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SYNOPSIS

The main body of this thesis consists of nine chapters in the following order:

The general introductory material is presented in chapter 1 where the

overall aims are explained. Chapters 2 - 8 have been written in the format of

research papers; there are therefore only few cross references and, instead, the

reader may directly consult the publications attached to this thesis.

Chapters 2 - 7 are concerned with the development of the methodology

used in the in vivo experiments described in chapter 8. This latter chapter

presents the work to date on the experimental regional deposition of hygroscopic

aerosols in normal and asthmatic volunteers. The last chapter summarises the

findings and lists suggestions for future work.
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ABSTRACf

Our ultimate aim was to measure the deposition pattern of non-isotonic

aerosols in the lungs of normal and asthmatic subjects. These aerosols cause

airway narrowing in hypersensitive subjects and are used as an aid to the

diagnosis of asthma.

A rapid method for assessing the droplet size generated by aerosol

delivery systems to be used in these experiments was designed and evaluated.

These methods were then applied to assess, i) diagnostic radioaerosol delivery

systems and ii) therapeutic aerosol systems used in the treatment and prevention

of Pneumocystis carinii infections.

The humidity of the air inhaled along with the aerosol stream and the fall

in temperature of the nebuliser solution during generation were found to be

important in controlling the size and concentration of solutes within the droplets.

To gain a full understanding of the mechanisms involved, droplet concentrations

and sizes were predicted by considering mass balance of water and solutes.

Non-isotonic aerosols have the capacity to grow (if hypertonic) or shrink

(if hypotonic) during their passage through the respiratory tract. The regional

deposition of a hyper- and hypo- tonic aerosol of the same initial droplet size

could therefore be different if growth or shrinkage takes place before deposition
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has occurred. The deposition patterns of two isotonic aerosols of sizes similar to

the range possible after equilibration of the hypertonic (4.5% saline) and

hypotonic (0.3% saline) aerosols in the respiratory tract were assessed. The

breathing pattern during aerosol inhalation was monitored and reproduced on

both occasions with the aid of a microcomputer.

Three-dimensional gamma scintigraphic techniques were found to provide

the most sensitive method of detecting differences in regional deposition.

Differences in the deposition patterns of hypertonic and hypotonic

aerosols of the same initial size were found in normal subjects, but they were not

as great as expected if rapid complete equilibration of the droplets before

deposition is assumed. In particular, tracheal deposition was greater with the

hypertonic aerosol, Hyper- and iso- tonic aerosols of the same initial size also

deposited with different patterns in asthmatic subjects. The effects were due to a

combination of hygroscopic growth, bronchoconstriction during aerosol inhalation

and the baseline lung function of the subjects.
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Chapter 1

Introduction

1. Background

Deposition mechanisms and factors effecting deposition

The factors that effect the regional and total deposition of aerosols in the lungs

can be divided into three areas: physical, physiological and anatomical.

AJ Physical factors

The physical factors that govern the behaviour of airborne particles were first

descnbed by physicists (Findeisen 1935; Landah11950; Fuchs 1964). The forces

that act on an airborne particle depend on its size. Small particles of a size in

the order of magnitude or less than the mean free path (0.1 J£m) of the gas

molecules in which trey are suspended, receive energy from collision with

individual molecules. The forces acting on the particle are therefore of a

diffusive nature. The motion is random because the particles are too small to be

significantly affected by gravitational forces. Deposition of these particles is

dependent on time and the distance they must travel to meet a surface, so

diffusional deposition occurs most readily in the smaller airways where residence

1



time is high (Landahl 1950) and diffusion distance is small.

Larger particles, greater than 0.5,um in diameter, are acted upon by two opposing

forces, gravity and the resistance of the air to relative motion, as described by

Stokes' Law, such that they reach a steady velocity when these two forces

balance:

So, a spherical particle will have a constant terminal settling velocity V,

V 0< D2 p/v

v = viscosity of the air

p = density of the particle

D = particle diameter

V is reached typically in 10-2 seconds (Fuchs 1964).

Therefore in air, with a constant v value, deposition occurs in relation to D2p.

The aerodynamic diameter (Da) of a spherical particle is described by v'(D2p)

(Fuchs 1964), so for a sphere of unit density, the geometric diameter is equal to

the aerodynamic diameter. The definition of Da is "the diameter of a unit density

sphere which would have the same terminal sedimentation velocity as the particle

in question". This makes the aerodynamic diameter a useful descriptor, since it

can be measured directly without knowing the density, geometric size or shape of
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the particles being sized.

Sedimentational deposition is therefore increased with terminal settling velocity

which in turn depends on the diameter and density of the particle. The distance

travelled increases with time, so prolonged residence time increases the

probability of sedimentational deposition.

As the aerosol stream is deflected during passage through the respiratory tract,

the inertia of an aerosol particle must be overcome before it can follow the

direction of flow. The inertia of a particle is the product of its mass and velocity,

so larger particles will tend to resist the change in direction of the aerosol stream

and deposit by impaction. The probability of impaction is related to the Stokes'

(Stk) number (Brain & Valberg 1979):

Stk = D2pv/18vR

v = average velocity

R = radius of tube

Impaction therefore occurs in regions where the aerosol stream changes direction,

such as bifurcations. It is also more likely for large particles with high velocity

and in small airways. Clearly, impaction (through Stk) is also dependent upon

the product D2p = (Da)2 for a sphere. However, impaction also increases with

3



increasing particle velocity.

Other mechanisms of deposition include electrostatic deposition. Particles or

droplets that carry a charge are able to induce a charge of the opposite sign on

the surface of the airway due to its conducting covering. The force of attraction

will therefore enhance deposition of the particle when it comes close to the

airway wall. These effects are difficult to measure (Brain & Valberg 1979) and

they have only been shown with highly charged particles (Brain & Valberg 1979;

Melandri et al, 1977).

Particles will always deposit as they come close enough to the surface of an

airway, this mechanism is termed interception, but the number will be small as

deposition will only occur within a particle diameters' width of the airway wall.

For fibres, however, interception becomes important as the fibre's long axis and

airway attains similar dimensions (Harris 1976).

In considering aqueous aerosol droplets, with a spherical shape and density often

close to unity, the major determinants of deposition are aerodynamic diameter

and velocity. The most important mechanisms of deposition may be classified as

time and velocity dependent. Time dependent mechanisms include diffusion and

sedimentation, where the average time taken to travel to the airway wall is finite.

Inertial impaction, however, is a velocity dependent mechanism, where for a given
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particle in air, its probability of impaction at a particular bifurcation is directly

related to its velocity.

BJ Physiological factors.

The physical behaviour of aerosol particles may be used to conceptually and

mathematically (Lippmann et ai, 1980) predict the effect of breathing pattern on

total and regional deposition. Deposition by diffusion predominates in the small

airways and alveoli and is enhanced by long residence times, so a long inspiratory

pause or breath-holding time will maximise deposition of particles small enough

to be affected by this mechanism « 0.5,um, Byron 1986). Larger particles are

effected by gravity, and settling time will be fast if the particles have a short

distance to travel. Inspiratory pause and breath-holding time will, therefore, also

increase sedimentational deposition in the small airways. Deposition in larger

airways is limited to sedimentation of larger droplets and inertial impaction. The

inspired airstream has a high velocity on entry into the trachea, but as the flow is

divided at airway bifurcations, the velocity falls. Inhalation velocity, or flow rate

will therefore be the most critical factor in deposition by inertial impaction

(Newman 1984). Particles escaping impaction in the more proximal airways WIll

then sediment as the velocity declines.

For a particular inspiratory flow rate tidal volume will control the time of

respiration. Deep, slow breathing will therefore increase residence time and
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peripheral deposition will be enhanced.

CJ Anatomical factors

Deposition depends on lung morphometry (Yu et ai, 1979) and changes brought

about to the dimensions of the airways whether structural (eg. airway damage) or

non structural (secretions), permanent (such as fibrosis) or temporary

(bronchoconstriction).

The anatomical factors influencing deposition include the airway branching

angles, radii of specific airway generations, and length and volume dimensions of

regions and airways (Yu et ai, 1979). Landahl (1963) has developed expressions

for the probability of deposition by diffusion, sedimentation and impaction which

depend on these anatomical factors. Mathematical predictions of regional

deposition probabilities will therefore require a model of the lungs, the one most

often used is that quoted by Weibel (1963).

Alterations to the dimensions of the respiratory tract are present in many disease

states, and since therapeutic and diagnostic aerosols are delivered under these

circumstances, much work has been undertaken to evaluate the effects of disease

on regional and total deposition (Goldberg and Lourenco 1973; Dolovich et ai,

1976) and on the therapeutic effects of the aerosols.
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The diameter of an airway is an important determinant of deposition probability,

as it affects impaction, sedimentation and diffusion. Many diseases of the lungs

reduce airway diameter by a number of mechanisms such as bronchoconstriction,

oedema and excess mucus. Such dimensional changes within the lung will have

important influences on aerosol deposition. A number of studies have shown that

deposition in more proximal airways is enhanced by bronchoconstriction as

determined by FEY1 (Laube et al, 1986; Agnew et al, 1981; Pavia et ai, 1977).

There is some evidence that local obstructions cause enhanced inertial deposition

downstream of the blockage by increasing turbulence and linear airflow velocities

(Itoh et al, 1976). This may account for patchy hot spots seen in chronic

bronchitis patients (Hayes 1980; Greening et al, 1980) and may be a consequence

of local mucus plugs (Agnew 1984) or uneven airway narrowing. Radioaerosol

techniques have been shown to be sensitive to changes in airway dimensions in

smokers that lung function techniques such as spirometry are unable to detect

(Dolovich et ai, 1976), other studies have used different indices of deposition

pattern such as skew and kurtosis from analysis of aerosol deposition images

(Garrard et ai, 1981) or a distribution index (Agnew et al, 1982a), both of which

found good correlation between deposition pattern and non-radioaerosol indices

of small airways function.

Small alterations in airway dimensions can therefore dramatically effect the

deposition probabilities of aerosol particles by deposition mechanisms already
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described. Mathematical modelling of deposition in obstructed airways predicts

similar effects (Agnew 1982).

1.2. Hygroscopic Growth

A hygroscopic substance is one that tends to absorb moisture from an

unsaturated environment. A particle of such a substance, suspended in an

atmosphere of high humidity, will therefore attract water vapour and grow in size.

A sudden phase transition from dry particle to a solution droplet may occur when

the relative humidity exceeds that of the saturated solution of the solute

(deliquescence point). A droplet containing solutes is also hygroscopic because

the vapour pressure of the droplet is reduced by the presence of solutes

according to Raoults' Law for ideal solutions:

p = ~Po

~ = water activity as mole fraction

Po = saturation vappur pressure

The droplet will therefore continue to grow and the vapour pressure of the

droplet will increase as the concentration of solutes fall. The droplet no longer

grows in size when there is an equilibrium between the vapour pressure of the

droplet and its immediate surroundings. For a droplet suspended in air, this
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point will be when the water vapour pressures of the droplet and air are equal.

Small droplets «0.1 ,urn) suspended in air exhibit an enhanced vapour pressure

due to their high curvature. This effect was described by Kelvin (Kelvin 1870)

and expressed as the Kelvin equation (Findeisen 1935). Therefore, small droplets

of dilute solutions can have a vapour pressure exceeding that of larger droplets

and will preferentially evaporate. This effect can usually be neglected for most

clinically used aerosol with droplets greater than 2,um (Gonda et aI, 1982).

The majority of aerosol particles used clinically, and many environmental

pollutant aerosols, whether solids, liquids or solutions, are hygroscopic in nature.

This fact has lead to the consideration of the effects of hygroscopic growth on

deposition patterns in the lungs (Morrow 1986).

The majority of work undertaken has been in the theoretical prediction of

hygroscopic growth in the lungs with the aid of in vitro data on droplet growth

and mathematical models of heat and water transport to and from particles

travelling in the respiratory tract (Ferron 1977). This data has then been applied

to models of deposition probability in the lungs during inspiration to arrive at a

theoretical assessment of the effect of growth or shrinkage on regional mass

deposition. Evidence that hygroscopic growth of particles is an important

determinant of regional deposition comes from interrelated areas of study:
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Physical

1. The effect of ambient relative

humidity (RH) and temperature (T) on

the equilibrium size of the particles.

2. The rate of particle growth or

shrinkage.

3. The aerodynamic size of particle at

anyone time in relation to its position

in the respiratory tract.

Physiological

The RH and T profile within the

respiratory tract.

The residence time in each longitudinal

segment of the airways.

The deposition probability in each

longitudinal segment of the particles as

a function of size.

Growth and shrinkage ofparticles as a function of relative humidity and

temperature.

Evaporation and condensation growth theory originates from Fick, whose laws

can be applied to vapour diffusion from a droplet, and Maxwell (1890) who gave

expressions for heat transfer. The growth of NaCl particles with increasing RH

was shown by Covert and Frank (1980). NaCl shows a hysteresis effect, where no

growth occurs until an RH of 75% is reached. The equilibrium diameter then

starts to rise sharply as the RH approaches 100% (Figure 1).

10



Figure 1. The ratio of the equilibrium droplet size (D) to the initial droplet size

(Do) as a function of environmental humidity. (Adapted from Covert and Frank

1980).
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The effects of hygroscopic growth can therefore be seen to be highly dependent

on RH when close to saturation. Small miscalculations of RH in the large

airways will thus lead to poor predictions of deposition in these airways. The

temperature is an important component in calculations of hygroscopic growth

because of the relationship between particle (droplet) temperature on inhalation

and that of the respiratory tract. Since the transfer of water to or from a surface

involves heat, temperature and humidity need to be considered together.

RH and temperature profile of the respiratory tract

The warm, humid environment of the respiratory tract provides an ideal

environment for hygroscopic growth to take place. The meaningful prediction of

dynamic droplet growth or shrinkage, is reliant on a working knowledge of the

temperature and humidity profile of the respiratory tract Studies of the regional

temperature and relative humidity of the airways have been limited by

techniques. Early studies indicated that the expired air was completely saturated

with water, from which it was concluded that the alveolar air was similarly

saturated (Osborne +913), this was however contended, since the water covering

the respiratory surfaces is 'impure' (Burch 1945).

The RH of alveolar air can be calculated from the deep lung temperature

(Edwards et aI, 1963) and the saturated vapour pressure of the airway fluid,

assumed to be isoosmotic with blood plasma (Ferron 1977; Ferron and Hornick

12



1984). The RH of more proximal airways during inspiration and expiration has

proven difficult to measure. Ferron et al (1984) calculated RH profiles in the

lungs for nose breathing by solving equations for water vapour and heat transfer

simultaneously. They found that the RH reaches a maximum of 99.8% during

inhalation which occurs near the tracheal bifurcation, and then falls to 99.5%

over the next 10 generations. The fact that the diffusivity of water molecules is

approximately 10% greater than that of heat (Ferron et al, 1981) means that air

of high initial RH is likely to be supersaturated near the carina. This may be

important for the consideration of hygroscopic growth, because if the RH in the

trachea is high, growth will be rapid before reaching the carina. Another factor

that was found to be important in Ferron's study was the effect of the non

laminar airflow pattern that exists in the first few generations. He found that by

taking this into account, the thermal and vapour transport was increased by a

factor of 5 (Ferron et ai, 1981) and a closer approximation to experimental data

was found.

A commonly used profile assumes an RH of 90% at the mouth with a 1%

increase per generation to 99%, then 99.5% throughout the rest of the

respiratory tract (Martonen et al, 1985; Martonen and Clarke 1983). Growth is

then calculated in a stepwise manner in each airway generation (in some studies

it is assumed that they reach equilibrium before moving on to the next

generation).
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The rate ofparticle growth or shrinkage.

For growth or evaporation to alter regional deposition, it must at least partially

occur on a time scale similar to that of the respiratory cycle. The growth or

shrinkage rate in an atmosphere of constant temperature and humidity depends

on the particle size, concentration and solute composition. Growth rate curves

under these circumstances can be derived from laws governing the

physicochemical behaviour of the salt solution and heat and mass balance

(Mercer 1973; Crider et al, 1956; Pruppacher and Klett 1978; Wagner 1982).

Ferron gives condensation growth curves for various salts, assuming ideal solution

behaviour, as a function of the residence time in the lungs (Ferron 1977) with an

assumed constant temperature and RH of 37°C and 99.5% respectively. The

growth of sodium chloride particles starts abruptly and increase rapidly, slowing

towards equilibrium. With particles of other salts there is an initial delay, then a

rapid growth until there is again a slowing towards equilibrium, producing a

sigmoid shape (Figure 2).

Ferron showed that the time for shrinkage to equilibrium of droplets of low

sodium chloride solutions can be estimated by the stabilisation times of pure

water droplets. For a 4,u.m droplet, for example, this will be approximately 4

seconds at an RH of 99.5%.
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Figure 2. The ratio of the equilibrium droplet size (D) to the initial droplet size

(Do) as a function of time. (Adapted from Ferron 1988b).
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Ferron also considered initially dry NaCl particles growing in an atmosphere of

99.5% RH and found that a 1Jl.ffi particle of sodium chloride reached 4.1Jl.m in 2

seconds and after one second it has reached 80% of its equilibrium diameter

(Ferron et al, 1988b).

The RH and temperature, however, rises throughout the respiratory tract as

already discussed and since growth rate is exquisitely sensitive to RH, attempts

have been made to introduce this into theoretical growth curves. Martonen and

Clarke (1983) use an expression for the aerodynamic diameter of a particle at

each airway generation, calculated from the combination of growth and position

in the respiratory tract with time. However, they assume equilibrium is reached

in each generation. A changing humidity in the respiratory tract means that at

each segment (however defined - usually by generation number) the droplet

undergoes a different growth curve, related to the size and concentration on entry

and the particular RH and temperature of that segment. Martonen's assumption

that the droplets reach equilibrium at each generation before moving to the next

may be incorrect, and therefore probably overestimate the effects of growth.

The effects of hygroscopic growth and shrinkage on regional deposition.

Once derived, mathematical models of hygroscopic growth and aerosol deposition

may be applied to various aerosol inhalation conditions to predict the effects of

inhaling hygroscopic aerosols on total and regional deposition. The initial size

16



and composition of the inhaled particles are the most important factors that

determine the site of deposition. Ferron (1977) applied the effect of growth on

the Task Group on Lung Dynamics regional deposition model for non

hygroscopic aerosols and found that the total and regional particle deposition

fraction was increased for all sizes above O.5p;m, reflecting the greater deposition

probabilities as the droplet size increased during growth.

The altered deposition of hygroscopic aerosols is important in both environmental

aerosol toxicology and therapeutics because it relates to the changes in the local

burden of therapeutic, diagnostic or pollutant substances and responses of the

lungs.

More recently, Ferron (1984) has calculated the deposition as % of the inhaled

particle concentration of dry NaCl particles assuming a) no growth, b)

hygroscopic growth according to the RH profile described in a previous section

and c) assuming an RH of 99.5% upon inhalation. The greatest differences in

deposition were found for 1p;m particles having a 3 fold increase in both TB and

P deposition, while 5p;m particles had an increased TB deposition by a factor of

just more than 2 and decreased P by a factor just less than 2.

Breathing pattern also affects the magnitude of hygroscopic growth. (Ferron et

al, 1984) showed that reducing tidal volume reduces the effect of growth on
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deposition, especially in the pulmonary regions, because of shorter residence

times. Anselm et al (1986) measured the droplet size on expiration of initially

dry O.5llom NaCI particles. The aerosol bolus was inhaled to different lung depths

to assess the effect of residence time on growth. The droplets exhaled were up

to 2.61lom (5.5 times the initial particle size), indicating that growth had occurred.

The deeper the aerosol was inhaled (longer residence time) the greater the

growth factor.

Implications of droplet growth

The first studies on hygroscopic aerosols were concerned with atmospheric

particles (Milburn et ai, 1957; Fuchs 1959; Landahl 1963; Findeisen 1935) and

later with atmospheric pollutants such as phosphoric (Martonen and Clarke 1983)

and sulphuric acid droplets (Amdur et ai, 1952; Martonen et al, 1985). As

aerosol therapy became more popular, the models of hygroscopic growth were

applied to therapeutic aerosols (Byron et ai, 1977; Persons et ai, 1987).

The majority of studies of hygroscopic growth have been concerned with the

inhalation of dry solute particles. Medicinal aerosols are, however, often derived

from nebulisers and are delivered as droplets. On attainment of equilibrium size

deep within the lungs, droplets will approach a solute concentration giving the

same vapour pressure as the fluid lining the lungs, assumed to be isotonic with

plasma (RH = 99.5%). The inhalation of hypertonic solutions means that the
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growth factor may be no more than 2 or 3.

There is mathematical evidence that small hygroscopic particles of the

atmospheric type are capable of hygroscopic growth within the respiratory tract of

a sufficient degree to affect the total and regional deposition (Nair and Vohra

1975). The application to therapeutic nebulised aerosols has, however, not been

studied to a great extent.

The only comprehensive theoretical study of hygroscopic growth of nebulised

aqueous aerosols was made by Persons et al (1987a) who developed a model for

mouth inhalation of aqueous sodium chloride aerosols. The model was compared

with data derived from other theoretical predictions and experimental deposition

data. The model uses growth theory similar to Ferron (1977) and the results

compare favourably with his. Figure 3 is reproduced from Persons et al (1987b)

and shows the effect of hygroscopic growth and evaporation after inhaling saline

droplets with initial concentrations of 3.5% (hypertonic) and 0.45% (hypotonic)

saline. Medical aer~sols are usually in the range of 2-5 1Jm so for an initial

droplet size in this range the fractional deposition can be significantly altered

between tonicities of 3.5 and 0.45% saline (Figure 3).
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Figure 3. The fractional deposition of hypertonic (3.5 % NaG, unbroken lines)

and hypotonic (0.35 % NaG, broken lines) aerosols as a function of mass median

diameter (MMD). T = Total, T-B = Tracheobronchial and A = Alveolar

deposition. (Adapted from Persons et aI, 1987b).
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The majority of evidence of the occurrence and effects of hygroscopic growth is

theoretical and often, only single droplets within the respiratory tract are

considered. In fact, little experimental data exists, particularly on the effects of

droplet solute concentration on regional deposition of aqueous aerosols in vivo.

1.3. Nebulised aerosols in asthma diagnosis and therapy

The fact that nebulised non-isotonic aerosols are able to cause airway narrowing

in subjects with lung disease was first demonstrated by Abernathy (1968) which

was later followed up by Allegra et al (1974, 1975). In 1981, it was shown that

asthmatics but not normals were hypersensitive to non-isotonic aerosols, the

degree of airway narrowing being increased by greater departures of the nebuliser

solution from isotonicity (Schoeffel et aI, 1981).

Of the challenge agents now used to aid the diagnosis of asthma, non-isotonic

aerosols have the advantage that they cause mediator release, they therefore

simulate natural challenge agents such as allergens and exercise more closely than

pharmacological agents (Smith and Anderson 1986). They are becoming more

popular as a result. The hygroscopic nature of these aerosols, together with

evidence of the importance of the large airways as their site of action (Anderson

et aI, 1989) makes an understanding of the effects of tonicity on regional

deposition a necessity.
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1.4. Overall aims

The aims of this thesis are i) to determine the factors that govern the physical

characteristics of aqueous aerosol droplets generated by nebulisers for use in

therapy and diagnosis and ii) to study the effects of hygroscopic growth or

shrinkage of non-isotonic aerosols, and the airway narrowing they provoke in

asthmatic subjects, on regional deposition.

The work described in the first five chapters is concerned with the detailed

characterisation of jet and ultrasonically nebulised aerosols to gain a better

understanding of the specific factors involved in controlling the physical

dimensions and composition of aqueous aerosol droplets.

The use of nebulisers in therapy and diagnosis is widespread due to the ease with

which physiologically active agents may be administered to the lungs. In Chapters

2, 3 and 4 the beneficial and unwanted characteristics of aerosol droplets are

identified. Thus, by assessing the operation of nebuliser systems currently in use,

the medical community will be able to prescribe and administer therapeutic and

diagnostic agents to the lungs more effectively. The assessment of aerosol

delivery systems and the detailed consideration of the water and solute dynamics

occurring during aerosol nebulisation and inhalation are also performed in

Chapters 3 and 5.
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The comparison of medications or diagnostic tests that involve aerosol delivery to

the lungs requires a knowledge of the total and often regional deposition of the

aerosols in question. A number of techniques have therefore been developed to

measure delivery to the lungs. The most highly developed has been gamma

scintigraphic techniques that enable quantitation of the aerosol deposition by

non-invasive methods involving the use of radio-isotopes. The three dimensional

nature of the lungs limits the specificity of the two dimensional data obtained by

these methods. The aim in Chapter 7 was therefore to develop more sensitive

methods of determining regional deposition with the three dimensional imaging

now available. However, before aerosol inhalation imaging studies can be

performed, a suitable system for monitoring and controlling the breathing pattern

during aerosol inhalation must be found so that aerosols can be inhaled on more

than one occasion with the same breathing pattern (Chapter 6).

Ultrasonically nebulised non-isotonic aerosols have become popular as an aid in

the diagnosis of asthma (Smith and Anderson 1989), but the droplets generated

have the potential to change in size while passing through the respiratory tract

and alter the deposition pattern depending on their initial tonicity. The

bronchoconstriction they provoke may also alter the total delivery to certain

regions of the respiratory tract. These effects were, therefore, also studied with

the help of normal and asthmatic volunteers in Chapter 8.
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Chapter 2

A rapid method for the evaluation of diagnostic radioaerosol delivery systems.

21. Introduction

Radioaerosol ventilation agents such as those containing 99mTc_DTPA are

used for the assessment of regional ventilation and alveolar clearance. They

are produced and delivered to patients via radioaerosol delivery systems

(ADS) consisting of jet nebulisers and associated tubing. To be effective,

these systems must produce a uniform peripheral aerosol deposition while

minimising a) the radiation dose to the patient, b) the radiation exposure to

personnel administering the dose and c) the cost of the procedure. It is

therefore important to reduce as much as possible both the duration of

administration and the unusable portion of the radioactive aerosol, the latter

including that depositing in the delivery tubing, mouth, oropharynx and central

airways and that exhaled by the patient. Regional deposition of aerosols is

determined by their physical characteristics, such as size distribution and

droplet composition together with patient parameters, such as inhalation flow

rate and severity of lung disease; the variability of all these has complicated

previous clinical assessments of ADS (Hayes et al, 1979; Foulds and Smithuis

1983; Trajan et al, 1984; Alderson et al, 1984; Matthys and Kohler 1985;

Wollmer et ai, 1985).
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Nuclear medicine departments are responsible for the choice of ADS and the

quality control of radioaerosols. We therefore wished to define meaningful

parameters for the assessment of the quality of radioaerosols used for

ventilation studies, and to develop rapid experimental methods to measure

those parameters, using, as far as possible, equipment already available in a

typical nuclear medicine department (Borham et aI, 1986).

The droplet size distribution of ADS is known to depend on operating

parameters (Mercer et aI, 1965; Ferron et aI, 1976; Ryan et aI, 1981; Clay et

aI, 1983; Sterk et ai, 1984) and also on environmental conditions

(Porstendorfer et ai, 1977). In many ADS, ambient dilution air is inhaled

along with the aerosol. A potential therefore exists for the humidity of the

dilution air to affect the aerosol droplet size and this was also investigated.

2.2. Materials and Methods

Droplet size determination. Particle size distribution, expressed as the mass

median aerodynamic diameter (MMAD) and the geometric standard deviation

(ag) was measured using a seven stage cascade impactor (DC16, Delron,

Columbus, Ohio, USA). 99m_pertechnetate in normal saline was added to the

nebuliser solution to an approximate concentration of 100 MBq/mJ. The

aerosol was generated from the nebuliser using compressed oxygen. The

dilution air required to make up a fixed flow of 12.5 l/min through the

impactor was humidified or dried by bubbling through water or a saturated

solution of lithium chloride, respectively.
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After generation of the aerosol for approximately 60 s, the impactor slides,

precoated with silicone fluid (Dow Corning 200/60 000 cs, Midland, Michigan,

USA) were removed and simultaneously counted on a large field of view

gamma camera (GE 400AT, Milwaukee, Wisconsin, USA) fitted with a low

energy, all purpose, collimator. A 5 min image was recorded by an on line

computer (DEC PDPll, Maynard, MA, USA). Regions of interest were

drawn around the image of each slide and total counts within each were

recorded These values, corrected for background and expressed as a

percentage of the total count, together with the previous impactor calibration

results for particles and droplets (Gonda et ai, 1982) were analysed by a least

squares program to determine the MMAD and ag of the aerosol sample.

Dead time correction was not necessary at the count rate observed.

The method was validated by placing small volumes of 100 MBq/ml 99mTc_

pertechnetate onto seven coated impactor slides from a pipette (Phipps et aI,

1986). The activity in the pipette was measured by a dose calibrator

(Capintec Inc. New.Jersey, USA) before and after application. The slides

were counted for 5 mins on the gamma camera 5 times over a period of 48 h

and the results pooled to test for linearity. The activity values ranged from

14.91 to 0.00524 MBq per slide. The correlation equation produced was then

used to convert impactor slide counts into activity values. In the experimental

runs, the highest activity on anyone slide was approximately 6 MBq and 0.1%

of the lowest total activity was still greater than the lowest point on the

calibration.
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* Pictures of these nebulisers are shown in the addendum at the back of this

thesis.



Aerosol delivery system characterisation. Droplet size distribution

measurements as described above were carried out in triplicate on four

commercially available ADSfUitravent (Mallinckrodt Inc., StLouis, USA),

Venticis (Cis UK Ltd., North Finchley, London), Mistyneb (Airlife Inc.,

Montclair, California USA) and Cadema (Cadema Medical Products Inc.,

Middletown, N.Y., USA). Each system was set as for patient use with the

mouthpiece of the delivery tubing connected to the impactor. The aerosol

was generated by compressed oxygen at the manufacturer's recommended

flow rate (10 1/min in each case) and supplemented with humid dilution air.

The results from the droplet size analysis were used to calculate both the mass

fraction of droplets in the respirable size range and the total activity caught in

the impactor per min. The respirable size range was taken to be the

cumulative activity below stage three of the cascade impactor [50% cutoff

diameter = 3.3,um (Gonda et ai, 1982)]. All results were corrected for decay

and to an original nebuliser concentration of 100 MBq/ml.

The effective delivery (ED) of each ADS was calculated as the amount of

activity leaving the mouth piece in MBq/min contained in droplets in the

respirable size range. The wasted delivery (WO) was defined as the amount

of activity leaving the mouthpiece outside the respirable range, i.e., the

amount of activity in droplets depositing on or above stage three of the

impactor. The results were expressed as the mean ± standard deviation of

three determinations.
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Effect of dilution air humidity on the droplet size distribution of the Cadema

ADS. The droplet size distribution was measured on the Cadema ADS as

described above, with dilution air comprising 4.5 l/min and aerosol 8.0 l/min of

the 12.5 l/min total flow through the impactor. Several determinations were

carried out on three nebulisers using humid and dry dilution air. The MMAD

and og values for dry and humid dilution air were then compared with the use

of a Mann-Whitney U test and the standard deviations with an F-test.

2.3. Results

The pooled data from the gamma camera calibration was used to plot counts

(Y in units of cpm) against activity (X in MBq). The equation of the

regression line produced was

Y = 9492(± 1.8%) X + 91.4(± 747%) (1)

where standard deviation in % is given in parentheses, n=35 (pooled results

of 7 slides at 5 times) and ~ = 0.9997.

The regression equation (1) shows that a 25 % error is found at a count rate

of 4 x 103 cpm. From experience, it was noted that up to 10% of the

total cpm could vary by as much as 25% without changing the calculated

values of MMAD and ag to one decimal place. Therefore a total cpm of over

4 x 104 is required for suitable precision of the method.
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Values of activity were calculated from impactor slide counts (A in units of

cpm) using Eq. (1), to give the ED and WD values shown in Table 1 from:

ED =(AfTg) x F

and

WD = (AfTg) x (I-F)

where

Tg = generation time (min).

F = Fraction depositing below stage three.

(2)

(3)

The effect of dilution air humidity on the MMAD of droplets produced by the

three Cadema ADS is shown in Table 2. The mean MMAD of the pooled

results for humid dilution air is 2.55 ± 0.1 p.m (SD) where n = 22, indicating a

low inter- and intra-nebuliser variability. Dry dilution air reduces the pooled

mean MMAD by 22% (p<O.01) and increases the variability [mean = 1.99 ±

0.32 p.m (SD), n = 17]. The standard deviations of the dry dilution air

MMAD and ag results were both significantly greater (P<O.Ol) than those of

humid dilution air.

2.4. Discussion

The effect of droplet size on the regional deposition of aerosols in the human

respiratory tract has now been well documented by both in vivo determination

and mathematical models (see reviews, eg., Ferron et aI, 1985; StahIhofen

1984).

29



-

Table 1. ED, WD and aerosol characteristics of four ADS.

_0 09 (F x 100) Mean Mean

(pm) %below EO" WO"

Stage 3 MBq/min MBq/min

Ultravent 1.1 1.7 99.2 6.44 0.05

(0.1) (0.1) (0.3) (0.46) (0.02)

Venticisb•c 1.0 1.8 99.8 8.06 0.02

(0.1) (0.1) (0.1) (0.86) (0.01)

Mi styneb 3.7 1.5 42.3 11.3 15.4

(0.1) (0.1) (0.8) (0.2) (0.5)

Cadema 2.3 1.4 92.0 14.0 1.24

(0.1) (0.1) (3.1) (0.8) (0.61)

Values expressed as mean of three results (standard deviation)

4Corrected for decay and activity concentration in the nebuliser to 100 MBq/ml

bThe venticis aerosol delivery system includes a settling bag which fills during patient use

but not during particle size determination due to the continuous negative pressure supplied to

the system

cThe first run on the venticis used some of the output to soak the ball bearing filled fiLter

system

MMAD

ag

RH

Mass median aerodynamic diameter

Geometric standard deviation

Relative humidity
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Particles of mass median aerodynamic diameter between 3 and 1 p,ID, at

resting inhalation flow rates, are of the optimum size for pulmonary

deposition. Larger particles tend to deposit in the central airways or mouth,

while particles in the region of 0.5 p,m are exhaled. A better estimation of the

effective aerosol delivery may therefore be obtained by excluding those

droplets likely to be exhaled. We chose to disregard the exhaled portion of

the aerosol in defining our respirable range but droplets of around 0.5p,m may

be easily excluded from the results. As the droplet size decreases below

0.5p,m, the alveolar deposition increases, starting from a minimum around

10% (Ferron et al, 1985). However, the fraction of radioactivity carried by

such small droplets is low in ADS used clinically at present, as shown by our

results.

Marked differences in the performance of different ADS are shown in Table

1. The Venticis and Ultravent produce droplets all within the respirable size

range but their output is low, requiring either a high nebuliser activity

concentration or a long inhalation time. The Venticis incorporates a settling

bag as part of the delivery tubing which failed to fill during the droplet size

analysis, due to the constant negative pressure applied. If some of the larger

droplets settle in this bag the MMAD will decrease (possibly increasing the

proportion exhaled). The output will also decrease as a result, but this may

be offset by the storage capacity of the bag during exhalation. The Mistyneb

nebuliser has a high output of droplets in the respirable range but it produces

an even larger portion that will deposit outside the pulmonary region. The
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Cadema nebuliser, however, has optimum operating characteristics with a high

delivery rate and little waste of aerosol.

The aerosol samples for the droplet size measurements were taken at the

mouthpiece of the delivery system which did not take into account the amount

of aerosol depositing in any unshielded tubing, an important hazard

consideration. The amount of aerosol caught in the tubing would depend on

droplet size, flow rate and tubing geometry so ADS with high WD values and

tortuous tubing are more likely to deposit aerosol before the mouthpiece.

The droplet size distribution and output from a nebuliser may change

markedly with generation flow rate (Mercer 1973; Ryan et aI, 1981; Clay et al,

1983) and this will in turn lead to different D and WD values. It may thus be

possible to modify the effectiveness of an ADS by changing its operating flow

rate.

Table 2 shows the results of changing the dilution air humidity passing through

the Cadema ADS. Dilution air mixes with the aerosol at the exit from the

nebuliser in all of the systems tested. Dry dilution air caused the droplets to

evaporate and probably concentrate, and in so doing the droplet size was

reduced by 22% and became more variable. During inhalation of diagnostic

radioaerosols, patients require dilution air to supplement the 8 or 10 1/min

flowing through the nebuliser with a flow rate often far in excess of the

aerosol flow.
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Table 2. Effect of ambient dilution air humidity on MMAD and 09 of droplets produced by the

Cadema ADS.

Nebu- Humid dilution air Dry dilution air

liser 88-100%RH 12 - 17 % RH

No.

No of JotIAl) 09 No of _D 09

repeats (pm) repeats ()1m)

1 5 2.64 1.40 5 2.41 1.37

(0.04) (D.04) (0.08) (0.03)

2 8 2.51 1.36 8 1.77 1.62

(0.07) (0.04) (0.15) (0.11)

3 9 2.53 1.34 4 1.90 1.55

(0.13) (0.02) (0.25) (0.12)

I
L Values expressed as mean (standard deviation)

MMAD = Mass median aerodynamic diameter

ag - Geometric standard deviation

ED = Effective delivery

lID = Wasted delivery

F ~ Fraction depositing below stage 3 (cut-off diameter 3.3~)
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The humidity of this dilution air, and the proportion of it, will effect the

droplet size and the variability of the aerosol leaving the mouthpiece to a

greater extent than in the reported experiments, and this may have some

effect on the droplet deposition. A theoretical explanation and the practical

implications of the greater sensitivity of the droplet size and ag to fluctuations

of water content at a low relative humidity, is the subject of another paper.

