 2):

12003400

00230041

30401020,

01020304

20014003

04100230

hence 6 E CGDD(3,6,2).

6 E CGDD(3,3,2):

1 2 0 0 3 4 0 056 0 0

o 0 1 2 o 0 340 0 5 6

203 0 4 0 506 0 1 0

030 4 0506010 2

400 5 6 '0 0 1 2 0 0 3

056 0 0120034 0



(b) 8 E CGDD(3,1,2) and hence. for all A, 8 E CGDD(3,A,2):

12300000
00021300

30010020
03002001
00203010
20000103
01000230

00130002

0

Theorem 5.6.2 : Suppose there exists a CD(v, 3, A), v ;z: 2, 3. 7; then there

exists a CD(3v-2, 3, A).

Proof. Let

5.31

B = [:1
be the BIBD underlying the CD(v, 3, A), where X is the first row of B. Write

Ai when Ais coloured with the symbol sets Ri = {a(H)r+l ' ... , a(i-l)r+r },

i = I, 2, 3. Similarly write Xi when X is coloured with the symbol sets

Ri ={a(i-l)r+l , ... , a(H)r+r }. i = 1, 2, 3.

Since v ;z: 2, 3, 7 ther~ exist two mutually orthogonal latin squares of

order v-I. Use them as in Lam and Seberry (1984, Theorem 2.4) to form D
of size 3(v-l) x (V-l)2 which is a GDD(3(v-l), (V-l)2, v-I, 3, Al = 0, A2 = I}

D is, in fact, consists of 3(v-l) permutation matrices of order v-I.
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We now form the matrix

XI Xz X3 0 . . . . . . 0

Al 0 0

o Az 0 D, Dz . . . . D"

o 0 A3

Now Xt, Xz and X3 use 3r colours whereas each Ai uses r colours.

(D, Dz ... D,,) = (Mij) consists of ,,(v-I) permutation matrices, Mij ,(see

5eberry(t984)) of order v-I per row. By the block design conditions,

,,(v-I) = 2r. 50 colour the permutation matrices by the colouring scheme

[,r.l. .... '2r. a2r+l ' ..'3r]
a2r+l, ... , a3r, a" .... ar

a" ••• t ar, ar+l, ... , a2r

to obtain the result.

o

Lemma 5.6.3 : Designs CD(6t+3, 3, I) exist for all t ~ 1.

Proof. The incidence matrix of a BIBD(6t+3,3,1) is given by

.. At

I,
.. 0

o
At
I

I

o
At ~]



where Ai =Ti +r i and T =(tij) is given by:
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tij =
{~

if j-i ;; 1 (mod 2t+O.

otherwise.

We obtain the required CD over 3t+l colours

{a1 •...• at-l . b1 ..... bt • b-l ..... b-t } by colouring Nas follows:

all (bA)l (bA)2 ... (bA)t

a21 all a3' .,. at+1I

a31 0 0 ... 0

where (bA)i = biTi - b-i Ti .

o 0 0 ... 0

(bA)1 (bA)2 (bAh··· (bA)t

all a21 a41 . .. at+1I

a21 at-1I

o 0

(bA)1 . .. (bA)t

o

Corollary 5.6.4 : CD(6t+3. 3. A) exist for all A. t ~ 1 and for all A ~ 2.

t ~ O.

Corollary 5.6.5 : CD(6t+l. 3. A) exist for t ;; 1mod 3.

Proof. Use Theorem 5.6.2 and Lemma 5.6.3.

o

The existence of a BIBD(v. 3. 0, for v = 6t+l. by difference sets in
cyclic groups of order 6t... l was established by Peltesohn(1939) and. for
v = 12t+7. by difference sets in elementary abel ian groups by Bose(1939).

Hence. using Theorem 5.4.2 we get:

Lemma 5.6.6 : CD(6t+1. 3. 0 exists for all t ~ 1.

o
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Corollary 5.6.7 : CD(6t+l, 3, A) exists for all A, t ~ 1.

de Launey, Sarvate and Seberry (1985) have proved that

{v: v ;: 0,1 mod 3 and v> 3} is subset of B(K,O where

K = (4, 6, 7, 9. 10, 12. 15. 18, 19, 24, 27, 30, 39, 50. In Table A we have

given CO(kj, 3, 2) for kj in K, kj:z' 1. 3 mod 6 as it is done in Corollaries

5.6.4 and 5.6.5, hence we get:

Lemma 5.6.8 : a CO(v. 3, 2) exists for v ;: 0.1 mod 3, v > 3.

o

Lemma 5.6.9 : CO(2u+l. 3, 3) exist for all u, positive integers.

Proof . By Lemma 5.3 of Hanani (1975), v E B(K3• 0, where

K3 ={3, 4, 5, 6. 8}. In view of Theorem 5.3.3, it is sufficient to show that

CO(k j, 3, 6) exist for kj E K3. Lemma 5.6.9 gives a CO(3. 3, 6) and a

CO(5. 3, 6). Example 3 gives CD(8, 3, 6).

o

Lemmas 5.6.4, 5.6.7, 5.6.8, 5.6.9 and 5.6.10 give:

Theorem 5.6.11: Tile necessary conditions are SUfficient for tile existence
ofa CO(v, 3. A) for all A.

o



TableA. CD(v, 3, 2) for initial values of v.
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v =4 Theorem 5.4.2: initial block (0,1,2).

v=6 jab
o a
b 0

o c
o 0
c 0

v =10 =3.4 -2

c d eOOOOO

OObcOdeO

aOOOcOde

o a 0 e 0 b 0 d

bOa d e 0 c 0

o bOO d e 0 a

Theorem 5.6.2.

v =12 Theorem 5.4.2; initial blocks (00, 0, 2), (0, 1. 7),

(0, 2, 8) and (0, I, 8).

v =18 Theorem 5.4.2; initial blocks (00, 0, 4), (0, 4, 10),

(0, I, 15), (0, 5, 8), (0, 7, 9) and (0, 5, 6).

v =24 =6.4 Theorem 5.3.1.

v =30 Theorem 5.4.2; initial blocks (00, 0, 8), (0, 2, 14),

(0, 4, 10) and (0, i, 19-0, i = I, 3, 5, 7, 9, 11, 13.
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Table B, CD(v, 3, 3) for initial values of v,

v=3

[~
2

n3

1

v=5 2 3 4 5 6 0 0 0 0

6 1 2 0 0 0 3 4 5 0
3 0 0 1 2 0 4 5 0 6

0 4 0 5 0 3 6 0 1 2
0 0 4 0 6 1 0 2 3 5

v = 7, 13 Corollary 5,6,7,

v = 9, 15 Corollary 5,6.4,

v = 11 Theorem 5.4.2; initial blocks (0, i. 11-0, i = 1, 2. "" 4,

v = 17 Theorem 5.4,2; initial blocks (0, i, 17-0, i = 1, 2, "" 8,



CHAPIER 6
SOME CONSTRUCTIONS OE PB16Ds AND BIBDs

Q.I Construction of PBIBDs from directed graphs

In Chapter 1 a construction was given for PBIBDs using n-partite
graphs ( Hammer and Sarvate (1987) ). Now. we replace the complete graph
in the stUdy of Alltop (1966) by a complete directed graph and get a
PBIBD(E. Mwith five association classes. where E. the set of points. is the
set of edges of the complete directed graph G on n vertices and
~ ={ Bo< : 0< €Sn}. where B is a set of edges of a subgraph of Gand Sn is the

symmetric group acting on the n vertices of G. Let I denote the set of
2-subsets of E. Ihen the action of Sn decomposes I into five orbits Ii.

i = 1..... 5. where points of Ii are isomorphic to { (a. b). (b. a) }.

{ (a. b). (a. c) }. { (b. a). (c. a) }. { (a. b). (c. a) }. { (a. b). (c. d) } respectively.
where a. b. c and d are all distinct. Let nj represent the number of points in·

I j. Note that

nl = n(n-1)/2.

n2 = n3 = n(n-1)(n-2)/2.

n4 = n(n-1)(n-2)

and n5 = n(n-1)(n-2)(n-3)/2.

Let Ui be the number of members of I j contained in B. Let ti be a member of
I j and let Ai denote the number of blocks in ~ containing tj• If t is any

member of I j • t is also contained in exactly Ai members of ~. Since Sn acts

as an automorphism group of (E. M and Sn is transitive on I j • (E. ~) is a
•

PBIBD(v. b. r. k. Al. A2. A3. A4. A5) where

v= (~).

I B I =nl/g.
g= I {o<€Sn:Bo<=B} I

and Ai =bUi 1nj.

6.1



6.2

All Ai'S will coincide if

and

n = U2/ul +2
= US/U2 +3

2U2 = U4'

An example. where the conditions hold. has not yet been found.

Example: Let B be the set of edges of cycle (al. a2' ...• ak) where (ai. ai+l )

and (ai+l • ail both are edges of the cycle. Then Ul = U2 = U3 = k. U4 = 2k and

Us = 2k(k-3). Hence we get a PBIBD(5) with parameters

( 2{ g, ~ nl/(2k(n-k)), r. 2k. 2bk/(n(n-l)). 2bk/(n(n-l)(n-2)).

2bk/(n(n-l)(n-2)). 2bk/(n(n-l)(n-2», 4bk(k-3)/(n(n-l)(n-2)(n-3» ).

Taking n = 7 and k = 4 we get a PBIBD with v = 42, b = 105, r = 20,

k= 8 and two distinct A's 20 and 4.

o

6.2 Constructjon of BIBDs

Two of the constructions given in the altched paper, ("On a BIBD

construction", Ars Combinatoria, 22, 1986, 165-169) give as special cases,

series of BIBDs and PBIBDs with the same parameters as those given by
Sinha(1979, 1984)

Some combinatorial identities are used to prove that the parameters

are the same. For the sake of completeness, the shorter proofs provided by

Dr. D. R. Breach. are given.

(a).

= coefficient of xk in [ (l+x)V - 2x(1+x)v-l + 2x2(1+x)v-2]

= coefficient of xk in [ (1+x2)(1+x)v-2]



(b).

= (v-2) + ( v-2 }
K K-1.

( V) - 3( v-I ) + 3( v-2 )
l< \(-\ 1<.-1-

= coefficient of xk in [ (l+x)V - 3x(1+x)v-l + 3x2(1+x)v-2)

= coefficient of xk in

(1+x) v-3( (l+x)3 - 3x(1+x)2 + 3x2(1+x) - x3 + x3 )

= coefficient of xk in (l+x)v-3 [ (I+X-X)3 + x3 I

6.3

= ( v-3 ) + ( v-3 }
K K-, o

The detailed calculations to get the expression for 1\2 in Theorem

of the attached paper are as follows:

We consider the pair «a.b). (c.d)) where. a. b. c and d are all distinct
points in V. The pair will occur in those blocks of Y. which are obtained
from a block of X. say B. which satisfies one of the following:

(i) a. b. c. d are in the block B : the number of such blocks is A4;

(ii) (a.b) is in the block B but not (c.d) : the number of such blocks is

A2 - 2A3 +A4;

(iii) (c.d) is in the block B but not (a.b) : the number of such blocks is

A2 - 2A3 +A4;
,

(iv) none of a. b. c and d is in the block B : we observe that the
number of such blocks is equal to

b - (4(the number of blocks of X in which some point. say a. occurs
but none of other points b. c and d) +6(the number of blocks of X in which a
pair, say (a,b), occurs but not the other pair (c.d)) + 4( the number of blocks
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of X in which a triple, say (a,b,c) occurs but not the remaining point d) +

(the number of blocks of X in which the quadruple (a,b,c,d) occurs)}

The above expression is equal to

Hence we obtain



On a BIBD construction

Dinesh G. Sarvate

It is shown that methods of Saha [3J and Sinha [4, 5J can be adapted

so that triangular PBIBDs and BIBDs can be obtained from a 4-design

instead of from the full design of all k-subsets of a given set.

Theorem 1: Let X = BIBD (v. b, r. k, A2' A3' A4) be a 4-design. Tllen Y

= PBIBD(V = ( ~ ~ B = b. R = b - 2r + 2"-2 • K = ( ~ ) + ( v i.k ~ 1\1 = b - 3r

+3A2' 1\2 = b - 4r + 8A2 - 8A3 + 4A4) exists.

Proof. It is well known that the parameters r. A2. A3 and A4 of a 4­

design satisfy

6.5

r = (v-I) (v-2)(v-3) A4/(k-l)(k-2)(k-3)

A2 = (v-2)(v-3) A4/ (k-2)(K-3)

A3= (v-3) A4/ (k-3)

1.1

1.2

1.3
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A3 times in X,

: A2 - 1,.3 times, as (a,b) has already

occurred 1,.3 times.

abut not b or c occurs : r - (A3+(A2-A3)+(A2-A3» times, Le.

r - 21,.2 + 1,.3 times.

Therefore the number of blocks without a, b, c is b-(A3+3(A2­

A3)+3(r-2A2+A3» =b - (3r-3A2+A3), hence the pairs of the type «a,b),(a,c»

will occur

Let the points of the PBIBO Ybe the pairs of points of X. Each block

Bof X gives a block B' of Y, constructed in the following way: The points

in B' are the pairs of points in B and the pairs of points in V-B. (V-B is the

complement of B)

A pair (a,b) occurs 1,.2 times in X and either the point a or the point

b but not both occurs in 2r - 1,.2 blocks of X. Hence (a,b) occurs in

R=b - (2r - 1,.2) +1,.2 =b - 2r + 21,.2 blocks of Y.

Consider a triple (a,b,c) of V. It occurs 1,.3 times in X, therefore

«a,b),(a,c» occurs 1,.3 +b - (3r - 31,.2 +1,.3) = b - 3r + 3A2 times in Y. We will

first check this:

We observe that,

(a,b.c) occurs

(a,b) but not c occurs

/\1 = A3 +b - (3r - 3A2 +1,.3)

times as «a,b),(a,c» will occur when either all of a, band c are in a block

of Xor none of a, band c is in a block of X. ( In the second case «a,b),(a,c»

occurs in a block of Ybecause a, band c will be in the complement of the

block of X). Note that this is an application of the principle of inclusion

and exclusion.



