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INTRODUCTION 

In recent years significant progress has been made concerning measurement of efficiency in relation to 

productive activities, see e.g. Fried et al. (1993). In particular, non-parametric frontier methods such as Data 

Envelopment Analysis (put forward in Charnes et al. (1978)) and Free Disposal Hull (suggested by Deprins et 

al. (1984)) have been developed with applications across a wide range of sectors including transit services. This 

paper examines the efficiency variations of 157 of the 175 Norwegian subsidised bus companies using non-

parametric frontier methods. A range of different efficiency measures within the non-parametric frontier 

tradition will be presented. In particular, radial and non-radial measures will be considered in order to 

determine the relevance of slacks. The efficiency measures will be decomposed into pure technical inefficiency, 

scale inefficiency and inefficiency due to the convexity assumptions included in Data Envelopment Analysis 

(DEA). As such this information will provide a very detailed picture of the differences in performance among 

the included bus services. Specific attention will be given to the efficient observations, in order to identify so-

called super-efficient observations. In addition, to the calculation of efficiency measures emphasis will also be 

put on possible explanations of the obtained results. This work will be undertaken within a regression analysis 

framework, whereby the efficiency scores are related to a set of independent variables. Explanations are 

important in order to determine the scope for enhancing efficiency for specific observations. The key issue will 

concern the extent to which efficiency variations are caused by controllable factors. In some cases measured 

inefficiency may be caused by factors outside the control of the individual company, e.g. the topographic or 

demographic conditions. 

These bus companies have previously been examined in Jørgensen et al. (1995), (1997). In Jørgensen et al. 

(1995) a translog cost function was estimated in order to examine the characteristics of bus operation costs in 

Norway. Jørgensen et al. (1997) examined the inefficiency of the Norwegian bus industry using a stochastic 

cost frontier model. As part of this paper the earlier efficiency results will be compared to the ones obtained 

using non-parametric frontier methods. This will establish the extent to which there is a positive association 

between the two sets of results. 
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The rest of the paper is structured as follows: Section 2 includes a brief overview of non-parametric efficiency 

measurement techniques emphasising the range of options available within this approach. In Section 3 the data 

used for the efficiency analysis are presented. The results of the efficiency analysis are presented in Section 4 

including different types of efficiency measures and possible explanatory factors for the identified efficiency 

patterns. Section 5 concludes with final remarks including possible areas of further research. 

METHODOLOGY 

Data Envelopment Analysis (DEA) and Free Disposal Hull Analysis (FDH) examine the 
efficiency of similar production units using so-called dominance comparisons of the units' 
inputs and outputs. Each production unit is compared to the whole sample of production 
units in order to determine whether there exist other production units (or combinations of 
production units) using the same or less of the inputs to produce the same or more of the 
outputs. If this is the case, the production unit is declared inefficient. Otherwise, the 
production unit is efficient. In this way the efficiency concept is a relative one as it is only 
concerned with efficiency in relation to the sample and not some absolute efficiency 
standard.

Formally, assume there are n production units (indexed as k=1,...,n) using m inputs (indexed 
as j=1,...,m) to produce s outputs (indexed as i=1,...,s). The k'th production unit can now be 
described by the production vector (Xk,Yk) where Xk (Xk=(xk1,...,xkj,...,xkm)) is the input vector 
and Yk (Yk=(yk1,...,yki,...,yks)) is the output vector. Consider the dominance comparison for 
production unit k0 (where k0 belongs to the sample of n production units). DEA compares 

k0 to linear combinations of the n production units, i.e. ( k kXk, k kYk) with k 0 (  = 

( 1,… , n) is an intensity vector that forms convex combinations of observed input vectors 

and output vectors). Therefore, k0 is dominated in terms of inputs if k kxkj  xk0j holds for 

all inputs with strict inequality for at least one input and k kyki  yk0i is satisfied for all 

outputs for at least one combination of production units. Similarly, if k kxkj  xk0j for all 

inputs and k kyki  yk0i for all outputs with strict inequality for at least one output for at least 
one combination of production units, k0 is dominated in terms of outputs. Dominated 
production units are inefficient while undominated ones are efficient. 