However, it is possible that the variability of the results of penetration of

aerosols in the diagnosis of chronic obstructive pulmonary disease (Ruffin et

aI, 1981) could have been due, not to clinical variability, but to variable

aerosol delivery. The pooled ag values and their variability are also increased

with dry dilution air (P<O.01) and this too, may have an effect on the

deposition of the aerosols (Gonda 1981).

The breathing pattern is also important in relation to the general deposition of

the droplets. A high inspiratory flow rate will cause greater deposition of the

larger droplets outside the pulmonary region by impaction, while a low flow

rate will increase the pulmonary deposition of those same droplets (Agnew et

al, 1985). Therefore, the respirable size ranges and hence the values of ED

and WD will change with inhalation flow rate, which could be readily

accommodated in new definitions of ED and WD.

Lung disease may effect the ED values by a number of mechanisms.

Increased inhalation flow rate, bronchoconstriction and excessive mucus

secretions may all lead to reduced pulmonary deposition of aerosol (Taplin et
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aI, 1977) making fine droplets preferable for imaging the alveoli.

The continuous output of the nebulisers makes it possible to estimate the total

dose inhaled by the patient as half the sum of ED and WD values if

expiration and inhalation times are assumed to be equal and exhaled dose

ignored (with the exception of the Venticis which stores aerosol in a settling

bag during expiration).

Conclusions

These results show that it is possible to characterise and compare ADS by a

simple, quick in vitro method using readily available equipment as an aid to

the evaluation of aerosol delivery systems.

The droplet sizing technique was found to be suitable precise provided the

total impactor slide counts were greater than 4 x 104 cpm. The system was

linear over the range 102 - 104 cpm per slide.

Environmental conditions such as ambient air humidity may have an effect on

the droplet size distnbution produced by some ADS.
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Chapter 3

Droplets produced by medical nebulisers: some factors affecting their size and

solute concentration.

3.1. Introduction

Although there is increasing evidence that metered dose inhalers alone, or

with spacers, are at least as effective as nebulisers in the prophylaxis and acute

treatment of asthma (Newhouse and Dolovich 1987; Jenkins et ai, 1987;

Turner at ai, 1987), the latter continue to be used in both hospital and home

treatment. The administration of antibiotics as aerosols generated by

nebulisers is also becoming increasingly popular in patients with cystic fibrosis

(Hodson et ai, 1981; Newman et ai, 1987). With the advent of AIDS, there

has been much recent effort in testing nebulised pentamidine for the

treatment of Pneumocystis carinii (Montgomery et ai, 1987; Montgomery

1988). Other medications administered as nebulised aerosols include local

anaesthetics (Kirkpatrick et al, 1987), adrenalin for the treatment of croup

(Remington and Meakin 1986), vaccines (Sabine et ai, 1984) and mucolytics

(Wanner and Rao 1980).

Nebulised aerosols are also used extensively in diagnosis. The diagnosis of

asthma and assessment of its severity is aided by challenge testing with inhaled
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aqueous aerosols containing pharmacological agents such as histamine and

methacholine (Hargreave et ai, 1981), or non-isotonic aerosols (Anderson et

ai, 1983). This mode of administration has also proven useful in ventilation

imaging as an aid in the diagnosis of pulmonary embolism (Alderson et al,

1984). In fact, it is the ease with which solutions or suspensions of therapeutic

and diagnostic agents can be nebulised which makes the use of this type of

aerosol so widespread.

The importance of the characterisation of nebuliser systems for clinical

applications has been recognised by a number of authors (Newman et al,

1986; Newman et al, 1987; Phipps et al, 1987 [Chapter 2]; Matthys and Kohler

1985). The clinical efficacy of nebulised aerosol treatment depends primarily

on the amount of active substance depositing at various sites in the respiratory

tract, which in tum is dependent on the droplet size (Stahlhofen et ai, 1983;

Ferron et ai, 1981) and output from the nebuliser as well as patient

parameters such as inspiratory flow rate, respiratory tract morphology and

disease state of the Jungs (I1owite et al, 1987). The wide variation in

performance of nebuliser delivery systems (Newman et ai, 1988; Newman et

al, 1985; Sterk et ai, 1984; Dahlback et al, 1986), and the lack of information

provided by the manufacturers makes it likely that a failure in therapy may

often be explained by poor aerosol delivery rather than a poor response to the

drug therapy. An important determinant of droplet size distribution is the

pressure-flow relationship of the nebuliser and the capacity of the supply of

compressed air to drive the aerosol generator adequately (Newman et ai,
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1988; Davis 1978; Mercer et al, 1968).

It is well known that the nebuliser solution cools and concentrates during

nebulisation (Davis 1978; Mercer et ai, 1968), and it has been reported that

the humidity of the air inhaled along with the aerosol effects droplet

characteristics (Phipps et ai, 1987 [Chapter 2]; Porstendorfer et ai, 1977). We

wished to look directly at the effects of nebuliser cooling and dilution air

humidity on a) the size and b) the concentration of solutes, in the aerosol

droplets generated by a number of different medical nebuliser systems.

3.2. Methods.

Nebuliser systems tested

The following products were assessed:

a) Cadema nebuliser (Cadema Medical Products Inc., Middletown, NY, USA)

with compressed oxygen at 8 l/min.

b) Up-Draft nebuliser (Hudson Up-Draft Oxygen Therapy Sales Co.,

Temecula, CA, US~) with compressed oxygen at 8 l/min.

c) Up-Draft nebuliser with Flatus Mk.V air compressor (Maymed, Anaesthetic

Supplies Pty. Ltd., Sydney, Australia. This system is equivalent to: Tote-A

Neb, Hospitak Inc., Lindenhurst, NY., USA [private communication, Mefar

SRL, Italy]).

d) Up-Draft nebuliser with Aerosol-One air compressor (Medical Industries

America, Desmoines, Iowa, USA).

e) Mist-Oy-Gen ultrasonic nebuliser (Model EN143A, Timeter, Penn., USA).
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Flow/Pressure curves

The flow/pressure characteristics of the Aerosol-One and the Flatus air

compressors were measured by directing the air flow through a rotameter

(Platon Ltd., Basingstoke, Rants, UK) via a mercury manometer. The

resistance to flow was produced by a needle valve on the flow meter and the

resulting pressure recorded in mm of mercury. The flow rate through an Up

Draft nebuliser was also measured.

Temperature/time curves

The change in temperature of each system was measured with an oesophageal

thermistor probe (YSI series 400, temperature recorder Model 46TUC,

Yellow Springs Instruments Co. Inc., Yellow Springs, Ohio USA) placed in

the nebuliser solution, and the temperature recorded at set times during

aerosol generation until the temperature had reached a steady value (Ts).

The initial volume of solution in the nebuliser was 5ml (jet nebulisers) or

200ml (ultrasonic nebuliser). The ambient temperatures varied between 23

and 24°C.

Concentration measurement

Jet nebulisers: The concentration of sodium chloride in the aerosol droplets

was measured for different, constant, nebuliser solution temperatures. The

lowest temperature used for each nebuliser was the value reached after

running the nebuliser without heating to a steady temperature Ts' determined

as described above. The nebuliser bowl, containing 5 ml normal saline, was
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cooled to a nominated temperature by immersion in a cold water bath. The

aerosol was then generated and the nebuliser solution temperature kept at the

nominated value by immersion in a warm water bath. The temperature of the

nebuliser solution was monitored with the miniature oesophageal thermistor

probe. The temperature was controlled to ± 0.3 degrees during a generation

time of 10 to 25 minutes and generated volume of 1 to 3 ml. The aerosol was

passed via a short length of tubing (30 em) through the last two stages of a

cascade impactor (DCI6, Delron, Columbus, Ohio, USA) and collected in a

small container of similar dimensions to a cascade impactor slide. The flow

through the impactor stages was 12.5 1/min and the dilution air necessary to

supplement the flow through the nebuliser was supplied either at ambient

temperature (23 - 24°C) and humidity (65 - 75%) or fully humidified at

ambient temperature via a Douglas bag.

After collection of the aerosol droplets, the containers were re-weighed and

droplets diluted with normal saline if their volume was insufficient for the

determination of their solute concentration. The concentration of sodium

chloride was then measured by vapour pressure osmometry (Model 1100,

Knauer, Bad Homberg, W. Germany).

Ultrasonic nebuliser: The solute concentration of the aerosol droplets

generated by the Mist-Oj-Gen nebuliser was measured by the above methods,

except that aerosol droplets were collected in 30 second samples at set times

during continuous nebulisation.
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Determination of Output

The output of nebuliser solution from the jet nebuliser systems was measured

by weighing after generation for different periods off time.

The output of solution from the ultrasonic nebuliser was measured by

weighing the nebuliser continuously during generation. The output from the

mouthpiece with a two-way valve (model 2700, Hans Rudolf Inc., Kansas,

Mis., USA) in line, was also tested at various flow rates.

Droplet sizing

The droplet size of the jet nebulisers at various operating solution

temperatures was measured in separate experiments. The nebuliser was

cooled to a set temperature and aerosol generated as in the concentration

measurements for 2 minutes. The nebuliser solution contained approximately

100 MBq/ml of 99mTc04- in normal saline. The aerosol was passed through

the 7-stage cascade impactor and the coated glass impactor slides containing

the deposited radioaerosol were counted on a previously calibrated gamma

camera (Phipps et ai, 1987 [Chapter 2]) and the droplet size distnbution

calculated by a least squares fit to the data (Gonda et ai, 1982).

The size of the droplets produced by the ultrasonic nebuliser was measured

with and without the two-way valve in line, using the same methods as above.

To test the effect of nebuliser temperature on the size of the primary droplets
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produced by the Cadema and Hudson nebulisers, droplet sizing was carried

out in a cold room at 7.5 °C with humid dilution air equilibrated at the same

temperature.

3.3. Results

Flow / pressure curves

The flow pressure curves for the Flatus and the Aerosol-One compressors can

be seen in Figure 1. The Aerosol-One was a weaker pump and the flow rate

produced was lower than that of the Flatus at the same pressure. The Flatus

produced a flow rate of 6.3 and the Aerosol-One 5.0 1/min through the Up

Draft nebuliser,

Temperature/time curves

The fall in temperature with time of nebulisation for each of the

nebuliser/generator systems is shown in Figure 2. For the jet nebulisers, the

temperature falls to a steady value Ts which is 5-6 °C below the ambient

temperature at the lower flow rates of the air compressors, and 11-15 °C at 8

1/min flow rate from a gas cylinder. Most of this temperature change occurs in

the first four minutes of aerosol generation.

By contrast, the ultrasonic nebuliser increases in temperature by

approximately lSOC during the first 20 minutes of generation (Figure 3). The

temperature change occurs over a longer time scale than in the jet nebulisers,

the majority occurring within 15 mins.
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Figure 1. Graph of flow vs pressure for the Aerosol-One (squares) and Flatus

(diamonds) air compressors.
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Figure 2. Graph of nebuliser solution temperature below ambient (23-24 DC)

vs time of generation for the four jet nebuliser systems: Up-Draft/Aerosol-One

(squares), Up-Draft/Flatus (diamonds), Cadema/compressed oxygen (circles)

and Up-Draft/compressed oxygen (triangles).
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Figure 3. Graph of nebuliser solution temperature vs generation time for the

Mist-Oj-Gen ultrasonic nebuliser.
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Output

The total output of the jet nebuliser systems are plotted against generation

time in Figure 4. The total output fell during nebulisation for all of the jet

nebuliser systems tested. The magnitude of the fall was similar for both the

Cadema and Up-Draft with reductions in total output of approximately 45-65

mg/min for temperature falls of 11-15 DC (over 6 minutes of generation).

The reduction in output with generation time for the two air compressor

driven systems was lower; approximately 15 and 27 mg/min for the Aerosol

One and the Flatus respectively, after a temperature fall of 5-7 DC during 6

minutes of generation.

The ultrasonic nebuliser solution output is very much larger than that of the

jet nebulisers. The output vs time graph is shown in Figure 5. The output

without tubing or valve was found to be approximately constant at 4.8 ml/min

over the time period tested. The output through the two-way valve was found

to be much reduced, and was dependent on the flow rate of the aerosol

through it (Figures 5 and 6). The output was found to be greatest at a flow

rate of 20 1/min above and below this value, the mass output fell (Figure 6).

Concentration of solution in the droplets

The change in concentration of solution in the nebulised aerosol droplets can

be seen for each nebuliser system in Figure 7.
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Figure 4. Graph of nebuliser output vs generation time for the four jet-

nebuliser systems: Up-Draft/Aerosol-One (squares), Up-Draft/F1atus

(diamonds), Cadema/compressed oxygen (circles) and Up-Draft/compressed

oxygen (triangles).
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Figure 5. Graph of output vs generation time for the Mist-Oj-Gen ultrasonic

nebuliser: no tubing or valve (circles), Bennett tubing and valve (model 2700,

Hans Rudolf Inc., Kansas, Mis., USA) attached; 10 1/min flow rate (triangles),

20 1/min (squares), 30 1/min (diamonds) and 50 1/min (crosses).
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Figure 6. Graph of output vs flow rate for the Mist-Oj-Gen ultrasonic

nebuliser, Bennett tubing and valve in place.
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Figure 7. Graph of droplet solute concentration (% w/v) vs nebuliser solution

temperature for the four jet-nebuiiser systems: Up-Draft/Aerosol-One

(squares), Up-Draft/Flatus (diamonds), Cadema/compressed oxygen (circles)

and Up-Draft/compressed oxygen (triangles). Note that the ambient

temperature is the highest value on each graph.
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The solute concentration contained in the aerosol produced by the jet

nebulisers increases significantly with fall in nebuliser temperature and with

reduction in the dilution air humidity. At the steady temperature Ts the

droplet solution reaches 5.8 and 9.2 % NaCl for the Cadema and Up-Draft

nebulisers respectively, using 8 l/min of compressed oxygen as the generation

gas. The Flatus/Up-Draft system reaches a little less than 5% and the

Aerosol-One/Up-Draft reaches approximately 36% saline after the same

generation time.

The effect of dilution air humidity alone on the droplet solute concentration

with the nebuliser at room temperature for each jet nebuliser system can be

seen in Table 1. The droplet solute concentration reaches 1.1 - 1.5% with

saturated dilution air at ambient temperature. Ambient dilution air with

relative humidity of 65-75% at ambient temperature increased the droplet

solute concentration to 1.86 and 2.46% for the Up-Draft and Cadema

respectively, generated with compressed oxygen. The effect with the air

compressors was greater with the Up-Draft, the Flatus compressor producing

a concentration of 3.45% and the Aerosol-One 13.5%.

The droplet solution concentration generated from the ultrasonic nebuliser

changes very little with time. The maximum effect is seen at the start of

generation (0.93 % saline from 0.9 % initial value) and as nebulisation

progresses, the concentration returns toward isotonic, reaching it after

approximately 13 minutes.
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Table 1. Effect of dilution air humidity on droplet solute concentration at

ambient temperature.

droplet solute

concentration (% w/v Saline)

Nebuliser/Generator

System

Up-Draft/Aerosol-One

Up-Draft/Flatus

Up-Draft/Compressed 02

Cadema/Compressed 02

100% RH

1.5 ± 0.3

1.1 ± 0.1

1.3 ± 0.2

1.5 ± 0.2

65-75% RH

13.5 ± 1.8

3.5 ± 0.6

1.9 ± 0.3

2.5 ± 0.2

#Results expressed as mean ± range (number of determinations = 2 or 3).
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Droplet sizing

The droplet size distributions of the jet-nebuliser systems fall with reduced

dilution air humidity and with falling in temperature in the nebuliser, in

parallel with the increase in solute concentration in the aerosol droplets.

Figure 8 shows the effect of nebuliser temperature on aerosol droplet size.

The effect of temperature change is greater when compressed oxygen is used

at 8 1/min, the droplet size falling by 33 and 36% of the size at ambient

temperature for the Cadema and Up-Draft respectively. With Flatus and

Aerosol-One generation, the size change is smaller (19 and 11% fall from

ambient temperature value respectively). Conversely, the effect of dilution air

humidity at ambient temperature is greater with the air compressor generation

than with the compressed oxygen (Table 2). The changes that would be seen

in practice with unheated nebulisers are shown in Table 3.

The droplet size measured in a cold environment was found to be the same as

that measured at room temperature (MMAD = 4.0 and ag = 1.4 on both

occasions).

The ultrasonic nebuliser droplet size changes when a two-way valve is included

in-line but is not affected by changes in relative humidity of the dilution air

(Table 4).
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Figure 8. Graph of droplet size (p.m, mass median aerodynamic diameter) vs

nebuliser solution temperature for the four jet nebuliser systems: Up-

Draft/Aerosol-One (squares), Up-Draft/F1atus (diamonds),

Cadema/compressed oxygen (circles) and Up-Draft/compressed oxygen

(triangles). Note that ambient temperature is the highest value on each graph.
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Table 2. Effect of dilution air humidity on droplet size at ambient
temperature.

nebuliser/generator
system

mass median aerodynamic diameter in p.m#
(geometric standard deviation*)

Up-Draft/Aerosol-One

Up-Draft/Flatus

Up-Draft/Compressed 02

Cadema/Compressed 02

100% RH

4.2 ± 0.3 (1.5)

4.1 ± 0.2 (1.6)

4.2 ± 0.1 (1.4)

2.7 ± 0.1 (1.4)

65-75% RH

2.7 ± 0.3 (1.5)

3.1 ± 0.3 (1.6)

3.9 ± 0.2 (1.5)

2.4 ± 0.2 (1.4)

#Results expressed as mean ± range (number of determinations = 2 or 3).

*Geometric standard deviation values all ± 0.1.

55



Table 3. Change of concentration and droplet size between ambient and
steady state temperature, Ts (65 - 75% relative humidity dilution air).

droplet size droplet Conc

nebuliser/generator
system % fall % rise

Up-Draft/Aerosol-One 11.1 170

Up-DraftlFlatus 5.2 39.1

Up-Draft/Compressed 02 35.9 392

Cadema/Compressed 02 2.4 244

Calculated as:

IX(Ta) - X(Ts) I

X(Ta)

where:

x 100

x = droplet size qr droplet solution concentration at ambient temperature
Ta or

steady state temperature Ts (lowest steady temperature reached by
each system).
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Table 4. Size of droplets generated by the Mist-Oj-Gen ultrasonic nebuliser.

AmbTemp Dilution air Mouthpiece mass median geometric
°C relative and valve aerodynamic standard

humidity % Yes or No diameter (p.m) deviation

19.5 ± 0.3 99.0 ± 1 Y 3.6 ± 0.1 1.1 ± 0.1

19.0 ± 0.3 53.1 ± 1 Y 3.5 ± 0.2 1.1 ± 0.1

19.0 ± 0.3 53.5 ± 1 N 5.7 ± 0.1 1.4 ± 0.1

Results expressed as mean ± range (number of determinations = 2 or 3)
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3.4. Discussion

The nebuliser systems chosen are representatives of those used in diagnosis

and therapy. The Cadema is used for ventilation imaging in the diagnosis of

pulmonary embolism and the Mist-Oj-Gen in non-isotonic challenge testing in

asthma diagnosis (Anderson et aI, 1983). The Up-Draft nebuliser is used for

drug delivery in a number of lung diseases using compressed gas, or

domiciliary nebulisation with portable air compressors such as the Flatus and

Aerosol-One.

The performance of air compressors can be assessed and compared with the

aid of Flow/pressure curves (Newman et aI, 1988; Newman et al, 1986). In

general, it is known that the greater the flow rate, the smaller the droplet size

(Clay et aI, 1983), so the compressor that is able to generate higher flow at

high back pressures (Flatus compressor compared to the Aerosol-One) will

produce an aerosol with a greater proportion capable of reaching the lungs.

The fact that the nebuliser solution temperature of jet nebulisers falls during

generation is well documented (Mercer 1981). The heat loss is due to the

evaporation of the nebuliser solution to saturate the gas used to generate the

aerosol and some cooling due to adiabatic expansion of the generating gas

(Davis 1978; Mercer 1981). This evaporation also leads to an increase in

solute concentration of the nebuliser solution (Mercer 1981). The gas from a

compressed gas cylinder contains no water vapour, while an air compressor

supplies air of ambient humidity. Less vapour is therefore required from the
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nebuliser solution to saturate the air from an air compressor and heat loss is

therefore reduced. Of the energy imparted to the solution of an ultrasonic

nebuliser, however, part is used to overcome the surface tension to disperse

solution droplets and part to heat the solution itself. The nebuliser solution

therefore warms during generation (Figure 3).

The initial output from the nebuliser depends on the type, the flow rate, and

the saturation of the generating gas. The change in jet nebuliser output

measured during generation depends almost solely on the temperature of the

nebuliser solution. The nebuliser solution provides both the solution output

and the output of vapour necessary to saturate the generation gas with water

vapour at the nebuliser temperature. Therefore, the amount of vapour

carried by the generation gas decreases as the temperature falls and the total

output is reduced as a result. The fall in output reflects the fall in

temperature within the nebuliser and thus levels off after 4-6 minutes.

As the temperature,of the ultrasonic nebuliser solution increases, the extra

water needed to saturate the air is likely to come from the dense aerosol

cloud within the nebuliser chamber. The output is therefore not likely to

change as the nebuliser temperature rises as suggested by the results (Figure

5). The two-way valve situated before the mouthpiece of the ultrasonic

nebuliser filters a high proportion of the larger droplets from the aerosol

stream. The effect is therefore to reduce the output and MMAD of the

droplets. This effect depends on the flow rate of the aerosol stream and
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hence the velocity of the droplets. There is an optimum flow rate, however,

due to opposing effects: at the lower flow rate, the droplets tend to settle into

the nebuliser solution or within the tubing and the output is reduced. At the

higher flow rates, the droplets are more likely to impact within the tubing and

on the valve. The optimum flow rate for this system was found to be

approximately 20 l/min (Figure 6).

Although it is known that the concentration of the solution in the jet nebuliser

bowl increases with generation due to the release of vapour in addition to the

liquid droplets (Davis 1978; Mercer et al, 1968), the changes in solution

concentration in the droplets measured in the experiments reported here, are

generally much greater. This is because the cold aerosol droplets generated

from the jet nebuliser solution will evaporate a substantial amount of water as

they rapidly warm up to room temperature. Therefore, the concentration of

solutes in the droplets increases to a value determined by the difference

between the ambient temperature and the temperature of the nebuliser

solution and to a lesser extent due to the gradual increase of the

concentration in the nebuliser.

The nebuliser solution equilibrates to a lower steady temperature Ts when the

dry gas from a compressed gas cylinder is used to generate the aerosol,

compared to the air compressors. The droplet solute concentration thus

increases to a greater extent (relative to the value at ambient temperature) as

a result (Table 3).
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The ambient air inhaled along with the aerosol that makes up the inspiratory

flow is likely to have a lower relative humidity than that corresponding to the

nebuliser solution, therefore it has the effect of drying the aerosol droplets as

it mixes before inhalation (Phipps et aI, 1987 [Chpater 2]). This concentrating

effect is quite marked, especially when the generation flow and the output of

solution from the nebuliser is low. The consequence of the low output is that

there is only a small volume of water present in the droplets to re-saturate the

aerosol stream (see results for Up-Draft/Flatus and especially the Up

Draft/Aerosol-One systems, Figure 7 and Table 1). The ambient relative

humidity was comparatively high during these experiments (65-75%), a lower

ambient RH such as that found in air-conditioned rooms would be expected to

greatly enhance these effects.

The ultrasonic nebuliser has a higher output and larger droplet size, so more

water is available for saturation of the dilution air and the concentration

change of the droplet solution is hence much smaller than that of the jet

nebulisers. The droplet concentration therefore starts off greater than isotonic

but as the tubing becomes saturated, this is able to supply the vapour

necessary to saturate the dilution air. Although the nebuliser solution

temperature is increasing, the droplets do not become hypotonic due to water

vapour condensing on them as the aerosol stream cools, rather the excess

vapour will condense on the walls of the conducting tubing (Mercer et aI,

1968).
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Schoeffel et al (1981) found that small amounts of hypertonic (3.6% NaQ)

aerosol caused bronchoconstriction in asthmatic subjects. Lewis and

Tattersfield (1980 and 1982) found that a number of asthmatics

bronchoconstricted after inhaling a jet nebulised aerosol of isotonic saline, but

not to an aerosol generated by a nebuliser heated to 37"C. This was explained

in terms of a reduction in airway cooling by the warm aerosol, but it may have

been due to a reduction in the concentrating effects that the nebuliser

temperature fall imparted on the droplets. The possibility that initially

isotonic, or even hypotonic, solutions may produce hypertonic aerosol droplets

should therefore be accounted for when delivering therapeutic aerosols to

patients with hyperreactive airways.

Bronchial challenge tests are most often performed using jet nebulisers, and

the possibility that the solutions being administered are hypertonic, even

though isotonic solutions are initially placed in the nebuliser bowl, may affect

the results and should be considered. The necessity for nebulisation to be

reproducible for bronchial challenge testing, has led to some careful

characterisation of nebulisers (Tsanakas et ai, 1987; Sterk et ai, 1983; Ryan et

ai, 1981); nebuliser temperature change may, however, add to the variability in

dose and site of delivery of challenge agents.

The size of the aerosol droplets falls with generation time in conjunction with

the increase in concentration. The magnitude of this is variable but it is likely

to affect the deposition pattern of aerosol within the lungs (Stahlhofen et ai,
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1983). This change in droplet size is not due to a direct effect of cooling of

the nebuliser, since there was no change in droplet size when the nebuliser

system and environment were kept at a low temperature of 7.5 "C, Large

differences in regional deposition as measured by 'Penetration Index' on

tomographic slices have been found in normal subjects inhaling mildly

polydisperse aerosols with mass median aerodynamic diameters of 2.6 and 5.5

p,m (Phipps et aI, 1989 [Chapter 7]). The smaller droplet size showed a much

higher relative deposition in the small airways and lung parenchyma. This

mayor may not be clinically desirable, but the change in droplet size

depending on the time since the start of generation and the humidity of

dilution air (for example, from an initial droplet size of 4.2,um with 100% RH

dilution air to 2.4 JLm after the equivalent of 4 minutes generation for the Up

Draft/Aerosol-One system) may be important in therapeutic, diagnostic or

experimental applications when reproducibility of aerosol deposition or clinical

response is important (Clay and Clarke 1987; Mitchell et aI, 1987). It is of

course, very likely that some subsequent adjustment of droplet size will take

place in the respiratory tract (Morrow 1986).

The Flatus compressor produces a droplet size similar to the Aerosol-One,

with the Up-Draft nebuliser, but with the higher flow rate of the Flatus, a

smaller droplet size may be expected. The discrepancy may be due to the fact

that the Aerosol-One droplets are evaporating to a greater extent than with

the Flatus at ambient temperature and saturated dilution air (1.5 and 1.14%

respectively, see Table 1). The lower output of the Aerosol-One/Up-Draft
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system is likely to be responsible for this.

The effect of the increase in temperature of the ultrasonic nebuliser solution

on the droplet solute concentration is small. Also, the effect of dilution air

humidity on the droplet size (and presumably the droplet solute

concentration) is small due to the much higher output from the Mist-Oy-Gen

nebuliser. The larger droplet size generated by the ultrasonic nebuliser means

that they are more easily deposited on the tubing and valves within the system.

Conclusions

The unsaturated dilution air and fall in temperature of jet-nebulisers with time

cause the initial aerosol droplets to reduce in size and increase their solute

concentration. These effects can be much greater than that caused by the

well-known increase in concentration of the solution in the nebuliser bowl

(Davis 1978; Mercer 1968). These phenomena may be critical in some

therapeutic, diagnostic and experimental applications of jet nebulised aqueous

aerosols and the effects are especially marked when the aerosol output is low.

The droplet solute concentrating effects are caused more by dilution air

humidity with the lower flow rate and output of the air compressors. The fall

in nebuliser solution temperature has a greater effect on the size of the

droplets and the concentration of solution within them when dry gas such as

that supplied from compressed oxygen cylinders.
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To reduce these effects, the generating gas and dilution air should be

saturated with water vapour at ambient temperature and the nebuliser

solution should be maintained at ambient temperature.

The higher output and droplet size occurring with the Mist-Oj-gen ultrasonic

nebuliser makes the droplet size and solute concentration less susceptible to

large changes during nebulisation. However, the presence of tortuous tubing,

valves and high inhalation flow rate will cause a large reduction in the output

available to the patient because the large droplets will deposit in the

apparatus.
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Chapter 4

The assessment of aerosol delivery systems used in the pentamidine treatment of

Pneumocystis carinii.

4.1. Introduction

Although nebulisers have been used to deliver bronchodilator and other drugs in

the treatment of asthma and bronchitis for some considerable length of time, it is

only relatively recently that anti-infective drugs have proven to be effective by

inhalation (Heley 1987; Newman et al, 1985; Montgomery et al, 1987; Clarke and

Newman 1984). Drug delivery by aerosol inhalation has obvious advantages in

that it enables a high local concentration and low systemic levels to be achieved,

thus overcoming many of the problems associated with systemic administration.

The main problem 'Yith inhaled anti-infective drugs lies in achieving a consistent

delivery to the areas of infection in high enough doses to be effective. Due to

the wide choice of aerosol delivery systems and compressors it is necessary to

understand the factors which determine the effective delivery of inhaled drugs to

be able to compare and choose the best system. There is no doubt that some

nebuliser systems are ineffective (Foulds and Smithuis 1983; Simonds et ai, 1989).
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Inadequate or inappropriate characterisation of the system is likely to lead to a

failure of therapy that may be interpreted as a failure in the drug treatment

rather than the system of delivery.

The delivery of pentamidine by inhalation in the treatment and prophylaxis of

Pneumocystis carinii has recently been reviewed (Corkery et al, 1988) and its use

is likely to increase as a means of reducing the systemic side effects of this drug

(Wharton et al, 1986). However, despite the continued popularity of drug

delivery to the respiratory tract via nebulisation, there has not been enough

detailed, specific and quantitative assessment of the physicochemical factors

affecting the dose and site of deposition.

The effect of deposition site is likely to be of particular importance for

pentamidine for two reasons: the infection is localised in the alveolar regions

(Hughes 1987) and deposition in the large airways is likely to cause local and

possibly systemic side effects (O'Doherty et aI, 1988). Therefore, it is sensible to

develop an in vitro test in order to predict the amount of drug which is likely to

deposit at desired and unwanted sites in a defined period of inhalation.

The aim of this report is to identify, in vitro, some of the important factors which

determine the delivery of pentamidine by inhalation in the therapy of P carinii

and to assess the characteristics of three systems used in inhalation therapy with
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two modes of generation; compressed oxygen and air compressor for home use.

4.2. Methods.

The nebuliser systems tested were:
~ : : I ~ . ~

RespirGard II (Marquest Medical Products Inc., Englewood, Co, USA), Aerotech

II (Cadema Medical Products Inc., Middletown, New York, USA) and Provent II

(Protech Services, Sydney, Australia). The former and latter systems incorporate

an in-line filter to remove large droplets.

The air compressor used in this study was the Vitalair (Allersearch, Sydney,

Australia). The pentamidine isethionate (May and Baker Ltd., Dagenham,

England and Lyphomed Inc. Rosemont, I1linois, USA) was made up as a 100

mg/ml solution in distilled water. The osmolarity of the pentamidine solution was

measured by vapour pressure osmometry (Model 1100, Knauer, Bad Homberg,

w. Germany).

The Vitalair compressor flow rate was assessed by passing the pump flow through

a rotameter (Platon Ltd., Basingstoke, Hants, England). The flow rate produced

by the pump through the Provent II nebuliser containing either 5 ml of normal

saline or 5 ml of the pentamidine solution was also measured.

The droplet size and total output of the RespirGard II and Provent II nebulisers

using the Vitalair pump were measured as described below.
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The total output and the output of pentamidine alone from the mouthpiece of

each aerosol delivery system was measured by operating each nebuliser unit for 5,

10 or 15 minutes at both 6 and 10 l/min and measuring the weight before and

after aerosol generation. The solution left in the nebuliser and tubing was then

thoroughly rinsed and the washings collected and accurately weighed (Model A

200 S, Sartorius, Goettingen, W. Germany). The washings were then further

diluted and the solution immediately assayed by ultra violet spectrophotometry

(DMS 70, Varian Associates Inc., Palo Alto, California, USA) at a wavelength of

262 nm (Clarke 1986). The concentration of pentamidine was then calculated

with reference to a previously determined standard curve of absorbance vs

concentration (Figure 1).

The efficiency of collecting pentamidine from the nebuliser system was assessed

by placing a known amount (approximately 6 ml) of an accurately prepared 100

mg/ml pentamidine solution in each of the three nebulisers. The solution was

recovered in the same way as before, by repeated washings. The washings were

diluted and the concentration measured by ultra violet spectrophotometry. The

recovery of pentamidine was found to be 99.2 ± 0.7%.

The output of sodium chloride was measured by including 2 MBq/rnl of 99mTc04

in 5 ml of isotonic saline, generating for 5, 10 or 15 minutes at 6 or 10 1/min,

weighing the nebuliser and collecting the remaining activity by repeated washings.
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Figure 1. Standard curve of absorbance at 262 DID vs pentamidine concentration.
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The concentration of 99mTc04- was measured by placing 2ml of the washings into

a scintillation detector (Model 802, Canberra Industries Inc., Connecticut, USA)

and obtaining counts per ml. This was compared with 2ml of the initial nebuliser

solution, having been diluted in the same manner. The linearity of the well

counter was assessed by counting 2 ml solutions containing known amounts of

99mTc04- (Figure 2; ? = 0.998).

The effectiveness of 99mTc04- solution collection from the nebuliser units was

assessed by including 20 MBq of 99mTechnetium pertechnetate (99mTc04-) in 5

ml of normal saline in each nebuliser unit, generating the aerosol for 10 minutes

and washing the nebuliser unit as before and collecting the washings. The

washings and the nebuliser unit were then placed on a collimated gamma camera

(Diagnost Torno Phillips, Hamburg, FDR) and counts collected for 5 minutes

(PDP-11, Digital Equipment Corp., Maynard, USA). The counts remaining in

the nebulisers after the washings were always less than 0.5% of the total.

Outputs of pentamidine were measured for each of the three nebuliser brands for

generation times of 5, 10 and 15 minutes. This was carried out at a compressed

oxygen flow rate of 10 IImin for all three nebuliser brands and at 6 IImin for the

RespirGard II and Provent II nebulisers. The saline output measurements were

carried out in triplicate to asses variability, and the pentamidine measurements in

duplicate.
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Figure 2. Standard curve of counts per second vs. radioactivity for the well

counter described in the text.
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A calibrated 7-stage cascade impactor (DCI6, Delron, Columbus, Ohio, USA)

was used to measure droplet size produced by the aerosol delivery systems

(Phipps et al, 1987 [Chapter 2]). The nebuliser solution was made up containing

100 MBq/ml of 99mTC04-' The aerosol was generated by either a Vitalair

compressor or oxygen from a compressed gas cylinder. The dilution air was at

ambient temperature (20 - 23 DC) and relative humidity (RH, 40-50%), or at

ambient temperature and 100% RH.

The cascade impactor slides were placed on a previously calibrated gamma

camera (phipps et al, 1987 [Chapter 2]), and the distribution of aerosol droplets

calculated from a least squares fit to the data (Gonda et al, 1982). The effect of

pentamidine, humidity, multiple usage and method of generation on the droplet

size was also determined. Droplet sizing was performed in triplicate.

The mass fraction of the output below a droplet size of 2 p,m (the 50 % cut off

diameter of stage 4 of the impactor [Gonda et al, 1982]) was also calculated.

4.3. Results.

The flow\pressure curve for the Vitalair compressor is seen in Figure 3. The flow

rate from the compressor without nebuliser or tubing was found to be 12 1/min.
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Figure 3. Graph of maximum flow rate generated by the Vitalair compressor vs.

back pressure.
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If the Provent II or RespirGard II nebulisers were included with 5 ml of normal

saline, the flow rate fell to 5.5 1/min, corresponding to an increase of differential

pressure (due to the resistance of the nebuliser) to approximately 60 mmHg.

The same is expected with the pentamidine solutions.

A precipitate of pentamidine was observed in the nebuliser bowl and on the

baffles of the nebuliser systems during nebulisation shortly after the

commencement of nebulisation.

The size of the droplets and total outputs generated from the RespirGard II and

Provent II by the Vitalair compressor were similar to that at 6 1/min of

compressed oxygen for both pentamidine and saline aerosols (Table 1).

