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SYNOPSIS 

The elastic-continuum model of soil behaviour is used to 

predict the response of a single vertical pile to lateral loading. 

The range of methods developed to analyse this problem is reviewed 

and it is concluded that the continuum-based analysis represents 

the most likely one with which gains in understanding, and 

prediction of, pile response can be made. Other models represent 

mechanistic and isolated interpretations of soil behaviour. 

A modified boundary element analysis is developed to produce 

linear continuum-based results comparable to more refined finite 

element analyses and is further extended to efficiently model non

linear soil response and incorporate gap formation within a non

linear interface element. The incremental plastic work in the 

non-linear interface element is defined in terms of a soil-pile 

deflection mismatch and restricted to have only a positive value, 

thus correctly modelling conditions where failed soil returns to 

an elastic state. The restricted nature of the interaction 

traction, modelled using closed-form solutions of an elastic 

continuum, means the case of unequal tractions on the back and 

front of the pile is not correctly modelled. 

To correctly model unequal interaction tractions, a finite 

element-based soil-structure interaction analysis is developed, 

which employs a biface model of the pile-soil interface. With 

this analysis more accurate non-linear modelling is possible, also 

using the pile-soil mismatch and only positive plastic work. 

The solution technique of both analyses are checked by 

employing a Winkler soil influence matrix, instead of an elastic

continuum one, and comparing the results with precise solutions of 

the Winkler-based pile problem with linear, elastic-gapping and 
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non-linear soil failure based responses. 

All the analyses developed here present linear behaviour 

which is consistent with the existence of an effective pile length 

for lateral loading and the non-linear response is also shown to 

be explainable in terms of effective pile lengths. The concept of 

an effective ultimate load for the pile, at which pile 

deformations become excessive, is introduced. 

A series of tests performed by the Author on model piles in 

normally consolidated and overconsolidated clay beds are described 

and shown to be amenable to elastic-continuum analysis and 

interpretation in terms of an effective length. The effective 

length is also found to simplify the back-analysis of results of a 

field test to allow accurate prediction of a pile with different 

dimensions tested in the same soil. 
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PREFACE 

The candidate has carried out the work described in this 

thesis during the period 1982 to 1987. During most of that time 

the Author was employed as a research assistant. The work has 

been carried out under the supervision of Professor H.G. Poulos, 

Professor of Civil Engineering (Soil Mechanics), in the School of 

Civil and Mining Engineering. Six months were supervised by Dr. 

P.T. Brown during the absence of Professor Poulos. 

In accordance with the By-Laws of The University of Sydney, a 

candidate for the degree of Doctor of Philosophy is required to 

indicate the sections of the thesis which are original. To this 

end the acknowledgement of ideas derived from other sources and 

references is made in the text and the Author claims originality 

for the following: 

(1) the Winkler analysis of piles in a linearly varying 

stiffness soil profile, presented in Chapter Three. 

(2) the average deflection-based soil interface element and 

the concept of a soil-pile mismatch developed in Chapter 

Three. 

(3) the profile building finite element analysis of Chapter 

Three. 

(4) the method of modifying the homogeneous soil response to 

obtain a non-homogeneous soil profile response, developed 

in Chapter Three. 

(5) the concept of an effective length based upon the actual 

or critical length and the equation for critical length, 

presented in Chapter Four. 

(6) the results of the Winkler, MBEM anf finite element 

vii 



analyses presented in Chapter Four. 

(7) the theoretical consideration of pile yield combined with 

a Winkler soil model, presented in Chapter Five. 

(8) the non-linear MBEM analysis and parametric results and 

the biface SSI analyses developed in Chapter Five, 

together with their treatment of plastic work based upon 

pile-soil deflection mismatches. 

(9) the conduct of the model pile tests, and their analysis, 

detailed in Chapter Six. 

(10) the interpretation and analysis of the field tests 

presented in Chapter Six. 

During the period of the Author's candidature, two papers 

were prepared by the Author, Professor H.G. Poulos and E.W. Chua 

and are presented in support of his candidature: 

Poulos, H.G., Hull, T.S. and Chua, E.W. (1984) 
Foundation Behaviour in Calcareous Sands. 
Ninth Australasian Conf. on the Mechanics of Structures and 
Materials, The University of Sydney. pp 28 - 32. 