1.1 Production technology structure 

If k 0 is the only restriction on  then it is assumed that the underlying production 
technology satisfies constant returns to scale (CRS). The analysis with a variable returns to 

scale (VRS) technology can be undertaken by introducing the restriction that k k = 1. 
Similarly, it is possible to construct non-increasing returns to scale (NIRS) and non-

decreasing returns to scale (NDRS) technologies by changing the assumption that k k = 1 

to k k  1 (NIRS) or k k  1 (NDRS). Free Disposal Hull Analysis (FDH) restricts the 
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dominance comparison for k0 to be with respect to other observed production units, i.e. 
FDH excludes linear combinations of production units from the analysis. Keeping the 

previous notation, FDH compares (Xk0, Yk0) to ( k kXk, k kYk) where k {0,1} and k k = 

1. The definition of dominance is as before, but the added restrictions on k imply that it is 
less likely for a production unit to be dominated, i.e. inefficient. 

1.2 Efficiency measures 

Thus, DEA and FDH can be used to classify a set of production units into two subsets: (a) 
efficient production units and (b) inefficient production units. Additional information about 
the inefficient production units' deviation from efficiency can also be derived using DEA or 
FDH through the calculation of efficiency measures for each production unit. The efficiency 
measure quantifies the distance from the observation to the best-practice technology; i.e. it 
projects an inefficient unit onto the frontier. 

A range of different types of efficiency measures can be calculated within the DEA model, 
where two key distinctions can be drawn: 

Orientation of the efficiency measure: input orientation, output orientation, or base-
orientation

Radial or non-radial efficiency measures 

1.3 Orientation 

Input oriented efficiency measure compares the actual input level for a given production unit 
to the best practice input level (defined as the combination of production units that 
dominate k0 the most), holding the outputs constant, i.e. it quantifies the input reduction 
required for the production unit to become efficient. Similarly, an output oriented efficiency 
measure relates the actual output level of a production unit to the potential (best-practice) 
output level, holding the inputs constant, i.e. the efficiency measure quantifies the required 
output expansion to become efficient. Base-oriented quantifies necessary improvements for 
both inputs and outputs in order for a production unit to become efficient. The choice of 
orientation would depend on the extent to which inputs, outputs or both are controllable. In 
the context of the bus industry it appears that input oriented models are definitely valid. The 
applicability of output or base oriented models would depend on the outputs chosen, e.g. 
passenger kilometres vs. seat kilometres (the latter output may be controllable by the bus 
company; this is not the case with passenger kilometres). 

Figure 1 illustrates the role of orientations in DEA in the single-input-single output case. In 
the case of Observation A (an inefficient observation) an input-oriented efficiency measure 
would concern reductions in the input level used at A along the horizontal arrow holding the 
output level constant (with efficiency being achieved at X). An output-oriented efficiency 
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measure would involve expansions in output level at A along the vertical arrow holding the 
input level constant (with efficiency being achieved at Y). Notice that the X and Y may not 
be observed (efficient) production units, but could be formed through combinations of 
production units. 

 Outputs 

    Y D 

   C 

   X  A 
   B 

          Inputs 

Figure 1: An Illustration of DEA Efficiency Analysis (Non-Increasing Returns to Scale). 

1.4 Radial or non-radial efficiency measures 

Radial efficiency measures (input, output or base orientation) determine the changes required 
for each observation in inputs and/or outputs to become efficient on the basis of 
equiproportionality, i.e. that all factors are changed by the same percentage.  

For example, a radial input efficiency measure for k0 can be calculated as follows: For each 

dominating combination of production units, ( k kXk, k kYk), compute the input ratios 

( k kxkj) / xk0j. The smallest of these ratios (( k kxkj) / xk0j)* which satisfies 

k kxkj  (( k kxkj) /xk0j)*·xk0j

for all inputs, is chosen as the input efficiency measure. The input efficiency measure will 
take values in the range from zero to one with inefficient production units having values 
below one. A necessary condition for a production unit to be input efficient is that the input 
efficiency measure is equal to one. A sufficient condition for input efficiency would require 
that

k kxkj= (( k kxkj) / xk0j)* ·xk0j

holds for all inputs. This problem is caused by the way the efficiency measure is calculated: it measures the 

proportionate reduction in the inputs necessary for a production unit to undertake in order to become efficient. 

However, after reducing all inputs proportionately further reductions for some inputs might be possible, i.e. 

slacks may exist. In a similar way a radial output or base-oriented efficiency measure can be derived for k0, but 

the details will not be included in this paper, see e.g. Fried et al. (1993). 
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The problem of slacks associated with radial efficiency measures can be addressed through 
so-called non-radial efficiency measures. A non-radial efficiency measure can be calculated in 
different ways, but the most common is the Färe-Lovell measure, see Färe & Lovell (1978). 
In the following, we will concentrate on the Färe-Lovell measure. The key element in the 
Färe-Lovell measure is the calculation of specific efficiency measures for each input and/or 
output. These specific efficiency measures should be determined such that the average 
required improvement across the inputs and/or outputs is maximised. In the case of the 
Färe-Lovell measure it is important to notice that a value equal to one is a necessary and 
sufficient conditions for efficiency as it would imply that each of the input and/or output 
specific efficiency measures are equal to one. 

