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A pairwise balanced design, PBD [K, X : v), is a pair (S, B) where S is
a v-set (of points), 8 is a class of subsets of S (called blocks) such that
for any block B in B, |B] € K and any pair of distinct points of S is
contained in exactly A of the blocks of B.If K = { k } then the design is
called a ba/anced incomplete block design, BIBD (v, k, A). The constant A is
called the index of the design. If any t-set of distinct points of S is
contained in exactly A of the blocks of §, then the design is called a
t-design  The necessary conditions for the existence of BIBD(v, k, A) are

vr = bk
Alv-1) = rk-1),
and  baw

An gssociation scheme with m associate classes on a v-set S is a
family of m symmetric anti-reflexive binary relations on S, such that:

(i) any two distinct elements of S are ith associates for exactly one
value of i, where 1 <i<m:;

(ii) each element of S has nj ith associates, 1 <i<m;

T
(iii)) for each, 1< i <m, if x and y are ith associates then there are

P}k elements of S which are both jth associates of % and k!l associates of
y. The numbers v, nj (1 < i < m), and F'"jk (1<i,j k<m) are called the
parameters of the association scheme.

From the above definition, we see that ijk = P;(j.

A partially balanced incomplefe block design with m associate
classes (PBIBD(m)) is a design based on a v-set S, with b blocks each of

I.



size k and replication number r, such that there is an association scheme

with m classes on S satisfying the following: if elements x and y are ith
associates, 1 < i< m, then they occur together in A blocks. The numbers v,

b, r. k, Aj (1 < i £ m) are called the parameters of the PBIBD(m).

The association malrices Bj = (tl)'jk hlsismi<jke<y of a
PBIBD(m) are defined by
I if jand k are ith associates,
bjk =
0 otherwise.

The sincidence matriy N of a design {e.g. a BIBD) is a v x b matrix
where v is the number of points of the design and b is the number of blocks
of the designs. The rows of the matrix correspond to the points sj, 1S i<y

and the columns correspond to the blocks Bj, 1 < i < b. The (i, )t entry ajj
is determined as follows:
I'if sj € Bj
aj = :
0 otherwise.

If N is the incidence matrix of a PBIBD(m) then it is wel known that
m
NNT = rl + % AiB;,
i=1
We define group divisible designs as in Hanani(1975). Let S be a v-set
and let G;, Gy, ... G be a disjoint partition of S where each Gj is of size m.
The sets Gj’s are called groups. A group divisivle design, GDIk, A, m; v], is a

collection of k-subsets (called blocks) of the v-set S such that each block
intersects each group in at most one element and a pair of elements from
different groups occurs in exactly A blocks. In a similar way we define a
GDIK, A, M: v], where the size of each block is an element of K and the size
of each group is an giement of M.




These designs have interesting applications in different areas in
industry (see e.g. Roberts (1384)). An extra effect can be obtained if we
consider the block as an ordered set and/or consider that a block contains a
particular number of pairs, which occur in a particutar way. For example,
we may think of a block, say, {a, b, ¢, d} as an ordered set which contains
only the ordered pairs (a, b), (a, <), (a, d), (b, ¢), (b, d) and (c, d) instead of
the six unordered pairs (a, b), (a, ¢), (a, d), (b, <), (b, d) and (c, d). Such a
design is called a airected design These designs have applications in
computer networks (Skillicorn (1981)), in experimental design theory and
medical experiments where the order of treatments (points) in time is
significant (Street (1981). In a cyc/ic design we think of the block as an
ordered set which contains only the ordered pairs (a, b), (b, ¢), (¢, d) and
(d, a), whereas in an equi-nelghboured design we think of the block as an
- Ordered set which contains oniy the pairs (a, b), (b, ¢) and (c, d).

Let W =[wj; ]1be a matrix of order n with wij € {01, -1). W is called
a welghing matrix of weight p and order n, if WWT = WTw = Pl where 1,
denotes the identity matrix of order n. Such a matrix is denoted by win,p).
If squaring all its entries gives an incidence matrix of a SBIBD then W is
Called a pa/anced weighing matrix, '

AN orthogonal design , (OD), say A, of order n and type (s4, So, ... St)
on the commuting variables (i, .., %) and 0, is a square matrix of order n
with entries from (x, .., %) and 0. Each row and column of A contains
entries equal to % in absolute value, the remaining entries in each row and
column being equal to 0. Any two distinct rows of A are orthogonal. In
other words

AAT = (s + ..+ 5%¢2) .

An Hadamard matrix A = [ay] is @ W(n, n), ie. it is a square matrix of
order n with entries a;; € {1, -1}, which satisfies |

AAT = ATA =ni,.



Suppose we have a matrix W with elements from an abelian group
G = {h1, hg. - hg} where W = h1A1 + h2A2 + ...t thg. here A1, - Ag arevxb
(0, 1) matrices, and the Hadamard product Aj * Aj (i = j) is zero. Suppose
(3jt , - 3jp) and (bjy , ... bjp) are the i and jN rows of Wi then we define

ww* by

~\ -
(Ww*jj = it . ..., aip) - (bjf + .. Djb)
with *." designating the scalar product. Then W is a generalized Bhaskar Rao
design or GBRD over G if:

m
(i) WW* =l + Y (¢iG)Bj;
i=1

(i) N = Ay + ... + Ag satisfies
m
NNT = rl + 3 AiB;,
i=1
that is, N is the incidence matrix of a PBIBD(m), and (¢iG) gives the number -
of times a complete copy of the group G occurs.

Such a matrix is denoted by GBRDg(V, b, r, ki A ey Ams Cie v )
wWhenm =1, ¢ = A/g and B; = J - |, N is the incidence matrix of a BIBD. In
this case W is a GBRDg(v, b, r, ki A) or GBRDg(V, k, A).

In Chapter | some elementary theory of designs using graph theory is
introduced. A construction of PBIBDs using complete bipartite graphs is
given {(joint work with Hammer).

In Chapter 2 it is proved that the necessary conditions are sufficient
for the existence of:

(i) directed group divisibie designs with block size 3;



(ii) directed group divisibie designs with block size 4.

(iii) cyclic group divisible designs with block size 3 except v = 6 and
group size 1;

(iv) cyclic BIBD(v, b, r, 4, (4t)*) for v> 4

and it is proved that a cyclic BIBD(v, b, r, 4, (4t+2)*) exists for
v =0, 1(mod 4).

The “** on (4t) and (4t+2) indicates that we count the occurrence of
the ordered pairs.

In Chapter 3 recursive constructions for equi-neighboured BIBDs of
block size 3 are given and it is proved that every group divisible design of
block size 3 with A = 3t underlies an equi-neighboured group divisible
design, i.e. every group divisible design of block size 3 and A = 3t can be
ordered in such a way that it becomes an equi-neighboured group divisibie
design.

In Chapter 4, a new proof is given that the necessary conditions are
sufficient for the existence of simp/e, (without repeated blocks), baianced
incomplete block designs with block size 3. Some embedding theorems for
simple balanced incomplete block designs with block size 3, based on a
method of graph factorization, are given,

In Chapter S crypto designs and colourable designs are defined. A
crypto or colourable design is an incidence matrix of a block design where
the non zero entries of the incidence matrix are labeled by a set of symbols
called colours. An application of colourable designs to construct group
divisible designs is given. The edge colouring of bipartite graphs is used, in
the proof of the main existence theorem of colourable designs, which says
that every block design is colourable. This theorem does not tell us how to
do the colouring and hence the rest of the chapter is devoted to the
methods and constructions for colourable designs (joint work with Rodger
and Seberry).



Chapter 6 gives constructions for families of BiBDs and PBIBDs.
These constructions are based on directed graphs and t-designs.

Chapter 7 (joint work with de Launey, Hammer and Seberry) deals
with orthogonal designs. In particular, Chapter 7 deals with the non-
existence of GBRD(7, 4, 4, Z, x Z,) (with de Launey), the existence of GBRDs
with block size 3 over Z4 (with de Launey and Seberry) and a construction .
for weighing designs extended to orthogonal designs (joint work with
Hammer and Seberry).

Chapter 8 explores the use of combinatorial designs in encryption. A
systematic method to permute the message block, while scrambling in the
message, a number of arbitrary message symbols, is given (joint work with
Hammer and Seberry).

Preprints and stightly modified reprints of papers, some written by
the author and some as a joint author have been used, to form the main
body of the present thesis. This has reduced the manual work involved in
the thesis but it has some drawbacks, viz. the lack of uniform notation; for
example the use of BIBD(v, k, A), BIBDIk, A; v} and Sa(2, k, v) to denote &
BIBD and repetition of some definitions and known theorems. Please note

that reference numbers contained in papers included in this thesis indicate
the references at the end of the each individual paper.



CHAPTER |
INTRODUCTION OF BLOCK DESIONS BY GRAPHS

A graph (V, E) is a non-empty finite set V of points and a finite set E
of edges consisting of pairs of distinct points. Graphs can be used as very
effective tools to prove theorems in the theory of block designs and to
give existence theorems and constructions for block designs. Such
applications will be seen in the present Chapter and in Chapters 3, 4, 5 and
6. Hence,‘j’preprint of a joint paper with J. Hammer is attached here. This
paper contains many known results. The construction of partially baianced
incomplete block designs found by this author is a modification of that of

Alltop (1966) and is new. The paper has been submitted to The Mathematical
Gazette.
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ON THE INTRODUCTION OF BLOCK DESIGNS BY GRAPHS

Joseph Hammer and Dinesh G. Sarvate
Introduction
The history of combinatorial designs has remarkably humble

beginnings. In 1781 Euler encountered the following problem which led to
the development of Latin squares:

There are thirty six officers, six officers of six different ranks from
each of six regiments. The officers wish to parade in a 6 x 6 square
formation such that each row and each column contains one and only one
officer of each rank and one and only one officer from each regiment. Can
this be done?

Euler conjectured that there does not exist such an arrangement. This
conjecture was proved as late as 1901 by Terry (14). Much later in 1850
Kirkman (8) also encountered a "marching” probiem (probably influenced by
Euler’s problem) which led to the development of the block designs:

A school-mistress wishes to take fifteen girls on a daily walk for
seven successive days, three girls in each row: to avoid boredom she wants
to arrange them so that no two girls shall walk in the same row more than
once. Can this be done?

Unlike the Euler’s problem, this arrangement does exist. In fact there
are 845 essentially different solutions to the problem. Curiously Kirkman
published this problem as a puzzle in the obscure magazine, Lady's and
Gentleman's Diary among such queries as this: What is the origin of the
custom of making fools on‘the first day of April?

A few years later, in 1853, Steiner (12) proposed a similar problem
and these types of designs are called todays Stemer Uriple systems
Interestingly some people (see e.g. Erdos (5 )) suspect that Steiner did



know about Kirkman's probiem. Moreover in 1844 Woolhouse (17) also
proposed a similar problem.

These seemingly light-hearted problems are the origin of a huge and
fertile area of combinatorics, generally called des/ign theory They arise in
many parts of combinatorial mathematics: from group theory to finite
geometries, from number theory to coding theory. The problems also have
useful important applications in various areas of industry. Apparently the
first such application was done in 1926 by Sir Ronald Fisher (6) who
applied Latin squares for the very practical purpose of statistical
experimentation in agriculture. Subsequently Frank Yates (18) in 1936
introduced balanced incomplete block designs for similar purpose. It turned
out that this latter design became probably the most interesting and
influential in the development of design theory. It also has a wide range of
applications in a surprising number of different areas in industry. For
example, psychology (see, e.g. Durbin (4)), virus research (see, e.g. Youden
(19)), agriculture (see, e.g, Wellhausen (17)). A formal definition of a
balanced incomplete biock design is the following:

A block gesign(v, b, r, K) is an arrangement of v opjects into b
Dlocks so that

(i) each object appears in exactly r blocks;
(ii) each block contains exactly k distinct objects.

The block design is ba/anced, if in addition, each pair of distinct
objects appears in exactly A blocks. It is mcomplele if k < v, that is
every object does not appear in every biock.

One often refers to a balanced incomplete block design (BIBD) as a
(v, b, r, k, A)-design, i.e. a (v, b, r, k, A)-design is a BIBD with v objects (or
varieties), b blocks each of size k with rep/lication number r and /ey
A=z0.



As an example, consider a (4, 6, 3, 2,1)-design on objects
{5}, 52, 53, 54} and blocks

By = {5y, 52}, By = {51, 83}
Bs = {5y, 54}, B4 = {52, 53}
Bs = {55, 54), Bg = {53, 54J.

This is a BIBD with 6 blocks each of size 2 based on 4 objects with
reptication number 3 and index 1.

Instead of a list of the blocks a BIBD can also be described by the
incidence matriy, M of the design. Thisis a v x b matrix. The rows of the
matrix correspond to the objects sy, $p. .., Sy and the columns correspond

to the blocks By, By, ... Bp. The (i.j) entry ajj is determined as follows:

ajj ={1 if si € Bj,
0 otherwise.

For exampie the above BIBD has incidence matrix as follows.

several results about block designs can be easily proven in terms of -
their incidence matrices. The incidence matrix may also be used to
represent the block design in a computer.



In this paper block designs are represented by graphs. Graphs are a
very useful tool for describing and analysing situations consisting of a set
of elements in which various pairs of elements are related by some
property. The advantage of using graphs to describe a block design instead
of listing the sets element by element is that the structure of the design
can be seen more clearly. Perhaps the nearest comparisons are the use of
Venn diagrams in set theory or employing vectors in  mechanics.
surprisingly the authors have not seen such a useful application of graphs
in any standard text of graphs or combinatorics.

Note that only those theorems are proved, which can be established
elegantly by graph theoretic methods, otherwise theorems are merely
[+]
quoted and references ef the proofs are provided.

For convenience, those definitions and results of graph theory, which
will be needed, are presented. Further explanations of these terms and the
proofs of stated theorems can be found in any standard text, e.g. [7].

Basic results

A graph G is a pair (V(G), E(G)) consisting of a finite nonempty set V
of elements called vertices and a finite set £ of edges consisting of pairs
of distinct points. If e = (u, v) is an edge of C, then e is said 10 join the
vertices u and v, and these vertices are then said to be adiacent. We also

say that e is /nc/dent to u and v. In this paper there will be at most one
edge connecting any two given vertices.

Let us represent the block design in the example given above by a
graph.

Let the four objects .and the six blocks be vertices. An object will be
adjacent with a block if the object appears in the block. For instance, s
and s, are adjacent to By ; 84 is adjacent to Bs, Bs and Be.

1.



Thus the block design has the following graph representation:

S S S3 S4

By B, Bz Bs Bs Bg
Fig. 1

The degree d(v) of a vertex v is the number of vertices to which v is
adjacent, formally

d(v) = |{u e V(G): (u, v) ¢ E(G)}].
The following result is very useful:

in any graph, the sum of the degrees of all vertices is equal to twice
the number of edges, formaily:

S d(v) = 2]E].

vev

Some call this result the handshaking lemma since it implies that if several
people shake hands, the total number of hands shaken must be twice the
number of peopie who shake hands.

In the example we can see that d(sj) = 3 and d(Bj) = 2 for all
i=1.,4andj=1 .., 6 and by the handshaking lemma we have

2|E] = & disj) +2 d(B)) = 24,
i.e. |E] =12.



A graph is said to be reguiar if the degree of every vertex is the
same.

A subgraphr of a graph G = (V(G), E(G)) is a graph H = (V(E), E(H)) such
that V(B) is a subset of V{G) and E(H) is a subset of E(G).

An important subgraph is a sequence of edges of the form
(vo. Vi), (v, v2), ... (vk-1, vk) and is called an edge-sequence of graph G

from vg to vk. A path is an edge-sequence in which the vertices are

distinct. The length of a path is the number of edges in the path. For
instance, the /ength of the path from s, to s,, in the example is 2.

we say, that the a/s/ance from sj to Sj is P if it is the length of a
shortest path between s and Sj&

A graph in which each pair of vertices is adjacent is called a
complete graph. A comp/efe graph on n vertices is denoted by K. Kp is a

regular graph of degreen - 1,

A bpartite graph G = G(Vy, V,) is one whose vertex set V can be
partitioned into two subsets V; and V, so that each edge has one end in Vi
and one end in V,. Consequently no pair of vertices in V, is adjacent;
likewise for V,. If each vertex of V; is adjacent to each vertex of V, then
it is called a complete bipartite graph, denoted Kpyp where Vil = m and

[V2] =n.

In the case of bipartite graphs we have an important special property
of the handshaking lemma: If G = G(V,, V,) is bipartite then no edge of G
can be incident to two vertices in V, or to two vertices in V,. In other
words every edge in G is incident to esactly one vertex in V,; and one vertex
inV,. S0, we have

> d(vy) = 3 d(Vy) = |E].

The graph which represents the BIBD in the example is a bipartite
graph of bipartition (V,, V,) where V; = {s, s, 53 541 and

.7



Vy = {B;, By, B3, By, Bs, Bgl. Every vertex of V, is of degree 3 and every
vertex of V, is of degree 2. In fact, any block design can be represented by
a bipartite graph. In particular, a BIBD of parameters (v, b, r, k, &) is a
bipartite graph G(V, B) wherg V corresponds to the objects and B
corresponds to the blocks. Vertex vj ¢ V is adjacent to a vertex Bj € B if

and only if object vj appears in block Bj. Each vertex vj ¢ V is of degree r
and each vertex Bj € B is of degree k.

A block design is called symmelric f v = b and k = 1. The
corresponding graph G(V, B) is a regular graph. It is known that any two
distinct blocks of a symmetric BIBD have exactly A points in common. (For
a proof see Street and Wallis (12) p.164.)

We say that a block design is complefe if each block contains all
objects. In this case we have a complete bipartite graph, Ky p. If v =b then

Kyp represents a latin square based on v elements which is a particular
block design.

in an incomplete block design, r < b and k < v and the corresponding
graph G(V, B) is a subgraph of Ky p.

The block design is balanced if for any pair of vertices of V there are
exactly A vertices of B which are adjacent to both vertices of the pair.
(Thus any two vertices of V are joined by exactly A paths of length 2.) It is
called a t-design if there are exactly A vertices of B which are adjacent to
all the members of a given t-subset of V.

The agjacency matriyA(G) of a graph G on vertex set
X(G) = {%), %2, ... %n} is @ symmetric n x n matrix A(G) = (ajj) such that

ajj T if xj is adjacent to xj,

0 otherwise.



The (i,j)th entry of AZ is the number of paths of length 2 from & to
Xj in G ( i.e. the number of vertices adjacent o xj and xj) and the
(i.)th (i. e. the diagonal) entry is the degree of the vertex &j in G.

we have the following relationship between the adjacency matrix
A(G) of the bipartite graph corresponding to the (v, b, r, k, A)-design and its
incidence matrix M:

The edge-adiacency matriy U(G) of a graph G on edge set
e(G) = {ey, 3 ... em}
is an m » m matrix U(G) = (gjj) such that |
ejj = {1 if ej and ej have a vertex in common.

0 otherwise.

The /ine graph L(G) of a graph G is the graph with vertex set E(G) in
which two vertices are joined if and only if they are adjacent edges in G.
The edge-adjacency matrix U(G) of G is the (vertex) adjacency matriz of
L(G).

Now we are ready to prove a few basic theorems.
Theorem 1. For a (v, b, r, k)-design vr = bk.

Proof. Let the block design be represented by the bipartite graph
G = G(V, B). We count the number of edges of G in two ways. The sum of
the degrees of vertices in V, £ d(vj) = vr, and the sum of the degrees of

vertices in B, £ d(B;) = bk. By the counting principle we have |E] = vr = bk.

O
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Theorem 2. Let the number of blocks in a t-design containing a given t-set

~ be A. If A is the number of blocks containing a given i-set, then

k=i v-i i =
Aj (t-1) A ) i=0,1 .t

where At = A and Ag is the number of blocks in the design.

Proof. Let G(V,B) be the graphical representation of the t-design. Let | be
the fixed i-subset of V. We count in two ways the number of Ky with
single point in B and the t-set in V containing |, in other words we are
counting the number of stars of size t+1 with center in B and containing the
set | in two ways as shown below.

First there are Aj blocks containing I. The block size is k, hence the

number of t-sets in V containing I in each biock is { K=l )} Tnerefore the
number of the required Ky is A Jf:'L } on the other hand, the number of t-

sets containing | is (}:_‘1 ) and each t-set occurs in At blocks. Therefore .

the number of Kyt 's is ?\(z'i )} Hence the required result,

Corrollary. Ina (v, b, r, k, A)-design A(v-1) = r(k-1).

Remark: Notice that a path of length 2 is a Ky where Ay = A and g is the
number of biocks in the design.

Theorem 3. If M is the incidence matrix of a (v, b, r, k, A)-design then
MMT = (r - ?\)]V + 7\Jv.

where ly is the v ® v ideritity matrix and Jy is a v x v matrix with every
entry 1.

Proof. The adjacency matrix of the bipartite graph G{V, B) corresponding
to the (v, b, r, k, A)-design is



A(G) = [0 :n}
Mt o).

Since A is symmetric, A = ATand we can write

AAT= A2 = To ! j2 = ’MﬂT: 0
R ‘._-- —....:_--..-
MT ! O 'MM

where MMT is of size vy v and MTM is of size b % b.

Since each vertex v € V is of degree r and v; is connected to every
other vertex of V by A distinct paths of length 2, we have that each
diagona! entry of MMT is r and all the other-entries are A. This gives tis

MMT =rly + Ady - Aly = (r- ?\)IV +AJy
as required.

B

On the other hand, MTM has no analogous relationship between its
entries unless b = v. For the number of paths of length 2 between pairs of
vertices of B is not constant. However the diagonal elements are all equal
to k.

in the case b = v, MMT = MTM. In this case all vertices are of degree r
and the number of vertices adjacent simuitaneously to any two vertices in
V or in B is A, i.e. in A2 all diagonal entries are r and all other entries in

MMT and in MTM are A. The line graph of this graph is a strongly regular
graph. It is a regular graph with the additional property that any two
adjacent (non-adjacent) vertices are joined simultaneously to exactly A,
(A,) vertices. There are interesting connections between such graphs and
certain block designs. Some of these can be found in {2], (3] and [4].

1.
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- onstructions of block desi

In this section we shatl construct new designs from old. To do that
we need a few more concepts of graphs.

Two graphs G and H are /somorppic if there is a one-one
correspondence (bijection) between the vertices of G and those of H, with
the property that two vertices are adjacent in G if and only if the
corresponding two vertices are adjacent in H.

Let G and H be block designs with parameters (v, b, r, k) and
(v, b’, r', k') respectively and let G(V, B) and H(V’, B’) be their respective
bipartite graphs where V = {Vy, .. Yy}, V' = {¥, ., W'l B = {by, .., bp} and

B’ = {b/, ... by} The block designs G and H are /somorphic if there exist
two bijections ¢ and ¥:

:VvV->V:, ¥:B->8

with the property that two vertices vj e Vand bj ¢ B are adjacent in G
if and only if #(vj) and ¥(bj) are adjacent in H.

Let G be a graph on n vertices. The comp/emen(@ of G is a graph
which has the same vertex set as G has and in which two vertices are
adjacent if and only if they are not adjacent in G. G can be constructed by
deleting from Kp, all the edges of G, i.e. G = Kp - E(G). In other words the

edge set of G is the compiement of the edge set of G in the edge set of Kp.

Let G(X.Y) be a bipartite graph such that |X| = mand [Y] = n. Then
we say that the complement of G in the complete bipartite graph Kmn.

denoted G(Kmp). is a bipartite graph with the same bipartition as G such
that G = Ky - E(G), i.. it is found by deleting from Kmp all the edges of
G. '

If ¢ is an edge of G, then G - e is a graph obtained from G by deleting
the edge e. we can say that G - e is the complement of e inG. More



generally if H is any set of edges in G then G - H is the graph obtained by
deteting the edges in H or we say that G - H is the complement of H in G,and
we denote it H(G). If G is bipartite, H(G) is also bipartite. If u is a vertex
of G, then G - u is a subgraph of G obtained from G by deleting the vertex u
together with all the edges incident with u. More generally, if X is any set
of vertices in G then G ~ X is the graph obtained by deleting the vertices in
X and al! the edges incident with them. Again, if G is bipartite then G - X is
also bipartite.

Now we are ready for a few basic constructions.

1. The aual design

Let G(V, B) be the bipartite graph of a (v, b, r, k, A)-design. Then by
interchanging the two partition sets V and B we obtain a new design
G'(B, V) called the aua/ design.

it is obvious that G’ is also an incompiete block design with b
objects, v blocks, block size r, and replication number k. But it is not
necessarily pairwise balanced. It is balanced only if v = b. ( see for example
Street and Wallis (13) p. 162 ).

we can see that the two graphs G'(B, V) and G(V, B) are isomorphic
but the corresponding designs are not isomorphic. The two graphs are
isomorphic if and only if v =Db.

2. The complementary design

Let G(V, B) represent a (v, b, r, k, A)-design. The complementary
design is the complement of G(V, B) in Ky ; i.e. edge e € G if and only if

e € Ky p and e does not belong to G(V, B).

Theorem 4. The complementary design of a (v, b, r, k, A)-design is a BIBD
with parameters (v, b, b-r, v—k, b-2r+A), provided b-22+2 0.

.13



Proof. (i) In G(V, B) any vertex vj € V is adjacent to r vertices of B
therefore in G, vj is adjacent to b = T vertices of B. Thus the replication
number isb = 1.

(ii) InG any vertex bj €B is adjacent to k vertices of V and 50, in G
any bj 1s adjacent to v - k vertices of V. Hence the block size is v - k.

(iii) G is incomplete since v -k <V.

(iv) In G each pair of vertices, say vy and vg, in V is adjacent {0 A
vertices of B. Now vy is adjacent to 7 vertices of B so there are r - A
adjacencies between Vi and vertices of B, which are not adjacent to va.
Similarly there are r - A adjacencies between Vv and vertices of B, which
are not adjacent to v;. So the number of vertices in B which are adjacent to
neither vy nor v isb-20r=A)-A =0~ or + \. Hence there areb - 2r + A
vertices in B’ of G which are adjacent to both v, and v,. Hence the index is
b-2r+A

3. Derived design

Consider a symmetric (v, v, k. K, A)-design. If By, Ba, ... By are the
blocks, then for any i,

By M Bj.Bz N Bj, .. Bj-1 N Bj, Bi+1 N Bj, ... ByM Bj
form a BIBD cailed the cer/ved design with respect to Bj.

Consider a bipartite graph G(V, B) where V = (V4 o VW1
B = {8y .. By} and the degree of gach vertex is k. The derived design is
obtained by deleting a vertex Bj from vertex set B and all vertices in V not
adjacent to Bj {and of course all edges incident to all of these vertices.)



Theorem 5. The derived design of a (v, v, k, k, A)-design is a BIBD with
parameters (k, v-1, k-1, A, A-1) provided A = |.

Proof. Denote the bipartite graph of the derived design with respect to a
block B; by G'(V', B).

(i) The size of V' is k since only k vertices in V adjacent to B;j
remain; all others are deleted.

(ii) The size of B’ is v — 1 as vertex Bj has been deleted.

(iii) InG(V, B) there are A vertices of V adjacent to both vertices Bj
and, say Bj of B. Recall that any two blocks of a symmetric BIBD have
exactly A points in common. By construction, Bj" is adjacent to the A
vertices of V' which, in G(V, B), are adjacent to the Bj and the Bj. Hence
each vertex of B’ has degree A. Thus the block size is A.

(iv) In G a vertex vj is adjacent to k vertices of B; in G’ one of these
vertices, namely B;, is deleted from G. Hence vj' € V' has degree k-1, i.e.
the replication number is k-1.

(v) Finally, any pair of vertices, vj, vj in G are adjacent to X\ vertices
of B. Suppose vj, vj are adjacent to Bj in G and so they become, say vj', vj’
in G". Then the deletion of Bj reduces the number of vertices of G’ adjacent
to both vj’, vj* by one. Hence, vi’ and vj’ are adjacent simuitaneously with
A - | vertices of B'; i.e. the index of the derived designis A - 1

(vi) Sincek<vinG k-1<v-1in G, hence G’ represents an
incompiete block design.

1.
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4. Residual design

Let By, By, ... By be the blocks of a (v, v, k, k, A) symmetric design.
Then for any i, the blocks given by :
By -Bj. B2-Bj, ... Bj-1 —Bj. Bj+1 -Bj, ... By~Bj
form a BIBD with objects V-Bj, called the res/dua/ design with respect to
Bi.

Consider the bipartite graph G(V, B) corresponding to the above
symmetric design. Then the bipartite graph of the corresponding residual
design with respect to block Bj may be obtained by deleting from G(V,B)

vertex Bj and those vertices which are adjacent to Bj.

Theorem 6. The residual design of a (v, v, k, k, A)-design is a
(v=k, v-1, k, k-A, A)-design.

we have mentioned that a complete bipartite graph may represent a
complete BIBD. An important special case of this complete block design is
the 1atin square in which the elements in each of the blocks are ordered.
There are v blocks each containing all the v elements. The ith element
occupies the jth position (1 < j < v) exactly once. Thus if the elements in
one block are standardised to read in order 1, 2, 3, .., v then the other
blocks are obtained from this by permutations which leave no element
fixed. Furthermore if 71, and 1T, are any two of these permutations then
10,(i) = (i) for any i.

5. Construction of partially balanced incomplete block designs (PBIBL)

In this section we will construct part/ally balanced incomp/ete block
designs, PBIBDs, using complete n-partite graphs. In a PBIBD, each block
has the same number of elements, and gach element is in the same number
of blocks; but certain pairs of elements occur with one /requency and
others occur with another frequency, or there may even be several



prescribed frequencies for certain pairs. Accordingly all { y ) unordered
pairs of elements are divided into association c/asses such that any pair
belongs to exactly one class. For a formal definition of a PBIBD, see
Haghaﬁ"ao (3.

An n-partite graph is one whose verter set can be partitioned into n
subsets so that no edge has both ends in any one of the partitions; i.e. in a
complete n-partite graph each vertex is joined to every other vertex that is
not in the same subset of the partition.

Assume that v is an mn-set of verticesand V=V, U Vo U .. U Vn

is a partition of V into n disjoint subsets each of m vertices. Let E denote
the set of edges of a simple, complete n-partite graph G(Vy, ... Vi E). Let

Sp denote the symmetric group of permutations” of the set V. Let
S = {cx € Sp : G'ex is a subgraph of G for each subgraph G' of G}. S also acts

naturally on the ciass of the sets of subsets of V. Let B be a subset of E
and X = {Bo : 0 € S). Consider % as a set of blocks and E as the set of
vertices; then as we will see (E, X) is a PBIBD with 5 association classes
denoted by PBIBD(S). In particular, when G is a complete bipartite graph,
(EX) is a PBIBD(2). Let us construct the

PBIBD (v=4,0=2r=1k=2 2% =12%z=0)from the complete bipartite
graph as shown.

*In this section we are using a few elementary concepts in group theory,
which can be found in any text on the subject.

1.
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Here E = {(a, b), (a. d), {c, b), (c, d)} and S consists of those
permutations in S, which do not map any edge of E into edge (a, ¢) or (b, d).
For example permutation (a b ¢ d) does not belong to S. We start with
B = {(a, b), (¢, d)} so then X = {{(a, b), (¢, A}, {(a. d), (b, C)}} which is the
required PBIBD, where the two association classes are

{(a, b), (c, A {(a, ), (b, O}

since E and X are orbits under the action of S, (E, X) admits S as a
group of automorphisms. Let T denote the set of 2-sets of E. The action
of S on T decomposes T into five orbits Ty, Tp, T3, T4 and Ts, where the
members of T, are isomorphic to {(a, b), (a, ¢)} where b and ¢ are vertices of
the same class of the partition subset. The members of T, are isomorphic
to {(a, b), {a, ¢)} where b and ¢ are from different partition subsets. The
members of Tz consist of pairs of the type {(a, b), (¢, d)} where 3, c are
from one class of the parition and b, d are from another class of the
partition. The members of T4 are {(a, b), (¢, d)} where b, ¢ are from the
same class of the partition subset and a, d are from different classes of
the partition. The members of Tg are {(a, b), (c, d)} where 3, b, ¢ and d are
from different classes of the partition. We notice that when n = 2 we have
only two orbits Tyand T3 and when n = 3 we have four orbits Ty, To, T3 and
T4 Let tj be a member of Tj and let A denote the number of blocks in X

containing tj. If t is any other member of Tj, then t is also contained in
exactly Aj members of X because S acts as an automorphism group of (E, X)
and S is transitive on Ty. Inother words  (E, X) is a

PBIBD (v, b, . k, Aji i = 1, 2,3, 4, 5), v = m2n(n-1)/2, b = |X| and k = |B|.
If all Aj coincide we get a BIBD. Let A(B) = {« € $|Be = B}. B is an element

of orbit X so that [X| = [5: A(B)l. We can check that |S| = (m)N(n)) and

hence we have b = (m)N(ni)/g where g = | A(B)| and (m})Pn! divides (mn)i as
S is a subgroup of Sp.



Let ui= |Tj n B}, nj = |Til. te Tj, ce X, t < c. If we count the
number of ordered pairs (t, ¢) in two ways we obtain on the one hand njAj
and on the other hand buj, hence Aj = buj/nj.

There are (2 ) ways to choose a pair Vi, Vj of the partition subsets.
For some fixed a € Vj, there are (M ) pairs of edges {(a, b), (a, <)} where
b,c€Vj. Nowasa varies we get m{ T_ ) such pairs of edges. Similarly
there are m( m )pairs {(b, a), (c, a)} for a€ Vj and b, ¢ € V. As the number
of pairs {V, Vj} is (0 ) we have my = 2m{ M X1 )= m2m-Hn(n-1)/2. By

similar counting arguments we obtain

n, = n(n-1(n-2)m3/3,

ny = n{n-1)m2(m-1)2/4,

Ng = n(N-1)(n-2)m3(m-1)/2
and ng = n(n-N(n-2)(n-3)m4/8.
If all the Aj coincide we get the following relations:
U = (m-Huy/m(n-2)
= 2u3/(m-1)
= ug/m(n-2)
= 4(m-1us/(n-2)(n-3)m?2,
Example

When n = 2, we have only two orbits T, and T3 and ny = m%(m-1) and
nz= m2(m-1)2/2. Let B be a cycle of length 2L, then uy = 2L and uz = L{2L-3).
The A’s coincide if

m2(m-1)/2L = m2(m-1)2/2L(2L-3)

1,19
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or

2L-3 =m-1

2L=m+2

Table 2 gives the parameters of the first four vaiues of L. Counting

the number of distinct cyctes of length 2L gives

b = m3{m-12 .. (m-L+1)2 / 2L.

L v b

2 4 1

3 16 96

4 36 16200

3] 64 125440
licati .

36
1800

19600

10

12

360

2800

A graph G is said to be k- colourable if, to each of its vertices, we
can assign one of the k colours in such a way that no two adjacent vertices
have the same colour. In such a case we also say that G has a properk-
colouring. 1t is well known that G is 2-colourable if and only if it is
bipartite. The cfromatic numbers, X(6G), of G is the minimum k for which G .

is k-colourable.

G is said to be #-edge-co/owable if its edges can be coloured with k
colours in such a way that no two adjacent edges have the same colour, In
such a case we also say that G has a proper k-edge-colouring. The edge-
chromatic number or the chromatic index, X'(G), of G is the minimum k for
which G is k-edge colourable. A classical theorem of Konig says that if G




is bipartite, then X'(G) = p where p is the maximum vertex-degree of G (see
for example Wilson[16]).

First we apply vertex colouring for constructing resolvable designs.
A BIBD whose blocks can be partitioned into sets in such a way that every
set contains every object exactly once is called reso/vadle design. The
set of blocks is called a reso/ution c/3ss. The set of resolution classes is
a resolution. A design may be resolvable in several ways, each manner of
resolving is a resolution. Kirkman's schoolgirls problem is to find a (15,
35, 7, 3, 1) resolvable design: the 35 blocks with block size 3 can be
partitioned into 7 resolution classes such that each resolution class
contains every object exactly once. All affine planes are resolvable
designs: the set of all biocks in one paraliel class forms a resolution, for
every point belongs to one and only one line in a parallel class. In addition
any two lines which are not in the same parallel class have exactly one
common point. We can see that Kirkman's design is not affine resolvable.
Our exampie, in the Introduction, is also a rescivable design. A resolution
is the foliowing.

(B, Bg), (B3. By), (By, Bs).

Now we show how to find such a set of resolutions by applying
vertex colouring. We construct a graph G', called a block graph, whose
vertices are the b blocks of the design. Two vertices are joined by an edge
if the two blocks have an object in common. if the chromatic number of G’
is X(6) = r, then the r colours used define the r resolutions.

.21
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The block graph of our exampie is shown below.

B, B,

Bs By

This is a reqular graph of degree 4. The vertices By and Bg are not
adjacent, neither are By and B4, or B, and Bs. Hence the non-adjacent pairs
of vertices canbe coloured with three colours.

If the block graph of a BIBD(v, b, r, k, 1) is r-chromatic then it is
resolvable with r resolution classes, and each containing v/k blocks.