Now we consider the pair ((a,b),(c,d)) where a, b, c and d are all

distinct points in V. The pair will occur in those blocks of V,which are

obtained from a block of X, say B, which satisfies one of the following:

CO a, b, c and d are in the block B,

(H) (a,b) is in the block B but not (c,d),

(Hi) (c,d) is in the block B but not (a,b),

(iv) none of a, b, c and d is in the block B.

Hence we get

1\2 =b - 3r +3 A2 - r +5A2 - 8A3 +4A4

=1\1 - (r - 5A2 +8A3 - 4A4),

Which proves the theorem.

o
EXAMPLE 1: Consider the Steiner quintuple system on 11 points(see for

example page 74 of Biggs and White[l) or page 775 of Hughes[2]). This

design has A4 = 1and hence A3 = 4, A2 = 12, r = 30 and b = 66. We get a

PBIBD(V=55, B=66, R=30, K=25, 1\1=12, 1\2=14).

The series of PBIBDs obtained in the above Theorem will give a

series of BIBDs if 1\, = 1\2 i.e. if

r - 5A2 + 8A3 - 4A4 = O.

Using 1.1,1.2 and 1.3 we get

v3 - v2(1 +5k).+ ( 2 +k + 8k2 )v - 2k - 4k3= O.

We observe that v =k is a solution and hence we have

(v - k)(v2 - (1+4k)v + 4k2 + 2) = 0,

hence we get v = (I + 4k:t 1(8k - 7)) /2.

Suppose 1(8k - 7) = 2s + I, s ~ 0 integer, then

6.7
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8k = (2S+1)2 + 7

and 8 divides (2S+1)2 + 7 agreeing with the fact that k is an integer. Let k =

«2s+1)2 + 7)/8 for s ~ I, then v = S2 + 2s + 3 or S2 + 2. Hence we have

THEOREM 2: If v = s2+2s+3 or s=s2+2, s~I, and If a 4-design witll

parameters v, b, r, k=«2s+1)2+7)/8, :>"'2, :>"'3, :>"'4 exists, then there exists a

BIBD(V={ ~ } B=b, R=b-2r+2:>"'2' K= { ~ )+( v~k } /\= b-3r+3:>"'2)'

o
In particular, when s is even, say equal to 2w, then we have v = 4w2 +

4w + 3 or v = 4w2 + 2 and k = 2w2 + W + 1. Hence as a special case when we

take the set of all k-subsets of {t,2, ... ,v} as a 4-design, we get

COROLLARV3: There exists a series of8180s witll parameters

(V = { t } B = { ~ } R = (~ ) - 2{ r~ )+ 2{ r~ }K = ( ~ ) + (V~k }

/\ = (V ) - 3{ v-I ) + 3{ v-2 )), where v = 4w2 + 4w +3 or4w2 + 2 and k =
K !<-\ K-l

2w2 + w +1.

o
We observe that the parameters of the series obtained in the

Corollary 3 are the same as those given by K.Sinha[4] because

(~ ) - 2( ~=J )+ 2( ri )= ( V;2 ) + (~~i) and

THEOREM 4 : Let D1 = (v, bl. rl' k, :>"'2, :>"'3, :>"'4) and D2 =(V-k, b2, r2' k, :>"'2',

:>"'3', :>"'4') be 4-designs. Then there exists a P8180 D = (V={ ~ } B = b1b2, R =

:>"'2b2 + ( b1 - (2rl - :>"'2)):>"'2', K = 2{ ~ ) = k(k-1), /\1 = b2':>"'3 + :>"'3'(b1 - 3r + 3:>"'2 ­

:>"'3), /\2 =b2:>"'4 + 2(:>"'2 - 2:>...3 + :>"'4):>"'2' + (bl - 4r + 6:>"'2 - 4:>"'3 + :>"'4):>"'4')·



PROOF: The set of the points of D is the set of all the pairs from

{1.2....v}. which gives V = {~} The blocks are constructed in the following

way: Let Bl be a block of D1. Consider the (v - k)-set (V - B1). Now construct

a BIBD isomorphic to D2 with points in V - Bl. Construct b2 blocks of D.

where each block consists of pairs of points in Bl together with pairs of

points in the blocks of D2. In this way each block of D1gives b2 blocks of D.

Hence b = b1b2' The block size K of D is 2{ ~ ) = k(k-l).

Now consider any pair (a.b) ( Le. a point of D). (a.b) has occurred A2

times in Dl and 'a' ( also 'b') has occurred rl times and hence in the

construction of blocks of D. 'a' and 'b' together have been used bl - (2rl -A2)

times as points of D2. Therefore (a.b) as a point of D occurs A2b2 + (b, ­

(2r1 - A2»A2' times.

Any pair of 2-sets. (Le. any pair of points of D) having a point in

common. are first associates and any pair of disjoint 2-sets are second

associates. The counting arguments similar to those of Theorem 1give the

values of Al and 1\2'

o
If D, is the set of all k-sets of a v-set and D2 is the set of all k-sets

of a (v-k)-set. then counting the repeated blocks only once. we get the

result of Sinha[5).

The first construction of Saha[3] suggested the following theorem:

THEOREM 5: Suppose there exists at-design, T, with parameters v. b. r,

k. A,. A2•...• At. then give/? an integer s such that 2s 5 /, t/Jere exists P, a

PBIBD( V={ ~ } B=b. R=AS' K={ t }I\I=As+l' ... , Aj=As+i' ...• A s=A2s ).

PROOF. The points of the required PBIBD. p. are the s-tuples of the

points of the given t-design. T. For each block X of T construct a block of P

consisting of all s-tuples of X. If two s-tuples e and t have (s-i) points of

6.9
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T in common, then they are called the i1h associates, for i = 1. 2, ...• s. e and

~ contain (s-i+2i)= s+i distinct points of T and hence. as each (s+i)-tuple

occurs in AS+i times in T. we have /\j=As+i'

o
COROLLARY 6: If there exists a HV.k.At) design. t ~ 4. tIlen there

exists aPBIBD( { n B = b. R = A2. K =(n /\1 = A3. /\2 = A4)'

EXAMPLE 2: Consider the Steiner quintuple system on 11 points(see

example O. We get a PBIBD(V=55.B=60.R=12.K=10./\f4./\2=0. Note that

this design is not a quasi-multiple of a smaller design.

AcKNOWl.EGEt'fNf. My sincere thanks are due to Dr. J. Seberry for her

kind supervision. I am thankful to the referee for useful suggestions.
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CHAPTER 7

ORTHOGONAL PESIGNS

A transversal design TD(n. t) is a GDD with n groups. each of size t.
and block size n.

Let B(K) denote the set of integers v for which there exists a

PBD(v, K, O.

Let 5 and K be sets of positive integers. Let sand t be integers. We

denote by sst the set {v : sS V S t} n S. The notation sS and 5t stand for

the sets {v : v ~ S } n S and {v: OS V S t} n S respectively. Define

[vo]50K ={v I v =vos+k where s f. 5, k f. K and s ~ k}.

7,1 Generalized Bhaskar Rao designs

The results proved in the attached papers

(a) "Generalized Bhaskar Rao designs with block size 3 over Z4",

(with de Launey and 5eberry) Ars Combinatoria, 19A, 1985, 273-285

and

(b) "Non-existence of certain GBRDs", (with de Launey), Ars

Combinatoria, 18, 1984. 5-20

include the following:
,

Theorem 7.1.1: Tile necessary cond,Wons are sufficient for tile existence of

a GBRO wltlllJ/ock size 3 over Z4' exceptpossilJ/fj wllen v =27 or 39 and

A =4.
Proof. Theorem 2.4 of (a).

o

7.1
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Theorem 7.1.2: Nl?llher a GBRD(lO, 4,2) overZ2 nora GBRD(7, 4. 4) over

Z2 x Z2 exists.

Proof. Sections 2 and 4 of (b).

o

The proof of Theorem 7.1.1 depends on constructing small GBRDs and
about one third of that work was by this author. The results on the
GBRD(lO, 4, 2) over Z2 were checked with the help of J. Seberry. To prove
that the GBRD(7, 4. 4) over Z4 does not exists. it was necessary to prove
that all four non-equivalent BIBD(7. 4, 4)s can not be signed by Z2 x Z2' A
exhaustive computer search was conducted to obtain a GBRD(7. 4, 4) over
Z2 x Z2 for two of the BIBD(7, 4. 4)s. It turned out that these two designs
can not be signed by Z2 x Z2. By "exhaustive computer search" is meant that
a computer program has been written and used to check each possibility of
signing the rows of the two BIBDs. The result on the non-existence of a
GBRD(7, 4, 4) over Z2 x Z2 has also been obtained by Gibbons and Mathon

(1986).
, .

After the Lemma 4.2 in the paper (b), it is shown how the two of the
four inequivalent BIBD(7, 4. 4) can not be signed over Z2 x Z2 = (1. a, b, ab).
The explanation of the working for the first of the two BIBDs (given under
the heading "a" below Lemma 4.2 of paper(b)) follows:

Suppose that Xij denotes the 0, j)th entry of the signed matrix.

Without loss of generality we assume:

ratio(xll. Xlj) =r(Xli' Xlj) =1{see definition 4.1 of the paper (b)};

r(x2l, X22) =a; r(x2 '0, X2 13) =1;

r(X31' X32) =b;

r(X41, X42) =ab.

Hence we have:



r(x23. X26) =a; ( as r(xu, Xlj) =1 and Lemma 4.2(j)}

r(x34. X37) =b: ( as r(xu, Xlj) =1and Lemma 4.2(i)}

r(x4S. X48) = ab; ( as r(xu, Xlj) = 1and Lemma 4.2(i)}

Now r(xss, XS8 ) =a or b ( as r(xll, xl j) = 1. r(x4S. X48) =ab and Lemma

4.2(i0}

and r(xS4. XS7) =a or ab ( as r(xu. Xlj) = 1. r(x34. X37) =b and Lemma

4.2(i0}.

Hence we have r(xss, XS8) =r(xS4. XS7) = a.

We have r(x4 10. X4 13) =b ( as r(x2 10. x2 13) =1, r(x21. X22) =a,

r(x41. X42) =ab and Lemma 4.2(i)}.

Now no value of r(xs 10. Xs 13) can be found to satisfy Lemma 4.2 (0
and (iO. Because r(xss. XS8)r(X4S, X48) =band r(x4 10, X4 13) =b implies

r(xs 10. Xs 13) = 1 (Lemma 4.2(i)} and r(x2 10, X213) = 1 implies

r(xs 10. Xs 13) ;z: 1(Lemma 4.2(iO)

7.3
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Generalised Bhaskar Rao designs with block size 3
overZ4

Warwick de Launey. Dinesh G. Sarvate. Jennifer Seberry

Q. Introduction

Although a considerable amount of work has been done on generalised
Bhaskar Rao designs. little is known about the existence of these designs
over groups which are not elementary abelian. This paper considers the
groupz4 and finds that designs exist for z4 for parameters for which they

do not exist for z2 x z2 and vice versa.

Suppose we have a matrix Wwith elements from an abelian group



G - {hl .h2•••••hg}. where W - hlAl + h2A2 + ••• + hgAg / here Al' .•.•Ag
are v x b (0.1) matrices. and the Hadamard product Ai • Aj (i ~ j) is

zero. Suppose (a.l ••••• a,~) and (b.l •••••b.b) are the ith and jth
:I. ..... + J J

rows of W/ then we define WW by

7.5

(WW+)ij - (ail·····aib)
-\ -1

(b jl •••• .bjb)

with designating the scalar product. Then W is a generaLised

Bhaskar Boo design or GBRD if:

(i) ww+ = rI +
Dl
I: (CiG)Bi ;

i=l

(H) 11 • A
l

+ ••• + Ag satisfies T
RN .. rI +

m

I:~iBi'
i=l

that is. 11 is the incidence matrix of a PBIBD(Dl). and

number of times a complete copy of the group G occurs.

( c.G)
:I.

gives the

Such a matrix will be denoted by GBRDG(v.b.r.k/Al ••••• ADl/cl ••.••cDl).

In this paper we shall only be concerned with Dl· 1. c - A/g. and

B
l

= J - I. In this case 11 is the incidence matrix of a PBlBD(l). that

is. a BIBD. Hence, the equations become ~

IlIl
T

•

(i)

(H)

WW+ AG
- rI + - (J ­g

(r-A) I + AJ.

I) ;

Thus W is a GBRDG(v.b.r.k.A). Since A(v-l)· r(k-l) and bk = vr.

we sometimes use the notation GBRD(V,k,A;G).

These matrices are generalisations of generalised weighing matrices

and may be used in the construction of PBIBDs.

We use the following notation for the initial blocks of a GBRD. We

say (a .b
B
•••••c) is an initial block. when the Latin letters are

a y
developed mod n and the Greek subscripts are the elements of the group.

which will be placed in the incidence matrix in the positions indicated by

the Latin letters. Thus we place a in the (i.a-l+i) th position of,
the incidence IIllltrix. 11 in the (i.b-l+i)th position. and so on.

difference table of the initial block (a .bB ••••• c )
(l<>\.",~ a y

position headed by x and by row YB the element... a
(x-y) is mod n and 6n-1 is in the abelian group.

We form the

by placing in the

(x-y) -1 where
6n
A set of initial blocks will be said to form a GBB difference

(if there is one initial block) or GBR suppLementary differenee sets

set
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Uf more than one) if in the totality of elements

(x-y) 1 (mod n, G)
6\1-

each non-zero element a~. a (mod n), h E G, occurs vlGI times.

For any other definition or notation the reader is referred to de

Launey and 5eberry [1]. L~~ Il':.\ 0 t·
For a GBRD(v.k,A/G) to exist A:: 0 (mod g) and there must exist

a BIBD(v,k,A). So the parameters V,k,A must satisfy the constraints,

(i) v ~ k

(H) A - 0 (lOOd g)

(Hi) A(v-l) " 0 (lOOd(k-l) )

(iv) Av(v-l) " 0 (lOOd k (k-l) ) .

In view of these constraints a GBRD(v.3,4t/Z4) can exist only when

one of the following is true,

(a) t - 0 (lOOd 3) • v ~ 3,

(b) t ~ 0 (lOOd 3) , v:; 0,1 (mod 3) and v ~ 3.