Poulos, H.G., Chua, E.W. and Hull, T.S. (1984) 
Settlement of Model Footings on Calcareous Sand 
Geotechnical Engineering, Vol. 15, No. 1. pp 21 - 35. 
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1.1 General Introduction 

Any load, on a foundation supported by soil, can be defined 

in terms of six components related to a convenient reference 

system. The six components, consisting of three forces and three 

moments related to the Cartesian-coordinate reference system, are 

diagrammatically represented in Fig. 1.1. The resultant movement 

of the foundation will also be described by six concomitant 

components, three deflections and three rotations. 

With the assumption of small strain and employing the 

principle of superposition, the general load-movement response of 

the foundation can be obtained by combining the results of three 

simplified types of analysis. These three classes of analysis, 

shown in Fig. 1.2, are 

a) lateral (antisymmetric response about a vertical plane), 

b) axial (axisymmetric radial and vertical response) and 

c) torsional (axisymmetric circumferential response). 

If the resultant horizontal force and moment do not act in one 

vertical plane then two lateral load cases need to be analysed. 

For a foundation with axially symmetric geometry, considering 

points along the axis to be representative of the foundation 

response, the three classes of loading do not interact with each 

other, e.g. 

or torsional 

no lateral deflection of the axis results from axial 

loads. Considering the symmetry in each class, 

prohibits across class induced average foundation response, 

although away from the axis the local deformation patterns for 

each class will interact. Thus, a pile foundation with an axi

symmetric geometry, modelled by average deflections, has distinct 

analytical advantages over foundations without axial symmetry. 
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The simplification of the general load case, to the three 

cases of lateral, axial and torsional load, is thus directly 

applicable to pile foundations. Three separate models for pile 

response, each model simplified to a one-dimensional problem with

out introducing gross errors, will enable any load case to be 

analysed. The practical advantages of piles and this ease of 

analysis has ensured the popularity of piled foundations. 

The wide range of piling applications and the variety of soil 

types encountered, have led to methods with considerable reliance 

upon empirical correlations of behaviour. While such correlations 

have been possible for land-based applications, it has proved 

difficult to obtain reliable data for off-shore piled foundation 

response. Therefore a need exists for a logical model of soil 

response to enable prediction of behaviour, as opposed to choosing 

a response from a series of empirical models, of possibly 

restricted applicability. 

The elastic continuum model of soil provides one such 

theoretical framework, within which predictions of response are 

logically based upon measurable parameters that are basic 

(fundamental) soil properties. In contrast, the empirical 

approach employs parameters that are undetermined functions of the 

soil properties, the pile properties and the form of loading, 

while taking no account of interaction. The elastic-based theory 

provides a simple model that takes account of the interaction 

throughout the soil mass. 

Elastic parameters are generally accepted to be functions of 

the state of effective stress in the soil and it has been 

suggested that use of elastic parameters based upon the mean 
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stress level, developed in an element of soil during load 

application, is appropriate. This must lead to a highly non-

homogeneous distribution of elastic properties, even in an 

initially homogeneous soil, and is appropriate only for drained 

long-term response. 

The inability of soil to sustain tension has previously been 

ignored, or the initial stress has been assumed sufficient to 

accomodate tensile stress increments without producing a tensile 

stress state. Very little work on the tensile breakaway of soil 

from the pile has been carried out, with most recommendations 

suggesting a reduction in stiffness for the parameters of the 

pile-soil model. The elastic continuum-based method represents a 

model that can logically be extended to encompass the problem of 

soil breakaway from the pile. An important aspect of tensile 

gapping, or breakaway, is a loss of antisymmetry of response and 

introduction of non-symmetric geometry, which requires a change of 

approach to modelling of pile-soil response. 

This new approach requires some modifications to the standard 

model used by elastic-based theories. For example, the modified 

applicability of the concept of attaining an antisymmetric 

ultimate stress state in the soil at collapse, accompanied by 

antisymmetric flow of material around the pile. To assist the 

placing of the new model on a sound theoretical basis, the concept 

of eliminating negative plastic work in failed regions of soil is 

also essential. The non-linear response of piles is thus 

considered to consist of two phenomena, soil-pile breakaway, which 

is non-linear elastic, and local soil failure, which is non-linear 

and irrecoverable. 
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1.2 Aim of Thesis 

The aim of this work is to improve the general understanding 

of the nature of laterally loaded pile behaviour but encompasses a 

wide range of foundations including, 

a) surface footings as a limiting case, 

b) short caissons, 

c) rigid piles, 

d) intermediate flexibility piles, and 

e) long flexible piles as the other limiting case. 