The total output falls with time of generation for all nebuliser solutions and

systems tested (Table 2). While the solute output remains relatively constant for

sodium chloride, it falls with generation time for pentamidine (Table 2). At 10

1/min, the cumulative pentamidine output after 5 minutes of generation is 29.5

and 30.5 mg for the Provent II and RespirGard II respectively, however, the

cumulative output after 15 minutes is not proportionally higher at 51.0 and 60.0

mg respectively. The total pentamidine output after 15 minutes at 6 1/min is less

than half the value at 10 1/min. The Aerotech II has a pentamidine output

approximately 1.6 to 1.9 times that of the other two systems.
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TabLe 1. DropLet size and totaL output using the VitaLair compressor or co_pressed oxygen at a flow rate of 6 l/min. Results are expressed as mean

(standard deviation)

Vitalair compressor (5.5 l/min) Compressed oxygen (6 l/_in)

Sal ine (S) _0' , ug# Output _0 ug Output

or Perrten- pm mg I min pm 1119 / min

idlne (P)

Provent II S 1.2 (0.2) 1.8 (0.2) 89.3 (6.2) o.s (0.1) 2.0 (0.1) 81.3 (4.4)

P 1.7 (0.2) 1.6 (0.1) 78.2 (5.0) 1.7 (0.1) 1.8 (0.1) 91.7 (7.1)

RespirGard II S 1.1 (0.2) 1.8 (0.1) 94.5 (8.6) 1.1 (0.1) 1.8 (0.1) 99.3 (3.0)

P 1.7 (0.1) 1.7 (0.1) 75.8 (3.1) 1.9 (0.1) 1.7 (0.1) 89.5 (5.2)

Notes:

* Mass median aerodynamic diameter.

# Geometric standard deviation.
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Table 2a. Total mass output and output of sodium chloride (Table 2a) or pentamidine (Table 2b)

for each system. Results are expressed as mean (standard deviation).

Flow rate Time Total output sodiu. chloride

(l/m;n) (min) (mg/min) solute output (mg/min)

Respi rGard II 10 5 170.1 (5.5) 0.472 (O.OOg)

10 156.4 (3.2) 0.485 (0.01)

15

6 5 99.3 (3.0) 0.179 (0.011)

10 77.3 (6.5) 0.187 (0.013)

30 68.1 (3.2)

Provent II 10 5 157.1 (8.8) 0.442 (0.012)

10 150.4 (2.1) 0.425 (0.012)

13 149.7 (3.5) 0.482 (0.015)

6 5 81.3 (4.0) 0.176 (0.015)

10 71.3 (5.2) 0.173 (0.016)

15 70.0 (2.2) 0.169 (0.010)

Aerotech II 10 5 243.2 (11.0) 1.02 (0.008)

12 217.4 (5.6) 0.98 (0.01)
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Table 2b.

Flow rate

(l/min)

Time Total output

(min) (m9/min)

sodiu. chloride

solute output (m9/min)

RespirGard II 10 5 167.3 (12.1) 6.1 (0.9)

10 152.1 (13.2) 4.6 (0.3)

15 147.6 (8.3) 4.0 (0.3)

6 5 93.7 (4.8) 3.8 (0.4)

10 81.2 (4.2) 2.4 (0.3)

15 73.9 (6.2) 1.8 (0.3)

Provent II 10 5 171.9 (15.2) 5.9 (1.0)

10 144.2 (12.1) 4.3 (0.2)

15 131.8 (7.0) 3.4 (0.3)

6 5 95.2 (7.1) 3.5 (1.0)

10 86.0 (9.2) 2.1 (0.7)

15 75.4 (8.9) 1.6 (0.9)

Aerotech II 10 5 229.4 (9.6) 9.6 (1.2)

13.5 205.9 (10.1) 7.3 (0.3)
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The droplet size of the pentamidine solution was greater than that of saline

for the RespirGard II and Provent II but not for the Aerotech II (Table 3).

The variability in droplet size within and between brands at 10 l/min flow rate

was low (MMAD of less than ± 0.2,...m and 0g of less than ± 0.1).

The dilution air humidity had no effect on droplet size for the Provent II and

RespirGard II, but the droplet size produced by the Aerotech II was slightly

higher when dilution air of 100% RH was used (2.S,...m [SD = 0.2] for 40%

RH and 2.7,...m [SD = 0.2] for 100% RH). The droplet size of the Provent II

also remained relatively constant with repeated usage (a total of S hours

continual use) at 6l/min, (initial MMAD = 1.7S,...m, 0g = 1.6 and final

MMAD = l.8p.m, ag = 2.0).

The 'effective delivery' of the pentamidine aerosols can be calculated as the

drug output multiplied by the fraction of 'respirable' droplets (Phipps et ai,

1987 [Chapter 2]). In the case of pentamidine aerosols, the respirable

droplets are those that will have a high probability of alveolar deposition. We

have arbitrarily decided to include those droplets depositing below stage 4 of

the cascade impactor (less than 2,...m [Gonda et ai, 1982]). The 'wasted

delivery' is defined as the output of pentamidine contained in droplets outside

this respirable range (Phipps et ai, 1987 [Chapter 2]).
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Table 3. Droplet size of the three aerosol delivery system brands at 6 and 10 l/min for

pentamidine (P) and normal saline (S) solutions. Results are expressed as mean (standard

deviation)

10 l/min 6 l/mln

_0" (pm) "l _0 (pm)
"g

Provent II S 0.9 (0.1) 2.0 (0.2) 0.9 (0.1) 2.0 (0.1)

P 1.5 (0.2) 1.7 (0.1) 1.7 (0.1) 1.8 (0.1)

RespirGard II S 1.0 (0.1) 1.9 (0.0) 1.1 (0.1) 1.8 (0.1)

P 1.6 (0.1) 1.6 (0.1) 1.9 (0.1) 1.7 (0.1)

Aerotech II S 2.5 (0.2) 1.3 (0.1)

P 2.4 (0.2) 1.4 (0.1)

Notes:

* Mass median aerodynamic diameter.

# Geometric standard deviation.
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The effective delivery (ED) is more than double for the RespirGard II and

Provent II when a flow rate of 10 l/min is used in comparison to 6 l/min, while

the wasted delivery (WD) is a lower proportion of the total at the higher flow

rate. The Aerotech II system has a comparable ED at 10 l/min to the other

two systems, but the WD is much greater (Table 4).

The osmolarity of the 100 mg/ml pentamidine solution in water was found to

be equivalent to 0.945 % NaCl solution.

4.4. Discussion

The study clearly demonstrates some important factors involved in the aerosol

delivery of pentamidine. a) The output of a 10% pentamidine solution falls

with generation time due to precipitation. b) While the effective delivery is

similar for all three systems tested and is greater at higher flow rates, the

Aerotech II has a higher wasted delivery than the other systems. c) The air

compressor generates a flow rate of 5.5 l/min and an aerosol with similar

characteristics to 6 l/min of compressed oxygen. d) There is little effect of,

humidity of dilution air or repeated usage on the droplet characteristics.

Chronic and prophylactic therapy of P carinii with pentamidine is likely to

require home therapy and thus use of a portable air compressor.
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Table 4. Effective delivery ED, (the output of pentamidine contained in droplets less than 2

pm) and wasted delivery, WD (the pentamidine output contained in droplets greater than ~m)

after 15 minutes generation.

FLow rate

l/min

% beLow

stage 4

EO

mg/min

" on stage 4

or above

WO

mg/min

Provent II 10 71.0 (1.6) 2.4 29.0 (1.6) 1.0

6 60.2 (0.9) 1.0 39.8 (0.9) 0.6

RespirGard II 10 66.5 (0.6) 2.7 33.5 (0.6) 1.3

6 58.5 (0.9) 1.4 41.5 (0.9) 1.1

Aerotech II 10 34.9 (1.2) 2.5 65.1 (1.2) 4.7

82



These results show that the output may be poor if the flow rates are low,

especially if appreciable precipitation of the drug occurs. If powerful

compressors are unavailable, the use of compressed oxygen cylinders should

be recommended for home use.

A flow rate of 12 I/min is quoted by the manufacturers of the Vitalair. This

value is the maximum flow rate able to be produced by the compressor, but it

is considerably reduced by the resistance of the attached nebulisers. The low

flow rate of the Vitalair can limit the output and suitable droplet size

generated by the nebulisers used in pentamidine therapy. The flow rate

generated by a compressor through any given nebuliser should therefore be

independently assessed for each system with the aid of a rotameter. The

effective delivery of pentamidine should also be measured on each nebuliser /

compressor combination, to provide domiciliary treatment comparable to that

received in hospital.

The loss in weight of the nebuliser systems represents the total output from

the mouthpiece. This value falls with increasing generation time from 5 to 15

minutes. This effect is likely to be due to the cooling of the nebuliser with

time of generation (Phipps and Gonda 1990 [Chapter 3]; Mercer 1981) which

reduces the amount of vapour accompanying the aerosol. The output can be

segregated into solution and vapour output since the generating gas contains

either no water vapour in the case of compressed oxygen or the room air

humidity if the air compressor is used. Upon generation, the aerosol stream
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will be virtually equilibrated to the humidity corresponding to the solution and

temperature in the nebuliser. Thus, a portion of the output is in the form of

water vapour rather than aerosol droplets (Phipps and Gonda 1990 [Chapter

3]). The cooling of the nebuliser solution will result in a reduction in the

amount of water vapour (the solution vapour pressure is reduced at the lower

temperature) and the output will fall as a result (Phipps and Gonda 1990

[Chapter 3]) (Table 2).

The solubility of pentamidine is low in saline and is near its solubility limit in

water at 100 mg/ml (Martindale 1982). As the nebuliser solution cools and

concentrates, the pentamidine precipitates. Less pentamidine will therefore

be available for nebulisation if the precipitate is too coarse for effective

nebulisation as a suspension. This may explain the fall in pentamidine output

with generation time that is not observed when normal saline is used (Table

2). This effect is likely to be reduced with the use of lower concentrations of

pentamidine (Simonds et ai, 1989).

It is important to take into account the output of water in the form of vapour

when calculating the dose of a solute drug delivered during nebulisation

(O'Callaghan et ai, 1989). If the drug concentration in the aerosol droplets is

assumed to be the same as that of the nebuliser solution, then the output of

solution alone should be used to calculate the solute output rather than the

total output of solution plus vapour. For example, at a room temperature of

22 DC, using compressed oxygen or compressed air to generate the aerosol at
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10 l/min, the saturated water vapour content of the aerosol stream will be

approximately 19 mg/1itre, so 190 mg/min of the total output will be water

vapour. This vapour output will of course fall as the nebuliser solution cools,

and is complicated by the fact that the solute concentration in the nebuliser,

and that of the droplets, rises with time (Phipps and Gonda 1990 [Chapter 3]).

The water output as vapour when an air compressor is used will be lower due

to the supply of some water vapour from the room air.

The cough and bronchoconstriction reported as side effects in aerosolized

pentamidine therapy (O'Doherty et al, 1988; Simonds et aI, 1989) is unlikely

to be due to non-isotonicity of the aerosol, since a 10% solution has an

osmolarity close to that of normal saline. However, the absence of a

permeant anion has been shown to cause cough in normal and asthmatic

subjects (Eschenbacher et aI, 1984). The bronchoconstriction may therefore

be due to a direct irritant effect of the drug in the large airways. The reduced

concentrations of pentamidine often used in prophylaxis (O'Doherty et aI,

1988) will be hypotonic and therefore, likely to be more potent at causing

cough and bronchoconstriction (Schoeffel et aI, 1981).

Although the droplet size produced by all three systems was reproducible, the

droplet size of the pentamidine aerosols was found to be greater than those of

normal saline for the RespirGard II and Provent II. The reason for this is

obscure, but is possibly a result of differences in surface tension and viscosity

of the two solutions or the deposition of pentamidine precipitate on the
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baffling devices, since there was no differences observed for the Aerotech II.

The greater droplet size of the pentamidine aerosols to that of saline has been

reported previously (Smaldone et al, 1988). These authors, however, obtained

lower droplet sizes for the Aerotech II and RespirGard II than those reported

here, this may be due to the fact that the aerosol stream for droplet size

analysis was sampled via aT-piece, resulting in preferential selection of the

smaller droplets.

It has been noted by Smaldone et al (1988) that the droplet size and output of

the pentamidine aerosols are dependent on inhalation flow rate. The

impaction filter device incorporated into some aerosol delivery systems will

remove droplets according to their velocity. We have used a flow rate of 12.5

l/min in these experiments, similar to very slow deep inhalation, which patients

should try to achieve for maximum alveolar deposition (Pavia et al, 1977). It

should therefore be noted that both the droplet size and output will fall with

increasing flow rate with the RespirGard II and the Provent II, but little

change is expected with the Aerotech II. Smaldone et ai, used a particular

breathing pattern in determining output, but another breathing pattern will

give different results. The dose received by the patient therefore, will be a

function of the inhalation flow rate and the time of inhalation (often taken to

be a third of the breathing cycle, but usually longer in slow deep inspiratory

manoeuvres). The dose to the patient can therefore be estimated for
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comparison between systems as:

Md x T/Tre

where:

Md = Total drug output (output per minute x time of administration).

T/Tre = inspiration time (Tj ) as a fraction of the total breathing cycle (TrJ

The irritant and toxic properties of pentamidine has made it necessary to

reduce its delivery to areas other than the alveoli, the site of P carinii

infection, as much as possible. Droplets of approximately 2/im have been

calculated to have a maximal fractional deposition in the non-ciliated regions

of the lung (Yu et al, 1977) and a much larger proportion of 2.6 f.£m droplets

have been shown to deposit in peripheral lung regions than 5.5 f.£m droplets in

normal subjects (Phipps et aI, 1989 [Chapter 7]) but this value will vary if the

lungs are diseased and smaller droplets may conceivably be necessary to

penetrate to the alveolated regions of the lung. The effective droplet size

range is therefore likely to be less than 1 - 2f.£m, depending on the morphology

and disease state of ,the lungs and breathing pattern (Brain and Valberg 1979).

The effective delivery (ED) has been defined as the dose of drug contained in

droplets of 'respirable size range' delivered to the mouthpiece (Phipps et aI,

1987 [Chapter 2]). The ED values are useful for nebuliser comparisons and

to estimate the rate of delivery of useful drug to the patient The 'wasted

delivery' is also relevant in this case, since pentamidine delivered to the large

airways is not of any therapeutic use, and can cause toxic effects. The ideal

pentamidine delivery device will therefore have a large ED and low WD. Of
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the devices tested, the most effective are the two systems with in-line filters at

a generation flow rate of 10 l/min (the Aerotech II has a similar ED but

greater WD).

The effective delivery (ED) and wasted delivery (WD) of the pentamidine

aerosols can be used to compare the amounts of clinically useful and

potentially toxic fractions of pentamidine being delivered to the mouthpiece of

each system. Of the devices tested, the most effective are the two systems

with in-line filters at a generation flow rate of 10 l/min. Although the

manufacturer's recommended generation flow rate for the RespirGard II is 5 

7 l/min, the smaller droplet size and greater output of pentamidine at the

higher flow rate of 10 l/min is more desirable. All of the systems can be

considered to have a low efficiency, the systems with in-line filters lose much

of the aerosol before reaching the mouthpiece, while the Aerotech may waste

some of its delivered dose by deposition in large airways.

Although the humidity of dilution air being inhaled along with the aerosol

stream has been shown to effect the droplet size in other aerosol delivery

systems (Phipps et aI, 1987 [Chapter 2]; Phipps and Gonda 1990 [Chapter 3]),

there is no effect found with Provent II or RespirGard II, due to the

abundance of deposited water at the filter being able to provide the excess

vapour necessary. A Cadema nebuliser (Cadema Medical Products Inc.,

Middletown, New York, USA) has been tested previously and the droplet size

found to decrease with dilution air of low RH (Phipps et aI, 1987 [Chapter 2]),
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this effect is likely to be similar for the Aerotech II, a modification of the

original Cadema nebuliser.

Repeated usage of the Provent II seems to render the size distribution a little

wider and more variable. This is probably clinically insignificant. The

nebuliser systems characterised are designed to be disposable, mainly for the

reason of contamination and although the characteristics of the systems do not

change upon re-use, the contamination of the nebulisers and tubing with

potentially pathogenic organisms is a limiting factor, especially in

immunocompromised patients (Higgs et al, 1987; Barnes et ai, 1987; Popa et

al, 1988).

In summary, a number of recommendations can be made as a result of this

study. a) A powerful compressor or compressed gas should be used to

provide a flow rate of at least 10 l/min, to give a greater ED, lower WD and

shorter delivery time. b) Pentamidine solution concentrations lower that 10%

should be used to minimise precipitation of the drug. c) The characteristics of

each nebuliser - generator system should be carried out with the drug solution

to be used, prior to patient use. d) The 'effective dose' of drug can be

calculated with some degree of accuracy and may be more useful than the

amount added to the nebuliser (which is unrelated to dose received by the

patient) for comparisons of drug delivery. The fact that the weight output of

the nebuliser is not directly related to the output of drug should also be noted.
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An improved nebuliser system would incorporate a baffling device that returns

the larger droplets to the nebuliser solution to prevent wastage of the drug.

The cooling and concentrating effects that cause the precipitation may be

overcome by using generating gas and dilution air saturated with water

vapour.

In conclusion, careful attention to the factors which determine the output of

the drug from the nebuliser and its subsequent deposition in the alveoli may

be expected to improve the effectiveness of pentamidine treatment and to

decrease the side effects which may result.
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Chapter 5

Jet-nebulised aqueous aerosols: mass balance prediction of solute concentration.

5.1. Introduction

The median droplet size of aqueous nebulised aerosols used in therapy and

diagnosis, together with the width of the size distribution (usually characterised by

the geometric standard deviation) are important determinants of the total and

regional deposition in the respiratory tract (Stahlhofen et aI, 1983; Ferron et al,

1981; Gonda 1981). The accurate prediction of the sites of delivery of

therapeutic agents within the lung for any given aerosol, therefore, requires the

characteristics of the droplets on inspiration to be known.

The droplet solute concentration is also important, since initially non-isotonic

droplets can effect deposition by hygroscopic growth or shrinkage as they attain a

new equilibrium within the respiratory tract (Ferron 1977; Persons et al, 1987;

Morrow 1986). Non-isotonic droplets may also effect the deposition pattern by

causing a change in airway resistance via bronchoconstriction in hypersensitive

subjects (Schoeffel et al, 1981), a fact that has lead to the greater control of

nebuliser solution tonicity (Mann et al, 1984; Fois et al, 1986).
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Jet-nebulisation of aqueous aerosols is a dynamic process that involves breaking a

stream of fluid into primary droplets by a high velocity air-jet. Heat is thus lost

from the nebuliser solution as a result of the adiabatic expansion and evaporation

of the solution to supply the generating gas with water vapour (Mercer et al,

1968). Since more than 99% of the primary droplets return to the nebuliser

solution (Mercer et al, 1968), the end result is that the nebuliser solution and the

droplets produced by it, cool and concentrate (Mercer 1981; Phipps and Gonda

1990 [Chapter 3]).

The instability of aqueous aerosol droplets is manifested by changes in their

dimensions and composition while attaining an equilibrium with their immediate

environment. The time delay between generation of the droplets and inhalation

depends on the nebuliser system being used, the inhalation flow rate, and the

geometry of the connection between nebuliser and mouthpiece or mask. This

delay is likely to be sufficient for significant changes in droplet size and solute

concentration to occur prior to inhalation (Phipps and Gonda 1990 [Chapter 3]).

Dilution air (i.e, room air) inhaled along with the aerosol during the time when

the inspiratory flow rate is greater than that of the aerosol generating gas, has

also been shown to effect droplet characteristics (Phipps and Gonda 1990

[Chapter 3]; Phipps et al, 1987 [Chapter 2]).

We have previously reported the effect of temperature fall and dilution air
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humidity on the concentration of solutes in aerosol droplets delivered by various

jet nebuliser / generator systems (Phipps and Gonda 1990 [Chapter 3]). It was

found that the fall in nebuliser solution temperature during nebulisation, together

with unsaturated dilution air, caused the aerosol droplets to evaporate during

rapid rewarming towards ambient temperature. In so doing, the droplets

concentrated their solutes and decreased in volume.

The aim of this chapter is to apply mass balance considerations to the nebuliser

systems to explain and predict in theoretical terms the physical changes occurring

within the nebuliser bowl and the dynamics of the aerosol droplets being

produced. We will then compare theoretical and experimental results.

5.2. Methods

Theoretical mass-balance considerations

To obtain information about the changes occurring within the aerosol droplets, it

is necessary to consider the movement and conservation of water and solute

during aerosol generation. Most medical aqueous nebuliser solutions contain

solutes and sodium chloride in proportions that render them isotonic. For this

reason, we shall consider the effects of nebulising solutions of isotonic saline

(these are likely to behave in a manner similar to isotonic aerosols containing

dissolved drug as long as surface tension and to some extent viscosity are similar

to that of normal saline).
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The mathematical treatment in the first instance makes some assumptions about

the system:

1. The aerosol stream is constantly saturated with water vapour (i,e. equilibrium

between the droplets and surrounding air is rapid).

2. There is no loss of aerosol by deposition in the connecting tubing.

The equations are presented in Appendices I and II.

Experimental

Nebuliser systems studied:

a) Cadema nebuliser (Cadema Medical Products Inc., Middletown, NY, USA)

with compressed oxygen.

b) Up-Draft nebuliser (Hudson Up-Draft Oxygen Therapy Sales Co., Temecula,

CA, USA) with compressed oxygen.

c) Up-Draft nebuliser with Flatus Mk.V air compressor (Maymed, Anaesthetic

Supplies Pty. Ltd., Sydney, Australia. This system is equivalent to: Tote-A-Neb,

Hospitak Inc., Lindenhurst, NY., USA [private communication, Mefar SRL,

Italy]).

d) Up-Draft nebuliser with Aerosol-One air compressor (Medical Industries

America, Desmoines, Iowa, USA).
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Temperature / time curves

The temperature of the nebuliser solution during aerosol generation was

previously measured for each of the nebuliser systems tested (Phipps and Gonda

1990 [Chapter 3]). The temperature was recorded at set times until it reached a

steady value (Ts). The initial volume of solution in the nebuliser was 5 ml and

the ambient temperatures varied between 23.5 and 25.2 "C,

Output

As descnbed previously (Phipps and Gonda 1990 [Chapter 3]), the mass output

from the nebuliser systems was measured for different, constant, nebuliser

solution temperatures by weighing the nebuliser. The temperature was controlled

to ± 0.3 degrees with the aid of a warm water bath during a generation time of 3

or 4 minutes.

At the end of each run, the concentration of sodium chloride left in the nebuliser

was measured by vapour pressure osmometry (Model 1100, Knauer, Bad

Homberg, W. Germany), The output of solution and vapour was then calculated

from the total mass output and the rise in nebuliser solution concentration during

the time of aerosol production (Mercer et aI, 1968):

w = [(Vo - Vt) / F x tj x Ln (Ct/Co) / Ln (VoNt) ....(i)

A = [(V0 - Vt) / F x tj - W ....(ii)
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where:

Co = Concentration at zero time

Ct = Concentration at time t

Vo = Volume at zero time

Vt = Volume at time t

W = Vapour output (vol/vol)

A = Solution output (vol/vol)

F = Flow rate through nebuliser (vol/time)

t = Generation time

The predicted vapour concentration was calculated assuming that the vapour was

supplied by the nebuliser solution alone ie,

MyI = Po 1Iw (Mw / (R TI)) ....(iii)

where:

Po = Saturated vapour pressure at TI .

1Iw = water activity (see Appendix I) at the nebuliser concentration which was

taken to be the average (Co-Ct ) /2)

Mw = Mol wt water

R = gas constant

T I = nebuliser solution temperature (K)
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Solute concentration in the droplets

The concentration of sodium chloride in the aerosol droplets was measured for

different, constant, nebuliser solution temperatures as previously described

(Phipps and Gonda 1990 [Chapter 3]). The aerosol was passed via either a short

length of tubing (30 em long and 2 em diameter, volume = 94 ml, residency time

= 0.45 s) or a long length of tubing (61 em long and 5 cm diameter, volume =

1198 ml, residency time = 5.75 s) through the last stage of a cascade impactor

(DCI6, Delron, Columbus, Ohio, USA) and collected in a small container of

similar dimensions to a cascade impactor slide. The flow through the impactor

stage was 12.5 l/min and the dilution air necessary to supplement the flow

through the nebuliser was supplied either at ambient temperature (21 - 27 DC)

and humidity (31 - 45%) or at ambient temperature and fully saturated with

water vapour via a Douglas bag. After collection of the aerosol droplets, the

concentration of sodium chloride was measured by vapour pressure osmometry.

Prediction of droplet solute concentration as a function of nebuliser solution

temperature and dilution air humidity.,

The mathematical treatment to predict the final droplet solute concentration at

the mouthpiece is given in Appendix 1. The parameters measured during each

run (Table 1) were substituted into equations 13 (assuming ideal behaviour of the

solution) and 15 (assuming non-ideal behaviour) to give the expected droplet

solute concentration at the mouthpiece.
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Table 1. Parameters measured

Generation time (t)

Initial mass of nebuliser solution (Mni)

Final mass of nebuliser solution (Mnf)

Temperature of nebuliser solution (T,)

Flow rate of generating gas (Q,)

Relative humidity of dilution air (RHd)

Relative humidity of generating gas (RHg)

Initial concentration of nebuliser solution (Cni)

Final concentration of nebuliser solution (Cnf)

Ambient temperature (TIl)
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The predicted values calculated by the two equations were compared with each

other and with the measured droplet solute concentration values using the short

and long connecting tubing.

Droplet sizing

The droplet size of the aerosols produced by the nebuliser systems at various

operating solution temperatures was measured in separate experiments (Phipps

and Gonda 1990 [Chapter 3]). The aerosol containing 99mTc pertechnetate was

passed through the 7-stage cascade impactor via either the short or long

connection tubing. The impactor slides containing the deposited radioaerosol

were counted on a previously calibrated gamma camera (Phipps et ai, 1987

[Chapter 2]) and the droplet size distribution calculated by a least squares fit to

the data (Gonda et ai, 1982).

In a separate experiment, the droplet size was measured with the nebuliser

solution at ambient temperature with dilution air saturated with water vapour.

This value was assumed to be the initial droplet size of the aerosol generated by

the nebuliser.

The parameters given in Table 1 were measured during each run, and the

predicted droplet size calculated from equation 20 (ideal solutions) and equation

21 (non-ideal solutions) in Appendix I. The predicted and measured droplet sizes
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were then compared.

It was impossible to repeat each data point exactly, so the variability of the

measurements was assessed using the Cadema nebuliser at 8 l/min (42 - 52%

RH) and 10 l/min (43 - 56% RH and 100% RH). The droplet concentration was

measured numerous times at various nebuliser solution temperatures. The

parameters in Table 1 were again measured for each experimental point, and the

theoretical droplet solute concentration (using the non-ideal equations of Cinkotai

only) also calculated.

5.3. Results

Temperature vs time graphs

The fall in nebuliser solution temperature with time of generation has already

been assessed for these systems (Phipps and Gonda 1990 [Chapter 3]). The

temperature fell to reach a steady value of 11-15 DC after 4-5 minutes for the Up

draft and Cadema nebulisers with compressed oxygen, while with the Flatus and

Aeromist compressors with the Up-Draft nebuliser, the temperature fell by 5-6 DC

after the same generation time.

Output

The effect of nebuliser solution temperature on the total, solution and vapour

outputs is shown in Figures 1-5.
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Figure 1. Mass output at 81/min (open squares) and 10 1/min (closed squares)

flow rate vs nebuliser solution temperature for the Cadema nebuliser (short

tubing).
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Figure 2 and 3. Output of the Cadema (Figure 2) and Up-Draft (Figure 3)

nebu1isers at 8 l/min flow rate vs. nebuliser solution temperature. Total mass

output (circles), solution (droplets) output (triangles), vapour output (diamonds)

and calculated water content at each nebuliser temperature (squares).
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Figure 4 and 5. Output of the Up-Draft nebuliser driven by the Aerosol-I

(Figure 4) and Flatus (Figure 5) air compressors. Total mass output (closed

circles), solution output (droplets) (triangles), vapour output (diamonds),

calculated water content at each nebuliser temperature (squares) and water

vapour contribution by the generating gas (open circles).
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In general, the total output is lower as the nebuliser solution temperature drops,

the variability being greater at temperatures close to ambient. This is

demonstrated in Figure 1, for the Cadema nebuliser. By segregating the output,

it can be seen that the solution output remains constant, so the fall in output is

due to a fall in the vapour output alone. The vapour output required to

saturated the aerosol stream at each nebuliser temperature was calculated from

equation (iii) above and plotted in Figures 2-5. These calculated values were

found to be greater than the measured nebuliser solution vapour output,

suggesting that some of the vapour required to saturate the aerosol stream was

supplied by the droplets.

In the case of the systems driven by air compressors, water is added from two

sources, the generating gas (room air) which is partially saturated with water

vapour and the dilution air. The contribution of vapour from the generating gas

is also plotted in Figures 4 and 5. The water vapour required to saturate the

aerosol stream [again calculated from equation (iii)], is similar to the total output

from the nebuliser (~olution plus vapour), highlighting the large amount of water

contained in the gas phase in comparison to the droplets. The air compressors

show the same pattern of output, with the contributions from the generating gas,

dilution air and droplets all remaining constant, while the vapour supplied by the

nebuliser solution varies with nebuliser temperature.
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Concentration of solute in the droplets

Figure 6 shows the nebuliser solution concentration with generation time for the

Cadema nebuliser. The concentration increase for each time increment becomes

greater as generation progresses. A similar effect was found with all of the

nebuliser systems tested, although the concentration increase was lower when air

compressors were used.

The measured and theoretical droplet concentrations (using ideal and non-ideal

equations) for each nebuliser temperature are shown in Figures 7-10.

The concentration of the collected droplets increases as the nebuliser cools. The

droplet concentration at the mouthpiece for each nebuliser temperature was

greater when the long tubing was used (Figures 7 and 8). The lowest

temperature used in these experiments was approximately 6°C, lower than the

steady temperature (Ts) reached by the Cadema and Up-Draft with compressed

oxygen (approximately 9"C). The greatest concentration at the Ts was 20.3 and

32.2% for the Up-Draft and Cadema respectively (long tubing) and 9.2 and 7.8%

for the Up-Draft and Cadema respectively (short tubing). The theoretical

concentration results for each experimental point are plotted alongside the

measured results.
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Figure 6. Nebuliser solution concentration vs, time of nebulisation for the

Cadema nebuliser at 8 l/min flow rate.
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Figure 7. Measured (circles) and predicted (squares) droplet concentration values

at the mouthpiece for the Up-Draft nebuliser at 8 1/min flow rate using long

(open symbols) or short (closed symbols) tubing vs. nebuliser solution

temperature. Figure 7a - assuming non-ideal solution behaviour and Figure 7b -

assuming ideal solution behaviour.
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Figure 8. Measured (circles) and predicted (squares) droplet concentration values

at the mouthpiece for the Cadema nebuliser at 81/min flow rate using long (open

symbols) or short (closed symbols) tubing vs. nebuliser solution temperature.

Figure Sa - assuming non-ideal solution behaviour and Figure 8b - assuming ideal

solution behaviour.
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Figure 9. Droplet concentration at the mouthpiece of the Up-draft nebuliser

driven by the Aerosol-l compressor vs, nebuliser solution temperature.

Measured concentration (circles), results predicted by assuming non-ideal solution

behaviour (open squares) and assuming ideal solution behaviour (closed squares).

The isolated data points represent values measured or predicted at ambient

temperature with dilution air humidity of 100 %.
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.',~,t"',~~e 10. Droplet concentration at the mouthpiece of the Up-draft nebuliser
~,.,!,!./!.. .

v'"

driven by the Flatus compressor vs. Nebuliser solution temperature. Measured

concentration (circles), results predicted by assuming non-ideal solution behaviour

(open squares) and assuming ideal solution behaviour (closed squares). The

isolated data points represent values measured or predicted at ambient

temperature with dilution air humidity of 100 %.
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The variability of the data was assessed by repeated experiments, but since the

experimental conditions could not be exactly reproduced, all data points have

been plotted in Figures 12-14. It can be seen that the greater the likelihood of

evaporation (at low temperatures), the bigger the variability in droplet

concentration because of the sensitivity to external conditions (Phipps et al, 1987

[Chapter 2]). The variability is also likely to be due to small changes in output

that will have disproportionately large effects on the mass of water in solution

available for evaporation.



The ideal solution equations of Ferron et al (1976) do not fit the experimental

results as closely as those describing non-ideal solution behaviour. The closest

agreement between predicted and experimental droplet solute concentrations is

therefore found when the long tubing is used and non-ideal solution behaviour

assumed. Figure 11 shows the measured vs predicted solute concentration values

for the long tubing, assuming ideal solution behaviour (for complete agreement,

the data points should lie along the line of identity). Table 2 gives the intercept,

slope and correlation coefficients of the measured vs predicted droplet solute

concentration results for the Up-Draft and Cadema (non-ideal solution

behaviour) with long and short tubing. The long tubing data has a slope much

closer to unity, indicating closer correlation of measured with experimental than

the short tubing.

The combined effects of changing the RH of dilution air and the proportion of

aerosol to dilution mare shown in Figures 12-14. The greater the propqriion of
,,'

~, t ' .• ~ ,

dilution air the greater the evaporative effects on the droplets (FigureS12'and 13).

When using saturated dilutidii air, these effects are smaller yet significant (Figure

14).
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Figure 11. Graph of measured vs predicted droplet solute concentration for the

Cadema (closed squares and dotted line of best fit) and Up-Draft (open squares

and dashed line of best fit) nebulisers, with long tubing (assuming non-ideal

solution behaviour). The solid line denotes the line of identity.
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Table 2. Linear regression equations and correlation coefficients of plots of

measured vs predicted droplet solute concentrations for the Cadema and Up

Draft nebulisers, long and short tubing (assuming non-ideal solution behaviour).

A slope of 1 and intercept of 0 denotes identical measured and predicted values.

SHORT TUBING

Cadema

Hudson

LONG TUBING

Cadema

Hudson

Intercept

(% w/v)

2.7

2.6

-0.8

2.3

113

Slope

0.24

0.27

1.06

0.72

Correlation

coefficient

0.986

0.883

0.984

0.984



Figure 12. Measured (circles) and predicted (triangles) droplet concentration

values at the mouthpiece for the Cadema nebuliser at 8 l/min flow rate and

dilution air of 50% relative humidity vs. nebuliser solution temperature.
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Figure 13. Measured (circles) and predicted (triangles) droplet concentration

values at the mouthpiece for the Cadema nebuliser at 10 1/min flow rate and

dilution air of 50% relative humidity vs. nebuliser solution temperature.
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Figure 14. Measured (circles) and predicted (triangles) droplet concentration

values at the mouthpiece for the Cadema nebuliser at 10 l/min flow rate and

dilution air of 100% relative humidity vs. nebuliser solution temperature.
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Figure 15. Measured (circles) and predicted (squares) droplet size for the

Cadema nebuliser at 8 1/min flow rate vs. nebuliser solution temperature. Figure

15a - using short tubing (residence time of 0.45 s) and Figure 15b - using long

tubing (residence time of 5.75 s),
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Figure 16. Measured (circles) and predicted (squares) droplet size for the Up-

Draft nebuliser at 8 Vmin flow rate vs. nebuliser solution temperature. Figure

16a - using short tubing (residence time of 0.45) and Figure 16b - using long

tubing (residence time of 5.75 s).
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Droplet size

The change in droplet size (MMAD) with nebuliser temperature (Cadema and

Up-Draft) is shown in Figures 15 and 16. As expected, the droplet size falls as

the nebuliser temperature is reduced. The theoretical MMAD is calculated from

equation 21 (for non-ideal solutions, Appendix I) and plotted on the same axes.

The difference between theoretical and measured droplet sizes is large for both

the long and the short tubing. The expected droplet sizes are approximately 4£m

lower at 10"C than those measured, for both the long and short tubing. The

disparity is also generally greater at the lower temperatures.

5.4. Discussion

The mass balance equations presented here are an attempt to explain and predict

the changes occurring in aerosol droplets before inhalation. The factors effecting

the characteristics of droplets generated by jet nebulisers have been studied

previously (Ferron et ai, 1976; Newman et ai, 1986; Sterk et al, 1984;

Porstendorfer et ai, 1977), but until recently, the specific effects of nebuliser

solution temperature on solute concentration as measured directly, have not been,

studied (Phipps and Gonda 1990 [Chapter 3]). The data presented here shows

that droplets move towards an equilibrium that can be predicted, and that the

attainment of that equilibrium depends on environmental factors and the time

between generation and inhalation.
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The output of the aerosol governs the dose of solute delivered to the mouthpiece.

The total output decreases as the nebuliser solution temperature falls towards Ts'

but this is due to the reduction in vapour output rather than that of the solution,

because less water vapour is required to saturate the aerosol stream at lower

temperatures (Figures 2-5). The solute output is likely to rise slowly as the solute

concentration in the nebuliser solution rises, although this effect is small over the

first 10 minutes of generation (Figure 6) and depends on the initial nebuliser

loading and rate of evaporation.

The calculated vapour required to saturate the aerosol stream at any nebuliser

temperature was greater than the measured vapour output from the nebuliser

solution (Figures 2-5). The extra vapour required may therefore come from the

droplets that leave the nebuliser, adding to the droplet solute concentration

increase. Similar calculations with the compressor driven nebulisers are

complicated by the water content of the generating gas, but the generating gas

vapour, plus the measured vapour output from the nebuliser was greater than the

calculated vapour required,

The concentration of solute in the droplets is expected to increase as the

nebuliser solution temperature falIs. This effect is primarily due to evaporative

water loss as the aerosol stream warms towards room temperature and is

compounded by the addition of unsaturated dilution air. The predictions assume
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equilibration of the droplets at room temperature by the time they reach the

mouthpiece. Using the short tubing, the droplet solute concentration is below

that predicted by the ideal and non-ideal solution equations, suggesting that the

droplets in the aerosol stream are not reaching room temperature and

equilibrium concentration. By increasing the time for droplet equilibration by

using connecting tubing with a large volume, and therefore a longer residence

time, the solute concentration at the mouthpiece is closer to that predicted by the

mass balance equations. It is notable that the droplets produced at the lower

nebuliser temperatures are furthest from equilibrium at the mouthpiece because

they have more water to lose. The evaporation of the droplets involves loss of

heat of vaporisation, keeping the droplets cool. The transfer of heat from the

room to the aerosol stream, across the tubing walls, is likely to be the limiting

factor.