Moreover a theorem of Drake

GBRD(3,3,4t;Z4) exists when t

possible exception of the cases

conditions are also sufficient.

§1. A Small Generating Set

[2.Theorem 1.10] ensures that no

is odd. We show that, ",i th the

given in the abstract, these necessary

In this section and the next we make extensive use af Wilson's

notation [6, Sections 1 and 2] concerning PBD-closure theory. In the

next section we will need a small generating set for

V = {v> 31v " 0,1 (mod 3») .

Notation 1.1: Let S and K be sets of positive integers.

Define

{vIa S v S b} n 5

The following theorem appears in de Launev and Seberry

[I, Theorem 1.2.14].

Theorem 1.2: Let Vo ~ 2 be an integer. Let S be an increasing

infinite sequence such that for aZZ t. 5 there exists a TD(v +l,t).o
Let K be a set of positive integers containing Vo and vo+l. Let

k
O

= min {k} and suppose there exists a TD(vo+l,to) for some to
k.K

Let

[v ] 5 e K = {vlv = v s+k whereo 0

a and b be integers. '1ben let

s • 5, k • K and s ~ k} .

sb denote the set
a

o



not neaessal'i Zy

(i) E ({to) u

in 5. Then
5vOtO+kO-1

to
u T U K) ~ [v0] 5 e K , IiIhel'e

7.7

T· {t ( t +k 5 I t i [v ]t 5 e K) •
Vo 0 0 0 0

( vot +k -1) }
(ii) E {to} U t 5 0 0 U U u K ~ {v ~ voto+k o ' IiIhel'e

o

u = {t I t ~ v 0 to +k
o

and t , [v] 5 e K} •
o to o

This theorem allows us to calculate small generating sets for sets of

the form {v~klviU}, where K is a finite set of integers u ~ k

( I, Lemma 1.2.16]. We extend the theorem 50 that we can calculate

small generating sets for sets of the form {v~klv=O,l (mod 3) ,

v i ul.

Now slirht1y altering a construction appearing in Wilson's paper

[6, Lemma 5.1] we

Lerrrna 1.3: Let

exists a GOD on

have the following result.

~ be a set of positive integel's.

v points with bZoak sizes from

Suppose thel'e

{4,S} and group
sizes fl'Om K. Then

3v ( E ({ 3k I k ( K,}). u (4})

and

3v+l ( E ({3k+l I k ( K) u (4}) .

But the construction of the PBD's in the proof of Theorem 142

[1, '1heorem 1.2.14] "e~.., i .. ~" ·ft.,\- ~\"-l'" on the construction of

GOD's with block sizes from {vo,vo+l} and group sizes from
v t +k -1 "

5 0 0 0 u T u K u {to} 1n case (1) and fro,"
to

votO+ko-l { }. ( .. ) . 45 u U u K u to 1n case 11. 50 putt1ng Vo =
to

we have the following result.

Theorem 1.4: Let 5 be an inal'easing infinite sequenae suah that fol'

aU t (5 thel'e exist,. a TO(S,t). Let K be a set of positive

integel's. Let k o = min{k} and suppose thel'e exists a TO(S,t
O

)
k(K

o

fol' some to

(i) {3v I v (

and

not neaessaPiZy in 5.

[4J 5 e K) ~ E ({4) u

Then

{3v I v ( 54tO+kO-\ TU K u{t
o

}})
to

( I 4to + ko-l ){3v+llv( [4J5 e K} c E {4} u {3v+l v (5 UT u KU{t
O

)}
to



7.8

whel'e
T = S \ ([4] S + KI •

to+k O to

(HI {3vlv ~ 4t
O

+k
O

} =-:1> ({4) u {3vl3vlv € .:4tO+kO-\ U U K U (to)))

and

whel'e
o

We apply this

Theorem 1. 5:

(il {v[v:o

theorem to prove the following result.

The foZ1-owing set inequaUties hoZd:

(mod 3). v>3} =- :El ({4.10) U (3vlv = 2.3 •.•.• 11.13.17l) ;

lHI {vlv:O.l(mod 31 and v>3} c:El ({4.6.7.9.10.12.IS.18.19.24.27.30.

39.Sll).

Proof. We apply Theorem 1.4 with

5 {4 .5 •7 •8.9 •11. 12 • 13. 16 • 17} U {v - ±l (mod 6) I v ~ 17}.

K = {2,3,4,5,6,7, ... ,17~

to = 4 •

When v ~ 70, v - 4t f {2,3, ... ,17} for some t~17.t€5.

So {viv~70} =- [4]t 5 $ K. It is then a simple matter to check that

[4]t 5 $ K = {v ~ 18 I v;' 21.26.27.28.29} •
o

So U = {21.26.27.28.29} and hence

{3vlv ~ 18} =-:El ({4) U {3vlv = 2.3 •...• 17.21.26.27.28.29} .

Now 3v € :El ({4.6.9}) for v € {12.14.1S.16.21.26.27.28} (see

Appendix AI. while 87 € :El ({6.9.10}1 (use TD(lO.911. Thus

{3vlv=o (mod 31. v>3) =- Jl ({4.10) U (3vlv = 2.3 ••••• 11.13.17})

Now {3v+llv~4} = Jl {4.7.10.19} and 21. 33 € Jl «4.6.9}) (add

suitable blocks and points to TD(4.S) and TD(4.8) respectively). so

Ivlv=O.l (mod 3). v>3} c :El ({4.6.7.9.10.12.1S.18.19.24.11,~",;"l,~\~).
o

,
Because we do not as yet have designs for v € {27.39} we prove

the followin0 theore~.

Theorer' 1.6: The foZl.oLri.ng Bet inequaUty hoZds
Ivlv:O.l (mod 3). v>3}\i27.39} c :B «(1r.6.7.9.10.12.IS.18.19.24.,,,,:nt).
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Proof. Apply Theorem 1.4 with

S = (4.5.7.8.ll.12.16.17) u {v" ± (mod 6) I v ~ 17),

K = (2.3 ••••• 8.10.11.12.14 ••.•• 17.21.25),

to = 4 .

When v ~ 70 there exists a k £ {2,3, ... ,8,lO,11,12,14, ... ,

17.21.25) and t. S such that

v = 4t + k and t ~ k

except when

(i) v = 4t + 9 and t lC 17, 23 or 29, o-r

(H) v = 4t + 13 and t = 19.

When 18 S v S 70, v • [4J S e K except when

v • (21.26.27.28.29.41.42.43.45.57.61.62.63.65)

So U = (21.26.27.28.29.41.42.43.45.57.61.62.63.65.77.89.101.125)

But us ing the desi gns given in Appendix A

(3v I v • U) ~ Jl ( 4.6.7.9.10.12.13.15.18.19.21.31)

~ Jl (4.6.7.9.10.12.15.18.19). . ....•.•.. (1.1)

Note that 21. Jl ({4.6}) (add a point to TD(4.5») and that

31 • Jl ((4.10) [6, see the proof of Theorem 5.l(ii»).

Let V = {vlv " 0 (mod 3). v > 3. v ~ 27.39) and apply Theorem 1.4(ii).

Then V ~ Jl ({4) u {3v I v • (2.3 •...• 8.10.11;12.14 •••.• 17.21.25}) u U).

But then. by (1.1).

Jl ({4.6.7.9.10.12.15.18.19.21.24.30.33.36.42 •...• 51.63.75).

(36.42,45.48.63) ~ Jl ({4.6.9.12.15) (Table 1. Appendix A).

Jl ({4,6.9) (see the proof of Theorem 1.5), 75. Jl ({4.15})

A), and (3v+11 v ~ 1) ~ Jl ({4.7.10.19). The result then

v " 0.1 (mod 3).

o

Drakels

v" 0,1 (mod 3).

but since the number of

for aU

v ~ 4

give

that

GBRD(v,3.4;Z~)

v·27,39.

The necessary conditions

[2,Theorem 1.10] ~nsures

e=ept possib Zy ..,hen

V c:

theorem

v ~ 4,

Proof.

Finally

21. 33 •

(Appendix

follows.

§2. The Constructions
lell'llla 2. 1: There =ists a

blocks. 2v(v-1)/3, is divisible by 4 the Seberry. Street. Rodger

theorem (theorem 1,4; or see [5]) gives no new conditions.

By Theorem 1.6 we need to establish existence for

v' (4.6.7.9.10.12.15.18,19,24.30.51)
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The required designs for v = 4,6,9,10 and 15 are given in

Appendix B. The designs for v = 7.12,18 and 30 can be obtained

by developing the initial blocks indicated:

v = 7 develop the initial blocks- (01. 1 \.6
i
), (0\.2_\.5_

i
). (0\.3\.4 i ). (0\.1_\.3_\) (mod 7.Z4);

v = 12 develop the initial blocks

(Q)1,3
1

,9
i
), (G:l

1
,6_

1
,7

i
), (11,3

1
,4_

i
), (3_ 1 ,5_ 1 ,9 1), (1 1 ,4 1 ,5 1),

v 18 develop the initial blocks

a=1,3,5,7,(0\.a 1 , (l7-a) i)'

(O\.b \,(l7-b)_i)' b 2,4,6,8,

(°
1
,2\.6\), (°

1
.3_

1
,8\). (~\.0\.1_\). (~.Oi,7_i) (mod 17, Z4);

v = 30 develop the initial blocks

(Ol,a
1
,(29-a)i)' a = 1,3, ... ,13 .(odd numbers),

(O.b .(29-b) .), b = 4.6 •... ,14 (even numbers),
1 -1 -,

(°
1
.2_\.15\), (OJ ,2

1
.1°\). (0\ ,3_\,12,\).' (°\.4 1.11_\), (° 1 ,1_ 1 .6 1),

(~\,01.2.), (~1'0 .• 4 \) (mod 29.Z ).
1. -1. - If

Finally 19 = 6(4-1) + 1. 24 = 4 x 6 and 51 = 10(6-1) + 1.

50 a composition theorem applies [l,Theorem 1.1.3] to give designs for

v = 19. 24 and 51.
[J

Theorem 2.2: There exists a GBRD(v.3,8;Z4) for aZZ v ~ 3.

Proof. By Hanani's theorem (see Proposition 5.1 of [6]) and the

construction of Theoren 2.2 of Lam and 5eberry [3] we only need to

establish the existence of GBRD(v.3.8;Z4) for v = 3,4,6. The

design for v = 3 is

n
1 1 1 1 1 1

~]i 1 i - i -

1 i - 1 i -

and the designs for v = 4 and 6 are two copies of the suitable

designs with A = 4 given in Appendix B. Hence we have the result. 0
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Theorem 2.3: Thepe exists a GBRD(v,3,12,Z4) fop all v ~ 4.

Proof. By Drake's Theorem [~, Theorem 1.10]we cannot obtain this

design for v = 3. Now combining Hanani's Theorem (as stated in

[1, Corollary 1.1.2(ii)]) with Theorem 2.2 of Lam and 5eberry [3] we

only need to establish existence for v ( K~ = £4,S,6,7,e,9,lO,11,12,

1~,15,18,19,22,23). Now these designs can be obtained in the following

manner

v Construction

4.A

GBRD(4,3,4;Z4) in Theorem 2.2 of [3J.

A = 4 •

. of design for

Use 5B1BO(5,4,3) and

3 copies of design for

3 copies of design for

)( 8,4,3) with

of design for

of design for

10(11,6,3) and

- of design for

4 3 copies

6

7

5

14 Remove one row of 5B1BO(15,7,3) to obtain a PBO({7,6},14,3),

use with GBRD(u,3,4;Z4)' u. {6,7}.

15 3 copies of design for A. 4 or use 5B1BO(15,7,3) and

GBRD(7,3,4;Z4 I,

18 Use PBO({6,9),18,31 (found from an 5B1BO(25,12,3) by

de Launey and 5eberry [1], Lemma 1.3.7, by removing the first

seven rCMs) wi th GBRD(u,3,4,Z4)' u • {6,9).

19 6(4-1)+1 Mid so Theorem 3 of 5eberry [4J applies.

22 7(4-1)+1 and so Theorem 3 of 5eberry [4J applies,

23 Develop the following initial blocks

(01,(2t+l)I,(22r-2t)i)' (01,(2t)_I,(23-2t)_i)' t = 1, •.• ,5 all

thrice, (° 1 ,1 .,2.} thrice, (° 1 ,5 1 ,7_ 1) three times,
-~ -~ -

(01,Ll'l1_ I ) twice, (° 1 ,3_ 1 ,9_ 1) twice, (° 1 ,1_ 1,9_ 1),

(° 1 ,3_ 1,11_ 1), (0 1,4 1 ,8 1), (° 1 ,4 1,1° 1) (lIDd 23,Z4)'

Hence we have the result. 0
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Note: A straightforN'ard construction for a.GBRD(27,3,12;Z4) can be

obtained by using the PBD(IG,9},27,3) of Lemma 1.3.5 of de Launey

and Seberry and .. GBRD(u,3,4;Z~) u < IG,9}.

Theorem 2.4: The necessary conditions

2tv(v-1) ,,0 (mod 3),

t" 1,5 (mod G) => v;l. 3,

are sufficient for the existence of a GBRD(v,3,4t;Z~) except possibl~

for (V,t) = (27,1) and (39,1).

Proof. The necessary conditions follow from the necessary conditions

for block designs and the non-existence for v = 3, t :: 1,5 (mod 6)

from Drake's Theorem [2].

To establish existence we distinguish four cases:

1. 2./t, 3,ft: then the necessary condition is v:: 0,1 (mod 3) and

the result follows, except for v = 27 or 39 by taking multiple

copies of the designs given in Theorem 2.1. For v = 27 or 39 we

note GBRD(v ,3,8;Z4) and GBRD(v ,3,12:Z4) exist and so multiple

copies give the designs for v = 27 or 39 and t > 1:

2. 21t, 3,(t: then the necessary condition is v:: 0,1 (mod 3), v ~ 3.

but this is established in Theorem 2.2;

3. 21t, 31 t : then the necessary condition i~ v ~ 4 (by Drake I s

Theorem [2, Theorem 10.1] and this is established in Theorem 2.3;

4. 21t, 31t ~ here there is no condition of v. By part 2. of this

theorem we only have to consider the cases v = 3 and A = l2s,

s even but these can be obtained using multiples of the

GBRD(3,3,8;Z4) of part 3.