In order to investigate the behaviour of the above cases, 

three broad methods have been employed. These are: 

a) The "Winkler" soil analysis, as typified by non-

linear or linear spring models of soil behaviour. 

b) The linear elastic Finite Element method (FEM). 

c) The Modified Boundary Element method (MBEM) with 

modifications for non-linear behaviour. 

It is demonstrated that the speed and versatility of the MBEM 

analysis, 

provide 

problem. 

combined with the elastic-continuum soil model, can 

a useful method of solving the laterally loaded pile 

The economics of using such a model for analysis, 

compared with the more commonly used "spring"-based formulations, 

are not as daunting as has been suggested. The FEM analysis, 

while more expensive in terms of computer time than MBEM analysis, 

gives results that are free of the simplifiying assumptions 

inherent in the MBEM analysis. Objections to use of elastic based 

MBEM solutions can be removed by using the more respected FEM 

analysis to ensure the accuracy of the MQEM analysis is adequate. 
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The broader applicability and wider scope for development 

associated with elastic-continuum theory, compared with the 

empiricism and limited scope of the p-y methods, suggests that 

elastic-based analysis would be more useful. Inadequate computing 

facilities for standard use of elastic-based theories is no longer 

a problem, since most desk-top personal computers are now more 

than adequate for such analyses. Also the complex choice of 

parameters needed to give generality to the p-y models, would be 

replaced by elastic-based parameters that are available, in 

principle, from soil tests or, more directly, from pile tests. 

One major source of reluctance to use elastic-continuum 

theory is the inability of the commonly employed homogeneous half

space Mindlin solution kernel to take account of non-uniform 

modulus distributions with depth. Ensuring the non-homogeneous 

modification of the Mindlin-based MBEM solution agrees with a 

sound FEM result can remove this criticism. 

The transition from surface footing to pile foundation in 

terms of load-deflection behaviour is also presented, using a form 

of FEM analysis. The use of the method aims to give an indication 

of the wide range of problems that can be solved by an elastic 

continuum-based approach, and to illustrate the changing behaviour 

of circular foundations as the length to diameter ratio increases. 

The examination of such a range of different foundations places 

the extreme responses of rigid and flexible piles within the 

context of a wider class of foundation stiffnesses and geometries. 

The use of a limiting interface reaction load, at which an 

element of the pile moves through the soil with no increase in 

interface stress, introduces a deflection-controlled aspect to the 
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analysis, similar to the ultimate reaction loads calculated by the 

p-y method. However, the interface element can also depict the 

form of behaviour that is governed by gapping around the pile. 

This aspect of pile behaviour is very poorly addressed by the 

current theories. Even the proposed MBEM analysis cannot provide 

a rigorous treatment of gapping, due to an assumption that is 

fundamental to both this method and the majority of p-y theories. 

The versatile MBEM analysis developed in this work will thus 

overcome many of the drawbacks of earlier linear elastic-continuum 

models of soil response. Further, the analysis is capable of 

logical extension, to incorporate a reasonable form of non-linear 

behaviour, by use of an interface element based upon such concepts 

as are currently also employed in p-y analyses. 

A fundamental change of approach is required in order to 

logically 

analysis 

Structure 

consider gapping, in relation to lateral pile response 

using elastic-based theory. This is done for the Soil

Interaction (SSI) method, which is perhaps more a 

research tool than a design tool, relying upon a finite element 

model of the soil. However, using the SSI method 'a number of new 

analyses may be attempted, covering the behaviour of piles with 

gapping and soil yielding incorporated in a more rigorous manner 

than has previously been attempted. The use of the SSI method, 

with assumptions consistent with real soil behaviour, provides a 

theoretical treatment of pile behaviour that previously relied 

upon empirical and mechanistic interpretations of soil response. 