1.5 Examples of the mathematical programming problems for DEA/FDH efficiency 
measures

The calculation of efficiency measures can for both DEA and FDH be formulated as 
mathematical programming problems, see e.g. Fried et al. (1993) for an overview. For 
example, the radial input efficiency measure with CRS can be calculated through the LP problem 

[1]   MIN k k0

s.t.

k kxkj k0xk0j

k kyki  yk0i

k  0

where k0 is the efficiency measure. This measure takes values between 0 and 1. 

Similarly, the radial FDH output efficiency measure can be determined in the Integer 
Programming problem 

[2]   MIN k k0

s.t.

k kxkj  xk0j

k kyki  yk0i/ k0

k  0

k k = 1 

k {0,1}

Super-efficiency 



6

The measure of super-efficiency was put forward by Andersen and Petersen (1993) as a way 
to distinguish between the efficient observations. In particular, the super-efficiency measure 
examines the maximal radial change in inputs and/or outputs for an observation to remain 
efficient, i.e. how much can the inputs be increased (or the outputs decreased) while not 
become inefficient. The larger the value of the super-efficiency measure the higher an 
observation is ranked among the efficient units. Super-efficiency measures can be calculated 
for both inefficient and efficient observations. In the case of inefficient observations the 
values of the efficiency measure do not change, while efficient observations may obtain 
higher values. Values of super-efficiency are therefore not restricted to 1 (for the efficient 
observations), but can in principle take any value greater than or equal 1.  

Super-efficiency measures are calculated on the basis of removing the production unit from 
the best-practice reference technology. This explains why the inefficient observations do not 
change value by calculating super-efficiency measures, as the inefficient observations are not 
influencing the best-practice technology. 

1.6 Strengths and weaknesses 

A number of advantages of DEA and FDH analysis can be identified. One of the main 
advantages is that no functional form regarding the relation between inputs and outputs is 
necessary in order to compute the efficiency measures. Secondly, the techniques allow for 
multiple inputs and multiple outputs without the use of weighting factors. In this way a more 
valid model of production activities is provided. This implies that DEA/FDH can be applied 
in situations where inputs and/or outputs are measured in physical units creating the 
possibility for efficiency analysis for sectors without well-defined input prices and/or output 
prices. Furthermore, since DEA and FDH are based on a best-practice frontier, each 
observation is compared to an efficient unit or a combination of efficient units thereby 
providing guidance for the inefficient units concerning which areas of their activities to 
improve and by how much. In this sense the efficient units can act as peers for the 
inefficient ones. Overall, the best-practice units will be those, which not only are efficient 
but also, are included at least once as peer unit for an inefficient observations. Finally, the 
DEA/FDH techniques are consistent with the production theoretic concept of efficiency as 
this is based on the maximum output for given input levels. 

However, DEA and FDH have also disadvantages where some of these are specific to these 
methods and others are pertinent to other performance measurement techniques as well. 
Firstly, it is assumed that it is possible to define and measure a set of inputs and outputs for 
each production unit and that these appropriately characterise the production activities. 
Related to the input-output specification is the issue of similarity. It is important that the 
production units included are similar in the sense that they can be described by identical 
input and output categories. Otherwise, observations can be declared as efficient due to a 
special output/input profile, which would imply meaningless results from the analysis. This 
problem is parallel to the problems of outliers. Production units with an extreme production 
structure (e.g. specialisation into a single output) may be declared as efficient simply because 
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of the special production structure. Possible outlier influence is increased since DEA is an 
extreme point technique, implying the risk that even measurement error can have significant 
influence. The problems of non-similarity and outlier influence can imply that it is not 
possible to achieve a complete ranking of the production units because relative many will be 
characterised as efficient (the development of super-efficiency measures can address this 
problem, see above). In general, there is a trade-off between a realistic description of the 
production profile and a complete ranking. If the efficiency analysis is based on a few 
number of variables then it is likely that a complete ranking can be obtained but restricting 
the number of variables to describe the production might not give a realistic impression of 
the production activities. On the other hand, inclusion of many variables will provide a more 
reliable description of the production activities, but this increases the possibility for 
specialisation and therefore makes a complete ranking less likely. This problem has been 
addressed in two recent studies. In Olesen & Petersen (1993) a test is developed that 
determines the optimal number of variables to include in a DEA analysis. Kittelsen (1992) 
suggests a procedure that could establish a statistical optimal data specification.  