Now we present some more applications with edge colourings.

we have mentioned that an n ¥ n latin square can be regarded as a
labelled complete bipartite graph Knn. By ~ . Konig's edge coiouring

theorem the chromatic index of Knp is n. The matrix interpretation of the
coloured graph is that the colour of the edge uj, vj is the (i, j) entry of the

latin square.  Similarly, consider the bipartite graph G(V, B) which
corresponds to the BIBD(v, b, r, k, A). G has chromatic index r. A matrix
representation, of this coloured graph, shali be such that the colour of the
edge (sj, Bj) is the (i, j)th entry of a v ¥ b matrix , and al! other entries are




0. In fact we replace the entries 1 by the corresponding colour in the
incidence matrix M of the BIBD. The coloured (incidence) matrix
corresponding to our BIBD(4, 6, 3, 2, 1) is

In general the coloured matrix, Mc of a (v, b, r, k, A) design is a
modified (v x b) Latin rectangte. Each row has r different tabels (colours)

and the other v-r entries are all 0. Each column has k different labels out
of the r 1abels and all other entries are 0.

It turns out that coloured matrices are very useful in producing new
block designs. Due to lack of space we cannot go into particulars in this
paper. We refer the reader to the papers of Hammer, Sarvate and Seberry
[7), Rodger, Sarvate and Seberry [10] and Sarvate and Seberry [11].

There are several other graph representations of block designs for
constructing new block designs. For instance, Alitop [1] has constructed
block designs by representing the v objects by the edges of a complete
graph Ky and the blocks by the sets of edges of subgraphs. Generalizing

Alltop’s method, we construct block designs by means of a compiete
directed graph Ky". Another graphical representation of a block design is
where the v objects are the vertices of Ky and the blocks consist of the set

.23
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of complete subgraphs Ky such that each edge of Ky occursexactly A times.

we will not present applications of these graph representations in this
introductory paper.
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CHAPTER 2
DIRECTED AND CYCLIC DESIGNS

A directed balanced incomplete block design, denoted by
DBIBD(v, b, r, k, A%), is a BIBD(v, k, 2A) in which every block is arranged so
that each ordered pair occurs A times. The “** on A indicates that the
occurrences of ordered pairs are counted. A block < &, 3y, ... ,ak > is said to

have k(k-1)/2 ordered pairs viz. (aj, aj) i = 1 2, .., k=L j = I, .. . k.

A directed group divisible design, DGDIk, A*, m; v], is a group
divisible design, GD[k, 2\, m; v, in which each ordered pair of elements
from different groups occurs in exactly A* blocks where each block is said
to have k(k-1)/2 ordered pairs as in a DBIBD. Similarly we can define a
directed partially balanced incomplete block design.

A cyclic BIBD, denoted by CBIBD[v, k, A*] is a BIBD(v, k, k-DA) in
which every block is arranged so that each ordered pair occurs A times. A
block [ay, a,, ... a] is said to have only k ordered pairs, viz. (aj, aj+ ). i = 1,

2, ... k-t and (ag, a).

A cyclic group divisible design, CGDIk, A*,-m; v, is a group divisible
design, GDIK, (k-1A%, m; v], in which each ordered pair of elements from
different groups occurs in exactly A* blocks. As in a CBIBD each block is
said to have only k ordered pairs.

The word “cyclic* may cause some confusion. we do not mean a
design developed cyclically from a starter block. As Dr. Breach has
suggested “circular® might have been a better word but cyclic is well
entrenched in the literature. Cyclic BIBDs with block size 3 and A =1 are
also called Mendelsohn triple systems (see e.g. Rodger(1986)). A paper by
Bermond, Haung and Sotteau (1978) uses the term “balanced circuit designs”
for what is termed a cyclic BIBD. They have also proved Theorem 2.1.3 but
not any other result mentioned below.



Directed designs have applications in the development of computer
networks and data flow machine architecture (Skillicorn (1981)) and in
experiments, where the order of the treatments in time is  significant
(Street (1981)).

The definition of a gfoup divisible design can also be given as
follows:

A group divisible design (GDIkA,m:v]) is a PBIBD(2) with parameters
v =mn,b,r K A= 0and A, =\ for which the points (set X) may be divided
into m groups of n distinct points such that the points that belong to the
same group are first associates and two points that belong to different
groups are second associates.

Consider a PBIBD(2), say P, with parameters v = mn, b, r, k, Ay and A,
for which the points (set X) may be divided into m groups of n distinct
points such that the points that belong to the same group are first
associates and two points that belong to different groups are second
associates. If A = r, then P is calted a singular GDD. On the other hand if
r-Ay> 0 and rk - vAp > 0, then P is called a regular GDD.

r dir ' ign
The main results proved in the attached published papers

(a) "All directed GDDs with block size 3, A; = 0, exist®, Utilitas
Mathematica, 26, 1984, 311-317

and  (b) "Some resuits on directed and cyclic designs”, Ars Combinatoria,
1A, 1985, 179-190

are the following:

Theorem 2..1: 7he necessary conditions are sulficient for lhe existence of
girected group divisible designs with block size 3 and block size 4 .



FProof. Theorem 13 of (a) and Theorem 3.4 of (b).

0

Theorem 2.1.2: 7he necessary conditions are suficient for the existence of
cyclic group divisiple designs with block size 5 .

Proo/. Theorem 4.10 of (b).

0O

Theorem 2.1.3: A CBIBD(v, 4, (4t+2)*) exists for v = 0, 1 (mod 4) and &
CBIBD(v, 4, (4t)*) exists foral/vz4.

Froof. Theorem 2.9 of (b).

0O

Theorem 2.1.4: (i) /7 @ directed partially balanced incomplete block
gesign DPBIBD(Y, b, 1, k=3, Ay* = 0, Ap*, ™y, No) ex/sts,  then
DPBIBD(Nv, N3b, N2r, k=3, A* = 0, NA,*, Nny, Nnp) exists .

(ii) /r drected growp adivisible designs DGD(K, A*, m; V)
and DGD(k, A*, vi kv) axist, then DGD(K, A, mi kv) es/sls .

Proor. Lermmas 14 and 15 of (a).

g

Note that, according to the definition of GDD in Hanani (1975), we do
not have to mention A, = 0 in (a). For notation used in the attached papers
piease refer Hanani (1965), e. g. GD{K, A, M) is defined (on page 264) as the
set of integers v for which a GDIK, A, M; v] exists.

In these papers, we pursue similar lines to those of Street and
Seberry (1980) and Street and Wilson (1380). Designs are specified by
giving one or more initial blocks and instructions on how they shouid be
developed. Thus ‘mod p' means “to each element of the initial block, add in

2.



turn each of the non-zero etements of GF(p), using addition in GF(p): ‘'mod
(p, @)’ means "to each ordered pair in the initial block, add in turn each non-

sero element of GF(p) x GF(@)"; 'mod (p, -)' means "to each ordered pair in
the initial block, add in turn each nON-2ero element of GF(p) x {0}". ‘



All directed GDDs with block size three, Ay = 0, exist
Dinesh. G. Sarvate
1. Introduction.

A directed design (see D. B. Skillicorn, [8]) is a collection of subsets
of cardinality k from {1, 2, . . ., v} with the property that each ordered
t-subset appears in a k-subset (of block) exactly A times. Such a directed
design is described by a sextuple of the form t-(v, b, r, k, A*) where b is the
number of blocks required and r is the number of times that any eiement
occurs. The star on A indicates that it counts the occurrences of ordered
t-sets. These designs can be used in the development of computer networks
and data flow machine architecture [7]. They also have application to

agricultural or medical experiments where the order of treatment in time
might be significant.

These designs were studied by a number of authors including J. E.
Dawson, J. R. Seberry and D. B. Skillicorn [1), J. R. Seberry and D. B.
Skillicorn [6], D. Street and J. Seberry {10], D. Street and W. Wilson [i1],
D. B. Skillicorn and R. G. Stanton [9], S. H. Y. Hung and N. S. Mendeisohn [S],
C. J. Colbourn and M. J. Colbourn [2] and M. J. Colbourn and C. J. Colbourn
[3).

We define a group divisible design as in [11] and [4]. Let X be a v-set
“such that X = UGj, 6iNGj =¢,i=j |G| =m for all i. The Gi's are called

groups. A group divisible design GD(K, A, m; v), is a collection of k-subsets
of the v-set X



(called blocke) such that each block intersects each group in at wost
one element and a pair of elements of X from different groups occurs
in exactly A blocks. In a similar way we can define a GDLK, X, M;v],
where the size of each block is an element of K and the size of each
group is an element of M. GD(K,A,M) denotes the set of all v such
that a GDIK,\,M;v] exists. ' -

A directed design with t=2 1s a directed balanced incomplete
block design (DBIBD). As in Hanani [4], B(k,}) is the set of all v
such that a BIBD(v,b,r,k,A) exists, DB(k,A*) is the set of all v such
that a directed BIBD{v,b,r,k,A*) exists. A directed group divisible
design, DGD[K,A*,M;v] is a GD[K,2X ,M;v] in which each ordered pair of
elements from different groups occurs in exactly A* blocks,
DGD(K,A* M) denotes the set of all v such that a DGDL[K, A% ,M;v] exists.
Given a block (a,b,c) we say the three ordered pairs (a,b), (a,c) and

(b,e} occur in it.

In Section 2 we prove that the necessary conditions for the
existence of GD designs are sufficient for the existence of DGD

with k=3, In Section 3 we give some general results.

2. DGD with k = 3.

The existence of a GD{k,A,m;v] implies the existence of
DGD[k,A*m;v]. The DGD is obtained by writing each block of GD
twice - once in the given order and once in the reverse order - and

hence, using Hanani [4], we have the following results:

LEMMA 1. If v e GD(3,A\,m) holds and if r is a positive integer,
then rv € DGD(3,Ax*,rm) holds.

LEMMA 2. If n=0 or 1(mod 3), then 2n e DGD(3,1*,2) holds.

]
We notice that for n = 2(mod 3), the necessary conditions are not

satisifed.

LEMMA 3. If n= I(mod 2), then dn ¢ DGp(3,1%,3) holds.

LEMMA 4. For every n 2 3, 6n € DGD(3,1*,6) holds.




LEMMA 5, For every n 2 3, 3n € DGD(3,2*,3) holds.

LEMMA 6. For every n 2 3, 2n € DGD(3,3*,2) holds.

In [10] the following result is proved:

LEMMA 7. If n e DB(K,A*) and mK < GD(k,x,m), then
mn € DGD(k,Ax*,m).

We also have

LEMMA 8. (Lemma 2.20 [4)). If ' divides A, then
DGDIK,X'*,M) is a subset of DGD(K,A*,M).

LEMMA 9. If v e DGD(3,1*,z) and x e DGD(3,1%,3), then
v € DGD(3,1%,3).

Proof. v € DGD(3,1*,x), s0 every ordered pair (a,b), where a
and b belong to different groups, occurs once. Writing together
the blocks of DGD(S,l*,B;IGiI) where Gi is a group and treatments
are the elements of Gi’ for i = 1,2,...,% , we get the required
result.

We now give two examples for further reference,e blo ¥
ave wrifen as coluwnyg.

Example 1. 4 € DB(3,1%)
1 2 3 4
2 4 1 3
31 4 2

Example 2. 6 € DB(3,1%)
0 2 3 2 4 5 01 4 5
4 11 3,312 350
1 0 2 4 0 4 5 5 2 3

Using Examples 1 and 2 with Lemmas 7 and 3 we get

LEMMA 10. (12,18} ¢ DGD(3,1%,3).

Now we prove (Lemma 2.16, Hanani [4]):



LEMMA 11. Let n e B(K,A\} and mK c DGD(k,x*,m), then
mn € DGD(k, \\*,m}.

Proof. Consider the groups of the required DGD(k,}*,m) as points of
B[K,A,n) and form a DGD(k,A\*,m) on every block of BLK,A,n].

LEMMA 12. For every n 2 3, 3n ¢ DGD(3,1*,3) holds.

Proof. We know that, for every integer n 2 3, n ¢ B(Ka,l) where
Ky = {3,4,5,6,8) (see [4]). By Lemma 11 it suffices to show that

3n € DGD(3,1*,3) for every n ¢ K. For n = 3,5 this follows from
Lemma 3, whereas for n = 4,6 this follows from Lemma 10. For

n =8, we give DGD(3,1%,3;24) (with the notations of [41).
Let the set of vertices be X = Z(3,2)X(Z(7,3)t1w).

Blocks: < (¢,$), (0,2'),(0,~a")> mod(3,7), a' =1,2,3
< (0,a+4), (0,0+1), {(4,9)> mod(3,7), a = 0,1
<($,3), (¢,), (4,0)> mod(3,7),
< ($,»), (1,0), (0,4)> mod(3,7),
<(1,3), (0,¢), (¢,»)> mod(3,7).

THEOREM 13. Let m, A, and v be positive integers. Necessary
and sufficient conditions for the existence of a directed group
divisible design DGDL3,A*,m;v] @re

v 2 0lmodm), vz 3m,

and aofy-m} 2 Ofmod 3) .

Proof. The necessity follows from Theorem 6.2 [4) and the fact that

a directed GD(3,A*,m) is a GD(3,2A,m). Im order to prove sufficiency,
as in [4], we considerionly those values of A and of m which are
factors of 6. 1In all these cases the existence of the relevant

directed group divisible designs is proved in the Lemmas listed in

Table 1. We notice that for m = 1,a directed GD 1is a directed

BIBD whose existence has been proved in [6].




TABLE 1

m Ak Proof

2 1 Lemma 2

2 2 lemmas 2 and 8*

2 3 Lemma 6

2 6 Lemmas 6 and B

3 1 Lemma 12

3 2 Lemmas 12 and 8

3 3 Lemmas 12 and 8

3 6 Lemmas 12 and 8

6 1 Lemma 4 and using Lemma 8 for A% = 2,3,6.

+We observe that for A* = 2* m = 2 necessary conditions
are satisfied only for n 20 or 1(mod 3). 1t is, in
fact, sufficient to prove for those values of X and m

which are factors of 3.

3. General Results.

We can define directed partially balanced incomplete block

design in a similar way.

LEMMA 14, If a directed partially balanced incomplete block desicn
DPBIBD(v,b r,k-s X —O,Xg,nl, 2) exists, then

DPBIBD(Nv, N°b Nzr,k-3,kz—0 A3, Bn ,Bny)  exists.

Proof. Replace the treatments Ugsee,uy by ui,...,u?,...,ui,...,u:
3 ok =
and blocks (ut,um,un) by (uz.u k), 1,5,k =1,2,0,K It is

easy to check that we get the required DPBIBD,



LEMMA 15. Let DBIBD (v,b,r,k,A*) exist and r be even. Then the
corresponding eingular group divisible design obtained by replacing
each treatment by a group of m treatments is directed.

Proof. The corresponding SGD 1s directed up to the second assoclates
and the first assoclates are also directed once we write DT TEREEL
first associates in one order r/2 times and in reverse order for

another r/2 times in the blocks in which they occur.

LEMMA 16.  If DGD(k,*,mv) = X and DGD(k,*,v;kv) = ¥ exist, then
DGD(k,\ *,m;kv) exist.

Proof. Let the kv vertices be
1 1 2 2 k k i ]
ul,...,uv,ul,...,uv,...,ul,...,uv. Let X denote the DGD with

ui,...,ui vertices, i = 1,2,...,k. Then
Xl:xzz...:xk:Y
gives the required DGD.

Acknowledgement. I would like to express my thanks to Dr. Jennifer

R. Seberry for suggesting the problem and for her valuable guidance.
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Some results on directed and cyclic designs
Dinesh G. Sarvate

1, intr

Directed and cyclic designs are studied by a number of authors
including Dawson, Seberry, skillicorn [1], Colbourn and Coibourn (3.4,
Colbourn and Harms [S], Hung and Mendelsohn [10], Sarvate [12] Seberry and
skitlicorn [13), Skillicorn {1S], skillicorn and Stanton [16], Street abd
wilson [18), and Rodger {11].

A directed balanced incomplete block design, denoted Dby

DBIBD(v, b, , k., A®) is a BIBD(v. k, 22\) in which every block 1s arranged so
that each ordered pair occurs A times. A block <ay.@2.. ax> is said to

have k(k-1)/2 orderd pairs, viz. (@i, 8j) 1 = 1 2, k-1, j = i*1, .. K € G |

the blocks of DBIBDI4, 3, 1 are
<i, 2, 3>, <2, \, 4>, <4, 3, 1>, <3, 4, 2>,

we define a group divisible design as in Hanani [7) Let X be a v-set
such that X = U Gj, where the union is over 21,2 ..MmGiNG = ¢ 1%
and |Gj| = m for all i. The Gj's are called the groups. A group divisible
design, GDLk, A, m; v] is a collection of k-subsets (called the blocks) of the
v-set X such that each block intersects each group in at most one element
and a pair of elements from different groups occurs in exactiy A blocks. In
a similar way we can define a GDIk, A, m; v, where the size of each block is
an element of X and the size of gach group is an element of M.
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A directed group divisible design, pGolk, x*,m;v], is a group
divisible design, Gb[k,2)A,m;v], in which each ordered pair of elements
from different groupsoccurs in exactly A* blocks where each block is
said to have kik-1)}/2 ordered pairs as in a DBIBD.

A cyclic BIBD, denoted by CBIBDLv,k,A*] is a BIBD(v,k,(k-1)2)
in which every block is arranged so that each ordered pair occurs A

[
times. A block [al,a ,...,ak] is said to have only k ordered pairs

2
(ai'ai+l) i=1,2,...,k-1 and (ak_l.al), e.g. the blocks of
CBIBD[5,4,1*] are
[112r314]r [1:3r5:231 [11402t5]| [1l514r3] and [2r4t5a3]-

We use the notation [a,...,z] to denote a cyclic block of a CBIBD.

viz.

A cyclic group divisible design ceplk,A*,m;v] is a
GD[k,(k-l)l*,ﬁ;v] in which each ordered pair of elements from different
groups occurs in exactly A* blocks. As in CBIBD each block is said
to have only k ordered pairs., We use the notation cGDLk, A*,m]
to dencte CGD{k,A*,m;v] wher. there is no doubt about the value of wv.
The set of v for which a cGDlk, *,m] exist is denoted by CGD(k,A*,m).
For any other definition and notation the reader is referred to
Hanani [7] and Street & Seberry [17].

Directed designs can be used in the development of computer networks
and data flow machine architecture [14] and cyclic designs can be used

in virus research and animal husbandry experiments like neighbour designs
[8]. Neighbour designs are not the same as cyclic designs. In cyclic

designs we consider ordered pairs and the same treatment cannot occur
more than once in the same block, whereas in neighbour designs ordered
pairs are not considered dnd the same treatment can occur in the same
block more than once. We use the notation Qa,---,z > to denote a block
of a directed design.
2, CYCLIC BIBD WITH :k = 4.

One can easily prove
Theorem 2.1. Suppose there exists a CBIBD[k,j,A*] and a BIBD(v,k,}'),
then there extsts a CBIBD[v,j, (Ax'}*].
Proof. We replace each block of the BIBD(v,k,A') by the corresponding
cBIED(k,j,A*] to get the required CBIBD[v,j,(AA*)*].

e.g. CBIBD(4,3,1%) is given by the blocks [1,2,33, [1,3,4],



[1,4,2), {2,4,3] and BIBD(5,4,3) is given by the blocks {1,2,3,4},

" {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}. We replace each of these

blocks by the corresponding CBIBD{4,3,1*) and get CBIBD[5,4,3*]
as follows:

[1,2,3], (1,2,3], [1,2,41, (1,3,4]1, [2,3,4]3

t1,3,431, C1,3,51, [1,4,5], [1,4,51, [2,4,5]3

[1,4,2], [1,5,2], (1,5,23, [1,5,3), (2,5,3];

[2,4,3], [2,5,3], [2,5,4], [3,5,4], [3,5,4].
Corollary 2.2. Suppose there exista a PBD[K,A,v] where
K = {kl,kz,---,kn} and a ©BIBD{k,j,u*] for each k € K, then there
exists a CBIBD[v,j,(Au}*].
Corollary 2.3. cBIBD[1l,4,2*] and CBIBD[15,4,4*] exist.
Proof. we use BIBD(11,5,2) and BIBD(15,5,4) together with the
cBIBD[5,4,1*] given in the intrcduction.

Using theorem 2.1 and de Launey and Seberry [6] we have
Theorem 2.4, (i) If u s 0or l(mod 4), u 2z 4 and there exists a
cB1BD[k,3,A*] for k e Ki‘ {4,5,8,9,i2}, then there exists a
cBIBD[u,j,A*). {(ii) If u = limod 3) and there exists a CBIBD[k,j,A*]
for all k e Hg = {4,7,10,19}, then there exists a CBIBD[u,j,A*].
(iii) If w2 4 and if there exists a CBIBD[k,j,A*] for all

k ¢ xi = {4,-++,12,14,15,18,19,22,23}, then there i8 a CBIBD[u,j, A*].

1]

Professor C. Colbournpointed out that the following theorem
can be proved immediately using the decompositionof complete directéd
graphs into cycles. See [19].

Theorem 2.5. BIBD(v,k,\) => CBIBD(v,k,\*) except for k=4 and 6.
Remark (1}). For the case k=p, a prime, we can get CBIBD(v,p,A*} from
{p~1} copies of BIBD(v,p,A} as shown below:

Let a particular block of BIBD(v,p,A) be {1,2,...,p}. We
arrénge its {p-l) copies, say Bl,...,Bé;l as follows:

The first treatment of each B, is 1 and the next treatment
is obtained by adding i in the previous treatment for i = 1,....£E%ll.
The remaining blocks are cbtained by taking the reverse of these blocks.
{The addiﬁion iz under mod p.) For example, if p=5, the arranged
blocks are

[(1,2,3,4,51, [1,3,5,2.4), [1,4,3,5,3], [1,5,4,3,2] .




Remark (2). BIBD(v,4,)) = CBIBD{v,4,(2))*)

block, say {1,2,3,4}, of a BIBD(v,4,}),

as [1,2,3,41, [1,2,4,33, [1,3,2,41, [1,3,4,2], [1,4,2,3] and [1,4,3,2] .
Remark (3). BIBD(v,6,1) = CBIBD[v,6,(2A\)*]; the CBIBD is obtained by
of the BIBD

taking ten copies of the BIED,

is arranged as:

each block, say

If we take an arbitrary

its six copies are arranged

{lr"°:5}:

f1,2,3,4,5,6), [1,4,3,6,2,5], [1,3,2,4,5,6],

[1l4l602'513]l [1'2143613'5}

and their reverses.

Examples.

(1) cBIBD[9,4,1*]:

Develop the complementary difference sets mod 7:

{0,1,4,3] [1,2,5,4]
[0,5,1,8] [1,3,2,6]
[6,7,1,0] (7,8,2,1]
[6,2,7,5] [7,0,8,3]
[3,4,7,6] [4,5,8,7]
(3,8,4,2] [4,6,5,0]
(2) CBIBD{6,4,2*]:
[1,2,3,4] [6,3,2,1)
[1,2,4,5] [2,1,4,6]
(1,5,4,3] (1,3,6,4]
[6,1,4,5] [2,3,5,4]
[2,6,3,5] [4,2,5,6]
(3) cBiBD([7,4,2*]:
[0,1,3,2] [0,3,2,6]
(4) CBIBD[S8,4,2*]:
[1,2,3,4]) {1,7,6.2]
(1,4,5,6] {1,5,2,8)
[1,8,4,7) [2,7,5,4}
[2,8,6,4] {2,3,8,7)
[3,5,8,4] [5.8,7,6]

and the same blocks in the reverse order.

Remark {3).

[2,0,3,5]
[2,4,0,7]
{g,s,0,2]
[8,1,6,4]
[5,3,6,8]
{5.7,3,1].

[1,3,2,5]
[2,6,1,5]
[3,1,6,5]
[2,4,3,6]
{3,4,6,5].

[2,0,4,6].

[1,3,7,5]
{1,6,8,3]
{2,5,3,6]
[3,7,4,6]

of o BIBD(V, K, (X-02)

the differences between the adjacent numbers are A*

(mod )

in%egerﬂ\then we get a cyclic BIBD with A%,

Theorem 2.6.
Proof.

1f the complementary difference sets,can be arranged so that

times each nonzero

A cBiBD[v,4,2*] extste for v = 0,1li(mod 4).
By theorem 2.4(i) it is merely necessary to show the existence of

2.15



ekl

a CBIBD for ve K:

v =4 : Remark (2) with i=l, . v = 5 : Introduction.

which is done as follows:

v = 8 : Example 4, v =9 : Two copies of example 1.

v =12 : Developing the initial blocks [0,1,7,3], [3,7.1,0), [0,2,8,7],
(7,8,2,0], [=»,0,3,1], [1,3,0,»] mod 1l.

Theorem 2.7. A4 CBIBD[v,4,4*]) exigts for all v = 4.

Proof. By theorem 2.4(iii) we have to show the existence of
CBIBD[v,4,4*] for v e Ki. For v = 0,l(mod 4) it is proved using
theorem 2.6 and for remaining values of v the result follows by develop-

ing the initial blocks in table 2.1.

Table 2.1
Treatments Construction
6 Two copies of example (2),.
Example (3). Take two copies.
10 [~,2,4,0], [~,0,3,1], [0,1,2,5], [5,0,2,1], [2,0,6,3] mod 9
and each initial block in reverse order also.
11 o,1,4,2}, [0,2,8,4], [0,5,4,8], [0,8,5,10], [0,10,5,9]
mod 11 giving CBIBD(11,4,2*%), take two copies,
14 [”rorlf3]r [‘“,0,5,2], [012r314]' [013171211 [016111211

(0,1,8,51, [0,4,7,1) mod 13 and each block in reverse
order also.

15 Coreollary 2. 3.

18 [wl4l3lo]' [ml7l‘015]l [0'8'5,1], [0l6013'8}l [0'5,8,6],
[0,8,6,13]1, [0,6,14,13], [0,13,14,2], [0,10,16,2] med 17
and each block in reverse order also.

19 [0,1,3,9], [0,3,9,8}], [0,9,8,5], {0,8,5,15], [
(o,1s5,7,23], [o,6,2,7], {0,18,6,2], {0,16,18,6
and each block in reverse order alsoc.

22 Theorem 2.4{ii).

23 [0,1,5,2], [o,10,2,5], [4,0,2,10], 14.10,0.20], (4,20,8,0],
{20,0,17,8), [o,8,17,16], [17,0,11,16], {11,16,0,9],
[0,11,9,22], [0,18,22,9]) mod 23 and each block in
reverse order also.

5,0,7,15],
) mod 19

Using Hanani's Lemma 2.3 [7] we have
Lemma 2.8, If A'|x then CB(K,A') < CB(K,A).

Using Lemma 2.8 together with Theorems 2.6 and 2.7 we have
Theorem . 2.9. A cBIBD[v,4(4t+2)*] existe for vi0,l(mod 4) and a
cBIBD[v,4, (4t} *] exists for all v 2 4.



3. DIRECTED GROUP DIVISIBLE DESIGNS WITH X = 4 AND ll = 0.
The existence of a GD[k,A,m;v] implies the existence of

bGD[k,A*,m;v]; the DGD is chtained by writing each block of the DGD

twice ~ once in the given order and once in the reverse order. Hence using

Hanani's results we have:

Lemma 3.1. (a) If X' dividee A, them DGD(k,A',m) £ DGD(k,A,m}.
(b) If v e GD(4,A,m), then for r 4 {2,6}, rv e DGD(4,A*,rm),.

(¢) If n = l(mod 3), then v = 2n € DGD(4,1%,2}.

(&) If n 3 0or limod 4), then v = 3n ¢ DGD(4,1%,3).

(e) If nz 4, then v = én € DGD(4,1*,6).

(f) For all nz 4, ne B(K4,;5 holds, where !(,4 = {4,+++,12,14,18,19,
23}, '

Proof. Proof of (b) is a part of the proof of Theorem 6.3 of [2].

(c) can be proved by cobserving that for n = l{(mod 3), n ¥ 4,

2n € GD(4,1,2) (refer [2]) and for n = 4, the DGD[4,1%2;8] is given

below:

For (e}, if n > 4,

<1,3,2,4>
<3,8,6,1>

<5,6,8, 7
<7,5,4,2>

<2,7,1,8>
<4,1,7,6>

then Lemma 6.15 of Hanani gives

<6,4,3,5>
<8,2,5,3>.
6n € DGD(4,1%,6)

and for n = 4, DGD[4,1*,6;24] 1is given below:
<1,20,12,13> <4,14,22,8> <13,21,12,1> <19,15,10,4>
<1,8,23,17> <4,12,16,23>  <16,9,22,1> <20,18,8,4>
<1,9,14,24> <4,11,21,15>  <24,15,11,1> <17,22,11,4>
<20,1,7,15> <4,7,17,24> <17,7,1,21> <16,12,4,19>
<23,1,11,18> <23,4,10,13>  <18,10,1,22> <14,7,4,20>
<1,10,19,16> <21,4,9,18> <19,8,14,1> <24,13,9,4>
<2,7,18,19> <5,14,19,11>  <22,14,12,2> <20,16,11,5>
<2,11,20,17> <5,22,18,10>  <17,10,23,2> <18,9,21,5>
<2,12,14,21> <5,23,9,15> <24,16,7,2> <13,23,7,5>
<19,2,9,13> <19,5,12,17>  <13,8,2,22> <17,12,5,20>
<2,10,15,24> <22,5,7,16> <18,11,2,23> <15,8,5,21>
<21,2,8,16> 1¢5,8,13,24> <15,20,9,2> <24,14,10,5>
<3,8,18,20> <6,7,23,14> <19,18,7, 3> <15,7,22,6>
<3,21,7,13> <6,8,15,19> <16,21,10,3> <23,16,8,6>
<3,12,22,15> <6,9,16,20> <15,23,12,3> <9,17,19,6>
1<20,3,10,14> <6,10,21,17>  <13,11,3,19> <13,10,20,6>
<3,11,16,24> <6,11,22,13%  <24,17,8,3> <21,11,14,6>
<22,3,9,17> <6,12,18,24>  <14,9,3,23> <24,18,12,6>.
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From Street and Seberry [17] we have

Lemma 3.2. (a) If n e DB(K,A*) and mnK c GD(k,A',m), then

mn € DGD(k,A'A*,m). (b) If v = l{mod 3), then v € DB(4,1%).

Lemma 3.3. For all n 2 4, 3ne DGD(4,1%3).

Proof. In view of lemma 3.1(f), it is sufficient to prove that for all
ne K,, 3ne DGD(4,1*,3). Lemma 3.1(d) proves this for n = 0,1(mod 4).

For the remaining values of n the solution is given in table 3.1.

Table 3.1

n v=3n DGD(4,1*,3)

6 18 Initial blocks to be developed mod(3,5).
<(1,1), (0,=), (1,4), (0,0)>, <(0,0), (2,2), (O,=), (2,3})>,
<(1,4), (1,1), (2,3), (2,2)>.

7 21 Lemma 3.2; 12 ¢ GD(4,1,3).
10 30 Lemma 3.2; 12 ¢ GD{4,1,3).

11 33 11 € DB(5,1*) (Table 1 of Street and Seberry [17] and
15 € GD(4,1,3)).

14 42 Initial blocks to be developed mod({3,13).
<(1,2), (,11), (2,4), (2,9>, <(1,3), (1,10}, (2,6}, (2,7)>,
<(2,%), (2,8, (1,1, (1,12)>, <(1,11), (2,3), (1,2), (2,10)>,
<(2,7), (2,6), (1,9, (1,4)>, <(1,12), (0,«), (0,00, (1,1}>,
<(010); (2:8)r (orm)' (215)>0 4

15 45 Table 1 of Street and Seberry [17].

18 54 Initial blocks to be developed med{3,17).
<(2,12), (1,3), (1,14), (2,5)>, <(1,9), (2,7), (2,10}, (1,8)>,
<(2,6), (1,15), (1,2), (2,11)>, <(1,14), (1,3), (2,8), (2,9)>,
<(2,4), (1,100, (2,13), (1,7)>, <(1,5), (2,2), (2,15), (1,12)>,
<(2,16), (1,11, (2,1), (1,6)>, <(1,1), (0,0), (O,=), (1,16)>,
<(2,13), (0,=), (0,0}, {(2,4)>.

19 57 Lemma 3.,2; 12 ¢ GD{4,1,3).

23 69 Initial blocks to be developed mod(3,23).
<(1,22), (1,1, (2,5), (2,18)>, <(1,18), (1,5), (2,2), (2,21)>,
<(1,21), (2,10}, (2,13), (1,2)>, <(2,4),(2,19), {(1,13),(1,10}>,
<(2,3), (1,19, (2,20), (1,4)>, <(1,20), {2,15), (1,3), (2,8)>,
<(1,8), (1,15), (2,6), (2,17>, <(1,17, (2,7), (1,6), (2,16)>,
<(2,11), (2,12), (1,16}, (1,7)>, <(2,9), (2,14}, (1,12}.(1,11)>,
<(2,1), (1,14), (2,22), {1,9)>.

Initial blocks of the directed designs are written as <a,b,**+,k>,

Remark (4). If m = O(mod 2), the necessary conditions for the exist-
ence of GD[4,A,m] are the same as for the existence of GD[4,2A,m] and
$or

hence DGD[4,A*,m] exists if and only if GD[4,A,m] exists, except,two
non-existing transv%;al designs T(4,1;2) and T[4,1;6].
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Theorem 3.4. Let m, A and v be positive integers. [The necessary and
sufficient conditions for the existence of a directed group divisible
degign DGD[4,A*,m;v] are

v £ 0(mod m), A*(v-m) = O{mod 3}, A*v{v-m) O(mod 6) and v 2 4m.

Proof. Theorem 6.1 of [7] gives the necessary conditions. By Theoxem
6.3 of [2], lemma 3.1(b) and the above remark (4) we need to prove the
sufficiency only for m = 3. This is done in lemma 3.3 and lemma 3.1{a).
4, CYCLIC GROUP DIVISIBLE DESIGNS WITH k = 3,

The existence of a GD[3,A,m;v] implies the existence of
CcGD[3,A*,m;v]. The CGD is obtained by writing each block of GD twice
- once in the given order and once in the reverse order ~ and hence using
Hanani [7), we have the following results:

Lerma 4.1. If v e GD(3,A,m) holds and if r tis& a positive integer,
then rv € CGD(3,A*,rm) holds.
Lemma 4.2. If n = 0 or li{mod 3), then 2n e CGD(3,1*,2) holds.

We notice that for n = 2 (mod 3), the necessary conditions are not
satisfied.

Lerma 4.3. For every n 2z 3, 6n e CGD(3,1%,6) holds.

Lemma 4.4, For every n 2 3, 2n e CGD(3,3%2) holds.

Ltemma 4.5. If n e CB{K,A%, mK c GD(k,A,m), then mn € CGD(k,AA%,m).
Proof. similar to the proof of Street and Seberry [17] except that, while
constructing GD[k,A,m) £rom the blocks of CB{(K,A*), we write the
elements from the groups Gi‘s in the same order as the Gi's have
occurred in the bleock of CB(K,A%).

Lemma 4.6. If X' divides A, then CGD(K,A'*,M) is a subset of
CGD(K, A%, M) .

Proof. Let X = p.A' ‘and v ¢ CGD(K,A'*,M) then there exists a
ceblK,A'*,M;v], hence v € CGD(K,A*,M}.

Lemma 4.7. If v € CGD(3,A*,x) and x € CGD(3,A*,3), then

v € CGD(3,A%,3).

Proof. For each group of the CGD[3,A*,x;v] conatruct the corresponding
cGp(3,A*,3;v]. We write the blocks of all the CGDL3,)*,3;x] to get
the cCGDL3,A*,3;v].

Lemma 4.8. If n € B(K,A\') and mK € CGD(k,A*,m), then

mn € CGD(k,A'A* m).



Proof. There are n groups for the required cGplk, 'A*,m]. Consider-
ing these n groups as treatments we construct a B[K,A';n]l. Replace

he :
each block bgAcorresponding cepik,A*,m), (which exist by the

‘hypothesis}, to get the required cGDlk, A" 2*,m].

Lemma 4.9. For every n 2 3, 3n € CGD(3,1%,3).

Proof. We know that for every integer n 2 3, n € B(Ka,l) where

K3 = {(3,4,5,6,8}. (See {7].) By Lemma 4.8, it suffices to show that
3n € CGD(3,1%,3) for every n e KB' For n = l(med 2), 3n ¢ GC(3,1,3)
(see [7]) and hence for n = 3,5, 3n ¢ CGD(3,1*,3). For n=4, we
use Lemma 4.5 and the fact that 4 ¢ cB(3,1) and 9 € GD(3,1,3). For

n=8 the required CGD is given below (with the notation of 7). Let
(-3 K& HouKs & tvf.\ D\’QC\

e AR AT BAD ¢ (730 v st the S
[(¢.4), (0,0"), (O,-a")] mod (3,7), @« = 1,2,3;
((0,0+4), (0,a+l), (¢,¢)] mod (3,7), a = 0,1;
[($,0), (d,%), (¢,3)] mod (3,7);

[(¢,=), (1,0), (O,4)}] mod (3,7):
((1,3), (¢,), (0,4)] mod (3,7).