Thus the continuum nature of the soil can be fully modelled, 

and the model can be extended to include gapping and overcome many 

of the objections to the use of elastic-based theory. 
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Model pile tests are always subject to criticism because of 

the inability of most laboratory tests to give correct 

consideration to scale effects. While recognising that centrifuge 

tests are capable of overcoming most, if not all objections, it is 

usually not possible to gain enough access to such equipment in 

order to fully address the study of model pile behaviour. With 

this in mind, it remains to try and undertake model tests that 

provide some information that is capable of application to field 

situations. However, while it is possible to scale the overall 

geometry in model tests, this leaves the effects of uncontrollable 

parameters, such as stress distributions due to self-weight and 

the relative size of grains compared to the size of the pile, 

unaccounted for. Thus an important realisation is that stress 

levels and distributions in model tests usually do not compare to 

those in field tests. 

It should be emphasised that the three factors of scale, 

stress distribution and geometry of the model test can be taken 

account of in an elastic continuum-based analysis. Despite 

difficulties associated with the direct application of model test 

data to prototype piles, it is considered that the quality of fit 

between elastic-based theoretical results and model test results 

is a good measure of predictive capability. 

It is a logical treatment of interaction that makes elastic 

continuum theory most attractive as a model for comparison with 

field tests, and for general foundation analysis. It will 

automatically take account of factors that otherwise would need 

comprehensive empirical treatment in order to model their effect 

on foundation response. It is possible to maintain a constant set 
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of parameters, that are directly interpretable as material 

properties, when using an elastic-based model of soil response to 

fit or predict lateral pile behaviour. 

With careful consideration of failure in the soil, the 

elastic-based model may be used with a limiting interface stress 

law in order to model highly non-linear responses that are so 

prevalent in the results of field and model tests. By recourse to 

more completely defined soil failure conditions, the aim is to 

show elastic-based predictions of non-linear pile behaviour may 

be formulated and placed upon a sound theoretical basis. 

A brief outline of the thesis will now follow. 

1.3 Thesis Outline 

The thesis consists of seven chapters, wi th the main 

theoretical, experimental and field comparison work 

presented in the five central chapters. 

being 

The second chapter is a review of previous work on the 

analysis of single piles subjected to lateral loading. In 

general, pile loadings may arise from loads from supported 

structures, inertial forces or movement of soil, and the sub-

sequent pile response may be analysed by a variety of methods. 

The methods of soil modelling range from the assumption of simple 

spring supports replacing the soil response, to the use of complex 

non-linear elastic-viscoplastic soil models in three-dimensional 

finite element analyses, Winnicki and Zienkiewicz (1979). 

A variety of field testing methods can be encountered in the 

literature and their application and suitability to particular 

methods of theoretical analysis is highlighted. The parameters 

required for certain analysis methods are also reviewed. 
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The linear analysis of lateral pile response is examined in 

Chapter three. An important parameter for any pile-soil system, 

the effective length, is defined and its effect upon present and 

previous thoughts on pile response is clarified in Chapter four. 

As an important part of the soil-pile interaction character, the 

critical length has long been recognised, but its ramifications 

for pile analysis have been explored by relatively few people. 

Chapter five addresses the phenomenon of non-linearity of 

pile response, and a new form of lateral pile response analysis is 

introduced. The three phenomena of soil gapping behind piles, 

soil yield around piles, and briefly the prospect of yielding the 

pile itself are discussed. The continued importance of the pile 

effective length, even for non-linear response, is proposed. 

Chapter six reports the results of experimental work carried 

out by the Author on model piles in prepared beds of clay. 

Comparisons are made between the experimental and theoretical 

results. The model tests are directed at improving the under

standing of the response of piles of various diameters and 

lengths, in clay under essentially static load. Also, the various 

models of soil-pile behaviour that have been developed are used to 

analyse a field test of two piles reported in the literature. 