By measuring the temperature of the aerosol stream at the mouthpiece and

substituting this value in place of the ambient temperature in the mass balance

equations (TIl)' a m~re reliable estimate of droplet concentration using the short

connecting tubing may be found.

The comparisons between the predicted droplet solute concentrations using the

ideal and non-ideal solution equations with the experimental data shows that by

assuming ideal behaviour of the solute, the effects of droplet evaporation
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between the nebuliser and mouthpiece are overestimated.

The variability in the droplet solute concentration may be accounted for by

experimental error together with variations in the output and temperature of the

nebuliser, all of which will effect the droplet solute concentration. In particular,

small changes in the output of the nebulisers may have a large effect on the

droplet solute concentration because at any nebuliser temperature, the vapour

output will be constant and the solution output, being a relatively small fraction

of the total, will be affected to a large extent. For example, at 21°C the Aerosol

1 has a total output of 98 mg/min. The total amount of vapour leaving the

nebuliser is expected to be 100 mg/min of which 93 is from the generating gas

and 4 from the nebuliser solution, leaving 3 mg/min to come from the 64 mg/min

solution output The output leaving the nebuliser therefore consists of 61 mg/min

of solution, and 100 mg/min of vapour. Water vapour required to saturate the

aerosol stream as it increases in temperature must come from the solution

output. If the droplets have concentrated to 10 %, the solution component will

be approximately 5.~ mg/min and vapour 155 mg/min. Any small variations in

the final temperature of the aerosol stream (where one degree can alter the

vapour component by up to 10 rug/min) could easily alter the droplet solute

concentration by a factor of two or more.

The theoretical and measured droplet sizes do not coincide when either the long
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or short tubing is used. Although their size has fallen and solute concentration

increased, the droplets are clearly not reaching equilibrium in the short tubing

and are therefore larger than predicted on reaching the mouthpiece. This is not

the case in the long tubing, where the droplet concentration is close to that

predicted. The longer residence time and lower velocity of the droplets passing

through the long tubing will allow the preferential sedimentation of the larger

droplets in the aerosol stream. The assumed initial size of the droplets,

measured at ambient temperature and with fully saturated dilution air (no droplet

evaporation) will therefore be lower than the actual size leaving the nebuliser.

At lower temperatures however, the proportion of larger droplets and hence

sedimentation will be reduced as the droplets evaporate. The magnitude of

sedimentation may be estimated from a knowledge of the sedimentation velocity

of unit density spheres (Hinds 1982). For example, the 10 ,urn droplets fraction

has a settling velocity of 0.305 ern/sec, in the 5.75 seconds residence time of the

large tubing, any of these droplets within 1.8 cm vertical distance of the wall will

deposit. Assuming even distribution of the droplets in the aerosol stream, the

proportion depositin~ will be approximately equal to 50 % of the difference in

cross sectional area between the tubing radius (2.5 em) and the area of a circle of

1.8 em smaller radius (2.5 - 1.8 = 0.7 em) ie. approximately 46 %. Corrections

may therefore be attempted, however, other factors such as turbulence will also

increase the likelihood of the larger droplets depositing in the tubing.

123



These results show that although nebulised aerosol droplets are unlikely to reach

equilibrium at the mouthpiece of most medical nebulisers, the effects of

evaporation due to warming and low dilution air humidity are large, especially if

the nebuliser systems have a low output. It may also be concluded that these

droplet size and concentration changes may be minimised by using saturated

generating gas and dilution air. The actual concentration attained at the

mouthpiece will be a function of the residence time, temperature difference

between the aerosol stream on production and the room, the volume, RH and

temperature of dilution air and the rate of heat transfer across the tubing. The

actual reduction in concentration is likely to be higher in reality because the

proportion of dilution air to aerosol is usually greater during inspiration than in

these experiments. The droplet size at equilibrium is harder to predict, since it

depends on size selective losses within the tubing.

The prediction of droplet characteristics at equilibrium is, however, useful in

comparing nebuliser systems and assessing the effects of aerosol generation and

environmental conditions on droplet size and solute concentration at the,

mouthpiece. This in tum will allow the prediction of regional deposition and

effects within the lung such as the possibility of bronchoconstriction by non-

isotonic aerosols (Schoeffel et aI, 1981).
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Chapter 6

Apparatus for the control of breathing patterns during aerosol inhalation.

6.1. Introduction

The regional and total deposition of therapeutic and diagnostic aerosols has been

shown experimentally and mathematically to depend on particle characteristics,

dimensions of the lungs and mode of inhalation (Brain and Valberg 1979).

Important particle parameters include mass median aerodynamic diameter

(Stahlhofen et al, 1983; Stahlhofen 1984) and the shape of the droplet size

distribution (Gonda 1981). Patient parameters effecting deposition pattern

include lung morphometry (Yu et al, 1979) and effects of airway obstruction from

oedema, bronchoconstriction and excess mucus (Dolovich et al, 1976; Goldberg

and Lourenco 1973)\

Of particular importance is mode of inhalation, which affects both time and

velocity dependent mechanisms of particle deposition within the upper and lower

airways (Lippmann et al, 1980). Inhalation parameters known to affect patterns

of deposition include; tidal volume, inhalation flow rate, inspiratory pause or
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breath holding time and lung volume at the start of inhalation (ie functional

residual capacity)(Newman 1984).

Many diagnostic and research study regimes require the subject to inhale an

aerosol on more than one occasion; bronchial challenge tests, mucociliary

clearance estimation and any studies comparing efficacy of inhaled medications

are good examples. The fact that regional and total deposition of aerosols can

vary with breathing pattern (Lippmann et al, 1980) means that breathing

parameters must be controlled or taken into account during such studies, for

example, the necessity for good control of aerosol inhalation during mucociliary

clearance studies, has been recognised (Agnew et ai, 1981; Dolovich et al, 1987;

Pavia 1984).

A number of techniques have been used to monitor and control inhalation:

maximal inhalations from residual volume (RY) (Ruffin et ai, 1978; Svartengren

et al, 1987) or functional residual capacity (Pavia et ai, 1980; Oldenburg et ai,

1979), single breaths following a kymograph trace (Laube et ai, 1986), tidal

breathing, following an audible timing device such as a metronome alone

(Matthys and Kohler 1985) or with a visual volume target such as an oscilloscope

(Phipps et al, 1987 [Chapter 2]; Clay and Clarke, 1987; llowite et ai, 1987) or a

chart recorder trace (Mitchell et al, 1987). In some investigations, breathing

pattern was not controlled at all (Isawa et al, 1987; Foulds and Smithuis 1983;
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Asmundsson et al, 1973). Many of these methods do not account for changes in

all of the breathing parameters thought to be important for aerosol deposition,

both during any single aerosol inhalation occasion, and between two occasions. If

targets for tidal volume and frequency are used alone, inhalation flow rates are

not controlled, because the ratio of time of inspiration and expiration may vary

from breath to breath with variation in inspiratory and expiratory pauses (Heyder

et ai, 1973).

Aerosol inhalation studies may also require the subject to follow a pre-set

breathing pattern with well defined parameters of tidal volume, inspiratory flow

rate and breath holding, for example in the assessment of the effect of inhalation

pattern on regional and/or total deposition (Stahlhofen 1983; Foster et al, 1988;

Agnew et ai, 1985) or on the clinical response to inhaled therapeutic or

diagnostic challenge agents (Ruffin et ai, 1981; Ruffin et al, 1978). In this case,

variability of inhalation also needs to be controlled with a pre-set target pattern.

For single inhalation studies, control should be undertaken .to ensure a consistent

breathing pattern while the aerosol is being inhaled. For repeat inhalation

studies, these variables should also be controlled for each inhalation occasion.

Our aim, therefore, was to produce a breath-by-breath aerosol inhalation

monitoring and controlling system with the aid of a microcomputer, that would

enable us to record and control the subjects' own tidal breathing pattern during
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repeated inhalation of nebulised aerosols.

6.2. Breathing circuit

An aerosol inhalation breathing circuit was set up (Figure 1). It was a one-way,

partially closed system. Aerosol was generated with compressed oxygen, or

compressed air, via a jet nebuliser. Dilution air to make up the inspiratory flow

was supplied via a humidifier (MR 310U, Fisher Paykel Ltd Auckland, New

Zealand). The aerosol was inhaled through a mouthpiece and exhaled through a

filter and CO2 absorber (Durasorb, Medical and Industrial Equipment Ltd.

Exeter, England). The inspiratory and expiratory lines passed into a

meteorological balloon (Kaysam Corporation, Patterson, New Jersey, USA) in a

perspex box, the volume respired being displaced from the box by the balloon. A

bell spirometer (Gould Godart BY., Bilthoven, The Netherlands) was connected

to the box via a respiratory flow transducer (Hewlet Packard 47304A) and a

pneumotachograph (21073B Hewlet Packard, Waltham, MA, USA). The bell

spirometer had a servo-potentiometer attached to the bell pulley supplied with

5Y DC. A vacuum ~as applied to the circuit via a needle valve to evacuate from

the system an appropriate amount of air to keep the system isovolumetric. The

tubing used was clear polypropylene of 2 em internal diameter.
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Figure 1. Diagram of the breathing circuit set-up. Adapted with permission from

the publishers (Phipps et aI, 1989 [Chapter 7]).
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The volume signal from the bell servo and the flow signal from the respiratory

flow transducer were passed to an analogue to digital converter (ADC), linked to

an mM PC XT (mM Corp, Boca Raton, Florida USA), for analysis. The volume

was also recorded on the spirometer kymograph trace, and the flow on a chart

recorder (Sekonic Instrument Co., Tokyo, Japan).

The flow and volume signals were accessed and manipulated with software

written on the mM PC with the aid of a Turbo Pascal compiler (Borland

International Inc., California, USA).

The linearity of the volume and flow signals as sampled from the ADC were

obtained by plotting ADC units vs actual volume and flow as measured from the

volume kymograph trace and rotameter (Platon Ltd., Basingstoke, England)

respectively. The ADC flow and volume values were then related to volume and

flow by an equation that was used to convert ADC count into volume and flow.

6.3. Breath monitoring and control system

The program developed is menu driven and includes a number of peripheral

functions, these are:

a) Patient data: sex, age, height, weight and other information if necessary, are

stored in an output file.
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b) Environmental data: The date and ambient conditions of temperature,

pressure and humidity are recorded.

c) Calibration: Volume and flow can be calibrated against ADC values.

d) Save and rename files: All data files are renamed to avoid overwriting and

saved.

e) Help: Each function is explained.

6.4. Overview

This program is designed to aid in monitoring and controlling a pre-set or a

subject's breathing pattern on any number of occasions for aerosol inhalation or

any other purpose. The subject breathes on the circuit and the flow and volume

signals are passed to a microcomputer. These signals are used to display the tidal

breathing pattern on the computer screen. The program then samples a

breathing period, defined by the operator. Mean breathing parameters of

frequency, inspiratory and expiratory times, expiratory pause and tidal volume are

calculated and this pattern is displayed as a target on the computer screen. The

subject is then able ~o follow this pattern with a yellow line which corresponds to

the tidal volume produced by the subject in real-time, thus enabling a

reproducible breathing pattern to be maintained at all times and on any number

of occasions.

After the set test period (ie, time of aerosol inhalation), the program calculates
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the breath-by-breath parameters for that period, saves the results in files and

displays the results on the screen in the form of a graph with mean and standard

deviation values.

6.5. Detailed description.

[1]. Sample breathing:

The subjects' breathing pattern is sampled and the data stored in data files. The

values of volume and flow are sampled from the ADC at a rate of approximately

10 Hz. The subject can be instructed to perform normal relaxed tidal breathing

or any other pattern. The maximum volume is determined by the spirometer bell

(6 I), the maximum flow rate by the limits of the pneumotachograph (linear to

1001/min). Minimum tidal volume and flow rate is determined by the resolution

of the system (approximately 5 ml and 21/min respectively).

A period of sampling is initiated by a keystroke and volume, flow rate and time

(determined from the sampling frequency; ie time = number of samples /

sampling frequency), are saved in arrays in memory.

Sampling is then ended by another keystroke after a suitable length of time as

determined by the investigator, the data is then stored in data files.
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[2]. Calculation of sample results:

Breath-by-breath mean and standard deviation values of the following parameters

are calculated:

Tidal volume, time of expiration, time of inspiration, expiratory pause, inspiratory

flow and expiratory flow (the latter two are recorded but not used for target

parameters).

The end of a breath is taken to be at the end of expiration. This point in time is

found when both of the following conditions are met:

i) Flow is < -21/min (i.e., more negative) and

ii) Flow is < the last value of flow (ie more negative) for two consecutive points.

This is not exactly at the point of inspiration but this is accounted for in the

calculations by taking the last-but-one value of time increment as the time of end

expiration. The delay is to account for small fluctuations in flow during the

expiratory pause, where false breaths would otherwise be recorded.

The end of inspiration is found in a similar manner:

i) Flow > 2 1/min, and

ii) Flow > last value of flow for two consecutive points.
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,Target volume = a sin (2rr/fj}

Target volume = a sin (2rr/fe)

Expiratory pause is defined as the time while the following conditions are met

(note that inspiratory flow is negative):

a) Expiration = true, and

b) Flow is between +2 and -21/min. (2 and -21/min was chosen as arbitrary

limits to account for small baseline fluctuations).

At the end of a breath, the parameters of that breath are calculated and stored.

At the end of the sample calculation procedure, the mean and standard deviation

values are calculated and stored in a sample data file.

[3]. Run Test

Target values of tidal volume, time of expiration, time of inspiration and

expiratory pause from the sample file produced from [2] are used in a sine wave

equation to produce the target volume pattern to be displayed on the screen:

For Inspiration;

For Expiration;

Where:

a = amplitude (tidal volume/2)

~ = 2 x time of inspiration (T j )

fe = 2 x time of expiration (Te)
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The reciprocal of inspiratory time is used as the frequency of the sine wave

during inspiration, and the expiratory time is used in the same way for expiration.

Expiratory pause is built into the pattern separately by halting the target pattern

at the end of expiration for the time of expiratory pause (Figure 2).

The screen display is shown in Figure 3. The subject's tidal volume is displayed

as a yellow line which is a function of the volume signal entering the ADC.

Using the calibration, the ADC value is converted to ml. This value is then

converted to screen units (integers between 1 and 200). The screen units are

smoothed with a 4-point moving filter before display on the screen. The filter

averages the last three and the current value, ie:

(Last-but-two + Last-but-one + Last + Current)/4 = Current

The target is displayed as two horizontal red lines denoting tidal volume limits,

between which the subject is instructed to keep his own tidal volume (a yellow

line, oscillating in the y-direction). A green line then oscillates next to the yellow

(also in the y-direction), between the target volume lines using two sine functions,

one for inspiration and one for expiration. The target stays at the expiratory

volume line for the duration of the target expiratory pause.
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Figure 2. Diagram of the breathing pattern analysis. Tv = tidal volume, Pe = expiratory pause, Ti = inspiratory time and Te

= expiratory time.
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Figure 3. Diagram of the computer screen display during breathing control.
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Once the subject has settled and is following the target adequately, the data

sampling is started simultaneously with the aerosol inhalation. The sampling is

similar to that in [1], the values of volume and flow being saved in arrays at a

frequency of approximately 10 Hz. The sampling will continue until any key is

pressed. The time is displayed at the bottom right of the screen for

convenience. After sampling, volume, flow and time data are stored from

buffers to data files and the program returns to the main menu.

[4] Calculate and plot results

This option is used to calculate the mean and standard deviation of the

breathing parameters produced by the breathing pattern from [3]. The

calculations follow those of [2], using data from the appropriate sampling files.

In addition to the parameters already mentioned, the inspiratory pause is also

calculated, being defined in a similar way to expiratory pause:

a) Expiration = false, and

b) Flow is between t2 and -2 l/min,

The parameters for each breath and the mean and standard deviation values

for the sampling period are calculated as in [2], stored in data files and

plotted on the screen.
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6.6. Testing the system

6.6.1. Methods

The linearity of the servo-potentiometer was tested by varying the volume of

the bell spirometer and noting the value of ADC counts. ADC counts were

then plotted against spirometer volume and linear regression performed

(Figure 4a).

The equation thus produced was used to convert counts sampled from the

ADC into mI. The linearity of the flow transducer was measured in a similar

way, a variable suction was applied via a rotameter to the inspiratory side of

the transducer and ADC counts and trace height in mm measured. This was

repeated for the expiratory side. The linear regression equation was used to

convert ADC counts or trace height into I min-to

The system was then tested in two ways:

a) Volume, flow and time results as measured by the system and by the chart

recorder trace were compared. The aerosol inhalation circuit was set up as,

described above, with no aerosol solution present, but with compressed oxygen

from a cylinder at a flow rate through the nebuliser of 8 l/min, A piston

driven animal respirator (c.P. Palmer Ltd. London, England) was used to

provide regular simulated breathing with a tidal volume of approximately 500

ml and variable frequency, this was attached to the mouthpiece.

The respirator was turned on, baseline levelled with the aid of the needle
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valve and two minutes sampling started. The breath-by-breath values of the

following parameters were then calculated by the computer program and

measured on the volume and flow chart recorders for comparison:

Tidal volume (Vt ) , inspiratory flow (Fj}, expiratory flow (Fe)' expiratory pause

(Pe)' inspiratory pause (Pi)' time of inspiration (Ti) and time of expiration

(Te)' The means and standard deviations were then compared.

b) Nine healthy volunteers were chosen to inhale a simulated jet nebulised

aerosol on six occasions. The breathing control system was compared with no

control and with a target volume and frequency only.

On the first visit, each volunteer was seated in an upright position in front of

the computer screen, breathing through the mouthpiece of the aerosol

inhalation system. The jet nebuliser contained no solution and the

compressed oxygen was passed through at 6 l/min. The baseline, as measured

on the computer screen, was steadied by controlling the vacuum outlet flow

reduction valve (Figure 1). The breathing was then sampled for two minutes

with the monitor turned away from the volunteer. The volume and flow

traces were also marked for the beginning and end of sampling.

After sampling, the breathing pattern parameters were computed and stored

as the target breathing pattern for future use.
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Inhalation [A]. The target breathing pattern, following previously defined

parameters, was displayed on the monitor as a vertically oscillating green line

and the subject's breathing pattern moving along-side as a yellow line (Figure

3). The subject was asked to keep the two lines in tandem. After 5 - 15

minutes of practice, the mock aerosol delivery commenced. The start of

breathing data collection by the computer was simultaneous with the start of

the mock aerosol generation and the volume and flow traces were marked.

After two minutes of inhalation, the aerosol and data sampling were

terminated and mean breathing parameters calculated. The inhalation was

repeated on a separate day and the results compared.

Inhalation [B]. On another occasion, the subject was requested to repeat the

inhalation in the absence of the oscillating green target line. The tidal volume

target was included as two horizontal red lines on the screen and the

breathing frequency target consisted of a metronome set to a frequency of half

of the subject's time of respiratory cycle (Trc). The subject was instructed to

keep the tidal volume oscillating between the target volume lines in time to

the metronome signal and sampling was begun after 5 to 15 minutes practice.

Inhalation [C]. On a third occasion the subject repeated the inhalation

without a target (blank screen).

The inhalations [A], [B] and [C] were done in random order and repeated,

each on a separate day.
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6.6.2. Results

The calibration lines for the servo potentiometer and the pneumotachograph

are shown in Figure 4. The regression equations and the rz values are

included in the figures. Figure 5 shows the plot of recorder trace height

against inspiratory and expiratory flow rate. The regression equations shown

were used to convert mm into expiratory or inspiratory flow rate. Table 1

shows the close agreement between breathing parameters obtained from the

computer and measured from the chart recorder when breathing was

simulated with an animal respirator. The standard deviations are somewhat

greater for the chart recorder in most cases. The means of the breathing

parameters for each subject on the six inhalation occasions (two for each of

the three methods), were calculated.

To aid comparisons, the difference between day 1 and day 2 were expressed

as a percent of the mean of the two days (d value). The d value means for all

nine subjects are given in Table 2 together with the range of values in

parentheses.

The variation in inspiratory flow rate, tidal volume, time of respiratory cycle

(Trc) and inspiratory pause between breathing occasions are all smaller for the

full control than either one or other of the other two methods.
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Figure 4. (A) Graph of analogue to digital converter (ADC) value vs.

spirometer volume as measured by the spirometer potentiometer. (B) Graph

of ADC value vs. inspiratory or expiratory flow rate as measured by the

pneumotachograph.
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Figure 5. (A) Graph of chart recorder trace height vs. inspiratory flow rate.

(B) Graph of chart recorder trace height vs. expiratory flow rate.
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Table 1. Comparison of breathing parameters obtained using the computerised method with the

chart recorder trace, mean (SO). Breathing was simulated with an animal respirator.

Parameter Chart Computer

Tidal volume (Vt) ml 413.6 (9.3) 416.3 (8.7)

Inspiratory flow (Fi) lfmin 32.9 (0.5) 33.5 (0.8)

Expiratory flow (Fe) lfm!n 22.2 (0.9) 21. 7 (0.2)

Expiratory pause {Pel sec • 0.09 (0.03)

Inspiratory pause (Pi) sec • 0.10 (0.04)

Time of inspiration (Ti) sec 1.2 (0.05) 1.2 (0.03)

Time of Expiration (Te) sec 2.9 (0.05) 2.9 (0.04)

* Unable to measure respiratory pauses on chart.
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Table 2. lId' value means for the nine subjects with range in parentheses:

Method 2Fe
3F•

1

4Vt
51

rc
6p •

1

No Control

Metronome + 4Vt

Ful L Control

Notes:

23.8 16.6 19.2 16.5 51.3

(0.9 - 45.7) (1.7 - 37.6) (0.2 - 38) (5.7 - 30.8) (0.0 - 89)

11.4 13.5 3.5 1.5 72

(4.1 - 25.8) (0.0 - 30.0) (0.1 - 6.3) (0.0 - 9.3) (22 - 160)

12.0 6.4 2.5 0.3 26.0

(0.4 - 20.2) (0.4 - 13.3) (0.1 - 4.8) (0.0 - 2.9) (8.0 - 80.0)

1 'd' results are expressed as

d • day 1 mean para.eter - day 2 mean parameter
mean of day 1 and day 2

2 Peak expiratory flow rate; 3 Peak inspiratory flow rate

4 Tidal volume

5 Time of respiratory cycle

6 Inspiratory pause
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The difference is statistically significant for inspiratory flow, (p < 0.05, student's

t-test; paired data). The inspiratory pause d values were greater for the

metronome control day compared with the full control (p<0.05).

In individual cases the inspiratory flow rate varied by as much as 30.0 % from

one occasion to another with the metronome and tidal volume target, whereas

the greatest difference for the full control was 13.3 %. Similarly for the

inspiratory pause, the greatest difference was 114 % and 80 % for the

metronome and full control respectively. TfC' Fe and Vt variation was low for

both of these methods of control. If no target pattern is used, the day to day

variation is greater than either of the other two methods with the exception of

inspiratory pause (p<0.05). The greatest variation in inspiratory flow rate was

found to be 37.6 % for the 'no target' method. Similarly, the greatest

variation in tidal volume for this method was 38%, with 24% for Trc and 89%

for inspiratory pause. The breath-by-breath variability during each inhalation

was found to be similar for all three methods (Table 3).
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Table 3. Mean (range) of the breath-by-breath coefficient of variation vaLues (%) for each parameter and method.

Method 1Fe
2Fi

3y
t

4Tre
5p

i

No Control

Metronome

+ 3y
t

FuLL

ControL

10.4 9.8 11.2 8.3 64.
(5.1 - 15.6) (6.7 - 12.7) (4.7 - 14.2) (4.2 - 19.6) (30 - 125)

9.5 10.4 7.1 5.1 85

(6.3 - 15.9) (5.6 - 21.4) (3.1 - 11.1) (2.1 - 8.8) (35 - 300)

8.6 9.0 8.1 5.0 67

(4.6 - 12.3) (4.2 - 13.8) (4.2 - 13.6) (2.2 - 9.4) (36 - 100)

Notes:

1 Peak expiratory flow rate

2 Peak inspiratory flow rate

3 Ti da L vo lUlle

4 Time of respiratory cycLe

5 Inspiratory pause
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6.7. Discussion

The inhalation pattern monitoring system described is versatile for a number

of reasons: a) any regular target pattern involving multiple breaths can be

easily set or each subject's pattern, having been recorded on a previous

occasion can be used as the target, b) the target includes expiratory pause and

different inspiratory and expiratory times, making it more physiological and

easier to follow, with only a visual signal to concentrate on, rather than both

audible and visible, c) the breathing parameters are calculated automatically

and stored for later use, d) the breath-by-breath and inter-occasion breathing

pattern is more reproducible than having either 'no target' or metronome and

tidal volume target.

The values calculated are in close agreement with those measured by hand

(Table 1). The higher standard deviation values obtained from the chart

recorder trace most likely reflect the poorer sensitivity of measurement, since

the accuracy of the trace height measurement is ± 1 mm.

The lung volume at the start of inhalation was not controlled in these

experiments. The initial volume was assumed to be at FRC, since the subjects

were requested to breath tidally. The initial volume can be checked by

requesting an inspiratory capacity manoeuvre of the subject before inhalation.

This can be compared with the subject's known value or with the previous

day's value prior to inhalation.
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The inspiratory pause is usually small in normal tidal breathing, so it was not

used in the target pattern. If a target pattern with a long inspiratory pause

were required, it could be easily built in to the target by the same mechanism

as expiratory pause. If subjects are attempting to control their breathing

pattern, however, inspiratory pause may vary. Although breath holding time

has been shown to affect deposition in more peripheral airways by

sedimentation (Pavia et ai, 1980), the differences in inspiratory pause will

probably not have a significant effect on deposition unless the values are high.

The largest value of inspiratory pause measured was 0.62 seconds (subject 1,

metronome target, day 2), the pause on the other metronome day was 0.21, a

0.4 s difference that may be significant for very small droplet sizes. The

variations in inspiratory pause were generally greater when a metronome and

volume target were used, because the subjects had to 'wait' at end-inspiration

for the signal to exhale, on some occasions.

Respiratory flow rates are not necessarily related to time of inspiration and

expiration unless respiratory pauses are taken into account. Variations in

inspiratory pause with constant time of respiratory cycle, can effect total and

regional deposition by both time and velocity dependent mechanisms, as the

residence time and the inspiratory flow rate will be affected.

Although high expiratory flow rates have been shown to affect deposition

(Foster et ai, 1988), variations in normal tidal expiratory flow rates are

unlikely to have a large effect.
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For the particle sizes used in most clinical applications, inspiratory flow rate is

usually the most important breathing parameter with respect to regional

deposition (Newman 1984). Bronchial and extrathoracic deposition increase

and alveolar deposition decreases with increasing respiratory flow rate

(Stahlhofen 1984). The results presented here show that there can be a large

difference in inspiratory flow rate (up to 30%), even if the tidal volume and

breathing frequency are well controlled. This suggests that if a metronome

and frequency target are used alone, flow rates should at least be monitored

and taken into account when assessing the data.

A difficulty arises in estimating the effect of small variations in the parameters

mentioned on total and regional deposition of the aerosols. In most studies

on the effects of breathing pattern on deposition, the differences used have

been large to maximise differences in deposition. A clear relationship was

however shown between inhalation flow rate and alveolar deposition. In non-

smokers below 30 years of age the alveolar deposition value varied from over

60 % at a flow rate of 20 1/min to less than 50 % at 40 1/min (Agnew et aI,,

1985). These differences may then be further increased by variations in

inspiratory pause that may occur if flow rate and volume are not controlled

simultaneously. The precise effects of variation in inspiratory flow rate, tidal

volume and inspiratory pause will depend on the morphology of the lungs,

droplet size and regional ventilation (Trajan et aI, 1979).
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Chapter 7

Comparisons of Planar and Tomographic Gamma Scintigraphy to Measure the

Penetration Index of Inhaled Aerosols.

7.1. Introduction

The ability to differentiate quantitatively between the deposition of inhaled

aerosols in large conducting airways and in lung parenchyma is useful in

several areas of respiratory and nuclear medicine: for example, the assessment

of the initial deposition pattern is necessary in the measurement of

mucociliary clearance (Agnew et ai, 1981a; Agnew et ai, 1986; Gerrard et ai,

1986; Dolovich et ai, 1987), the 'in vivo' evaluation of devices for production

of aerosols and the parameters affecting their performance (Newman et ai,

1981; Laube et ai, 1984; Newman et al, 1984; Vidgren et ai, 1987). The

comparison of aerosols with radioactive gases (Royston et ai, 1984; Wollmer,

et ai, 1985; Taplin et ai, 1977; Susskind et ai, 1986), aerosol tests for small

airways function (Agnew et ai, 1981b; Emmett et ai, 1984) and standardisation

of inhalation provocation tests (Ryan et ai, 1981a; Ryan et ai, 1981b; Yan et

ai, 1983) all require a measure of the distribution of radioactivity between the

conducting airways and parenchyma. Perhaps the greatest need for

quantitative information on the regional distribution of inhaled materials is

necessary in the study of the deposition and elimination of substances with
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local pharmacological activity (Vidgren et aI, 1987; Ruffin et ai, 1978a; Ruffin

et aI, 1978b; Dolovich et ai, 1981) and the pathophysiological (Gerrard et aI,

1986; Taplin et ai, 1977; Emmett et ai, 1984; Dolovich et ai, 1976) and

pharmaceutical factors affecting these processes (Newman et ai, 1981; Vidgren

et ai, 1987b; Farr et al, 1985).

The most common measure to estimate the relative amounts of aerosol

deposited in the large airways and the lung parenchyma is the penetration

index (PI) (Dolovich et ai, 1976; Agnew 1984; Newman and Pavia 1985): This

parameter is obtained by defining peripheral and central regions of the

respiratory tract and calculating the ratio of radioactive counts in the two

regions; a correction based on comparison with 81mKr scans is sometimes

applied (Agnew et ai, 1981b; Emmett et al, 1984; Dolovich et ai, 1986),

particularly when the gas is used to define the lung boundary, or a volume

correction is required for intersubject comparisons.

Conventionally, two-dimensional (2D) gamma scintigraphy has been used to,

visualise the deposition of radioaerosols in the human respiratory tract by

taking posterior, or anterioposterior geometric mean views. The central and

peripheral regions of interest for the calculation of PI have been selected

assuming that the former would contain predominantly large conducting

airways while the latter would represent mostly deposition in the small

peripheral airways and, primarily, in the alveoli. It is well known that in

reality there are small airways and parenchyma as well as large airways
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large airways located in the centre of the lung because of its three-dimensional

(3D) structure.

Logus et ai, (1984) showed the great value of the 3D technique of single

photon emission computed tomography (SPECT) for lung imaging: in animals,

SPECT detected ventilation defects caused by artificial obstructions which

were not detected by other more conventional methods; while in patients with

abnormal lung function, SPECT provided much better information about the

regional aerosol deposition than either the posterior or anterior planar views.

These workers also studied the qualitative effect of two different breathing

patterns on regional aerosol deposition but they could detect no difference

either by the 2D or 3D methods, presumably because the aerosol was fine

enough (MMAD = l.2J./m, 0g = 1.8) to deposit primarily in the alveoli (Yu

and Taulbee 1977).

We wished to develop a consistent and sensitive method of PI measurement

which would enable ,us to discriminate between deposition in lung parenchyma

and conducting airways. To this end, we employed aerosols of different sizes

with expected depositions predominantly in these two distinct regions. In

order to avoid the possibility of bias due to the effect of different rate and

depth of breathing on the individual subject's aerosol deposition (Stahlhofen

1984), we measured PI in each subject for the two aerosol sizes, inhaled using

the same pattern of breathing on both occasions. We employed a gamma

camera with tomographic acquisition capability, to measure radioaerosol
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deposition on a time scale short enough to avoid significant change of the

initial deposition pattern by mucociliary transport and absorption.

7.2 Methods

Subjects

Seven healthy non-smoking subjects were studied, five men and two women of

mean age 34 years (range 26-39). Lung volumes were obtained from each

subject and dynamic lung function tests were carried out immediately before

each inhalation study. The study protocol was approved by the Hospital

Ethics Review committee and written informed consent was obtained from

each subject prior to the studies, after full explanation of the protocol.

The maximum whole body absorbed dose equivalent for each of these studies

was estimated to be 0.025 mSv (Appendix III).

Transmission study

A transmission study (Anger and McRea 1968; Bailey et ai, 1987) was carried,

out on each subject to delineate lung fields. Each subject was placed in a

supine position over a gamma camera (GE 400AT, Milwaukee, Wisconsin,

USA) fitted with a low energy, all purpose, collimator and linked to an on-line

computer (DEC PDP 11, Maynard, MA.,USA). A flood source containing

approximately 1.5 GBq of 153Gd in water was fixed to a frame in front of the

subject's chest. Two 57eo markers were placed on premarked positions on

the subject's chest and anterioposterior images collected. The markers were
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then removed with the subject remaining in the same position before a 64

angle tomographic study of 10 to 12 sees per angle (approximately 15 minutes

total duration) was acquired in a 64 x 64w matrix. The attenuation images

collected were then reconstructed to provide low definition anatomical data in

coronal and transverse planes.

AerosolDeposition

Two radioaerosols with different particle size distributions were inhaled on

two occasions by each subject. The aerosols were generated with oxygen from

a medical gas cylinder from either a Cadema nebuliser (Cadema Medical

Products Inc., Middletown, N.Y.,USA) at 8.0 1/min or a nebuliser of unknown

origiJl"at 6 1/ min. The humidity of the dilution air supplementing the flow to

the mouthpiece and the change in temperature of the nebuliser solution

during generation were found to affect the droplet characteristics (Phipps and

Gonda 1990 [Chapter 3]; Phipps et ai, 1987 [Chapter 2]). As a result of these

observations, a miniature resistive heater was positioned inside each nebuliser.

Power was then applied through a variac to keep the nebuliser as close as,

possible to room temperature. Dilution air was humidified with the aid of a

medical humidifier placed in-line. Droplet sizing was carried out on the

radioaerosols produced by the nebulisers under these conditions with the aid

of a calibrated 7 stage cascade impactor (Gonda et ai, 1982) (DCI-6, Delron,

Columbus, Ohio). The coated glass impactor slides containing the deposited

radioaerosol were counted on a previously calibrated gamma camera (Phipps

et ai, 1987 [Chapter 2]) and the droplet size distribution calculated by a least
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squares fit to the data (Chang 1978). The droplet sizes of the two aerosols

were 2.6 and 5.5~m mass median aerodynamic diameter (MMAD) and 1.4

and 1.7 geometric standard deviation (ag) respectively.

Inhalation Circuit.

A closed aerosol inhalation circuit was used to monitor and record the

subject's breathing. A target was thus provided to reproduce the breathing

pattern on the subsequent inhalation with the aerosol of different size (see

Figure 1).

The circuit consisted of a bag in a box system with the humidifier and

nebuliser in the inspiratory line and filter and CO2 absorber in the expiratory

line. The volume respired was displaced from the 'box' by the 'bag' which

then entered a bell spirometer (Gould Godart BV., Bilthoven, The

Netherlands) via a respiratory flow transducer (Hewlet Packard 47304A) and

a pneumotachograph (21073B Hewlet Packard, Waltham, MA., USA). The

flow signal from the pneumotachograph was integrated (respiratory integrator,

8815A, Hewlet Packard, Waltham, MA.,USA) and displayed on a cathode ray

oscilloscope (184A and 1805A amplifier, Hewlet Packard, Waltham, MA,

USA). A vacuum was applied to the circuit via a needle valve to evacuate

from the system an appropriate amount of air to keep the system

isovolumetric.
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Figure 1. Diagram of aerosol inhalation breathing circuit.
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Inhalation

Each subject was seated at the mouthpiece of the aerosol delivery circuit and

breathed tidally via the mouth for a few minutes to determine their natural

tidal volume, peak flow and frequency of breathing.

The target volume or inspiratory flow was then displayed on the oscilloscope

as a base line and target line. The subject followed the tidal volume, or
..

inspiratory flow line, as it moved between the target lines. A facility on the

integrator allowed for any small changes in baseline by resetting after the end

of every breath. The inspiratory flow was measured from a trace of the

original flow signal and tidal volume from the spirometer graph. A

metronome was used to provide a target for frequency of breathing.