For n =6, CGD(3,1*,3;18) is given below.

(o,6,93 {1,7,5] [2,8,6] [3,9,7] [4,5,8]
[5,11,14]) [6,12,10] [7,13,11] {8,14,12] {9,10,13]
{10,1,431 [11,2,0] [12,3,1] (13,4,2] [14,0,3]
(o,7,8] [(1,8,93 (2,9,5] {3,5,6] [4,6,7]

{5,12,13] [e6,13,14] [7,14,10] (8,10,11] [9,11,12]
[10,2,3] [11,3,4] [12,4,0] [13,0,1] [14,1,2]
(s,7,0] [9,8,1] {5,9,2] [s6,5,3]) [7,6,4]

C13,12,5] [14,13,6] (10,14,73 [11,10,8] [12,11,9]
(15,11,5] [15,12,6] (15,13,7] {15,14,8] {15,10,9]
(1s,5,14] {15,6,10] [15,7,11] [15,8,12] [15,9,13]
[15,4,1] [15,0,2] {15,1,3] (15,2,4] [15,3,0]
(16,1,10] [ie,2,11] [16,3,12] [16,4,13] [16,0,14]
{16,10,4]) {16,11,0] [16,12,1] [16,13,2] [l6,14,3]
{16,9,6] [16,5,71'(16,6,8] [16,7,9] [16,8,5]
{17,6,0] [17,7,1] [17,8,2] {17,9,3] [17,5,4]
[17,0,9] [17,1,5] [17,2,6] [17,3,7] [17,4,8]
[17,1411] [17,10,12] [17,11,13] [17,12,14j [17,13,10] .




Theorem 4.10. et m, A and v be positive integers. The necessary and
sufficient conditions for the existence of a cyclic growp divigible design
ceD[3,A*,m;v] (v ¥ 6 aid m#¥ 1) avre .

vEOmdm, vz3m ad Aviv-m) = O(mod 3).
Proof. The necessity follows from the Theorem €.2 of Hanani [7] and the
fact that a CGD[3,A*,m;v] is a GD[3,2\,m;v]. In order to prove the
sufficiency, as in [7] we conside:'only those values of A and of m
which are factors of 6. In all these cases the existence of the relevant
CGD is proved in the Lemmas listed in table 4.1. For m = 1l CGD is a
cyclic triple system and hence the exception of v = 6 [i0].

Table 4.1
m A® Proof
2 1,2,3,6 Lemmas 4.2, 4.4 and 4.6
3 1,2,3,6 Lemmas 4.6 and 4.9
6 1l Lemma 4.3

Summary.
We have proved:
(i) CBIBD(v,b,r,4,(4t+2)*) exist for v = 0, 1 mod 4;
(ii) cBIBD(V,b,r,4,(4t)*) exist for all v 2 4;
(iii} DGDDs with block size 4 exist;

(iv} CGDDs with block size 3 exist except v =6

and group size 1.

Our proofs of the results mentioned above depend on the
various elementary results similar to those of Hanani and
recall that our definition of GDD is the one given by
Hanani. To prove the results for cyclic BIBDs we preved
the following intermediate results:

(i) existence of CBIBD[k,j,A*] and BIBD(v,k,A") =
existence of CBIBD[v,j,(A'A)*];
(ii) existence of PBD[K,A,v] and CBIBDLk,u*,v]
for each k => existence of CBIBD[v,j,{Au)*];

(iii) cB1BD(k,4,2*] exists for k « {4,5,8,9,12}

and hence CBIBD[u,4,2*] exists for u =0 or 1 mod 4;



(iv) CBIBD[k,4,4*] exist for k € (4,...,12,14,15,
18,19,22,23} and hence cBipplv,4,4*] exist for v 2z 4.

Similarly to prove the existence of directed GDDs
we proved:
(i) For n 2 1lmod 3, 2n € DGD(4,1%,2};
(ii) Por n = Oor 1 mod 4, 3n € pGD(4,1%,3) ;
{iii) For n € {4,...,12,14,18,19,23} 3n € DGD(4,1*,3)

and hence for all v z 4, 3v € DGD(4,1*,3).

For CGDDs with block size 3, we proved the similar results,
in particular, we proved that Jn ¢ CGD(3,1*,3) for every

ne {3,4,5,6,8) and hence 3n ¢ cGp(3,1*,3) for all n 2 3.

Acknowledgement: I would like to express my thanks to Dr. J.R. Seberry
for suggesting the probiems and for her valuable guidance.
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2.2 An observation

Replacing each block of a BIBD(v, 3, 2) = X by six directed biocks,
which are permutations of the original block, produces a DBIBD(v, 3, 6%).
We say that X underlies the DBIBD(v, 3, 6*). A decomposition of DBIBD(v, 3,
6%) into six DBIBD(v, 3, 1¥) is denoted by DDBIBD(v, 3, 1*) and if such a
decomposition of a DBIBD(v, 3, 6%) exists, then we say that the
DBIBD(v, 3, 6*) underlies DDBIBD(v, 3, ). Harms and Colbourn (1983) have
conjectured that DBIBD(v, 3, 6*), obtained from a BIBD(v, 3, 2), underlies a
DDBIBD(v, 3, 1%).

Hanani's theory can be used to prove that, for the parameters
satisfying the necessary conditions for the existence of BIBD(v, 3, 2), there
exists a BIBD(v, 3, 2) = X such that the DBIBD(v, 3, 6%) obtained from X
underlies a DDBIBD(v, 3, 1%). wWe use the notation of Hanani (1975).

Lemma 2.2.1: /¥ neB(K, 1) andif foreachk € K there exists a BIBD(K, 3, 2)
which under/ies @ DDBIBD(k, 3, 1%), then there exists 3 BIBD(n, 3, 2) which
underlies @ DDBIBD(n, 3, 1%).

Proof. Form the BIBD(k, 3, 2) which underlies a DDBIBD(V, 3, 1%) on each
block of BIK, 1 nl. Writing all these BIBD(k, 3, 2)'s together will give us a
BIBD(n, 3, 2) which underlies a DDBIBD(n, 3, 1*).

0

Theorem 2.2.2: Mecessary conditions are sulticient ror the existence of g
BIBD(v, 3, 2) which underlies a DDBIBD(v, 3, 1%).

Froof. Using Lemma 2.2.1 and the fact that for v = 0, | (mod 3), with

v € B{{3, 4, 6}, 1] we need to prove that for k = 3, 4, 6 there exists a

BIBD(k, 3, 2) which underiies a DDBIBD(k, 3. 1*¥). For k = 4, 6 this is proved
in Harms and Colbourn (1983). For k = 3, we take the BIBD(3, 3, 2) as
{123,123}

and the corresponding DDBIBD(3, 3, 1) is:



Fach row is a DBIBD(3, 3, 1*).

123,
132,
213,
23],
312,

3214,

321
231
312
132

213

123

2.
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CHAPTER 3
EQUI-NEIGHBOURED DESIGNS

Kiefer and Wynn(1981) have defined an equi-neighboured BIBD (an
EBIBDIk, A*; v]) to be a BIBDIk, A: v,} in which the points in each block are
arranged along a line and each pair of distinct points is adjacent A*= 207k
times.

The following main theorems are proved in the attached published
paper “A note on equi-neighboured block designs®, Utilitas Mathematica, 28,
1885, 91-$8.

Theorem 3.1: An egui-neighboured BIBD[3, 3; vl can be embedded info an
equi-nelghboured BIBDI3,3: 2v+1l and an equi-nelghboured BIBDI3, 3; 2v+3]

Froof Theorem 3.1 of the attached paper.
0

Theorem 3.2: /7 there exists an EBIBDIZ. A: V1. hen it can be embedded into
an EBIBDI3, A; 2v+1l.

Froos. Theorem 3.2 of the attached paper.
O

Theorem 3.3: Fvery group divisible design with N = 3t /5 an underlying
gesign for an EGDDI3, \, m: v, where t /s an integer and t 2 1.

Froof. Theorem 4.1 of the attached paper.
; 0

We have given many embedding theorems in this thesis. Hence here we
will carry out a detailed count of occurences of the following pairs for a
BIBD(2v+3, 3, 3) which is obtained by Lemma 2.4 of the attached paper. We
use the BIBD(v, 3, 3) on points {1, 2, .., v} and three copies of the complete
graph over the new points {v+, .., 2v+3} :



(i) pair (a, b) where a and b both are points of BIBD(v, 3, 3) (i. e. old-
old pair);

(i) pair (a, b) where a is old point and b is a point in {v+1, .., 2v+3}
(i. e. old-new pair);

(iii) pair (a, b) where a and b both are from {v+1, .., 2v+3} ( i.e. new-
new pair).

Please refer to Figure 1 and the proof of Lemma 2.4 of the attached
paper, for the notation, Ay, By, Cy, and C, used below.

(i) old-old pair : The old-old pair can occur in the blocks obtained
from Ay onty, i.e. only in the blocks of BIBD(v, 3, 3). Hence every old-old

pair occurs only 3 times as required.

(ii) old-new pair : Each block obtained from the submatrix
M= B|
Gy

gives two old-new pairs. Consider a fised old point a. There are 3(v+3)/2
consecutive columns with 1's in the ath row of M. These columns have two
I's in Cy corresponding to the three distinct one-factors of Ky+j in C(( see

the arrangement of Fi's in the proof of Lemma 2.4). Hence the point a has

occured with every new point only 3 times. Note that this also proves that
the blocks corresponding to M are distinct.

(iii) new-new pair: WQ- have used up all the one factors of the three
copies of the complete graph Ky+{ and hence each new-new pair occurs 3
times as required.

If we start with a simple BIBD(v, 3, 3), then the blocks corresponding
to the matrix Ay are distinct. The blocks obtained from C, are distinct, as

they arise from 3 one-factors and each block contains an edge from each
one-factor. Hence the BIBD(2v+3, 3, 3) will be simple.
O



A note on equi-neighboured block designs

Dinesh G. Sarvate
1.__Introduction

A balanced incomplete block design BIBD(v, b, 1, K, A) is an
arrangement of v points into biocks of size k such that each point occurs r
times and each pair of points occurs in exactly A blocks. Keifer and wynn
(6] have defined an equi-neighboured BIBD (an EBIBD) as a BIBD in which the
points in each block are arranged along a line and each pair of points is
adjacent the same number of times. These are useful in any experimental
situation where correlation of the errors of adjacent plots is suspected
[4,6]).

.3



Kiefer and Wynn [6] and Cheng [2) have shown that the necessary
conditions are sufficient for the existence of EBIBDs with k = 3. Dawson
[4] proved that the necessary conditions are sufficient for the existence
of EBIBDs of block size 4., Hanani [5] has proved that the necessary condi-
tions are sufficient for the existence of BIBDs of block size 3 but the
designs have repeated blocks. Stanton and Goulden [8] proved the existence
of BIBDs with k = 3 and A = 1 without repeated blocks, using factoriza-
tion of complete graphs. Street [9], on the similar lines, proved the
existence of BIBDs with k =3 and X =2 and X = 3. She used the
embedding of a BIBD with v points into BIBDs of 2v+1 and 2v+7 points
for X = 3. We use her embedding of 2v+1 points together with our
embedding theorem for 2v+3 points to prove the existence of BIBDs with
Xk = 3 and X = 3. We use the graph factorization of Stanton and Goulden [8]
and by properly ordering the blocks we get embedding theorems for equi-neigh-
boured BIBDs. Such embedding theorems for directed designs are given by
Seberry and Skillicorn [7] and we extend their theorem for 2v+l points

to equi-neighboured designs.

We generalize the definition of equi-neighboured BIBD in a natural
way to define équi-neighboured group divisible designs. Then;insing thensame
construction method as Kiefer and Wynn {6], prove that given a group divisible
design which satisfies the necessary condition, it can be ordered to get the

equi-neighboured GDD. Using the similar terminology used in Colbourn and

Colbourn [3], we can write our results as:

Every group divisible design with A = 3t underlies a equi-neigh-

boured GDD.




We define a group divieible design as in Hanani [5]. Let X be
n
a v-set such that X = U Gy, Gy NG, =¢, i# 3, |G4| =m for all 1i.
i=1 ] .
The Gi's are called the groups. A group divisible design, GD[k,A,m;v],
is a collection of k-subsets of the v-set X such that each block intersects
each group in at most one element and a pair of elements of X from different
groups occurs in exactly X blocks. In a similar way, we can define a
GD[K,A,M;v], where the size of each block is an element of K and the size

of each group is an element of the set M. GD{(K,A,M) denotes the set of all

v such that a GD[K,A,M;v] exist,

An equi-neighboured BIBD EBIBD[K,A,A* v] is a BIBD[K,A;v] in
which each block is given a linear ordering and each pair of distinct points
is adjacent A* times. If K = {k}, then A* = 23/k and we call it

an EBIBD[k,X;v].

In a similar way, we define an equi-neighboured croup divisible
design EGDD[K,A,A*,M;v] system and when K = {(x} and M = {m} we call it

an EGDD{k,i,m;v].

A complete graph K, =~ on n vertices consists of n vertices
and the [g] joining edges [refer 8]. A one-factor of K, ~consists of n
vertex-disjoint edges. A one-factorization of K2n consists of 2n-1 one-

factors such that the edges in the one-factors are all distinct. For examples

the reader is referred té [8].



2. Recursive Constructions

A block design can also be written as a vxb incidence matrix
. . s, th . . .th
with (i,3) entry equal to 1 if the element i belongs to j block and O
otherwise. For the sake of completeness and the point of view of the appli-
cation to the construction of egui-neighboured design, we reproduce the..
required theorems from Stanton and Goulden [8] and the proof of the embedding

theorem of Street [9].

All the edges of K, fall into n disjoint classes FPq,Pg***,Pp:
where the edge (i,j) is in ¥ if and only if i-j = k (mod 2n). Stanton
and Goulden [8] called this splitting the difference partition of Kop*
Consider the triangles (1+i,2+i,4+i) for 1i = 1,2,**+,2n, This gives a set

T of 2n triangles.

Theorem 2.1 [8]: The set T of 2n triangles eontains exactly those edges
from PI’PE’P3‘

Theorem 2.2 [8]: The graph KX, may be factored into a set of triangles
covering Py,Fy,Py and a set of (2n-7) one-factors covering the other Pi 's.

Using Lemma 2 and Theorem 3.1 of [2] we get:

Theorem 2.3: The graph 'K, — may be factored into a set of 6 one-factors

covering PI-’PZ-‘PS and a set of (2n-7) one-factors covering the other F;'s,

This observation immediately leads us to the embedding of a

BIED[3,3;v]  into a BIBIL3,3;2v+3L.



Lemma 2.4: If there exists a BIBD[3,3;vl, then it can be embedded into a

BIBD [3,3;2v+3].

Proof: Let A denote the incidence matrix of the BIBD[3,3; V). For

v = 2v+3, the structure of the incidence matrix is given in figure 1.

“ (v+1) (2v+3) >

< v(v-1)/2 + +—-§v(v+3)—+ +—- Y43 —>

v+ 3 C C

Fig. 1: Incidence matrix A, of BIBD[3,3;2v+3].

Here Bl = vaJl,(3(v+3)/2] where Iv denotes the identity

matrix of order v and Jm n in general denotes the mxn matrix of all
r

entries 1. Let P11,P12,P(23)1,P(23)2,P(23)3,P(23)4 denote the one-factors
arising from Pl'Pz'P3' The remaining one-factors are denoted by FI1,F2,

s+s ,F{(v-4)., The first 4X(3(v+3)/2] columns of Cl correspond to

Pll,P(23)1,P(23)2,P12,P(23)2,P(23}3,P11,P(23)3,P(23)4,P12,P(23)4,P(23)1

and the (v+3) columns of C2 are filled by the set T of triangles. The

remaining columns of C correspond to the 3 sets of the one-factors Fi's.

1

The one-factors are arranged so that there are no repeated blocks. This can
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be done as follows: The remaining columns of Cl- are filled by:

Fl,FZ,F3;F2,F3,F4;F3,F4,F5;"';F(v—G),F(v—5),F(V—4);F(v—5),F(V-4),Fl;

F (V-Q) 'Fl ,FZ e

. th .
Notice that each one-factor has occurred at 3s position only once for

some s = 1,2,°+*,{v-4).

Lemma 2.5 [9]: If there exists a BIBDL3,3; vl, then it can be embedded

into a BIBD[3,3,2v+1]

Proof: Consider the incidence matrix Av of the BIBD[S,3;v]. Let

V = 2v+l. The structure of Av is shown in figure 2.

— v (2vil) ———

« y{v-1)/2 > « Fviv+l) >

L]

Fig. 2: The incidence matrix A, of pIepl3,312v+l],

Here B = I xJ

v o1,3(v+1) /2’ and if the one-factors of Kv

+1

are F1,F2,*+*+,F(v+l), the columns of C correspond to:

Fl,F2,F3;F2,F3,F4;"';Fv,F(v+l),Fl;F(v+l),Fl,F2;.
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Again the construction is such that each one-factor has occurred

once at the 3sth place for some s = 1,2,-°+,(v+l).

Theorem 2.6: The necessary conditions are sufficient for the existence of

simple (no repeated blocks) BrBpl3,3;v) (v > 3).

Proof: The necessary condition for BIBD[3’3;VJ is v 2 1 mod 2, We use
induction to prove the sufficiency. To start the induction we need BIBD's
for V =5,7,9 which is done in [9] and the references therein. Now lemmas

2.4 and 2.5 complete the proof.

3. Construction of Equi-neighboured Designs

Theorem 3.1: Equi—neigkbOured BIBD[3,3;v] can be embedded into an equi-

neighboured BIBD|[3,3;2v+l] and an equi-neighboured BIED{3,3;2v+3).

Proof: The case of embedding in BIBD[3, 3;2v+1] is obvious from the proof
of the lemma 2.5. We arrange the one-factors occurring at the 3sth place
such that the pgint l,**+,v placed in the middle. In other words, if
{a,b) is an edge of one-factor occurring with the point i of the
EBIBD[3,3;v], then the ordered block will be [a,i,b]. The proof for the
case 2v+3 is similar except that the blocks corresponding to C2 are

arranged as [1+i,4+i,2+1].

We now extend the result of Seberry and Skillicorn [7] for the

egqui-neighboured designs.



Theorem 3.2: If there exists an EBIBDIS3, a;v], then it can be embedded

into an EBIBD|[3, \;2v+1}.

Proof: Recall that in EBIBD notation, A means we arrange the blocks such
that each pair occurs 2A/3 times. We take the blocks of EBIBD[3,);v]

together with the blocks given by Seberry and Skillicorn A/3 +times,

arranged as [j,v+i,v+i+j], i=1,¢s*,v+l; j = 1,~++,v. HWhere the elements

in the third position are reduced, when greater than 2v+1, by subtracting
v+l, so as to remain in the set {v+l,*++,2v+1l}. For fixed j, as 1
varies, the resulting set of blocks cover once all pairs of the form ({(j,x)
and twice all pairs of the form (x,x+j):; x and x+j in {v+1,+++,2v+1}.
Now we take the one-factorization of Kv+1 as given by Stanton and Goulden
[8] and form the blocks for i = 1,**+,v such that the pairs from the i
one-factor come with the point i where 1 occurs in the middle of the
block. For example, one extends the EBIBD[3,3;3] on three elements
({1,2,31,[2,1,31,[2,3,1]) by adding first the blocks of the form

[3,v+i,v+i+]i] viz.

[114r5]r [1r516]: [lr617]: [1'714]F
{2141611 12151710 I2:6:4]f I2!715]F

'[3v4:7]: [315:4]; [3,6,5], [3u7a6]3

and then adjoining the blocks arising from one-factors of K4 viz.

Fl: (4,7), (5,6);
F2: (5,7), (6,4);

F3: (6'7)’ (415);

so that the blocks are:



[4rlr7]r [51116]:
[512:7] [J [6:214]F

[6131711' [4v305]; .

4. Equi-neighboured Group Divisible Designs

As mentioned in the introduction, we extend the proof of Keifer
and Wynn [6] for EGDD. Using the terminology of Colbourn and Colbourn 13]

we write our result as:

Theorem 4.1: Every group divisible design with X = 3t is an underlying

design for a EBDD[3,),m;v], where ¢t 18 an integer 21,

Proof: Conéider a group divisible design with v = mn points, where

n is the number of groups and m is the group size. As we know, there
are b = tv(v-m)/2 blocks, each point occurs r = 3t(v-m)/2 times and
each pair of points from the different groups occurs in 3t Dblocks.

The poirnts from the same group do not occur together.

There are v{(v-m}/2 pairs to be considered. If we can order the
blocks such that all these pairs occur at the end of the blocks t times,
then automatically we will get 2t times each of these pairs occurring

together in a block. Notice that there are only t(v(v—m)]/Z blocks.

Now write each block as a triple (1':1 "tzl'ts) of subsets of size 2
contained in it. In what follows the two blocks with identical elements

are considered different.

3.11



Let Sti be the set of all blocks containing a fixed subset ti
of size 2. For any p different subsets t.'l.,tz,---,tP of size 2,
l1<p*«s [v(v-m)]/z, the number of distinct blocks in \Jsti is greater

than or equal to t.p.

Using Agrawal's theorem of system of distinct representatives [1],
we can select a collection Hi of blocks in each Sti' with Hi n Hj = ¢
for i # j. Notice that U Hy. i=1,"+*,viv-m)/2, is the set of all the
blocks of the GDD. Each block of H; is ordered so that the pair of

points in t; occurs at the end, which completes the proof.

Defining equi-neighboured partially balanced designs in the similar

way to equi-neighboured GDD, we obtain:

lempa 4.2: If an EPBIBD(v,b,r,k=3,AJ=0,A2,n1,n2) exists, then

EPBIBD(ND,Ngb,Nzr,k=3,O,NAZ,NnJ,Nn2) eixsts.

Proof: Replace the points ul,u2,**<,uv Dby ui,°°°,u§,---,ui,'°°,u§
i j k .. .
and blocks [uf,um,un} by {uz,ui,un}, i,3,k = 1,2, ,N. It is easy

to see that we get the reguired EPBIBD.

Lemma 4.3: If EGDD[k, A,m;v) = X and EGDDIk,A,v;kv] = Y exists, then
a EGDD[k,\,m;kv] existsd,

1 2 2 k

. l . e LI ) L k -
Proof: Let kv points be uy,***,u_,u,,""",u,, "9y uo. Let X

ll‘

. i i i .
denote the EGDD with ull",uz,"-,uv peoints. Then

X X X ,eee,X ;Y
ll' 2! 3' l‘xkl

gives the required EGDD.
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CHAPTER 4
SIMPLE DESIONS

A BIBD without repeated blocks is calied a simpie BIBD. The
motivation to study simpie BIiBDs came from reading A. P. Street (1980)
and the applications of simple designs to prove the existence of other
designs. For example, if simple designs are used in existence algorithms,
more elegant and efficient proofs can be obtained because of inherent
constraints imposed by the initial simple design. Two published papers are
attached:

(a) "Block designs without repeated biocks”, Ars Combinatoria, 2],
1986, 71-87

and (b) "All simple BIBDs with block size 3 exist”, Ars Combinatoria,
21A, 1986, 257-270.

Recall that the necessary conditions for the existence of a
BIBD(v, k, A) are
(i) Av-1) = rk-1),
(ii) vr = bk,
(iid b 2 v,
For a simple BIBD(v, k, A), we have an additional condition
(A< (¥2).

In particular, the necessary conditions for the existence of a simple
BIBD(v, 3, \) are

(DA <(v-2),
(i) (a) if the greatest common divisor of A and 6 (G.C.D(A, 6))
is equal to 1, thenv = 1, 3 (mod 6);
(b) if GCD(A, 6) = 2, thenv = 0, 1 (mod 3):
(¢) if GCD(N, 6) =3, thenv = 1 {(mod 2);
(d) if GCD(A, 6) = 6, then no condition on v.



For the notation used in the attached papers, please refer to
Hanani(1979).

The main result is:

Theorem 4.1: 7he necessary conditions are sufficient for the existence of
simple BIBDs with block size 3.

Proof. Theorem 2.5 of (b).
O

The proof of the above theorem depends on the following lemma and some
theorems given in (a) and (b).

Lemma 4.2: For all ¢ such that t < (V72 )/ '\, escept possibly for one valve
of t the evistence of a simple BIBD(v, k, ) wmplies the evistence of
simple BIBD(v, k, \t) and the exceptional value of t salislies

() t/is 000,

and (i) th < (Y72 ) < (DA

¥

Proof. Lemma 2.11 of (b).
0

In the proof of Theorem 3.7 of (b), the third sentence of the second
paragraph (which starts with “Observe that”) can be rewritten for clarity
as follows.

Consider three distinct even numbers, say a b and ¢, where
2 <a b, ¢ <n-lIf n-1is even then apply Lemmas 3.3, 3.4 and 35 oOn Py
(P, U P3).. .., Past, (Pas2U Pas3)i ... Posp. (Ppe2U Phe3d .« 4 P+,
(Pe+2U Pes3), ..., (Pn-2U Pn-1). We get 2n-8 one-factors. If n-1is odd,
then apply Lemmas 33, 3.4 and 35 on Py, (P, U P3). .. .. Pas,
(Pa+2U Pgs3)... ., Ppet. (PheU Ppe3de .. Pest, (PesnU Pes3) ...
(Pp-3U Pp-2). We get 2n-10 one-factors.



The definition of s-distance apart arrangement of one-factor given
after the proof of Theorem 3.8 can be restated as follows.

An arrangement of one-factors, (not necessarily distinct), is called
*s—-distance apart®, if there are at least “s” other one-factors between the
occurences of the same one-factor.

in the proof of Theorem 3.9 of (b), the required sets of Pj’s are not
given for t = 9. They are listed here:

t =9: Required sets of Pj's = Sets of Pj's as in the case of t = 8 and
{Pl' Ps, P'?}
Obtain same Pj’'s from the 15t to the 8th copy of Kop, as in the

case of t = 8 and from the 9th copy obtain {P, Pg, P7).
O

Please note that Lemmas 4.1 and 4.2 of the attached paper (a) are
true for simpie BIBDs. The word “simple” is missing in the statements of
these two theorems.

We use “induction” in the proof of Theorem 4.3. How the induction
works in the theorem is shown below. Similar arguments can be given at
other places in the thesis, where we use induction.

The necessary conditions require that v = 0, 1 (mod 3). We have
shown that simple BIBDs exist for smaller values of v. Now for a larger v,
let v = 3t. Then v can be written as 2(3(s-1))>*4 or as 2(3s+1)+! depending
on whether t = 2s or 2s+L Similarly when v = 3t+l, it can be written as
2(3s)+1 or 2(3s)+4. Hence either Lemma 4.1 or Lemma 4.2 gives simple
BIBD(v, 3, 2).

a
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Block designs without repeated blocks
Dinesh G. Sarvate

. _Introduction

A t-design Sy (t, k, v) is a collection of k-subsets called blocks of

a v-set E such that every t-subset of E is contained in exactly A blocks.
AnS\(t, k, v) is called simple if it has no repeated blocks. A Block design

can be written as a v ¥ b incidence matrix, where b is the number of
blocks in the design, with (i, Pth entry 1 if the element i belongs to the
jth block and 0 otherwise.

Hanani (1] has proved that the necessary conditions are sufficient
for the existence of $5(2, 3, v) and Sp(2, 4, v), but the designs have

repeated blocks. Van Buggenhaut [10,11] has proved that for the existence
of simple S4(2, 3, v), A=2 and A=3, the necessary conditions are

sufficient.

The present work is motivated by the papers of R.G. Stanton and
IP. Goulden [8) and AP. Street [8). Stanton and Goulden[8] provide an
elegant proof for the existence of Sy(2, 3, v) based on factorization of
complete graphs and Street[9] estends the result for A = 2 and 3 by
giving recursive constructions for simple and irreducible S2(2, 3, v) and



53(2,3.v) for all possible values of v (irreducible means not consisting

of unions of smaller designs). Recently Sarvate[S] has applied this
construction to  obtain  equi-neighboured designs. We  give
straightforward recursive constructions for simple 54(2,3,v) for A =
2,4,5 and 6 depending on the graph factorization of Stanton and Goulden
[8]. Our proof for the case A =2 is slightly different from Street [3] and
simitar to the proof for the case A = 3 in Sarvate[S]. The results of this
paper are used in Sarvate[6] to prove that all simple BIBDs with block
size 3 exist.

in what follows I denotes the identity matrix of order nand Jmp

denotes the m x n matrix of all entries |. We use both the symbols
Sa(2k,v) and BIBD(vk,\) to denote the balanced incomplete block design

with the parameters vk .

2. Some observations:

Recently Lu {4) has shown that the maximum number (v-2) of
pairwise disjoint Sy(2,3,v) can be attained for v > 7 and v =1,3 {mod 6),
except possibly for v = 141, 283, 501, 789, 1501 and 2365. However for
simple systems and small values of A, the method given by Stanton and
Goulden(8] and Street{S] is preferable. As a consequence of Lu's result we
get:

Theorem Z2J/: The necessary conditions are sufficient for the
existence of simple $4(2,3,v) for v>7, A < v-2, v =1,3 {mod 6) and except

possibly for v = 141, 283, 501, 789, 1501, 2365.

The study of simple block designs can be useful to prove the
existence of other combinatorial structures , e.g. in de Launey ,Sarvate
and Seberry [3] it was easy to prove that a generalised Bhaskar Rao
design (GBRD) over 24, for v=15, exists, by using a simpie $4(2,3,15). Wwe



observe that the nonexistence result for a simple S(2kyv) leads to a
nonexistence result for GBRD over Z7 for k 2 3.

The existence results of de Launey and Seberry [2], section 4.,
give the following results for block size 4.

Theorem 2.2 : (i) Let v=l (mod 6) be a prime power. Then there
exists a simple 52(2,4,v).

(iiy Simple 52(2,4,v) exist for v< 500, v = 1 {mod
6) except possibly for v in {145,205,265,319,355,415,493}.

A very powerful theorem of Stanton and Collens [7. page 136}
together with results of Street[9] and Van Buggenhaut [10,11] gives us:

Treorem 2.3 - (i) Simple 59(2,3.v) exist for v = 0,1 (mod 3) and
A = 2N < y-2, In other words, the necessary conditions are sufficient for
the existence of simple Son(2,3.v).
(ii) Simple S2(2,3.v) exist for v = 1(mod 2) and
A =203 <v-2
(iit) The existence of simple $9,(2,3,v) implies the

existence of simple Son\(2,3,v) for 2N\ < v-2.
3. Graph factorization:

A complete graph K on n vertices consists of all {0 ) edges. A
one-factor of Kop contains n vertex-disjoint edges. A one-factorization
of Kon, contains 2n-1 ope-factors , which are all disjoint. For examples
and details please refer to Stanton and Goulden (8],

All the edges of Kop fall into n disjoint classes Py P2..P pi
where the edge (i) is in Py if and only if i-j = k (mod 2n). Stanton and
Goulden {8) called this splitting the difference partition of Kon. Consider




the triangles (1+,2+,4+i) for i= 12, .. ,2n. This gives a set of 2n
triangles.

Theorem /(8] : The set of 2n triangles contains exactly those
edges from Py P2,P3.

We observe the following:

Theorem 32 : Consider the set T of triangles (1+i,1+x+i,l+5+y+i)
for i= 1,2, ....2n. The set T contains exactly those edges from Px.Py.Px+y,

where x+y < n.

Remark: This is an important observation as we get various sets
of triangles to be used in next sections, eg. Py,P2P3 and P| Py4Ps

cover 4n friangles { (i+i,2+1,4+i) } and { (1+i,2+i,6+) }, i =12, .. ,2n.
4. The case A = 2.

For the recursive constructions, it is sufficient to be able to
construct an S7(2,3,V) from a given 52(2,3v) for (i) V = 2v+ and
(il) V = 2v+4 and to construct 5(2,3,v) for initial values of v.

The cases V = 2v+l (veven)and V = 2v+¢4 (v odd ) have been
dealt with in Street [9). We give the proofs for vV = 2v+1 ( v odd ) and
V = 2v+4 (v even).

Lemma 4./ If there exists a BIBD(v,3,2) then it can be embedded
into a BIBD(2v+1,3,2).

3

Froof The case v even s proved in Street[9]. Let v be odd. Let Ay

denote the incidence matrix of the BIBD(V,3,2). For V=2v+|, the structure
of the incidence matrix is given in figure 1.

4,



<==y(y=1)}/3--><mmmmav v{v+l)-——->
v AV B
J
v+ 0 C

Fig. 1 Incidence matrix Ay of BIBD(2v+1,3,2).

Here B = Iy x J 1y+1 and the columns of C correspond to the one
factors of Ky+1. In other words if Fy Fy,..F are the one-factors of

Ky+1 then the columns of C correspond to
Fi F2iF2F3F3Fq; i Fy-1t FuiFy Fr. -

Lemmea 4.2 : 1f there exists a BIBD(v,3,2),then it can be embedded
into 3 BIBD(2v+4,3,2).

Froof: The case v odd is done in Street[9]. wWe consider the case
when v is even. The structure of the incidence matrix A2y.+4 is shown in

figure 2.




>

I

v AV Bl 0
!

|

v+4 0 G Co
|

v

Fig. 2. Incidence matrix Ay of BIBD(2v+4,3,2).

Here By =1y x J 1(v+4) . The columns of Co correspond to the set
of (v+4) triangles given by Theorem 3.1 above. The columns of Cy
correspond to the one-factors of 2Ky.+4 {(i.e. two copies of Ky+4) , but
since the columns of C2 account for 6 one-factors coming from Py,P2
and P3 these must be excluded once each in considering the columns of
Ci. One trivial arrangement of the one-factors is given: Let the one-
factors corresponding to the set of (v+4) triangles be Fy F2,..F g and the
remaining one-factors be F7,...F y+3. Then the columns of Cy correspond
to

F7, .« Fye3 i F1y o Fyss.

Theorem 4.3 : The necessary conditions are sufficient for the
existence of simpie BIBD(v,3,2) for v > 3.

4,
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Froof We use induction. To start with, we need designs for small
values of v > 3, viz. for v=6,7,9,10,12 which are easy to construct; we
have given these designs in Appendix A for the sake of completeness.

5. General results.

The following is proved in Street[S], Van Buggenhaut(i!l and
Sarvate [5].

Theorem 5./: The necessary conditions are sufficient for the
existence of simple S3{(23.v).

we note that the necessary conditions for the existence of
SoN(2,3,v) are same as for the existence of S(23,v) and hence as
mentioned in Theorem 2.3(i) the necessary conditions are sufficient for
the existence of S2(2,3,v) for x =20 s v-2,

Now we intend to give some direct embedding results:

Lemma 5.2 - If there exists a simple BIBD(v,3,\), A £ v-2, then,
for v odd , it can be embedded into a simple BIBD(2v+1,.3\).

Froof: The structure of the incidence matrix Ay, V = 2v+], is

given in figure 3.



Lmmmmm oo AV(2v+1)/3  —mmmmmeme >
<=-AV(V-1)/6---><---AV(v+1)/2--->
™~
|
v AV B
l
~
|
v+l 0 C
!

Fig. 3. Incidence matrix Ay of BIBD(2v+1,3)).
Here B = ly % Jia(v+1)/2 - Now as in Ky+; we can have at most

v{v+1)/2 distinct edges and each column of C will correspond to some
edge, A{v+1) € v(v+1) and hence X £ v is a necessary condition. Let the
one-factors of Ky+1 be F1,F2, ... Fy. Thenthe columns of C correspond to

A copies of F1 F3, .. Fy.

Lemma &3 If there exists a BIBD(v,3,4), v even, v 2 8, then it can
be embedded into a BIBD(2v+4,3,4).

Froof : The structure of the incidence matrix Azy+q of
BIBD(2v+4,3,4) is given in figure 4.

.11
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S 2(2v+3)(2v+4)/3 —===m=mmmee- >
<==2v(v-1)/3--><=mmamm 2v(v+4)----><--2(y+4)-->

A

|

v Ay By 0

l

v

l

va | 0 Ci Co

!

Fig. 4. Incidence matrix Ay of BIBD(2v+4,3,4).

Here By = ly X J 2(v+4) . We need to get 2 disjoint sets of (v+4)
triangles to fill up the columns of Cz. The remark after Theorem 3.2

guarantees us the existence of such sets for those values of v for which
6 < (v+d)/2 ie. for v = 8. Let Fi's denote the one-factors of K(v+4) . An

arrangement for the columns of Cy corresponds to :

F7, . Fve3iFi, o Fye3 i F3F4F5FF11, Fye3 i F1, o Fyss.

In other words, arrange the one-factors of the required Pi's in the
following order:

P4Ps, .. P(v+4)/2iP1. . P(y+4)/2:P2P3P6, .. P(y+4)/2 i Py,
— P(v+4)/2.

6. The case A=5.

As a coroliary to Lemma 5.2 we have:




Lemms 6.7: If there exists a BIBD(v,3,5), then it can be embedded
into a BIBD(2v+1,3,5).

Lemma 6.2: I there exists a BIBD(v,3,5) then it can be embedded
into a BIBD(2v+7,3,5) for v = 23.