Explaining efficiency 

An important issue of the efficiency analysis is not only to determine the efficiency levels but also to be able to 

explain the variation with reference to characteristics of the production units. One possible approach is to 

interpret the efficiency measures as a dependent variable that is determined by a set of production unit 

characteristics, see e.g. Fried et al (1993a). Let  = ( 1,…, n) denote the vector of efficiency scores for the n 

observations and Z be a n L matrix of L production unit characteristics. Thus a general regression model can 

be formulated as: 

[3] k = f(zk; ) + ek,  k = 1,…,n 

where  are the parameters to be estimated, zk is the vector of characteristics for the k’th unit and ek is a 

disturbance term for the k’th unit. In order to estimate the vector of parameters , assumptions about the 

functional form of f(zk, ) have to be made. This specification could be non-linear and thus require non-linear 

estimation techniques. However, since no apriori knowledge about the relationship between  and zk are 

available the tradition of assuming a linear relationship is adopted, i.e. the model 

[4]  = Z  + e, 

This model can be estimated by Ordinary Least Squares (OLS), although it should be noted that the restrictions 

on the efficiency scores 0 <  1 (or 0 <  in the case of super efficiency models) imply biased and 

inconsistent estimates of  unless a transformation of  is undertaken. In Lovell et al. (1990) it is demonstrated 
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that ln( ) will provide consistent and unbiased estimates of  provided  is only restricted to take values above 

0 (super-efficiency models). Otherwise the transformation ln((1- )/ ) is required. 

DATA

The data used for the efficiency analysis is based on information for 157 of the 175 Norwegian subsidised bus 

companies. These data have been provided from official reports from the bus companies to the county 

councils for the 1991 calendar year. The complete database covers all 175 bus companies but 18 companies had 

to be discarded due to extreme observations and missing data for key variables to be used as inputs. Four 

companies appeared to have reported inaccurate data. Three other companies were considered to operate in 

incomparable conditions with reference to the other companies in the database (one of these is the main bus 

operator in Oslo, the other one is a small company with very low costs because some routes are served by hired 

taxi caps). Data for 11 companies could not be used in the analysis due to missing information on costs. Each 

Norwegian county is represented by at least one bus company and most counties have a number of entries in 

the database (the only exception is Finnmark County, the county furthest to the North with only a single bus 

company). The company size in the data set varies considerably; if number of vehicle kilometres is used as an 

indicator of size then the smallest company achieves approx. 11500 vehicle kilometres, the largest company 

provides 8.9 mill vehicle kilometres, while the average bus company provides 1.6 mill vehicle kilometres.  

For each bus company the following data are available: 

Continuous variables 

Vehicle kilometres 

Passengers 

Passenger kilometres 

Fuel costs 

Driver costs 

Total costs (incl. Capital costs) 

Fleet size 

Seats

Standing places 

Bus size (sum of seating capacity and standing places) 
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Seat kilometres 

Number of passengers boarding the buses of the company per vehicle km (derived from information on 

passengers and vehicle kilometres) 

Dummy variables 

Bus company is engaged or not in sea transport 

Bus company is operates in a coastal area or not 

Bus company is publicly owned and faces a subsidy policy based on cost norm or not 

Bus company is privately owned and has the ability to negotiate with the county council over the size of 

the subsidy or not 

Bus company is privately owned and faces a subsidy policy based on cost norm or not 

In addition, there is information about the county in which the bus company operates.  

Below, descriptive statistics is given for the continuous variables including average, standard deviation, median, 

maximum and minimum, see Table 1. In Table 2 qualitative information about the sample is provided on the 

basis of the dummy variables. 