Approximately 5ml of 100 MBq/ml 99mTc-DTPA in normal saline was then

injected into the nebuliser through a rubber septum while the subject

remained on the system. The inhalation period was three to four minutes with

a further inhalation if lung counts were found to be below 2000 counts per

second over the posterior thorax.,

Imaging

Immediately after aerosol inhalation, water was gargled and expectorated and

the subjects placed in a supine position over the gamma camera. Two-minute

anterior and posterior images were then collected before a 10-12 second per

angle SPECI' study, in a 64 x 64w matrix.
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Data Treatment

The images obtained by the gamma camera were displayed on the computer

screen in a 64 x 64w matrix (Gamma 11, DEC, Maynard MA, USA). The

transmission data were converted to attenuation values and transverse sections

reconstructed using conventional convolution back-projection methods

(Nuclear Medicine Package, Analogic Corp., Worcester, MA, USA). The

emission data were reconstructed by convolution back-projection and a

first-order Chang attenuation correction performed employing a constant..
attenuation coefficient (Chang 1978) derived from the attenuation values

described above.

Coronal and transverse sections were-formed from the reconstructed images.

A number of coronal and transverse central slices were then taken from the

mid-portion of the right lung and summed together as shown in Figure 2. The

right lung only was assessed to avoid corruption by activity in the stomach

adjacent to the left lung. The reconstructed transmission tomographic images

were used to define pght lung boundaries in transverse, coronal and

anterioposterior views for each subject. These were used to derive central

and peripheral zones by computer based on pre-defined criteria related to the

dimensions of the lung: The central region was drawn along the medial

boundary edge of dimensions as shown in Figure 2. The peripheral region

was defined by scanning from a point mid-way down the medial side of the

lung image, around the lung, drawing a peripheral strip a set distance (1/3 of

the lung height) inside the outer boundary (Figure 2).
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Figure 2. Diagram of peripheral and central regions and mid-lung

slicing.
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Once a region was defined for a subject, it was stored for all future uses.

The PI was then defined as:

Counts per second (cps)/pixel in peripheral region
PI =

cps/pixel in central region

PI measurements were carried out on the following images:

Planar methods:

1. The 2-dimensional posterior image (P), not corrected for attenuation;

2. The anterioposterior geometric mean image (AP), not corrected for

attenuation;

Tomographic methods:

3. Transverse central slices (TC) taken through the mid-portion of the lung in

transverse view of thickness approximating 50% of the lung height;

4. Coronal central slices (CC), taken through the mid-portion of the lung

coronal view of thickness approximating 40% of the lung depth.

The PI of the first and last image of each tomographic study was measured to

assess the degree of change in regional deposition during the duration of the

SPECT study.
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7.3. Results

All subjects' spirometry and lung function results were within the normal

range and there was negligible intrasubject variability in performance between

'small' (MMAD = 2.6Jlm, 0g = 1.4) and 'large' (MMAD = 5.5Jlm 0g = 1.7)

aerosol studies (Table 1).This was confirmed by the two tailed paired t-test

(Snedecor and Cochran 1967) and the two tailed Wilcoxon rank sum test

(Colton 1974) which demonstrated no statistically significant intrasubject

differences (p<O.1) between the two studies for mean peak inspiratory and

expiratory flow, tidal volume and duration of respiratory cycle (Table 2).

These are the primary breathing parameters believed to affect the regional

deposition of aerosols in the aerodynamic size range used in this work

(Stahlhofen 1984).

Figure 3 shows typical AP and CC images for the small and large droplet

studies in subject 2. A small qualitative difference in the deposition pattern of

the right lung can be observed with the AP images, while a much greater

difference in the deposition pattern between large and small droplets with the,

CC images can be observed.

Figure 4 shows that the PI was smaller for the large droplets in all subjects

and in all methods employed.
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Table 1. Subject details.

Subject Sex Age Heiyht Weight ve* FEV1 FEv1/ve FEFso(Year) (cm (Kg) % % % %

S L S L S L

1 F 39 154 54 105 97 98 79 84 59 62.
,

2 M 39 182 71 107 105 113 85 83 101 106

3 M 26 191 78 103 103 104 82 84 101 98

4 M 38 154 59 111 116 113 83 88 77 78

5 M 38 165 63 108 111 102 86 89 102 96

6 M 26 171 65 119 13'0 l!28 86 87 103 96

7 F 29 166 67 114 104 109 83 86 74 78

* ve - Vital capacity (% predicted),

FEV1 - Forced expiratory volume in 1 second (% predicted),

FEv1/ve - FEV1 as % of ve,

FEFso - Forced expiratory flow at 50% ve (% predicted) (51).

S - 'Small' aerosol droplet study (MMAD = 2.6 pm).

L - 'Large' aerosol droplet study (MMAD = 5.5 pm).
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TabLe 2. Mean breathing parameters (± standard deviation).

,
S - 'small l aerosoL dropLet study (MMAD ·2.6pm),
L - I Large' aerosoL droplet study (MMAD .5.5pm),
d - %difference between large and smaLL study, 100 (L-S)/S

MPIF - mean peak inspiratory fLow (L/min),

MPEF - mean peak expiratory flow (l/min),
MTV - mean tidaL voLume (mL),

ORe - duration of respiratory cycle (sec),

ev - coefficient of variation (%).

1

SUBJECT

2

3

4

5

6

7

STUDY·

S

L

d

S

L

d

S

L

d

S

L

d

S

L

d

S

L

d

S

L

d

·Study

MPIF(l/min) MPEF(I/min) MTV(ml) DRC (sec)

(CV %) (CV %) (CV %) (CV %)

25.1 (8.9) 20.6 (7.2) 491.7 (6.9) 4.45 (3.3)

25.9 (9.4) 19.2 (9.5) 493.9 (8.9) 4.40 (3.8)

3.2 -6.8 0.5 1.10

23.2 (26.7) 16.7 (13.4) 713.8 (9.1) 8.11 (3.8)

28.4 (23.7) 17.5 (17 .B) 730.2 (15.0) 7.96 (4.0)

22.4 4.8 2.3 1.8D

41.9 (6.9) 31.1 (6.6) 614.7 (5.3) 5.21 (4.4)

40.4 (4.7) 27.3 (6.3) 574.8 (5.3) 5.18 (4.1)

-3.6 -9.6 -6.5 0.6

30.4 (15.9) 21. 7 (7.5) 682.6 (11.3) 4.91 (3.2)

8.1 (11.5) 20.5 (7.2) 74.6 (7.7) 4.90 (3.1)

-7.6 -5.5 -1.2 0.2

43.3 (16.1) 34.4 (11.6) 987.6 (3.8) 6.26 (4.4)

31.1 (8.1) 0- 31.1 (9.6) 1000.1 (3.4) 6.28 (4.8)

-28.2 -9.6 1.3 0.3

31.0 (12.7) 34.3 (8.B) 1254.8 (8.1) 6.43 (3.4)

'34.1 (8.7) 29.6 (12.7) 1244.2 (14.2) 6.44 (4.7)

10.1 -13.7 -O.B 0.2

29.1 (13.7) 19.5 (13.7) 495.0 (12.1) 3.65 (4.2)

35.3 (10.7) 24.6 (9.3) 633.9 (13.0) 3.60 (4.6)

21.3 26.5 28.1 1.4
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Figure 3. Opposite: Deposition images of the small aerosol (3a and 3b) and

large aerosol (3c and 3d) in subject 2. Images 3a and 3c are anterioposterior

(AP) images, while 3b and 3d are coronal mid-lung slices (CC). The CC

images show a larger qualitative difference in deposition pattern between the

large and small studies.
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Figure 4. Penetration index (PI) values for small (S) and large (L) droplets.

Posterior image (P), anterioposterior image (AP), transverse mid-lung slices

(TC) and coronal mid-lung slices (CC). Where a single point for the S aerosol

represents two subjects, the first number refers to the subject with a higher PI

for the L aerosol.
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The highest statistical significance was obtained for the transverse (p<10-5)

and coronal (p<10-3) mid-lung slices, while the planar (P) images exhibited

the least significant difference (p = 0.014). To examine the group response

more closely, these differences were further evaluated by calculating the

relative increase in PI of the small droplet compared to the large droplet

study as a percentage (d):

PI (small droplets) - PI (large droplets) x 100
d % = ---------------

PI (small droplets)

The differences in PI between the large and small droplet studies are shown in

Figure 5. The d values obtained from the 3D (TC and CC) images are

significantly greater than those from the 2D (P and AP) (P<0.005), while

there was no difference between the two 3D methods nor between the two 2D

methods (p>O.l). d from the P method was inferior to all other methods

tested.

The standard deviation of the mean d values are also shown in Figure 3. PI,

from TC and CC can be seen to display the most consistent pattern in our

subject population and aerosols studied.

There was no trend or significant difference in PI between the first and last

frame of the SPECT studies (p = 0.26, Table 3).
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Figure 5. Chart of d values as the relative difference in penetration index

between large and small droplet studies (d values) and standard deviations for

posterior (P), anterioposterior (AP), transverse mid-lung slices (TC) and

coronal mid-lung slices (CC).
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Table 3. Penetration Index (PI) and d vaLues (the difference; frame 64 - frame 1 as ill

percentage of frame 1) for the first and Last frame of each SPEer study.

Subject Frame PI d value (%)

1 SIlI4 Ll I 31.1 4
64 32.4

1 Large 1 60.8 -3

64 58.9

2 sDla 1I 1 40.3 9

64 44.4

2 Large 1 50.5 14
64 58.6

3 small I 23.3 13

64 26.3

3 Lorge I 44.8 -2

64 44.1

4 sma II 1 40.7 12
64 45.6

4 Large I 54.2 -9

64 49.3

5 smal L I 34.7 -5

64 33.1

5 Large I 53.1 5

64 55.9

6 sma Ll 1 35.1 -II

64 31.4

6 Large I 48.9 -15

64 41.6

7 smalL I 35.7 10

64 39.2

7 Large I 56.5 7

64 60.2

d value calculated as:

(pI [Frame I] - PI [Frame 2]1 PI [Frame 1]) x 100
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7.4. Discussion

Among the various quantitative measures of the distribution of deposited

radioaerosols between the airways and the lung parenchyma, the penetration

index, PI, is almost certainly the most convenient and readily measurable.

However, planar measurements of aerosol deposition suffer from the problem

of the inclusion of overlying "peripheral" airways in the central "large" airway

region (Logus et aI, 1984).

It has been suggested before (Dolovich et aI, 1985) that tomography should be

better suited to distinguish between deposition in the small and large airways

than the conventional 2D images. We therefore attempted to further separate

central and peripheral airways by the use of these tomographic techniques.

Our results show that in comparison with the conventional techniques based

on planar imaging, tomographic methods of measuring regional deposition are

superior, with the coronal and transverse mid-lung slices giving a more

discriminating measure of PI. This is also likely to be the case with aerosols

of different droplet size characteristics to those used, as long as there is a

proportion of both peripheral and central deposition.

Mildly polydisperse aerosols with mass median aerodynamic diameters of

5.51Jm and 2.61Jm were used because the former aerosol would be expected to

have a substantially smaller PI than the latter (Gonda et al, 1982; Gonda

1981; Ferron et aI, 1985). Impaction in the conducting airways is probably the

predominant mechanism of deposition of the 'large' droplets while
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sedimentation in the small airways and alveoli becomes important for smaller

droplets. The results indicate that the choice of the regions of interest is

consistent with the idea that the 'central' region, indeed, contains mainly large

conducting airways and the 'peripheral' region consists probably of bronchioli

and alveoli; otherwise, we would not expect to obtain such clear differences in

PI between the two aerosols in all subjects and methods used. Although there

was a difference in the breathing patterns between the large and small aerosol

studies in some subjects, there was no significant trend and the changes in PI

could not be explained by this. Nevertheless, we would recommend that

attempts are made to reproduce as much as possible the breathing pattern in

an individual for studies of changes in PI, particularly in subjects with

abnormal and variable airway function (Laube et ai, 1986).

After the initial deposition, the inhaled aerosol undergoes dynamic changes

due to absorption and mucociliary clearance (Lippmann et ai, 1980).

Although a longer time is required for SPECf image acquisitions (up to 15

mins), these changes are likely to have little effect on the calculated PI values,

for the following reasons: in normal subjects, the absorption rate half life of

Tc-DTPA is 86 ± 26 minutes (Coates and O'Brodovich 1986) and this varies

little throughout the respiratory tract over the SPECf acquisition time,

especially medio-laterally (O'Doherty et al, 1985; Dusser et ai, 1986; Coates

and O'Brodovich 1987). Therefore, this route of elimination of the

radioactivity will affect approximately equally both the peripheral and the

central regions. Similarly, the 'background' radioactivity appearing in the
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blood stream will be small and distributed quite uniformly and it will be

cleared rapidly with 58% clearing with a biological half-time of 3.8 min, 24%

with 15.6 min and 18% greater than 118, min in subjects with normal renal

function (McAfee et al, 1979). With regard to the mucociliary clearance, it

can be envisaged that at least in normal subjects this process is at steady state,

whereby there exists a balance between the rates of supply and removal of

material in the more proximal ciliated regions of the respiratory tract.

Therefore, we would not expect this process to significantly affect the

radioactive counting in the central region over the time period of the SPECf

studies. The peripheral region probably contains many non- ciliated surfaces

which are therefore not subject to mucociliary clearance. Moreover, all the

above processes have half-lives longer than the duration of our SPECf studies

(Byron 1986; Becquemin et al, 1987). These assumptions are supported by

the insignificant change in PI between the first and last frames of each study.

In conclusion, we have shown that there were significant reductions in the PI

values in normal adults when they inhaled two aerosols with MMAD of 2.6

IJm (Og = 1.4) and 5.5 IJm (Og = 1.7), respectively, under controlled

conditions. These reductions were most pronounced when the PI was

calculated from mid-lung coronal or transverse slices obtained by SPECf

reconstruction; this former method also gave the most consistent pattern of

changes in PI in the subject population studied. The conventional planar

images showed the same qualitative behaviour, but their ability to distinguish

between deposition of the large and small aerosols was substantially lower,
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particularly for the posterior images.

This is the first time that quantitative deposition measurements have been

undertaken using SPECT and the advantages of PI obtained in this way are

likely to be important in studies requiring a high degree of discrimination

between the deposition of aerosols on conducting and respiratory surfaces of

the respiratory tract.
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Chapter 8

The deposition patterns of non-isotonic challenge aerosols in normal and

asthmatic subjects.

8.1. Introduction

The first systematic study of the bronchoconstrictive properties of non-isotonic

aerosols was performed by Schoeffel et ai, (1981) who found that smaller inhaled

doses of aerosols containing 3.6% or 0.3% saline were required to produced a

20% fall in pre-challenge FEV1 in a group of asthmatics than isotonic aerosols

(0.9%). Since that time, non-isotonic ultrasonically nebulised (UN) aerosols have

been advocated and used as part of the range of diagnostic tests for asthma

(Smith and Anderson 1989) and have increased our understanding of some of the

mechanisms involved in this disease.

The droplet size distribution of the inhaled aerosol is a critical factor that

determines the site of deposition (Stahlhofen et ai, 1983; Ferron et ai, 1981).

Predictions of regional deposition can be made from a knowledge of the droplet

parameters, however, non-isotonic aerosols are unstable in the respiratory tract

and are able to undergo hygroscopic growth or shrinkage after inhalation (Ferron
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1977). Thus hypertonic aerosols are hygroscopic and will absorb water vapour

from a humid environment until the droplet vapour pressure is in equilibrium

with that of its surroundings or they deposit. If the airway fluid is isotonic, then

the droplets will reach equilibrium when they have absorbed enough water to

become isotonic themselves. In so doing, they will increase in size. This will in

turn affect the regional and total deposition pattern of the aerosol (Stah1hofen et

aI, 1983). Hypotonic aerosol droplets however, can evaporate as they come into

equilibrium with the lower vapour pressure of the airways and they too will cease

to evaporate once they have attained isotonicity or have deposited. Hyper- and

hypo- tonic droplets of the same initial size may therefore deposit with very

different regional patterns (Byron et aI, 1977).

The effects of hygroscopic growth have been predicted by mathematical

modelling using growth rate theory and deposition probability functions of

particles in the respiratory tract (Ferron 1977; Persons et aI, 1987; Martonen et

aI, 1982). The effects of hygroscopic growth on total deposition has been studied

experimentally (Dautrebande and Walkenhorst 1960; Hicks et aI, 1986) and

growth of sodium chloride aerosols was inferred after larger particles were

present on exhalation than on inhalation (Anselm et aI, 1986). However, no

experimental data exists on the effect of growth or shrinkage on regional

deposition of aerosols in the lungs.

176



It has been proposed that the inhalation of non-isotonic aerosols, exercise and

isocapnic hyperventilation (ISH) all lower FEY1 by provoking bronchoconstriction

as a result of increased airway fluid osmolarity (Smith and Anderson 1986). The

surface area and airway fluid volume of the proximal airways are small compared

to that of the distal airways and alveoli (Anderson et al, 1989). Therefore, the

greatest changes in osmolarity due to non-isotonic aerosol deposition or

conditioning of the inspired air during ISH or exercise, will occur in the large

airways. There is also a direct relationship between the severity of the response

and the dose (in terms of water loss from the airways or water required to return

the airways to isotonicty) for all three of these stimuli (Smith and Anderson

1989a; Chen and Horton 1977).

The delivery of aerosol to the large airways, rather than the dose to the whole

lung may therefore be the most important determinant of the response if the

changes in airway fluid concentration (the stimulus) in the small airways and

alveoli are minimal in comparison. Factors affecting this large airway dose will

then control the resI/onse to the aerosol.

Characteristics relating to the subject may also have a profound effect on the

regional deposition of the inhaled aerosols. Of particular importance is the

geometry of the airways. It has been shown that the reduction in airway calibre

occurring during an episode of asthma will increase deposition in the proximal
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airways relative to the distal (Laube et ai, 1986). This is of importance with

challenge agents such as histamine (Ruffin et ai, 1978) which may depend for

their effect on the site of deposition. The pre-challenge lung function and

pattern of bronchoconstriction during the challenge test may therefore alter the

deposition pattern and hence the response. The airway narrowing occurring

during non-isotonic aerosol challenge is likely to result in a greater proportion of

the aerosol depositing on the proximal airways, thereby increasing the dose and

altering the response.

If the pattern of deposition is important in diagnosis with non-isotonic aerosols

(this includes therapeutic or other challenge agents delivered by nebulisation),

then we need to understand and assess the effects of tonicity on regional

deposition and the way in which changes in airway calibre affect deposition

during the challenge itself.

We have previously demonstrated the use of a three dimensional scintigraphic

technique as a sensitive method of distinguishing between the deposition patterns

of large (5.5,um) and small (2.6,um) droplets (Phipps et ai, 1989 [Chapter 7]).

Our aim was therefore to mimic the inhalation of non-isotonic UN aerosols used

in asthma diagnosis and compare the regional deposition of 0.3 and 4.5% NaCI

aerosols of the same initial droplet diameter in normal subjects. Due to the large

volume of radioaerosol and possible uncertainty of dose from the Mist-Oj-Gen

178



nebuliser, a jet-nebuliser was used with similar droplet characteristics. We also

wished to study the effects of bronchoconstriction during inhalation of 4.5 %

saline on the deposition pattern in asthmatic subjects.

8.2. Methods

1. Penetration index of hyper- and hypo- tonic aerosols in normal subjects.

An Up-Draft (Hudson Up-Draft Oxygen Therapy Sales Co., Temecula, CA,

USA) jet nebuliser was used in this study.

The output of the jet nebuliser was lower than that of the Mist-Oy-Gen ultrasonic

nebuliser at 0.23 ml/min (compared to 0.49 m1/min), while the droplet size was

similar (mass median aerodynamic diameter (MMAD) = 3.7 - 3.81km and

geometric standard deviation (ug) = 1.4 for the Up-Draft compared to MMAD

= 3.61km and ug = 1.1 for the Mist-Oy-Gen)

The breathing system consisted of an aerosol inhalation circuit as previously

described (Phipps etal, 1989 [Chapter 7]). The subject inhaled the aerosol with

dilution air supplied via a medical humidifier and exhaled through a filter and

carbon dioxide absorber into a bag-in-a-box. A pneumotachograph and

potentiometer attached to a bell spirometer provided signals of flow and volume,

respectively. A microcomputer was used to display a target volume, frequency

and flow rate according to the previously determined respiratory pattern of that
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subject. The subject was instructed to follow this target while inhaling the

aerosol, thus keeping the breathing pattern similar on both aerosol inhalation

occasions (see Chapter 6).

Eleven non-smoking subjects with no history of asthma or any other respiratory

disease, and normal lung function tests, inhaled 4.5% and 0.3% NaCI aerosols on

separate occasions. The aerosols contained approximately 200 MBq/ml of

99mTechnetium-diethyltriaminepenta acetic acid (99mTc-DTPA). Both aerosols

were delivered by the jet nebuliser driven with compressed oxygen at 8 1/min.

The droplet size distributions of the aerosols were measured by cascade

impaction as previously described (Phipps et aI, 1987 [Chapter 2]) and were

found to have similar droplet size distributions (MMAD = 3.7 ± 0.1 /Lm for the

hypertonic and 3.8 ± 0.1 /Lm for the hypotonic and Gg = 1.4 ± 0.1 for both).

..,,>.-,
"'", c"~.~f·~

'"
Spirometry was performed prior to, and a single test immediately after, inhal~lion

(subjects were also instructed to gargle and expectorate, then to swallow water to

remove mouth and oesophageal activity). Directly after the spirometry, each

subject was placed in a supine position over a collimated gamma camera (GE

4OOAT, Milwaukee, Wisconsin, USA) and a 1 minute anterior and posterior

imagec~ with two small CWm-rechnetium-pertechnetate markers attached to

the subject's chest to assist image alignment, before a 64 angle tomographic study

,"".: ,,,ff

of 12 minutes total duration was performed. "
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A transmission tomographic scan was performed to delineate the lung fields on a

separate occasion. A flood source containing approximately 1.5 GBq of 153Gd in

water was fixed to a frame mounted on the camera head. With the subject in a

supine position between the flood source and camera, a 64 angie tomographic

study of the thorax was acquired in a 64 x 64w matrix. The attenuation images

collected were then reconstructed to provide low definition anatomical data in the

coronal plane.

2. Penetration index of hyper- and iso- tonic aerosols in asthmatic subjects.

Nine otherwise healthy, non-smoking subjects with a documented history of

asthma, inhaled isotonic and hypertonic (4.5%) saline aerosols containing

approximately 200 MBq/ml of 99mTc_DTPA on two separate occasions using the

Up-Draft nebuliser. The duration of inhalation was decided on a previous

occasion as the amount of hypertonic aerosol required to produce a minimum fall

in FEV1 of 20% of the pre challenge value, with 5 minutes the maximum

inhalation time. The concentration of 99mTc_DTPA was adjusted to give a

maximum nebuliser output of 100 MBq per study (estimated maximal activity

depositing in the respiratory tract for each study = 30 MBq). The maximum

whole body absorbed dose equivalent for each of these studies was estimated to

be 0.025 mSv (Appendix III)

The subjects were requested to cease all bronchodilator medication for at least 6
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hours prior to the aerosol inhalations. Spirometry was performed immediately

before and after the aerosol inhalations. Bronchodilator aerosol was

administered after the hypertonic aerosol if required (only subjects 1 and 9

required it), otherwise after the imaging was completed.

3. Data treatment for both studies.

The tomographic data were reconstructed and coronal reformatting performed

(Phipps et a1, 1989 [Chapter 7]). A thick mid-lung coronal slice was used to

measure penetration index as described by Phipps et al (1989 [Chapter 7]). The

lung regions were drawn with the aid of the transmission scans to delineate the

lung boundaries. An example of the use of the transmission scan is shown in

Figure 1, which shows a central aerosol deposition pattern and the lung boundary

defined by transmission tomography in the subject 12. The penetration index

(PI) was defined as the counts in a peripheral region / the counts in a central

region. The central region was also modified to include the trachea (Figure 2a).

8.3. Results

The morphometric details of all the subjects are given in Table 1.

There was very little or no difference in any of the breathing parameters between

inhalation occasions for all normal or asthmatic subjects (Table 2). The standard

deviation of the breathing parameter means was less than 15 %.

182



Figure 1. Transmission (on the left of the figure) and corresponding eJIlission

images of subject 12. Corona) central slices are shown above transverse central

slices in this figure. The aerosol has deposited centrally as can be observed by

comparison with the lung boundaries shown in the transmission images.
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Figure 2. Above; a) Regions of interest as described in Chapter 7 with the

central region altered to include the trachea. b) With peripheral region modified

to include all but the central region.

Below; Mid-lung coronal slice of hypertonic aerosol study in subject 1,

showing the modified central region.

b)a) " .• • • • •• • • • • •• • • ••••• • • • ••••.' ... '.' '
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TabLe 1. Morpho.etric detaiLs of the normaL subjects (numbers 1 to 11) and the asthmatic subjects

(numbers 12 to 20).

Subject Sex Age Height

(Yeor) (em)

1 M 23 170

2 M 24 174

3 M 19 170

4 M 21 169

5 M 22 182

6 F 27 164

7 F 27 163

8 M 20 165

9 M 20 176

10 M 23 179

11 M 22 177

12 F 20 167

13 M 27 173

14 M 22 174

15 F 30 156

16 M 25 188

17 M 26 173

18 M 23 179

19 M 22 180

20 M 24 174
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Table 2. Mean breathing parameters for each sUbject (normaL and asthmat1c).

Hypotonic or Isotonic aerosoL Hypertonic aerosol

Subject Vt F; Fe Tt ot P; Vt F; Fe Tt ot Pi

1 423 21.2 12.7 5.1 0.1 412 20.6 12.9 5.2 0.1

2 660 24.4 25.1 3.6 0.22 579 21.6 22.9 3.6 0.21

3 772 17.5 16.1 5.6 0.26 772 17.3 20.1 5.6 0.3

4 550 14.7 21.6 3.6 0.24 478 12.9 20.6 3.7 0.22

5 740 16.2 17.5 5.1 0.45 624 18.6 16.6 5.1 0.36

6 633 16.6 17.0 6.0 0.16 634 17.6 15.0 6.0 0.1

7 401 28.3 20.6 5.9 0.06 391 32.3 16.1 5.8 0.06

6 746 26.4 29.0 4.4 0.22 669 26.0 30.1 4.2 0.19

9 791 25.6 29.6 3.5 0.1 672 26.9 33.4 3.5 0.11

10 449 12.6 12.6 4.7 0.51 416 13.3 12.3 4.7 0.56

11 616 14.4 11.4 6.0 0.27 634 12.4 13.0 6.0 0.26

12 971 22.3 27.9 4.9 0.3 1003 25.4 32.1 4.6 0.22

13 1005 35.9 29.2 5.4 0.19 1101 40.9 29.6 5.5 0.14

14 710 35.6 24 4.4 0.15 752 36.4 26.5 4.4 0.11

15 363 16.6 13.6 5.0 0.3 439 20.0 15.5 5.7 0.5

16 1000 46.7 22.0 4.9 0.4 949 52.9 21.1 5.1 0.43

17 422 11.0 16.6 3.6 0.22 426 9.6 16.2 3.6 0.13

16 566 22.5 15.6 5.4 0.11 595 25.4 14.6 5.9 0.2

19 441 16.4 22.7 3.1 0.06 464 19.9 22.0 3.0 0.06

20 1694 71.5 35.6 6.6 0.06 1773 69.2 36.2 7.0 0.09

Notes:

Vt • Tidal volume [ml]

Fi • Peak inspiratory fLow rate [L/min]

Fe • Peak expiratory fLow rate [l/min]

Tt ot = Time of respiratory cycLe [s]

Pi = inspiratory pause [s]
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The difference in the mean parameter between the two inhalation occasions was

also less than 15 %, with the exception of inspiratory pause which was mostly

within 0.1 seconds on the two occasions (subject 15 had a difference greater than

this of 0.2 sees),

1. Penetration index of hypo and hyper- tonic aerosols in normal subjects.

The pre-test FEV1 values were greater than 96% of predicted and were similar

to the post-test values for all subjects on all study days (intra- and inter- study day

differences were < 4.7 %).

There was no significant difference in PI between the hypo- and hyper- tonic

aerosols when the tracheal counts were excluded from the central region (Table

3). It was noted however, that there was significantly greater activity in the

trachea (as percent of total right lung counts) of the hypertonic compared to the

hypotonic studies (p<0.01, Table 4 and Figure 3). This trend was also present

with the static anterioposterior images taken immediately after inhalation (p =

0.051, Table 5). The regions of interest were therefore modified to include the

trachea as part of the central region (shown in Figure 2a). The PI values for the

small (2.6,um) and large (5.5 ,urn) isotonic droplet inhalation studies (Chapter 7)

were recalculated using the regions of interest that include the tracheal counts in

the central region to assess the effects on PI for the large and small droplet

studies.
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Table 3. Deposition patterns for eLeven normal subjects inhaLing hypo- and hyper- tonic aerosols

PI with tracheaL counts PI with tracheal counts CentraL region (incLuding Modified PI. Non-central

excLuded fro_ centraL included in centraL trachea) as % of right counts / central region

region. region. lung counts (incl. trach••)

Subject Hypotonic Hypertonic Hypotonic Hypertonic Hypotonic Hypertonic Hypotonic Hypertonic

1 45.4 51.9 39.9 39.2 62.7 69.8 .. 59.5 43.3

2 47.0 45.2 43.5 34.8 55.4 69.3 " 80.6 44.3

3 81. 7 77 .2 73.4 71.f 44.7 44.8 123.6 122.9
,

4 49.1 50.6 46.3 46.3 52.7 53.0 89.7 88.5

5 71.5 58.6 67.4 52.7 43.4 47.7 130.7 109.6

6 48.6 54.8 42.9 47.0 55.5 54.0 80.1 85.2

7 42.2 45.5 38.1 41.4 ,55.8 53.0 79.3 88.8

8 42.1 45.9 36.7 35.3 ~4.0 69.7 56.3 43.4

9 50.1 47.2 48.2 42.5 51.8 55.2 89.6 81.1

10 61.5 63.3 53.0 46.3 53.6 61. 7 86.7 62.2

11 54.5 48.6 51.6 42.6 47.6 54.8 110.0 82.4
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TabLe 4. TracheaL counts as % of those in the right Lung for aLL 20 subjects.

Subject Isotonic or hypotonic Hypertonic aerosoL

aerosoL

1 7.6 17.1

2 4.1 16.1

3 4.5 3.5

4 3.0 4.5

5 2.5 4.8

6 6.5 7.8

7 5.4 4.8

8 8.3 16.1

9 2.7 5.5

10 7.4 16.6

11 2.5 6.7

12 4.2 22.7

13 1.8 37.8

14 18.5 33.5

15 5.1 14.7

16 1.8 6.7

17 11.3 26.3

18 5.7 7.1

19 7.3 7.6

20 4.1 8.2
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Figure 3. Opposite: Mid-lung coronal images from the hypotonic (on the left)

and hypertonic (on the right) aerosol studies in subject 1. Note the enhanced

tracheal deposition in the hypertonic study.
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Table 5. Tracheal counts as a % of the right lung counts, obtained from static i~ges taken

immediately after inhalation of the hypo- or hyper- tonic aerosols in the normal subjects.

Subject Hypotonic aerosol Hypertonic aerosol

1 4.3 5.2

2 5.7 13.8

3 4.5 4.9

4 4.9 4.6

5 5.2 7.9

6 7.2 5.4

7 9.4 7.1

8 9.7 15.5

9 3.8 6.1

10 7.0 14.6

11 3.4 5.9
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The difference in PI between large and small droplet studies for the coronal

mid-lung slices was found to be significantly greater when the tracheal counts

were included in the central region (p = 0.02, Table 6). By using the

modified regions of interest, the PI from the hypo- and hyper- tonic studies

came close to being significantly different (p = 0.052, Table 3). By expressing

the central region counts (including the trachea) as a percentage of the total

counts in the right lung, there was a significant difference between hyper- and

hypo- tonic aerosols (p = 0.02) (Table 3). If the peripheral region is also

modified to include all the counts in the right lung not included in the central

region (Figure 2b) the PI values for hypo- and hyper- tonic aerosols are again

significantly different (p = 0.032, Table 3).

2. Penetration index of hyper- and LsO- tonic aerosols in asthmatic subjects.

There was no systematic difference in PI between the hyper- and iso- tonic

aerosols for the whole group of asthmatic subjects due to the variations in

response. However, a number of observations can be made on small groups

of subjects (Table 7}.

The difference in PI between the iso- and hyper- tonic aerosol studies may be

expressed by the 'd'value, where d = [PI (isotonic) - PI (hypertonic)] x 100/

PI (isotonic). The provoked fall in pre-challenge FEVl and/or hygroscopic

growth of the hypertonic aerosol would be expected to result in a smaller PI

(positive d).
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Table 6. PI values for large (5.5 pm) and small (2.6 pm) isotonic droplet inhalation studies in seven normal subjects. Results include or exclude

tracheal counts in the central region. (For details see Chapter 7).

Subject Tracheal counts excluded from central region Tracheal counts included in central region

Small droplets large droplets d values SIMI 1 droplets Large dropLets d values

1 66.9 27.2 59.3 62.2 24.4 fiQ.8

2 46.3 32.8 ~·.2 44.0 28.4 35.5

3 42.5 18;8 55.7 36:1 15.1 58.2
I

4 75.4 46.3 38.6 71.3 35.7 49.9

5 58.6 31.5 46.2 56.8 23.8 58.1

6 78.1 40.3 48.4 71.4 .33.1 53.6
c .

7 79.8 22.4 71. 9 74.8 20.9 72.1

d value in this case is as defined in Chapter 7 (small - Large / smaLL) x 100 - ie percent fall in PI from smaLL to large droplet study.
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TabLe 7. Penetration Index, baseLine and post test FEV! vaLues for 9 asthmatic sUbjects for iso- and hyper- tonic aerosol inhaLations.

Corona LSLices FEV1 % Predicted

1S0TON1C HYPERTONIC ISOTONIC HYPERTONIC

Subject TracheaL counts TracheaL counts TracheaL counts Tracheal counts BaseLine Post- BaseLine Post-

incLuded in excLuded froll included in exc Luded froll FEY1 cha Llenge FEYI cha llenge

cent re l reg i on central region central region centraL region FEV 1 FEV1

12 48.6 60.2 9.7 17.7 82.1 88.2 76.4 16.0

13 37.6 40.7 13.9 30.2 98.3 100.7 100.7 84.4

14 36.9 50.4 31.6 20.4 92.2 92.7 96.5 90.5

15 39.5 48.3 22.5 35.6 118 119 118 117

16 43.3 46.8 36.1 46.5 79.9 77.5 79.6 75.8

17 28.5 39.4 20.8 39.9 70.3 75.6 74.1 80.4

18 27.6 32.8 45.1 58.4 62.3 61.3 85.7 83.8

19 21.8 26 32.9 40.6 73.2 70.6 79.3 73.9

20 18.6 24.6 22.2 39.3 58.1 59.3 70.7 20.2
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Table 8. Changes in PI and FEV 1 ('d ' values) for the asthmatic subject studies.

Subject PI with tracheal PI with tracheal Isotonic Hypertonic Baseline Post

counts included in counts excluded from % fall in FEY1 % fall in FEY 1 FEY 1 cha l lenqe

central region central region during test during test FEY1

12 80.0 70.6 -7.4 79.1 6.9 81.9

13 63.0 25.7 -2.4 16.2 -2.4 16.2

14 44.7 3.3 -0.4 6.2 -4.7 2.4

15 43.3 26.3 -0.8 0.8 0.0 1.7

16 16.6 0.64 3.0 4.8 0.4 2.2

17 27.0 -1.3 -7.5 -8.5 -5.4 -6.3

18 -63.4 -78.0 1.6 2.2 -37.6 -36.7

19 -50.9 -56.2 3.6 6.8 -8.3 -4.7

20 -19.4 -59.8 -2.1 71.4 -21.7 65.9

Note:

d values calculated as: d· [PI (isotonic) - PI (hypertonic)] x 100 I PI (isotonic).
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This was the case in subjects 12 to 17 (Tables 7 and 8) who had differences in

baseline FEY1 of less than 7%. Figure 4 shows the effect of

bronchoconstriction provoked by the hypertonic aerosol on regional deposition

in subject 12. The perihilar deposition pattern is evident when airway

narrowing reduces the aerosol penetration.

Conversely, subjects 18 to 20 had a greater PI value for the hypertonic than

the isotonic aerosol. All of these subjects had a better baseline (pre

challenge) FEY1 on the hypertonic day which may account for this finding,

All 9 asthmatic subjects are included in the plot of d value of PI between iso

and hyper- tonic aerosols versus the difference in baseline FEY1 and the

difference in post-challenge FEY1 between the iso- and hyper- tonic aerosols

(Figure 5).

Again, of particular note was the fact that the counts in the trachea were

greater on the hypel'!0nic day for every subject (p<O.OI, Table 4).
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Figure 4. Mid-lung coronal slices of the hypertonic aerosol (on the left) and

isotonic aerosol for subject 12. Note the effect of bronchoconstriction

provoked by the hypertonic aerosol on the deposition pattern.

•
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Figure 5. Plot of penetration index d values against the difference in baseline

FEV1 (circles) and the difference in post-challenge FEV1 (squares) between

the iso- and hyper- tonic aerosols. (d values expressed in %).
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8.4. Discussion

The characteristics of the Mist-Os-Gen ultrasonic nebuliser output have been

previously determined (Phipps and Gonda 1990 [Chapter 3]). With a Hans

Rudolf valve included in the delivery system, it has a higher output than the

Up-Draft of 0.49 ml/min (Smith 1988) and droplets of a suitable size for

penetration into the airways (mass median aerodynamic diameter of 3.6 f.Lm

and geometric standard deviation 1.1, Phipps and Gonda 1990 [Chapter 3]).