Iience ",e have t~le resul t.

Appendix A

Notation. By TD(r,t) we denote a transversal design on r groups

each of size t.

Table 1 gives designs needed for Theorem 1.5. In particular,
it lists GDOS which have been constructed to satisfy Lemma 1.3. See

Street and Rodger for the construction involving GBRDs The

constructions involving point and block removals from certain designs

are quite standard '[6, Remarks 3.5 and 3.6]. Table 2 gives PBD

designs needed in Theorem 1.6. Any references given in a table give a

place where a design used in a construction can be found. The reader

should note MacNeish's Theorem [6, Theorem ~.2].
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0000 1111 0000 0000 0000 0000

I ° I A A3 A2

I A2 0 I A A3

I A3 A2 ° I A

I A A3 A2 ° I

I I A A3 A2 0

r1 1 J ( 1

1
1 1 ).where I = and A =

GBRD(13,4,2,Z2) [1, Theorem 4.1.1].

GBRD(9.4,3,Z3) [1, Lemma 5.1.1].

Use TD(4,7).

26

27

28

Table 1. (GDD's on 3v points satisfying Lemma 1.3.)

V

12 Obtain a GDD by removing a point from 5BIBD(13,4,1).

14 Use GBRD(7.4,2,Z2) de Launey and 5eberry [l,Theorem 4.1.1].

15 GBRD(5.4,3,Z3) [1, Lemma 5.1.1].

16 Use TD(4.4).

21 '

Table 2. (PB-design on v points)

V

123 TD(10.13) • 123 :B ({6,9,10.13}).

126 TD(10,l3) • 126 :B ({9,10,13}).

129 TD(10,13) • 129 :B ({9,10,12,13}).

171 TD(9,19) • 171 :B ({9,19}).

183 TD(10,19) • 183 :B ({9,10,12,19}).

186 TD (10,19) • 186 :B ({9,10,15,19}).

189 TD(10,19) • 189 :B ({9,10,18.19}) .

195 TD(7,31) • 195 :B ({6,7,9,31}). o
Finally 75 and 1(35.:B ({4,15}). There exist a GBRD(4,4,5,Zs)

[1, Theorem 2.2(iii) (b)] and a GBRD(u.4,3,Z3) for u. {5,9)

[1, Theorem 5.1.1J so there exists a GBRD(u,4,15,ZIS) for u. {5,9)

and hence a GDD with u groups of size 15 and with all blocks

of size 4. It follows that 75 and 135. E ({4,15}).
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Appendix B

We use the notation - for -1 and i for -i, e = (1,1,1) and

[0 1 0]T = 001 ~

100

Then the following designs exist.

GBRD(4,J,4;Z4)

1 1 1 1 1 1 0 0

1 0 i -i 0 1

1 0 i 0 -i 1 i

0 1 0 i -i i i

GBRD(6,J,4;Z4)

1 1 1 1 1 1 1 1 1 1 0 c C 0 C 0 c 0 0 0

1 0 i 0 i 0 0 0 0 1 1 1 1 1 1 c 0 0 c

1 0 0 0 0 0 i i 0 0 0 i i 0 \ 0

0 1 0 0 i 0 0 0 i 1 i 0 0 0 i er i 0

0 1 0 0 0 i i 0 0 0 1 0 i 0 1 0 < ,
0 0 1 0 0 0 0 i i 0, 0 i i 0 1 0 l. < "

GBRD(9,J,4;Z4)

[:
I 0 B I I I iI I I iI I I

"JA I B I -I -iI T -T iT -I T2 iT2 T2

0 A B I iT T _T L iI -I I -i~ _T2 T

GBRD(1O,J,4;Z4)

e -e ie -e e -ie
I

I I iI iI A I B ! I I iI I I iI I I

I I T2 T2

11
A I B I-I -iT T -T iT -I T2 iT2

I I T T A BliT T _T2 iI -I I -iT2 _T2

[~
1

~] [~
1

:]where A = ar.d B = i

1



GBRD(15.3.4;Z4) has blocks wi th Z4 = {1.2.3.4}

1) 2) 3 1 1) 6 3 8 2 2 1 32 4 1 2) 8 4 142 3) 52 11)

1
1

2
2

4 1
1

6 4
9

2
2

1
3

3
11 1

2
1 9 2 10) \ 53 12)

)

1
1

2
3 51 1

1 7 2 103 2 1 \ 12 1
2

1
9

3
134 3 1 54 15 3

1
1

2
4 6) 1) 7

4
11

2
2 4 51 2

1
9

4
15

1
3

1
6

2
11

4I 2

1) 32
7 1) 8

3
12

2
2

1
4

3
12

2
2 1 102 13 3

3) 6
3

14 1)

1) 3 3
8 1

1
8 13 2) 52 6) 2 1 103 1\ 3

1
6

4
15

2) 4 2

1) 34
9

1
1

1
9

3
14

2
2 5 15 2 1 104 15 3 3) 7) 112I 4 2

1 ) 4 2 10 1 1) 9 15 2
1

6
3

7
1 2) 112 124 3) 7 2 13 14 2

1 I 4 3
11 1 10 11 2 6 12 2 11 14 3 7 14

I ) 2 3 ) 4 3 ) 4 3 ) 3 2

1
1

4
4

12 1 10 12 2 7 8) 2) 11 15 3) 8
1

12
3) ) 4 3 I 2 3 4

1) 52 13 1
1 ) 114

13 2) 7 3 13) 3
1 4) 6

1
3) 8

2
13 33

1 1 53 14 1 I 12 4
14 2 7 14 3

1 4 3 10 I 3) 8 4 14 3I 3 I 4 )

1 5 15 1 13 15 2 8 9
1 3) 4

2
15) 3 j 9) 1°3) 4 ) ) 4 3 ) 2

1 ) 6 2
7 1 14 15 2 1 83 132 3) 51 102 3

1
9

3
14

23 I 4 4

3) 9 4
14 4) 9

2
14

3
5 8 11 6 9

4
14

2
8)10) 15 14 ) 2 3 I

3 10 13 4 9 15 5 8 14 6) 102 D) 8
1
11

1
15

3I 4 4 ) 4 3 ) 3 4

3 12 15 4 10 14 5 9 11 6 10 15 9 11°1 11 3I 4 4 I 2 4 ) I 2 ) 3 4

4 1 51 7 4 11 14 51 9 2
12 , 6

1
13

4
15

2
9

1
11) 124) ) 4 2 4

4 1 52 8 4 83 112 5) 9" 13 7 8
1

9
3

10 11 12
) I 2 j ) 4 )

4) 53 9 4
1

12
1

13
2

5
1
13

1
14) 7 8

2
12

2 1°1 12 2 14 4I I

4 6 10 4 12 15 5 14 15 7 8 15 10)13 3 14 1I 2 I I 3 2 I 2 ) I 3 4

4 6 11 5 6) 10) 6 7 12 7 9 2 11) 11)12
1

13 3) 4 ) I I ) I )

4
1

6
3

13 51 6
2

11
1

6 7 4 144
7 9

4
12

4
11

1
13

2
14)

I I )

4
1

7
2

13 5) 6
3

12
1

6 8 11 7 9
1

15
1

11
1
13

1
15

13 I 3 I j

4 7 14 51 7 10 6 8 14 7 I 1°4 11 4
11 14 15

I 3 I 2 4 j I I I 2 4

4 7 15 51 7 12 6 8 15 7 j 10 I 15 3
12 134 14 1j 4 I 4 2 I 2 I j

4 8 9 51 7
3

13
3

6 9 12 8 9 1 1°2 12
1
13

1
15

2I 2 3 I I 2 I

4 8 13 51 8 I 1° 3
6 I 9 2

13 8 10 12 12
1
14

2
15

3144 2 ) 4 2

7.15
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Non-existence of certain GBRDs

W. de Launey and D. G. Sarvate

1. Introduction and Basic Definitions.

Bhaskar Rao designs have been studied by a number of authors
including Bhaskar Rao [1. 21. Seberry [13. 141. Singh [151. Sinha [161. Street
[1n Street and Rodger [181 and Vyas [191. Generalised Bhaskar Rao designs
were introduced by Seberry [141. and have subsequently been studied by Lam
and Seberry [91. and de Launey and Seberry [3. 4], In this paper we are
concerned with the non-existence and uniqueness of certain generalised
Bhasker Rao designs. Such questions fall under the general problem of
signing (O,H)- matrices (matrices whose non-zero entries are taken from a
group H. 0 does not belong to H) over another group G. A computer program
to deal with this problem when H ={l} has been developed by Rudi Mathon
[10], Before proceeding we make two basic definitions.

Definition 1.1. Let G be a group. Let X be a matrix whose non-zero entries
are taken from G. Let N be the (O.n-matrix obtained by replacing every non­
zero entry of X by a 1. Then X is a GBRD(v. b. r. k. A; G) if
(i) XX" = r1v over R(G)/G(R(G)).

(iO NNT =(r-A)lv +AJv.

Where R(G)/G(R(G)) is the group ring. R(G). of the group Gover the ring of
integers factored out by the ideal G(R(G)) =[~ g 1R(G). (where sum is over

all g E G). and X" is obtained from XT by replacing each non-zero entry by
its inverse.

We observe that any GBRD(v. b. r. k. A; G). X. is therefore based on a
BIBD(v, b. r. k. A), N and hence that the parameters v. b. r. k. A satisfy the
equations

7.17
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Xlv-I) = r(k-I) andbk = w. (1)

Because or these equations we write GBRD(v,k,X;G) in place or
GBRD(v ,b,r ,k ,X).

On the other hand, one may begin with a BIBD(v,k,X) and replace
its non-zero entries by elements or G to obtain a GBRD(v,k,X;G). We
generalise and rormalise this process in the next derinition.

Deftnltlon 1.2. Let G and H be groups. Let N be a (O,H)-matrix. Sup­
pose the entries, h E H, or N may be replaced by hg, some 9 E G, so as•to produce a (O,H X G)-matrix, X, such th~t XX = diag(rl'rz,...,r.)
over R(HXGyHXG(R(HXG)). Then N is said to be lignable over G.

We observe that taking the image or each or the entries or X under
the homomorphism hg .. h would produce N. Taking the homomorphism
hg .. 9 in the same way would produce a matrix signed over G.

Even when one leaves aside all but matrices based on BlBD's, there
is little theory dealing with the signing or (O,H)-matrices over a group G.
Apart rrom the use or a non-existence theorem proved by Street and
Rodger [181 and Seberry 114, Theorem I) there is as yet no approach other
than an enumerative search when proving the non-existence or GBRD's
based on non-symmetric designs. In the case or symmetric designs, Mullin
(11) has listed a number or non-existence conditions, while de Launey [51
has proved the rollowing strong multiplicative result.

Theorem 1.3. (de Launey) Let G' be the commutator ,ubgroup 0/ G. Let

p be a prime dividing IGIG'I. Let I = p~l ;... ,P:' be the prime decompo­
lition 0/ I, let n > I be odd, and luppOle that for lame i,

i) k. il odd,

ii) there exiltl a k 8Uch that pf • -1 (mod p),

Then no SBIBD(n ,I ,X) can be ligned over G. 0

Even when the matrix is based on a SBIBD where there are a
number or strong non-existence theorems, Schellenberg, employing what
amounts to an enumerative search in the case or SBIBD(I6,6,2) has shown
that the theory is deficient 112).

Rudi Mathon has shown by a computer search, that only one or the
rour SBIBDS(IO,O,4) can be signed over Zz and that design in only one

•
way. Based on this inrormation one can quickly prove no
GW'(IO,O,4;Zz X Zz) exists (a generalised weighing matrix (GW) is a GBRD
with v = b). Although this has been proved using the computer program
mentioned above we include our simple proor. Again there is no theory rul­
ing out the existence or this design. (The arguments used to prove



Theorem 1.3 do not rule out the existence or this design.)

The main purpose or this paper concerns non-symmetric designs.
c Two generalised Bha."lkar Rao designs, GBRD(lI,k,)';G), satisry-

ing (1) and the conditions, r > k, IG 11 ).,<ue ..}?t....I:s knowD not to exist.
These designs are the GBRD(10,4,2;Z2) and the GBRD{5,4,6;Z&). It is
also proved that the GBRD{7,4,;Z2XZ2) does not exist. A consequence or
the lion-existence or these designs is that new small generating sets had to
be round in 14) to deal with the question or existence or GBRD{lI,k,)';G)'s
when k = 4. One is then rorced to construct more designs on more points
ir one is to successrully apply the Hanani-WiIson theory on PBD's.

In Section 1 we prove and discuss the non-existence or BRD(10,4,2).
In Section 2 we show that the GBRD(5,4,6;Z2) is unique and that this can­
not be signed over Z3' We then deduce that no GBRD(5,4,6;Z&) exists. In
the last section we show that 1I0ne or the rour inequivalent BlBD(7,4,4)
can be signed over Z2 X Z2 and that the unique BRD{10,O,4) cannot be
signed over Z2' In Section 1,2 and 3 we also give signed PBDl{2,3,4},7,2],
PBDl{3,4},4,6!, and PBD({3,4},6,4!.

I. Non-Exlatence or BRD(10,4,2).

In 161 it is proved that if a BIBD(lI,k,2) has the parameters or a resi­
dual design then it is in ract a residual design. Any BIBD(10,4,2) is there­
rore a residual design or some BlBD(16,6,2),. HU88ain 17) has shown that
there are three inequivalent BIBD(16,6,2) and Schellenberg 112) has shown
that none or these can be signed over Z2 to'give a Bhaskar Rao design
BRD(16,6,2). It is simple to show that a generalised weighting matrix,
G'lV(lI,k,)';G), gives a GBRD(lI-k,k-).,)';G). In particular a
BRD(t4k(k-l)+I,k,2) gives a BRD(l&k(k-3)+I,k-2,2). The question
thererore arises as to whether the theorem in 16) can be extended to include
Bhaskar Rao designs. In proving that no BRD(lO,4,2) exists we show that
the BIBD(16,6,2) and their residual designs do not rule out the possibility
or such an extension.