Vehicle

kilometre

Passenger

s

Passenger 

kilometres

Fuel

Costs

(Nkr)

Driver 

Costs

(Nkr)

Total

Costs

(Nkr)

Mean 1602695 1321076 17162420 1542060 9215587 22867571

Median 920000 385900 8793600 826797 4079758 11215782

Standard deviation 1818244 2499785 26366662 1896458 12827809 30370638

Maximum 8863117 16584953 208364607 9775000 72129317 176000000

Minimum 11500 4545 60840 2907 64000 123329

Fleet Size Seat 

capacity

Standing

places

Bus Size Seat 

kilometres

Number of 

passengers 

boarding
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per vehicle 

kilometres

Mean 43 1836 545 49 91318473 0.64

Median 28 1118 165 50 46332000 0.53

Standard deviation 43 1906 947 13 116970172 0.42

Maximum 204 9000 6729 86 620418190 2.66

Minimum 1 7 0 7 161000 0.05

Table 1: Descriptive Statistics for the Norwegian Bus Company Sample 

Table 1 shows the variation in the scale of bus operation for the included companies; the smallest companies 

(according to fleet size) have only one bus while the largest one has over 200 buses (this company is operating 

in Hordaland County where Norway’s 2nd largest city is placed (Bergen). 

 Percentage of sample  

Bus companies with sea transport 10.0 

Bus companies without sea transport 90.0 

Bus companies operating in a coastal area 47.0 

Bus companies not operating in a coastal area 53.0 

Publicly owned bus companies with subsidy allocation based on cost norm 9.0 

Publicly owned bus companies with subsidy allocation based on negotiation 14.0 

Privately owned bus companies with subsidy allocation based on negotiation 33.0 

Privately owned bus companies with subsidy allocation based on cost norm 44.0 

Table 2: Characterisation of Bus Sample 

The table shows that a majority of bus companies do not operate sea transport. Table 2 confirms that the 

majority of subsidised bus companies are privately owned, 77 per cent in 1991. A slight majority (53 per cent) 

of bus companies received subsidy from the county council based on cost norms in 1991. 

RESULTS 
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Input-output specification 

A basic model for the productive activities undertaken by the bus companies was used for the calculation of the 

different efficiency measures. This model included four inputs and one output: 

Inputs

Fuel costs  

Driver costs 

Other costs 

Bus fleet size 

Outputs

Seat kilometres 

The other costs component is calculated by subtracting fuel and driver costs from total costs. Other costs 

includes both operating costs and capital costs. 

All efficiency measures have been calculated using the Efficiency Measurement System (EMS) software 

developed by Holger Scheel at University of Dortmund, Germany. This software is for W indows 9x/NT where 

data can be analysed through either Excel or textfiles. 

DEA-C

Efficiency measures with a constant returns to scale technology have been calculated in input, output and base-

oriented versions. In the following we will concentrate on the efficiency results with reference to input-oriented 

measures as the constant returns to scale technology assumption implies that input and output oriented 

efficiency measures obtain the same value. The same does not hold though for non-oriented efficiency 

measures, the required improvement will as a general property be smaller for non-oriented measures than for 

either input or output oriented efficiency measures.  
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In the case of the input-oriented efficiency, the average value is 0.68 (counting all efficient units with a value 

equal to one). This average is the outcome of significant variation in the efficiency scores obtained for the 

different bus companies ranging from 0.19 (the minimum) to 1.00 (the maximum) with an overall standard 

deviation of 0.18.  

Out of the 157 observations 7 have obtained an efficiency score equal to one, where it should be noticed that 

no slacks exist for these observations, i.e. they can be characterised as efficient in accordance with the 

definition in economic theory. In Table 3 the results of a further analysis of the efficient observations are 

shown in terms of super efficiency scores and the number of times each of these observations are identified as 

benchmarks for inefficient observations. 
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 Super efficiency Benchmark frequency 

DMU10 1.07 95 

DMU14 1.02 34 

DMU16 1.90 82 

DMU54 1.07 23 

DMU128 1.02 24 

DMU152 1.01 3 

DMU164 1.38 128 

Table 3: Super efficiency and Benchmark Frequency 

These results indicate a positive correlation between super-efficiency and benchmark frequency although the 

correlation is not perfect (the correlation coefficient is 0.54). Three of the seven efficient units are placed in the 

same county, Østfold (with a relative high population density, 64). This county is located in the Southeast of 

Norway, next to the county with Norway’s capital, Oslo. On average bus companies in Østfold have significant 

higher efficiency scores compares to the sample average. The remaining 4 bus companies are placed in different 

counties with no clear-cut trend with respect to the role of population density. This issue will be considered 

further as part of the explanation of the efficiency variation within a regression analysis approach (see below).  