Droplets of this initial size containing 4.5% saline, on reaching equilibrium

with the isotonic fluid in the lungs, will grow in diameter to 6.3 f.Lm.

Conversely, droplets of the same initial size consisting of 0.3% saline will

evaporate to an equilibrium size of 2.6 f.Lm (Figure 6).

1. Penetration index of hyper- and hypo- tonic aerosols in normal subjects.

Using the same sensitive techniques, isotonic aerosol droplets of 2.6 and

5.5f.Lm have been shown to deposit with markedly different deposition patterns

in normal individuals (Phipps et al, 1989 [Chapter 7]). The mean % reduction

in PI from the small to the large droplet study, using coronal mid-lung slices,

and including the trachea in the central region, was found to be 72.1 % (Table

6). Had the hypo-and hyper- tonic aerosol droplets used in this study reached

their equilibrium size immediately upon entering the respiratory tract (2.4 and
.

6.3 f.Lm respectively), the difference in PI measured after the 0.3 and 4.5 %

saline aerosols would have been expected to be at least as great.
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Figure 6. Diagram of hygroscopic growth and shrinkage to equilibrium size

during inspiration of hyper- and hypo- tonic droplets of the same initial size

(3.7,u.m) in the respiratory tract.
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However, although the difference in PI was smaller, the regional deposition

patterns of the two aerosols were still markedly different. A number of

factors may have been operating to reduce the maximum differences in

deposition pattern between the two aerosols:

a) As the hypertonic aerosol passes through the airways, water is

absorbed onto the droplets as they grow. This water is provided by

evaporation from the airway surface which becomes hypertonic.

The equilibrium diameter will then be greater as the airway fluid

osmolarity approaches that of the droplets and the drive for

hygroscopic growth will be reduced. Similarly, the opposite will

occurfor the hypotonic aerosol, water evaporating from the droplets

will condense on the airway walls, reducing tonicity and further

droplet shrinkage.

b) As the hypo- or hyper- tonic aerosols deposit on the airway surface,

the tonicity will decrease or increase respectively, with effects as,

described above.

c) The tonicity of tracheal airway fluid is thought to be 10% greater

than isotonicity (Boucher et al; 1980), so this will also reduce the

driving force for hygroscopic droplet growth. However, the

evaporation of the hypotonic droplets would be increased.
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d) The velocity of the aerosol stream is high in the large airways and

the largest droplets deposit by impaction in this region. The larger

droplets also take longer to reach equilibrium. These factors work

against complete attainment of equilibrium size and deposition of

the large droplets before leaving the large airways. Smaller droplets

that would normally escape deposition in the large airways,

however, will grow more rapidly and deposit by impaction or shrink

more rapidly and escape deposition in the large airways. The speed

ofgrowth is therefore of critical importance.

e) Water from the airway walls must diffuse to or from the centre of

the aerosol stream. In the small airways, the amount of airway

fluid is large compared to that of the aerosol, which, together with

the low velocity of the aerosol stream provides optimum conditions

for growth. Any droplet that remains hypo- or hyper- tonic will

therefore grow or shrink rapidly and deposit by sedimentation in the

small airways and alveoli, the droplets at this point may be closer,

to isotonicity when they deposit so the airway fluid concentration

will tend to remain unchanged after deposition. In contrast, water

has further to diffuse in the large airways (assuming no

turbulence), less water is available and the droplet size is greater,

therefore, growth or shrinkage is slower and incomplete.

Therefore, although the ratio of peripheral to central deposition is greater for
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the hypotonic aerosol compared to the hypertonic, there are a number of

mechanisms that limit the preferential deposition in the large airways and

augment deposition in small airways and alveoli of the hypertonic aerosol,

while the hypotonic droplets tend to have a lower deposition in both large and

small airways.

A striking finding was the increased count found in the trachea after the

hypertonic aerosol, compared to either the hypotonic used in the normal

subjects or the isotonic in the asthmatic subjects (in all but two of the 20

subjects total). Although mucociliary clearance (MCC) has been shown to be

faster after hypertonic aerosols (Pavia et ai, 1983), hypotonic aerosols have

been reported to have a similar effect in some normal subjects (Pavia 1984;

Foster et ai, 1976). However, the delay between aerosol inhalation and

imaging was short (up to 10 minutes) and differences of a similar magnitude

were seen in the static images collected immediately after aerosol inhalation

(Table 5). Some of the activity in the trachea may, however, have originated

from the first or second bifurcation. This effect may be due to hygroscopic,

growth occurring in the upper airways and trachea causing greater deposition

at or close to the carina and subsequent mucociliary clearance up the trachea.

The ratio of peripheral to central airway deposition was greater for the

hypotonic aerosol, suggesting that the large airways received a greater

proportion of the hypertonic aerosol compared to the distribution of the

hypotonic aerosol. From these experiments it is difficult to deduce to what
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extent the differences in PI are due to hygroscopic growth or shrinkage. The

two likely explanations are that i) the hypertonic aerosol grows to increase

central deposition at the cost of reduced peripheral deposition and ii) the

hypotonic aerosol has a lower central and increased peripheral deposition due

to shrinkage. Regional aerosol delivery is therefore not equivalent with hypo-

and hyper- tonic aerosols due to changes in droplet diameter as a result of

hygroscopic growth and/or shrinkage.

Persons et al (1987) considered the use of hypertonic aerosols as a means of

maximising alveolar deposition of medicinal aerosols. Predictions of total and

regional deposition were made using a mathematical model of hygroscopic

growth and deposition probability specifically developed by them. They found

that pulmonary deposition could be maximised by using hypertonic aerosols of

at least 3.5% saline and a droplet size of 2-3 J.Lm. From the results of Persons

et al the fractional deposition of 4 J.Lm droplets (ag = 1.8, breathing frequency

= 15 min-1 and tidal volume = 1000 ml, assuming a relative humidity of 85%

for mouth and pharynx and 99.5% for lung) are as follows:,
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Total Tracheo- Pulmonary P{I'B

bronchial (TB) (P)

Hypertonic (3.5 %)

Hypotonic (0.45 %)

71

58

20

12

31

28

1.55

2.33

The predicted deposition fractions show similar alveolar deposition for both

aerosols but a greater proportion of tracheobronchial deposition for the

hypertonic aerosol than the hypotonic. These predictions are confirmed by

our results, although the difference is not as great as measured by us, probably

due because: a) the assignments of the regions in the model and experimental

data are different, b) the model does not take into account the possible effect

of the aerosol tonicity on that of the airway fluid, c) Persons et al only treat

the limiting case of a single droplet passing through the respiratory tract.

The calculations of Persons et al predict that the total deposition of the 3.5%

aerosol will be increased by 22% compared to the 0.45% aerosol. This is,

important in challenge testing because the total dose, especially to the large

airways will be increased.

Many therapeutic, diagnostic and environmental aerosols are hygroscopic in

nature for example, some mucolytics (Pavia et al, 1983), dry particulate drugs

such as disodium chromoglycate in its dry powder form and in nebuliser

solutions (Fois et ai, 1986) and even droplets generated from isotonic
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nebuliser solutions may become hypertonic before reaching the airways

(Phipps and Gonda 1990 [Chapter 3]). The effects of hygroscopic growth or

shrinkage must therefore be taken into account for the prediction of the

regional and total deposition of these drugs.

2. Penetration index of hyper- and iso- tonic aerosols in asthmatic subjects.

Airway narrowing has been shown to alter regional deposition in favour of the

large airways (Richards et ai, 1988; Laube et ai, 1986; Pavia et ai, 1977;

Dolovich et ai, 1976) in studies where bronchoconstriction prior to

administering the imaging aerosol was deliberately induced. Our aim was to

assess the effects of baseline lung function and bronchoconstriction during the

challenge test on regional deposition.

Six of the nine asthmatic subjects (subjects 12 to 17) had positive d values for

PI, in three of these, there was a direct relationship between the differences in

% fall in FEY! and PIon the two study days (subjects 12 to 14). The small

variations in baseline, and post- challenge FEY! values for both study days in

the second three of the six subjects with positive d values for PI (subjects 15

to 17) would suggest that hygroscopic growth may be the major cause of the

lower penetration of the hypertonic aerosol. Figure 5 shows the effect of

baseline and post challenge FEY! changes on PI in graphical form. Small

changes in baseline lung function appear to cause the greatest differences in

PI, and where the baseline FEY! was greater on the hypertonic day ('d' value

is negative), the PI was also greater on the hypertonic day ('d' value also
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negative) even though there was marked bronchoconstriction on the

hypertonic day (subject 20, Figure 5).

In a similar way to the effects of hygroscopic growth, bronchoconstriction

increases the fraction of the dose to the central airways while peripheral

airway dose is reduced (Dolovich et al, 1976). Thus, if the response depends

on regional deposition then it will be altered by the effects of the challenge

itself. Therefore, as constriction continues, the stimulus to the large airways

will be greater. These challenge tests are not generally carried out on subjects

who have a very poor lung function, but changes in baseline from one day to

the next may alter the apparent responsiveness to challenge agents that

depend on site of deposition for their effect. Apart from variations in baseline

lung function, these results show that there is a large variability in regional

deposition pattern in asthmatics due to airway narrowing during the challenge

and hygroscopic growth of the aerosol droplets in the lungs.

The fact that the response to hypertonic aerosol in asthmatics has been shown

to plateau (Smith and Anderson 1989b), suggests that as aerosol dose is

increased, more generations are recruited in the hypertonic response up to a

limit that may occur at generation 12 where the volume of periciliary fluid

rises sharply (Anderson et al, 1989). This observation supports the theory that

the delivery of aerosol to the large airways may be the major force in

provoking airway narrowing. The fact that aerosol delivery to the large

airways is likely to be sensitive to small changes in regional deposition pattern
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is therefore of significance. A minor change in deposition pattern resulting in

the central deposition of a small proportion of aerosol that would otherwise

deposit in the lower airways and alveoli will result in disproportionately large

increases in droplet delivery to the large airways. Because the large airways

have a relatively small surface area, there could be a very considerable change

in the concentration of the substance delivered by the aerosol in the large

airways.

8.5. Summary

1. Hygroscopic growth and/or shrinkage is likely to occur to some degree with

the aerosols used in this study. Although the effects of tonicity on regional

deposition are complex and depend on the droplet size and concentration of

the aerosol, the hypertonic aerosol deposited more centrally than the

hypotonic in this study, but not by the magnitude expected assuming that all

potential growth to equilibrium with isotonic fluid at 37"C had occurred

immediately upon entering the respiratory tract.

2. The challenge test itself alters the regional deposition of the aerosol in

sensitive subjects and it is related to the fall in FEV1.

3. The baseline FEV1 alters the regional deposition as expected.

4. The greater tracheal deposition of the hypertonic aerosol is a feature that

may be at least partly due to rapid hygroscopic growth in the oropharynx and
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These results suggest that the hygroscopic nature of aerosols should be taken into

account with regard to total deposition and regional variations in aerosol delivery,

especially if the response to the aerosol is known to be dependent on regional

deposition.

The intrasubject variability of regional deposition was not directly measured in

these studies due to ethical considerations of repeated radioaerosol inhalations in

the same subject. However, by considering the group of normal subjects as a

whole, intrasubject variability will be accounted for in the statistical treatment of

the results. In fact, intrasubject variability may account for the fact that statistical

significance was ~ot reached in some of these studies and a great&lr number of

subjects may be more rewarding in this regard.

Intersubject variability is relatively low as described by the standard deviation of

the 'd' values of penetration index for the large and small droplet deposition

studies (Figure 5, Chapter 7). Intrasubject variability is likely to be less than this.

Variability in PI values is likely to be greater for the asdlInatic subjects due to ,the
..~ . ,..:t\~

~~ .'

nature of their lung disease. Future studies .-'y benefit from an assessment 0(;1, .

intrasubject variability of regional deposition and its relasi1>nship to lung fUnc~on .

parameters. , ' ,:.'
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Chapter 9

Summary

9.1. Conclusions

It is hoped that the work described in this thesis is contributing to the

understanding of factors involved in delivering aqueous aerosols to the lungs

by nebulisation. By estimating the rate of aerosol delivery to the target site

within the lung and the factors that control this, aerosol generators can be

evaluated with greater effectiveness to provide appropriate aerosol delivery for

many therapeutic and diagnostic uses. The design of nebuliser systems in the

future will also benefit from a full understanding of the inadequacies of the

present equipment.

We have shown that ,the characteristics of nebulised aerosol droplets alter with

time of generation. The droplet solute concentration may rise sharply and the

size fall as aerosol generation progresses due to evaporation between the

generator and mouthpiece. The fact that the humidity of the air inhaled along

with the aerosol stream also alters the droplet characteristics means that

droplet size distribution measurements should be carried out under standard

conditions for comparisons between investigators. These findings are also

important with respect to the prediction of regional and total deposition.
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The delivery of hypertonic aerosols has been shown to cause

bronchoconstriction in hypersensitive subjects. If nebuliser systems deliver

hypertonic droplets from initially isotonic nebuliser solutions, airway narrowing

and cough may occur in some patients.

The accurate measurement of regional deposition is important for many

studies of aerosol deposition and clearance and especially in studies where

deposition patterns of two aerosols are to be compared. With the aid of

three-dimensional gamma scintigraphy, we have been able to assess regional

deposition with greater sensitivity than previously possible with two-

dimensional imaging. We then applied these new techniques to compare the

deposition patterns of the hyper- and hypo- tonic aerosols currently used in

asthma diagnosis.

Hypertonic droplets have the potential to grow, and hypotonic to shrink, in

the respiratory tract. For the first time, we have some evidence of the effects

of this phenomenon on regional deposition. In normal subjects, there is a
•

difference in the deposition patterns of hyper- and hypo- tonic aerosols of the

same initial droplet size and inhaled under the same breathing conditions.

These results may be important if, as suspected, the deposition site of the non-

isotonic challenge aerosols is critical in the response to them.

Asthmatic subjects may bronchoconstrict during challenge tests and their

baseline lung function is often variable. Both of these factors, together with
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hygroscopic growth were found to alter regional deposition. Therefore, small
~

changes in baseline lung function, the amount and speed of airway narrowing

and the extent of hygroscopic growth will all alter the relative amounts of

aerosol depositing in large versus small airways.

9.2. Future work

Although differences in deposition pattern were found between hyper- and

hypo- tonic aerosols, the magnitude was much lower than predicted.

Hygroscopic growth or shrinkage may be maximised by a number of

experimental changes:

i) Use of a less dense aerosols to reduce the change in airway tonicity due to

direct deposition of the non-isotonic droplets.

ii) Increase in the saline concentration to maximise hygroscopic growth.

iii) By using hyper-, hypo- and iso- tonic aerosols the contribution of growth

and shrinkage to any differences in deposition pattern may be assessed.

iv) By using different initial sizes.,

The transmission scanning can enable the accurate determination of

attenuation coefficients for attenuation correction of the emission studies

(Macey and Marshall 1982). The regional amounts of absolute activity could

then be determined which would enable comparison between patients and

measurement of total deposition which is thought to be effected by

hygroscopic growth (Persons et ai, 1987b).
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It has been postulated that hypertonic aerosols exert much of their effect in

the large airways, the major site of inspired air conditioning during exercise

(Anderson et ai, 1989). A study to determine the bronchoconstrictive effect of

~

similar doses of aerosol delivered to different parts of the respiratory tract

would help to determine the site of action of these challenge aerosols.
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Appendix I

Mass balance predictions of droplet solute concentration.

•
The derivation ignores the mass of dry air associated with the aerosol. We

consider sampling at two points: the nebuliser and the mouthpiece. The total

mass output from the nebuliser Mr is the sum of the mass flow of droplets

~r and vapour Mvr

Mr = Mdr + Mvr Eqn.1

At the point of generation, the concentration of solute in the droplets, Cr. is

given by the solute output Msr and the droplet output Mdr

Cr = Msr / Mdr

Msr may be measured directly from the change in mass and solute

concentration in the nebuliser:,

Msr = (Cni x Mni) - (Cnf x Mnf)

Where c;i = Initial nebuliser concentration.

Mni = Initial nebuliser solution mass.

Cnf = Final nebuliser concentration.

Mnf = Final nebuliser solution mass.
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The total mass of aerosol arriving at the mouthpiece, Mn, is

Mn = Mdn + Mvn Eqn.3

where Mdn and Mvn are the mass flow of droplets and vapour at the

mouthpiece. From mass balance, Mn must be equal to MI plus any vapour

added between the two sampling points by the dilution air, mass flow MIll'

less any losses of droplets, vapour and solute, ML:

Mn = MI + MIll - ML = Mdn + Mvn

The concentration of solute in the droplets at the mouthpiece is Cn

Cn = Msn / Mdn

Substituting from the, previous equation

Cn = Msn / (Mn - Mvn)

Eqn.4

Eqn.5

Eqn.6

The vapour content at the mouthpiece per unit volume Vn multiplied by the

volumetric flow rate at that point, Qn. is equal to Mvn

Mvn = Yn Qn
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Assuming ideal behaviour in the gas phase, Vn is obtained from the ideal gas

equation

VII = Pn Mw / (R Tn) Eqn.8

where Pn and Tn are the vapour pressure and temperature at the

mouthpiece, and R and Mw are the universal gas constant and molecular

weight of water, respectively.

The vapour pressure Pn can be calculated on the assumption that the droplets

of aerosol are in equilibrium with the surrounding atmosphere. In principle,

PII is a function of the droplet size, temperature (TIl) and the concentration

Cn. Ignoring the Kelvin effect (ie the size of the droplet), PII can be

calculated from the saturation vapour pressure (Po) of water at temperature

Tn [Po (Tn) = Pon] and water activity <lwn:

PII = <lwn Poll Eqn.9

8w> of course, depends on the solute concentration Cn. Poll can be obtained

from tables, or from empirical equations for Po as a function of temperature

(Melwyn Huges?). Mvn thus becomes (eqns 7-9)

Mvn = Qn Pon <lw(Cn) Mw / (R Tn)
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This leads to an implicit equation for Cu: from equations 6 and 8:

Cu =
MsU

MU - QU PoU Mw aw(Cu)

R TU

Eqn.11

In ideal solutions, the water activity aw is equal to the mole fraction of water

Xw which, in turn can be expressed in terms of Cu (Appendix II) and the

ratio of the molecular weight of the water to that of the solute r:

Xwu = (1 - Cu) / (r Cu + 1 - Cu) Eqn.12

Thus, the substitution of 12 into 11 and rearrangement gives a quadratic

equation for Cu:

cI? [MU (r-1) + QU VoU ]

+ Cu [MIl - Qu Vou -~u (r-1)]

- Msu = 0

where VoU is the saturation vapour content at temperature TIl'

Eqn.13

Alternatively, aw for non-ideal solutions can be obtained from suitable

theoretical, or empirical expressions. Cinkotai (1971) gave an expression for

aw for sodium chloride solutions at 36°C in the concentration range up to

26.7% which can be written as:

aw = 1 + a Cu + f3 Cn
2

where a = -0.486 and f3 = -1.55.
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Since water activity of sodium chloride solution depends only weakly on

temperature, this equation is a useful approximation for temperatures other

than 36°C.

Substitution of this equation into 11 and rearrangement gives a cubic equation

for CII:

CII
3 + a./{3 Crl + [l/{3 - MIl / (OIl VoIl 13)] CII +

MsIl / (OIl VoIl (3) = 0 Eqn.15

The expression used to calculate VoIl in our work is from Melwyn Hughes

textbook of Physical Chemistry 2nd edition:

10glO Po = a - (b 10glO TIl) - (c / TIl)

where Po = Saturated vapour pressure (mmHg)

a = 24.068883

b = 5.138

c = 2975

Then

VoIl = Po(Tn) Mw / (R Tn) (from ideal gas equation)

Eqn. 16

Any change in the concentration of the solution in the droplets must be

related to the change of the mass (and therefore the size) of the droplets.

The conversion from concentration to mass can be done by substitution of

Mdn = MsIl / Cn

in equation 13, or 15, and rearrangement.
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Therefore, if we assume ideal behaviour:

MdIl- MdIl [MIl - OIl Voll - MsIl(r-l)]

- MsIl [MIl(r-l) + OIl VoIl] = 0 Eqn.17

Using the empirical expression for llw of sodium chloride solutions (Cinkotai

1971)

MdIl
3 + MdIl ([OIl Poll Mw / (R TIl)] - MIl)

+ a MdIl OIl Poll Mw MsIl / (R TIl)

+ f3 Msrl OIl Poll Mw / (R TIl) = 0 Eqn.18

The number output of droplets at the mouthpiece nIl and their average mass

mdIl is related to the mass flow of droplets at this stage:

MdIl = nIl mdIl Eqn.19

so that the average droplet mass can then be calculated either by modification

of eqn 17 (ideal solutions):

mdIl- 9mdIl / nIl) [MIl - OIl Voll - MsIl(r-l)]

- MsIl [MIl(r-f) + OIl VoIl] / nIl
2 = 0

or for non-ideal sodium chloride solutions (eqn 18):

mdIl + mdIl [OIl Poll Mw / (R TIl) - MIl] / nIl

+ OIl Poll Mw MsIl a mdIl / (R TIl nil)

+ [OIl Poll Mw / (R TIl nil)] f3 Msrl = 0

Eqn.20

Eqn.21

The average droplet mass md defined by equations 20 and 21 is not usually

measured directly. It could be obtained by a combination of total mass flow
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measurement and particle counting. However, it is more desirable to relate it

to droplet size distnbution. Assuming that the distnbution is log-normal, the

diameter of the droplet of average mass ~ is related to the mass median

diameter MMD and the geometric standard deviation og and the droplet

density, p,

~ = MMD exp(-1.5 ln2o
g) =3v(61% / rr p) Eqn. 22

In cases where an aerodynamic sizing method is used, MMD can be obtained

from the mass median aerodynamic diameter MMAD; ignoring the slip

correction and shape factors:

MMD = MMADvp Eqn.23

where p is the density of the droplet (according to Ferron for the ideal

solution assumption (REF):

p = (100 x 2.165) / (100 x 2.165 + C x 1.165)

where C is expressed as % w/w or according to Cinkotai for the empirical

equations (Cinkotai 1971).

p = 0.995 + (0.00752 Cu) + (0.00000174 C1h

where p is in g/cm3 and C in % w/w.

If losses between the generator and the mouthpiece are insignificant,

further simplifications are possible:

from equation 4: MU = M1 + Mm
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MsI = Msn

nl = nn

Eqn.25

Eqn.26

where nl is the droplet number output at the generator. Therefore, (i) the

concentration of the solution in the droplet at mouthpiece (equations 11 or

15) can be calculated directly from the generator mass output MI, the vapour

mass flow from the dilution air MIll' volumetric flow rate at the mouthpiece

Qn, saturation vapour content at Tn (from equation 16) and the solute output

MsI' (ii) for log-normally distributed aerosol, the mass size distnbution at the

mouthpiece can be obtained from the input parameters required to calculate

Cn (equations 20 and 21) together with the parameters MMD and ag of the

original size distribution in the nebuliser. The number output nl (which is

assumed to be equal to nn for the case of negligible droplet loss) is:

nl = Mdl / mdl

where mdl is calculated from MMD (cf equation 22).

Summary of symbols and [dimensions] in Appendix I

Eqn.27

M = mass output (mass flow), [mass / time].

C = dimensionless, concentration of solution, [mass of solute / mass of

solution].

Q = volumetric flow rate [volume / time].

P = vapour pressure [pressure].

T = temperature [absolute temperature].

V = vapour concentration [mass / volume].

R = universal gas constant [Pressure x volume / (moles x temperature)]

!lw = water activity [dimensionless].

r = ratio of molecular weight of water to that of the solute [dimensionless].

p = density of solution [mass / volume].
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MMD = mass median diameter [length].

MMAD = mass median aerodynamic diameter [length].

0g = geometric standard deviation [dimensionless].

Mw = molecular weight of water [weight per mole]

a = constant - 0.486 [dimensionless]

f3 = constant - 1.55 [dimensionless]

n = droplet output [1/ time]

m = average mass of droplet [mass]

<lm = diameter of droplet of average mass [length]

Subscripts and superscripts

I = at the generator

II = at the mouthpiece

1II = from dilution air

d = droplets

v = vapour

s = solute

w = water
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Appendix II

Mass balance predictions of droplet size.

The mole fraction of water is

Xw = IIw / (IIw + I1g) Eqn.1

where nw and ns are the number of moles of water and solute respectively.

These can be calculated from the total (m) and molar (M) masses:

x, = (fIIw / Mw) / (fIIw / Mw + fIIg / Mg)

= 1/ (1 + (r fIIg) / fIIw)

where

r=Mw/Mg

Now, the dimensionless mass concentration Cn is:

Cn = ms / (m, + fIIw) = (m, / fIIw) / (1 + ms / fIIw)

Rearrangement of the last equation gives:

fIIg / fIIw = Cn / (1 - Cn)

which, substituted into equation AlI.2 gives equation Al.12.
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Appendix III

Radiation dosimetry Calculations.

There is a great deal of variability in the estimation of the radiation dose

received by the 'critical organ' and the body as a whole. This is due firstly to

the fact that methods of calculation and the rigour to which they are carried

out are apt to vary, and secondly, the intersubject variability is usually high.

The calculations made below are taken from a publication by Barber (1985)

who realises the importance of urinary clearance for the cumulated absorbed

radiation dose to the whole body but especially to the bladder wall. An

important part of our protocol is the preliminary hydration and subsequent

high fluid intake and voiding rate of our subjects. This is taken into account

by Barber.

The dose delivered to a target organ (Dt) is given by:

D, = As S(t_8) (i)

Where S(8_t) is the'S' value given in the MIRD II pamphlet (Snyder et ai,

1985) and represents the fraction of the dose absorbed by a target organ (t) as

a result of a cumulated activity A (assumed to be uniformly distributed) in the

source organ (s).
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Barber calculates the cumulated activity in four source organs; lungs (I),

kidneys (k), bladder contents (be) and rest of body (rb), Absorbed doses for

each of six target organs are calculated by multiplying cumulative activities by

the appropriate S value and summing for all source organs.

'S' values are given for the contribution of each source organ to each target

organ except for the rest of the body. In this case, S values for the total body

(tb) were modified using organ mass (M) values quoted in MIRD II:

S(t-rb)= S(t_tb)'(MtJMrb) - S(t_') .(M,I M rb) -

S(t_k) .(Mk/Mrb) - S(t-bc)·(MbJMrb) (ii)

The cumulated activity for each source organ was cslculated assuming

exponential elimination from the lungs and bi- exponential elimination from

the remainder of the body and kidneys. Integration the appropriate

expressions with time gives the cumulated activity for each source organ thus:

~

A, = 0, + 0p (iii)

Arb = Ao ;E2 ri 1/(0p + 0ri) (0, + op) (iv)

Ak = Ao ;E2 ~ 1/(op + 0ki) (0, + op) (v)

Barber takes into account the voiding time (T) when producing an expression
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for the cumulated activity in the bladder contents (be):

00

E Bn = Ao kl [1/1-exp(-c5k1 + c5p)T) (c5kl - c51) ]••.etc (vi)

n=1

Where: *

c5p = physical half life

c51 = biological half life

rl = 0.541 c5rl = 0.618 hr-I

rz = 0.339 c5rz = 0.0746 hr- I

kl = 0.0479 c5kl = 2.908 hr-I

kz = 0.0122 c5k2 = 0.0434 hr-I

*These values are taken from Thomas et ai, 1984, Diffey and Hilson 1976 and

ICRP 1983.

The maximum outp~t of aerosol in each ventilation study is 0.25 ml/min of a

200 MBq/ml solution. Of this output, a maximum of 0.075 ml/min is inhaled

assuming the solution output to be 0.15 ml/min (see Chapter 5) and time of

inspiration to be half of the total ventilation time. Calculation of cumulated

activity values therefore assumes a 30 MBq maximal dose to the lungs and a

urine voiding time of 30 mins.

The S values from the rest of the body to the target organ, S(t-rb) are
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calculated from equation (ii), the rest are taken from the MIRD 11 pamphlet

together with the organ mass values.

S(l-I) = 5.2 x 10-5 SCo-l) = 9.4 x 10-8

SCI-k) = 8.5 x 10-7 SCO-k) = 1.1 x 10-6

SCI-bC) = 2.4 x 10-
8

SCO-bC) = 7.3 x 10-
6

SCI-rb) = 1.3 x 10-
6

SCO-rb) = 2.5 x 10-
6

SCk-l) = 8.4 x 10-7 SCts-l) = 7.9 x 10-9

SCk-k) = 1.9 x 10-4 SCts-k) = 8.8 x 10-8

SCk-bC) = 2.6 x 10-
7

SCts-bC) = 4.7 x 10-
6

SCk-rb) = 3.0 x 10-6 SCts-rb) = 1.7 x 10-6

S(bw-I) = 3.6 x 10-8

SCbW-k) = 2.8 x 10-
7

S(bW-bC) = 1.6 x 10-
4

SCbw-rb) = 2.8 x 10-
6

,

Now,

SCtb-l) = 2.0 x 10-
6

SCtb-k) = 2.2 x 10-
6

SCtb-bC) = 1.9 x 10-6

SCtc-rb) = 2.3 x 10-
6

The dose to any organ is the sum of the doses from each source organ to the

target organ in question.

Eg. Dose to lungs (DI):

D I = Al SCI_I) + Ak S(l-k) + Abc S(l-bC) + Arb SCI-rb)
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For 30 MBq dose to the lungs,

Al = 10170 /lCi hr (/lCi = micro Curies)

Ak = 65 /lCi hr

At>c = 12 /lCi hr

Arb = 1974 /lCi hr

Therefore, from equation (vii)

DI = 0.532 mSv (lungs)

Dtb = 0.025 mSv (total body)

Dk = 0.027 mSv (kidneys)

Dbw = 0.008 mSv (bladder wall)

Do = 0.007 mSv (ovaries)

DIS = 0.004 mSv (testes)

The guidelines of the National Health and Medical Research Council state,,

''The accumulated effective dose equivalent to any individual subject in any

year shall not exceed 5 millisievert" (NH&MRC 1984).

Background radiation (Rosen 1985)

'Average Annual Effective Whole Body Dose Equivalent'

= 2.10 mSv yr-1
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Some accepted annual dose equivalents: (Rosen 1985)

Less than: 0.50 mSv Within background variations

Less than: 5.00 mSv Within dose limits for the public

Less than: 50.00 mSv Within dose limits for radiation workers

Grtr than 50.00 mSv Special exposure.
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RapId DIopIel SIze AuI}* of DilIpo'"A_
PblppoPJr,IIolIoy DL', __ PW', Goadar, Deponmeot of Pharo
1IIlICY, The Univenity of Sydney' IDd the Deponmeot of Nuclear Med
Icine, Royal Prince Alfred Hospital', Sydney, N.S.W. 20$0

Aerosols made from aqueous soIutioDs of~_II ... wed
widely in hospitals for testina of broncIIial sensitivity IDd pmma JeiD.
tIUation imoIinI of the h1lmUl respiratory lrI<l. The _ure of the
fonnulatioo, the _llenerator IDd the nebulisation coaditioDs may
affect the droplet size distribution IDd hence the rqiOlta! distribution
of the _I. A rapid technique is therefore useful to control the
quality of diqnnstic aerosols.

Cascade impactor slidesI spiked with knownamounts of radioactivity
Mc-DTPA in isotonic saline) were placed on a collimated gamma
camera and the counts were recorded for 5 minuleS and collected on
computer. The counts were repeated at several later times to test Un
earity. The imqes were displayed on the computer screen IDd rqions
of in'erest were drawn around each slide. Af,er correctinl for back·
ground. .,. of total activity on each slide was calculated. In all ex
periments.the responseof the gamma camera was linearover the ranae
-10'·10' <pm (">0.99). The technique was found to be precise and
robust provided the total cpm > ur.

A 7-sta&c cascade impactor was used at a flow rale of 12.5 Umin
to measure the droplet sizedistribution'. Aerosols were aenerated from
a nebuliser using compressed air. The 'dilution' air required to make
up the flow through the cascade impactOr was conditioned either 'dry'
or 'wet' (equilibrated with saturated solutions of LiO or water. re
spectively). Upon generation, impactor slides were counted as above.
The results were analysed for the mass median aerodynamic diameter
(MMAD) and seometric .tandard deviation ("1l) uains an interactive
least squaresp~. I

There wasno IIJIlificant intra~ or inter-nebuliservariation with 'wet'
dilution air. As the proportion of the 'dry' dilution air increased, a
reduction of MMAD became apparent. This ob5ervation ._IS that
dilution air from diqnostic aerosols should be humidifted.
Reference
I. Gonda I, Kayes, JB, Groom CV, Fildes FIT. In: Stanley·Wood
NO, Allen T, eds. Particle size analysis. Chichester, Wiley·Heyden Ltd.
1982: 31-43.
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IN VITRO ASSESSMENT or RADIOAEROSOL DELIVERY SYSTEMS.
+P.V.Borham*,++P.R.Phipps. +D.L,Bailey,++I.Gond•• +G.J.
Bautovoch. +C.Kurray. +S,Kiekle. +Departaent of Nuclear
Medicine. Royal Prince Alfred Bospital, Sydney.++Depart
.eDt of Pharaacy, University of Sydney.

optiaal characteristic. of radioaerosel delivery systeas
(IDS) include higb output of droplets of a suitable size
for pulaonary deposition. Reduced extra-pulmonary deposi
tion and a shorter inhalation tiae aean reduced exposure
to patients aDd adainistering persoDDel. Effective deliv
ery (ED) and wasted delivery (VDI were defined as the
delivery froa tbe aoutbpiece in KBq/ain of droplets below,
(ED) or above (VO) a respiratory size raoge of below J.J tJ8
.ass aediao aerodyoaaic diaaeter (KKlD). Four coaaercially
available RDS vere assessed. 5 al of 100 KBq/al Tc-per
technetate in noraal saline .a. nebulised for 1 aiD and
the droplets collected by a 7-stage cascade iapactor. The
iapactor stage slides vere counted 00 a previously calib
rated colliaated ga..a ca.era. KKlD, geo.etric standard
deviation Idg) and output of droplets below and above
stage 3 of the iapactor 13.3"'8, 50' cut-off diaaeter)
were calculated.

RESULTS: Nean of 3 deteraioations ISO).
RDS 1 KKlD ~a)1 dO' liD (KBq/aio) IVD (KBq/ain)

----------1----------1----------1-------------1------------
ULTRAVENT I 1.1(0.1) I 1.7(0.1) I 6.1(0.5) I 0.05(0.02)
VENTICIS : 1.010.1) I 1.8(0.1) I 8.1(0.9) I 0.02(0.01)
NISTYMEB I 3.7(0.1) 1 1.5(0.1) 1 11.3(0.2) I 15.40(0.50)
CAD'" I 2.3ID.1) : 1.410.1) I 14.010.8) I 1.2410.61)

The Ultra.ent and Veotici. bad low ED aDd VD .alues requ
iring lODger iohalatioD or higber activity concentration.
The Kistyneb had a higb deli.ery rate but a bigh proportion
of tbe droplets were outside tbe respiratory raoge. The
Cade.a had opti.al characteristics of high ED aDd low ¥D.
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(JlANTITATIVE SPECl' AEroSOL PENETRATION INDEX
FhiH?s PR, Bailey DL, Gonda I, Borham PW,
Bautovich GJ and Anderson SO.
Departnents of Nuclear Medicine and Thoracic
Me1icine, lOyal Prince Alfred Hospital, and
Departnent of A1aDnacy, Sydney University,
Sydney, AUSTRALIA. 2050.

A study was undertaken to examine aerosol
penetratia1 index (PI) measuranents fran SPECT
lung studies. '!he aim was to ccmpare PI values
fran mid sections of the lung with the whole
lung, as encountered in planar imaging.

5 healthy subjects inhaled 99111rc-DTPA
aerosol en 2 separate occasions with different
drq>let sizes, to target the small and large
airways. The data acquired consisted of
transmission (153Gd) and rapid anission
taoographic acquisitions (<:. 12 min for 360 0

) . The
anissien and transmission (attenuation) taoograms
were reconstructed in roth transverse (T) and
ooranal (C) planes. The transverse sections were
con:e...'teci for attenuation after reconstruction
using the attenuatia1 section Jl values. The
attenuation sections were also used to define the
lung outlines.

The PI's for the small drq>lets on the
isolated mid portions were significantly higher
than for the whole lung (T:+21.3%;p<0.05,
(C:+24.0~p<0.01). In contrast, the large
drq>lets showed no significant difference in PI
(T:+4.9%iP> 0.7, C:-0.9%ip>0.8). This may be due
to the inclusion of peripheral small airways,
seen only in the small drq>let studies, in the
central FlOI on the whole lung studies. This
suggests that SPECT PI measuranents reflect true
aerosol deposition nore accurately.
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COMPARISON OF MErHODS FOR THE MEASUREMENT OF REGIONAL
AEROSOL DEPOSITION

P.R.Phipps*, I.Gonda*, D.L.Bailey+, P.Borham+, G.Bautovich+ and S.D.AndersonX ,

*Department of Pharmacy, University of Sydney, +nepartments of Nuclear Medicine
and xThoracic Medicine, Royal Prince Alfred Hospital, Sydney, Australia.