Peter Gibbons 18], having observed that each or the BlBD(16,6,2)
has, a transitive automorphism gronp. proved that there are three ine­
quivalent BIBD(lO,4,2). We include these designs in Table 1 below. Not­
ing that, in any attempt to sign these BIBD over Z2' one can assume that
the first element in each' row and column has a positive sign, one can
quickly check that none or these designs can be signed over Z2' Seven
rows or the second BIBD(10,4,2) may be signed to give the
PBD({4,3,2},7,2) below. Such signed designs have a use in connection with
supplementary dirrerence sets (also called difference ramilies). Let a = ± 1
in the matrix below.
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PB1>( {~) ';_ '1. \ > "l, "2.)

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1 0 0
1 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 a 4 0 0 1 0 a 0
0 0 1 0 0 0 0 a 4 0 0 1 0
0 1 0 0 0 0 0 0 1 4 0 a 4 0
0 0 0, 0 1 a a 0 0 0 0 a 0 a

Table 1
Three inequivalent BIBD(10,4,2)

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 1 1

(a) 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0
0 0 1 0 1 0 0 1 0 1 0 0 1 1 0
0 0 0 1 1 0 1 0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 0 0 1 0 0 1
0 1 0 0 0 1 0 0 0 1 1 0 1 0 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 1 1

(b) 0 0 1 0 1 0 0 1 l' '0 0 1 0 1 0
0 0 1 1 0 0 0 0 1 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0 1 1 0 0 1
0 1 0 0 1 0 0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 1
0 0 0 1 0 1 1 0 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 ,0 1 1

(e) 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0•0 0 1 1 0 0 0 0 1 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0 1 0 1 1 0
0 0 0 1 0 1 1 0 0 1 0 1 0 1 0
0 1 0 0 1 0 0 0 0 1 1 1 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 0 1



-t\,e..t'I..
3. The Uolqueoe.. of r-GBRD(5',4,6;Z2) and "Noo.Exlateoce of"'"'''-

GBRD(S,4,6;Zs)'
The proofs in this section amount to exhaustive searches and space

does not permit us to give all the details. Our main purpose is to state the
results (since they are needed for 14)) and, to include our reasoning and our
partitioning of the possibilities, 60 that the interested reader may, pen in
hand, chel'k our procedure. Note that we use '.' in place of '-1'.

We first show that the GBRD(S,4,6;Z2) is unique. To do this we
need onl)" prove that, up to equivalence, the unique BIBD(S,4,6)

7.21

o
1
1
1
1

o 1
1 0
1 1
1 1
1 1

1 1 1 1
o 1 1 1
1 0 0 1
1 110
1 1 1 1

1 1
1 1
1 1
o 1
1 0

1
1
1
1
o

can be signed over Z2 in precisely one way. Without 1068 of generality we
have -t\..~ -\<>""""''''1 """-~,a \. o.v,"<I.~.

0011111111
1 1 0 0 1 1
1 0 0
100
1 0 0

The only other possibility is, up to equivalence, ~e.. ""y~:t ",....,"ow.

0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 - 1 . 1
1 . 1 - 0 0 1 - . 1
1 . 1 1 - 0 0 . 1
1 0 0

But then position (4,2) cannot be signed. Now we group the possibilities
into two not necessarily disjoint classes according to whether they may be
brought to the +o\lo....\"'~ ~ r"".

0 0 I' 1 1 1 1 1 1 1
1 1 0 0 1 1 1
1 0 0 1
1 0 0
1 0 0

One obtains the classes below.
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Clu.l.

o 0 1 1 1

1 1 0 0 1

1 1 1 0

1

1

(i)

CIau 2.

1 1 1 1 1

1 1

o 1 1

o 0
o 0

001 1

1 1 0 0

1 1 1

1

1

1

1

o

(ii)

1 1 111

1 1

o 1 1

o 0

o 0

o 0 1 1 1

1 1 0 0 1

1 0

1

1

(i)

1 1 1 1 1

1 1

o 1 1 1

o 0

o 0

001

1 1 0

1

1

1

1

o

(ii)

1 1 111 1

1 1 1

o 0 1 1 1

o 0

o 0

We note that the possibility

o 0 1 1 1
1 100 1
1 0
1
1

1 1 1 1
1 1
o

'0' 0
o

1

o

is accounted for by class 2. (Multiply row 3 by -1 and swap the first and
second columns). Class 2 also accounts for the possibilities iD Class 1. If a
d~sign is in Class 1 (ii) then applying the 'signed": ,Permutation (i,5,3,2,6,4)
(7,8) to its columns, the 'signed' permutation (1,3,2) to its rows (and possi­
bly negating r~w~ _4_a.!ld 5lwill produce a d!8.!Jn iD Class 2 (i). Using the
permutations (1,5,3,2,6,4) (7,10) (8,9) and (1,3,2) (4,5) with rows 4 or 5 pos­
sibly negated will convert Class 1 (i) to Class 2 (ii). We now deal with the
possible designs which contain one of the two configurations in Class 2.

It can be ~~.~... ~",,<I<\:r~til the first three rows are signed lIll iD Class 2
(i) then the fourth cannQt be signed. Hence no designs faU in Class 2 (i).
According to whether the (4,2) position is 1 or -I, matrices falling in Class
2 (ii) are signed lIll below.



0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1

1 1 0 0 l 1 1 . · . 1 1 0 0 1 1 1

1 . - . 0 0 1 1 · 1 1 - . . 0 0 1 1 - 1

1 1 1 1 . . 0 0 - 1 1 · 1 . 1 - 0 0 1

1 0 0 1 0 0

(a) (b)

Possibility (a) cannot be completed bu\ possibility (b) has the two com-
pletions below.

0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 - · - 1 1 0 0 1 1 1

1 . . - 0 0 1 1 - 1 1 · . . 0 0 1 1 - 1

1 . 1 . 1 . 0 0 1 . 1 · 1 . 1 . 0 0 1

1 1 1 - . 1 . 1 0 0 1 1 - 1 1 - . 1 0 0

The second ma.!rix may be converted to the_first1'1 applying the 'signed'
permutations (1) (3.5.4.6) (7.9) (8.10) and (2.3) (4.5) to the columns and
rows respectively. This completes the proof of the uniqueness of
GBRD(5.4.6;Z2)·

We now show this design cannot be signed over Z3' Let X = (%i{) be a
possible 6iring of the above matrix. We may assume %2,10 = - while
%22 = 11 and %il = %lj = 11 for i ,1..2•...•5. j = 3.4•...•10. If
%210 ... _1 multiply row 2 by a suitable group element and then adjust
th~ rest of the matrix. Once the design is signed. the elements of Z3 can
be squared to obtain another signing of the design over Z3' Thus we can
force %28 = _wo. The entries %37' %38' %30' and %20 are then forced. The
rest of our proof is summarized in Table 2, below. The purpose of the
table is to give a partition of the possibilities which the reader may work
through to complete the proof. For each case the maximal sets of signed
rows are given. The proof is complete when these sets are shown to be the
only maximal sets.

0 0 11 11 11 11 11 11 11 11

11 11 0 0, 1 1 1 -- --' _1

11 - 1 1 0 0 _1 --' -- I

11 . 1 . - 1 0 0 1

11 1 . 1 . 1 - 1 0 0
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o
1
1
1

Table 2

% - _1 % - I"32 ...,. , 27

0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 I" -" _tIt _1
1 _1 l .. t

11 0 0 _1 _lOt -" I"
%33 = l"t

0 1 1 1 1 1 1 1 1
1 0 0 11 l .. t

1"
_. _lOt _1

1 11 l. t
0 0 1 _lOt _.

1"
• 1,,2 _. _1 11 0 0 1· _.2

0 0 1 1 1 1 1 1 1 1
1 1 0 0 1,,2 11 I" -" _,,2 _1
1 _1 11 1,,2 0 0 _1 _lOt -" I"
1 ..2

I" _1 _"t 1,,2 0 0 11 -". 1
%33 = 1 ,

%32
= _1

, %27 - 1.2

0 0 1 1 1 1 1 1 1 1
1 1 0 0 11 I" l"t -" _.1 _1
1 _1 11 1· a 0 _1 _,,1 _. 1,,1
1 " 1,,1 _.1 _1 11 a 0 1· _"

%33 = 11

0 0 1 1. 1 1 1 1 1 1
1 1 0 a 1 11 1,,1 -" _,,1 _1
1 _1 1· 11 a 0 _1 _.1 _. 1.1

%33 ... 1·



0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 11 -'" _",I _I

1 -'" 11 I'" 0 0 _1 _",I -'" 1",1

Zaa'" 1
1

0 0 1 1 1 1 1 1 1 1
1 1 0 0 I'" 1",1 11 -'" _",I _1

1 -'" I'" 11 0 0 _1 -",' -'" 1",1

1 -",' 11 _1 _",I I'" 0 0 1",1 -'"
%33 ... I'"

% - -'" % - I'"32 - '27 -

0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 I'" -'" _",I _1

1 -'" 1",1 I'" 0 0 _1 _." _.
11

.1
%33 = 1

0 0 1 1 1 1 1 1 1 1
1 1 0 0 11 1.1 I'" -'" _",I _I

1 _'" I'" I·' 0 0 _I _.' _.
11

1 _I I"" _1 _.
11 0 0 1· -",'

%33 = 1·

% - -'" Z - 11
32 - '27 -

0 0 1 1 1 1 1 1 1 1
1 1 0 0 , 1 1 11 _. _.1 _I

1 -'" 11 I'" 0 0 _1 _.. _. 1.1

%33 = 11
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a a 1 1 1 1 1 1 1 1
1 1 a a IV Iv~ 11 _v _v~ _1

1 _v IV 11 a a _1 _v~ _v Iv~

1 v~
11 _1 _v~ IV a a Iv~ _v

%SS = IV

~ -%S2 = _v % - IV, 27-

a a 1 1 1 1 1 1 1 1
1 1 a a 11 IV Iv~ _V _v- _1

1 v' I· I·' a a _1 _v' _v
11

1 _1 11 _1 v 1·- a a IV _v'
%SS = I·

a a 1 1 1 1 1 1 1 1
1 1 a a IV 11 I·' _V _v' _1

1 _.' I·' IV a a _1 _v~ _v
11

1 • 11 _v _1 IV a a Iv~ _v~

v-
%SS = 1 ,

4. Signing Certain BIBD', over Z2 or Z2 X Z2'

In this section we will observe that all rour BIBD (7,4,4) can be signed
over Z 2· Then we will show that these designs cannot be signed over
Z2 X Z2· But before doing so we will prove that the BRD(19,9,4), round
by Rudi Mathon cannot be signed over. Z2. The rollowing design,
X = (%ij), is the BRD(19,9,4) in question. ( 5'J"'..l ou-e ... :z.1)



I I I I I I I I I

i I I · - - I 1 -
I 1 1 - - I - - I

1 1 1 . · - I 1 -
I - I 1 - I - - I

1 - I 1 - - I I -
I · 1 1 · 1 . · 1

1 - · I 1 - I 1 -
I · . 1 1 1 . - I

1 · - I 1 · 1 1 .

- I 1 - I . - . -
I - . 1 1 - - - ·
· 1 1 . 1 · - · .

I · - I - - I - ·
. 1 1 · · - I · ·
1 · . I · - I · -

· 1 1 . . - - - I

1 · - I · - · . 1
. 1 1 . · - · - I

1" ...*e",,\>\-\"''() -\0 s\~"" O~ , .

1)., we ob!!erve tbat either %2,16 and %4,16 are si&ned dirrerently, or %2,18

and %4,18 are signed dirrerently. At tbe same time eitber %2,16 and %4,16

are signed the same or %2,18 and %4,18 are signed tbe same. Without los!!
of generality we may suppose the first pair are signed dirrerently and tbe
second are si&ned the same. Because we may suppo!!e tbe non-zero entrie!!
in column 1 are all signed the same, we have that %816 and %1016 are
signed differently and %6,18 and %7,18 are signed the ~ame. Tbis' forCe!
%6,12 and %7,12 to be signed differently and this forCe! %8,12 and %10,12 to

be signed differently &ivin& a contradiction. Given that X is the only
BRD{19,9,4) tbere is therefore no GW{19,9.4;Z2XZ2)'

We now consider the BIBD(7.4,4) deei&ns. The four inequivalent
BIBD(7,4,4) can be si&ned over Z2 as follows.
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1 1 1 1 1 1 1 1

1 1 - . . 1 . 1-
1 1 - . 1 - 1 -
1 1 - . . 1 . 1

- 1 1 1 1 1 1 1 (i)
1 - 1 . 1 1 - .
. 1 - 1 1 1 - .

1 1 1 1 1 1 1 1
1 1 - - - 1 - 1
1 1 - - 1 - 1 .
1 1 - . . 1 - 1

- 1 - 1 1 1 1 1 (ii)
1 - 1 - 1 1 1 1
- 1 - 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 - - 1 1 1 1
1 1 - - 1 - 1
1 1 - - - - - .

1 - 1 . 1 , .1 1 - (ill)
1 - 1 . - 1 1 1
1 - 1 . 1 . - 1

1 1 1 1 1 1 1 1
1 - 1 . - 1 1 1
1 1 - - 1 . 1 1
1 - 1 - - 1 1 1

1 - - 1 1 1 . 1 (iY)
1 - - 1 1 1 1 .
1 - 1 - 1 1 . 1

We now turn ourJ!ttention to the question or lisnins these BmD
over Z2 X Z2' To besin)~;male a dermitioD and prove a limple lemma.

DeftnltloD 4.1. Let z.y E Z2 X Z2' We lay the rtJlio or z and y ill Zl/.
Let r(z,y) denote the ratio or z and 1/. We Dote that r(z.l/) - r(I/,z).



Lemma 4.1. Let A = 1°1.°2,°3,°.) ond B = 161.62.63.6.) with
0••6. E Z2 X Z2 fur GlI 1 ~ i ~ 4. Suppo,e
{0161,02b2,03b3',o.b.} = Z2 X Z2' Then we hOlle:

(i) r(01.02)r(b1,b2) = r(03,0.)r(b3.b.).