Concerning the inefficient observations the results suggest that input slacks are present after the 

equiproportionate reduction, i.e. inputs can be further reduced. Table 4 shows the average results in terms of 

percentages with radial slack to best-practice and non-radial slack to best-practice (total slack is the sum of the 

two percentages). The table shows that non-radial slacks are present for all four input variables, in particular 

with respect to driver costs and number of buses (where reductions of 23.5% and 20.1% respectively are 

possible).

 Total slacks (%) Radial slacks (%) Non-radial slacks (%) 

Fuel costs 66.2 63.1 3.2 

Driver costs 106.2 82.6 23.5 

Other costs 74.2 65.6 8.6 

Buses 110.4 90.3 20.2 

Table 4: Slack Analysis 
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DEA-V

Efficiency scores calculated within a variable returns to scale technology will be greater than or equal the ones 

obtained within a constant returns to scale because the scale of operation for each observation is assumed 

given. Inefficiency under variable returns to scale cannot be the result of operating on a too high or too low 

scale. The results for the Norwegian bus companies confirm this property: average input efficiency is equal to 

(0.735), while output oriented efficiency is slightly lower (0.726). Results for average base-oriented efficiency 

indicate a required improvement in inputs and outputs of 16.7% in order for the inefficient observations to 

move to best practice. The variable returns to scale technology assumption also implies that more observations 

have the possibility to be declared efficient, indeed our results demonstrate that in input terms 21 observations 

have an efficiency score equal to one, while 20 observations have an efficiency score equal to one in terms of 

outputs. However, one of the observations with an efficiency score equal to one in input terms has non-radial 

slacks and is therefore not efficient. This conclusion is confirmed from the output efficiency score for this 

observation, as it is lower than one. As such this observation serves as an illustration of the need for careful 

examination of the results obtained in order to formulate appropriate conclusions. 

In Table 5 further information about the efficient units is provided concerning benchmark frequency and 

super-efficiency.  

 Super efficiency Benchmark frequency 

DMU5 1.065 20 

DMU8 1.241 1 

DMU10 1.087 78 

DMU14 1.033 28 

DMU15 1.018 3 

DMU16 1.909 58 

DMU21 1.038 12 

DMU38 1.065 17 

DMU54 1.197 29 

DMU55 4.362 68 

DMU61 1.004 0 

DMU93 1.006 13 
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DMU97 Big                   (Note) 1 

DMU128 1.142 19 

DMU132 1.021 1 

DMU146 1.238 24 

DMU151 1.061 4 

DMU152 1.050 2 

DMU162 2.501 7 

DMU164 1.517 106 

Note: The efficiency score  = big appears within the super-efficiency model when a unit remains efficient 

under arbitrary large increased inputs (input oriented) or decreased outputs (output oriented), respectively. 

Table 5: Super Efficiency and Benchmark Frequency 

In this case there is no correlation between super-efficiency and benchmark frequency. The reason for the 

possibility of lack of association between these two measures is that a high super-efficiency score can be 

obtained through specialisation whereas a high benchmark frequency cannot. 

Scale-efficiency 

DEA can be used to provide information about scale efficiency for each observation in terms of inputs and 

outputs respectively. The ratio of the DEA-C efficiency score to the DEA-V input oriented efficiency score 

(output oriented efficiency score) determines the input (output) oriented scale efficiency measure. This scale 

efficiency measure can take values in the interval ]0,1], where 1 will imply scale efficiency. A value of the scale 

efficiency measure equal to one reflects that the DEA-C and DEA-V scores are identical, i.e. the efficiency 

score of a given observation is not influenced by moving from a constant returns to scale technology to a 

variable returns to scale technology. The results for the Norwegian bus company sample indicate high levels of 

scale efficiency in both input and output terms, 0.93 and 0.94 respectively. In this case the majority of the 

detected inefficiency under constant returns scale is not caused by bus companies operating on a too high or 

too low scale. 

A DEA analysis can also establish the direction of scale inefficiency, i.e. too high scale (decreasing returns to 

scale, DRS) or too low scale (increasing returns to scale, IRS). If an observation operates according to constant 

returns to scale, it is declared scale efficient. In the case of the Norwegian bus companies the results suggest 

that a majority of the 157 companies operate under IRS (91). 59 companies produce under DRS, while 7 
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observations produces according to constant returns to scale. Therefore, a majority of the bus companies 

should increase the scale of operation in order to achieve the optimal scale.  

Table 6 demonstrates the high degree of variation concerning the scale of operation for the scale efficient 

observations. The average fleet size among these (7) observations is equal to 31.6 (approx. 10 buses lower than 

the overall sample average). This average is the result of fleet size variation from 4 to 96.  