Two-dimensional (2D) gamma scintigraphy has been used to visualise the
deposition of therapeutic and diagnostic aerosols in the human respiratory tract
by taking posterior (p) or anterioposterior geometric mean (AP) views.
Quantitative analysis of the 2D data in terms of regional deposition in the
large central versus small peripheral airways has been difficult because in
reality there are small airways superimposed over the large airways located in
the centre of the lung.
Development of aerosol formulations with a desired pattern of regional
deposition and possibly extended duration of residence in the respiratory tract
requires methods capable of better distinction between central and peripheral
deposition. The new generation of gamma. cameras are able to provide data for
three dimensional (3D) reconstructions of deposited radioaerosol on a time scale
which should be short enough to avoid significant corruption of the initial
deposition image by mucociliary transport. In order to discriminate better
between central and peripheral deposition, 3D imaging was carried out.
7 healthy volunteers inhaled isotonic saline aerosols containing 99~c-DTPA on
two separate occasions under the same controlled conditions. The aerosols
contained droplets with mass median aerodynamic diameters of 5.5 and 2.6 m and
geometric standard deviations of 1.7 and 1.4 respectively. A gamma camera was
used to obtain P, AP and coronal (C) slices taken.from the mid portion of the
lung; outlines of the lung fields were obtained by transmission. The penetration
index (PI) was calculated as the ratio of the radioactivity in quantitatively
defined peripheral and central regions.

PI for 2.6 (S) and 5.5 (L) m droplets from P, AP and C mid-slice images:

- = Mean values

AP • C

I :, I I .~
0.'

o.

0.' ~- I :~-0'

o.~ i

I
s , s , s ,

The results (see graphs above) show: 1) The PI was smaller for the large
droplets in all subj ects and all studies, thus quantitatively validating the
usual 2D methods. 2) Removal of the peripheral airways in the C mid-lung slices
showed a consistently better discrimination between the deposition of large and
small droplets than the AP and especially the P images. We suggest that
tomography offers a more sensitive method to evaluate the effect of formulation
on the initial regional deposition of aerosols and their subsequent clearance
than the conventional 2D methods.
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CONCENTRATION OF SOLUTION IN AQUEOUS AEROSOL DROPLETS

P.R.Phipps and I.Gonda, Department of Pharmacy, University of Sydney, Sydney,
NSW 2006, Australia.

Aerosol droplets made from aqueous solutions are unstable unless their vapour
pressure is the same as that of the environment. Two main causes of evaporation
of aerosol droplets exist: 1) During inspiration, unsaturated dilution air is
added to supplement the airflow used for aerosol generation (Phipps et
at., ,1987). 2) The nebuliser temperature falls during generation and thus the
vapour phase is unsaturated when the aerosol reaches ambient temperature (AT).
To find the magnitude of these effects, aerosols were generated from a Cadema
air-J et nebuliser by 8 or 10 l/min of oxygen. The nebuliser was connected via
2 cm diameter tubing to a cascade impactor stage. Air of 48.7 (+ 3.0)% or 99.7
(+ 0.4)% relative humidity (RH) supplied as in patient use, made up the total
flow to 12.5 l/min. The initially isotonic nebuliser solution was kept at
constant temperatures with a water bath and small heater. The aerosol was
collected on the impactor slide which was immediately sealed in plastic and
weighed. Droplet concentrations were measur-ed for various nebuliser conditions
(Fig. 1) by vapour pressure osmometry.

14~ " Fig 1. Effect of proportion of dilution•
air and its humidity on droplet

12 concentration at various solution.. temperatures •

c 10
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The results (fig.l) show that: a) The smallest change from the original
concentration was obtained when the nebuliser was kept, by heating, at AT thus
removing a major cause of initial unsaturation of the aerosol vapour. b) Even
with dilution air of 99.7 % RH at AT, there was a substantial increase in
droplet solution concentration when aerosols were generated below AT, as would
be the case in unheated nebulisers. c) The combination of unsaturated dilution
air and generator temperature below AT produced highly concentrated droplets and
poorly reproducible behaviour. These results confirm our previous findings of
poor reproducibility of droplet size under such generation conditions (Phipps et
al., 1987), and can be explained by mass balance analysis.
These observations are of concern in view of the brochoconstrictive properties
of certain non-isotonic aerosols (Mann et al., 1984). Changes in droplet
solution concentration also parallel changes in droplet size (Phipps et a.L, ,
1987), thus they could be a source of variability of regional deposition of
diagnostic and therapeutic aerosols.

Mann, J.S. et al (1984) Br. Med. J. 289: 469
Phipps, P.R. et al (1987) Eur. J. Nucl. Med , (in print)
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I Pharmacy Department, University of Sydney, Sydney, NSW 2006, Australia,
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Abstract. The effective delivery (ED) in Mllq/min of a
100 Mlrq/ml nebuliser solution was defined as the rate of
delivery of droplets in the respirable size range (aerodynam
ic diameter below 3.3 I'm) to the mouthpiece of the aerosol
delivery system (ADS). Wasted delivery (WD) was defined
as the rate of delivery of droplets above 3.3 I'm. ED and
WD were measured on four types of commercially available
ADS. The aerosols were sampled at the mouthpiece of each
system and droplet size distribution measured with a seven
stage cascade impactor. The effect of ambient air humidity
on the droplet size produced by the Cadema delivery system
was also evaluated. The ED values ranged from 6 to
15 Mlsq/min and WD values from 0.01 to 15 Mllq/min.
Two ADS produced low ED and WD values (6.1-9.0 and
0.01-0.07 Mlsq/min. respectively) due to a low output.
while another produced higher ED and WD values
[11.3 ± 0.2 (SO) and 15.4 ± 0.5 (SO) Mlsq/rnin, respectively]
due to a larger droplet size. The Cadema delivery system
gave the optimum characteristics of high ED [13.9±0.8
(SO) MBq/min] and low WD [1.24±0.61 (SO) MBq/min]
values. The mass median aerodynamic diameter (MMAD)
of the Cadema ADS fell by 22 % (P<O.OI) as the ambient
dilution air was dried from a high relative humidity (RH)
(88 %-100 %) to a low RH (12 %-17 %). The variability
of both MMAD and geometric standard deviation (ag) was
increased with dry dilution air (P<O.OI).

Key words: Aerosols - Radioaerosols - Aerosols-delivery
systems - Aerosols-evaluation ~ Aerosols-diagnostic

Radioaerosol ventilation agents such as those containing
99mTc_DTPA are used for the assessment of regional venti
lation and alveolar clearance. They are produced and deliv
ered to patients via radioaerosol delivery systems (ADS)
consisting of jet nebulisers and associated tubing. To be
effective, these systems must produce a uniform peripheral
aerosol deposition while minimizing a) the radiation dose
to the patient, b) the radiation exposure to personnel ad
ministering the dose and c) the cost of the procedure. It
is therefore important to reduce as much as possible both
the duration of administration and the unuseable portion
of the radioactive aerosol, the latter including that deposit
ing in the delivery tubing, mouth, oropharynx and central
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airways and that exhaled by the patient. Regional deposi
tion of aerosols is determined by their physical characteris
tics, such as size distribution and droplet composition to
gether with patient parameters, such as inhalation flow rate
and severity of lung disease; the variability of all of these
has complicated previous clinical assessments of ADS
(Hayes et al. 1979; Foulds and Smithuis 1983; Trajan et al.
1984; Alderson et al. 1984; Matthys and Kohler 1985;
Wollmer et al. 1985).

Nuclear medicine departments are responsible for the
choice of ADS and the quality control of radioaerosols.
We therefore wished to define meaningful parameters for
the assessment of the quality of radioaerosols used for ven
tilation studies, and to develop rapid experimental methods
to measure those parameters, using as far as possible equip
ment already available in a typical nuclear medicine depart
ment (Borham et al. 1986).

The droplet size distribution of ADS is known to depend
on operating parameters (Mercer et al. 1965; Ferron et al.
1976; Ryan et al. 1981; Clay et al. 1983; Sterk et al, 1984)
and also on environmental conditions (Porstendorfer et al.
1977). In many ADS, ambient dilution air is inhaled along
with the aerosol. A potential therefore exists for the humidi
ty of the dilution air to affect the aerosol droplet size and
this was also investigated.

Materials and methods

Droplet size determination. Particle size distribution, ex
pressed as the mass median aerodynamic diameter
(MMAD) and the geometric standard deviation (cg) was
measured using a seven stage cascade impactor (DCI6, Del
ron, Columbus, Ohio, USA). 99mTc-pertechnetate in nor
mal saline was added to the nebuliser solution to an approx
imate concentration of 100 MBqjml. The aerosol was gen
erated from the nebuliser using compressed oxygen. The
dilution air required to make up a fixed flow of 12.5 l/min
through the impactor was humidified or dried by bubbling
through water or a saturated solution of lithium chloride,
respectively.

After generation of the aerosol for approximately 60 s,
the impactor slides, precoated with silicone fluid (Dow
Corning 200/60000 cs, Midland, Michigan, USA) were re
moved and simultaneously counted on a large field of view
gamma camera (OE 400AT, Milwaukee, Wisconsin, USA)
fitted with a low energy, all purpose, colimator. A 5 min



184

Table 1. ED, WD and aerosol characteristics of four ADS

Values expressed as mean of three results (standard deviation)
a Corrected for decay and activity concentration in the nebuliser
to 100 MBqjml
b The Vcnticis aerosol delivery system includes a settling bag which
fills during patient use but not during the particle size determina
tion due to the continuous negative pressure supplied to the system
c The first run on the Venticis used some of the output to soak
the ball bearing filled filter system

Ultravent 1.1 1.7 99.2 6.44 0.05
(0.1) (0.1) (0.3) (0.46) (0.02)

venticis''-" 1.0 1.8 99.8 8.06 0.02
(2) (3) (0.1) (0.1) (0.1) (0.86) (0.01)

Mistyneb 3.7 1.5 42.3 t1.3 15.4
(0.1) (0.1) (0.8) (0.2) (05)

Cadema 2.3 1.4 92.0 14.0 1.24
(0.1) (0.1) (3.1) (0.8) (0.61)

image was recorded by an on line computer (DEC POPll,
Maynard, MA, USA). Regions of interest were drawn
around the image of each slide and total counts within
each were recorded. These values, corrected for background
and expressed as a percentage of the total count, together
with the previous impactor calibration results for particles
and droplets (Gonda et al. 1982) were analysed by a least
squares program to determine the MMAD and ag of the
aerosol sample. Dead time correction was not necessary
at the count rates observed.

The method was validated by placing small volumes
of 100 MBqjml 99mTc-pertechnetate on to seven coated im
pactor slides from a pipette (Phipps et al. 1986). The activity
in the pipette was measured by a dose calibrator (Capintec
Inc. New Jersey, USA) before and after application. The
slides were counted for 5 min on the gamma camera five
times over a period of 48 h and the results pooled to test
for linearity. The activity values ranged from 14.91 to
0.00524 MBq per slide. The correlation equation produced
was then used to convert impactor slide counts into activity
values. In the experimental runs, the highest activity on
anyone slide was approximately 6 M Bq and 0.1 % of the
lowest total activity was still greater than the lowest point
on the calibration.

MMAD og (Fx 100)
% below
Stage 3

Mean
ED"
MBqjmin

Mean
WO'
MBqjmin

Results

The pooled data from the gamma camera calibration was
used to plot counts (Y in units of cpm) against activity
(X in MBq). The equation of the regression line produced
was

where standard deviation in % is given in parentheses, n =

35 (pooled results of 7 slides at 5 times) and r2 ~0.9997.

The regression equation (1) shows that a 25 % error
is found at a count rate over 4 x 103 cpm. From experience,
it was noted that up to 10 % of the total cpm could vary
by as much as 25 % without changing the calculated values
of MMAO and ag to one decimal place. Therefore a total
cpm of over 4 x 104 is required for suitable precision of
the method.

Values of activity were calculated from impactor slide
counts (A in units of cpm) using Eq. (1), to give the ED
and WD values shown in Table 1 from:

(3)

(1)

(2)

Y~9492(±1.8 %)X+91.4 (±787 %)

EO~(A/T,)x F

and

WO~(A/T,)x(I-F)

where

Tg=generation time (min)
F = fraction depositing below stage three.

The effect of dilution air humidity on the MMAO of
droplets produced by the three Cadema ADS is shown in
Table 2. The mean MMAO of the pooled results for humid
dilution air is 2.55 ± 0.10 urn (SO) where n ~ 22, indicating
a low inter and intra nebuliser variability. Dry dilution air
reduces the pooled mean MMAO by 22 % (P<O.01) and
increases the variability [mean ~ 1.99 ±0.32 um (SO), n~
17]. The standard deviations of the dry dilution air MMAO
and ag results were both significantly greater (P<O.Ol)
than those of humid dilution air.

Aerosol delivery system characterisation. Droplet size distri
bution measurements as described above were carried out
in triplicate on four commercially available ADS; Ultravent
(Mallinckrodt Inc., St. Louis, USA), Venticis (Cis UK Ltd.,
North Finchley, London.), Mistyneb (Airlife Inc., Mont
clair, California, USA) and Cadema (Cadema Medical
Products Inc., Middletown, N.Y., USA). Each system was
set up as for patient use with the mouthpiece of the delivery
tubing connected to the impactor. The aerosol was gener
ated by compressed oxygen at the manufacturer's recom
mended flow rate (10 ljmin in each case) and supplemented
with humid dilution air.

The results from the droplet size analysis were used to
calculate both the mass fraction of droplets in the respirable
size range and the total activity caught in the impactor
per min. The respirable size range was taken to be the cumu
lative activity below stage three of the cascade impactor
[50 % cutoff diamcter c. Lj urn (Gonda et a!. 1982)]. All
results were corrected for decay and to an original nebuliser
concentration of 100 Mlsq/ml.

The effective delivery (ED) of each ADS was calculated
as the amount of activity leaving the mouthpiece in MBqj
min contained in droplets in the respirable size range. The
wasted delivery (WO) was defined as the amount of activity
leaving the mouthpiece outside the respirable range, i.e.,
the amount of activity in droplets depositing on or above
stage three of the impactor. The results were expressed as
the mean ± standard deviation of three determinations.

Effect ofdilution air humidity on the droplet size distribution
of the Cadema ADS. The droplet size distribution was mea
sured on the Cadema ADS as described above, with dilution
air comprising 4.51/min and aerosol 8.0 l/rnin of the 12.51/
min total flow through the impactor.. Several determina
tions were carried out on three nebulisers using humid and
dry dilution air. The MMAO and ag values for dry and
humid dilution air were then compared with the use of
a Mann-Whitney Utest and the standard deviations with
an F-test.



Table 2. Effect of ambient dilution air humidity on MMAD and
(JI{ of droplets produced by the Cadema ADS

5 2.64 1.40 5 2.41 1.37
(004) (0.04) (0.08) (0.03)

2 8 2.51 1.36 8 1.77 1.62
(0.07) (0.04) (0.15) (0.11)

3 9 2.53 1.34 4 1.90 1.55
(0.13) (0.02) (0.25) (0.12)

Values expressed as mean (standard deviation)

Discussion

The effect of droplet size on the regional deposition of aero
sols in the human respiratory tract has now been well docu
mented by both in vivo determination and mathematical
models (see reviews, e.g., Ferron et al. 1985; Stahlhofen
1984). Particles of mass median aerodynamic diameter be
tween 3 and 1 urn, at resting inhalation flow rates, are of
the optimum size for pulmonary deposition. Larger parti
cles tend to deposit in the central airways or mouth while
particles in the region of 0.5 urn are exhaled. A better esti
mation of the effective aerosol delivery may therefore be
obtained by excluding those droplets likely to be exhaled.
We chose to disregard the exhaled portion of the aerosol
in defining our respirable range but droplets of around
0.5 I'm may easily be excluded from the results. As the
droplet size decreases below 0.5 urn, the alveolar deposition
increases, starting from a minimum of around 10 % (Fer
ron et a1. 1985). However, the fraction of radioactivity car
ried by such small droplets is low in ADS used clinically
at present, as shown by our results.

Marked differences in the performance of different ADS
are shown in Table 1. The Venticis and Ultravent produce
droplets all within the respirable size range but their output
is low, requiring either a high nebuliser activity concentra
tion or a long inhalation time. The Venticis incorporates
a settling bag as part of the delivery tubing which failed
to fill during the droplet size analysis, due to the constant
negative pressure applied. If some of the larger droplets
settle in this bag the MMAD will decrease (possibly increas
ing the proportion exhaled). The output will also decrease
as a result, but this may be offset by the storage capacity
of the bag during exhalation. The Mistyneb nebuliser has
a high output of droplets in the respirable range but it
produces an even larger portion that deposits outside the
pulmonary region. The Cadema nebuliser, however, has op
timum operating characteristics with a high delivery rate
and little waste of aerosol.

The aerosol samples for the droplet size measurements
were taken at the mouthpiece of the delivery system which
did not take into account the amount of aerosol depositing
in any unshielded tubing, an important hazard considera
tion. The amount of aerosol caught in the tubing would
depend on droplet size, flow rate and tubing geometry so
ADS with high WD values and tortuous tubing are more
likely to deposit aerosol before the mouthpiece.

Nebu
liser
No.

Humid dilution air
88 %-100 % RH

No. of MMAD og
repeals (urn)

Dry dilution air
12 %-17 % RH

No. of MMAD (JI{

repeats (urn)
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The droplet size distribution and output from a nebul
iser may change markedly with generation flow rate (Mer
cer 1973; Ryan etal. 1981; Clay etal. 1983) and this will
in turn lead to different ED and WD values. It may thus
be possible to modify the effectiveness of an ADS by chang
ing its operating flow rate.

Table 2 shows the results of changing the dilution air
humidity passing through the Cadema ADS. Dilution air
mixes with the aerosol at the exit from the nebuliser in
all of the systems tested. Dry dilution air caused the droplets
to evaporate and probably concentrate, and in so doing
the droplet size was reduced by 22 % and became more
variable. During inhalation of diagnostic radioaerosols, pa
tients require dilution air to supplement the 8 or 10 llmin
flowing through the nebuliser with a flow rate often far
in excess of the aerosol flow. The humidity of this dilution
air, and the proportion of it, will effect the droplet size
and variability of the aerosol leaving the mouthpiece to
a greater extent than in the reported experiments, and this
may have some effect on the droplet deposition. A theoreti
cal explanation and the practical implications of the greater
sensitivity of the droplet size and ag to fluctuation of water
content at a low relative humidity, is the subject of another
paper. However, it is possible that the variability of the
results of penetration of aerosols in the diagnosis of chronic
obstructive pulmonary disease (Ruffin et al. 1981) could
have been due, not to clinical variability, but to variable
radioaerosol delivery. The pooled og values and their vari
ability are also increased with dry dilution air (P<O.OI)
and this, too, may have an effect on the deposition of the
aerosols (Gonda 1981).

The breathing pattern is also important in relation to
the general deposition of the droplets. A high inspiratory
flow rate will cause greater deposition of the larger droplets
outside the pulmonary region by impaction, while a low
flow rate will increase the pulmonary deposition of those
same droplets (Agnew et al. 1985). Therefore, the respirable
size ranges and hence the values of ED and WD will change
with inhalation flow rate, which could be readily accommo
dated in new definitions of ED and WD.

Lung disease may effect the ED values by a number
of mechanisms. Increased inhalation flow rate, broncho
constriction and excessive mucous secretions may all lead
to reduced pulmonary deposition of aerosol (Taplin et a1.
1977) making fine droplets preferable for imaging the al
veoli.

The continuous output of the nebulisers makes it possi
ble to estimate the total dose inhaled by the patient as
half the sum of ED and WD values if expiration and inhala
tion times are assumed to be equal and exhaled dose ignored
(with the exception of the Venticis which stores aerosol
in a settling bag during expiration).

Conclusions

These results show that it is possible to characterise and
compare ADS by a simple, quick in vitro method using
readily available equipment as an aid to the evaluation of
aerosol delivery systems.

The droplet sizing technique was found to be suitably
precise provided the total impactor slide counts were greater
than 4 x 104 cpm. The system was linear over the range
102-10' cpm per slide.

Environmental conditions such as ambient air humidity
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may have an effect on the droplet size distribution produced
by some ADS.
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STUDIES OF REGIONAL DEPOSITION OF AQUEOUS AEROSOLS IN THE HUMAN
RESPIRATORY TRACT.
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Bautovich', 'Department of Pharmacy, University of Sydney, Sydney NSW
2006, and Departments of 'Nuclear and 'Thoracic Medicine, Royal Prince
Alfred Hospital, Camperdown, NSW 2050, Australia.

Aqueous aerosols are intrinsically unstable as they can exchange water
with the environment depending on the surrounding vapour pressure.
The results of this dynamic process are changes in droplet size
(Phipps et al., 1981a) and concentration of the solution in the
droplets (Phipps and Gonda, 1981). While the latter may affect the
intensity of the pharmacological effects elicited by the solutes, the
former is likely to lead to a modified regional deposition of the
aerosol. Since aqueous aerosols are widely used for therapy and
diagnosis in bronchial provocation tests and lung scanning, it is
important to prepare well-defined aqueous aerosols and to quantify
their deposition in the human respiratory tract. Aerosols were
generated from solutions of 99Tc-DTPA in normal saline using oxygen at
8 l/min in a small droplet (S) aerosol generator (cadema Medical
Products Inc., Middletown, USA), or in a nebulizer of unknown origin
at 6 l/min giving large droplets (L). In order to prevent droplet
evaporation, the dilution air supplementing the oxygen flow through
the generator was humidified and the temperature of the nebulizer
solution was kept constant by a miniature heater. The droplet size
distributions of the two aerosols had mass median aerodynamic
diameters (HMAD) 2.6 and 5.5 Pm and geometric standard deviations 1.4
and 1.1, respectively. These sizes were selected deliberately to
simulate the growth (or shrinkage) of a hypertonic (or hypotonic)
aerosol with an intermediate HMAD, the type used in tests of bronchial
hyperreactivity (Anderson et al.,1983). The concentration of the
solutions in the droplets (Phipps & Gonda, 1981) was found to be
near-isotonic (1.1 ± 0.1%). These aerosols were inhaled on two
separate occasions by healthy volunteers under controlled respiratory
conditions. In order to distinguish between aerosol deposition in the
large airways and the lung parenchyma (which might overlie the
former), a 3-dimensional (3D) gamma scintigraphic technique was
employed (Phipps et al., 1981b). Penetration index (PI) was
calculated as the ratio of the counts per second per pixel in
peripheral to central regions. PI calculated from well defined
mid-lung transverse sections was found to be the most sensitive
measure to discriminate between the deposition of Sand L aerosols: PI
was significantly lower (p < 10-') for the L aerosols in all subjects,
the overall relative difference between L & S being (56.5 ± 11.4) %.
Thus, a) small aerosols with a low degree of polydispersity were shown
to deposit to a much greater extent in the lung parenchyma than large
droplet aerosols; b) the 3D tomographic technique for calculation of
PI appears to be sufficiently sensitive to study the possible
consequences of changes of aerosol droplet size 'in vivo'.
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SUMMARY The quantitative measurement of regional aerosol deposition in human lungs using
two-dimensional (20) gamma scintigraphy has proven to be useful in therapeutic and diagnostic
aerosol studies. The penetration index (PI) has been defined as the ratio of activity in a peripheral
lung zone to a central lung zone, but the ability to discriminate between aerosol deposition in the
large airways and lung parenchyma is reduced by the fact that the latter overlies the former in the
central zone. Toovercome this, we used a three-dimensional (3D) techn Ique. seven healthy subjects
inhaled isotonic saline aerosols containing 99mTc_DTPA on two occasions. The droplets had a mass

median aerodynamic diameter (MMAO) of either 2.6 or 5.5 11m (With geometric standard deviations
log] of t.4 and 1.7,respectively). 1I'ansmission tomography was performed on each subject to delineate
lung boundaries in 20 and 3D. After inhalation, anterior (A) and posterior (P) images were collected
and a tomographic study performed. Mid-lung slices were taken from coronal (CC) and transverse
(TC) sections. PI was calculated on the 20 images (AP and P) and the 3D slices (CC and TC) using

exactly defined regions. The PI values were smaller for the large droplet aerosol (5.5 11m) in all sub
jects and methods. The relative differences in PI between large and small (2.6 11m) droplet studies
(d values) were greater and less variable for the 3D methods (TC, 56.5 ± 11.4% and CC, 52.4 ±

12.3%) compared to the 20 methods (P, 25.4 ± 17.1% and AP, 38.3 ± 15%; P < 0.005). We found
the 3D methods to be more sensitive for discriminating between aerosol deposition In large and
small airways than were the conventional 20 methods. AM REV RESPIR DIS 1989; 139:1516-1523

Introduction

The ability to differentiate quantitatively
between the deposition of inhaled aero
sols in large conducting airways and in
lung parenchyma is useful in several areas
of respiratory and nuclear medicine. For
example, the assessment of the initial de
position pattern is necessary in the mea
surement of mucociliary clearance (1-11),
the "in vivo" evaluation of devices for
production of aerosols, and the parame
ters affecting their performance (12-23).
The comparison of aerosols with radioac
tive gases (17,19,24-29), aerosol tests for
small airways function (25, 27), and stan
dardization of inhalation provocation
tests (30-32) all require a measure of the
distribution of radioactivity between the
conducting airways and parenchyma.
Perhaps the greatest need for quantita
tive information on the regional distri
bution of inhaled materials is necessary
in the study of the deposition and elimi
nation of substances with local pharma
cologic activity (18, 20, 21, 33-36) and
the pathophysiologic (7, 15, 24-27, 29,
37, 38) and pharmaceutical factors af
fecting these processes (13, 16,20-23,39).

The most common measure to estimate
the relative amounts of aerosol deposit
ed in the large airways and the lung paren
chyma is the penetration index (PI) (3, 23,
25,27,28,37,40). This parameter is ob
tained by defining peripheral and cen
tral regions of the respiratory tract and
calculating the ratio of radioactive counts
in the two regions; a correction based on
comparison with 81mKr scans is some
times applied (3, 25, 27, 37), particularly
when the gas is used to define the lung
boundary or a volume correction is re
quired for intersubject comparisons.

Conventionally, two-dimensional (20)
gamma scintigraphy has been used to vis
ualize the deposition of radioaerosols in
the human respiratory tract by taking
posterior or anteroposterior geometric
mean views. The central and peripheral
regions of interest for the calculation
of PI have been selected with the as-
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sumption that the former would contain
predominantly large conducting airways,
whereas the latter would represent most
ly deposition in the small peripheral air
ways and, primarily, in the alveoli. It
is well known that in reality, there are
small airways and parenchyma as well as
large airways located in the center of the
lung because of its three-dimensional
(30) structure.

Logus and colleagues (41) showed the
great value of the 30 technique of single
photon emission computed tomogra
phy (SPECT) for lung imaging. In ani
mals, SPECT detected ventilation defects
caused by artificial obstructions that were
not detected by other more conventional
methods, whereas in patients with ab
normal lung function, SPECT provided
much better information about the re
gional aerosol deposition than either the
posterior or anterior planar views. These
investigators also studied the qualitative
effect of two different breathing patterns
on regional aerosol deposition, but they
could detect no difference either by the
20 or 30 method, presumably because
the aerosol was fine enough (mass medi
an aerodynamic diameter [MMAO] ~

1.2 urn, geometric standard deviation

[ag] = 1.8) to deposit primarily in the
alveoli (42).

We wished to develop a consistent and
sensitive method of PI measurement that
would enable us to discriminate between
deposition in lung parenchyma and con
ducting airways. To this end, we employed
aerosols of different sizes with expected
depositions predominantly in these two
distinct regions. In order to avoid the pos
sibility of bias due to the effect of differ
ent rate and depth of breathing on the
individual subject's aerosol deposition
(43), we measured PI in each subject for
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the two aerosol sizes, inhaled using the
same pattern of breathing on both occa
sions. We employed a gamma camera
with tomographic acquisition capability
to measure radioaerosol deposition on
a time scale short enough to avoid sig
nificant change of the initial deposition
pattern by mucociliary transport and
absorption.

Methods

Subjects
Sevenhealthy, nonsmoking subjects werestud
ied, five men and two women of mean age
34 yr (range, 26 to 39 yr), Lung volumes were
obtained from each subject, and dynamic lung
function tests wereperformed immediately be
fore each inhalation study. The study protocol
was approved by the Hospital Ethics Review
Committee, and written informed consent was
obtained from each subject prior to the studies
after full explanation of the protocol.

Transmission Study
A transmission study (44, 45) was carried out
on each subject to delineate lung fields. Each
subject was placed in a supine position over
a gamma camera (GE 400AT; General Elec
tric, Milwaukee, WI) fitted with a low ener
gy, all purpose, collimator and linked to an
on-line computer (DEC PDP 11; Digital Elec-

tronic Corp., Maynard, MA). A flood source
containing approximately 1.5 GBq of ISJGd
in water was fixed to a frame in front of the
subject's chest. Two S7CO markers were placed
on premarked positions on the subject's chest,
and anteroposterior images were collected.
The markers were then removed with the sub
ject remaining in the same position before a
64-angle tomographic study of 10to 12s/angle
(approximately 15min total duration) was ac
quired in a 64 x 64w matrix. The attenua
tion images collected were then reconstruct
ed to provide low definition anatomical data
in coronal and transverse planes.

Aerosol Deposition
Two radioaerosols with different particle size
distributions were inhaled on two occasions
by each subject. The aerosols were generated
with oxygen from a medical gas cylinder from
either a Cadema nebulizer (Cadema Medical
Products Inc., Middletown, NY) at 8.0 L/min
or a nebulizer of unknown origin at 6 L/min.
The humidity of the dilution air supplement
ing the flow to the mouthpiece and the change
in temperature of the nebulizer solution dur
ing generation were found to affect the drop
let characteristics (46, 47). As a result of these
observations, a miniature resistive heater was
positioned inside each nebulizer. Power was
then applied through a variac to keep the
nebulizer as close as possible to room tem-

perature. Dilution air was humidified with the
aid of a medical humidifier placed in-line.
Droplet sizing was performed on the radio
aerosols produced by the nebulizers under
these conditions with the aid of a calibrated
seven-stage cascade impactor (DCI-6; Delron,
Columbus, OH) (48). The coated glass im
pactor slides containing the deposited radio
aerosol were counted on a previously cali
brated gamma camera (47)and the droplet size
distribution calculated by a least squares fit
to the data (48). The droplet sizes of the two
aerosols were 2.6 and 5.51lm MMAD and 1.4
and 1.7 og, respectively.

Inhalation Circuit
A closed aerosol inhalation circuit was used
to monitor and record the subject's breath
ing. A target was thus provided to reproduce
the breathing pattern on the subsequent in
halation with the aerosol of different size (fig
ure I).

The circuit consisted of a bag in a box sys
tem with the humidifier and nebulizer in the
inspiratory line and filter and COl absorber
in the expiratory line. The volume respired
was displaced from the "box" by the "bag,"
which then entered a bell spirometer (Gould
Godart BV.,Bilthoven, the Netherlands) via
a respiratory flow transducer (Hewlett-Pack
ard 47304A; Hewlett-Packard, Waltham,
MA) and a pneumotachograph (Hewlett-

Spirometer with servo-potentiometer

Pneumotachograph

C.A.D.

f-~-~-~r~_V__y_

0000
Medical
humidifier

One·way
Valve

Mouthpiece

, ", )
Vacuum and
needlevalve

L.==; I LJ /~!(" I I

CO2 absorber Filter

Fig. 1. Diagram of aerosol inhalation breathing circuit.
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Packard 21073B). The flow signal from the
pneumotachograph was integrated (respira
tory integrator 8815A; Hewlett-Packard) and
displayed on a cathode ray oscilloscope (184A
and lS0SA amplifier; Hewlett-Packard). A
vacuum was applied to the circuit via a nee
dle valve to evacuate from the system an ap
propriate amount of air to keep the system
isovolumetric.

Inhalation
Each subject was seated at the mouthpiece
of the aerosol delivery circuit and breathed
tidally via the mouth for a few minutes to de
termine their natural tidal volume, peak flow,
and frequency of breathing. The target vol
ume or inspiratory flow was then displayed
on the oscilloscope as a baseline and target
line. The subject followed the tidal volume,
or inspiratory flow line, as it moved between
the target lines. A facility on the integrator
allowed for any small changes in baseline by
resetting after the end of every breath. The
inspiratory flow was measured from a trace
of the original flow signal and tidal volume
from the spirometer graph. A metronome was
used to provide a target for frequency of
breathing. Approximately 5 ml of 100 MBq/
ml 99mTc_DTPA in normal saline was then in
jected into the nebulizer through a rubber sep
tum while the subject remained on the sys
tem. The inhalation period was three to four
minutes with a further inhalation if lung

counts were found to be below 2000 counts
per second over the posterior thorax.

Imaging
Immediately after aerosol inhalation, water
was gargled and expectorated and the subjects
placed in a supine position over the gamma
camera. Two-minute anterior and posterior
images were then collected before a 10to 12sl
angle SPECT study, in a 64 x 64w matrix.

Data Treatment
The images obtained by the gamma camera
were displayed on the computer screen in a
64 x 64w matrix (Gamma II; Digital Elec
tronic Corp.). The transmission data were con
verted to attenuation values and transverse
sections reconstructed using conventional
convolution back-projection methods (Nu
clear Medicine Package; Analogic Corp.,
Worcester, MA). The emission data were
reconstructed by convolution back-projection
and a first-order Chang attenuation correc
tion performed employing a constant attenu
ation coefficient (49) derived from the atten
uation values described above.

Coronal and transverse sections were
formed from the reconstructed images. A
number of coronal and transverse central
slices were then taken from the mid portion
of the right lung and summed together as
shown in figure 2. The right lung only was
assessed to avoid corruption by activity in the

stomach adjacent to the left lung. The recon
structed transmission tomographic images
were used to define right lung boundaries in
transverse, coronal, and anteroposterior views
for each subject. These were used to derive
central and peripheral zones by computer
based predefined criteria related to the dimen
sions of the lung. The central region was
drawn along the medial boundary edge of di
mensions as shown in figure 2. The peripher
al region was defined by scanning from a point
midway down the medial side of the lung im
age, around the lung, drawing a peripheral
strip a set distance (one-third of the lung
height) inside the outer boundary (figure 2).
Once a region was defined for a subject, it
was stored for all future uses.

The PI was then defined as:

Counts per second (cps)/pixe1
in peripheral region

cps/pixel in central region

PI measurements were performed on the fol
lowing images: planar methods: (I) the 2D
posterior image (P), not corrected for attenu
ation; (2) anteroposterior geometric mean im
age (AP), not corrected for attenuation; tomo
graphic methods: (3) transverse central slices
(TC) taken through the midportion of the lung
in transverse view of thickness approximat
ing 50070 of the lung height; (4) coronal cen
tral slices (CC) taken through the midportion

Lu...
Height
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Fig. 2. Diagram of peripheral and central regions and mid-lung slicing.
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Definition of abbreviations: S = "small" aerosol dropletstudy(MMAO = 2.6 j.lm); l _ "large" aerosol dropletsludy(MMAO _
5.5 I.Im); d = % difference between largeand smallstudy. 100 (l- S)/S; MPIF = mean peak inspiratory flow(Umin); MPEF =

mean peak expiratory flow(Umin); MTV = mean tidal volume (ml); ORC - duration of respiratory cycle (s); CV = coefficient
of variation (%).

• Values are mean ~ standard deviation.
t Study.

Discussion

Among the various quantitative measures
of the distribution of deposited radio
aerosols between the airways and the lung
parenchyma, the PI is almost certainly
the most convenient and readily measur
able. However, planar measurements of
aerosol deposition suffer from the prob
lem of the inclusion of overlying "periph
eral" airways in the central "large" air
way region (41).

It has been suggested before (52) that
tomography should be better suited to
distinguish between deposition in the

Definition of abbreviations: VC = vital capacity (% predicted); FEV, = forcedexpiratory volume in
1 s (% predicted); FEV,NC = FEV, as percent01 VC; FEF.o = forcedexpiratory flowat 50% VC (%
predicted) (51); S = "small" aerosol dropletstudy (MMAO = 2.6 um): l = "large" aerosol dropletstudy
(MMAO = 5.5 j.lm).

small and large airways than should the
conventional 20 images. Wetherefore at
tempted to further separate central and
peripheral airways by the use of these
tomographic techniques. Our results show
that in comparison with the convention
al techniques based on planar imaging,
tomographic methods of measuring re
gional deposition are superior, with the
coronal and transverse midlung slicesgiv
ing a more discriminating measure of PI.
This is also likely to be the case with aero
sols of different droplet size characteris
tics to those used, as long as there is a

FEF50

(%)

FEV,NC
1%)

5 L

FEV,
(%)

5 L

98 79 84 59 62
113 85 83 101 106
104 82 84 101 98
113 83 88 77 78
102 86 89 102 96
128 86 87 103 96
109 83 86 74 78

TABLE 2

MEAN BREATHING PARAMETERS·

MPIF MPEF MTV DRC

Studyt (Umin) ICV"o) (Umin) ICV"o) Im~ ICV"o) Is) ICV"o)

5 25.1 8.9 20.6 7.2 491.7 6.9 4.45 3.3
L 25.9 9.4 19.2 9.5 493.9 8.9 4.40 3.8
d 3.2 -6.8 0.5 1.10

5 23.2 26.7 16.7 13.4 713.8 9.1 8.11 3.8
L 28.4 23.7 17.5 17.8 730.2 15.0 7.96 4.0
d 22.4 4.8 2.3 1.80

5 41.9 6.9 31.1 6.6 614.7 5.3 5.21 4.4
L 40.4 4.7 27.3 6.3 574.8 5.3 5.18 4.1
d -3.6 -9.6 -6.5 0.6

5 30A 15.9 21.7 7.5 682.6 11.3 4.91 3.2
L 8.1 11.5 20.5 7.2 74.6 7.7 4.90 3.1
d -7.6 -5.5 -1.2 0.2

5 43.3 16.1 34.4 11.6 987.6 3.8 6.26 4.4
L 31.1 8.1 31.1 9.6 1,000.1 3.4 6.28 4.8
d -28.2 -9.6 1.3 0.3

5 31.0 12.7 34.3 8.8 1,254.8 8.1 6.43 3.4
L 34.1 8.7 29.6 12.7 1,244.2 14.2 6.44 4.7
d 10.1 -13.7 -0.8 0.2

5 29.1 13.7 19.5 13.7 495.0 12.1 3.65 4.2
L 35.3 10.7 24.6 9.3 633.9 13.0 3.60 4.6
d 21.3 26.5 28.1 1.4

TABLE 1

SUBJECT DETAILS

VC

Age Height Weight
(%)

SUbject Sex (yr) (em) (kg) 5 L

1 F 39 154 54 105 97
2 M 39 182 71 107 105
3 M 26 191 78 103 103
4 M 38 154 59 111 116
5 M 38 165 63 108 111
6 M 26 171 65 119 130
7 F 29 166 67 114 104

2

Subject

6

7

3

5

4

of the lung in coronal view of thickness ap
proximating 40'10 of the lung depth.