(ii) r(01.02) ~ r(b 1.b2) ond r(03,/I.) ~ r(b3.b.).

Proof. (i) We note 0lbl °262 °363 /1.6. - 1.

(ii) r(01,02) = r(b ••b2), say. then /1 161 = /l2b2' SivinS a contradiction. 0

Thie lemma allows us to show quickly that two of the four ineqt­
valent designs cannot be signed over Z2 X Z2' Suppose the designs below
can be signed over Z2 X Z2' Then without 10ee of seoerality we would
have the ratios all shown in the matrices below. \~(, \",\'''''k4 o.y"o"> c\..",,\-os

'-t\<a. "l'<l-'-\", o\- ~~ s'~"cA e .. \'<cS UM.tl.v... ~ ","v",,":> I.e.....<\ .. ";1..(. '1>,~

o.,,"""".. s .v..... "'-\- """""",,, , \,~ ....... +1-0. .... \> .....4=. ~-..:.~er -\I.... .....l,;,o.. ""'\1'

(a)

1 1 1 1 1 1 .1 1
~a-+

{ a I , 1 l

1 1 1 1 1 1 1 1
....b_ ( b )

1 1 1 1 1 1 1 1

...ab~ , ab > ( b ~

1 1 1 1 1 1 1 1

( 0.. a ) , x--J>• ~

1 1 1 1 1 1 .1 1

•
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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Cb)

1 1 1 1 1 1 1 1
-a...

)11 1 1"f a
1 1 1 1---b_ .. 1 )\

1 1 1 1 1 1 1 1
....ab? ( ab--> ( a. )

1 1 1 1 1 1 J 1

1 1 1 1 1 1 1 1
( b( > \) ~ • '" )-

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

In both cases no value z E Z2 X Z2 can be round to satisry all the
requirements imposed by Lemma 4.2 and the structure or the matrix con­
cerned.

This shows designs (i) and (ii) cannot be signed over Z2 X Z2. One
or the authors has carried out an exhaustive computer search ror a signing
over Z2 X Z2 or either ~De or the remaining designs. Such a search has
produced no such signing. Hence these designs cannot be signed either.
The search has produced several sets or six rows signed over Z2 X Z2.
Thus we have PBD({4,3},6.4) which can be signed over Z2 X Z2. An
example ror each or designs (ill) and (iv) is included below.



e e e e e e e e
e a b ab e e e e
e b ab a e a e b
e ab b a ab a b ab

e b ab a ab a
e a ab b b a e ab

six rows or BIBD(7,4,4) (ill)

e e e e e e e e
e a b ab e e e e
e b a ab e b e a
e ab b b a b b ab a

a ab b ab b e
ab a b e ab ab a

six signed rows or BIBD(7,4,4) (iv).

In all tbere are 8 sets or signed six rows or design (ill) and only 2 sets
or signed six rows ror design (iv).

Acknowledgementr We wisb to tbank Dr. Jennirer Seberry ror her valu­
able belp and encouragement.
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7.2 Orthogonal designs

A joint paper with J. Hammer and J. Seberry is attached:

"A note on orthogonal designs" (preprint).

In this paper a construction of weighing matrices, given by Kharaghani
(1985), is extended and some new constructions for weighing matrices,
orthogonal design and Hadamard matrices are obtained. About one third of
the work is done by this author.
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A Note on Orthogonal Designs

J. Hammer. D.G. Sarvate. Jennifer Seberry

1. Introduction

Let W= [ Wij ) be a matrix of order n with Wij E {O.l.-I}. W is called

a weighing matrix of weight p and order n. if WWT = WTW= pI", where In

denotes the identity matrix of order n. Such a matrix is denoted by W(n.p).
If squaring all its entries gives an incidence matrix of a SBIBD then W is

called a balancedweighing matrix.

An orthogonal desI.qn (OD), say A. of order n and type (5,. 52, ...• SI)

on the commuting variables (±X,•..., ±XI) and O. is a square matrix of order n

with entries from (±X,•...• ±XI) and O. Each row and column of A contains Sk

entries equal to Xk in absolute value, the remaining entries in each row and

column being equal to O. Any two distinct rows of A are orthogonal. In

other words



An Hadamard matrix W= [Wij] is a Wen. n) Le. it is a square matrix of

order n with entries Wij f {I. -l} which satisfies

WWT = WTW = n In

OO's have been used to construct new Hadamard matrices. For details

see Geramita and Seberry (1979).

Kharaghani(1985) defined Ck = [ Wki.Wkj ] and with that obtained skew

symmetric and symmetric W(n2+sn.p2) from W(n.p). where s is any positive
integer such that n+s is even. Each Ck is a symmetric {a, 1, -l} matrix of
order n. We define Ck by the Kronecker product and by extending

Kharaghani's method we obtain some new constructions of weighing

matrices and orthogonal designs.

2. Some properties of Ck's

The Ck'S can be defined as a Kronecker product of the k1h row of W

with its transpose. In other words. if Rk denotes the k1h row of W, then

C
k

= R
k

X RkT. Similarly. we define Ck'S c9rresponding to the 00. A • as

follows:

Let U be a weighing matrix obtained from A by replacing all the

variables of A by 1. Let Ak and Uk denote the k1h rows of A and U

respectively. Then Ck=Ak X UkT.
LEMMA 2.1 : Let Vi be the ith row of an SBIBO(v. P. A). Consider

X = [V1x VI T..... Vnx VnT]

then
XXT = p«p-A)I + AJ).

7.35

PROOF: xxT =V'V1TxV1TV1 ...·.VnVnTxVnTVn

= P~i VjTV i

= p( (p-A)I + AJ ).
o
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COROLLARY 2.2: 6ivenabalanced W(n,p), basedonan SBIBD(n,p,A),

consider

where Lj' is obtained from 0 bg squaring all Its entries. Then the inner

product ofanu two distinct rows ofX is Ap.

o

3. A new construction of orthogonal designs

Many constructions in orthogonal design theory have been expressed
in terms of Kronecker products of matrices: for example see Gastineau­
Hills(l983) and Gastineau-Hills and Hammer(l983). The Kronecker product
of two or more designs is not in general a design since products of
variables appear, for example:

XIYI X2Y, X,Y2 X2Y2
-X2YI X1YI -XZY2 X1Y2 =

X,Y2 X2Y2 -XtY, -X2Y,
-X2Y2 X1Y2 X2Yl -X,Yl

ZI Z2 Z3 Z4
-Z2 ZI -Z4 Z3

Z3 Z4 -ZI -Z2
-Z4 Z3 Z2 -ZI

(where ZI = X,y,. Z2 = x2Yl, Z3 = XIY2, Z4 = X2Y2) is not orthogonal, if we take
ZI' Z2' Z3 and Z4 as independent. However it is a different matter if we take
a Kronecker product of an OD with a weighing matrix.

A construction of Kharaghani can be extended to give the following

result:

THEOREM 3.1. If there exisls an OD, A, of type (5,,52, ... ,sr)' where

r

w =LSk'

k=\



andordern on the variables (:tXl, ... , :t xr' 0) then there exist n matrices

q, ... ,Cn ofordern satisfying

n r

~ CjCiT = L SkWX k21 n

i=l k=l

CkC jT= 0, k ~ j.

PROOF. Let A = (aij) be the OD. Replace all the variables of A by 1 making it a

(0. I, -1) weighing matrix U = (Uij) of order n and weight w. Write Ak and Uk
for the k1h rows of A and U respectively. Form

Ck=Akx UkT.

Then

7.37

CkC jT =(Ak XUkT)(Aj x UjT)T

=(AkAjTx UkTUj)

Now

= 0 if k~j because A is an orthogonal design.

n
L CkCkT =

k=l

n
L(Akx UkT)(1\:Tx Uk)

k=l

= ~Ak1\:Tx UkT~
,

= ~ SjXj2( r UkT~)

= ~ SjXj2(WI n> by the properties of U.

o
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EXAMPLE 3.2. Let
-a b c -d -1 1 -1

A = b a d c ;U= , , 1

c -d a -b , -1 -1

-d -c b a -1 -1 1

Then

a -a -a a T b b b b T

C1= -b b b -b • C2 = a a a a

-c c c -c d d d d

d -d -d d c c c c

c -c c -c T d d -d -d T

C3= -d d -d d ,C4 = C C -c -c

a -a a -a -b -b b b

-b b -b b -a -a a a
,

Thus we have

THEOREM 3.3. Suppose there exists an ODes,•...•sr), where w = ~ Si. of

order n Then tlJere exists an OD(SlW,S2W..., • srw) of order n(n+k) for

k ~ 0 an integer.

PROOF. Form Cl•...•Cn as in the previous theorem. Form a Latin square of

order n+k and replace n of its elements by Cl..... Cn and the other elements

by the n x n zero matrix.

o

For instance. using Theorem 3.3 we can construct an OD(4. 4. 4. 4) of
order 4n. for n ~ 4. Using inequivalent Latin squares in Theorem 3.3 will

yield inequivalent ODs.



COROLLARY 3.4. /l there is an OO(t, t, t, I) in order 4/, then there is an
00(4t2, 4t2, 4t2, 4t2) ineverg order 4t(4t+k), k ~ 0 an integer:

But this construction can be used in other ways.

EXAMPLE 3.5. Write I, 2, 3, 4 for Cl, ... , C4. Define

[
123] [423] [314] [214].AI = 3 12 , A2 = 3 4 2 ,A3 = 14 3 ,A4 = 14 2

231 234 431 421

ThenAIcAjT =Aj.AtT. Thus AI, A2' A3' A4 can be used to replace the variables

of any OO(t, t, t, I).

o

Hence we have:

THEOREM 3.6. Suppose there is an OO(t, t, I, t) in order n. Then there exists
an OD(121, 12t, 121, 12t) in order /2n.

PROOF. Use the 00(1, 1. I, I) in order 4 to form Cl, ... .C4 of order 4.

SUbstitute these in Al, ... ,A4 of Example 3.5 to obtain Williamson-type

matrices of order 12, on 4 variables each repeated 12 times. Use these to

replace the variables of the OD(I, t, t. t) to get the result.

o

Now if we had started to construct Cl. ... ,C45 of order 45 from an

OO(s.s.s.s) in order 45 we would have each of 4 variables occuring 4s2

times in each row of [Cl : ~2: ... : C45J. But we can use these to form

WilIiamson type matrices in a number of ways:

Let AI • be a circulant matrix with first row 0+1. j+2, .... i+s), i =O. s.

2s, and 3s. These four matrices can be sUbstituted in an OO(t ,I, I, I). Hence

we have:
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THEOREM 3.7. /l there /?'l'ists an 00(5, 5, 5, 5) in order 4s and an
00(t, t, t, t) in order 41, then tlJere eKists an 00(4s2t, 4s2t, 4s2t, 4s2t) in
order /6s2t.

Now if we write i for Bl we can proceed exactly as in Example 3.5 so

we have

THEOREM 3.8. /l tlJere /?'l'ists an 00(5, 5, 5, 5) in order 4s and an
00(t, t, t, t) in order 41, then tlJere eKists an
00(12s2t, 12s2t, 12s2t, 12s2t) in order 48521.

o

Consider the 00(5, 5, 5, 5) in order 20. The construction gives

Cl. C2, ... , C20 of order 20 and hence an 00(300, 300, 300. 300) in order

1200.

EXAMPLE 3.10. We suppose as before that 1,2,3,4 are matrices of order n

such that UT =0 and ~ iiT =~ nXj21 1l'

Define

3 2 -2 1

1 3 1 2 -2

At = -2 I 3 1 2

2 -2 1 3 I

1 2 -2 1 3

4 1 2 2-1

1 2 2 -1 4

A3 = 2 2 -1 4 1

2 -1 4 1 :2
-1 4 1 2 2

I .3 4 -4 3
3 1 3 4-4

A2 =-4 3 I 3 4

4 -4 3 1 3
3 4 -4 3 I

2 3 4 4-3

3 4 4 -3 2

A4 = 4 4 -3 2 3
4 -3 2 3 4

-3 2 3 4 4

Then AjAjT =AjAT and ~ AiAT = ~ 5x?lsll'

Thus if Bj are as described after Theorem 3.7 we have



THEOREM 3.11. Suppose there is an OO(s. s. s. s) in order 4s and an

OO(t. t. t.t) in order 41. Then there is an 00(20s2t. 20s2t. 20s2t. 20s2t) in

order 80s2t.

4. Method used to form inequivalent Hadamard matrices

CONSTRUCTION 4.1. Let Hbe Hadamard of order n. Form Cj• i = 1.2..... n.
from Has before. Let L and Mbe Hadamard matrices of order t. Then

(L x Cj) ( Mx Cj) = O. i;z: j.

So if HI. ... . Hn are Hadamard matrices of order t (inequivalent or just
different equivalence operations applied to one) then the matrices

Hi1 x Cl. Hi2 x C2.... Hin x Cn • ij E n.2..... n}

can be put into a Latin square of order n to form Hadamard matrices of
order n2t. The method can give many inequivalent Hadamard matrices. For
example. if there are s inequivalent Hadamard matrices of order t and m

inequivalent Latin squares of order n. then there will be at least sn+l
inequivalent Hadamard matrices of ordr n2t. This method can be generalized
to produce inequivalent weighing matrices and orthogonal designs.

5. Method used with coloured designs to form rectangular
weighing matrices.

In a recent paper Rodger. Sarvate and Seberry (1987) have studied
coloured BIBOs showing every BIBO can be coloured. By definition a
coloured BIBO is the incidence matrix of the· BIBO(v. b. r. k. :A) whose
nonzero entries are replaced by r fixed symbols such that each row and
column has no repeated symbol. Consider a coloured symmetric BIBO(v.k. :A)

and a W(k. p). If we replace the i th symbol by Cj for i = 1.2..... k and the 0
entries by the k by k zero matrix. we get W(vk. p2). In general. if we
consider a coloured BIBO(v. b. r. k. :A) and there exists a weighing matrix
W(r. p) then we form the Cj• i =1..... r and replace the ith colour by Cj and
zeros by the zero matrix of order r. This matrix. B. has size vr x yr. rp
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nonzero elements in each row and pk non-zero elements in each column.
Hence we have:

THEOREM 5.1. Suppose tllere is a BIBD (v, b, r, k. A) and a W(r, p). Tllen
tlJere is a (0, I, -I) matrix B w/~Il rp nonzero elements in eacll row andpk
nonzero elements in eacll column sucll tlJat

BBT =rp!.