Froof: The structure of the incidence matrix of BIBD(2v+7,3,5) is
given in figure 5.

<mommmme e S(2v+7)(v+3)/3  —mm-mm-mm-- >
<--5y(y-1)/6--><-- Sy(y+7)/2 --><=-5(v+7)->
Fal
|
v AV B] 0
|
v
A
|
v+7 0 i Co
!

Fig. 5. Incidence matrix Ay of BIBD(2v+73,5).

Here By = Iy % Ji5(v+7)/2 - We take five copies of K(y+7). If v 2
23 i.e. v+7 2 30, then we can use Py P2..P 15 to get S disjoint sets of
v+7 distinct triangles viz. the triangles {1+, 2+i14+i}, {1+,3+i,9+i},
{1+i,4+i,11+},  {1+i,5+i,16+8} and {I+i6+,15¢+i} i = 1, .. , v+7 , from
PiP12.P13: P2PePs  P3P7Pi0: P4Py P15 and PsPgPiq. We
use these triangles to form the columns of Ca. The columns of Cy
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correspond to one copy of the one-factors fromPig, ... P(y+7)/2
followed by the four copies of the one-factors of Ky+7.
we observe that the blocks corresponding to the columns of C2 do

not intersect in more than one treatment. If we allow them to have at
most one pair of treatments in common then we get the following result.

Lemma 6.3: I there erists a BIBD(v,3,5) then it can be embedded
into a BIBD(2v+7,3.5) Tor vz Q.

Froef: We take the triangles obtained from Py P2,P3; Py P3.Pa:
Pi.P4aPs: P2P3Ps and PoP4aPg viz. {1+,2+i4+i),  {1+,2+5+},
{1+,2+1,6+i}, {1+i,3+1,5+i} and {1+i,3+i,7+}, i = 1, .. ,v+7, as the columns
of Co.

The columns of () correspond to the two copies of the one
factors fromPy, P9, P3 and P4, three copies of the one-factors from Ps,
and four copies of the one-factors from Pg and five copies of the one-
factors from the remaining Pi’s. If F1y . F2y are the one-factors obtained
fromPy for xodd and # < v+7 then, "F17 F272.F15, .. Fysg i F1, o Fyep
iF15 F25F1 . FysgiFro o Fyse i P, o JFyeg * IS an arrangement
for the blocks of Cj.

Lemma 6.4 If there exists a BIBD(v,3,5), v = 3 (mod 6),then it can
be embedded into a BIBD(2v+3,3,5).




Proof- The structure of the incidence matrix Ay, for V = 2v+3 ,of
the BIBD(2v+3,3,5) is given in Figure 6.

<mmmmmmee S(2vBVH/3 - >
<=-5y(v-1)/6--><-=-5v(v+3)/2---><--5(v+3)/3-->

|

V' JAV B] 0

|

W

|

v+3 0 Cy Co

Fig. 6. Incidence matrix Ay of BIBD(2v+3,3.5).

we observe that we need ten one-factors to form 5(v+3)/3
triangles as 6 one-factors give (v+3) triangles. Let v+3 be equal to 6s.
Form the 2s blocks of Pog viz. {a,a+2s,a+4s), a =12, .. ,.25:

1 2 3 2s
251 e e 4s
45+ h 65
Take any s biocks, By B2, .. .Bg. Now construct 6s blocks of the
form {aa+s.a+2s} a=1,2, .. , 6s. Select 3s blocks from these 6s blocks

such that they do not have any pair common with any of the Bj's ; these
blocks together with 6s blocks from {PyP2,P3} correspond to the
columns of Co. The remaining Sv factors of the S copies of Ky+3 count for
the columns of Cy (Sv=5(v+2)-10).

4,15



For example, if we take {aa+2s,3+4s}, fora=12,..,5, as our s
blocks By, ... , Bg then we consider the following as our next 3s blocks:
{a,a+s,a+2s} a= s+, .. , 2s
{a,a+5,a+28} a=3s+l, .. , 4s
{a,a+s,a+2s) a=5s+l, .. , 6s.

The columns of Cy can be obtained by writing the one-factors of
Pi‘'s except Py,P2,P3,P2g fOliowed by the four copies of the one-factors
Of Ky+3.

Theorem 6.5: The necessary conditions are sufficient for the
existence of simple BIBD(v,3,5), v = 7.

Froof: We use induction and lemmas 6.1, 6.2 and 6.3. To start
the induction we have given simple BIBD(v,3,5) for small values of v viz.
v = 7,913 and 21 in appendix B.

7. The case A=6.

For A =6 there is no condition on v except v > 8. For v odd
Theorem 2.3 (ii) gives the existence of simple BIBD(v,3,6). For v even we
have following lemmas:

lemma 7/: If there exists a BIBD(v,3,6) then it can be embedded
into a BIBD(2v+2,36). v 2 8.

Froof : The structure of the incidence matrix Apy+p of
BIBD(2v+2,3,6) is given in figure 7.

P



Smmmmmmmomo (2v+2)(2v+1) e >
<o y(v-1) —=2<=--3y(v4+2)---><-= (v42) >

A

|

v AV B} 0

|

v

N

|

v+2 0 G Co

!

Fig. 7. Incidence matrix Ay of BIBD(Zv+2,3,6).

Here By = ly % J 13(v+2) and columns of Cz correspond to the v+2
triangles obtained from Py, P2, P3 and the columns of Cy correspond to
the one-factors of Py, .. P(y+2)/2 followed by five copies of the one-
factors of Py, ..., P(v+2)/2 -

lemma 7.2 : If there exists a BIBD(v,3,6) and v = 10 then it can be
embedded into a BIBD(2v+4,3,6) )

Proof: The structure of the incidence matrix Ay of the
BIBD(2v+4,3,6) is given in figure 8.

3

.17
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T (2v+4) (2v+3)  —mmmmmmmme >
<= y(y-1) =-» <== 3y(v+4) --><-- 3(v+4) -

Ay By 0

< —P — < 7

+4 0 C C2

Fig. 8. Incidence matrix Ay of BIBD(2v+4,3,6).

Here By = ly ¥ Ji3(v+4) - The columns of Cz correspond to the
triangles obtained from Py ,P2P3; P1.P3.P4: P2.P4Pe: when v 2 12 and
Py,P2.P3; Py ,P3,P4: P2,P3,Ps; whenv = 8. The columns of C1 correspond
to the one-factors obtained from Pj's as follows:

(i)v=8:

Pe : P1.P2P4PsPe i P1.P3P4aPsPe: Py, . PeiP2 .. Po:
Py P2P4,PsPe.
(i v 2 12

P5P7, .. Pv+a)/2 i P1, — Plv+a)/2 i Pt. o Plv+d)/2: P1y o
Pv+a)/2 P2, P(v+4)/2; P1.PsPeP7, - P(v+d)/2-



Notice that for v = 8, P2 gives two one-factors [8, Lemma 3] and
Pg provides one one-factor but for v=10, P2 does not split into two one-

factors. This is a reason why the triangles given in the case for v = 8 can
not be used for v = 10. The construction for v 2 12 does not work for v =
10 because Py is 'special’ for v = 10 and we need Pg to get three one-

factors from the pair Pg,P7.[8, Lemma 4).

Theorem 7.3 : The necessary conditions are sufficient for the
existence of simple BIBD(v,3,6). |

FProof : We use induction. To start the induction we need simple
BIBD{(v,3,6) for v= 8,10,12,14,16,20,24 which are given in the Appendix C.

Acknowledgement :

My sincere thanks to Dr. Jennifer Seberry for heipful guidance and
encouragement. | am greatful to the referee for many useful suggestions.

References:

(1. Hamani H., Balanced incomplete block designs and relaled
designs, Discrete Math, |1, 1975, 255-368.

[2]. de Launey W. and Seberry J., Generalised Bhaskar Rao designs
of block size rour, Congressus Numerantium, Vol 41, 1984, 229-294.

(3], de Launey W., Sarvate D.G. and Seberry J., Generalised Bhaskar
R30 designs with block size 3 over 74 ,Ars Combinatoria 19A(to appear).

[4). Lu Jia-Xi, On /arge sets of disjoint Steiner Iriple syslems
vZ, Journal of Combinatorial Theory, Series A ,37,189-192 (1984).

[S]. Sarvate D.G, A nole on equi-nejghboured block designs
Utilitas Mathematica, (to appear).

[6]. Sarvate D.G., A/ simple BIBDs with block size 3 exisi
Preprint.

4,19



(7). Stanton R.G. and Collens R.J., A compuler system for research
on the ramily classification of B/80s , Colloquio Internazionale Sulie
Teorie Combinatorie(Roma 1973) Tomo |, Attidei Convegni Lincei, No. 17,
Accad. Naz. Lincei., 1976, 133-169.

{8]. Stanton R.G. and Goulden LP., Graph factorization generd/
triple systems and cyclic lriple systems Aequationes Mathematicae 22,
1981, 1-28.

[Q]. Street A. P, Some designs wilh block size ree
Combinatorial Mathematics vii, Lecture Notes in Mathematics, 829,
( Springer - Verlag , Berlin - Heidelberg ~ New York ), 1980, 224-237.

[10}. Van Buggenhaut J., On e existence of 2-designs SAZ3v)

without repeated blocks, Discrete Math, 8,1974, 105-109.
[11. Van Buggenhaut J., £x/stence and construction of 2-designs
SH2Zv) without repeated blocks, J. Geom., 4, 1974, 1-10,




.21

Appendix A

Following is the list of simple BIBD(v,3,2) required for the proof of
Theorem 4.3. For v = 7 and 10 the designs are given in Street {8} The

blocks are written in columns.

N ®

™~
MTY N
MYTWN NM T
NNY —no
NIV —NY
NMO -~ T
—_NWY -~
—_O - ®
—_—™in =M~
— N —~NO

O o
O~ O

~
N~ — O —
T -0 —
T~ — ) —

o
THO -

o
MO®© — =
MING — O
M~ =M
MTO — Mo
NN — N

N~ @

™NO —

NO

N —

NN O

M WO

M T WO

e T Tel

~ 0 o

10

1

10

il

9

10
12

12.

R
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Appendix B.

Simple BIBD(v,3,5) for 7,9,13 and 2\.
v=7.

Consider the set of all 3-sets of {1, .. ,v} it forms a simple
BIBD(v,3,v-2).

v=9.

Consider the set of all 3-sets of {1, .. .8} it forms a simple
BIBD(9,3,7); take out simple BIBD(9,3,2) which is given in Appendix A; we
get simple BIBD(3,3,5).

v=13.

Remove simple BIBD(13,3,6). which exists by Theorem 2.3(ii),
from the set of all 3-sets of {1, .., 13}.

v=21.

Let Fj={(x, ) : y - % = i(mod 12), 1<%, y <12} for i = 1, .. 6. Notice
that fi's are disjoint and F-6 contains only six pairs, viz.
{(1, 7, (2, 8), (3, 9), (4, 10), (5, 1), (6, 12)} and other Fi's contain twelve
pairs. Let Gy = { (1, 2), (2. 3), (3, 4), (8, 9), (8, 10), (10, 1), (W, 12),
(2, 1, O, 7), (2. 8), (3. 9), (4, 10)}, G4 = {(3, 3). (10, 4), (i, 5), (12, 6),
(5, 9), (6, 10), (7. W), (8, 12), (9, 1), (10, 2), (1, 3), (12, 4)}. Let Fy3 =
(Q, 4), (2,5), (3,6), (7,10), (8, 11), (8, 12)} and Fp3 = {(4, 7), (5, 8), (6,
9), (10, 0, (1, 2), (12, 3. Let Gy 3 = {(5, M), (6, 12), (7, N, (7, 10), (8,
1), (8, 12)} and G23 ={(8, 2). (5, 8), (6, 9), (10, 1), (11, 2), (12, 3)}. The
following blocks form simple BIBD(21,3,5):




The blocks of a simple BIBD(9,3,5) over {13, 14, ..., 2k

(13, %, yk (x, Y} in Gy, F2, Fy3: {14, x yk (x, y) inF23, G4, Fs;
{15, % yk (. y) inF1, F2, 613 {16, %, yk (%, y) in G2 3, Fy, Fs;
{17, %, yk (%, g inFy,Fo, Fg {18, %, uk (% y) inF3, Fs, Fgs
{19, %, gk (%, y) inFy, F2, F3: {20, %, yk (%, y) inFp, 3, F4, Fs;
{21, %, yk: (%, ) inFq, Fs, Fe

i, 140, 34}, i =1,2, .., 12

{1, 4,5} {2, 5,6} 3,6, 7}, {4, 7, 8}

{1.5, 9} (2 6, 10}, (3, 7, 1}, {4, 8, 12}.

Appendix C:
Simple BIBD(v,3,6) for v= 8,10,12,14,16,20 and 24.
v=8
As in Appendix B for v = 7.
v=10.
Remove simple BIBD(10,3,2) from the set of all 3-sets of
(1....10}.

v=12

Remove simple BIBD(12,3,4), ( which exists by Theorem 2.3(i) ),
from the set of all 3-sets of {1, ..., 12}.
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8 8 8 8 8 9 9 9 9 W0 W0 Nn
{0 10 n uw un 1w 10 12 13 nu n 12
12 12 13 14 13 14 13 14 12 13 14

v=16

Remove simple BIBD(16,3,8), which exists by Theorem 2.3(i), from
the set of all 3-sets of {1, .., 16}.

v=20
Apply Lemma 7.2,
v=24

Simple BIBD(24,3,16) exists by Theorem 2.3(i); remove it from
the set of all 3-sets of {1, .., 24}.




All simpie BIBDs with block size 3 exist

Dinesh G. Sarvate

1. __Introduction

A balanced incomplete block design BIBD(vk,A) is an arrangement of
v points into sets of size k (k-sets) such that each pair of points occurs A
times. we call a BIBD s/mp/e if it has no repeated biocks.

It is well known that the necessary conditions are sufficient for the
existence of BIBDs with block size 3: for a list of references the reader is
referred to Doyenand Rosa [2]. A number of authors, including Lindner and
Rosa [5), Lu [7], Rosa [8], Schreiber [12] and Teirlinck [16], have discussed
the existence of large sets (partition of the compiete design into copies of
block designs with specified A). Their results immediately give simple
designs(designs without repeated blocks). A number of authors, including
Lindner and Rosa [6], Rosa [3] and the references therein, have studied BIBDs
having a prescribed number of triples in common. The present note gives an
elementary
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proof to show that the necessary conditions are sufficient for the
existence of simple BIBDs with block size 3. The known results about
the existence of simple BIBDs include the existence of (i) simple
BIBD(v,3,A) for A =2 and X = 3 (Street [15], Van Buggenhaut [17,
18]), for A = 6 (Sarvate [11]), (ii) simple cyclic 3-designs for

v = 2 (mod 4) (Kohler [4]) and (iii) simple BIBD(v,k,A) implies
existence of simple BIBD(v,k,ZnA) for 2"\ less than or equal to
(;:g] {Stanton and Collens [13]). In the next section we will show
that the known results for block size 3 are sufficient to prove

that all simple BIBDs with block size 3 exist.

The study of simple block designs can be useful 'in proving the
existence of other combinatorial structures, e.g., in de Launey, Sarvate
and Seberry [1] the existence of a generalizéd Bhaskar Rao design over Zy
for v = 15 was easily proved by using & simple BIBD(15,3,4).

Another zpplication of simple designs is demonstrated in Sarvate [10]

to prove the existence of equi-neighboured designs with block size 3.

This note was motivated by the papers of Stanton and Goulden {[14]
and Street [15]). Stanton and Goulden gave an interesting proof of the
existence of BIBD(v,3,1) by using embedding theorems based on a
graph factorization. Street extended their result to obtain irreduc-
ible (not consisting of smaller designs) and simple BIBD(v,3,X} for
A =2 and 3. We give some general embedding theorems on a

similar line.

2. The result

We observe that, in general, we cannot apply Hanani-Wilson theory
of pairwise balanced desighs to obtain simple BIEDs but if we can
construct appropriate small generating sets in certain cases, for

example, when k = 4 and X = 2, the theory can be very useful.

We first restate some results of Hanani for simple designs. For

the notation, the reader is referred to Hanani [3].



Lemma 2.1: If n e GD(S,1,R), mR & simple B(k,\) and
ms ¢ simzle GD{k,A,m), then mn € simple B(k,A).

Lemma 2.2: If v e simple B(K,)\) such that for any two blocks B,
and B, of B(K,A), |BnB,| <k, and for each k; in K there
exists a simple BIBD(ki,k,l), then a simple BIBD(v,k,\) exists.

Note that for X = 1 and for any value of U we have

Corollary 2.3: If v e B(K,1) and, for each ks in K, there
erists a simple BIBD(ki,k,u), then a simple BIBD(v,k,u) exists.

For easy reference, we give two observations:

Lemma 2.4: (i) IFf a simple BIBD(v,k,A) exists, then a simple

BIBD(v,k.{;:g]-l] exists. (Formed by taking complement of the block set}.
(ii) If a simple BIBD(w,k,\) exists, then a sirple

BIBD (w,w-k,b-2r+\) exists, where b 1is the number of blocke and r

is the rerxlication number of BIBD(w,k,A).(Formed by taking complement of

the blocks with respect to the point set).

As mentioned in the introduction, the known results on the exist-

ence of simple BIBDs with block size three are used here to prove:

Theorem 2.5: The necessary conditions are sufficient for the exist-

ence of simple BIBDe with block size 3.

The proof depends heavily on the following theorem of R.G.
Stanton and R.J. Collens [13]:

Theorem 2.6: If D is a design without repeated blocks and if
A < [ﬁ:;}/z, then it is pobssible to choose a pernutation P of

{1,2,+++,v} such that DyPD has no repeated blocks.

As an obvious corollary, we have
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Corollary 2.7: If a simple BIBD(v,k,}) exists and 2" = (;:2),
then a sircle BIBD(v,k,2"\) exists.

To introduce the notation, we prove the above corollary. Let D,

be a simple BIBD(v,k,A), then
D, = D ybhh
is a simple BIBD(v,k,2\}) for some permutation P,. In general,

i = Pu-n VPu-nPa-n

is a simple‘BIBD(v,k,zi'lA), where D,. is a simple
(i-2) {i-1)

BIBD (v,k,2 X} and P(i-l) is a permutation of {1,-++,v}

ined b i Th 2.2, Noti , D,, i
obtaine Yy using (ifgfem otice that P(l—l) (i-1) is also a
simple BIBD(v,k,2 A).

Immediately we can prove

Lemma 2.8: If a simple BIBD(v,k,)) exists, then a simple

BIBD (v,k,\t) exists for t which satisfies the inequality
e s ™ s O
k-2
for some integer m.

Proof. Let 2n—1 <t < 2" < k:g)/l. Then, by Corollary 2.7, there

exists a simple BIBD(v,k,ZnA) =D Let the binary

n =.Dn-1 * Pn-an-l'

-1 K
representation of 2"-t be 2=O aizl. Now, in case a, = 1, remove
PiDi from D_. We obtain a simple BIBD(v,k,ti). 1

Corollary 2.9: For A even, i a sirle BIBD(2X+2,3,2) exricts,

then a eimple BIBD(2A+2,3,1) exists.

Proof. Let m be such that




ML o 5o < P o< o2,

Then, as & simple BIBD(2A+2,3,2) exists, a simple BIBD(2X+2,3,2s=1)

also exists. 0

Lenma 2.10: If A divides [::3] and a simple BIBD(v,k,») exists,
then for all t such that

e s (90,

a

9]

imple BIBD(v,k,At}) exists.

m

(vnz]/k = 2 for some m, then Lemma 2.8 proves the

Proof. 1If e

result. Now let n be such that
n -2 n+l
2"« [;_ 2) /A < 2 .

We need to prove that, for t greater than 2™ and less than

-2
[i_z]/l, a simple BIBD({v,k,it} exists. Observe that
v-2 n+l n . n
(3 - s 277 -2 = 20

Therefore, by Lemma 2.4, D = simple BIBD(v,k,(zzg)—tl] exists,
hence, taking out the blocks of D from the set of all k-sets of

{1,+++,v}, we get a simple BIRD(v,k,tA). O

If a simple BIBD(v,k,A) exists, then for all t = [;:§J/A, a
simple BIBD(v,k,At) exists except for t such that (i) t is odd
and (ii) tX < [::g] < (t+1l)A. In other words,

-2 . . :
Lemma 2.11: For gll ¢ such that t < [§¥2)/'A’ except poasibly for
one value of t, the existence of a simple BIBD(V,k,A) irmplies
the existence of a simple BIBD(v,k,At) and the excertional value of

t satisies (i) and (ii) given above.
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Proof. 1If (ﬁ:gJ/l is an integer, Lemmas 2.8 and 2.10 prove the
result. If [ﬁ:g]/l is not an integer, then for integers t and n
such that

o os 2™ o< (7 n+l
a simple BIBD(v,k,t}) exists by Lemma 2.8. We have to prove that
for t in {2n+1,2n+2,--°,2n+s}, where (20+s)A < (::2} < (2M+s+1) 2,
a simple BIBD(v,k,At) exists. Now if t = 2n+2q, then, as
2n-l+q < 2" by Lemma 2.8, a simple BIBD(v,k,(2n_l+q)A) exists and
hence, by Theorem 2.6, a BIBD(v,k,2(2n_l+q)A=tA) exists. Observe
that in the proof of Lemma 2.8 we have not removed at any stage the
initial simple BIBD(v,k,A) and hence the simple BIBD(v,k,At) constructed
in the Lemma has a simple subdesign BIBD(v,k,Ak By removing it
from a simple BIBD(v,k,At), we get a simple BIBD(V,k,2n+2q—1),
hence we have proved the result for all t in {2741, 00,2 45}

except for t = 2"+s when s is odd. 0

Lemma 2.12: If a simple BIBD(v,3,)) exists for X = 1,2,3,6, then

for all integers t such that
tA = {v-2)
a simple BIBD(v,3,it) exists.

Procf. 1In view of Lemmas 2.8, 2.10 and 2.11, it is sufficient to prove

that, when t is odd and
th < {v-2) s (t+1)A ,
a simple BIBD({v,k,ti) exists.

When A =1, v =1,3 (mod 6) and Lemma 2.10 implies that we have
a simple BIBD(v,3, t) for all t < (v-2)/ X
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When A =2 and v is even, v-2 1is even and we apply Lemma
2.10. If v is odd, then v = 1,3 (mod 6) and so a simple

BIBD(v,3,2t) exists.

When X\ = 3, v satisfies v = 1,3,5 {mod 6). If
1,3 (mod 6}, a simple BIBD({v,3,3t) exists and for

1l

= 5 (mod 6), v-2 = 0 (mod 3) and hence we apply Lemma 2.10.

<
1

When A =6, v =0,1,2,3,4,5 {(mod 6). For v = 0,4 (mod 6), 2
divides (v-2) and, as a simple BIBD(v,3,2) exists, a simple
BIBD(v, 3,6t) exists. When v = 1,3 (mod 6), a simple BIBD(v,3,1)
implies the existence of a simple BIBD(v,3,6t). Whan v = 5 (mod &),
v=2 = 0 (mod 3) and hence, as a simple BIBD{v,3,3) exists, a simple
BIBD(v,3,6t) exists. When v = 2 (mod 6}, 6 divides (v-2) and
hence Lemma 2.10 implies that a simple BIBD({v,3,6t) exists for all
t such that 6t < (v-2). 0

Theorem 2.13: The necessary conditions are sufficient for the exist-

ence of a simple BIBD(v,3,A).

Proof. The necessary conditions are:

(1) A s (v=2);

(1i) (a) if (,6) =1, then v = 1,3 (mod 6),
(p) if (r»,6) = 2, then v = 0,1 (mod 3),
(¢) if (A,6) = 3, then v = 1 (mod 2),
(@) if (r,6) = 6, then no condition on V.
Now Lemma 2.12 proves the Theorem. |

3. Graph factorization

In what follows, In denotes that the identity matrix of order

n and Jm n denotes the mxn matrix with all entries 1.

r



A complete graph Kn on n vertices consists of all [g} edges.

A one-factor of Kon contains n vertex-disjoint edges. A one-facto-

rization of K, ~contains 2n-1 one-factors, which are all disjoint.

For examples and details, the reader is referred to Stanton and Goulden
{14}.

All the edges of K2n fall into n disjoint classes P,,P,,*"*,

Pn’ where the edge (i,3j) is in Pk if and only if (i-3) = k (med
2n). Stanton and Goulden called this splitting the difference parti-

tion of K Consider the triangles (1+i,2+i,4+i) for i = 1,2,+++,

2n’
2n. This gives a set of 2n triangles,

Theorem 3.1 [14]: The above set of 2n triangles contains exactly the

edges from P,,P,,P;.

Theorem 3.2 [11]: Consider the get T of trianzice (1+4i,1+x+i, l+x+y+

i) for i =1,2,+++,2n. The set T contains exacily the edges from

Px'Py'Px+y' where x+y < n.

Lemma 3.3 [14]: The patrs in Portl (2x+1 < n) &riit inte twe one-
Ffactors. '

Lemma 3.4 [14]: I 2x+1 < 2n, then P U P srlits into four

2x 2x+1
one-factors.

Lemma 3.5 [14]: I n <is even, then P_ i8 a strnzle one-factor. If

n 18 odd, then P _, VP cam be split into three one-factors.

-1

Theorem 3.6 [14}: The graph K may be factoreZ into a set of tri-
gra In i K
angles covering P,,P,,P,, and a set of 2n-7 one-factors covering

the other Pi’s.

Suppose X 1is a subset of {Pl,'°',Pn}, by one-factors of K, -X

2n
we mean the one-~factors of K2n except the one-factors obtained from
Pi's in X. If X 1is a singleton {Pi}, then we write Kzn-x as

K2n_Pi' We assume hereafter that the one-factors of K2n are arranged




in some fixed order and when we say that "let Xi be the one-factors
of ith copy of K2n"' we mean that the one-factors are arranged accord-

ing to the same fixed order. Similarly, the one-factors of K2n-Pi

are arranged in the same fixed order except that one-factors obtained

from the Pi are removed.

Theorem 3.7: For t such that t # 4,6 and 1 < t < (n-1),
t copies of the graph X, =~ may be factored into t disjoint sets of

2n triangles covering (Pl, ), i =1,2,**",t-1, and

P, ..P. .
1+i7 241
(P2,P4,P6) and t(2n-7) ome-factors, and for all t, 1<t < n-1,

(t+1) copies of the graph K, —may be factored into t disjoint sets

of m triangles and t(2n-7) + {2n-1) one-factors.

Proof. For t # 4,6, obtain Pl'Pzi'PZi+1 from the (2i-1)th and (Zi)th

copies = of i = e - the
P K for i 1, {t-1)/2 and P4'P6'Pt+l from

2n
th R ol

i e (2i-1) and
t copy of K2n when t 1is odd and {Pl'P2i’P2i+l} from the (21

2i)Yth copies of = sse - . -1
{ P Ky for i =1, , (£=2)/2; {Pl,Pt,Pt+l} from the (t-1)

th
copy of K, ~and {P4’P6'Pt} from the t  copy of X, ~when t
: . L]

is even. Notice that the P.'s form {Pl'Pl+i'P2+i} and

{PZ'P ,Pe}, i=1,2,°**,t-1. Theorem 3.5 gives the required set of

4
triangles.

As in the proof of Theorem 3.2 of Stanton and Goulden [14], we get
2(2n-7) one-factors from the (2i-lfﬂland (Zi)th copies of K . When t is even,
t .
the (t-1) h copy of K2n gives (2n-7) one-factors. Observe
that for distinct even numbers (therefore we have t # 4,6) a,b,c if
we use Lemmas 3.3, 3.4 and 3.5 on ,Pl'(P2UP3)’.-.'Pa+1'{Pa+2UPa+3)'
P .),***,P_ _UP {or

S0Py (PaUPresd ot P FeaaFers n-2"Fn-1

P _,UP _, when n is odd} we get 4{{(n-2)/2)-3)+8 = 2n-8, {(2n-10),

when n is odd} one-factors. Now, as in Theorem 3.2 of [14], we get

(2n-7) one-factors from {Pl,-°-,Pn} - iPa,Pb,Pc}, therefore, from
the tth copy of K2 , we get (2n-7) one-factors. For t = 4,6,

n th .
we take the one-factors of Kzn - {P4,P6} from the t copy and the

th
one-factors of K, - {Pt} fyom the (t+l)  copy. g



Definition: &n arrangement of one-factors is called s-distance apart,
if between any pair of the same one-factor there are at least s other

one-factors.

For example, if Fl'.'.'FZn-l;Fl'.'.'FZn-l are the one-factors
obtained from 2 copies of K2n' then the arrangement is (2n-2)-

distance apart.

Lemma 3.8: Let X, denote the (2n-7) one-factors of the e eopy
of Ko obtained according to Theorem 3.7 for i = 1,-+-,t-1. Let
v, denote the (2n-1) one-factors of XK, - P, and X denote all

the {2n-1) one-factors of X then the arrangement

2n’

¥ YV XX XK e KR )
where 3 =t when t <is even and j = t+l when t tis odd, 18

(2n-8)-distance apart.

The above result can be checked easily. Suppose we have the

following arrangement:

P.P P P PP "'Pn;P

1723456 TP PPt

4 1 234

The minimum distance will be the distance between the one-factors
obtained from P4,P5. Let Fl'Fz’F3'F4 denote the one-factors from
P4,P5:

P1P2P3F1F2F3F4P6"'Pn;F1F2F3F4P6"'Pn .

Clearly, PG,---,Pn contribute (2n-11) one-factors and Fj's

contribute 3 one-factors bétween any pair (Fi,Fi), hence the total

distance is {2n-8). O
One disadvantage of Theorem 3.10 is that we have used up to
Pt+l and the number of Pi's is n. We improve upon the restriction

"+ < n-1" by giving the following theorem:




Theorem 3.9: For t, t < 2n-10, t copies of the graph X, —may be
factored into t disjoint sets of 2n triangles covering {Pl'P1+i’
P2+i}’ i= 1,0, (t40)/2; {Pz,P3+i,P5+i}, i=1,"++,{t-1)/2; for
t odd and (PP /Py b5 = 1ret/2 {P, /Py, vPe, i)

i=1,-++,t/2; for t even, and t(2n-7) one-factors.

Proof. For small values of t, no general pattern can be given but
we will see that, after t = 8, the general pattern will be clear.

Obtain the required Pi's in the following manner:

= . : ' -
t = 1: Required set of P.'s {Pl,Pz,P3}.

We cobtain these Pi's from the first copy of Kzn.
t = 2: Required sets of P 's = {Pl,Pz,P3},{P2,P4,P6}.

We obtain from the first copy of K2n the first set

{Pl'PZ'PB} and from the second copy of K2n the second set
of Pi's.
t = 3: Required sets of P /'s = {Pl,Pz,P3},{P2,P4,P6};{Pl,Pa,P4}.
Obtain from the first copy of K2n' Pl'Pz'P3’P4’ from
the second copy of KZn' Pl'PZ'PB’ and from the third copy
of K2n' P4’P6'
t = 4: Reguired sets of P,'s = {Pl,PZ,P3},{P2,P4;PG};
{Pl,P3,P4},{P2,P5,P7}.

Obtain from the first two copies of K2n {Pl,Pz,P3};
from the third copy of K, {PZ,P4,P5} and from the fourth
copy {Pz,P4,P7}.

t = 5: Required sets of Pi‘s = sets of Pi's for the case t =4
and {Pl,P4,P }.

5
Obtain Pi's as in the case t

It

4 and from the fifth
copy obtain {Pl,P4,P5}.

t = 6: Required sets of Pi's = gets of Pi's in the case t =5
and {PZ,PS,PB}.‘

5 and from the sixth

1l

Obtain Pi's as in the case t
copy obtain {Pz'Pe'PS}'
t=7: Required sets of Pi's = sets of Pi's as in the case of
t =6 and {Pl,PS,PG}.

Obtain Pi's as follows:
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o
]

10:
11:

t
From the 1° copy: P.P_P_P

nd 1’2236
Zrd : P1P2P3
" " 3 " . P P P
th 145
u " "o
4 ) : P1P4P5
L 1] " St n . P2P4P5
L ” 6th " . P P P
276 8
" n 7t}1 n P P
67"
Notice that P2i+l is always taken out with P2i so that

we can obtain the required one-factors from K2n'

Regquired sets of Pi's = sets of Pi's as in the case of

t =7 and {PZ,PT,PQ}. o
Obtain Pi's as in case oftht = 7 except from 6

copy of K2n' Obtain from the 6 copy P2,P6,P7 and from

on’ 8'P9}' Now, for even t,

the pattern is clear,” when required set of P.'s 1is

{PZ,P

th .
8  copy of K ocbtain {PZ’P

; st th :
25,P25+2} obtain from 1 to (t-1) copies of Kzn

same Pi's as in the case of (t-1) and from the tth copy

obtain {PZ’P }. When the required set of P.'s is

h

2s'Fas+2

. t
{PZ'P } obtain same Pi's from 1°° to (t—l)t

2s+l'P25+3 h th
copies of K2n except (t-2) copy and from (t-2) copy

instead of {Pl,P }, obtain {Pl'PZS'P2s+1} and from

th 2s’P25+2
the t = copy obtain {Pl,P25+2,P25+3}.
t is even.
Required sets of Pi's = set of Pi's as in the case t = 10
and {Pl,P7,P8}. . o
Obtain same Pi's from 2 to (t-1) copy of Kon-

Notice that, in the case of t = 7 hence for t=7,8,9,10,
from the ISt copy of K2n' we have obtained the set

. th
{Pl,Pz,P3,P6}. Now obtain {Pl’Pz’PB'PB] and from the 11
copy obtain {Pl,P6,P7}. Now the pattern is obvious. If,

H bl 1 a

for odd t, the kequired set of P.'s is {Pl'PZS’P2s+l}'

. t . .
obtain from t h copy the same set, else the required set 1is

(PP rer1Pass2

(B PPy Prstn
from other copies obtain same Pi's as in the case of t-1.

§

t
}. Obtain from the 1°% copy of K,, the set

th
}, from the t  copy {P,,P,_,P, .} and



Lemma 3.10: Let K._ be a complete graph. Then

(i) P_UP, form 4s distinct triangles;

(i1) P, form 2s distinet triangles.
Proof. Consider the triangles {a,ats,a+2s}, @ = s+l,**+2s;3s+1,°°*,
4s5+1;5s8+1,*"*,6s and {a,a+25,a+4s} for a = 1l,***,s. Observe that
{a,a+s,a+2s} account for all the pairs of P_ and for the pairs
(a,a+2s5) of P25 except for a = 1,---,5;2s+l,-°°,35;4s+l,-°-,55
and the triangles {a,a+25,a+4s} cover only these pairs.

For (ii}, observe that the triangles {a,a+25,a+4s}, a=1,°"-*,2s

form the 2s triangles of P, . g

Lemma 3.11: Let X, Yj be the same as in Lemma 3.8, then the arran-

gement

Y4,Y6,Yj,st,Y4S,XlXX2XX3X°-'Xt_lx ,

where X has occeurred (2t-4) times, is (2n-8) distance apart.

The proof is on a similar line as for Lemma 3.8.

4, Embedding theorems

In this section we will give some general recursive constructions.

The following theorem is proved in Sarvate [11]:

Theorem 4.1: If there exists a simple BIBD(v,3,)), A Sv-2, V odd,
then it can be embedded into a simple BIBD(2v+1,3,}).

Theorem 4.2: 4 simple BIBD(v,3,3t) can be embedded into a sirple
BIBD (2v+3,3,3t), for v = 3t+4.

Proof. The case t =1 1is proved in [10,15). We deal with t > 1.
The structure of the incidence matrix of BIBD(2v+3,3t) is given in

Figure 1 where B, = I xJ; 5 (y13}/2°
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- t(2v+3) {v+l) -+

— tv({v-1)/2 — <+ 3tv(v+3) /2 — +— t{v+3) —

Fig. 1 The incidence matrix AV of BIBD{V=2v+3,3,A}.

Apply Theorem 3.7 on the first t copies of Kv+3 (v is odd),
and obtain 't disjoint sets of (v+3)} triangles and use them as
columns of C2. The arrangement given in Lemma 3.8 accounts for Cl'
Notice that the arrangement is at least (3t-1) distance apart as

3t € v-=4 (and hence 3t-1 £ (v+3)-8). 0

3 (mod 6),

1

Theorem 4.3: If there exists a simple BIBD(V,3,A), V
then it can be embedded into a simple BIBD{2v+3,3,1), Vv 2 At+d.

Proof. For A £ 6, see [10,11,15). For X = O (mod 3) Theorem 4.2
gives the result. The structure of the incidence matrix is given in
Figure 2, where El = vaJl,A(v+3)/2'

Let X = 3t+i, i = 1,2. Obtain t sets of (v+3) triangles
using Theorem 3.9. Let v+3 = 6s. Obtain 1 times 2s triangles

¥

using Lemma 3.10. These triangles form columns of C2. Arrangement
of the one-factors, similar tco Lemma 3.11, gives Cl' Notice that the

arrangement is v+3-8B = v-5 2 A-1 distance apart.