 Vehicle kilometres Fleet size Seat kilometres 
DMU10 2790000 53 181350000
DMU14 353900 8 21587900
DMU16 230000 15 11270000
DMU54 4900500 96 357736500
DMU128 94000 4 4888000
DMU152 752400 13 48906000
DMU164 1321317 32 80600337

Average 1491731 31.57 100905534
Min 94000 4.00 4888000
Max 4900500 96.00 357736500
Standard deviation 1766406 33.03 128513873

Table 6: Scale Efficiency Variations 

FDH

FDH efficiency scores have been calculated for the 157 bus companies in terms of inputs and outputs. The use 

of FDH implies that the efficiency scores will be greater than or equal compared to the scores obtained with 

DEA-V and increases the probability for observations with efficiency score equal to one. Overall, the average 

output efficiency score is equal to 0.941 while the average input efficiency score is equal to 0.939. A larger 

number of observations obtain an efficiency score equal to one, 102 in terms of inputs and 98 in terms of 

outputs. The four additional observations with input efficiency score equal to one compared to the number 

with output efficiency measures are not efficient in the sense that non-radial slacks are present for these 

observations with respect to three out of four inputs. The only input without slacks for these observations is 

number of buses. Furthermore, some of the observations with an efficiency score equal to one are not 

dominating any other observations in the sample. In this sense such observations can be said to be efficient by 

default. In Table 7 the average values of the efficiency measures for DEA-C, DEA-V and FDH are shown 

providing the possibility to decompose overall efficiency into the sub-components of pure technical efficiency, 

scale efficiency and convexity efficiency. 
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 Output efficiency Input efficiency 

DEA-C 0.680 0.680 

DEA-V 0.726 0.735 

FDH 0.941 0.939 

Pure technical efficiency 0.941 0.939 

Convexity efficiency 0.772 0.783 

Scale efficiency 0.939 0.930 

DEA-C 0.680 0.680 

Table 7: Decomposition of Efficiency 

Convexity efficiency is determined as the ratio of DEA-V and FDH efficiency scores (in input and output 

terms). If efficiency scores calculated with DEA-V and FDH are identical it would imply that the convexity 

efficiency score is equal to one. Otherwise, the convexity efficiency score will take values between zero and 

one. In this way the convexity efficiency score can be used to assess the impact of assuming convexity on the 

efficiency results obtained. Table 7 shows that convexity does have a significant influence on the level of 

efficiency. 

Färe-Lovell measures 

The non-radial Färe-Lovell efficiency measure contains detailed information concerning the performance for 

each of the included inputs and/ or outputs. For example, the input-oriented Färe-Lovell measure will not only 

provide an overall efficiency score but also determine input specific efficiency scores (the Färe-Lovell measure 

is then calculated as the average of these individual efficiency scores).  

An illustration of the results from the Färe-Lovell input oriented efficiency measure is given in Table 8. The 

results shown are calculated with an assumption about constant returns to scale, although changing to another 

technology assumption would not influence the interpretation of the concepts. Table 8 includes information 

about two of the observations in the Norwegian bus company sample, DMU1 and DMU54. DMU1 is 

inefficient with a Färe-Lovell efficiency score equal to 0.723. Furthermore, it can be seen that the required 

improvements differ between the four inputs. In the case of DMU1 inefficiency is higher with respect to 

number of buses compared to other input elements such as fuel costs. The table also demonstrates that in 

order for an observation to get a Färe-Lovell efficiency score equal to one, it is necessary that each of the 

individual input efficiency scores are equal to one. This is the case for DMU54. On average the inputs with the 
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highest degree of efficiency are other costs and fuel costs, whereas buses and driver costs should be improved 

to a larger extent. 

1 (fuel costs) 2 (driver costs) 3 (other costs) 4 (buses) FL (Note) 

DMU1 0.795 0.711 0.700 0684 0.723 

DMU54 1.000 1.000 1.000 1.000 1.000 

Average 0.610 0.498 0.712 0.597 0.604 

Note: FL is calculated as the average of 1- 4

Table 8: The Non-Radial Färe-Lovell Input Oriented Efficiency Measure 

Efficiency explanation model

The available information provided the possibility to examine the extent to which the efficiency scores can be 

explained using a number of factors that may be of importance in shaping performance of bus companies. In 

particular, the following factors were considered as possible explanatory variables (involving a combination of 

continuous and dummy variables:   

Bus company is publicly owned and faces a subsidy policy based on cost norm or not (H1) 