In particular, If tile BIBD is symmetric tllen we Ilave a W(vk,p2).

o

Remark. If we replace entries of an n-dimensional latin cube by
suitable Cj's then we will get n-dimensional orthogonal designs.
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CHAPTER 8

APPLlCATlQNS IQ ENCBYPTlQN

There are essentially only two operations involved in the classical
encryption of a message: substitution and transposition. In addition. the
message may be accordioned by either introducing or removing superfluous
symbols. The simplest of all encryption schemes is monoalphabetic
substitution. in which each letter of the message is replaced by a fixed
sUbstitute. When encrypting by simple transposition. a permutation P of n
symbols is the key and each successive block of n symbols in the message
is rearranged using P. To strengthen substitution encryption. one may use
not one but several monoalphabetic sUbstitutions, with the "key" including
a specification of which sUbstitution is to be used for each symbol of the
cipher. A well known example is the Vigenere ciphers. in which the
sUbstitutions are simple cyclic shifts of the original alphabet (see
Simmons(1979)).

8,1 Encruotjon usi~ combinatorial desiQns

Some ideas where designs can be used in encryption are presented in

the attached published paper

"Encryption methods based on combinatorial designs". Ars

Combinatoria. 21A, 237-246.

The version of the paper attached here has been slightly modified to make
the ideas clearer. Further research can be done in calculating the
complexity and increasing the efficiency and security of the ideas
developed in this paper. 1he methods described have the attraction of
yielding large compression. The ideas were developed by J. Seberry and this
author in close and continuous association, hence it is impossible to
indicate which idea is from which author.
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Encryption Methods Based on
Combinatorial Designs

Dinesh G. Sarvate and Jennifer Seberry

1. Introduction.

We explore some possible ways combinatorial designs might be
used as secret codes. We are motivated to use designs as:

(l) combinatorial designs are often hard to find;

(2) the algorithms for encryption and decryption are of reasonable
length.

(3) combinatorial designs have very large numbers of designs in
each equivalence class lending themselves readily to selection using a
secret key.

We hope our ideas will encourage much more research into
applications of combinatorial cryptography. Cryptosecurity can be

enhanced by using different methods for producing sequences of random
permutations (see Sloane[1983J) and also by permuting the encoded
message with a random permutation using a secret key (see Ayoub[1981)).

Where we have considered combinatorial designs which are well
known we refer the reader to standard texts such as Hall [1967J •

Raghavarao[197t] or Wallis,Street and Wallis[1972J for definitions and
constructions. For less frequently used or less well known designs a
definition or reference is, given.

All these methods lend themselves to further opacity if random
number generators are used to apply permutations at any or all stages of

encryption. An excellent survey of random number generators can be found
in Sloane [19831.



2. Eneryption method using mutually orthogonal Latin

Squares.

Suppose we have a set of k mutually orthogonal Latin squares of

order n. A key is used which chooses a pair of the k-set at random.

Encryption is now achieved by transmitting for message i,j the element in
the Ci,j) th position of the selected pair of orthogonal squares.

EKample. The following are three 4 X 4 mutually orthogonal Latin

squares:

8.3

1234

A=12143
3412

4321

1234

• B=14321
2143

3412

1234

• C=13412
4321

2143

Suppose the key chooses the third and first Latin squares. Then to
transmit the message 1,4 we send the (1,4) th element of the third and

first Latin squares Le. 4,4.

Decryption is achieved by looking at which row and columns of

the squares contain the pair 4,4 and that is the (1,4) th position.

Extra security is ensured by:

(a) permutations of the rows and columns of the Latin squares as

a set;
(b) permutations of the elements within one or more of the Latin

squares;
(c) the key can be used to change the pair of Latin squares after

every two byte message if required;
(d) the key can be used to change the size of the pairs of the Latin

squares after every two byte message if required;
(e) the. key can be used to choose another inequivalent and

non-isomorphic pair at any stage.
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Mutually orthogonal Latin squares of size n can used to send any

of the n2 possible two byte messages.

Longer messages use or/hogonal F-squares and n-dimensional

array$.

We illustrate via an example. Suppose A, B, C are, as before,

pairwise mutually orthogonal Latin squares then

12342143
34124321
43213412
21431234
34124321
12342143
21431234
43213412

are mutually orthogonal in the sense that each of the 43 messages from

a quaternary alphabet occur in the (i,j)th positions of A1 ,B1, Cl. For

example. the message 1.3,3 occurs in the (2.6) position.

This process of adding more mutually orthogonal faces to ahigher

dimensional array allows:

(a) a key to be used to choose any subset of the faces of the array;

(b) the rows and tolumns of the faces to be permuted;

(c) the elements of the faces to be permuted;

(d) compression of the message;
(e) the key to be used to choose inequivalent higher dimensional

arrays at any stage of the encryption process.



3. Encryption methods using Room squares.

Room squares can also be used to send messages in a fashion

similar to that described for Latin squares. As currently defined not all
messages are available. For example consider the Room square

01 45 27 - 36 - ­

- 02 56 31 - 47-

- - 03 67 42 - 52

62 - - 04 71 53 ­

- 73 - - 05 12 64

75 - 14 - - 06 23

34 16 - 25 - - 07

The situation becomes a little better for encryption if we note
this example is of a skew Room square and so if the i,j entry is empty
the j,i entry, i ;= j is notThus we can send any message.

EHample . Use the modified Room square

11 45 27 - 36 - - I ' ,

- 22 56 31 - 47-

33 67 42 - 51

62 - - 44 71 53 -

- 73 - - 55 12 64

75 - 14 - - 66 23
34 16 - 25 - - 77

Then to encode the message 76 we observe 67 in the 3.4th
position and send 43.

All the permutations that were previously used for the Latin
squares can still be used.

We note further that the Room square of the example is

constructed us~ng the starter-adder technique and each element can be
found from the first row

8.5
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11 45 27 - 36 - -

so that if the l,j element is x,y the i,j+H element is x+i-l.y+H

where j+H. x+i-I and y+H are reduced mod n. the size of the Room

square. We use {t, 2•... , n} as class of representatives.

The differences between the elements of the first row are all

different so to encipher 76 we first note that 6-7=-1 and 45 has

difference 1, hence 76 can also be encrypted by -I. 2 meaning

(a) start with the pair distance 1 apart,

(b) add two to both.

(c) reverse the order.

Thus to decode -2,4 we note 7 and 2 are -2 apart and so decode as

64.

To encrypt longer messages the higher dimensional anlogues of

skew Room squares are most useful.

4. Designs with two way elimination of heterogeneity.

These designs were first studied in connection with estimating

tobacco mosaic virus by Youden(1937) and have subsequently been

studied by a number of authors including Agrawal [1966i,iil, Agrawal and

Mishra[I971l Preece[1966i,iil. Seberry[1979il. Street[I981l, Sterling and

Wormald[I976). A number of infinite families as well as one-off

examples are known.

These designs comprise two designs with parameters

(v1,b,r 1,k, AI) and (r1.b,v I ,k. A2) , such that the incidence matrices N,

and N2 of the designs satisfy the additional property



EwampJe. Let the designs have the parameters

VI =r2=9. r I =v2=4. D=12. k=3

and treatments A.B.C.D.EJ.G.H.I and a.D.c.d respectively.

The two way design is

A D a d c

B c a d D

C d a D c

N12 = 0 c d a D

E d c a D

F D da c

G D c d a

H c d D a

I d c D a

, .
Note that the Dlocks of N2 are the columns of the following array:

D. c. D. a. a.a. d.d. D.c. D. c
c d c d c d a a a D c D

d D d c d c D D d a a a

The Dlocks of NI are the columns of the following array:

A,D.G,A.B.C.A,B.C.A,B.C

BEHDEFFDEEFD

CFI G HIHI GIG H

The two-way design is
AD Dc GD Aa Ba Ca Ad Bd CD Ac BD Cc

Bc Ed Hc Dd Ec Fd Fa Da Ea ED Fc DD

. Cd FD Id Gc Hd Ic HD ID Gd la Ga Ha
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There is a number of encryption methods possible using these

designs.

(l) The treatment of NI is sent to indicate the message given by

the r I -tuple of treatments of N2 associated with that treatment.

In the above example sending F would actually send the message
(b,d,a,c).

(2) The block of NI is sent to indicate the message given by the

k2-tuPle of treatments of N2 associated with that block.

In the example sending 5 would actually send the message (a.c.d).

(3) A pair of treatments of NI is sent. Since NI is a block design

any pair of treatments occurs in Al blocks and the message is those

pairs ( in the order given by the treatments of NI ).

In the example. sending AG actually sends the message ac. where

GA sends ca. , .

Now a secret key can be used to

(a) permute the rows of the two-way designs.

(b) permute the columns of the two-way design.

(c) permute the treatments of the second design,

(d) permute the blocks of the second design.

The advantages or using such designs are

(a) message compression,

(b) ease of decoding/encoding.

(c) if used in reverse it is asymmetric,

(d) the reverse procedure can combine encryption with error

correction,

(e) fhese designs are hard to find even before permutations are

used on them.



5. Crypto and coloured designs.

Some designs exist which may be more useful for encryption
method 3 of the previous section. For example in the following design
on five symbols every pair of elements (x,y), x, y E fa.b,c,d,el occurs as
an intersection of some pair of rows.

A abc
B a de
C b ee
D b b a
E c a e
F c dc

G dd b

So to send say (a,e) we send DC.but to send (e,a) we send CD. The
structure of the design ensures that all the permutations that can be
effected and selected by the secret key are available.

Similar designs where pairs (or Huples) occur exactly once in a

row or column have not been widely studied and offer a fruitful area of
research.

Cryptodesigns with the less restrictive condition that every
element occurs once in a row (so every row is an r-tuple) but each

element in column is different are called coloured designs and have

proved extremely useful. in constructing new B/BDs and SB/BDs(see
Seberry(1985ii), Sarvate and Seberry(1985) and de Launey and
Seberry(1985).).
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6. Encryption method using ordered designs.

The method described in this section is for encrypting a k-ary

message by using combinatorial designs with blocks,whose elements are

ordered. We encrypt a message of length t into a message of length 2, in

other words we compress the message.

Examples of such designs are modified directed balanced
incomplete block designs i.e. DBIBDs (see Seberry and Skillicorn [1980) ,

Street and Wilson[l980], Colbourn and Colbourn[1984]), cyclic BIBDs

(see Colbourn and Colbourn[1984]) and directed packings (see Skillicorn

and R.G.Stanton[1982J. Dawson, Seberry, and Skillicorn [1984]) over v

treatments , v ~ k. The method can be easily extended to unordered

designs.

Label n1,n2, ... ,ns . the s = ( i )ways of selecting a Huple from

a given block of a DD(t.k.v), with NDD(t,k,v) =N. the number of blocks.

Now the DD(t,k.v) uses a k-ary alphabet with blocks of size v such that

each ordered Huple occurs at least once. 'ThUS a t-digit message can be

sent by transmitting two symbols, the first giving the block number (an

integer between 1 and N) and the other the number, na which indicates

the position of the required Huple in the block.

The sender needs a large dictionary but the receiver needs only a

Iist of the blocks and the way of choosing the nith t-tuple from each

block.

This method has the advantages of:

(J) message compression of a high order;

(2) small storage and time needed for decrypt ion.

These properties are needed for example. in transmission to

space-shuttles. undersea activities or other remote receivers.



EHample: Let the message be aab dcc adc. Suppose we use the

following design. 00(3.4,4) together with 14 extra blocks to cover all

the possible triples.

00(3,4,4) : B1= ab c d B2=bad c B3=cad b

B4=dacb B5=d b c a B6=C b d a

Extra blocks: B7=a b ab BS=a c ac Bg=a dad

BlO =b c bc Bll =b d b d B12 =c dcd

BI3 =a b a a B14 =b c bb B15 =c dc c

B16 =d dad BI7 =d b b a B18 =c d aa

BIg =c cab B20=d db c

Suppose n1 indicates we should choose positions 123 of the

block. and n2,n3.n4 indicate choosing positions 124. 134. 234

respectively of the block. Then since aab is found in B7, aab is encoded

as 7,n3. dcc is encoded 15,n4 and adc is encoded 2,n4.

This design is not optimal in the sense that many pairs and triples

occur 2 and 3 times. Optimal solutions where each possible t-tuple

occurs and the fewest number of blocks possible is used. would be of

great interest.

7. A practical Method.

An interesting 'application of the Rubik cube. in games or

teaching. occurs when the message is of length less than or equal to 54

units. The sender and the receiver know how to read the message on the

cube. The sender applies operations P1.P 2•...• Pn and sends the cube via

a messenger. The receiver applies Pn-1•...• PI -1 and recovers the

message.
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allncrUDtjon using l:lungarian rjngs

The Hungarian Rings puzzle (called Hungarian rings) consists of two
interlocked rings of 20 balls such that either ring can rotate as a cycle. The
intersections of the two rings are 5 balls apart in each ring as shown in
Fig. 1.

00000 000 0o 0o 00 0
0 00 0
o 0 0 0
o 00 0
000

°00 0 000°

Fig. I

We know that encryption is closely related to substitution and
permutation of the message symbols. We wish to give a systematic method
to permute the message block while scrambling in the message a number of
arbitrary message symbols. If any secur.e SUbstitution, which also
compresses the message, is used with the method given in the attached
paper

"Encryption using Hungarian rings", Discrete Applied
Mathematics, 16, 1987, 151-155,

then we may have a very secure encryption. A method which uses ordered
designs and which has amessage compression of a very high order, is given
in section 8.1 (Sarvate and Seberry (1986». The version of the Hungarian
rings which is used in the ~ttached paper consists of two interlocked rings
of a and b balls respectively. At any instance the two interlocked rings have
only two balls common. We do not restrict the intersections of the two
rings to be a fixed number of balls apart. The method can be easily modified
for any integer a, b and any integer t of common balls.