The final chapter contains the conclusions and 

recommendations for future research. 
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1.4 Notation 

A 
P 

A 

B 

c 
u 

c 
v 

C 

C 
I 

C 
R 

d 

e 

E 

E 
P 

E 
s 

E 
u 

f 

F 

g 

G 

h 

H 

H 
u 

i 

I 
P 

I 
uH 

I 
eH 

j 

k 

, I 
uM 

, I 
eM 

area of pile cross-section 

statics matrix, general matrix 

general matrix 

undrained shear strength of soil 

coefficient of consolidation 

coefficient, general matrix 

one-dimensional Compression Index 

one-dimensional Recompression Index 

diameter or projected width of pile 

eccentricity of applied shear force on pile 

Young's modulus of soil 

Young's modulus of pile (actual or equivalent) 

Subgrade Modulus for soil (= k.d) 

undrained Young's modulus of soil 

fraction of failure load assumed to act in a gap 

force 

fraction of plastic deflection converted to a gap 

Shear modulus of soil 

depth of soil layer 

horizontal shear force on pile head at ground level 

ultimate horizontal shear force on pile head 

influenced node number 

Moment of Inertia of pile cross-section 

dimensionless influence factors for head deflection 

and rotation due to head shear and moment 

influencing node number 

Coefficient of Subgrade Reaction, Fourier term 
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K 
R 

L 

L 
c 

m 

m 
s 

M 

M 
u 

n 

p 

p 
a 

p 
o 

p 
p 

p 

q 

r 

R 

t 

k 
u,v,w 

U 
i 

V 

W 

x,y,z 

Y 

'" 
~ 

9 

V 

o 
W 

relative stiffness factor for pile-soil system 

length of pile originally below the soil surface 

critical length of pile-soil system 

coefficient of increase of Young's modulus with depth 

coefficient of increase of Subgrade Modulus with depth 

bending moment in pile (normally at the head) 

ultimate moment on pile head 

number of terms used in a Fourier series 

normal stress, traction, mean stress 

active earth pressure 

earth pressure at rest 

passive earth pressure 

axial load on a pile head 

deviator stress, surcharge 

radial coordinate 

load vector length in M/L vs H space 

shear stress, traction 

deflections in direction of x, y and z axes 

k.th Fourier Coefficient for deflection, i = r,9,z 

shear force in pile 

uniformly distributed load per unit length of pile 

Cartesian coordinate system 

wavelength parameter for Winkler solution 

dimensionless measure of soil inhomogeneity 

dimensionless head moment to shear ratio 

circumferential coordinate, pile head rotation 

Poisson's ratio 

angle of internal friction of soil 

ray angle of load R in M/L vs H space 
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2.1 Introduction 

In this chapter a review is made of the methods that have 

been used, and are currently employed, for the analysis of the 

response of vertical piles to lateral loading. 

Section 2.2 consists of a brief historical note, and the 

classification of the various methods into three categories, 

depending upon the soil model assumed and also the technique of 

solution employed. This approach has been adopted when reviewing 

laterally loaded pile analysis methods, although a subdivision on 

the basis of the model used for the behaviour of the pile might 

also have served as a means of classification. 

The next section moves away from direct analysis of piles 

under head shear and moment loads, to consider methods that have 

been used in attempts to rationally analyse the underlying 

mechanisms of load transfer to the soil. Such methods include the 

plane strain pile segment in an elastic-continuum model of soil. 

In this section some of the methods used to introduce non-linear 

soil response are described. 

Section 2.4 deals with field testing and includes examples of 

the types of test that have been reported in the literature. The 

in-situ measurement of material parameters and prediction of p-y 

response using pressuremeter results is also discussed briefly. 

Following this is a section dealing with the evaluation of 

the parameters that are required for each major class of lateral 

pile analysis. 

A summary of the major findings of the literature survey is 

then made with indications of the areas that will be investigated 

in this thesis. 
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2.2 Lateral Pile History and Analysis Classification 

Lateral loading of piles is sometimes considered as a 

recently recognised solution to a foundation problem caused by 

man's quest for oil in the off-shore environment. However the 

laterally loaded pile has been a part of man's solution to the 

foundation problem for many hundreds of years. 

One of the earliest documented uses of piles to withstand 

lateral forces is in the artificial islands (crannogs or terpens) 

that supported the lake villages of Meare and Glastonbury in 

Britain circa 50 B.C .. The island at Glastonbury consisted of a 

triangular platform in the shallows near the shore resting on a 

foundation of stones, faggots, brushwood, rushes and peat 

contained by horizontally laid logs restrained laterally by strong 

piles driven vertically into the swamp. The area was nearly 16000 

square metres and contained about 90 huts relatively safe from 

raiding tribes. Nearby, connected to the shore was a 40 metre 

causeway of stone and clay, leading to a wooden jetty that was 

also kept in place by horizontal timber planks restrained by 

vertical piles which were topped by hurdles. 

