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— ABSTRACT — 
  

oil contamination with heavy metal(loid)s is a major environmental problem that 

requires effective and affordable remediation technologies. The utilisation of plants to 

remediate heavy metal(loid)s contaminated soils has attracted considerable interest as a low 

cost green remediation technology. The process is referred to as phytoremediation, and this 

versatile technology utilises plants to phytostabilise and/or phytoextract heavy metal(loid)s 

from contaminated soils, thereby effectively minimising their threat to ecosystem, human and 

animal health. Plants that can accumulate exceptionally high concentrations of heavy 

metal(loid)s into above-ground biomass are referred to as hyperaccumulators, and may be 

exploited in phytoremediation, geobotanical prospecting and/or phytomining of low-grade ore 

bodies. Despite the apparent tangible benefits of utilising phytoremediation techniques, a 

greater understanding is required to comprehend the ecophysiological aspects of species 

suitable for phytoremediation purposes. 

 

A screening study was instigated to assess phytoremediation potential of several fern species 

for soils contaminated with cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead 

(Pb) and zinc (Zn). Hyperaccumulation was not observed in any of the studied species, and in 

general, species excluded heavy metal uptake by restricting their translocation into 

aboveground biomass. Nephrolepis cordifolia and Hypolepis muelleri were identified as 

possible candidates in phytostabilisation of Cu-, Pb-, Ni- or Zn-contaminated soils and 

Dennstaedtia davallioides appeared favourable for use in phytostabilisation of Cu- and Zn-

contaminated soils. Conversely, Blechnum nudum, B. cartilagineum, Doodia aspera and 

Calochlaena dubia were least tolerant to most heavy metals and were classified as being least 

suitable for phytoremediation purposes 

 

Ensuing studies addressed the physiology of arsenic (As) hyperaccumulation in a lesser 

known hyperaccumulator, Pityrogramma calomelanos var. austroamericana. The 

phytoremediation potential of this species was compared with that of the well known As 

hyperaccumulator Pteris vittata. Arsenic concentration of 3,008 mg kg
–1

 dry weight (DW) 

occurred in P. calomelanos var. austroamericana fronds when exposed to 50 mg kg
–1

 As 

without visual symptoms of phytotoxicities. Conversely, P. vittata was able to 

hyperaccumulate 10,753 mg As kg
–1

 DW when exposed to 100 mg kg
–1 

As without the onset 
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of phytotoxicities. In P. calomelanos var. austroamericana, As was readily translocated to 

fronds with concentrations 75 times greater in fronds than in roots. This species has the 

potential for use in phytoremediation of soils with As levels up to 50 mg kg
–1

.  

 

Localisation and spatial distribution of As in P. calomelanos var. austroamericana pinnule 

and stipe tissues was investigated using micro-proton induced X-ray emission spectrometry 

(µ-PIXE). Freeze-drying and freeze-substitution protocols (using tetrahydrofuran [THF] as a 

freeze-substitution medium) were compared to ascertain their usefulness in tissue 

preservation. Micro-PIXE results indicated that pinnule sections prepared by freeze-drying 

adequately preserved the spatial elemental distribution and tissue structure of pinnule 

samples. In pinnules, µ-PIXE results indicated higher As concentration than in stipe tissues, 

with concentrations of 3,700 and 1,600 mg As kg
–1

 DW, respectively. In pinnules, a clear 

pattern of cellular localisation was not resolved whereas vascular bundles in stipe tissues 

contained the highest As concentration (2,000 mg As kg
–1

 DW). Building on these µ-PIXE 

results, the chemical speciation of As in P. calomelanos var. austroamericana was 

determined using micro-focused X-ray fluorescence (µ-XRF) spectroscopy in conjunction 

with micro-focused X-ray absorption near edge structure (µ-XANES) spectroscopy. The 

results suggested that arsenate (As
V
) absorbed by roots was reduced to arsenite (As

III
) in roots 

prior to transport through vascular tissues as As
V
 and As

III
. In pinnules, As

III
 was the 

predominant species, presumably as aqueous-oxygen coordinated compounds. Linear least-

squares combination fits of µ-XANES spectra showed As
III 

as the predominant component in 

all tissues sampled. The results also revealed that sulphur containing thiolates may, in part 

sequester accumulated As.  

 

The final aspect of this thesis examined several ecophysiological strategies of Ni 

hyperaccumulation in Hybanthus floribundus subsp. floribundus, a native Australian 

perennial shrub species and promising candidate in phytoremediation of Ni-contaminated 

soils. Micro-PIXE analysis revealed that cellular structure in leaf tissues prepared by freeze-

drying was adequately preserved as compared to THF freeze-substituted tissues. Elemental 

distribution maps of leaves showed that Ni was preferentially localised in the adaxial 

epidermal tissues and leaf margin, with concentration of 10,000 kg
–1

 DW in both regions. 

Nickel concentrations in stem tissues obtained by µ-PIXE analysis were lower than in the leaf 

tissues (1,800 mg kg
–1

 vs. 7,800 mg kg
–1

 DW, respectively), and there was no clear pattern of 
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compartmentalisation across different anatomical regions. It is possible that storage of 

accumulated Ni in epidermal tissues may provide Ni tolerance to this species, and may further 

act as a deterrent against herbivory and pathogenic attack. In H. floribundus subsp. 

floribundus seeds, µ-PIXE analysis did not resolve a clear pattern of Ni compartmentalisation 

and suggests that Ni was able to move apoplastically within the seed tissues. 

 

The role of organic acids and free amino acids (low molecular weight ligands [LMW]) in Ni 

detoxification in H. floribundus subsp. floribundus were quantified using high performance 

liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC). Nickel 

accumulation stimulated a significant increase in citric acid concentration in leaf extracts, and 

based on the molar ratios of Ni to citric acid (1.3:1–1.7:1), citric acid was sufficient to account 

for approximately 50% of the accumulated Ni. Glutamine, alanine and aspartic acid 

concentrations were also stimulated in response to Ni hyperaccumulation and accounted for 

up to 75% of the total free amino acid concentration in leaf extracts. Together, these LMW 

ligands may complex with accumulated Ni and contribute to its detoxification and storage in 

this hyperaccumulator species.  

 

Lastly, the hypothesis that hyperaccumulation of Ni in certain plants may act as an osmoticum 

under water stress (drought) was tested in context of H. floribundus subsp. floribundus. A 

38% decline in water potential and a 68% decline in osmotic potential occurred between 

water stressed and unstressed plants, however, this was not matched by an increase in 

accumulated Ni. The results suggested that Ni was unlikely to play a role in osmotic 

adjustment in this species. Drought stressed plants exhibited a low water use efficiency which 

might be a conservative ecophysiological strategy enabling survival of this species in 

competitive water-limited environments.  

 

 

 

* * * 
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