——ap d— ] mm——

v+3

-
-+

A(2v+3) (v+1) /3

P

- AV {(V=1)/6 — «— Av{v+3) /2 — «— A (v+3)/3 —*

Theorem 4.4:

then it can be embedded into a simple

Proof.

Let A
v

BIBD(v,3,A).

AV

—_— e & —

v+7

is given in Figure 3.

If there exists a simple

e

— AV (v-1)/6 — «— AV (v+7) /2 — +— Alv+7) ——

denote the incidence matrix of the simple

the structure of the incidence matrix

A{v+3) (2v+7) /3

BIBD(v,3,7),
BIBD (2v+7,3,A}.

v-2,

.

Fig. 3 The incidence matrix Av of BIBD(V=2v+7,3,A).

v

Fig. 2 The incidence matrix AV of BIBD(V=2v+3,3,x). [

odd,
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Here Bl = IVXJI,A(V+7)/2' Consider X copies of Kv+7' Obtain A
disjoint sets of (v+7) triangles and A (2n-7) one-factors using

Theorem 3.7. The columns of Cl correspond to the arrangement given
in Lemma 3.8 and the columns of c, correspond to A(v+7) triangles.
Notice that A £ v-2 and the arrangement used for Cl is (v+7)}-B =
(v-1) distance apart. 0

Similarly we can prove

Theorem 4.5: A simple BIBD(v,3,6t), v even, can be embedded into a
simple BIBD(2v+2,3,6t) for v 2 6t+5.

Theorem 4.6: A simple BIBD(v,3,6t), v even, can be embedded into a
simple BIBD(2v+4,3,6t) for v 2z 6t+3.

Theorem 4.7: For t such that (t,3) = 1,
0 (mod 6), ear be embeddad

n

(i) a simple BIBD(v,3,2t), Vv
into a simple BIBD(2v+6,3,2t);
(ii) a simple BIBD(v,3,2t), v = 4 (mod 6), Vv x 2t+5, can be
embedded into a simple BIBD(2v+2,3,2t}.

Notice that if Vv = 0 (mod 6), then 2v+2 =2 (mod 6), so 2
4 (mod 6), then

Hi

simple BIBD(2v+2,3,2t) does not exist. If v

2v+2 = 4 {mod &), so a simple BIBD (2v+2,3,2t) exists, but
Jv+6 = 2 {mod 6), so a simple BIBD(2v+6,3,2t) does not exist.
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Chapter Five
Colourable Designs

The work in this chapter was done mainly with Dr. Jennifer Seberry.
The exposition owes much to her.

2! Introduction

In a recent paper which appears in Chapter 8 of this present thesis,
Sarvate and Seberry (1986) introduced a method for encrypting secret
messages using crypto designs. These designs are often hard to find, but
designs with some relaxed conditions can be used for encryption in a
fashion similar to crypto designs. In this chapter we study a class of such
crypto designs, which we call colourable designs (CDs). CDs have another
important application besides encryption - they can be used to produce new
group divisible designs.

The following definitions introduce an area of further research for
which almost no constructions and existence results are known.

By an (5.¢)-crypto design we mean a matrix M(0, a, b, .., ¢) of zeros
and some message symbols a, b, ... ¢ such that each s-set of message
symbols occurs at least once in the rows and each t-set of message
symbols occurs at least once in the columns.

By an /aeal cryplo design we mean a crypto design obtained by
assigning (colouring) to each 1 in the incidence matrix of a BIBD (PBIBD) a
message symbol so that at least one of the following properties holds:

(i)  each t-set occurs at least once, but a minimum number, say C,
of columns accounts for all the t-sets of the message symbols;

(i) each s-set occurs at least once, but a minimum number, say R,
of rows accounts for all the t-sets of the message symbols;

5.
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(iii) each s-set and t-set occurs at least once in the rows and
columns respectively, but two minimum numbers R and C of rows and
columns account for all the s-sets and t-sets of the message symbols
respectively.

In a crypto design the number of t-sets per column is equal to ( E )
and the total number of t-sets is ( %), where ¢ is the size of the message

symbo) set. Therefore we will need at least (¢ )/ (k) columns. Hence

t
($)/(K)s
Naturally C, < C.

Similarly, we can see that

(€)/(f) < Rs<R

By a colourable design we mean a coloured incidence matrix of a
BIBD or PBIBD with block size k and replication number r, which satisfies
the following properties :

(i)  the matrix is coloured with r symbols ;

(i)  all symbols in any row and in any column are different. If the
underlying matrix is the incidence matrix of a BIBD(v, b, r, k, A) we denote
the colourable design by CD(v, b, r, k, A) or by CD(v, k, A). Similar notation
is used for PBIBDs.

Naturally each row of the colourable design will be coloured by all
the r symbois.

By an r-colowrable malriy we mean a matrix with r non-zero entries
in each row, which can be coloured by using r symbols, such that all
coloured symbols in any row and in any column are different.

Latin squares { see Denes and Keedwell (1974) ), graeco-latin designs
( see, for example, Preece (1976), Seberry (i1979), Street (1981), Sterling



and Wormald (1976) or Youden (1937) ) and balanced Room squares (see
Wallis, Street and Wailis (1972) ) can immediately be used as coloured
designs.

Coloured designs are used in Seberry (1987) and Rodger, Sarvate and
Seberry (18987) to construct new families of BIBDs and GDDs. A general
existence theorem is given in the attached reprint of Rodger, Sarvate and
Seberry (1987) in the section 5.2. In the following sections, ie. in the
sections 5.3, 5.4, 5.5 and 5.6, we will give our own constructions as they
may be useful in applications to encryption and also because the general
existence theorem does not tell us that how to do the colouring.

Applicati ral constrycti

Attached is a joint paper with C.A. Rodger and J. Seberry, which
appeared in the J. Stat. Plan. and Inference. The paper owes its existence
especially to J. Seberry. The following existence theorem was
independently and almost simuitaneously observed by this author and J.
Hammer together, and by C.A . Rodger.

Theorem S.2.1: Any block design (V, B) with pomt set N and set of blocks
B canbe colowed with R colourswhere R = mas (ry, kp), where ry /s the

mumber of occurrences of lreatment v and ky /s the number of elements in
Dlock b.

Froof. Theorem 2.1 of the attached paper.

The following theorem is due to J. Seberry.

Theorem 5.2.2 : /7 there exists a CD(v, b, 1. k, N), where t-1= q /is a prime
power, then there exists a group divisible design

GDO(V(r-1)2, b(r-D2, r(r-1), k(r-1, Ay =r-L As = A, m=g4n=v)
Froof. Theorem 3.1 of the attached paper. '
O
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The bulk of the paper is due to mutual discussion and this author
produced the tabies in the Appendix of the paper.




Colourable designs, new group divisible designs

and pairwise balanced designs
C. A. Rodger, D. G. Sarvate, J. Seberry
L introducti

For the definitions of a balanced incomplete block design (BIBD), a
partially balanced incomplete block design (PBIBD) and a mutuaily
orthogonal Latin square we refer the reader to Raghavarao (1971). A growp
divisible design (GDD) is a BIBD with S being the set of symbols and
B=G U X being the set of blocks, where G is a partition of S and where

each block in X intersects each block in G in at most one point.

In a recent paper Sarvate and Seberry (1986) introduced a method for
encrypting secret messages using crypto designs. These designs are often
hard to find, but designs with some relaxed conditions can be used Tor

encryption similar to crypto
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designs. In this note we study a class of such crypto designs, which we call coloured
designs (CD). CD’s have an important application besides encryption: they are used
to produce new group divisible designs.

A matrix is x-coloured if each non-zero entry is replaced with one symbol from
a given set of x symbols; it is properly x-coloured if each of the x symbols occurs
at most once in each row and at most once in each column. A coloured design
CD(v, b, r, k,A) or a CD(v, b, r, k, A, A3,...) is a properly r-coloured incidence
matrix of a BIBD(v, b, r, k, A) or a PBIBD(v, b, r, k, Ay, A5, ...) respectively. (This
has been called a colourable design elsewhere (Seberry (1987), de Launey and
Seberry (1987)).)

Of course each symbol occurs exactly once in each row of a coloured design.

Latin squares (see Denes and Keedwell (1974)), Graeco-Latin designs (see, for
example, Preece (1976), Seberry (1979), Street (1981), Stirling and Wormald (1976))
and balanced Room squares (see Wallis, Street and Wallis (1972)) can immediately
be used as coloured designs.

2. Main theorem

Theorem 2.1. The incidence matrix of any block design, (V, B), with treatment set
V and set of blocks B can be coloured with R colours where

R= max (r, k)
veV,bel

with r, the number of occurrences of treatment v and k, the number of elements
in block b.

Proof. Form a bipartite graph, G, with vertex sets V and B. Join ie V to je B if
and only if fej. Then, since each symbol i occurs in r;< R blocks, each vertex i has
degree r; and since each block contains k;< R symbols, each vertex j has degree &;.
We can edge-colour G with 4(G) = R colours. This edge-colouring induces a colour-
ing of the design of the required form (that is, colour symbol / in block j with colour
c iff the edge {i, j} is coloured with c).

Corollary 2.2. If there exists a BIBD(v, b, r, k, A) or a PBIBD(v, b, r, k, 4}, A3, ...),
then there exists a CD(v, b, r,’k, 1) or a CD(v, b, r, k, &), 43,...) respectively.

Coloured designs are used in Seberry (1987b), and de Launey and Seberry (1987)
to construct new families of BIBD’s and GDD’s.

3. Main application

The matrices described in the following proof can also be constructed from
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generalized Hadamard matrices and latin squares but here we use a simpler for-
mulation.

Theorem 3.1. If there exists a CD(v, b, r, k, A) where r — 1 =q is a prime power, then
there exists a group divisible design

GDD(vg?, bg?, (g +1)q, kg, 1, =g, A;=4, m=q* n=v).

Remark. We can apply the same technique as in the following proof for coloured
PBIBD’s to obtain families of PBIBD’s with more associate classes.

Proof. Take the g+ 1 matrices of order g2, Ry, ..., R,, defined by Seberry (1986),
(and which have appeared earlier in many forms; for example see Wallis (1971) and
Glynn (1978)), which satisfy

q
E RI'R;I-=qZI+qJ9

RR'=J, RiJ=gqJ.
i=0

These matrices exist whenever g is a prime power. Now replace symbol / of the CD
by R; and each 0 by the zero matrix of order g° to obtain the result.

Example 1. Consider the CD(9, 12, 4, 3, 1) given in Table 1.

Table |
a b < d
b c a d
c d a b
c a b
d b c a
a c d b
< d ] a
a d b c
d a c b

Here r— 1 = 3 = ¢ (for notation, see Wallis (1971) and Seberry (1987b)), and hence
we can define

0
T= 1 and J;=111 1},
0

- O
(= =

and Ro, RII Rz, R3 by
PR A | i1 T T
R0= I 11 N R|= Tz I T_ ’
11! T T3 1

5.7
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1Tt T Jy 00
R,=|T17 1 T, Ry=}0 J 0
TP T I 0 0 4
Now we replace a by Ry, b by R, ¢ by R, and d by R; in the CD(9, 12,4, 3, ) to

obtain the GDD(81, 108, 12, 9,3, 1,9, 9) given in Table 2, which is not listed in Clat-

worthy (1973) (Clatworthy lists GDD’s with r<10).

Table 2
R, Rz Ro RJ
Ry R;3 Ry R,
Ry Ry R, Ry
R R, R, Ry
Rg R, R, R
Rz R3 Rl RO
Ro Rs R, Ry
R; Ro R, R,

Coroltary 3.2. () If g=3v—425 is a prime power then there exists a
GDD(g}(g+4)/3, g*(g+1)(g+4)/9, g(g+1), 3¢, A;=q, 4,=6, m=q?, n=(q+4)/3).
(i} If g=3t—1 is a prime power then there exists a

GDD((2t+ 1)3¢—-1)%, 121+ 1)(3t— 1), 31(3t—1), 3(3¢t—-1), Ay =3r-1,
A,=3, m=(3t—1), n=2t+1).
(iii) If g=Av—A—1 is a prime power then there exists a
GDD(vg?, Av(v—1)g%/2, gg+1),29, A4, =g, 2= 4, m=gq? n=v).
iv)Ifg=(Av—24-3)/3is a prime power and 4 divides Av(v— 1) then there exists a
GDD(vg?, Av(v—1)g*/12, glg+1), 49, Ay =g, A, =4, m =g% n=v).
M Ifg=(Av-Ai-4)/4isa prime power and 5 divides Av(v— 1) then except when
v=15 and A=2 there exists a
GDD(vg?, Av(v - 1)q%/20, glg+ 1), 5q, A; =4, A=A, m= g, n=v).

Proof. (i) For all v=3 there exists a CD(v, v(v—-1), 3(v-1), 3, 6).
(ii) For all v=2¢+1=3 there exists a CD(v, tv, 31, 3, 3).
(iii) For all v there exists a CD(v, Av(uv—1)72, A(v-1), 2, A).
Giv) If 4 divides Av(v-1) and 3 divides A(uv—1) then there exists a

CD(v, Av(v—1)/12,r,4, 4).
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(v) If 5 divides Av(v—1) and 4 divides A(v—1) then there exists a
CD(v, Av(u—1)/20,r, 5, A) unless =15 and 1 =2.
For example, using v=3 in Corollary 3.2(i), there exists a
GDD(75, 150, 30, 15, A, =5, A,=6, m=25, n=3).
Using =1 and then 2 in Corollary 3.2(ii) shows that there exists a
GDD(12, 12, 6, 6, A, =2, A;,=3,m=4,n=3)
which is SR68 in Clatworthy and a
GDD(125, 250, 30, 15, 4, =5, A;=3, m=25, n=5).

Corollary 3.3. (i) If g=2v-3 is a prime power then there exists a
GDD(vg?, v(v = 1)g%/2, 2(v=3)v~1), 42v-3), ;=20 -3, 1,=6,
m=gq% n=(g+3)/2).
(ii) If g=4u—1 is a prime power then there exists a
GDD(Gu+1)q?, u(u+1)g?, du(du-1), A,=4u-1, 2,;=4, m=q*, n=3u+1)
(iii) If g=4u -1 is a prime power then there exists a

GDD((g+2)¢% q*(g+1)(g+2)/4, glg+1), 4q, X,=q, A,=3, m=q*, n=q+2).

Proof. Use Corollary 3.2(iv) with (i) A =6, (ii) A =4 writing v=3u+1 and (ili) 1=3
writing v=4u+1.
For example, using v=4 and then 5 in Corollary 3.3(i), there exists a

GDD(100, 150, 30,20, 4, =5, A, =6, m=25, n=4)

and a
GDD(245, 490, 56, 28, 2, =7, A; =6, m=49, n=35).

Using ¥ =1 and then 2 in Corollary 3.3(ii) there exists a
GDD(36, 36, 12,12, 4,=3,1,=4,m=9, n=4)

and a
GDD(343, 2401, 196, 28, A, =7, A, =4, m=49, n=17).

Using ¢ =13 and then 7 in Corollary 3.3(iii) there exists a SBIBD(45, 12, 3) and a
GDD(441, 1764, 56, 28, 3, =17,1,=3, m=49, n =9).

5.9
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Corollary 3.4. (i) If g=5u—2 or 5u—1 and is a prime power then there exists a
GDD(g%(g+2), ¢*(g+1)(g+2)/5, a(g+1), 5q, A;=q, Ay=4, m=¢’, n=q+1).
(ii) If g=5u—1 is a prime power then there exists a

GDD(q2(du+1), g u(du+1), glg+1), 59, A,=q, A;=5, m=¢>, n=4u+1).

Proof. Use Corollary 3.2(v) with A =4 writing v as 5u or Su+1 and with A =5
writing v =4u+ 1 respectively.

Remark. If g=4 this gives a
GDD(80, 80, 20, 20, A; =4, 1,=5,m=16,n=35)
which can be easily extended to an SBIBD(85, 21, 5).

Remark. This method can always be used to give

n+l_ n_ n-1_
SBIBD(p L=l p -1
p-1 p—1 p-1
but, as v Vv - v known, we do not pursue this construction.
d"s“'d“‘\s Wb Yaese ipcwt\w\t.\(hﬁ ahe a.'h—e_m.kj
Appendix 1 gives a listing of GDD’s obtained by these methods using BIBD’s
listed in Mathon and Rosa (1985) for r<15. We have a computer listing for r<41.

4. Other designs

We note that a symmetric CD(u, k, 1) always exists whenever an SBIBD(u, k, 4)
exists. Thus Theorem 3.1 can be reformulated as:

Theorem 4.1. Let g be a prime power. Suppose an SBIBD(g(g+1)/1+1,q+1, A)
exists, then there exists a regular

GDD(g*(g+ 1)V/A+¢%, glg+1), A;=q, Az=4, m=q*, n=q(g+ )i+ 1).

Trivially an SBIBD(g+2,g+1,q) always exists and so does an
SBIBD(g%(g + 2), g(g+ 1), q) for g a prime power.

Also, suppose that we are interested in pairwise balanced designs: we note that
an SBIBD(31, 6, 1) exists and a B BD(6, 9, 9, 6, 9) exists. These give regular

GDD(31.25, 30, 1, =5, 2,=1)

and .
GDD(6.25, 9.25,45,30,1,=5,4,=9).
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Thus we have a
PBD(6.25, 40.25, 75, k; =30, kK, =6, A =10).

For convenience, we state the generalization as a theorem noting that a
B BD(g+1,29—2,2g~A, g+1,2g— ) always exists $or A< 1%. We uscd "8
for Yoluwced block dasigqn,
Theorem 4.2. Let g be prime power. Suppose an SBIBD(g(q + l)’l +1,g+1, 1) ex-
ists; then there exists a pairwise balanced design

PBD(gX(g+ 1), ¥ (Alg*+q-1)+2g+1),q(3g+ 1 - 1),
ki=q(g+1), ky=q+1,1"'=2q).

Appendix 1
BIBD parameters GDD parameters
No. v b r k i vl bl rl kl Ay 4, m
1 7 7 3 3 i 28 28 6 6 2 1 4
2 4 4 3 3 2 16 16 6 6 2 - -
3 9 12 4 3 1 81 108 12 9 k| 1 9
4 13 13 4 4 1 117 117 12 12 3 1 9
5 7 7 4 4 2 63 63 12 12 3 2 9
6 5 5 4 4 3 45 45 12 12 3 - -
7 6 i0 5 3 2 96 160 20 12 4 2 16
8 16 20 5 4 1 256 320 20 16 4 1 16
9 21 21 5 5 | 336 336 20 20 4 1 113
10 1t 11 5 5 2 176 176 20 20 4 2 16
11 6 6 5 5 4 96 9 20 20 4 - -
12 13 26 6 3 1 325 650 30 15 5 1 25
13 7 14 6 3 2 175 is0 30 15 5 2 25
14 10 15 6 4 2 250 375 30 20 5 2 25
15 25 30 6 5 1 625 750 30 25 5 1 25
16 31 31 6 6 1 778 715 30 30 5 1 25
17 16 16 (3 6 2 400 400 30 30 5 2 25
18 15 35 7 3 1 540 1260 42 18 6 1 36
19 8 14 7 4 3 288 504 42 24 6 3 36
20 15 15 7 7 3 540 540 42 42 6 3 36
21 8 8 7 7 6 288 288 42 42 6 - -
22 9 24 8 3 2 441 1176 56 21 7 2 49
23 25 50 8 4 I 1225 2450 56 28 7 1 49
24 13 26 8 4 2 637 1274 56 28 7 2 49
25 9 18 8 4 3 44] 882 56 28 7 k| 49
26 49 56 ] 7 1 2401 2744 56 49 7 ] 49
27 57 57 ] 8 1 2793 2793 56 56 7 1 49
28 19 57 9 3 1 1216 3648 72 24 8 1 64
29 10 30 9 3 2 640 1920 72 24 8 2 64
30 7 21 9 3 3 8 3 64

448 1344 72 24

Note that GDD’s with r1 greater than 10 are not listed in Clatworthy (1973),
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Appendix 1 (continued)

BIBD parameters

GDD parameters

No. o b r k i vl bl rt k1 i, Ay m
3} 28 63 9 4 1 1792 4032 72 32 8 I 64
32 10 18 9 5 4 640 1152 72 40 8 4 64
33 46 69 9 6 1 BIBD unknown .
3 16 24 9 6 3 1024 1536 72 48 8 3 64
a5 28 36 9 7 2 1792 2304 72 56 B 2 64
36 64 72 9 8 | 4096 4608 72 64 8 l 64
37 73 73 9 9 1 4672 4672 72 72 8 1 64
38 37 37 9 9 2 2368 2368 72 72 8 2 64
3¢ 25 25 9 9 3 1600 1600 72 72 8 k) 64
40 19 19 9 9 4 1216 1216 72 72 8 4 64
41 21 70 10 ] 1 1701 5670 90 27 9 I 8!
42 6 20 10 k) 4 486 1620 90 27 9 4 81
43 16 40 10 4 2 1296 3240 o0 36 9 2 81
44 41 82 10 $ H 3321 6642 90 45 9 1 81
45 21 42 10 5 2 12701 3402 90 45 9 2 81
45 i1 22 10 5 4 891 1782 90 45 9 4 81
47 51 85 10 6 1 BIBD unknown

48 21 ¢ 10 7 3 1701 2430 o0 63 9 3 81
49 81 9% 10 9 1 6561 7290 o0 21 9 1 81
50 91 91 10 10 1 7371 7371 90 90 9 | 81
51 3 31 10 16 3 2511 2511 90 90 9 3 81
52 12 44 1 3 2 1200 ~ 4400 110 30 10 2 100
53 12 33 11 4 k) 1200 3300 110 40 10 k] 100
54 45 9% il 5 1 4500 9900 110 50 10 1 100
55 12 22 11 6 5 1200 2200 110 60 10 5 100
56 45 55 11 9 2 4500 5500 110 90 16 2 100
57 100 1o 11 10 1 BIBD unknown

58 111 111 11 11 i BIBD unknown

59 56 56 11 11 2 5600 5600 1l1C 110 10 2 100
60 23 23 11 11 5 2300 2300 110 150 10 5 100
61 25 100 12 3 1 30258 12100 132 33 11 1 121
62 i3 52 12 3 2 1573 6292 132 33 11 2 121
63 9 k1.3 12 3 3 1089 4356 132 1 11 3 121
64 7 28 12 3 4 847 3388 132 1 11 4 121
65 37 111 12 4 1 4477 13431 132 44 11 1 121
66 19 57 12 4 2 2299 6897 132 44 I 2 121
67 13 39 12 4 3 1573 4719 132 44 1t 3 121
68 10 30 12 4 4 1210 3630 132 44 b 4 121
69 25 60 12 5 2 3025 7260 132 55 11 2 121
70 61 122 12 6 1 BIBD unknown

71 k)| 62 12 6 2 3751 7502 132 66 11 2 121
72 21 42 12 6 3 2541 5082 132 66 11 k) 12t
73 16 32 12 ] 4 1936 872 132 66 ] 4 121
74 13 26 12 6 5 1573 3146 132 66 1i 5 121
75 22 33 12 8 4 - BIBD unknown

76 33 44 12 9 3 3993 5324 132 99 1 3 121
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Appendix 1 (continued)

BIBD parameters

GDD parameters

No. w b r k i vl bl rl k1 A Ay m
77 121 132 .12 11 1 14641 15972 132 121 11 i 121
78 113 133 12 12 I 16093 16093 132 132 1 1 121
79 45 45 12 12 3 5445 5445 132 132 1 3 121
80 27 117 13 3 1 3888 16848 156 36 12 1 144
g1 40 130 13 4 1 5760 IB720 156 48 12 1 144
82 66 143 12 6 1 7986 17303 132 6 1 1 121
83 14 26 13 7 6 2016 3744 156 84 12 6 144
84 27 v 13 9 4 3888 5616 156 108 12 4 144
85 40 52 13 10 3 BIBD unknown
86 -66 78 13 11 2 9504 11232 156 132 12 2 144
87 144 156 13 12 1 BIBD unknown
88 157 157 i3 13 i BIBD unknown
89 79 79 13 13 2 11376 11376 156 156 12 2 144
20 40 40 13 13 4 5760 5760 156 156 i2 4 144
91 27 27 13 13 6 3888 3888 156 156 12 6 144
92 15 70 14 3 2 2535 11830 182 39 13 2 169
93 pl 77 14 4 2 3718 13013 182 52 13 2 165
94 8 28 14 4 6 1352 4732 182 52 13 6 169
95 15 42 14 5 4 2535 7098 182 65 13 4 169
9% 35 84 14 6 2 6084 14196 182 78 13 2 169
97 15 3s 14 6 5 2535 5915 182 78 13 5 169
98 85 170 14 7 i BIBD unknown
9% 43 86 14 7 2 7267 14534 182 91 13 2 169

100 29 58 14 7 3 4901 9802 182 91 13 3 169

10} 22 4 14 7 4 3718 7436 182 91 13 4 169

102 15 0 14 7 6 2535 5070 182 9 13 6 169

103 169 182 14 13 1 28561 30758 182 169 13 1 169
104 183 183 14 14 ; 30927 30927 182 182 13 1 169

105 31 155 15 3 I 6076 30380 210 42 14 1 196

106 16 B0 15 3 2 3136 15680 210 42 14 2 196

107 1§ 55 15 3 3 2156 10780 210 42 14 3 196

108 7 35 15 3 5 1372 6860 210 42 U4 5 196

109 6 30 15 3 6 1176 5880 210 42 14 6 196
110 16 6 15 4 3 3136 11760 210 56 14 3 196

1t1 61 183 15 5 1 11956 35868 210 70 14 1 196

H2 k]| 93 15 5 2‘ 6076 18228 210 70 14 2 196
113 21 63 15 5 3 4116 12348 210 70 14 3 196

114 16 48 [§] 5 4 3136 9408 210 70 14 4 196

115 13 9 1S s 5 2548 7644 210 70 14 5 196

116 I 33 15 5 6 2156 6468 210 70 i4 6 196

117 76 190 15 6 1 14896 37240 210 B4 14 1 196

118 26 65 15 6 k] 5096 12740 210 84 14 3 196
119 16 40 15 6 5 3136 7840 210 84 14 5 196
120 91 195 15 7 1 17836 38220 210 98 14 1 196
121 16 30 15 8 7 3136 5880 210 112 14 7 196
122 2! is 15 9 6 4116 6860 210 126 14 6 196

5,13
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Appendix I {continued)

BIBD parameters GDD parameters
No. b r k i vl bi rl k1 4 A, m

123 136 204, 15 10 1 BIBD unknown

124 46 69 15 10 3 BIBD unknown

125 28 42 15 10 5 BIBD unknown

126 56 70 15 12 3 10976 13720 210 168 14 3 196
127 71 71 15 15 3l 13916 13916 210 2i0 14 3 196
128 36 36 15 15 6 7056 7056 210 210 14 6 196
129 31 k3 15 15 7 6076 6076 210 210 14 7 196
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Recursive Colourability Theorem

In the style of Hanani (1875), Wilson (1975) and many others we first
state a general recursive theorem, due to Dr. J. Seberry (personal
communication). The proof of the theorem is based on the proofs of
Theorem 3 of Seberry (1984) and Theorem 2.4 of Lam and Seberry.

Theorem 5.3.1: Suyppose there exists @ CD(v, by, r3, k, A), B, ad a
CD(u, by, Ty*ro, k, A), A, with a colourable subdesign on w lreatments, X,
which /s 3 CO(w, b, 1, K, N) or W =0, . Further suppose that there exist
k-2 mutvally orthogonal Latin squares of order u-w. 7hen there exists a
CD(vy, k. N) where vy = v(U-W)+w with 3 colourable subdesign on W
lreatments .

we will now develop Hanani's theory (1975) for CDs.

Theorem 5.3.2 : Syppose we have 3 BIBD(v, b, r. k, A) ang CD(k, by, ry, j, ).
Then there exists 3 CD(V.jAN) over rry colours .

Proof. Let Ry, Ry, ... R, be disjoint coloured sets of ry symbols. Let Q; be
the CD(k,j, ) obtained by using the colour set Rj i =1, 2, .., r. Replace each
block of the BIBD(v.k,A) by the underiying BIBD(k.j.p) of CD(k.jp). This is
done by retabelling the points of each block, say B, of the BIBD(v, k, A) in
order by 1, 2, ... K. Now, if the point which is labelled by, say s, has already
appeared in, say, j-1 blocks of the BIBD(v, k, &), before it appeared in said
B, then replace s with the st row of Qj.

O
Example 1 . Let the CD(3, 2, 1) be




Let Rj = {aj, bj} : then

aj Di 0
Qi = bj 0 aj
0 aj D|

Let the BIBD(4, 3, 2) be

o

_...L._no__
—

K
1
!

0

then a CD(4, 2, 2) is given by

Theorem 5.3.3 : Suppose there exists a pairwise balanced design
PBDIK, A: VI, where K = (K. Ko, ... ki) and @ CD(k;, j, p) 7oreach ki € K.

Then there exists a CD(v, j, Ap).

Proof. We suppose that each CD(kj, j. 1) is coloured with colours
&t . 42i . .. drj and that the final CD(v, j, A) is to be coloured with colours
Cn C2 . Cp .

Recall the construction of a BIBD(v, j, Ap) from a PBDIK, A; v], where
colouring is not considered: any block with ki elements from the pairwise

balanced design PBDIK, A; v] has its ki non-zero elements replaced by the

5

.17



.18

rows of the corresponding BIBD(k, bj, ri, j. j) and the zero elements are
replaced by the t x bj zero matrix (see for example Hanani(1975)). The

number of elements in each block of the new design is | because only
BIBD(k, i, 1)'s are used and the inner product of two distinct rows of the

incidence matrix is AJ, because each original pair is now duplicated p
times.

we now consider the question of colouring the design. Consider the

tth biock of the PBDIK, A; v], Y. We suppose that the blocks of the required
coloured design obtained from the previous t-1 blocks have been processed

and coloured. If the tth block has ki elements, then replace it by the rows
of the BIBD, X, underlying the CD(kj, j, p) (as explained in the above

paragraph). Suppose that the nonzero entries in, say st row, obtained by
the previous (t-1) blocks, are already coloured with colours ¢y, ..., Cgx. We

wish to colour the nonzero entries in the sth row obtained by X, by r;
colours fromCg = { Cog+] . - Cr ).

we proceed as follows. We colour the first non-zero row obtained
from the current block by C; = {Ciy+1 , .., Cr) @s follows : define a one-to-

one map fy: Cy -> {1, 2, ... rj} and replace the non-zero elements by f,~} (a),
if dgj is the corresponding non-zero entry (colour) in CD(kj ,j,1) . Now let C
= Cy N Co define Tp: Cp => {1,2, ... rj } such that fo(y) = f{y) for y ¢ C.
Replace the non-zero entries of the second row by f,7}(a) if daj is the
corresponding entry of the CO(kj, j, ).

In general, we let D = (C; M C, N ... N Cp-1) N Cp and define
fn:Cn => {1, ... rj } such that fn(y) = fk(y) if Yy € C¢ . k = 1., n-1. We note
that if y e Cj N Cy . then f(y) = Tx(y) so the mapping is well defined. We

colour the non-zero entries of the nth row, say y, by Tn™! (Y if dyj is the
colour of the corresponding entry of the CD(kj, j, p). Thus, in a finite



number of steps, k , all non-zero rows obtained from the tth block of the
PBDIK, \; v] will be coloured. Note that all the required colours in each row
have been used by the definition of the fp 's.

Wwe now show that in any column no colour has been used more than
once. Suppose that in some column the same colours occur at the sith and
s,th rows. Then fg,"1(q) = fg,”1(p) for some p and q. Without loss of
generality, we assume &y < s, and consider fs, (fs, (@)} = fs, {fs,™! (p)
But, by the definition of s, .

sz (fsz'l(p)): f51(f52‘1(p))‘

Thus,
q="1g, {T5, 71 (@)= 15, (s, P)) =15, (s, (D))= .

that is, the same cotours dpj and dqj are used in a column of the CD(kj, j, p)
which is a contradiction.

O

Theorem 5.3.4: /7 ne GD(S, 1, R), mR is a subset of CD(k, A) and mS is a
subset of CGDD(, A, m), #en mn € COk, A), where CDk. N) /s the set of
all v's for which a CD(v, k, \) exists, and CGDD(k, N, B) /s @ coloured
group aivisible design.

The proof of this theorem is on similar lines to the proof of
Theorem 5.3.2 and Hanani (1975, Theorem 2.25).

O

Lemma 5.3.5 : 77 residval design of a coloured design CO(v, v, k, k. ) /5 2
coloured design CD(V=K, v-1, k, k=X, ).

Froof . The definitions of residual design (Raghavarao (1971)) and coloured
design immediately give the result.
g
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lourability Construction Theor

The dimensions of all matrices in this section wili be assumed to be
compatibie and should be determined from the context.

Lemma 5.4.1 : (a) /A and B are two colourable malrices over ry andry
aistinct symbols, then -

[A:B] and [A B
B A

are colourable matrices over ry+ ry SYmbols .

(b) /7 A, Ag... A are colourable mairices over Iy, g, . '

symbols respectively, then

AL Ay ... Ap ]
An A An-1
Az Ay A

s colourableover T+ ry+ 3+ ...+ SYmbols.

For the definitions of supplementary difference sets, cyclic and type
1 incidence matrices refer to Wallis, Street and Seberry Wallis (1972).

Let Sy Ss .. Sp be supplementary difference sets with elements
from an additive group G of order v. Then the type 1 {or cyclic if G is
cyclic) incidence matrices A = (a'jj), ... An = (aNjj) are given by -

aPij ={l it sPj -sPj € Sp, Sp = {sPy, Py, ... , sPypl,
0 otherwise.



The idea of the following theorem arose in conversation with Dr. J.
Seberry.

Theorem 5.4.2 : Any design which is rormed by developing supplementary
differernce sels to form ifs cyclic or lype 1 ncidence malrix 1s colourable
and 1ts complement is 3/so colourable.

Froos. (i) If the supplementary ‘difrerence sets contain nO element oo,
then one of the r colours is attached to an element of one of the initial
sets and the same colour cycied with the element as it is cycled.

(ii) Suppose one initial set, say D contains the element «. We
proceed by way of the incidence matrix to show how the design should be
coloured. Attachr colours to the elements of the initial sets other than e

and cycle as before (see(i)). Notice that we also colour the k-1 elements of
the set D.

Now attach a zeroth row containing r 1's and b-r 0’s, viz.
(1, ... 1, 0, .., 0) to the matrix obtained by developing k-1 elements of D
other than e, Let us call this matrix C. We colour the r elements of the
zeroth row with the r different colours. Thus we have the following
augiliary matrix of the required coloured design (we assume that the matrix
C is in the beqining of the incidence matrix of the design):

Cy Ca v v v q-i 0,..0 7]
C k-1 |
I entries
obtained by
: developing other
Cy | initial sets.
i
K-1 |
| !
. | _

.21



Now in (k-1) columns of C, there will be two elements labelled with the
same colour. Let the colours used for labelling k-1 elements of D other
than == be ¢y, ..., Ck-1 . but, as the design has at least than 2k-1 colours

(k-1 for k-1 elements of D other than e and k for each subsequent initial
set), we now interchange as follows : in the column where ¢, i = I, .., k-1,

occurs we swap, in the row of the second ¢, the colour ¢j with the colour
K+i-1 - ,
If a second, different, = occurs the process can be repeated. This
completes the proof.

O

Corollary 5.4.3 : /1 there exists g cyclic (v, k, \) difference set. Then there
exists a CD(v, k, A).
Example 2. The BIBD(7, 7, 3, 3, 1) formed by developing the initial block
{1, 2, 4} mod 7 is colourable :

and its complement BIBD(7, 7, 4, 4, 2) is colourable :

-

o Do oo

o O o MmO o

U oo QP D

0

O o m ™G o

D oo o mo

o M MM o o O

D 0 0
0 D 0
B 0 D
A B 0
¢ A B
0 0 A
0 0 0
0 E F G
C 0 E F
0 C 0 E
0* O C 0
G 0 0 C
F G 0 0
E F G 0

P VOO O OO

-




It is easy to see that we could have obtained a CD(7, 3, 1) and a

cyelic

CD(7, 4, 2) by using any, latin square of order 7 as follows: Colour the

nonzero (i, PN entry of the incidence matrix of BIBD(7, 3, 1) by the (i, )N
entry of the Latin square. Similarly we get CD(7, 4, 2) from the incidence
matrix of BIBD(7, 4, 2). Notice that every latin square of order n is a
cD(n, n, n, n, n).