Encryption using Hungarian rings

Joseph Hammer and Dinesh G. sarvate

Introduction

Encryption is closly related to sUbstitution and permutation of
message symbols. In this note we use the Hungarian rings structure for that
purpose. It breaks up a message into segments of different lengths. For
each segment we apply a different permutation. We are going to present a
systematic method to permute the segments while scrambling a number of
arbitrary message symbols. Note that the Hungarian rings present a physical
model for the abstract concept of scrambling and permutation. For us the
Hungarian rings HR(a, b) consists of two inter-locked rings, RI and R2, of a
and b balls respectively with four operations, called HR operations R1+. R1-.

R2+ and R2-. where Ri+ is to rotate the balls of the ring Ri in the

anticlockwise direction and Ri- is to rotate the balls of Ri in the clockwise

direction. We notice that Ri+ and Ri- are inverse operations. For proper

definition and illustration the reader is' referred to Singmaster [4).
Encryption methods based on combinatorial designs were studied recently
by Sarvate and Seberry [21. The technique depends mainly on the random
permutations and the large number of equivalent designs with same
parameters. In the present note we have used the structure of Hungarian
rings and its movement (Le. HR operations) together with the random
permutations to encrypt a message of length m into a message of length
Lm, the key being a 6-coordinate number with s HR operations PI. P2, ...• Ps·

The message is encrypted in such a way that each (a+b-2) bits of
encoded message will ha\le only 'a' bits of information scrambled by a
random permutation and s HR operations.

When we talk about labelling the ring by message block, we
understand that the balls on each ring have an inner labelling as I, .... a and
1, ...• b and also an inner labelling of 1•...• a+b-2 when we consider both

rings together.
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J. Hammer, D.G. Sarvale

When we talk about generating random permutations or random numbers, we
assume that a common procedure is known to both sender and the receiver. We also
assume that both sender and receiver have a collection of sets of two methods for
random number generation and three methods for random permutation generation.
The sixth coordinate will indicate the set which will be used at the next message. Of
course, for the first time both sender and receiver have fixed a set to be used for
encryption. An excellent survey of random permutations can be found in Sloane (3).

Algorithm
Step 1. Generate random integer sequences {x;}f= I and {N;}!= \' using the first

and second coordinat~of the key, such that

I-I 1

E y;Nj$m$ E y;N;
;= I i= I

where y; = 0 or b depending on x; being odd or even.
Step 2. Break the message into submessages of length y;N;. i = I, ... , t.
Step 3. Produce sequences of random permutations {B;}!= I' {A;}!= I and {S;}!= I

using the third, fourth and fifth coordinate:of the key respectively, where B; is a
permutation over {I, ... , b}, A; is a permutation over {I.... , o} and S; is a permuta­
tion over {l,2, ... , 0 + b - 2}.

Step 4. For i= 1 to t. encode the submessag~ block of length y;N;.
Step (i). Call the ring with y; balls RI and the other ring R2 •

Step (ii). Break the submessage block into blocks of length y;.
Step (iii). For j = 1 to N; do the following:

(a) Label RI by the message block.
(b) Label R2 by arbitrary message symbols.
(c) If RI is of a'balls. then apply A; on R"else apply B; on RI'
(d) If R 2 is of 'b balls, then apply B j on R\.else apply A; on R 2•

(e) Apply S; on RI and R2 together.
(f) Apply HR operations PI•...• Ps •

(g) Send the message.
To decode, the receiver applies Steps I and 3,except that he breaks the message

into subsequences of lengtlii (0 + b - 2)· N;. In Step 4 he uses the inverse permuta­
tions and HR operations, while applying substeps in reverse order.

Remarks. (I) Note that the arbitrary symbols of the second ring will not change the
position in the encrypted message, thereby making them vulnerable for breaking.
This problem can be solved by using successive relabelling in the sense that from
j = 1 to N;, for j = I + I. consider the positions in the step j = I in RI and R2 as the
original positions (as inner labelling). This can conveniently be done in a computer
program. a.

(2) Instead of"six-coordinate key we can send only one number to be used to pro­
duce six random numbers, which can be used as seeds for the algorithm.



Encryption using Hungarian rings

Complexity. Suppose m is the length of the message and it is encrypted into a
message of length n = Lm. The intruder first has to factorize n = Lm in 0 +b - 2 and
E Ni to be able to determine the size of the rings and the sequence of integers
Ni' Next the intruder has to determine all subsets S of {l. 2•...• E Ni} such that
Ejesj = E:= I Ni (where S is independent of t). Now this problem contains the
following NP~omplete problem in Garey a~ Johnson [I. p. 223].

Give.fset A. size s(o) e Z+ for each oeA: p;'sitive integer B. Is there a subset A'
~ ~

of A S.t. the sum of the sizes of the elements in A' is B?

Example. For simplicity we assume that our rings are of four and three balls respec­
tively and the balls are named as b l , b2• b3 • b4 and bs•Two balls are common to
both the rings, and each ball is represented by a triple (x, Y. z) where x represents....
the inner labelling as a ball from)ndividual ring, y is the inner labelling when we
consider the balls together and z is the message symbol attached to the ball while
encrypting a certain submessage block.

Let
b l =(I,I.-). b2 =(2,3.-). b]=(3,,4.-).

b4 = (41, 5. -) and b.s = (32, 2, -)
~~e ~~e

where bl. b2, b] and b4 " the balls of first ring and bl • b2 and bs " the balls of
the second ring. The subscripts for the first coordinate are same for two balls from
the same ring. The first coordinate without subscript means that ball is common to

both rings.
Let the HR operations in the key be R I + and R2-·

Let the secret message be 0 1 I I 0 1 1 I 0 I.
Step I. Let XI = 2, X2 = 5, NI = 2 and N 2 = I.
Step 2. The message is broken into two parts of lengths b· NI = 3 . 2 and

o· N 2 =4· I, viz.

o1 I 10 1 and 1 10 I.

Step 3. For the sake of simplicity, let A" B I and SI be the identity permutations
and let A 2• B2 and S2 be the shift permutations by 1 (Le.• A 2(x) =x+ I.x= I, ...• 0-1
and A 2(0) = I. Similarly for B2 and S2)'

Step 4. We encode first 01 1 I 0 1 with the following steps.
Step (i). Let the ring with balls bl' b2 and b.s be R, and the other ring be R2•

Step (ii). Let the submessage blocks be 0 I 1 and I 0 I.
Step ~iii). (a) Label RI by the message block 01 I.

(b) :"')"lhe arbitrary message symbols O. 1 to the balls b] and b4 , Le.• we
have b.=(I.I.O). b2 =(2.3.1). b]=(31. 4•O), b4 =(4•• 5.1). b.s=(32.2.l).

(c) Apply identity permutation BI on RI'

(d) Apply iden~ity permutation AI on R2:
(e) Apply identity permutation SI on RI and R2 together. so in these steps

there is no change in the coordinates of the b;'s.
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(f) Apply R I +, to get

b l = (2, 3, I),

b. = (41, 5, I),

b2 =(32, 2, I),

bs= (I, 1,0).

Apply R2-, to obtain

b l =(41,5, I), b2 = (2, 3, I),

bs= (I, 1,0)

(i.e., b l -+ b2 , b2 -+ b), b) -+ b., b...... bl ; bs..... bs)
(g) Hence the encrypted message for 0 I I is

I I I 0 O.

(i.e., the last coordinates of the b;'s). Similarly 101 is encrypted into

10101.

Now to encrypt I I 0 I, we proceed as before:
Step (i). Let the ring with balls b l , b2, b) and b. be RI and the nng with balls b l ,

b2 , bs be R2 •

Step (ii). Here the submessage block is only one, viz. 1 I 0 I.
Step (iii). (a) Label R I by thi message I I 0 I.

(b) Let the ball bs be label!d by the symbol I, i.e., we have

b l = (I, I, I),

b. =(41, 5, I),

b2 =(2,3, I), b)=(3I,4,O),

bs= (32,2, I).

(c) Apply the shift permutation, A 2 on RI' to get

b l =(2,3,1),

b.=(I, I, I),

b2 = (3), 4, 0),

bs= (32' 2,1)

(Le., b2 -+b l , b) ..... b2 , b.-+b), bl ..... b.).
(d) Apply the shift permutation, 8 2 on R2 , to get

b l = (31,4, 0),

b. = (1,1, I),

b2 = (32, 2, I),

bs=(2,3, I)

(i.e., b2 -+b l , bs-+b2 , bl-+bs; b)-+b), b.-+b.).
(e) Apply the shift permutation 82 on RI and R2 together to get

b l =(32, 2, I),

b.;" (2, 3, I),

b2 =(41, 5, I),

bs=(3., 4, 0)
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(Le.• bz .... b•• b3-bz• b4-b3 • bs.... b4 • bl'.... bs).
(f) Apply R.+ to get:

8.19

b) = (4•• 5. I).

b4 =(3z.2, I).

bz= (1.1.1).

bs= (3 •• 4. 0)

b3 = (2, 3.1).

(Le., b.'-+b4 , b4 .... b3• b3 .... bz• bz .... b.; bs .... bs).
Apply Rz-. to get

b l = (31, 4. 0).

b4 =(3z. 2,1),

bz=(4.,5, I),

bs=(I,I,I)

b3 = (2. 3.1).

(Le., b.-bz• bs .... bl> bz .... bs; b3 .... b3 , b4 .... b4 )·

(g) Hence the encrypted message for I I 0 I is

01111

So the message 0 I I I 0 I I I 0 I is encrypted into

I I 100 I 0 I 0 I 0 I I I I.
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CONCLUSION

In the light of the results presented, some unanswered problems are
posed for further research.

In Chapters 1 and 6, the technique used to give constructions for
BIBDs and PBIBDs has been explored to construct t-designs (Kramer and
Messner (1976), Alltop (1971)). Can we use similar techniques to construct
cyclic and directed t-designs? Algorithms to order BIBDs of block size 3
to get directed designs have been studied by Colbourn and Harms (1983).
Can we get similar algorithms and results for directed designs with block
size greater than 3 and for cyclic and equi-neighboured designs with block
size greater than or equal to 3?

In Chapter 2, Harms and Colbourn's conjecture has been discussed.
Can we give non-trivial families which satisfy the conjecture? Can we
apply Hanani's theory to the conjecture with block size greater than 3?

The existence problem for colourable designs is settled, but that for
crypto designs is still untouched. Colourable designs have been used to
construct orthogonal designs. How can they be used to construct other
designs? Now, as colourable designs are edge-coloured graphs and
colourable designs are used to construct GODs, can we use some other
edge-coloured graphs to construct BIBDs and GODs? Can they be used in
encryptions?

The generalized Bhaskar Rao designs over abelian (but not elementary
abelian) groups are mostly untouched except for the result on block size 3
over Z4' In general, we need to identify systematically the unknown GBROs

and look for them, e.g. GBRD(7, 3, 2t ; Z2t) is not known. We know that an

SBIBO(5,4,3) and a GBRO(4, 3, 2t ; Z2t) exist and hence a GBRD(5, 3, 3.2t ; Z2t)
exists. A GBRD(3, 3, 12; Z12) cannot exist because of Drake's theorem (Drake
(1979), Theorem 1.10) but we can get GBRD(3, 3, 24; Z12)' Or Jennifer
Seberry has recently found a few more new GBRDs (v, 4, 4) over Z2 x Z2' to
complete the work on block size 4. The work is still not over. The method

C.l
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used in constructing orthogonal designs is simple and must be exploited
more. Sarvate and Seberry (198?) have recently given a new construction
for a known family of weighing matrices viz. W(p2(p-l), p2), using the 2­
adjugate method of Patwardhan and Vartak(l980). Can we modify the

method to get new weighing matrices. How the construction for orthogonal

designs be generalised? In the end, as Constance Reid has written in

"Hilbert", "The world of mathematics is inexhaustible."
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SUtltlABY

Theoru of combinatorial designs with appl ications
1Q

encruption and the design of experiments
By

D. G. Sarvate

The main aim of this thesis is to prove that the necessary conditions
are sufficient for the existence of various block designs with small block
sizes and to explore the use of block designs in encryption and the design
of experiments. Some general constructions and results are obtained.

The various designs studied are as follows.

In Chapter 1 block designs are introduced. using graphs, and a
construction of PBIBDs. using n-partite graphs. is given.

Chapter 2 deals with directed and cyclic designs of block size 3 and
4. By generalizing results of Hanani, it is proved that the necessary
conditions are sufficient for the existence of directed group divisible
designs(GDDs) of block sizes 3. 4 and cyclic GDDs of block size 3 except
v =6 and group size =1. Some general results are given. The existence of
cyclic BIBD(v. b. r. 4. (4t+2)") for v ;: 0, l(mod4) and cyclic BIBD(v. b, r. 4,
4t") for all v ~ 4 is established.

Chapter 3 is on equi-neighboured designs. One of the results proved
is that every GDD of block size three. with A = 3t. underl ies an equi­
neighboured GDD.

Chapter 4 is on simple designs. A theorem of R. G. Stanton and R. J.
Collens is used to show that the necessary conditions are sufficient for the
existence of simple balanced incomplete block designs (simple BIBDs) with
block size three. Embedding theorems for simple BIBDs. based on a method
of graph factorization. are given.



Coloured designs are in Chapter 5. Many new families of GODs and
BIBDs can be obtained by using construction based on coloured designs. One
such construction and an existence theorem for coloured designs are given.

In Chapter 6 some general constructions. based on directed graphs
and t-designs, for families of PBIBDs and BIBDs are given.

Generalized Bhaskar Rao designs and orthogonal designs are studied
in Chapter 7. It is shown that neither BRD(1O,4,2) nor GBRD(7, 4, 4; Z2 x Z2)

exists. It is shown that the necessary conditions are sufficient for the
existence of a GBRD(v, 3, 4t; Z4) except possibly when Cv. t) = (27, 1) or

(39, 1). Some new constructions for weighing matrices and orthogonal
designs are obtained by extending a method of Kharaghani.

Chapter 8 gives some ideas about applications of designs in
encryption. A systematic method to permute the message block, while
scrambling, in the message, a number of arbitrary message symbols, is

given.
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