These results are shown in figure 5. The
d values obtained from the 30 (TC and
CC) images are significantly greater than
those from the 20 (P and AP) (p <
0.(05), whereas there was no difference
between the two 30 methods or between
the two 20 methods (p >0.1) The d val
ue from the P images was inferior to all
other methods tested.

The standard deviation of the mean
d values are also shown in figure 5. PI
from TC and CC can be seen to display
the most consistent pattern in the sub
ject population and aerosols studied.

Results

All subjects' spirometric and lung func
tion results werewithin the normal range,
and there was negligibleintrasubject vari
ability in performance between "small"
(MMAO = 2.6 urn, og = 1.4)and "large"
(MMAO = 5.5 urn, og = 1.7) aerosol
studies (table I). This was confirmed by
the two-tailed paired t test (50) and the
two-tailed Wilcoxon rank sum test (51),
which demonstrated no statistically sig
nificant intrasubject differences (p <0.1)
between the two studies for mean peak
inspiratory and expiratory flow, tidal vol
ume, and duration of respiratory cycle
(table 2). These are the primary breathing
parameters believed to affect the region
al deposition of aerosols in the aerody
namic size range used in this work (43).

Typical AP and CC images for the
small and large droplet studies in Sub
ject 2 are shown in figure 3. A small
qualitative difference in the deposition
pattern ofthe right lung can be observed
with the AP images, whereas a much
greater difference in the deposition pat
tern between large and small droplets
with the CC images can. be observed.

Figure 4 shows that the PI was smaller
for the large droplets in all subjects and
in all methods employed. The highest
statistical significance was obtained for
the transverse (p < 10-') and coronal (p
< 10-') midlung slices, whereas the pla
nar (P) images exhibited the least signifi
cant difference (p = 0.014). To examine
the group response more closely, these
differences were further evaluated by cal
culating the relative increase in PI of the
small droplet study compared to the large
droplet study as a percentage (d):

d "10 = PI (small droplets) - PI (large droplets) x 100

PI (small droplets)
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Fig. 3. Deoosmcn Images 01 the small aerosol (3a and 3b) and large aerosol (3c and 3d) In Subject 2. Images 3a and 3c are anteroposterior (AP) images. whereas 3b
and 3d are coronal mid-lung slices (e e ). The CC images show a larger qualitative difference in deposition pattern between tne large and small studies,

proportion o f both peripheral and cen
tral deposition.

M ildly polydisperse aerosols with
MMAD of 5.5 and 2.6 urn were used be
ca use the former aerosol would be ex
peered 10 have a subs ta ntia lly smalle r PI
than the latter (48 , 53, 54). lmpaction in
the cond ucti ng a irways is p ro ba bly the
predominant mechanism of deposition
of the "la rge" d roplets, whereas sedimen
tat ion in the sma ll a irways and a lveoli
becomes important for smaller droplets.
The results indicate that the choice of the
regions o f interest is consistent with the
idea that the "central" region contains
mainly large conducting airways and the
"peripheral" region consist s probably of
bronchio li and alveoli; otherwi se, we
would not expect to obtain such clear

differences in PI between the two aero
sols in a ll subjects and methods used, Al 
though there was a di fference in the
breath ing patterns between the la rge a nd
small aerosol stud ies in some su bjects,
there wa s no significa nt t rend a nd the
changes in PI could not be explai ned by
this, Nevert heless, we would recommend
tha t a ttem pts be made to reproduce as
m uch as possible the breat hing pat te rn
in an ind ividual fo r studies of cha nges
in PI, particu larly in su bjects with ab
no rmal a nd varia ble ai rway funct ion (55).

After the in itial deposition, the inhaled
aerosol undergoes d ynamic cha nges due
to absorption and mucociliary clearance
(8). Allhough a longer time is required
for S PECT image acquisitions (up 10 15
min), these changes are likel y to have lit -

tie effect o n the ca lcula ted P I values for
the following reasons: in normal subjects.
the absorption rate half-li fe of Te-DT PA
is 86 ± 26 min (56) and this varies litt le
throughout the respi ratory tract over the
SPECT acquisition time, especiall y medi
o laterally (57-59). There fo re, th is route
of eli mination of the radioactivit y will
affect approxi mately equally both the pe
riphera l and the cent ra l regions. Similar
ly, the "background" radioactivi ty ap
pearing in the b loodst ream will be sma ll
and di st ributed quite uniformly and it
will be cleared rapidly with 58% clear
ing with a biologic half-lime o f 3.8 min,
24% with 15.6 min, and 18'70 grea ter than
11 8 min in subjects with normal renal
function (60). With regard to the rnuco
cilia ry clea rance, it ca n be envisaged tha t
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at least in normal subjects, this process
is at steady state, whereby there exists a
balance between the rates of supply and
removal of material in the more proximal
ciliated regions of the respiratory tract.
Therefore, we would not expect this pro
cess to significantly affect the radioac
tive counting in the central region over
the time period of the SPECT studies.
The peripheral region probably contains
many nonciliated surfaces that are there
fore not subject to mucociliary clearance.
Moreover, all the above processes have
half-lives longer than the duration of our
SPECT studies (61, 62).

In conclusion, we have shown that
there were significant reductions in the
PI values in normal adults when they in
haled two aerosols with MMAD of 2.6
J.Im (og ~ 1.4) and 5.5 J.Im (cg = 1.7),
respectively, under controlled conditions.
These reductions were most pronounced
when the PI was calculated from mid
lung coronal or transverse slices obtained
by SPECT reconstruction; this former
method also gave the most consistent pat
tern ofchanges in PI in the subject popu
lation studied. The conventional planar
images showed the same qualitative be
havior, but their ability to distinguish be
tween deposition of the large and small
aerosols was substantially lower, partic
ularly for the posterior images.

This is the first time that quantitative
deposition measurements have been un
dertaken using SPECT, and the advan
tages of PI obtained in this way are like
ly to be important in studies requiring
a high degree of discrimination between
the deposition of aerosols on conduct
ing and respiratory surfaces of the respi
ratory tract.
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Droplets Produced by Medical Nebulizers·
Some Factors Affecting Their Size and Solute
Concentration
lbul R. Phiws, B. Pharm.t; and Igor Gonda, B.Sc., Ph.D.

'The effeet of oebulizer solution temperature aud dilution
air bumidity on the size aud solute coooeotration ofaq..-s
aerosol droplets weee studied. Four eombiDatioos of jet
oebulizers with air eompressors or oxygen sources aud ooe
oItrasODic oebulizer"""' tested. 'Thetemperature to which
the oebuIizer solution ofeaeb system feU duriug geoendioo
.... measured. 'The oebo\izers were tbeo kept lit set
temperatures, geoented oerosoIs coUectecI aud either dr0p
let size or solute coooeotration measured. The droplet
solute concentration .... found to iDcrease. The droplet

size decreased alongwith thedroplet solute """"""lra
increase. 'The oItrasonic: ....buIizeralso was tested: its high
OUtput made the concentralioaufthe solution in the drop\ets
much more stable. H_. the praportion of droplets
depositing in the tubing aud valves changed markedly with
aerosol8ow rate. 'ThepotentiallDr \argema- in c!roplet
solute coooeotratioo, drop\et size aud output during oebu
Iization sbooldbe eoasideredin therapeutic: aud diagnostic
applieations of nebulized aerosols.

(Chat 1990;97: 1327-32)

thelic SuppUes Ply. Ltd. Sydney. Austrolia)-this I)'Stem is equtv
olent to Tole-A-Neb. Hoopitak IDe.. Undeahunt. NY (private
communicatioD. Loura MlIrtioozzl); Up-Dn& withAerosoI-<>oe oir
compressor (Mediad Industries America, Des MDioes, IA); Mist
O.-Gen ullrasoDic nebulizer (Model ENl43<\. llmeter, PA~

These systems ..... __ of equipment used in the

dJagnosis of pulDlODU)' embolism (Codema oebuIl%er), DllSl-isolooic
chaIleDge testing in utbma di.gnosis" (Mist-o.-GeDj or '" drug
delivery in the _eDt of vorious respiraIory~ (Up-Draft
nebubzer; Up-DroIt with Flatus Mk.Voircom_meIUp-Dn&
with Aerosol-one oir compressor), The Bow rate pnxIuc:ed by the
Flotus Mk.V aad the AerosoI-one oir compressors tIuougb the
UpDroIt nebulizer containing 5 m111On11a1 soIine soIutioDwu found
to be 6.3 mel 5.0 lJmln. respectively as .........,.j by rotameter
(Platen Ltd. Basingstoke. Harts. UK)

The chonge in .emperature of eoch system wu .........,.j with
lID esophageal thermisto< probe (YSI series (00. tempenture
recorder model46TIJC. Yellow SpriDgs I..........." Co. IDe.Yellow
Springs, OH) placedin the nebuliz.". soIulioa. end the temperature
wu recorded .. set limes during ..rosoI geoe<otIon until the
temperature hod .....bed • sleIldy value (1",). The initial ..,Iume of
solution in the nebulizer was 5 mI (jet aebulizers) 01' 200 ml
(u1basonic nebulizer). The ombient tempentures varied between
23l1Dd 24"C.

The concentration of sodium chloride in the aerosol droplets
generated by the jet nebulizers was measured (or different, con
stant, nebulizer solution temperatures. 11»e lowest temperature
used (or each nebulizer was approximately the value reached after
moning the nebulizer without beating to a steady temperature Ts•
determined as described previously. The oebuIl%er bowl. containing
5 ml ooimaI saline solution. was cooledto a pominated temperature
by immersion in a cold water bath. The aerosol was then generated
and the nebulizer solution temperature kept at the nominated value
by immenioo in a warm water bath. The temperature of the
nebulizer solution was monitored with the miniature esophageal
thermistor probe. The temperature was controlled to ±0.3 degrees
during a generation time of 10 to 25 min and generated volume of
1 to 3 ml. The aerosol was passed via a short length of tubing (30
em) through the last two stages of a cascade impactor (DC16,
Delran, Columbus, OH) and collected in a small container of similar
dimensions to a cascade impactor slide. The Bow through the
impactor stages was 12.5 Umin, and the dilution air necessary to
supplement the Bow through the nebulizer was supplied either at

ambient temperature (23 to 24OC) and humidity (65 to 75 percent)
or fullyhumidi6ed at ambient temperature via a Douglas bag. After
collection of the aerosol droplets, the containers were re-weighed
and droplets diluted with nonnal saline solution if their volume was

Nebu1ized aerosols are used extensively in therapy
and diagnosis of respiratory diseases. This mode

ofadministration also has proven useful in ventilation
imaging as an aid in the diagnosis of pulmonary
embolism. In fact. it is the ease with which solutions
or suspensions of therapeutic and diagnostic agents
can be nebulized which makes the use of this type of
aerosol so widespread.

The importance of the characterization of nebulizer
systems for clinical applications has been recognized
by a number of authors.!" The clinical efficacy of
nebulized aerosol treatment depends primarily on the
amount of active substance depositing at various sites
in the respiratory tract. which in turn is dependent
on the droplet size'·· and output from the nebulizer as
well as patient parameters such as inspiratory flow
rate. respiratory tract morphology and disease state of
the lungs.'o The wide variation in performance of
nebulizer delivery systems'·""·13 makes it likely that a
failure in therapy often may be explained by poor
aerosol delivery rather thanby a poor response to the
drug therapy.

It is well known that the nebulizer solution cools
and concentrates during nebulization.".J> and it has
been reported that the humidity, of the air inhaled
alongwith the aerosol affects droplet characteristics.7.1'

~ wished to look directly at the effects of nebulizer
cooling and dilution air humidity on (a) the size and
(b) the concentration of solutes in the aerosol droplets
generated by a number of different medical nebulizer
systems.

METHODS

The following products were assessed: Cadema nebulizer (Ca
dema Medtca1 Products Inc., Middletown. NY) with compressed
oxygen at 8 Umin; Up-Draft nebulizer (Hudson Up-Draft Oxygen
Therapy Sales Co., Temecula, CA) with compressed oxygen at 8 U
min; Up-Draft with Flatus Mk.V air compressor (Maymed, Anaes-

"From the Department of Phannacy. Sydney University, Sydney,
Australia.
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FIGURE 1. Graph of nebulizer solution temperature below ambient
(23 to 24-c) vs time ofgeneration for the four jet nebulizer systems:
Up-D..rtIAerosol-one (BqUD....~ Up-Draft/Flatus (diamonds~ Ca
demalcompressed oxygen (drcles) and Up-Draft/compressed oxy
gen (lrl4ng/ut

iDsufticient for the determination of their solute concentration by
vapor~ osmometry (model 1100, Knauer, Bad Homberg.
\\est Gennany~

The solute concentration of the aerosol droplets generated by the
Mist..().-Geo. nebulizer was measured by the previously noted
methods. except thataerosol droplets were collected in 30-$ samples
at set times during oootinuous nebulization.

The output alnebulizer solution from the jet nebul.izer systems
was measured by weighing after generation for different periods of
time, whereas for the ultrasonic nebulizer it was measured contin
uously. The output from the mouthpiece with a two-way valve
(model 2700. Hans Rudolf Inc. /Cansas City, MO) in line. also was
tested.at various Bow rates.

The droplet size of the jet nebulizers at a number of operating
solution temperatures was measured in separate experiments. The
nebulizer was cooled to a set temperature and aerosol generated as
in the concentration measwements for 2 min. The nebulizer
solution contained approximately lOO,-M8qlml of -Tc 0.- in
normal solution. The aerosol was sized by cascade impaction as
described previously. 1

The size of the droplets produced by the ultrasonic nebulizer
was measured with and without the two-way valve in line, using
the same methods as previously described.

RESULTS

The fall in temperature with time of nebulization
for each of the nebulizer-generator systems is shown
in Figure 1. For the jet nebulizers, the temperature
falls to a steady value T, which is 5 to 6°C below the
ambient temperature at the lower How rates of the air
compressors, and 11 to 15°C at 8 Umin flow rate from
a gas cylinder. Most of this temperature change occurs
in the first 4 min of aerosol generation. By contrast,

Generation TIme (min)

FIGURE 2. Graph of nebulizer solution temperature vs generation
time for the Mist-ol-Gen ultrasonic nebulizer.

the ultrasonic nebulizer increases in temperature by
approximately 18°C and over a longer period of time
(approximately 20 min [Fig 2]).

The total outputs of the jet nebulizer systems are
plotted against generation time in Figure 3. The total
output feU during nehulization for all of the jet
nebulizer systems tested. The magnitude of the fall
was similar for both the Cadema and Up-Draft with
reductions in total output of approximately 45 to 65
mg/mm for temperature falls of 11 to 15°C (over 6 min
of generation).

The reduction in output with generation time for
the two air compressor-driven systems was lower;
approximately 15 and 27 mg/min for the Aerosol-One
and the Flatus, respectively, after a temperature fall
of 5 to 7"C during 6 min of generation.

The ultrasonic nebulizer solution output is much
larger than that of the jet nebulizers, The output vs
time graph is shown in Figure 4. The output without
tubing or valve was found to be approximately constant
at 4.8 mllmin over the time period tested. The output
through the two-way valve was found to be greatl y
reduced and was dependent on the flow rate of the
aerosol through it (Fig 4).

The change in concentration of solution in the
nebulized aerosol droplets can be seen for each
nebulizer system in Figure 5. The solute concentration
contained in the aerosol produced by the jet nebulizers
increases significantly with the fall in nebulizer tem
perature and with the reduction in the dilution air
humidity. At the steady temperature T, the droplet
solution reaches 5.8 and 9.2 percent sodium chloride
for the Cadema and Up-Draft nebulizers, respectively.

1328 Droplets Produced by Medical Nebulizers (Phipps. Gonda)
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The droplet size distributions of the jet-nebulizer

FIGURE 5. Graph of droplet solute concentration (solid symbols, %
WN) and mass median aerodynamic diameter (open BfPTIbols, p.m}
vs nebulizer solution temperature for the four jet-nebulizer systems:
Up-Draft/Aerosol-One (sqtulres~ Up-Draft/Flatus (diamondsl Ca
dema/compressed oxygen (circles) and Up-Draft/compressed oxv
gen (triilngles). Note that the ambient temperature is the highest
value on each graph.
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using8 Umin of compressed oxygen as the generation
gas. The FlatusIUp- Draft system reaches a little less
than 5 percent and the Aerosol-One/Up-Draft reaches
approximately 36 percent saline solution after the
same generation time.

The effect of dilution air humidity alone on the
droplet solute concentration with the nebulizer at
room temperature for each jet nebulizer system can
be seen in Table 1.

The droplet solute concentration reaches 1.1 to 1.5
percent with saturated dilution air at ambient temper
ature. Ambient dilution air with relative humidity of
65 to 75 percent at ambient temperature increased
the droplet solute concentration to 1.86 and 2.46
percent for the Up-Draft and Cadema, respectively,
generated with compressed oxygen. The effect with
the air compressors was greater with the Up-Draft,
the Flatus compressor producing a concentration of
3.45 percent and the Aerosol-One, 13.5 percent.

The droplet solution concentration generated from
. the ultrasonic nebulizer changes very little with time.

The maximum effect is seen at the start of generation
(0.93 percent saline from 0.9 percent initial value),
and as nebulization progresses, the concentration
returns toward isotonic, reaching it after approxi-
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Table I-EJJBct ofmlution Air H"midUy on Drop/et
St>1uk ConcenktJtion·at Ambient lll".p."ut"re

Table 2-EJJBct ofDilution Air H"midity on Droplet Size
at Ambient ~at"re

DISCUSSION

The fact that the nebulizer solution temperature of
jet nebulizers faIls during generation has been well
documented. The heal loss is due to the evaporation
of the nebulizer solution to saturate the gas used to

Up-DraftlAero.ol-One 1.5:0.3 13.5: 1.8
Up-D..atFIatus l.I:O.1 3.5:0.6
Up-DraftICompressed O. 1.3:0.2 1.9:0.3
CademalCompressed O. 1.5:0.2 2.5:0.2

·Results expressedas mean±range (number of detenninations= 2
0<3).

170
39.1

392
244

II.I
5.2

35.9
2.4

Droplet Size, Droplet Concentration,
'% Fall" '% Rise"

NebulizerlGeoerator
System

Up-DraftiAerosol-one
Up-DtaftlFIatus
Up-DraftICompressed 0.
CademalCompressed 0.

-eaJcuIated as'

Table 3-Change ofC_ration and Droplet Size
Bet_ Ambient and Steadg State Temperature, T.

(6$075'110 8elatWe Humidity mlutionAir)

IX(TJ-X(TJI x 100
X(TJ

where X=droplet size or droplet solution concentration at ambient
temperatute T. or steady state temperature Ts (lowest
steady temperature reached by each system).

generate the aerosol and some cooling due to adiabatic
expansion of the generating gas.14.11 This evaporation
also leads to an increase in solute concentration of the
nebulizer solution. II The gas from a compressed gas
cylinder contains no water vapor, while an air com
pressor supplies air of ambient humidity. Less vapor
is therefore required from the nebulizer solution to
saturate the air from an air compressor and heal loss
is therefore reduced. Of the energy imparted to the
solution of an ultrasonic nebulizer, however, part is
used to overcome the surface tension to disperse
solution droplets and part to heat the solution itsel£
The nebulizer solution therefore warms during gen
eration (Fig 2).

The initial output from the nebulizer depends on
the type, the flow rate and the saturation of the
generating gas. The change in jet nebulizer output
measured durmg generation depends almost solely on
the temperature of the nebulizer solution. The nebu
lizer solution provides both the solution output and
the output of vapor necessary to saturate the genera
tion gaswith water vapor at the nebulizer temperature.
Therefore, the amount of vapor carried by the gener
ation gas decreases as the temperature falls and the
reduction in total output mirrors these changes.

As the temperature of the ultrasonic nebulizer
solution increases, the extra water needed to saturate
the air is likely to come from the dense aerosol cloud
within the nebulizer chamber. The output therefore is

Table 4-Size ofDropku Generated by the Miot-O.-Gen
Vltrtuonic Nebulizer·

65-75% Relative
Humidity

Droplet Solute
Concentration (CI. WN SaliDe~

Mass Median Aerodynamic
Diameter in .,.m*

(Geometric Standard Deviationt)

100'1> Relative
Humidity

NebulizerlGenerator
System

systems fall with reduced dilution air humidity and
with the falling temperature in the nebulizer, in
parallel with the increase in solute concentration in
the aerosol droplets. Figure 5 shows the effect of
nebulizer temperature on aerosol droplet size. The
effect of temperature change is greater when com
pressed oxygen is used at 8 Umin, the droplet size
falling by 33 and 36 percent of the size at ambient
temperature for the Cadema and Up-Draft, respec
tively. With Flatus and Aerosol-one generation, the
size change is smaIler (19 and 11 percent faIl from
ambient temperature value, respectively). Conversely,
the effect of dilution air humidity at ambient temper
alure is greater with the air compressor generation
than with the compressed oxygen nable 2). The
changes that would be seen in practice with unheated
nebulizeni are shown in Table 3.

The ultrasonic nebulizer droplet size changes when
a two-way valve is included in line but is not affected
by changes in relativehumidity of the dil ution air
('Iable 4).

Up-DraftiAerosol-One 4.2:0.3 (1.5) 2.7 :0.3 (1.5)
Up-DraftlFlatus 4.1 :0.2 (1.6) 3.1 :0.3 (1.6)
Up-Drol\ICompressed 0. 4.2 :0.1 (1.4) 3.9: 0.2 (1.5)
CademalCompressed 0, 2.7 :0.1 (104) 204:0.2 (1.4)

"Besults expressed as mean '± range (number of determmattons = 2
or 3).

tGeometric standard deviation values all ± 0.1.
"Results expressed as mean ± range (number of determinations = 2
or 3).

19.5±0.3 99.0± I Yes 3.6:t 0.1 1.1±0.1
19.0±0.3 53.1 ± 1 Ye' 3.5±0.2 1.1±0.1
19.0±0.3 53.5 ± 1 No 5.7:0.1 1.4±0.1

Nebulizer/Genem.tor
System

l()()% Relative
Humidity

65-75% Relative
Humidity Ambient

Temperature,
°C

Dilution Air
Relative

Humidity,
%

Mass Median Geometric
Mouthpiece Aerodynamic Standard
and Valve Diameter (jJ.m) Deviation
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not likely to change as the nebulizer temperature rises
as suggested by the results (Fig 4). The two-way valve
situated hefore the mouthpiece of the ultrasonic
nebulizer 61ters a high proportion of the larger drop
lets from the aerosol stream. The effect therefore is to
reduce the output and mass median aerodynamic
diameter of the droplets. This effect depends on the
flow rate of the aerosol stream and hence the velocity
of the droplets. There is an optimum flow rate.
however. due to opposing effects: At the lower flow
rate, the droplets tend to settle into the nebulizer
solution or within the tubing and the output is reduced.
At the higher flow rates, the droplets are more likely
to impact within the tubing and on the valve. The
optimum flow rate for this system was found to be
approximately 20 Umin (Fig 4).

Although it is known that the concentration of the
solution in the jet nebulizer bowl increases with
generation due to the release of vapor in addition to
the liquid droplets.'...s the changes in solution COncen
tration in the droplets measured in the experiments
reported here are generally much greater. This is
because the cold aerosol droplets generated from the
jet nebulizer solution will evaporate a substantial
amount of water as they rapidly warm up to room
temperature. Therefore, the concentration of solute
in the droplets increases to a value determined by the
difference between the ambient temperature and the
temperature of the nebulizer solution and to a lesser
extent due to the gradual increase of the concentration
in the nebulizer.

The nebulizer solution equilibrates to a lower steady
temperature Ts when the dry gas from a compressed
gas cylinder is used to generate the aerosol, compared
with the air compressors. The droplet solute concen
tration thus increases to a greater extent (relative to
the value at ambient temperature) as a result (Table
3).

The ambient air inhaled along with the aerosol that
makes up the inspiratory flow is likely to have a lower
relative humidity than that corresponding to the
nebulizer solution; therefore.Jt has the effect ofdrying
the aerosol droplets as it mixes before inhalation." This
concentrating effect is quite marked, especially when
the generation flow and the output of solution from
the nebulizer is low. The consequence of the low
output is that there is only a small volume of water
present in the droplets to resaturate the aerosol stream
(see results for Up-DraftlFlatus and especially the Up
Draft/Aerosol-One systems, Fig 5 and Table I). The
ambient relative humidity was comparatively high
during these experiments (65 to 75 percent). and a
lower ambient relative humidity, such as that found in
air-conditioned rooms, would be expected to greatly
enhance these effects.

The ultrasonic nebulizer has a higher output and

larger droplet size. so more water is available for
saturation of the dilution air and the concentration
change of the droplet solution hence is much smaller
than that of the jet nebulizers. The droplet concentra
tion therefore starts off greater than isotonic, but as
the tubing becomes saturated, this is able to supply
the vapor necessary to saturate the dilution air. Al
though the nebulizer solution temperature is increas
ing. the droplets do not become hypotonic due to
water vapor condensing Onthem as the aerosol stream
cools; rather. the excess vapor will condense on the
walls of the conducting tubing. II

Schoeffel et al'" found that small amounts of hyper
tonic (3.6 percent sodium chloride) aerosol caused
bronchoconstriction in asthmatic subjects. Lewis and
Thtters6eld2l·" found that a number of asthmatic
subjects had bronchoconstriction after inhaling a jet
nebulized aerosol of isotonic saline solution, but not
to an aerosol generated by a nebulizer heated to 37"C.
This was explained in terms of a reduction in airway
cooling by the warm aerosol, but it may have been
due to a reduction in the concentrating effects that
the nebulizer temperature fall imparted on the drop
lets. The possibility that initially isotonic, or even
hypotonic, solutions may produce hypertonic aerosol
droplets should therefore be accounted for when
delivering therapeutic aerosols to patients with hyper
reactive airways.

The necessity for nebulization to be reproducible
for bronchial challenge testing. has 1.,.\to some careful
characterization of nebulizers;23-" the nebulizer tem
perature change may, however, add to the variability
in dose 31.d site of delivery of challenge agents.

The size of theaerosol droplets falls with generation
time in conjunction withthe increase in concentration.
The magnitude of this is variable but it is likely to
affect the deposition pattern of aerosol within the
lungs.8 Large differences in regional deposition as
measured by "penetration index" on tomographic
slices have been found in normal subjects inhaling
aerosols with mass median aerodynamic diameters of
2.6 and 5.5 ,...m." The smaller droplet size showed a
much higher relative deposition in the small airways
and lung parenchyma. The change in droplet size,
depending on the time since the start of generation
and the humidity of dilution air (for example, from an .
initial droplet size of 4.2 urn with 100 percent relative
humidity dilution air to 2.4 urn after the equivalent
of 4 min generation for the Up-Draft/Aerosol-One
system) may be important in therapeutic, diagnostic
or experimental applications when reproducibility of
aerosol deposition or clinical response is important. 2";" .zs

It is, of course, very likely that some subsequent
adjustment of droplet size will take place in the
respiratory tract."

The Flatus compressor produces a droplet size

CHEST I 97 I 6 I JUNE. 1990 1331



similar to the Aerosol-One, With the Up-Draft nebu
lizer, but With the higher flow rate of the Flatus, a
smaller droplet size may be expected. The discrepancy
may be due to the fact that the Aerosol-One droplets
are evaporating to a greater extent than Withthe Flatus
at ambient temperature and saturated dilution air (1.5
and 1.14 percent. respectively [Table 11~ The lower
output of the Aerosol-OnelUp-Draft system is likely
to be responsible for this.

The effect of the increase in temperature of the
ultrasonic nebulizer solution on the droplet solute
concentration is small. Also, the effect of dilution air
humidity on the droplet size (and presumably the
droplet solute concentration) is small due to the much
higher output from the Mist-O.-Gen nebulizer. The
larger droplet size generated by the ultrasonic nebu
lizer means that they are more easily deposited on the
tubing and valves Within the system.

To reduce the evaporation effects in jet nebulizers,
the generating gas and dilution air should be saturated
With water vapor at ambient temperature and the
nebulizer solution should be maintained at ambient
temperature. As these changes may affect the outcome
of therapy, clinical studies to measure any alterations
in response should be carried out.

The higher output and droplet size occurring With
the Mist-G.-Gen ultrasonic nebulizer makes the drop
let size and solute concentration less susceptible to
large changes during nebulization. However, the pres
ence of tortuous tubing. valves and high inhalation
flow rate will cause a large reduction in the output
available to the patient because the large droplets Will
deposit in the apparatus.
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ABSTRAp

Medical aerosols prepared by nebulization of aqueous solutions are
unstable: they may undergo evaporation or uptake of water prior to, or
after, entry to the human respiratory tract (RT). These dynamic changes
modify the results of characterization of aerodynamic droplet size. We
analyse the changes of the aerodynamic diameter (D) by mathematical models
and show experimentally that the evaporation and condensation phenomena
also affect the deposition of aerosols 'in vivo'.

KEYWORDS
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INTRODUCTION

Nebulization of aqueous solutions ;s a common method of aerosol production
in medicine (Gonda, 1990). It has been pointed out that these aerosols
are unstable (Mercer, 1973; Porstendorfer et a1., 1977): they will
exchange heat and water with the environment until their vapour pressure
becomes equal to the ambient, or the droplets are transformed into solid
particles. T~se processes occur on time scales similar to the time it
takes to deliver droplets from the nebulizer to a size measurement device,
or to the area of deposition in RT. Therefore, both the measurement
(Porstendorfer~, 1977) and the deposition of medical aerosols are
affected by water exchange. Theoretical comparison of regional deposition
of hygroscopic and stable aerosols was made by numerous authors but there
1s little experimental evidence to support the models (Gonda, 1990). In
order to evaluate the deposition of 'hygroscopic' aqueous aerosols in RT,
it is necessary to have methods to obtain their aerodynamic size
distribution reliably. Small droplets of non-isotonic solutions can
equilibrate rapidly with the air in the airways. It is therefore a
reasonable objective to determine the size distribution of the aerosol
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when it is equilibrated at 37 °c with isotonic solution (Hickey ~,
1990); alternatively, the particle size of the dried aerosol can be
determined and the droplet size of the equilibrated aerosol calculated
(Gonda ~, 198Z; Mercer, 1973).

We have shown (Phipps~, 1987; Phipps and Gonda, 1990a) that aerosol
droplets from jet nebulizers can undergo marked changes in size and solute
concentration before reaching the outlet of the aerosol delivery system.
In the first part, a mass balance model is summarized which helps to
correct the measured 0 for the effect of evaporation or condensation. In
the second part, experimental evidence for change of droplet size in RT
and its effect on regional deposition is presented.

ESTIMATE OF DROPLET SIZE AND CONCENTRATION CHANGES 'IN VITRO'

The output of a nebulizer ml consists of droplets and vapour. It is
thought that, initially, the concentration of the solution in the droplets
is the same as in the nebulizer, c1' and that the vapour pressure is at
equilibrium with this solution at temperature TI. When the aerosol
droplets reach the ambient temperature T2, evaporation or condensation
takes place. To supplement the aerosol with an adequate volume of gas for
inhalation or size measurement, it is often mixed with dilution air
supplying a.mass of vapour per unit time, m3' Consequently, a further
exchange Qf water and heat is possible. The following mass balance models
can be deri~ed (Phipps and Gonda, 1990b) [only the models ignoring the
losses of aerosol in the equipment and the Kelvin effect (Gonda et al.,
198Z) are presented here]:

I. Assuming ideal solution behaviour (Ferron. 1977), the concentration c2
in the droplets can be calculated from the quadratic equation

(cz)z[mz(r-IJ-vZqZ]+cz[mz-vzqz-ms(r-I)]-ms - 0 (I)

where cz • final concentration of solution in droplets (g solute/g
solution}i r = ratio of the molecular mass of water to that of solute; v2
• saturation vapour content of pure water at temperature TZ (g/l); qz 
total flow rate (aerosol + dilution air) (l/min); mZ • ml+m3 • total mass
flow rate (aerosol + dilution air) (g/min); ms - output of solute (g/min).
ms can be measured directly or calculated as the total nebulizer output
less the water carried in the droplets and in the vapour. The latter is
obtained from the vapour pressure at equilibrium with solution at c1 and
TI·
II. Similarly, using an empirical expression for the dependence of vapour
pressure on saline concentration (Cinkotai, 1971). c2 can be obtained from
a cubic equation

(cZ)3+(a/b)(cZ)Z+CZ[I/b-mz/(qzvZb)]+ms/(qzvZb) • 0

where a=-0.486 and b--I.SS are empirical constants.

(Z)

Neglecting the slip correction, the ratio of aerodynamic diameter 01 of
the initially generated droplet containing solution of concentration c1'
to the size DZ of droplet with concentration Cz is
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01/02 - (dl/d2)1/6(c2/cI)I/3

where dl and d2 are the densities of the solutions obtained from the
theoret,ca] (ferron, 1977) or empirical (Cinkotai, 1971) relationship
between d and c. Some representative results are shown in the Table I:

(3)

Table I. Dependence of the final concentration in the droplets c
and 0 on the total output 0, the ratio R of aerosol/
dilution air and RH of dilution air for initial c-0.9%
and 0-3)'m at 20 °C. The subscripts refer to the
ideal and empirical vapour pressure and density
approximations of ferron (1977) (i) and Clnkotai
(1971) (e).

o (g/min) R (1/1) RH (%) c\ (g/g) ce (g/g) 01 ~""') De (lml)

10:10 50 100.0 21.4 0.7 1.1
0.2 90 2.1 1.9 2.3 2.3

10:I 50 1.3 1.3 2.7 2.7
90 0.96 0.95 2.9 2.9

0 18.9 12.2 1.1 1.3
0.5 10:20 50 1.9 1.9 2.4 2.4

90 1.0 1.0 2.9 2.9

It is noticed that the changes in 0 become very significant when the
output of the aerosol is low and a large quantity of dry dilution air is
mixed with the aerosol. However, even for a nebulizer with a moderate
output (0.2 g/min in 10 l/min of air) mixed 10:10 with dilution air
[relative humidity (RH) 50%, ambient temperature) there is about a 3
fold reduction in 0 as a result of drying. High RH of the dilution air is
required to prevent evaporation of this aerosol because even with dilution
air of RH-90%, about 25% reduction of 0 is predicted. Even greater
shrinking of 0 would take place if the nebulizer temperature were allowed
to drop as often happens in practice (Phipps and Gonda, Ig90a). Another
interesting observation for this aerosol is that the calculation based on
ideal solution behaviour can be grossly in error for prediction of the
concentration but, because of the cube root dependence of 0 on c, there ;s
not much errQr incurred in 0 compared to the calculation based on the real
behaviour of salt solutions.

DEPOSITION OF HYGROSCOPIC AEROSOLS 'IN VIVO'

We used a recently developed sensitive tomographic method to measure the
penetration index (PI) of inhaled radiolabelled aerosols (Phipps~,
1989). Because we observed significant deposition in the trachea, the
method was modified to include this deposition in the central region. Both
in our inhalation studies and during size measurement, the nebulizers were
kept at ambient T and the dilution air was appropriately humidified to
minimize size changes of droplets after their generation. Five normal
subjects inhaled aerosols with mass median aerodynamic diameter MMAOz
3.7~ and geometric standard deviation GSO=I.4 on two occasions. The
difference in the tests was the tonicity of the aerosols; the saline
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concentration was either 0.3 or 4.5~. These concentrations and sizes were
selected so that if these aerosols equilibrated to become isotonic (as
they would in the lung) before deposition, their MMAD would be 2.6 and
6.3pm, respectively. The figure (below) indicates that some changes of
sizh of the droplets in the anticipated direction, sufficient to be
detected as differences in PI, occurred in the RT of 4/5 subjects.

saline
Concentrellon

%

G.3

4.5 y//
30 40 50 60 70

Penetretlon Index %

In conclusion, the ability of droplets of aqueous solutions to change in
size during measurement and before, or after, the entry into RT has
important consequences for interpretation of '1n vivo' and 'in vitro'
studies.
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