Example 3. We construct the CD(12, 6, 5), developed from the initial sets
(0, 1,3, 4,5,9) =D and (0, 2,6, 7, 8, 10). Attach colours a, b, ¢, d, e to
k-1 (= 5) points of D. Attach colours f, g, h, i, j and k to the points of the
second initial set. We get:

0 fo0e000dcbOa fkO0jinh0o0oO0gOo]
{lao00e000decb06 O0TkOjih0O0OGg
2 |loaooeooodecdb gOfkOjinooo
3 b0a00e000dc 0gO0fk0jihoo
4{cb0a00e000d 00g0fk0ojiho
5 |dcb0a00e000 000gO0TkOjih
6 |0dcb0a00e00 hOOOQGQOTKO;ji
7l00dcb0a00e0 ih0O0OOQGOTKO]
8| 000dcb0aonoOe jih000gOTfkoO
91e000dcb0a0n0 0jih0060gOTK
0{0e000dcb0a0d k0jin000GOT,

Now we attach to the above matrix a row of r (=11) I's and b-r (=11)
0's(called the zeroth row). We colour the 1I's inby all the colours a to k. We
obtain:

.23
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O ® NN NN~ O §

=

As we can see that in the first k=1 (=5) columns two colours are same. we

abc defghijk
00e000dcb0Oa
a00e0000dcbhO
0a00e0d00Cdcbh
bO0aldO0e000dc
cb0adooe00O0d
dcb0ald0e000
0Odcb0alO0e0O
00dcb0ald0e0
000dcb0O0at0Ce
e000dcb02a0b0
0e000dcb0O0ab0

000000000 0]
k0jihoo0o0go
fk0jihoOOGg
0 fTk0Ojihooo
gof ko0jihoo
0gO0f kO0jiho
00gO0f kOjih
000g0 fTkOji
h000gOTfko,j
ih000gO0TfkoO
jih0o0o0gofk
0jiho000goOT

interchange the colours as in the theorem and obtain the required
CD(12, 6, 5):

W o ~NO U DN WN - O 3§

=

[abc defghijk
00e000dcbOa
fo0e0O00dchO
0al0j000dchd
b0ald0edO00dc
cg0adOe00O0d
dcb0a00e000
0dhb0a0O0OeO0O0
00dcb0alO0e0
000icbOaldaOe
e000dcb0a0o
0e000dcb0BGad0

00000000000]
fk0jih000go
Qak0jihoO0oOg
gOfkOe ih000
0goOfkOjihoo
00bOfkOjiho
000gOfkOjih
c000gOfkOji
i h000goOTkoO j
jd h00O0OgoOfko
0jih000gO0TK
k0jih000GQgOTf]




Example 4. CD(8, 3, 6), this example shows the application of the theorem
when there are more than one initial sets with oo :

A BIBD(8,3,6) can be obtained by developing (modulo 7) the initial
blocks (se, 1, 6), (e, 2, 5), (e, 3, 4), (0, 1, 2), (0, 1, 4), (0, 2, 4), (1, 2, 4)
and (1, 2, 4). The CD(8, 3, 6) is obtained as follows :

8 3 .. a8 8 .. a3 d4 95 ... 9y c ... ... ... 0
dg dg di4 915 a7 a» dzdgq dg ...

develop the biocks with the colours assigned

O hEwWN O §

e

We can write a CD(8,3,6) with colour set {a; ... ap} as
(oo% , 1g, 6g ), (oo% , 215, Syg ), (oo% ,31,42), (03, 14. 25 ),

(0g. 17, 410 ) O 212 43 ) (ha 21 4ig) (hig 220, 420)

where ¥; means that the colour aj is assigned to the entry X of the initial
block, and ‘%’ means that the nonzero entries in the row corresponding to

e are coloured by 3 ..., 32 We again assume that the initial blocks with ee
are developed first.

Example 5. A CD(s2+s+1, s+I, 1) and its complement CD(s2+s+l, 52, 5%-3),
where s is any prime power, exist because (s2+s+1, s+i, 1) difference sets
exist,

Example_6, CD(s, s, s-1, s-1, s-2) exist for all s.

.25



Exarple 7. To illustrate how the methods are applied to type 1 matrices we
give an example, using the additive group of a Galois Field, viz.
€D(9,18,8,4,3) exist :

Consider the additive group GF(32) which has elements gg = 0, g; = |,
Gy = 2,03 = % Qg = ¥*1, Q5 = ¥*2, Qg = 2%, Q7 = 2x+1, gg = 2x+2. Define the set

X = {y: y = 22 for some z € GF(32) } = {x+1, 2, 2¢+2, 1} = {ga, G2, 8. Gs}. USING
the irreducible equation %2 = x+1. Let Y = {x, x+2, 2%, 2x+1} = {g3, Gs. Q6. G7}.

Let A = (ajj) and B = (bjj) be defined as follows:

gj = )t if gj-gi=gtex,
); otherwise

bij = §s ifgj-gi=gseY,
0 otherwise.

Then [A :B ] is the required CD, given below :

0120400080003 05670
2 01004800000653006 7
1 2040008000005 3706
00801 2040670000305
800201004067 000530
0801204007060000°53
04000801 2305670000
00 4800201S5S30067000
100080120053706000_




Theorem 5.4.4 : /7 3 CD(4t-1, 4t-1, 2t-1, 2t-1, t-1) = C and /ts complement
CD(4t-1, 4t-1, 2t, 2t, t) =D ewst ten a CD{4t, 8t-2, 4t-1, 2t, 2t-1) = C;
exisls .

Proof. Let the incidence matrix N of a BIBD(4t, 8t-2, 4t-1, 2t, 2t-1) be
partially coloured by using the colouring C and D over disjoint sets of
colours Ry and Ry to get

! 1 1 coea | 0 0 OJ

Now colour the (2t-1) non-zero entries of the first row of N with
the corresponding non-zero entries of the first row of C and colour
remaining 2t entries using 2t colours of R, Swap any (2t-1) non-zero
entries of the first row of D with non-zero entries of the first row of C to

get the required coloured design.

Example 7. a CD(8, 14, 7, 4, 3) :

Using the CD(7,7,33.1) and CD(7.7,4,42) of Example | we get a
€D(8,14,7,4,3) as follows :

=
"
]
o

R {A.B,D} Ry={C.EF G}

"ABCDEFG 0000000
CEOFOOO O0OOAOBDSG
OABODOO GOOCOEF
0O0ABODO FGOOCOE
00 0ABOD EFGOOCHO
DOOOCABO OEFGOOC
0ODOOOAB COEFGOO
BODOOOA 0COEFGO.

5.
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The construction given by Shrikhande (1962) can be extended for
colourable designs as follows :

Theorem 5.4.5 : / CD(vj bj rj ki Aj) =Ni, i = 1, 2 and their colourable
complements, My, exist, then a CO(V = vvp, b = bibs, 1 = riro*+(byry) (bo-r5),
kK = kiko*(vi~KiXvo=Ko), A = r-b/4) exists, when bj = 4(ri-Aj) .

Froof. Let Ny and N, be the coloured incidence matrices of the
CD(vj, bj, 1y, ki, Aj), 1 =1, 2.

Suppose Ny is coloured with the colours ¥ .., Xr, and M, is coloured

1
with the colours Xr.+1 ..., ¥p, . Further, suppose N, is coloured with the

colours Yy ... Yr, and M, is coloured with the colours Yrp+| ... Ub, -

The required coioured design is
N = leNz*‘mlx”z,

where the (i, j) element is coloured (xs, yt) according to the way Ny, M,
Na, My are coloured, with the assumption that the zero element is never
coloured. Thus N is coloured with the riro+(by-r)(bo-rof) colours, (%s, Yt)
where either s ¢ {1, .. , rd and t € {1, .. ro} or s € {ry*1, .., by} and
t € {rp*l, ..., by,

22 1Ihecasek=2

This simple case can be useful for practical purposes, for example
sending secret messages and in the construction of GD designs with larger
block size.

Theorem 3.3.1 : 77e necessary conditions are sufticlent ror the existence of
a CD{v, 2, ).



Froo/f. Let N be the
generality, let

1

1

b

Colour the first row by 1, 2, ... .(v-1) = r, second row by 2, 3, .., (v-1), |,

incidence matrix of BIBD(v, 2, 1). Without loss of

and so on. It is now easy to check that N is colourable.

Now let Nibe the CD(v, 2, 1) over symbol set {i;, 2, ..
[Ny :

gives a CD(v,2,7).

Example 8. CD(5,2.1) :

Np @ ..t Ny

, i 1, then

.29
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9.6 The casek =3

First we give the necessary colourable GDDs.
Lemma 56.: (g) 6 ¢ CGDD(3, A, 2) A=236.
(b) Be CGDD(3, A, 2) A=1,236.

Froor. (a) 6 € CGDD(B, 2, 2):

- o @ a0 ©
O“Mowo
MOWOoL
W o oM O

QN O W o —
O b O - W
O wWwh o oo

hence 6 ¢ CGDD(3,6,2).

6 ¢ CGDD(3,3,2):

n

Nowo oWl

O—o\oho
O Ny D
(.NO—-ooo\
S W N O O O

'onhoNno —
o O W -

ownbh oNC
oo o bn O
— o unno°

Noowwo
Ao O o



(b) 8 ¢ CGDD(3,1,2) and hence, for all A, 8 € CGDD(3,7,2):

o -0 owooM
-~ 9O onoo o
O N o0 © WO
O WO - o N OO
N O WD OO0 O

S |

OO NDO O WO —
WO ogpoo—-n°
C 0O qgwNn© @

0

Theorem 5.6.2 : Syppose there exists a2 CD(v, 3, N, v = 2,3, 7; then there
eyists g CD(3v-2, 3, A).

Froof. Let

be the BIBD underlying the CD(v, 3, A), where X is the first row of B. Write

Aj when Ais coloured with the symbol sets Rj = {a(i-r+1 » . , 2(i-)r+r J.
i =1, 2, 3. Similarly write Xj when X is coloured with the symbol sets
Rj = {a(i-])r+] s oo s A(i=D)rer Li=123

Since v = 2, 3, 7 therg exist two mutually orthogonal latin squares of
order v-1. Use them as in Lam and Seberry (1984, Theorem 2.4) to form D
of size 3(v-1) x (v-1)2 which is a GDD(3(v-1), (v-1)2, v-1,3, % = 0, A, = 1}
D is, in fact, consists of 3(v-1) permutation matrices of order v-i.

.31
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we now form the matrix

Xy Xp %3 0 . . . . . . 0]
Ay 0 0

0A20 D|D2....D‘}\
L0 0 A; ..

Now X; X, and X3 use 3r colours whereas each Aj uses r colours.
(Dy Dz .. D)) = (Mjj) consists of Alv-1) permutation matrices, Mij.(see

Seberry(1984)) of order v-1per row. By the biock design conditions,
A(v-1) = 2r. So colour the permutation matrices by the colouring scheme

ar+f, ..., 32r, A2r+l. ..., 33
a2r+l, -..,93r, a1 - T
an, ce.y @ry Qr+l, ..., A2r

to obtain the resuit.

O
Lemma 5.6.3 : Designs CD(6t+3, 3, 1) exist for all t 2 1.
Froof. The incidence matrix of a BIBD(6t+3,3,1) is given by
I A A0 o | |
N= |1 1 A A O 0




where Aj = T+ T~1 and T = (tjj) is given by;

tij = 1 if j-i = 1 (mod 2t+1),
0 otherwise.

Wwe obtain the required CD over 3t+1 colours

{3y 1. Bgsq + Dy v Dyu Doy 1 Do} DY cOlOUNING N a5 fOHIOWS :

atl (DA)| (DA)Z e (DA)t 0 0 0 ... 0 821 ce. dtel |
al & azl ... at+} | (D/\)| (D/\)Z (D/\)3.. .(D/\)t o ... 0
831 0 0 ... 0 a,l 321 34[ cae at+] | (DA)l ... (DA)t

where (bA); = bjTi + b-jTl.
0

Coroliary 5.6.4 : CD(6t+3, 3, \) ewist for al/ A v 21 and for a// X 2 2,
t20.

Corollary 5.6.5 : CD(6t+1, 3, A) exsst for t = 1mod 3.
Froof. Use Theorem 5.6.2 and Lemma 5.6.3.
0O

The existence of a BIBD(v, 3, 1), for v = 6t+], by difference sets in
cyclic groups of order 6t#1 was established by Peltesohn(1939) and, for
v = 12t+7, by difference sets in elementary abelian groups by Bose(1939).
Hence, using Theorem 5.4.2 we get:

Lemma 5.6.6 : CD(6t+1, 3, 1) exists for all t 2 1.
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Coroliary 5.6.7 : CD(6t+1, 3, A) ewists for al/f A, t 21,
de Launey, Sarvate and Seberry (1985) have proved that

{v:v=0,1mod3andv>3}is subset of B(K,1) where

K=1{4,6,7,9 10,12 15 18, 19, 24, 27, 30, 39, Si}. In Table A we have
given CD(k;, 3, 2) for k; in K, k; = 1, 3 mod 6 as it is done in CoroHaries
5.6.4 and 5.6.5, hence we get:

Lemma 5.6.8 : a CD(v, 3, 2) exists for v=0,1mod3, v>3
O
Lemma 5.6.9 : CD(2u+\, 3, 3) ex/st for all u, positive infegers .

FProof . By Lemma 53 of Hanani (1975), v € B(K3 1), where
K3 = {3,4, 5, 6, 8}. In view of Theorem 533, it is sufficient to show that
CD(k;, 3, 6) exist for k; ¢ Kz. Lemma 5.6.9 gives a CD(3, 3, 6) and a
CD(S, 3, 6). Example 3 gives CD(8, 3, 6).

Lemmas 5.6.4, 5.6.7, 5.6.8, 5.6.9 and 5.6.10 give:

Theorem 5.6.11 : 7he necessary conditions are surficient for the existence
ora CD(v, 3, \) forall A\




Table A. CD(v, 3, 2) for initial values of v.

v=4 Theorem 5.4.2: initial block (0,1,2).
v=6 fabcdeo000 0]
0a00bcoOdeo
b0 ao0O00Cc0de
0¢c0DalbeO0ObDOU
0 0b0OadeO0c 0
Lc00tJ()Odtan_

v=10=34 -2 Theorem 5.6.2.

v =12 Theorem 5.4.2; initial blocks (es, 0, 2), (0, 1, 7),
(0, 2, 8) and (0, 1, 8).

v=18 Theorem 5.4.2; initial blocks (e, 0, 4), (0, 4, 10),
(0.1, 15), (0, 5, 8), (0, 7, 9) and (0, 5, 6).

v=24=64 Theorem 5.3.1.

v =30 Theorem 5.4.2; initial blocks (e, 0, 8), (0, 2, 14),
(0, 4, 10) and (0, i, 19-i), i =1,3,5 7,9 11, 13
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Table B. CD(v, 3, 3) for initial values of v.
v=3 1 2 3
2 3 |
3 1 2
V=5 (123456000 0
612 0003 450
30012045206
0405036012
0 0490610235

s .

Corollary 5.6.7.
Corollary 5.6.4.
Theorem 5.4.2; initial blocks (0, i, 11-i), i = 1, 2, ..., 4.

Theorem 5.4.2; initial blocks (G, i, 17-i), i = 1, 2, .., 8.




CHAPTER ©
SOME CONSTRUCTIONS OF PBIBDS AND BIBDS

. | Construction of PRIEDS from di |

In Chapter 1 a construction was given for PBIBDs using n-partite
graphs ( Hammer and Sarvate (1987) ). Now, we replace the compiete graph
in the study of Alltop (1966) by a complete directed graph and gel a
PBIBD(E, §) with five association classes, where E, the set of points, is the
set of edges of the complete directed graph G onn vertices and
B ={Bux: o € Sp }, where B is a set of edges of a subgraph of G and Sp is the
symmetric group acting on the n vertices of G. Let T denote the set of
2-subsets of E. Then the action of Sp decomposes T into five orbits Tj,

i =1 .. 5, where points of Tj are isomorphic to { (a, b), (b, a) },

{(a ), (ac)){ (b a)(cal{(ab){c al {(ab) (c d)} respectively,
where a, b, ¢ and d are all distinct. Let n; represent the number of points in
T;. Note that

M = n{n-1)/2,
ny = nz = n{n-1{n-2)/2,
ng = N(n-1(n-2)

and ns = n{n-1)(n-2)(n-3)}/2.

Let u; be the number of members of T; contained in B. Let t; be a member Of
T; and let ), denote the number of blocks in B containing t;. If is any
member of T;, t is also contained in exactly A; members of B. Since Sy, acts
as an automorphism group of (E, B) and Sy is transitive on T, (E, B) is a
PBIBD(v, b, r, k, A1, A2, A3, Ag. As5) where
v= (1),
| B | =nl/g,
g=| {x€Sp:Bx=B} ]| -
and Aj=by; /.



All A's will coincide if

N = Up/Uy +2
= Ug/Up +3
and 2U2 = Ug.

An example, where the conditions hold, has not yet been found.

Example: Let B be the set of edges of cycle (ay, ap, .., ak) where (aj, aj+])
and (aj+1 , aj) both are edges of the cycle. Thenu, = up = uz =k, ugq = 2k and
Us = 2k(k-3). Hence we get a PBIBD(S) with parameters

(29 ) nt/(2k(n-K)), r, 2k, 2bk/(n(n-1)), 2bk/(n{n-1)(n-2)),
2bk/(n(n-1)(n-2)), 2bk/(n(n-1)(n-2)), 4bk(k-3)/(n(n-1)(n-2)(n-3)) ).

Takingn=7 and k = 4 we get a PBIBD with v = 42, b = 105, r = 20,
k= 8 and two distinct A's 20 and 4.
O

6.2 Construction of BIBDs

Two of the constructions given in the attched paper, (“On a BIBD
construction”, Ars Combinatoria, 22, 1986, 165-169) give as special cases,

series of BIBDs and PBIBDs with the same parameters as those given by
Sinha(1979, 1984)

Some combinatorial identities are used to prove that the parameters
are the same. For the sake of completeness, the shorter proofs provided by
Or. D. R. Breach, are given.

(@ (y)-2071)+2(V2)

coefficient of ®K in [ (1+x)V - 2x(1+x)V-1 + 2x2(1+x)V-2]

coefficient of xK in [ (1+42)(1+x)V-2]




= (v2)+(V2)

). (¥)-3(vt)+3(v2)

K K~y k-2

coefficient of ¥k in [ (1+)Y - 3x(1+x)V-1 + 3x2(1+x)V=2]

coefficient of ¥K in

(1+%) V=30 (19%)3 - 3x(1+k)2 + 3x2(1+x) - x3 + %3 ]
coefficient of K in (1#x)V=3 [ (1+x-%)3 + %3 ]

(v3) (V3

The detailed calcutations to get the expression for A in Theorem |
of the attached paper are as follows:

we consider the pair ((ab), (c,d)) where a, b, ¢ and d are all distinct
points in V. The pair will occur in those blocks of Y, which are obtained
from a block of X, say B, which satisfies one of the following:

() a,b, ¢, d are in the block B : the number of such blOCks is A4

(ii) (a,b) is in the block B but not (c,d) : the number of such blocks is
?\2 - 2?\3 +Agq;

(iii) {¢,d) is in the block B but not (a,b) : the number of such blocks is
Az = 2A3 *Ags

(iv) none of 3,b, ¢ an‘d d is in the block B : we observe that the
number of such blocks is equal to

b - {4(the number of blocks of X in which some point, say a, occurs
but none of other points b, ¢ and d) + 6(the number of biocks of X in which a
pair, say (a,b), occurs but not the other pair (c,d)) + 4( the number of blocks



of X in which a triple, say (ab,c) occurs but not the remaining point d) +
(the number of blocks of X in which the quadruple (a,b,c,d) occurs)}

The above expression is equal to
b - {4(r-3A9*3A3-Aa) + 6(A2-2ZA3*h4) + 4(h3-Ag) + Agl.
Hence we obtain
Ny =g * 200 2A3*A4) * D-{4(r-3A2+3A3-A4)#6(A =22 3#A 4 )*4(A3-A 4 )+ A 4)
=D - 4r + BAy - BAz+ 44

=D -3r +3As - r + SAp — BAz + 4Ay.




On a BIBD construction

Dinesh G. Sarvate

It is shown that methods of Saha [3] and Sinha [4, 5] ¢an be adapted
50 that triangular PBIBDs and BIBDs can be obtained from a 4-design
instead of from the full design of all k-subsets of a given set.

Theorem 1: Zet X = BIBD (V. b, I, K. Ao, A3, Ag) L@ & 4-aesign Then Y
=PBIBD(V=(g)B=n,ﬂ=b-2r+2x2,K=(§)+(V;_k)/\1=n—3r
+3p Ap = b =~ 4r + By - BA3 + ANg) e¥/sls

Proof. It is well known that the parameters r, Ap, Az and A4 of a 4-

design satisfy

f = (- (v-2)(v-3) Ak DK-DK3) I
Ap = (v-2)(v-3) Ag/(k-2)(K-3) w12
133 (V'3) )\4/('("3) 1.3



Let the points of the PBIBD Y be the pairs of points of X. Each block
B of X gives a block B* of Y, constructed in the following way : The points
in B' are the pairs of points in B and the pairs of points in V-B. (V-B is the
complement of B)

A pair (a,b) occurs A, times in X and either the point a or the point
b but not both oceurs in 2r - A, blocks of X. Hence (a,b) occurs in
R=b-(2r - Az) + Ap = b - 2r + 2, blocks of Y.

Consider a triple (ab,c) of V. It occurs Az times in X, therefore
((ab)(ac)) occurs Az + b - (3r - 3h, *+ A3) =b - 3r + 37, times in Y. We will
first check this:

We observe that,

(a,b,c)occurs : As times in X,
(a,b) but not ¢ occurs  : A, - A3 times, as (a,b) has already
occurred Az times.
abutnotborcoccurs :r - (As+(Aa-A3)+(Ao-A3)) times, ie.
| F - 2hg + A3 times.

Therefore the number of blocks without a, b, ¢ is b-(A3+3(A,-
A*3(r-225*A3)) = b - (3r-3A,+A3), hence the pairs of the type ((a,b).(a,c))
will occur

A=A3+D-(r-3n+A3)
times as ((ab),(a,c)) will occur when either all of a, b and ¢ are in a block
of X or none of a,b and ¢ is in a block of X. ( In the second case ((a,b).(a,c))
occurs in a block of Y because a, b and ¢ will be in the complement of the
block of X). Note that this is an application of the principle of inclusion

and exclusion.



Now we consider the pair ((a,b){c.d)) where a b, ¢ and d are all
distinct points in V. The pair will occur in those blocks of Y,which are
obtained from a block of X, say B, which satisfies one of the following:

(i) a, b, ¢ and d are in the block B,

(it) (a,b) is in the block B but not (c,d),

(iii) (c,d) is in the btock B but not (a,b),

(iv) none of a, b, ¢ and d is in the block B.

Hence we get
Ag=D=3r+3A-r+35hy - BAz+4Ag
= Ay~ (r - SAg + 823 - 4A4),
which proves the theorem.
O

ExAMPLE | : Consider the Steiner quintuple system on Il points(see for
example page 74 of Biggs and White{l] or page 775 of Hughes(2]). This
design has A4 = 1and hence Az = 4, Ap = 12.‘r =30 and b = 66. We get a
PBIBD(V=55, B=66, R=30, K=25, AF12, A=14).

The series of PBIBDs obtained in the above Theorem will give a
series of BIBDs if Ay= Az ie. if
r-5SA;+8A3-474=0.
Using 1.1,1.2 and 1.3 we get
v3-v2(1+5K)+ (2 +k+8k2)v~2k-4k3=0.
We observe that v = k is a solution and hence we have
(v - K)(v2 - (1+4K)v + 4k2 + 2) = 0,
hence we get v = {1+ 4k + /(8k - 7)) / 2.
Suppose 4 (8k - 7) = 2s + 1,5 2 0 integer, then

6.



8k = (25+1)2 + 7
and 8 divides (2s+1)? + 7 agreeing with the fact that k is an integer. Let k =
((25+1)2 + 7)/8 for s 2 |, then v = 52 + 25 + 3 or s2 + 2. Hence we have
THEOREM 20 /F v = 52+25+3 or s=52+2, s2\, and if a 4-design with
parameters v, b, r, k=((25+1)2+7)/8, Ay, A3, Ny exisls, lhen there exists &
BIBD(V=( ¥ ) B=b, R=b=2r+2),, K= (K J{ VK ) A= b-3r+3)y).
a
In particular, when s is even, say equal to 2w, then we have v = 4wZ +
Aw +30orvz=4w2 + 2 and k = 2w2 + w + |. Hence as a special case when we
take the set of all k-subsets of {1,2, ... v } as a 4-design, we get
COROLLARY3: 77ere exists a series of B/BDs with parameters
v=(y)B=(YR=(y)- 20y ) 2 Y2k (K)+ (VK )
A=(¥)-3(v1 ). 3(V22)) where v =4w? « 4w +3 ordw?+ 2 and k =
2W2 + W+,
| 0
we observe that the parameters of 'the series obtained in the
Corollary 3 are the same as those given by K.Sinhal4] because

(v)- 20y )+ 2(¥2)= (V22 )+ (12 Jand

THEOREM 4 = L&f Dy = (v, by, . K, Ao, A3, Ag) 870 Dy = (v-K, by, g, Ko Ap',
A3’ Na') e 4-designs. Then there exists @ FEIBD D = (V=(Y ) B = bba R =
Agbp + (b — (2ry = A K = 2( K )= k(k-1), Ay = bp. Az + Az'(by = 3r + 3, -
A3), Ap = Dohg + 20Ag - 23+ A4)hg" + (by = 4r + 6Xg ~ 4h3+ Ag)A4').



Proor : The set of the points of D is the set of all the pairs from
{1,2...v}, which gives V = (\,'_ ). The blocks are constructed in the fotlowing
way: Let By be a block of Dy. Consider the (v - k)-set (V - By). Now construct
a BIBD isomorphic to D, with points in V - By Construct b, blocks of D,
where each block consists of pairs of points in By together with pairs of
points in the blocks of D,. In this way each block of Dy gives by blocks of D.
Hence b = byb,. The block size K of D is 2(K ) = k{k-1).

Now consider any pair (a,b) ( i.e. a point of D), (ab) has occurred A,
times in Dy and ‘a’ ( also 'b’) has occurred ry times and hence in the
construction of blocks of D, ‘a’ and 'b’ together have been used by - {(2ry -X,)
times as points of D,. Therefore (ab) as a point of D occurs Agby + (by -
(2ry = A2, times.

Any pair of 2-sets, (i.e. any pair of points of D) having a point in
common, are first associates and any pair of disjoint 2-sets are second
associates. The counting arguments similar to those of Theorem t give the
vailues of Ayand Ag.

ad

If D, is the set of all k-sets of a v-set and D, is the set of all k-sets
of a {(v-k)-set, then counting the repeated blocks only once, we get the
result of Sinhal5).

The first construction of Sahal3] suggested the following theorem:

THEOREM 5: Suppose there exists & I-design , 7, with paramelers v, b, r,
K. A Ao ..., N U0 given an integer s such that 2s < I there exists £, &
PBIBD( V=( ¥ ) B=b, R=Ag, K=(K ) Afdgus s Ahgeis o AsFhos )

Proor The points of the required PBIBD, P, are the s-tuples of the
points of the given t-design, T. For each block X of T construct a block of P

consisting of all s-tupies of X. If two s-tuples © and ¢ have (s-i) points of



T in common, then they are called the ith associates, for i =1, 2, .., 5. © and
¢ contain (s-i+2i)= s+i distinct points of T and hence, as each (s+i)-tuple
OCCUrs inAg, times in T, we have A=hq.j.
(]
COROLLARY 6: /f there exists & t-(Vk\,) design t 2 4, then there

exists aPBIBD( (Y ) B=b,R =2 K=(K) Ar=23 Ag=2y).

Examrte 2: Consider the Steiner quintuple system on I points(see
example 1). We get a PBIBD(V=55B=60,R=12K=10,A;=4,A,=1). Note that
this design is not a quasi-multiple of a smaller design.

ACKNOWLEGEMENT: My sincere thanks are due to Dr. J. Seberry for her

kind supervision. | am thankful to the referee for useful suggestions.
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PTER 7
ORTHOGONAL DESIGNS

A transversal design TD(n, t) is a GDD with n groups, each of size t,
and block size n.

Let B(K) denote the set of integers v for which there exists a
PBD(v, K, 1.

Let S and K be sets of positive integers. Let s and t be integers. we
denote by ¢St the set {v: s < v < t} N S. The notation ¢S and St stand for

the sets fv:v=2s} N Sand {v:0<v <t} N S respectively Define
[vglSOK = {v | v = vgs+k wheres € S,k e Kand s 2 k}.

7 neralized Rao _desi
The results proved in the attached papers

(a) "Generalized Bhaskar Rao designs with block size 3 over Z5%,
(with de Launey and Seberry) Ars Combinatoria, 19A, 1385, 273-285

and

(b) "Non-existence of certain GBRDs”, (with de Launey), Ars
Combinatoria, 18, 1984, 5-20

include the following:

Theorem 7.1.1. 7/e necess.'ar_z/ conditions are sulficient for the existence of
3 GBRD with block size 3 over 2y, except possivly when v = 217 or 39 and
A=4

FProof. Theorem 2.4 of (a).

7.



Theorem 7.1.2: Neither & GBRD(I0, 4, 2) overZ, nora GBRD(7, 4, 4) over
Zp % Ly ex/5l5 .

Froof. Sections 2 and 4 of (b).

O

The proof of Theorem 7.1.1 depends on constructing small GBRDs and
about one third of that work was by this author. The results on the
GBRD(10, 4, 2) over Z, were checked with the help of J. Seberry. To prove
that the GBRD(7, 4, 4) over Z4 does not exists, it was necessary to prove
that all four non-equivalent BIBD(7, 4, 4)s can not be signed by Z; x Z,. A
exhaustive computer search was conducted to obtain a GBRD(7, 4, 4) over
Z, x Zp Tor two of the BIBD(7, 4, 4)s. It turned out that these two designs
can not be signed by Z, * Z,. By “exhaustive computer search” is meant that
a computer program has been written and used to check each possibility of
signing the rows of the two BIBDs. The result on the non-existence of a
GBRD(7, 4, 4) over Z, x Z, has also been obtained by Gibbons and Mathon
(1986).

After the Lemma 4.2 in the paper (b): it is shown how the two of the
four inequivaient BIBD(7, 4, 4) can not be signed over 2, x Z, = {1, a, b, ab}.
The explanation of the working for the first of the two BIBDs (given under
the heading “a” below Lemma 4.2 of paper(b)} follows:

Suppose that x; denotes the (i, Pth entry of the signed matrix.
Without loss of generality we assume:

ratio(ky;, %) = r(xy, #y) = | {see definition 4.1 of the paper (b}
(%), Xp9) = @ %y 40, %2 13) = i

(%3, K32) = bs

(%41, ¥q2) = ab.

Hence we have:



r(%23, Ko) = @: { @s 1y, %) = 1and Lemma 4.2()}
r(%34, ¥37) = b: { @8 r(xy, ¥y) = 1 and Lemma 4.2(1)}
r(%4s, %4g) = ab; { @s r(x; %) = 1and Lemma 4.2(i)}

Now r(xgs, %sg ) = @ or b {as r(xy, x;j) = 1, rxgs, %4¢) = @b and Lemma
4.2(ii)}

and r(¥s4, %s7) = @ or ab { as r(xy, %) = 1, r(%34, %37) = b and Lemma
4.2(it)).

Hence we have r(Xss, %sg) = r(%s4, ¥s57) = a.

we have f'(xd, 10 %4 13) =p{as r(x2 100 R2 13) =1, r(x21, 822) = 3,
r(%41, %42) = ab and Lemma 4.2(i)}.

Now no value of r{xs 1. %s 3) ¢an be found to satisfy Lemma 4.2 (i)
and (ii). Because r(xss, %sp)r(R4s5, Xag) = b and rxg 19, %4 13) = b implies
r(%s 10, %5 13) = 1 {Lemma 4.2(i)} and r(x, 1. X2 43) = 1 implies
I"(Xs 10 %5 13) z | {Lemma 42(”)}



Generalised Bhaskar Rao designs with block size 3
over 4

warwick de Launey, Dinesh G. Sarvate, Jennifer Seberry

r ti

Although a considerable amount of work has been done on generalised
Bhaskar Rao designs, little is known about the existence of these designs
over groups which are not eiementary abelian. This paper considers the
group z4 and finds that designs exist for z4 for parameters for which they

do not exist for zp x 27 and vice versa.

Suppose we have a matrix W with elements from an abelian group




G = {hl,hz,...,hg}, where W =Th)A +hA, + ...+ hA; here A, ... A
are v Xxb (0,1) matrices, and the Hadamard product Ay * Aj (i # 3) is
zero. Suppose {ail,...,aih) and {bjl""'bjb) are the ith and jth
rows of W; then we define WW by

(a a -1
i1'"""""ib jb

with . designating the scalar product. Then W is a generalised
Bhaskar Rao design or GBRD if;

+ g\
(WW )ij= - (jlf---,b )

m
{i) Wit =1+ I (ciG)Bi;
i=1
- m
(ii) N=A_ + ... + A satisfies NN =zrI + LA .B_,
1 g j=1 1 i

that is, N 1is the incidence matrix of a PBIBD(m), and (‘EG) gives the

number of times a complete copy of the group G occurs.

Such a matrix will be denoted by GBRDG(v,b.r,k;ll,...,An;cl,...,cm).
In this paper we shall only be concerned with m= 1, ¢ = A/g, and
Bl =J - I. In this case N 1is the incidence matrix of a PBIBD(l), that
is, a BIBD. Hence, the eguations become *

(i) Wi =T+ lg-(a -n;

(ii)  NNT = (z-M\)I + AJ.

Thus W is a GBRDG(v,b,r,k,A). Since A{v-1) = r(k-l) and bk = vr,

we sometimes use the notation GBRD(v,k,A;G).

These matrices are generalisations of generalised weighing matrices

and may be used in the construction of PBIBDs.

We use the following notation for the initial blocks of a GERD. We
say (au,bs, - ,cy) is an initial block, when the Latin letters are
developed mod n and the Greek subscripts are the elements of the group,
which will be placed in the incidence matrix in the positions indicated by
the Latin letters. Thus we place g in the (i,a-l+i)th ©position of
the incidence matrix, b in the (i,b-1+i)th position, and soc on.

We form the difference table(o{ the initial block
Colum

(a_,b,ye-0,0)
» a’"B Y
by placing in the position headed byA Xy and by row YB the element

(x-y) -1 where (x-y) is mod n and Gn-l is in the abelian group.
dn

A set of initial blocks will be said to form a GBR difference set
(if there is one initial block) or GBR supplementary difference sets



{if more than one) if in the totality of elements
{x-y) _1{mod n, G)
dn
each non-zero elgment ah, a(mod n), h € G, occurs A/|G| times.
For any other definition or notation the reader is referred to de

Launey and Seberry [1]. web \G\=%.

For a GBRD({v,k,A;G) to exist A £ 0 {mod g) and there must exist
a BIBD{v,k,A). So the parameters v,k,\ must satisfy the constraints,
(i) vz k
(ii) A £ 0 (mod q)
(iii) A(wv-1) = 0 (mod(k-1})}
(iv) Avi{v=l) = 0 (mod k(k-1)).

In view of these constraints a GBRD(V,3,4t;Z“) can exist only when
one of the following is true,

(a}) t =0 (mod 3), wv 2z 3,

(b) t 20 (mod 3}, vz 0,1 (mod@ 3) and v 2 3.

Moreover a theorem of Drake [ 2,Theorem 1.10]) ensures that no
GBRD(3,3,4t;ZH) exists when t is odd. We show that, with the
possible exception of the cases given in the abstract, these necessary
conditions are also sufficient. '

§1. A Small Generating Set

In this section and the next we make extensive use of Wilson's
notation [6, Sections 1 and 2] concerning PBD-closure theory. 1In the
next section we will need a small generating set for

v={v>3vzol (md 3}
Notation 1.1: Let & and K be sets of positive integers.
Define
[vD] S@K = {v|v = vos+k where s € S, k ¢ K and s 2 k}

b
let a and b be integers. Thenlet as denote the set

{vlasvsblns. 0
The following theorem appears in de Launey and Seberry
[1, Theorem 1.2.14].
Theorem 1.2: Let v 2 2 be an integer. Let § be an increasing

G
infinite sequence such that for all t ¢ S there exists a TD(v0+1,t).