The outward lateral pressure of the island meant that 

throughout the life of the village, the boundary vertical piles 

had to be replaced and supported by offsets. This, together with 

the constant settlement of the peat, caused major engineering 

problems that even today would tax the ingenuity of engineers. 

Today however, the remedial measures necessary when an off

shore oil rig installation settles or spreads unduly, would 

represent an economic constraint that may lead to severe financial 

loss for the rig operators. For this reason, as well as the 
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primary need for safety, the recent interest in behaviour of piles 

under lateral loading, such as occurs due to wind and wave action, 

has produced many solutions to the problem. 

Prior to 1956, theoretical work was essentially an extension 

of the beam on a (Winkler) linear spring foundation study, so 

thoroughly addressed by Hetenyi (1946). The work of Matlock and 

Reese (1960) provides a general solution to the behaviour of 

laterally loaded piles in a medium obeying a linear law of the 

type commonly called "Winkler" (after Winkler, 1867), and 

represents the peak of the linear approach using Winkler theory. 

Empirical treatment of off-shore problems using terrestrial-

based experience was deemed to be unsatisfactory, in view of the 

vastly different environment and the larger dimensions of the 

piles required. Large scale field testing under conditions close 

to those existing off-shore provided the first means of examining 

the behaviour (McClelland and Focht, 1956). Their field test 

results showed a strong link between the pile distributed load and 

pile-displacement (p-y) curve and the triaxial stress-strain curve 

of samples taken from stations down the pile. This treatment of 

field test results led to the development of the widely used p-y 

method of predicting lateral pile behaviour. 

In the p-y method, strain-gauged piles are used to provide 

distributions of bending moment down the pile when certain head 

loads are applied. The bending moments can then be integrated 

twice to find the bending deflections, which are combined with the 

measured head deflection and rotation to calculate the absolute 

value of deflection, "y" down the pile. Double differentiation of 

a curve fitted bending moment distribution provides the variation 

of distributed pile-reaction load, "p" with depth. 
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The studies of the 1970's have led to the unification of the 

p-y method and comprehensive representations of lateral pile 

behaviour in a wide variety of soils, e.g. Matlock (1970), Reese, 

Cox and Koop (1974 and 1975), Reese and Welch (1975), Lee and 

Gilbert (1979) and Sullivan, Reese and Fenske (1980). Using non

linear p-y curves at stations down the pile the lateral pile 

behaviour may be calculated, as long as the p-y curves are 

appropriate for the paricular soil and pile. 

Reliance upon empirical methods of modelling pile behaviour 

has prompted most of the research into lateral pile behaviour. 

Since much of the field-work was in conjunction with p-y research, 

it is not surprising that interpretations of field tests have been 

oriented 

promoting 

policy of 

McClelland 

towards ensuring that the p-y method works, rather than 

or investigating the use of alternative methods. The 

adapting the original approach to p-y curves, 

and Focht (1956), 

experienced soil conditions, 

design, on the whole. 

and catering for the most 

has proved acceptable 

due to 

commonly 

for pile 

The Winkler or p-y approaches are of limited use since they 

only strictly apply to the case of a single pile of a given 

stiffness, and provide no information about the effect of pile 

loading on the soil anywhere other than at the interface. Even 

the information at the interface is only a value of pile-reaction 

load and deflection (p and y), and not actually a stress in the 

soil or the soil deflection. For these reasons, and others, 

various researchers have attempted to apply the elastic continuum 

model of soil behaviour. 

The elastic-continuum model makes allowance for the 

continuous nature of the soil and has been widely used for a range 
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of foundation types, so a wide body of experience exists for 

choosing appropriate parameters. The parameters are few and can 

be obtained from triaxial testing at appropriate cell pressures, 

Davis and Poulos (1968). Further, the limiting cases of undrained 

and drained soil response are capable of inclusion. 