Bus company is privately owned and has the ability to negotiate with the county council over the size of 

the subsidy or not (H2) 

Bus company is privately owned and faces a subsidy policy based on cost norm or not (H3) 

Bus company is engaged or not in sea transport (D1) 

Bus company is operates in a coastal area or not (D2) 

Average bus size (Z1) 

Number of passengers boarding the buses of the company per vehicle-km (Z2) 

Population density (DENSE) 

Regressing the logarithm to the DEA-C efficiency measure (with super-efficiency) on these variables gives a 

rather high R2 (0.86) although only four variables are significant at a 5 per cent level (the full model). Therefore, 

it was decided to exclude these variables in another model (the reduced model). In Table 9 the estimated values 

for the coefficients in the two models are shown together with the t-statistics. 
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 Full Model Reduced Model 

 Coefficient t-values Coefficient t-value 

Intercept -1.712 -31.494 -1.687 -38.383 

H1 0.022 0.516   

H2 -0.027 -0.825   

H3 0.030 0.942   

D1 0.062 1.839   

D2 0.064 2.850 0.054 2.428 

Z1 0.012 12.309 0.012 12.721 

Z2 0.331 14.977 0.330 14.798 

DENSE -0.000 -3.027 -0.000 -3.289 

Table 9: Regression Results 

The reduced model can also explain a high proportion of the variation in the dependent variable, ln( ), as 

reflected by R2 = 0.85. Parameter estimates in the reduced model are not significantly different from the ones 

obtained in the full model. It should be noticed that among the variables with apparent insignificant 

contribution to the explanation in efficiency variation are the policy variables (h1, h2, h3) relating to subsidy 

form and ownership dimensions. The findings suggest that higher efficiency is associated with operation in 

inland area rather than coastal area (D2), bus size (Z1), and number of passengers boarding per vehicle 

kilometre (Z2). 

Comparison between non-parametric and parametric results 

A comparison between the non-parametric efficiency results presented in this paper and the parametric ones 

included in Jørgensen et al. (1997) is not straightforward, although the same data are used. In particular, the 

efficiency results are based on different models. The parametric efficiency results are derived taking into 

account exogenous factors, whereas the approach in this paper calculates the efficiency results and then 

explains the efficiency variation according to exogenous factors. Therefore, it should be expected that the 

results are different with the parametric efficiency being at a higher level than non-parametric efficiency 

because of the approach towards the exogenous factors. Indeed, in Jørgensen et al. (1997) average inefficiency 

is between 7.2 per cent and 13.7 per cent, whereas DEA results indicate a higher level of inefficiency. Average 

base-oriented DEA-C improvement has been determined to be 20.5 per cent, while average base-oriented 
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DEA-V improvement is equal to 16.7 per cent. Overall, the Pearson Correlation Coefficient for the non-

parametric and parametric results has been estimated to be between 0.28 and 0.42.  

CONCLUSIONS 

This paper has presented the results of an analysis of efficiency patterns for Norwegian bus 
companies using the non-parametric techniques DEA and FDH. Overall, the paper has 
demonstrated that it is feasible to use these techniques to examine the productive 
performance of bus companies. In particular, the application has shown that DEA and FDH 
can provide useful information regarding the efficiency patterns. This information relates 
both to the industry as well as to the individual companies. In the Norwegian bus industry a 
relative high inefficiency level was detected. Obviously, the efficiency results depend on the 
technology assumption used. However, the difference between DEA-C and DEA-V was 
relatively small indicating a high level of scale efficiency. In contrast, the change from a DEA 
to a FDH model resulted in significant changes in efficiency level demonstrating the 
importance of the convexity assumption. In the paper it was also shown the significance of 
slacks in the inputs and/or outputs emphasising the need for careful analysis of observations 
with efficiency scores equal to one. The scope for providing valid explanations of the 
efficiency patterns was examined, where the research revealed that a relative simple model 
with four variables could explain around 85 per cent of the variation in efficiency.

Future research could consider the extent to which it is possible to develop alternative 
output measures in order to allow for consideration to the quality of the bus service 
provision in the measurement of efficiency. Furthermore, at a more theoretic level it could 
of importance to examine the scope for converging non-parametric approaches towards 
parametric approaches and vice versa. Indeed, it could be of importance to develop non-
parametric efficiency measurement techniques with a stronger statistical basis. Similarly, 
possible improvements in the parametric approach could accommodate for more flexible 
functional forms concerning the linkage between inputs and outputs. 
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