Let X be a set of positive integers containing v, and v +1. Let

kg = :i: {x} and swppose there exists a TD(v,+1,t,} for some t,
€




7.7

not necessarily in s. Then

. V0t0+k0-l
(i) B ({ty) v .S

uTuK]g[volsox, where
0

T={te s|tglv] s eK)
. voto-i-k0 0 t0
.. Vatnatka-1
(ii) l‘:l[{l:u}utos00 " v u vk 2 vzt sk}, where
= + .
u {tltzvotoko and t / [v ] s e} 0

0
This theorem allows us to calculate small generating sets for sets of
the form {v 2 k| v ¢ U}, where K is a finite set of integers u 2 k
[ l, = Lemma 1.2.16]. We extend the thecrem so that we can calculate
small generating sets for sets of the form {v 2 k I v 20,1 {(mod 3),
v £ U}.
Now slightly altering a construction appearing in Wilson's paper
[6, Lemma 5.1] we have the following result.
Lerma 1.3: Let K be a set of poeitive integers. Suppose there
exists a GDD on v points with block sizes from {4,5} and group
stzes from K. Then
ve ®({3xk]xex}) v {4])
and
3vél € B ({3k+1 |k € K} v {4}) . C
But the construction of the PBD's in the proof of Theorem 1.2
[1, Theorem 1.2.14] %elies inthe frs+ Plac®  on the construction of
GDD's with block sizes from {vo,v0+l} and group sizes from

+k . -
c sYoto*t*ke"l y p y ko {tg} in case (i} and from
0

to

we have the following result.

vuUuku {t,} in case (ii). So putting v, = 4

Theorem 1.4: Let s be an increasing infinite sequence such that for
all t e s there eristsg a TD(S,t). Let X be a set of positive

integers. Let k, = min{k} and suppose there exists a TD(5,t )
kek

for gome t, not necegsarily in S. Then
(1) vlveldlsexlcm(la) v {3v|ve
and

4t +kp-1
s Ty v kuley}))
0

4t + k-1
s 0 ¢

{3vtl|ve (415 @ k} ¢ B ({4} v (3v+l]v ¢ .
0

uT u kol 1}



where
T = s\ ({4 s + K} ,
t0+k0 ty
4t +k,-1
(1i) {3v]v 2 4;0+k0}5_15 ({4Yulsv|avive .5 0% "yyuxu {to}}]
and
4tg+kp-
{3v+lfv2at skt e B ({4} v {3v+1|vetos totkod, y y kv {t 1))
where

U= {v 24t +k} \ ([ﬂtos ® K . a

We apply this theorem to prove the following result.
Theorem 1.5: The following set inequalities hold .

(i) {v|vzo (mod 3), v>3} B (14,10} v {3vlv = 2,3,...,11,13,17)] §

{ii) {v|vz0o,1(mo@ 3) and v>3}c¢ B {{4,6,7,9,10,12,15,18,19,24,27,30,
39,511},
Proof. We apply Theorem 1.4 with
s = {4,5,7,8,9,11,12,13,16,17} u {v = *l(mod €) | v 2 17},
K = {2,3,4,5,6,7,...,17},

ty, = 4 .

When v 2 70, v - 4t € {2,3,...,17} for some t 217, t € 8.
so {vi{v270} S_E4]t S @ K. It is then a simple matter to check that

[4] s ek =1{v:18 | v # 21,26,27,28,29} .
0

So U = {21,26,27,28,29} and hence
{3vlv 2 18} < B ({4} v {3v|v = 2,3,...,17,21,26,27,28,29)}
Now 3v e B ({4,6,9)) for v e {12,14,15,16,21,26,27,28} (see
Appendix A), while 87 ¢ B ({6,9,10}) (use TD{10,9)}). Thus
{3vivz0 (mod 3), v>3} ¢ B ({4,10} v {3v|v = 2,3,...,11,13,17})
Now {3v+l}jv24} = B{4,7,10,19} and 21, 33 ¢ B ({4,6,9]}) (add
suitable blocks and points to TD{(4,5) and TD(4,8) respectively), so
{v]vz0,1 (mod 3), v>3} ¢ B ({4,6,7,9,10,12,15,18,19,24,13,35,33,531).
a
Because we do not as'yet have designs for v e {27,383} we prove
the followinc theorer.
Theorer: 1.6: The following set inequality holds
{v|vi0,1 (mod 3), v>3}\{27,39) < B ((4,6,7,9,10,12,15,18,19,24,3,541).



Proof. Apply Theorem 1.4 with
s = {4,5,7,8,11,12,16,17} v {v 3 t (mod 6) | v 2 17},
k = {2,3,...,8,10,11,12,14,...,17,21,25},
tg =4 .
When v 2 70 there exists a k ¢ {2,3,...,8,10,11,12,14,...,
17,21,25} and t € S such that
v =4t + k and tzk
except when
(1) v = 4t + 9 and t = 17, 23 or 29, o¥F
(ii) v = 4t + 13 and t = 19,
when 18 < v £ 70, v e [4] 5 8 K except when
v ¢ {21,26,27,26,29,41,42,43,45,57,61,62,63,65)
So U= {21,26,27,28,29,41,42,43,45,57,61,62,63,65,77,89,101,125}
But using the designs given in Appendix A
{3v|veulc®(4,6,7,9,10,12,13,15,18,19,21,31})
< B( 4,6,7,9,10,12,15,18,19}),  .......... {1.1)
Note that 21 ¢ B ({4,6}) (add a peoint to TD{4,5)) and that
31 ¢ B ({4,10}) [6, see the proof of Theorem 5.1(ii)].

let Vv = {vlv 20 (mod 3), v > 3, v # 27,39} and apply Theorem 1.4{ii).
Then VvV c B ({4} v {3v]v e {2,3,...,8,10,11,12,14,...,17,21,25}} v U).

But then, by (1.1},

v e B({4,6,7,9,10,12,15,18,19,21,24,30,33,36,42,...,51,63,75)),
Finally {36,42,45,48,63} < B ({4,6,9,12,15}) (Table 1, Appendix A},
21, 33 ¢ B ({4,6,9}) (see the proof of Theorem 1.5}, 75 ¢ B ({4,15})
(Appendix A), and {3v+¢l|v 2 1} c B ({4,7,10,19}). The result then

follows, ' O

§2. The Constructions
Lemma 2.1: There exists a GBRD(v,3,4:2,) for all v 20,1 (md 3),
v 2 4, except poseibly when v = 27,39,
Proof. The necessary conditions give v £ 0,1 (mod 3). Drake's
theorem [2,Theorem 1.10} énsures that v 2 4 but since the number of
blocks, 2viv-1)/3, is divisible by 4 the Seberry, Street, Rodger
theorem (theorem 1,4; or see[5]1) gives no new conditions.
By Theorem 1.6 we need to establish existence for
ve {4,6,7,9,10,12,15,18,19,24,30,51} .
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The required designs for v = 4,6,9,10 and 15 are given in

Appendix B. The designs for v = 7,12,18
by developing the initial blocks indicated:

v = 7 develop the initial blocks
Al

and 30 can be obtained

(0,,1,46.), (0,,2 105 30 (0,,3,,8), (0,1 ;,3_,} (mod 7.,2,)

v = 12 develop the initial blocks
A
(m1031agi)r (ml's-l'vi)' (11:31:4_i):

(2 6 |8 )1 (61,7-

177=-1"71 1

v = 18 develop the initial blocks
-

(0. ,a ,(l7-a).). a 133r5r71
i1 1

(©,,b |, (17-b)_}, b = 2,4,6,8,

1

(01.21.61). (0.,3_..,8}), (“1,0 1_),

_ 177-17 7 1"
v = 30 develop the initial blocks
v — =X
(Ol,al,(29-a)i), a=1,3,...,13 (odd

(3_1,5_1,91), (11o41o5])r

J10_), (2),8_,10_)(mod 11,2,):

(w,Oi,7_i)(mod 17, Zu);

numbers),

(Ol,b }’(29_b)—i)' b= 4,6,...,14 {even numbers),

(01.2_1.151), (0],21.1011, (01.3_1.121), (01.41.11_1). (01.1_1.61).

(“lroltzi)l (mlfo-i'4"1) (mod 29,Zu).

Finally 19 = 6(4-1) + 1, 24 = 4 X 6

So a composition theorem applies [1,Theorem 1.1.3] to give designs for

v = 19, 24 and 5l.

Theorem 2.2: There exists a GBRD(v,3,8;2

and 51 = l1l0(6-1) + 1.

) for all v 2z 3.

Proof. By Hanani's theorem (see Proposition 5.1 of [6]) and the

construction of Theorem 2.2 of Lam and Seberry (3] we only need to

establish the existence of GBRD(v,3,8;Z,)
design for v = 3 is
11111 1l

1ili- -

1
i

| | e

i1i-1141i-

for v = 3,4,6. The

and the designs for v = 4 and 6 are two copies of the suitable

designs with A = 4 given in Appendix B.

Hence we have the result,

g
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Theorem 2.3: There exists a GBRD(v,3,12;2,) for all v 2 4.

Proof. By Drake's Theorem [1, Theorem 1.10]we cannot obtain this
design for .v = 3, Now combining Hanani's Theorem (as stated in
{1, Corollary 1.1.2(ii)]) with Theorem 2.2 of Lam and Seberry (3] we
only need to establish existence for v ¢ Ks = {4,5,6,7,8,9,10,11,12,

14,15,18,19,22,23)}. Now these designs can be obtained in the following

manner
v Construction
4 3 copies of design for X = 4,
5 Use SBIBD(5,4,3) and GBRD(4,3,4;2,) in Theorem 2.2 of (3],
€ 3 copies of design for i = 4.
7 3 copies of design for X =4,
8 Use BIBD(8,4,3) with GBRD(4,3,4;2,),
9 3 copies of design for A = 4,

iJ 3 copies of design for A = 4,

1i Use SBIBD(11,6,3) and GBRD(6,3,4;Z2,),

iz 3 copies of design for i = 4,

14 Remove one row of SBIBD(15,7,3) to obtain a PBD({7,6},14,3),
use with GBRD(u,3,4;2,), u € {6.,71,

1s 3 copies of design for A = 4 or use SBIBD(15,7,3) and
GBRD(7,3,4:2,), ‘

18 Use PBD({6,9},18,3) (found from an SBIBD(25,12,3} by
de Launey and Seberry [1], Lemma 1.3.7, by removing the first
seven rows) with GBRD(u,3,4;Z,), u € {6,9].

1o 6{4-1)+1 and so Theorem 3 of Seberry [4] applies,

2z 7{4-1)+1 and so Theorem 3 of Seberry [4] applies,

23 Develop the following initial blocks
(01,(2t+l)1,(22r2t)i), (01,(2t),1,(23-2t)_i), t=1,...,5 all
thrice, (01,1_1,2_11 thrice, (01,5_1,7_1) three times,
(0;,1-;,11-;) twice, (0,,3_,,9_|) twice, (0,,1. ,,9.)).

-1"7-1
(01,3 11“1), (01,41,91}, (01.41,101) (mod 23,2,).

1

-1

Hence we have the result. . a0



Note: A straightforward construction for a GBRD(27,3,12;2,) can be
obtained by using the PBD({6,9},27,3) of Lemma 1.3.5 of de Launey
and Seberry anda GBR.D(u,3,4;Zh) ue {6,9},
Theorem 2.4: The necessary conditions

2tv(v-1) = 0 (mod 3},

t 21,5 (mod 6} => v # 3,

“are sufficient for the existence of a GBRD(v,3,4t;2Z ) except possibly

for (v,t) = (27,1) and (39,1).
Proof. The necessary conditions follow from the necessary conditions
for block designs and the non-existence for v = 3, t = 1,5 (mod 6)
from Drake's Theorem [2].
To establish existence we distinguish four cases:
1. 2}tt, 3/t % then the necessary condition is v = 0,1 {(mod 3) and
the result follows, except for v = 27 or 39 by taking multiple
copies of the designs given in Theorem 2.1. For v = 27 or 39 we
note GBRD{v ,3,8;2,) and GBRD(v ,3,12:2,) exist and so multiple
copies give the designs for v = 27 or 39 and t » 1l;
2. 2lt, 3ft* then the necessary condition is v 2 0,1 {med 3), v 2 3,
but this is established in Theorem 2.2;
3. 2)t, 3]t ! then the necessary condition is v 24 (by Drake's
Theorem [2, Theorem 10.1] and this is established in Theorem 2.3;
4, 2|t, 3jt ¢+ here there is no condition of v. By part 2. of this
theorem we only have to consider the cases v =3 and X = l2s,
s even but these can be obtained using multiples of the
GBRD(3,3,8;24) of part 3.
lience we have tie result. -
Appendix A
Notation. By TD(r,t) we denote a transversal design on r groups
each of size t, -
Table 1 gives designs Feeded for Theorem 1.5. 1In particular
it lists GDD§ which have been constructed to satisfy Lemma 1.3. See
Street and Rodger for the construction involving GBRDs . The
constructions invelving point and block removals from certain designs
are quite standard {6, Remarks 3.5 and 3.6). Table 2 gives PBD
designs needed in Theorem 1.6. Any references given in a table give a
place where a design used in a ceonstruction can be found. The reader

should note MacNeish's Theorem [6, Theorem 2.2].

-




Table 1. (GDD's on 3v peints satisfying Lemma 1.3.)

A

12 Obtain a GDD by removing a point from SBIBD(13,4,1).

14 Use GBRD(7.4,2;22) de Launey and Seberry [1,Theorem 4.1.1].

15 GBRD{(5,4,3;2,) [1, Lerma 5.1.11].
16 Use TD(4,4).

21 ( 9000 1111 0000 0000 0000 0000 )

1 0 1 A al 22

1 al 0 1 A Al

1 al a2 0 1 A

1 A al al 0

1 I A a? A? o_ |

1 1
1 1
where 1 = [ 1 ] and A = [ 1)
1 .
1

26 GBRD{13,4,2;2;) [1, Theorem 4.1.1],
27 GBRD{9,4,3:23) {1, Lemma 5.1.13,

28 Use TD(4,7).

Table 2. (PB-design on v points)

123 TD(10,13) ¢ 123 B ({6,9,10,13}).
126 TD(10,13) ¢ 126 B ({9,10,13}).
129 TO(10,13) ¢ 129 B ({9,10,12,13}).
171 TD(9,19) € 171 B ({9,19]).

183 TD(10,19) ¢ 183 B ({9,10,12,19}).
186 TD(10,19) ¢ 18 B ({9,10,15,19}).
189 TD(10,19) ¢ 189 B ({9,10,18,19}).
195 (7,31 e 195 B ({6,7,9,31}.

g

Finally 75 and 135 ¢ B ({4,15}). There exist a GBRD(4,4,5;2g)
(1, Theorem 2.2{iii)(b)] and a GBRD(u,4,3:2,) for u ¢ (5,9}

{1, Theorem 5.1.1] s° there exists a GBRD(u,4,lS;ZIS)

for

ue (5,9}

and hence a GDD with u groups of size 15 and with all blocks

of size 4. It follows that 75 and 135 ¢ B ({4,151 .
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Appendix B
We use the notation - for -1 and i
010
T = col}*
100
Then the following designs exist,
GBRD(4,3,4;ZH) _
111 1 1 1
1 ¢ i - - g
1 - 0 0 -i
0 1 - 0 i -i
GBRD(613,4;ZH)
1 1 1 1 11 1 111
1 0 - i 0 3 0 0 0 O
1 6 00 - 0 0 i i ©
01 0o o0 - i 0 0 0. 1
01 0 - 0 i i 0 O
0 0 1 0o - 0 i i
GBRD(9,3,4;ZQ)
A1 ol|B I I I iI I
o A I B I -I-iI T -T
I 0o A B |1 it T-7t¢ i1
@RD(IO;B[“}ZQ)
- e ~e je|-e e ~ie
1 I i1 iz A1 |B I 1
i 1 1|72 2| a1l B |-1 -iT
1 I T TI a BliT T
1 -
where A = | - 1 and B

-I

iT

for -i, e = {1,1,1)
0

1

i

i

Q ¢ ¢ 0 ¢ O [}
1111 1 1}¢
- 0 0 i i o}
110090 il3
0 1 - 0 1 o1
0 0 i i © ©
il ir
-1 7?2 jir? g2
I -it? -72 T
il I 1 i1 I
T -T iT -1 T2
-7 i1 -1 1 -iT?
il

1i1f .

1114

and

o ~

o O
0

~i

clepg —

o
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has blocks with Z, = {1,2,3,4}

GBRD(15,3,4:24)

- — M k-4 - N N =™ NN M MmN M m
-~ N N A S N A M N M g O T N o A N
~ A A ~A ™ o~ - A A A A A e e A A A
('] o g — oy — — ™ — — -~ -

5 5 s v v oo _.I ~ 0 8 B o O ~ O
Lo I o B o |

—_ — — — ~— — — — — -~ — — —_ — — - rm—y —
m M oMo™Mm M m M MM MMM Mmoo Mmoo M 0Dy

T o~ NN N Y N N DM ;MmN
L I | - —~ Lt -~ L T o T B R |
3] ™M XX N ™M NT (o4 T § &N ™ -
333445566777888899
— — — —_ L T |
222222222222225555

o &M NN NN N ™M M m ™ F ™ m = NN N NN

W O O e~ MNMmog N 4 N Mo o o g N g <
—~ A < =< A 4 A A~ 44 A A A A

ad F ©N F ™ T ™ N F I T ¥ T N T N3
O v ~ ~ o o 990 O ~ N M T O o~
L T o I . B B | - o~

P T e B
m s 0 O M~ 0 0O A N M T o -~ T
L e T e Y e B e |

- o~ o = o~ gl T ™~ ™ o~ = ¥ —

12

10 11

1

1

E S
< <
[ B |

JON ™M
N ™M
-

—- -
o O
- i

™M
=i
N M N
NN NN ™M ™M Mmoo 4 5 5 w0 9 m S I T s T B+ Yo QY S N

—

Q
—

13

121 3
132 141
111131 lSl

1
1

11
11

~ ™M
~ ~

F ™

™
—

lSh
14

1
2

2
iy

1

11 14
12 13

4

71 lo 11
7 10

o™

15
91 10

8 lo 12

1
12 13

1

1

15

12 14_ 15

1

H

1

8

3

2

1

= ™~ T

— - e- Land
lllllllll1111133344444444444
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Non-existence of certain GBRDs

W. de Launey and D. G. Sarvate
1 ' asi initi

Bhaskar Rao designs have been studied by a number of authors
including Bhaskar Rao [, 2], Seberry [13, 14], Singh {15), Sinha [i6], Street
[17), Street and Rodger [18] and Vyas [19]. Generalised Bhaskar Rao designs
were introduced by Seberry [14], and have subsequently been studied by Lam
and Seberry [9], and de Launey and Seberry [3, 4]. In this paper we are
concerned with the non-existence and uniqueness of certain generalised
Bhasker Rao designs. Such questions fall under the general problem of
signing (O,H)- matrices (matrices whose non-zero entries are taken from a
group H, 0 does not belong to H) over another group G. A computer program
to deal with this problem when H = {1} has been developed by Rudi Mathon
[10]. Before proceeding we make two basic definitions.

Definition 11. Let G be a group. Let X be a matrix whose non-zero entries
are taken from G. Let N be the (0,1)-matrix obtained by replacing every non-
zero entry of X by a 1. Then X is a GBRD(v, b, r, k, A: G) if

(i}  XX* = rly over R(G)/G(R(G)),

(i) NNT = (r-2)ly +*AJy,
where R(G)/G(R(G)) is the group ring, R(G), of the group G over the ring of
integers factored out by the ideal G(R(G)) = [ £ g IR(G), (where sum is over

all g € G), and X* is obtained from XT by replacing each non-zero entry by
its inverse.

We observe that any GBRD(v, b, 1, k, A; G), X, is therefore based on a
BIBD(v, b, r, k, A), N and hence that the parameters v, b, r, k, A satisfy the
equations

.17



Mv=1) = r(k—1) and bk = vr. (1)

Because of these equations we write GBRD(v,k\G) in place of
GBRD(v,b,r k).

On the other hand, one may begin with a BIBD(v,k,\) and replace
its non-zero entries by elements of G' to obtain a GBRD(v,k \;G). We
generalise and formalise this process in the next definition.

Definition 1.2. Let G and H be groups. Let N be a (0,H }-matrix. Sup-
pose the entries, h € H, of N may be replaced by hq', some g € G, 50 as
to produce a (0,HXG)}matrix, X, such that XX = diag(r,,r,,...r7,)
over RIHXGYHXG(R(HXG)). Then N is said to be signable over G.

We observe that taking the image of each of the entries of X under
the homomorphism hg < h would produce N. Taking the homomorphism
hg = g in the same way would produce 2 matrix signed over G.

Even when one leaves aside all but matrices based on BIBD's, there
is little theory dealing with the signing of (0,H }-matrices over a group G.
Apart from the use of a non-existence theorem proved by Street and
Rodger [18] and Seberry |14, Theorem 1] there is as yet no approach other
than an enumerative search when proving the non-existence of GBRD's
based on non-symmetric designs. In the case of symmetric designs, Mullin
[11] bas listed a number of nob-existence conditions, while de Launey (5]
has proved the following strong multiplicative result.

Theorem 1.3. (de Launey) Let G' be the commutator subgroup of G. Let

C k,. .
p be a prime dividing | G/G'|. Let & = p,*,...p,* be the prime decompo-
sition of s, let n > s be odd, and suppose that for some s,

i) k,; ia odd,
ii) there ezists a k such that p* m —1 (mod p),

Then no SBIBD(n ,s,)\) can be signed over G. D

Even when the matrix is based on a SBIBD where there are a
number of strong non-existence theorems, Schellenberg, employing what
amounts to an enumerative search in the case of SB/IBD(16,6,2) has shown
that the theory is deficient [12].

Rudi Mathon has shown by a computer search, that only one of the
four SBIBDS(19,9,4) can‘be signed over Z, and that design in only one
way. Based on this information ome can quickly prove no
GW(19,9,4;Z,X Z,) exists (a generalised weighing matrix (GW) is 3 GBRD
with v = b). Although this has been proved using the computer program
mentioned above we include our simple proof. Again there is no theory rul
ing out the existence of this design. (The arguments used to prove




Theorem 1.3 do not rule out the existence of this desiga.)

The main purpose of this paper concerns non-symmetric designs.
) Two generalised Bhaskar Rao designs, GBRD (v,k ;G ), satisfy-
ing (1) and the conditions, r > k, | G| |\ ave already known not to exist.
These designs are the GBRD(10,4,2;Z,) and the GBRD(5,4,6;Z,). It is
also proved that the GBRD(7,4,;2,X Z,) does not exist. A consequence of
the non-existence of these designs is that new small generating sets had to
be found in [4] to deal with the question of existence of GBRD (v,k,);G)'s
when k = 4. One is then forced to construct more designs on more points
it one is to successfully apply the Hanani-Wilson theory on PBD'’s.

In Section 1 we prove and discuss the non-existence of BRD(10,4,2).
In Section 2 we show that the GBRD(5,4,6;Z,) is unique and that this can-
not be signed over Z,. We then deduce that no GBRD(5,4,6,Z) exists. In
the last section we show that none of the four inequivalent BIBD(7,4,4)
can be signed over Z, X Z, and that the unique BRD(19,9,4) cannot be
signed over Z,. In Section 1,2 and 3 we also give signed PBD({2,3,4},7,2],
PBD[{3,4},4,6], and PBD|{3,4},6,4].

2. Non-Existence of BRD(10,4,2).

In [6] it is proved that if a BIBD(v,k,2) has the parameters of a resi-
dual design then it is in fact a residual design. Any BIBD(10,4,2) is there-
fore a residual design of some BIBD(16,6,2),, Hussain [7] has shown that
there are three inequivalent BIBD(16,6,2) and Schellenberg [12] has shown
that none of these can be signed over Z, to give a Bhaskar Rao design
BRD(16,6,2). It is simple to show that a generalised weighting matrix,
GW(v,k,\;G), gives a GBRD(v—kk=XX\G) In particular a
BRD (%k{k~1)+1,k,2) gives a BRD(%k(k—3)+1,k—2,2). The question
therefore arises as to whether the theorem in [6] car be extended to include
Bhaskar Rao designs. In proving that no BRD(10,4,2) exists we show that
the BIBD(16,6,2) and their residual designs do not rule out the possibility
of such an extension.

Peter Gibbons [8], having observed that each of the BIBD(16,6,2)
has. a tranmsitive automorphism group, proved that there are three ine-
quivalent BIBD(10,4,2). We include these designs in Table 1 below. Not-
ing that, in any attempt to sign these BIBD over Z,, one can assume that
the first element in each:row and column has a positive sign, one can
quickly check that none of these designs can be signed over Z,. Seven
rows of the second BIBD(10,4,2) may be signed to give the
PBD ({4,3,2},7,2) below. Such signed designs have a use in connection with
supplementary difference sets {also called difference families). Let a = %1
in the matrix below.

7.
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PBD({"‘)%,L&J?'—L)

0O 0 0 o0 0O
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0 0 O
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- aO0lao
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Table 1
Three inequivalent BIBD(10,4,2)
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the the
3. ‘The Uniqueness of AG'BRD (54,6;Z,) and ,Non-Existence of the
GBRD (5,4,6;2)-

The proofs in this section amount to exhaustive searches and space
does not permit us to give all the details. Our main purpose is to state the
results (since they are needed for [4]) and, to include our reasoning and our
partitioning of the possibilities, so that the interested reader may, pen in
hand, check our procedure. Note that we use -’ in place of '—1'.

We first show that the GBRD(5,4,6,Z,) is unique. To do this we
peed only prove that, up to equivalence, the unique BIBD(5,4,6)

o o 1 1 1 1 1 1 11
1 1. 0 0 1 1 1 1 1
1 1.1 1 0 o 1 1 1 1
1 1.1 1 1 1 0 0 1 1
¥ 11 1 1 1 1 1 O O

can be signed over Z, in precisely one way. Without loss of generality we
have the following PorXial avvay.

o o 1 1 1 1 1 1 1 1
1 1.0 0 1 1

1 0o 0

1 o 0

1 0 0

The only other possibility is, up to equivalence, the av-roy hehow .

o o 1 1 1 1 1 1 11
$1 *+ 0 0 1 - 1 - 1 -
1 -1 - 0 0 1 - - 1
' 1 -1 1 -0 - 1
1 0

But then position (4,2) cannot be signed. Now we group the possibilities
into two not necessarily disjoint classes according to whether they may be
brought to the fotlowing form.

0 0 1I'1 1 1
1 0 0 1 1
0 0

O e i e

1
1
1
1

One obtains the classes below.

.21



o o 1 1 1 1 1. 1 1 1 0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 - - - 1 1 0 1 1 1 - -
1 ¥+1 . O O - 1 1 - 1 1 1 - o 0o - - 1 1
1 0 0 1 0 o
1 6 o 1 0o 0
(1) (i)
Class 2.
o 6 1 1 1 1 1 1 1 1 0o 0 1 1 1 1 1 1 1t 1
1 1 0 0 t 1 1 - - - 1 1.0 ¢ 1 1 1 - - -
t - - - 06 0 1 . 1 1 1 - - - 06 0 1 1 1 -
i ¢ 0 1 0 0
1 0 0 1 0 o
(i) (i)
We note that the possibility
o 0 1 1 1 1 1 1 1 1
1 1.0 0 1 1 1 - - =
1 - o 0 -
1 0 0
1 0 0

design is in Class 1 (ii) then applying the 'signed’ permutation (1,5,3, 2 6,4)
(7 8) to 1ts columns, the stgned' permutation (1 3 2) to its r rows (and possi-

permutations (1,5,3,2,6,4) (7,10) (8,9) and (1,3 2) (4,5) with rows 4 or 5 pos-
sibly negated will convert Class 1 (i} to Class 2 (ii). We now deal with the
possible designs which contain one of the two configurations in Class 2.

It can be shown quickiytelif the first three rows are signed as in Class 2
(i) then the fourth cannat be signed. Hence no designs fall in Class 2 (i).
According to whether the (4,2) position is I or —1, matrices falling in Class
2 (ii) are signed as below. |




0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

1 1 0 O i 1 i - - - 1 1 0 0 1 1 1 - . .

1 - - - 0 o 1 1 - 1 1 - - - 0 0 1 1 - ]

1 1 1 1 - - 0 0 - 1 1 - 1 - 1. - 0 O 1 -

1 0o 0 1 o0 0
(a) (b)

Possibility (a) cannot be completed but possibility (b) has the two com-
pletions below.

o o 1 1 1 1 1 1 1 1 o o 1 1 1 1 1 1 1 1
i 1.0 0 1 1 1} - - - 1 1+ 0 0 1 t+ 1 - - -
1 - - - 0 0 1 1 - 1 1 - - o 0o 1 1 - 1
1 -t -t - 0 0 1 1 - 1 - 1 - 0 0 1

111 - - 1 - 1 0 0 1 1+ - 1r 1 - - 1 0 0

The second matrix may be converted to the first by applying the ‘signed’
permutations (1) (3,5,4,6) (7.9) (8,10) and (2,3) (4,5) to the columns and
rows respectively. This completes the proof of the uniqueness of
GBRD(5,4,6;Z,).

We pow show this design cannot be signed over Z,. Let X = (z;,) be a
possible mynmg of the above matrix. We may assume 3210 = =" while
:22—1 and ”=z”~—l1 for v =12.5 ,=34.,0 [
Topo ¥ ! multiply row 2 by a suitable group element and then adjust
the rest of the matrix. Once the design is signed, the elements of Z4 can
be squared to obtain another signing of the design over Z,. Thus we can
force o4 = —Y. The entries z4,, 245, Zyg, 30d Zog are then forced. The
rest of our proof is summarized in Table 2, below. The purpose of the
table is to give a partition of the possibilities which the reader may work
through to complete the proof. For each case the maximal sets of signed
rows are given. The proof is complete when these sets are shown to be the
only maximal sets.

o o 1 1t 1 2 o 1! 1" 1!
' 1 o o 1 1 1 =* =% -
it - 11 o0 o - =¥ ¥ 1
1! 1 - - 1 0 0 1 .
1! - 1 - 1 - 1 0 0
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Table 2
Z3p = — 2y = 1%
0 1 1 1 1 1 1 1 . 1
1 1 02 0 1 1 1% -ve —_ 1
1 -l 1 ll 0 0 _;l - - lw
Zgy =17
0 1 1 1 19 1 1 1 . 1
1 1 0 0 1Y Y e _e® 1
1 =1 ll lwe =1 _U"' - 1v
l - lwz - -1 ll 0 0 IU _U’
0 0 1 1 l’z 1 1 1 1 . 1
1 1 0 o0 ¥ LIS LA
1 | 11 1U2 0 0 -l -'2 - lU
1 —u? 17 -l —w? lw’ 0 0 ll -
‘= 1l
Iy =1 .
2= =l 2y =1
0 0 1 1 1 1 ls 1 1 . i
1 1 0 0 11 Y 3w v _w 1
1 -l 11 l- 0 0 =1 "'2 - l"
1 -t 1Y vl | ll 0 0 1* -
= 11
333 =1
0 0 1 1. 1 1 1 1 1 1
1 1 0 0 1 1! ¥ —w _e* _1
1 -l 1% ll 0 0 . | _.‘ - 1¥
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(1) 1 0 0 1¥ 1* 1 e _e*

A o L R I i

1 B ll 1 . ) l' 0 0 1- R
Ty = 17

T3o -~ Iy = 1

0 0 1 1 1 1 l2 1 1 . 1

1 10 0 ) LI LA | 4 - - !

1 -t 1* 1% 0 0 <1 - - ll

1 . | 11 =1 - lv’ 0 0 1Y _u’
Tyy = 1%

0 0 | 1 1 1 l’ 1 1 . 1

1 1.0 0o 1 1! 1* - = I

1 - 1¥ 1v 0 0 -l - - ll

1 —_ ll —_ =1 ) 5l . 0 0 lv’ _U’
Tyy = 1%

4. Signing Certain BIBD's over Z, or Z, X 2o

In this section we will observe that al} four BIBD (7,4,4) can be signed
over Z,. Then we will show that these designs cannot be signed over
Z, X Z,. But before doing so we will prove that the BRD(19,9,4), found
by Rudi Mathon cannot be signed over Z,. The following design,
X = (z;}), is the BRD(19,9,4) in question. (Siyned over Z,)




1 1 1§11 1311 11
1 1 1q- - - 1 B
1 | - - 1 -1- 1
111 1 - - - 1 S
1] - ) S S 1 - - 1
1 - 1 1 - - 1 1 -
1 <11 1 -11 - - 1
1l - - 1 1 - 1 1 -
1 - - 1 It -1 - 1
1 - - {1 1 - 1 1 -
- 1 1 - |1 .- . - -
1 -] - 1 1 - - | - -
- 1 1 - 1)- - « .
) S - 1 - - |1 - -
- 1 1 o - 1 - .
1 . - 1 - - 1P~ -
- 1 1 - - - - =11
1 - |- 1 - - |- - 1
- 1 1 - - - - 1

In altempring te Sign owem

Z, , We observe that either z, 5 and z, 15 are signed differently, or z, 4
and z,,4 are signed differently. At the same time either z,,; and 7,
are signed the same or z,,4 3nd z, g are signed the same. Without loss
of generality we may suppose the first pair are signed differently and the
second are signed the same. Because we may suppose the non-zero entries
in column 1 are all signed the same, we have that z4,5 and 7,55 are
signed differently and zg,s and z;,g are signed the same. This forces
Zg 19 a0d z7, to be signed differently and this forces zy,, 3nd z,5,, to
be signed differently giving a contradiction. Given that X is the only
BRD(19,9,4) there is therefore no GW(19,9,4,2,X Z,).

We now consider the BIBD(7,4,4) designs. The four inequivalent
BIBD(7,4,4) can be signed over Z, as follows.
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1 1 1|1 1
1 1 - 1 -
1 1 | -11
1 1 - -1 - -
1 1 1 (i)
- 11 1 -
- 1|1 1}- -
1 1 111 1
1 1 - 1 -
1 1 1 - 11
1 1 - - - -
1 1 1 (ii)
- 11 - 11 11
- 1 1 1
1 1 111 1
1 1 - 1 1
1 1 1 -
1 1 - -f - - -
-1 -1 1 1 (iii)
- 11 - 1
- -1- 1
1 1 1 1
1 - 1 1
1 - 1 - 11
1 - - 1 1
1 - 1 - (iv)
1 1 111
1 - 11 -]1 I{- 1

We now turn our M)atét.‘sentiou to the question of signing these BIBD
over Z, X Z,. To begin,j’ve make a definition and prove a simple lemma.

Definition 4.1. Let z,y € Z, X Z,. We say the ratioof z and y is zy.
Let r(z,y) denote the ratio of z and y. We note that r(z,y) = r(y.z).




Lemma 4.2. Let A = [a,,6;5,650,] ond B = [b,b,bs,b,] with
o, b, € Z, X 2, Jor all 1sisxs4 Suppose
{a,b,,0,0,,84b4,6,0,} = Z, X Z,. Then we have:

(i) r(sy,82)r(byby) = rlag,a)r(bs,dy),

(i) r(a;,6,) * r(b;.b;) and r(ag,a,) % r(bdy,b,)

Prmfu (i) We note albl 0262 0353 a4b‘ = ],

(i) r(e;.6;) = r(b,.b,), sy, then a b, = a,b,, giving a contradiction. O
This lemma allows us to show quickly that two of the four ineqi-

valent designs cannot be signed over Z, X Z,. Suppose the designs below

can be signed over Z, X Z,. Then without loss of generality we would

have the ratios as shown in the matrices below. Twe \abelled avvews denahes
the valie o} the Sis“g,& ewkrics umden e avvow Wead . The $‘\1hai
awties are wakb Shown, becawsr e b veguives ‘e vaRos cnly .

1 1 1 1 1 1 R 1l
«a - € a - € 1 i
1l l 1 l 1 1 l l
«b— € b 4 .
bt 1l 1 1 1l 1 1l 1
<«abo < ab > R R 4
1 l l l 1 1 l 1l
. Coa > \ Xx—
1 l l 1 1l 1 1 1
1 1 1 1 1 1 1 1



(b)

e *-— a —>
1 1 1 1 1 1 1 1
“~b-» 11—
1 1 1 1 1 1 1 1
<«ab- ¢——ab—) €&—— 53—
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
) b > < X >
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

In both cases no value £ € Z, X Z, can be found to satisfy all the
requirements imposed by Lemma 4.2 and the structure of the matrix con-
cerned.

This shows designs (i} and (ii) cannot be signed over Z, X Z,. One
of the authors has carried out an exhaustive computer search for a signing
over Z, X Z, of either one of the remaining designs. Such a search has
produced no such signing. Hence these designs cannot be signed either.
The search has produced several sets of six rows signed over Zy X 2,
Thus we have PBD[{4,3},6,4] which can be signed over Z, X Z,. An
example for each of designs (iii) and (iv) is included below,



e e e ¢ e ¢ e e
e a b ab e e e [
e b ab 3 e a e b
e 1ab b a ab a b ab

e b ab a ab a

e a ab b b a e ab

six rows of BIBD(7,4,4) (iii)

e e e e e e e e
e a b ab e e e e
e b a ab e b e a
e ab b b a b b ab a

2 ab b ab b e

ab a b e 1ab adb a

six signed rows of BIBD(7,4,4) (iv).

In all there are 8 sets of signed six rows of design (iii) and only 2 sets

of signed six rows for desigun (iv).

Acknowledgement: We wish to thank Dr. Jennifer Seberry for her valu-
able belp and encouragement.
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7.2 Ort
A joint paper with J. Hammer and J. Seberry is attached:
"A note on orthogonal designs” (preprint).

In this paper a construction of weighing matrices, given by Kharaghani
(1985), is extended and some new constructions for weighing matrices,
orthogonal design and Hadamard matrices are obtained. About one third of
the work is done by this author.
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A Note on Orthogonal Designs

J. Hammer, D.G. Sarvate, Jennifer Seberry

L_Introduction

Let W ={w;; ] be a matrix of order n with wy; € {0,1,-1}. W is called
a weighing matriy of weight p and order n, if wWWwT = WTw= pl, where I,
denotes the identity matrix of order n. Such a matrix is denoted by w(n.p).

If squaring all its entries gives an incidence matrix of a SBIBD then W is
called a pa/anced weighing matrix.

AN orthogonal/ design (OD), say A, of order n and type (S, S20 o SP)
on the commuting variables (+&y, .., %) and 0, is a square matrix of order n
with entries from (&%, .., t%) and 0.Each row and column of A contains sy
entries equal to ¥, in absolute value, the remaining entries in each row and
column being equal to 0. Any two distinct rows of A are orthogonal. In
other words

AAT = ( S]X12 + .t ngtz) In.



An Hadamard matrix W = [wj;]is a w(n, n) i.e. it is a square matrix of
order n with entries wi € {1, -1} which satisfies

wWWT =WTW =nlj,

OD's have been used to construct new Hadamard matrices. For details
see Geramita and Seberry (1979).

Kharaghani(1985) defined Cy = [ wyi.Wj ] and with that obtained skew
symmetric and symmetric w(n2+snp2) from W(np), where s is any positive
integer such that n+s is even. Each Cy is a symmetric {0, 1, -1} matrix of
order n. We define C, by the Kronecker product and by extending
Kharaghani’s method we obtain some new constructions of weighing
matrices and orthogonal designs.

2. some properties of C;’s

The Cy's can be def ined as a Kronecker product of the kth row of W
with its transpose. In other words, if Ry denotes the kth row of W, then
Ce = Ry ¥ RyT. Similarly, we def ine C,'s corresponding to the OD, A , as
follows:

et U be a weighing matrix obtained from A by replacing ail the
variables of A by 1. Let Ay and Uy denote the kth rows of A and U
respectively. Then Cy = Ay x U1,
LEMMA 2.1 : Let V; be the ith row of an SBIBD(v, p, A). Consider
X = [V x V3T, e VX VTl
then
XXT = p((p=A) + AJ).

PROOF X XT =V ViTxV V), oo\ Va VT X VT Vi

= pLiViTVi
= p( (p-A)N+ AJ).
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COROLLARY 2.2: Given a balanced W(nD), based onan SBIBD(NP.A),
consioer

X=[C:Cp . Gy ]

where C;* /s obtained from C; by squaring 3l ils entries. Then the imer
product of any two distinct rows of X /s Ap.

Proor Observe that Ci' = V; x ;L.

3. A new construction of orthogonal designs

Many constructions in orthogonal design theory have been expressed
in terms of Kronecker products of matrices: for exampie see Gastineau-
Hills(1983) and Gastineau-Hills and Hammer(1983). The Kronecker product
of two or more designs is not in general a design since products of
variables appear, for example:

(R %o i %l | [21 Z2 23 Z4]
["1 "z] x r:h Uz] = [ Kol Kl Kol RM2| =| “Z2 Z4 “Z4 Z3
~X2 ¥y Y2 " KUz Rz ~Kith ~Xels 23 2421 2y
“H2lz Xz Xl “Rbth ] |T24 23 22 7]

(Where zy = %y 22 = %ol 23 = X2, Z4 = XoUp) is not orthogonal, if we take
Zy, 2o, Z3 and 24 as independent. However it is a different matter if we take
a Kronecker product of an OD with a weighing matrix.

A construction of Kharaghani can be extended to give the following
result:

THEOREM 3.1. /F there exisls an OD, A, of lye (5457 ... S¢), where

;
W=D 5

k=1



and order non the variables (%, ... , t %, 0) then there exist n matrices
G ... Gy OF Order n satisiying |
n r
5 COT = ¥ swrlin
i=1 k=1
GCT=0,k= ]

Proor. Let A = (ay;) be the OD. Replace all the variables of A by 1 making it a
(0, 1, -1) weighing matrix U = (u;) of order n and weight w. Write Ay and Uy
for the kth rows of A and U respectively. Form

Ck = Ak " UkT.
Then
CngT = (Ak X UkT)(Aj b U,'T)T
= (AkAjT X UkTU]')
=0 if kzj because A is an orthogonal design.
Now
n n
2. GGT = 2 (AR UTUAT R Uy)
k=1 k=1
= SAATR U T
= Z S]sz( X UkTU‘)

= 2 s%3wlp) by the properties of U.

O

7.
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EXAMPLE 3.2. Let

A= 1D

Then

Thus we have

o DD oa O

-d ] -1
cl| U= |1
-b 1
a| -1
alt b
-b . Cg =] a
-C d
d C
~ciT d
d , C4 =l C
-a -b
D -3

O oo o

O o v O

..dT

THEOREM 3.3. Suyppose there exists an OD(sy, .. Sp). where W = I S, of

order n. Then there exists an OD(S{W.SyW,

k2 0 an inlfeger.

e g

sw) of order nnK) for

Proor. Form Cy, .. .Cp @5 in the previous theorem. Form a Latin square of
order n+k and replace n of its elements by C;, ... , Cy and the other elements

by the n x n zero matrix.

O

For instance, using Theorem 3.3 we can construct an QD(4, 4, 4, 4) of
order 4n, for n = 4. Using inequivalent Latin squares in Theorem 3.3 will

yield inequivalent ODs.




COROLLARY 3.4. /7 there /s an ODQt, L, t, ) m order 41 then there /s an
OD(412, 412, 412, 4t2) inevery order A(4t+k), k 2 0 an infeger:

But this construction can be used in other ways.

EXAMPLE 3.5, write |, 2, 3, 4 for Cy, ..., C4. Define

123 423 314 214
A=1312], Ay=|342] ,As=[143] |, As=|142
231 234 431 421

Then A AT = AjAT. Thus Ay, Ag, Az, A4 Can be used to replace the variables
of any OD(4, t, t, t).

Hence we have:

THEOREM 3.6. Syppose there is an OD(t, t, L, t) /in order n Then there exists
an OD(12t, 12t, 12%, 12t} i order i2n

pROOE. Use the OD(1, 1, 1, 1) in order 4 to form C, .. ,C4 Of order 4.
Substitute these in Ay .. A4 Of Example 3.5 to obtain Williamson-type
matrices of order 12, on 4 variables each repeated 12 times. Use these to
replace the variables of the OD(t, t, t, t) to get the result.

O

Now if we had started to construct C,, .. ,C4¢ Of oOrder 4s from an
OD(s,s,5,5) in order 4s we would have each of 4 variables occuring 4s2
times in each row of [Cy: Cp : .. : Cqg But we can use these to form
Wwilliamson type matrices in a number of ways:

Let Ay, be a circulant matrix with first row (i+1, i*2, .., i*s), i = 0, s,
2s, and 3s. These four matrices can be substituted in an OD(t t, t, ). Hence
we have:
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THEOREM 3.7. &/ there evists an OD(s, s, s, 5) in order 4s and an
OD(t. t. 4. V) inorder 9t then there exists an OD(4s52t, 4s2t, 4s2t, 4s2t) i
order 165t

Now if we write i for B; we can proceed exactly as in Example 3.5 so
we have
THEOREM 3.8. /7 there evists an OD(s, s, s, s) M order 45 and an
optt, t t ) m order 4t then lhere exists  an
OD(12s2t, 12s2t, 1282, 12s2t) /norder 48set.
0

Consider the OD(5, 5, 5, 5) in order 20. The construction gives
Cy. Co .. , Cpg Of order 20 and hence an OD(300, 300, 300, 300) in order
1200. '

EXAMPLE 3.10. Wwe suppose as before that 1,2,3,4 are matrices of order n
such that ijT=0 and £ iiT = £ nx2l,,

Define
31 2 -2 1] (1 .3 4 -4 3]
1 31 2 -2 3 1 3 4-4

Ar=-2 1 31 2 Ar=l-4 3 1 3 4
2-2 131 4-4 3 1 3
1 2-21 3 3 4-4 3 1
(4 1 2 2 - (2 3 4 4 -3]
1 2 2-1 4 3 4 4-3 2

Az=l2 2 -1 4 1 Ag=l4 4-3 2 3.
2-1 4 1 2 4-3 2 3 4
-1 4 1 2 2 -3 2 3 4 4

Then AjA]'T = A]A,T and Z A;A,'T =3 SXiZISn'

Thus if B, are as described after Theorem 3.7 we have




THEOREM 3.11. Suppose there /s an OD(s, s, s, ) i order 45 and an
OD(t, t, t.t) /2 order 4t Then there /s an OD(20s2t, 20s2t, 20s2t, 20s2t) i
order 80s2t,

4. Method used to form inequivalent Hadamard matrices

CONSTRUCTION 4.1. Let H be Hadamard of order n. Form C;, i = 1,2, .. , n,
from H as before. Let L and M be Hadamard matrices of order t. Then

(LxCP{MxC)=0, 0=}

So if Hy, .. , H, are Hadamard matrices of order t (inequivalent or just
different equivalence operations applied to one) then the matrices

Hit x Gy, Hi2 x Co, ... Hin xCp, ij ¢ {12, .., n}

can be put into a Latin square of order n to form Hadamard matrices of
order n2t. The method can give many inequivalent Hadamard matrices. For
example, if there are s inequivalent Hadamard matrices of order t and m

inequivalent Latin squares of order n, then there will be at least gh*
inequivalent Hadamard matrices of ordr n2t. This method can be generalized
to produce inequivalent weighing matrices and orthogonal designs.

5. Method used with coloured designs to form rectangular
weighing matrices.

In a recent paper Rodger, Sarvate and Seberry (1987) have studied
coloured BiBDs showing every BIBD can be coloured. By definition a
coloured BIBD is the incidence matrix of the-BIBD(v, b, r, k, A) whose
nonzero entries are replaced by r fixed symbois such that each row and
column has no repeated symbol. Consider a coloured symmetric BIBD(vk, A)
and a W(k, p). If we replace the ith symbol by C; for i = 1,2, .. , k and the 0
entries by the k by k zero matrix, we get W(vk, p?). In general, if we
consider a coloured BIBD(v, b, r, k, A) and there exists a weighing matrix
w(r, p) then we form the C;, i = 1, ..., r and replace the ith colour by C; and
zeros by the zero matrix of order r. This matrix, B, has size vr x vr, rp

7.
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nonzero elements in each row and pk non-zero elements in each column,
Hence we have:

THEOREM S.1.  Suppose there /s @ BIBD (v, b, r, k, A) and & W(r, p). 7hen
there /s a (0, 1, =1) matriy B with rp nonzero elements in each row and pk
noNzero elements in each column such hat

BBT = rpl.
n particutar, If the BIBD /s symmelric then we have @ W(VK,p2).
O

Remark. If we replace entries of an n-dimensional latin cube by
suitable Ci's then we will get n-dimensional orthogonal designs.
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HAPTER

APPLICATIONS TQ ENCRYPTION

There are essentially only two operations involved in the classical
encryption of a message: substitution and transposition. In addition, the
message may be accordioned by either introducing or removing superfluous
symbols. The simplest of all encryption schemes is monoalphabetic
substitution, in which each letter of the message is replaced by a fixed
substitute. When encrypting by simple transposition, a permutation P of n
symbois is the key and each successive block of n symbols in the message
is rearranged using P. To strengthen substitution encryption, one may use
not one but several monoalphabetic substitutions, with the “key” including
a specification of which substitution is to be used for each symbol of the
cipher. A well known example is the Vigenere ciphers, in which the
substitutions are simple cyclic shifts of the original alphabet (see
Simmons(1979)).

1 Encrypti ' inatorial ign

Some ideas where designs can be used in encryption are presented in
the attached published paper

“Encryption methods based on combinatorial designs’, Ars
Combinatoria, 21A, 237-246.

The version of the paper attached here has been slightly modified to make
the ideas clearer. Further research can be done in calculating the
complexity and increasing the efficiency and security of the ideas
developed in this paper. The methods described have the attraction of
yielding large compression. The ideas were developed by J. Seberry and this
author in close and continuous association, hence it is impossible to
indicate which idea is from which author.

8.



Encryption Methods Based on
Combinatorial Designs

Dinesh G. Sarvate and' Jennifer Seberry
L Introduct]

we explore some possible ways combinatorial designs might be
used as secret codes. We are motivated to use designs as:

(1) combinatorial designs are often hard to find;

(2) the algorithms for encryption and decryption are of reasonable
length,

(3) combinatorial designs have very large numbers of designs in
each equivalence class lending themselves readily to selection using a
secret key.

we hope our ideas will encourage much more research into
applications of combinatorial cryptography. Cryptosecurity can be
enhanced by using different methods for producing sequences of random
permutations (see Sloanefi983]) and also by permuting the encoded
message with a random permutation using a secret key (see Ayoub[1981)).

Where we have considered combinatorial designs which are well
known we refer the reader to standard texts such as Hall [1967] ,
Raghavarao(1971] or Wallis,Street and Wallis{1972] for definitions and
constructions. For less frequently used or less well known designs a
definition or reference is given.

All these methods lend themselves to further opacity if random
number generators are used to apply permutations at any or ail stages of
encryption. An excetlent survey of random number generators can be found
in Sloane {1983].




2. Encryption method using mutually orthogonal Latin
Squares.

Suppose we have a set of k mutually orthogonal Latin squares of

order n. A key is used which chooses a pair of the k-set at random.
Encryption is now achieved by transmitting for message i,j the element in
the (i,j) th position of the selected pair of orthogonal squares.

Example . The following are three 4 X 4 mutually orthogonal Latin
squares:

123 4] (12347 (123 4]
A={2143| ,B=|4321| ,C=[3412
3412 2143 4321
[4321] 3412 12143

Suppose the key chooses the third and first Latin squares. Then to
transmit the message 1,4 we send the (1,4) th element of the third and
first Latin squares i.e. 4.4. L

Decryption is achieved by looking at which row and columns of
the squares contain the pair 4,4 and that is the (1,4) th position.

Extra security is ensured by:

(a) permutations of the rows and columns of the Latin squares as
a set;

(b) permutations of the elements within one or more of the Latin
squares;

(¢) the key can be used to change the pair of Latin squares after
every two byte message if required

(d) the key can be used to change the size of the pairs of the Latin
squares after every two byte message if required;

(e) the.key can be used to choose another inequivalent and
non-isomorphic pair at any stage.



Mutually orthogonal Latin squares of size n can used to send any
of the n? possible two byte messages.

Longer messages use orthogonal F-squares and n-dimensiona/
arays.

we illustrate via an example. Suppose A, B, C are, as before,
pairwise mutually orthogonal Latin squares then

A]=[AA],BI = [BB],C.='123421431
A A BB 34124321
43213412
21431234
34124321
123421473
21431234
43213412

are mutually orthogonal in the sense that each of the 43 messages from
a quaternary alphabet occur in the (ijth positions of Ay By, Cl. For

example, the message 1,3,3 occurs in the (2,6) position.

This process of adding more mutually orthogonal faces to a higher
dimensional array allows:

(a) a key to be used to choose any subset of the faces of the array;

(b) the rows and columns of the faces to be permuted;

(¢) the elements of the faces to be permuted;

(d) compression of the message:

(e) the key to be used to choose inequivalent higher dimensional
arrays at any stage of the encrgpti'on process.



3. Encryption methods using Room squares.

Room squares can aiso be used to send messages in a fashion
similar to that described for Latin squares. As currently defined not all
messages are available. For example consider the Room square
(01 45 27 - 36 - -
- 0256 31 - 47 -
- - 0367 42 - 52
62 - - 04 71 53 -
-~ 73 - - 0512 64
7 - 14 - - 06 23
134 16 - 25 - - 07

The situation becomes a littie better for encryption if we note
this exampie is of a skew Room square and so if the i,j entry is empty
the ji entry, i = j is not.Thus we can send any message.

Example . Use the modified Room square
(1145 27 - 36 - - ]
- 22 56 31 - 47 -
- - 3367 42 - 51
62 - - 44 7153 -
- 73 - - 95512 64
75 - 14 - - 66 23
(34 6 - 25 - - 77

Then to encode the message 76 we observe 67 in the 3,4th
position and send 43. .

All the permutations that were previously used for the Latin
squares can still be used.

wWe note further that the Room square of the example is
constructed us@ng the starter-adder technique and each element can be
found from the first row

8.



W45 27 - 36 - -

so that if the 1,j element is xy the ij+i-1 eiement is x+i-ly+i-1
where j+i-1, x+i-1 and y+i-1 are reduced med n, the size of the Room
square. we use {1, 2, ..., n} as class of representatives.

The differences between the elements of the first row are all
different so to encipher 76 we first note that 6-7=-1 and 45 has
difference 1, hence 76 can also be encrypted by -1, 2 meaning

(a) start with the pair distance 1 apart,
(b) add two to both,
(c¢) reverse the order.

Thus to decode -2,4 we note 7 and 2 are -2 apart and so decode as
64.

To encrypt longer messages the higher dimensional anlogues of
skew Room squares are most useful.

4. Designs with two way elimination of heterogeneity.

These designs were first studied in connection with estimating
tobacco mosaic virus by Youden[t937] and have subsequently been
studied by a number of authors including Agrawal [1966i,ii], Agrawai and
Mishra(1971] Preece[1966i,iil, Seberry(1979i], Street[1981], Sterling and
wormald[1976). A number of infinite families as well as one-off
examples are known.

These designs comprise two designs with parameters
(vy.bry K, Ay) and {ry bk, Ap) . such that the incidence matrices N,

and N, of the designs satisfy the additional property

T
Ny N2 = kJ.



Example. Let the designs have the parameters

V)79, 1y=vy4, b2, k=3

and treatments AB,.CDEF.GHI and ab,c.d respectively.
The two way design is

Ab a d C
B ¢ a d b
cd a b c
N‘2= D ¢ d a b

E

F

G b ¢ d a
H ¢ d b a
| d ¢ b 2

Note that the blocks of N, are the columns of the following array:

b,¢, b aaaddbcbc
cdcgcdaaabcech
dbdcdcbbdaaa

The blocks of N, are the columns of the following array:

A,D,G A BCABCABC
BEHD EFF DEEF D
CFI1 GHIHI G1G H

The two-way design is
Ab Dc Gb Aa Ba Ca Ad Bd Cb Ac Bb Cc
Bc Ed Hc Dd Ec Fd Fa Da Ea Eb Fc Db
.Cd Fb Id Gc Hdic Hb Ib Gd la Ga Ha



There is a number of encryption methods possible using these
designs.
(1) The treatment of N, is sent to indicate the message given by

the ry -tuple of treatments of N2 associated with that treatment.

In the above example sending F would actuaily send the message
(b,d,a,c).

(2) The block of N, is sent to indicate the message given by the
kz-tuple of treatments of N2 associated with that block.

In the example sending 5 would actually send the message (a,c,d).

(3) A pair of treatments of N, is sent. Since N, is a block design
any pair of treatments occurs in A, blocks and the message is those
pairs ( in the order given by the treatments of NI ).

In the example, sending AG actually sends the message ac, where
GA sends ca.

Now a secret key can be used to

(a) permute the rows of the two-way designs,
(b) permute the columns of the two-way design,
(¢) permute the treatments of the second design,
(d) permute the blocks of the second design.

The advantages of using such designs are

(a) message compression,

(b) ease of decoding/encoding,

(c) if used in reverse it is asymmetric,

(d) the reverse procedure can combine encryption with error
correction, |

(e) these designs are hard to find even before permutations are
used on them.




9. Crypto and coloured designs.

Some designs exist which may be more useful for encryption
method 3 of the previous section. For exampie in the following design
on five symbols every pair of elements (), %, Y € {ab.c,de} occurs as
an intersection of some pair of rows.

A abc
Ba de
Chbh ee
D bba
E ¢ ae
F ¢ dc¢
G dd b

So to send say (a.e) we send DC.but to send (e,a) we send CD. The
structure of the design ensures that ali the permutations that can be
effected and selected by the secret key are available.

Similar designs where pairs (or t-tuples) occur exactly once in a
row or column have not been widely studied and offer a fruitful area of
research.

Cryptodesigns with the less restrictive condition that every
element occurs once in a row (so every row is an r-tuple) but each
element in column is different are called co/owred designs and have
proved extremely useful, in constructing new BIBDs and SBIBDs(see
Seberry(1985ii), Sarvate and Seberry(i985) and de Launey and
Seberry(1985).).

8.9
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6. Encryption method using ordered designs.

The method described in this section is for encrypting a k-ary
message by using combinatorial designs with blocks,whose eiements are
ordered. We encrypt a message of length t into a message of length 2, in
other words we compress the message.

Examples ©of such designs are modified directed balanced
incomplete block designs i.e. DBIBDs (see Seberry and Skillicorn [1980] ,
Street and Wilson{1980], Colbourn and Colbourn[1984]), cyclic BIBDs
(see Colbourn and Colbourn[1984]) and directed packings (see Skillicorn
and R.G.Stanton{1982), Dawson, Seberry, and Skillicorn [1984]) over v
treatments , v 2 k. The method can be easily extended to unordered
designs.

Label ny Ny, .. N, the s = {} ) ways of selecting a t-tuple from

a given block of a DD(tk,v), with NDD(tk,v) = N, the number of blocks.
Now the DD(tk,v) uses a k-ary alphabet with biocks of size v such that
each ordered t-tuple occurs at ieast once. Thus a t-digit message can be
sent by transmitting two symbois, the first giving the block number (an
integer between 1 and N) and the other the number, n, which indicates

the position of the required t-tuple in the block.

The sender needs a large dictionary but the receiver needs only a
list of the blocks and the way of choosing the nith t-tuple from each

block.

This method has the advantages of:

(1) message compression of a high order:
(2) small storage and time needed for decryption.

These properties are needed for esample, in transmission to
space-shuttles, undersea activities or other remote receivers.



Example: Let the message be aab dcc adc. Suppose we use the
following design, DD(3,4,4) together with 14 extra blocks to cover all
the possible tripies.

DD(3,4,4) : Bjzabcd By,=badc Bz=cadb
B4=dacb Bs=dbca 86=cbda

Extra blocks : B7=a bab 88=acac Bg=ada d
Bw:bcbc B” =bdbd Bm=cdcd
Bl3=abaa 814=bcbb Bi5=cdcc
816=ddad Bl7=dbba 818=cdaa
B‘g =¢cab 820=ddbc

Suppose My indicates we should choose positions 123 of the
block, and n,nzn, indicate choosing positions 124, 134, 234
respectively of the biock. Then since aab is found in 87, aab is encoded

as 7.n3. dce is encoded 15,n 4 and adc is encoded 2,n 4

This design is not optimal in the sense that many pairs and triples
occur 2 and 3 times. Optimal solutions where each possible t-tuple
occurs and the fewest number of blocks possible is used, would be of
- great interest.

7. A practical Method.

An interesting ‘application of the Rubik cube, in games or
teaching, occurs when the message is of length less than or equal to 54
units. The sender and the receiver know how to read the message on the
cube. The sender applies operations Py P, .., P, and sends the cube via

a messenger. The receiver applies Pn", P‘ -l and recovers the

message. .

B8.11
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8.2 Encruption usi .

The Hungarian Rings puzzle (called Hungarian rings) consists of two
interiocked rings of 20 balls such that either ring can rotate as a cycle. The
intersections of the two rings are 5 balls apart in each ring as shown in
Fig. 1.

'®) O
O O O O
O O O O
O 00 e
Oo O e
000 000
Fig. 1

we know that encryption is closely related to substitution and
permutation of the message symbols. We wish to give a systematic method
to permute the message block while scrambling in the message a number of
arbitrary message symbols. If any secure substitution, which also
compresses the message, is used with the method given in the attached
paper

"Encryption using Hungarian rings”, Discrete Applied
Mathematics, 16, 1987, 151-155,

then we may have a very secure encryption. A method which uses ordered
designs and which has a message compression of a very high order, is given
in section 8.1 (Sarvate and Seberry (1986)). The version of the Hungarian
rings which is used in the attached paper consists of two interlocked rings
of a and b balis respectively. At any instance the two interlocked rings have
only two balls common. We do not restrict the intersections of the two
rings to be a fixed number of batls apart. The method can be easily modified
for any integer a b and any integer t of common balls.



Encryption using Hungarian rings
Joseph Hammer and Dinesh G. sarvate
Introduction

Encryption is closly related to substitution and permutation of
message symbols. In this note we use the Hungarian rings structure for that
purpose. It breaks up a message into segments of different ltengths. For
each segment we apply a different permutation. We are going to present a
systematic method to permute the segments while scrambling a number of
arbitrary message symbols. Note that the Hungarian rings present a physical
mode! for the abstract concept of scrambling and permutation. For us the
Hungarian rings HR(a, b) consists of two inter-locked rings, Ry and Ry, of 2
and b balls respectively with four operations, called HR operations Ry*, R,
R,+ and Ry-, where Rj+ is to rotate the balls of the ring Rj in the

anticlockwise direction and Rj- is to rotate the bails of Rj in the clockwise
direction. We notice that Rj+ and Rj- are inverse operations. For proper

definition and illustration the reader is referred to Singmaster [4l.
Encryption methods based on combinatorial designs were studied recently
by Sarvate and Seberry [2]. The technique depends mainly on the random
permutations and the large number of equivaient designs with same
parameters. In the present note we have used the structure of Hungarian
rings and its movement (i.e. HR operations) together with the random
permutations to encrypt a message of length m into a message of length
Lm, the key being a 6~coordinate number with s HR operations Py, Py, .., Ps.

The message is encrypted in such a way that each (a+b-2) bits of
encoded message will hawe only 'a’ bits of information scrambied by a
random permutation and s HR operations.

when we talk about labelling the ring by message block, we
understand that the balls on each ring have an inner labelling as 1, .., a and
1, .., b and also an inner labelling of 1, .., a+b-2 when we consider both
rings together.
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When we talk about generating random permutations or random numbers, we
assume that a common procedure is known to both sender and the receiver. We also
assume that both sender and receiver have a collection of sets of two methods for
random number generation and three methods for random permutation generation.
The sixth coordinate will indicate the set which will be used at the next message. Of
course, for the first time both sender and receiver have fixed a set to be used for
encryption. An excellent survey of random permutations can be found in Sloane [3].

Algorithm
Step 1. Generate random integer sequences {x;}/., and {N,;}/.,, using the first
and second coordinatciof the key, such that

-1 !
.):l yiNsms= _):l YiN;
I= =

where y;=a or b depending on x; being odd or even.

Step 2. Break the message into submessages of length y;V;, i=1,...,1.

Step 3. Produce sequences of random permutations {B;}/_,, {4;}{-; and {S;}].,
using the third, fourth and fifth coordinateiof the key respectively, where B, is a
permutation over {1,..., b}, A4, is a permutation over {1,...,a} and S; is a permuta-
tion over {1,2,...,a+b—-2}.

Step 4. For i=1 to t, encode the submessage block of length y;N;.

Step (i). Call the ring with y; balls R, and the other ring R,.

Step (ii). Break the submessage block into blocks of length y;.

Step (iii). For j=1 to N; do the following:

(a) Label R; by the message block.

(b) Label R, by arbitrary message symbols.

(c) If R, is of a’balls, then apply A4; on Rj,else apply B; on R,.
(d) If R, is of 'b balls, then apply B; on Ryselse apply A; on R,.
(e) Apply S; on R, and R, together.

(f) Apply HR operations Py, ..., P;.

(g) Send the message.

To decode, the receiver applies Steps 1 and 3,except that he breaks the message
into subsequences of length (a+ & —2)- N;. In Step 4 he uses the inverse permuta-
tions and HR operations, while applying substeps in reverse order.

Remarks. (1) Note that the arbitrary symbols of the second ring will not change the
position in the encrypted message, thereby making them vulnerable for breaking.
This problem can be solved by using successive relabelling in the sense that from
Jj=11to N,, for j=I+1, consider the positions in the step j=/in R, and R, as the
original positions (as inner labelling). This can conveniently be done in a computer
program. a

(2) Instead of six-coordinate key we can send only one number to be used to pro-
duce six random numbers, which can be used as seeds for the algorithm.



Encryption using Hungarian rings

Complexity. Suppose m is the length of the message and it is encrypted into a
message of length n = Lm. The intruder first has to factorize n=_Lm ina+b-2and
Y N; to be able to determine the size of the rings and the sequence of integers
N;. Next the intruder has to determine all subsets S of {1,2,..., L N;} such that
Liesd= ¥i_,N; (where S is independent of £). Now this problem contains the
following NP-complete problem in Garey gr“tg m.lohnson 1, p. 223}.

Given,set A, size s(@)e Z * for each aeA,Apositive integer B. Is there a subset 4’
of A s.t. the sum of the sizes of the elements in A’ is B?

Example. For simplicity we assume that our rings are of four and three balls respec-
tively and the balls are named as by, b,, b;, by and bs, Two balls are common to
both the rings, and each ball is‘r“epresented by a triple (x, y,2) where x represents
the inner labelling as a ball from individual ring, y is the inner labelling when we
consider the balls together and z is the message symbol attached to the ball while
encrypting a certain submessage block.
Let
b,=(,1,-), b,=(2,3-), by=(3,,4,-),

b4=(4|, 5, _211— and bS =(32,2, —) ave

where b,, b;, by and by Aethc balls of first ring and &, b, and bs o the balls of
the second ring. The subscripts for the first coordinate are same for two balls from
the same ring. The first coordinate without subscript means that ball is common to
both rings.

Let the HR operations in the key be R+ and R,-.

Let the secret message be 0111011101,

Step 1. Let x;=2, xX;=5, N;=2 and N,=1.

Step 2. The message is broken into two parts of lengths b-N,=3-2 and
a-N,=4.1, viz.

011101 and 1101

Step 3. For the sake of simplicity, let 4,, B, and 'S, be the identity permutations
and let A,, B, and S, be the shift permutations by 1 (.e., Ay(x)=x+1lx=1,...,a-1
and A,(a)= 1. Similarly for B, and S;).

Step 4. We encode first 011101 with the following steps.

Step (i). Let the ring with balls &,, b, and b be R, and the other ring be R,.

Step (ii). Let the submessage blocks be 011 and 101.

Step (iii). (a) Label R, by the message block 011.

(b) A“'?ihe arbitrary message symbols 0, 1 to the balils b, and by, i.e., we
have b, =(1,1,0), b;=(2,3,1), b3=(3,,4,0), by=(4,,5,1), bs=(3,2,1).

(c) Apply identity permutation B, on R,. '

(@) Apply identity permutation A; on R,.

(e) Apply identity permutation S, on R, and R, together, so in these steps
there is no change in the coordinates of the b/s.
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(f) Apply R;+, to get
b=12,31), b=03,21, b=03,40),
by=(4,,5.1), bs=(110)
(i.e., b= bs, bs— by, by— by; by— by, by— b,. {read bs becomes b, etc.}.)

Apply R,—-, to obtain
bl=(4l,5! 1)’ b2=(2’3s I), b3=(321291)i
b4=(3|,4,0), b5=(1, 1,0)

(i.e., bl_'bz, bz"’b;, b;"’b.‘, bq—’bl; bs"’bs)
(g) Hence the encrypted message for 011 is

11100.
(i.e., the last coordinates of the b;s). Similarly 101 is encrypted into

10101.

Now to encrypt 1101, we proceed as before:
Step (i). Let the ring with balls b,, b,, by and by be R, and the ring with balls b,
b,, bs be R;.
Step (ii). Here the submessage block is only one, viz. 1101.
Step (iii). (a) Label R, by thi message 1101,
(b) Let the ball bs be labeled by the symbol 1, i.e., we have

b=(,11), b,=(2,3,1), b;=(3,,4,0),
bs=(4,51), bs=(322,1).

(c) Apply the shift permutation, 4, on R, to get
b=(2,31), b;=(3,,4,0), by=(4,,51),
by=(1,1,1),  bs=(352,1)

(i.e., b;— by, by— by, by— by, b~ b,).
(d) Apply the shift permutation, B; on R;, to get

b;=(3,4,0), b,=(32,1), by=(4,51),
b4=(1’ L l)’ b5=(2:30 l)

(i.e., bZ_’bI' bs""bz, b;“"bs; b;"b;, b4—’b4).
(e) Apply the shift permutation S; on R, and R, together to get

by=(3»2,1), by=(4,51), b=(,11),
by=(2,3,1), bs=(3,,4,0)
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(i.c.. bz_'bl, b3_’b2. b.;_’b], bs""‘b4, b;r"’bs).
() Apply R;+ to get:

b|=(4|.5, l)v b2=(l’ lil)l b3=(21 3) l)v
b4'—"'(l32, 2, 1), b5=(3|,4,0)

(i.e., b|'—’b4, b4""b3, b;"bz, bz_’b]; bs"bs).
Apply R,—, to get

b,=(3,,40), by=(4,51), b;=(2,31),
by=(3,2,1), bs=(1,1,1)

(i.e., b]"""bz, bs""bl, bz""bj; bg_’bJ, b4_’b4).
(g) Hence the encrypted message for 1101 is

01111
So the message 0111011101 is encrypted into
111001010101111.
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in the light of the results presented, some unanswered problems are
posed for further research.

in Chapters 1 and 6, the technique used to give constructions for
BIBDs and PBIBDs has been explored to construct t-designs (Kramer and
Messner (1976), Alltop (1971)). Can we use similar techniques to construct
cyclic and directed t-designs?. Algorithms to order BIBDs of biock size 3
to get directed designs have been studied by Colbourn and Harms (1983).
Can we get similar algorithms and resuits for directed designs with block
size greater than 3 and for cyclic and equi-neighboured designs with block
size greater than or equal to 37

In Chapter 2, Harms and Colbourn's conjecture has been discussed.
Can we give non-trivial families which satisfy the conjecture? Can we
apply Hanani's theory to the conjecture with block size greater than 37

The existence problem for colourable designs is settled, but that for
crypto designs is still untouched. Colourable designs have been used to
construct orthogonal designs. How can they be used to construct other
designs? Now, as colourable designs are edge-coloured graphs and
colourable designs are used to construct GDDs, can we use some other
edge-coloured graphs to construct BIBDs and GDDs? Can they be used in
encryptions?

The generalized Bhaskar Rao designs over abelian (but not elementary
abelian) groups are mostly untouched except for the result on block size 3
over Z4. In general, we need to identify systematically the unknown GBRDs

and look for them, e.g. GBRD(7, 3, 2t; Z,t) is not known. We know that an

SBIBD(5,4,3) and a GBRD(4, 3, 2t: Z,t) exist and hence a GBRD(S, 3, 3.21; Z,t)
exists. A GBRD(3, 3, 12 Zyp) cannot exist because of Drake’s theorem (Drake
(1979), Theorem 1.10) but we can get GBRD(3, 3, 24: Zj;). Dr Jennifer
Seberry has recently found a few more new GBRDs (v, 4, 4) over Z; x Zy, to
complete the work on block size 4. The work is still not over. The method



used in constructing orthogonal designs is simple and must be exploited
more. Sarvate and Seberry (1987) have recently given a new construction
for a known family of weighing matrices viz. W(p2(p-1), p?), using the 2-
adjugate method of Patwardhan and Vartak(1980). Can we modify the
method to get new weighing matrices. How the construction for orthogonal
designs be generalised?. In the end, as Constance Reid has written in
"Hilbert®, *The world of mathematics is inexhaustible.”
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The main aim of this thesis is to prove that the necessary conditions
are sufficient for the existence of various block designs with small biock
sizes and to explore the use of block designs in encryption and the design
of experiments. Some general constructions and results are obtained.

The various designs studied are as follows.

In Chapter 1 block designs are introduced, using graphs, and a
construction of PBIBDs, using n-partite graphs, is given.

Chapter 2 deals with directed and cyclic designs of block size 3 and
4. By generalizing results of Hanani, it is proved that the necessary
conditions. are sufficient for the existence of directed group divisible
designs(GDDs) of block sizes 3, 4 and cyclic GDDs of block size 3 except
v = 6 and group size = 1. Some general results are given. The existence of
cyclic BIBD(v, b, 1, 4, (4t+2)*} for v = 0, I(mod4) and cyclic BIBD(v, b, r, 4,
4t*) for all v 2 4 is established.

Chapter 3 is on equi-neighboured designs. One of the results proved
is that every GDD of block size three, with A = 3t, underlies an equi-
neighboured GDD.

Chapter 4 is on simple designs. A theorem of R. G. Stanton and R. J.
Collens is used to show that the necessary conditions are sufficient for the
existence of simple balanced incomplete block designs (simple BIBDs) with
block size three. Embedding theorems for simple BIBDs, based on a method
of graph factorization, are given.




Coloured designs are in Chapter 5. Many new families of GDDs and
BIBDs can be obtained by using construction based on coloured designs. One
such construction and an existence theorem for coloured designs are given.

In Chapter 6 some general constructions, based on directed graphs
and t-designs, for families of PBIBDs and BIBDs are given.

Generalized Bhaskar Rao designs and orthogonal designs are studied
in Chapter 7. It is shown that neither BRD(10,4,2) nor GBRD(7, 4, 4; 2, x Z,)
exists. It is shown that the necessary conditions are sufficient for the
existence of a GBRD(v, 3, 4t; z4) except possibly when (v, t) = (27, 1) or

(39, 1). Some new constructions for weighing matrices and orthogonal
designs are obtained by extending a method of Kharaghani.

Chapter 8 gives some ideas about applications of designs in
encryption. A systematic method to permute the message block, while
scrambling, in the message, a number of arbitrary message symbols, is
given.