The elastic continuum method thus offers three major 

improvements over the traditional p-y methods: 

a) Pile groups, and the effects of lateral loading of one 

pile upon nearby structures, can be logically treated. 

b) The parameters required by the model are few and can, in 

principle, be obtained from standard laboratory soil tests. 

c) Time-dependent behaviour may be incorporated. 

In the light of the above it is not surprising that there 

have been many analyses based upon the soil modelled as an elastic 

continuum. A wide variety of approaches have been employed 

ranging from numerical, discrete methods such as the boundary 

element method to analytical procedures relying upon some form of 

numerical solution of the equations of an elastic continuum. In 

more recent years the finite element method has proved a popular 

method of obtaining results for lateral pile response using an 

elastic continuum model. It has been customary to isolate the 

finite element method as a separate class of analysis, mainly 

because soil nonhomogeneity can be included more rigorously than 

is possible with (say) boundary element based methods. Thus one 

of the often-referred-to limitations of elastic continuum theory, 

as embodied by the equations of Mindlin (1936), can be overcome. 

From the above a convenient grouping of the methods of 
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analysis, based upon the complexity of the soil model, presents 

itself. 

Thus, three classes of soil modelling can be proposed: 

The first is the Winkler class that broadly includes any 

linear, and for the purposes of this classification also forms of 

non-linear, pile reaction load-deflection response. These 

responses have been measured in full scale tests and are generally 

assumed to apply to a limited range of piling situations, e.g. 

a specific p-y analysis for a particular soil type. 

The second class consists of a wide variety of methods based 

upon elastic continuum theory, but limited to the case where 

Young's modulus of the soil is constant with depth. Although most 

methods are based upon a uniform modulus soil, some do make an 

attempt to model non-uniform soil modulus profiles in a systematic 

manner. 

The third class consists of the finite element method in a 

variety of forms. Three dimensional approaches are few since the 

volume of soil to be discretised usually exceeds the practical 

limit for economical analysis. The more economical axisymmetric 

finite element method employing Fourier representation of 

circumferential behaviour dominates this class of analysis. 

The three classes will now be reviewed, using several 

specific examples of the types of pile analysis methods mentioned 

above. 
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2.2.1 Winkler and P-y Methods 

All the methods in the Winkler class of model rely upon the 

correlation of the distributed pile reaction load to lateral pile 

displacement at stations down the pile. The Winkler and, in 

particular, p-y approaches have proved to be very flexible when 

different soils have been encountered in practice. 

However, this leaves the p-y method as a conceptual 

idealisation of pile response that has no link with the various 

soil constitutive models that have evolved. Other than the 

assumption that an empirically derived p-y curve will exist for 

the pile-soil interface, there is no modelling of the soil. 

Attention is limited to the behaviour, linear or non-linear, of 

the pile deflection and total reaction load at depths down the 

pile, with no consideration of the form of interface stress 

generated between pile and soil. 

Reese and Cox (1969) have outlined a method whereby p-y 

curves may be derived from the results of a laterally loaded pile 

test in which only the response of the pile head has been 

measured. The non-linear form of the derived p-y curves depends 

upon the subgrade modulus distributions that best fit the value of 

head deflection and rotation at a number of loading levels. 

Their aim was to present a method that would allow p-y curves 

to be correlated with a wide variety of sites, with different soil 

conditions. The basic assumption is that a secant model is 

appropriate for each pile deflected position, with a particular 

modulus distribution in a Winkler medium applying to the behaviour 

of the soil-pile system at anyone instant of the loading 

sequence. The same Winkler medium parameters, however, are not 
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necessarily found to be applicable to any other combinations of 

head shear and moment or load level. 

The cornerstone of their method is the assumption of super

position of the behaviour for shear and moment loading. This is 

proposed on the understanding that the deflection is small 

relative to the pile dimensions. Since the entire analysis is 

based upon small-strain differential equations and nowhere follows 

a strict load path approach to the problem, it is not made clear 

why this restriction of small strain is especially linked to the 

use of superposition. 

The method culminates in relationships between a parameter 

defining the distribution of soil modulus with depth, and two 

relative measures of the pile head stiffness; one relationship for 

the deflection and one for the rotation. Figures 7 and 8 of Reese 

and Cox are reproduced here as Fig. 2.1 and illustrate the general 

procedure for obtaining p and y from test pile data. When their 

two relationships coincide, the pile-soil stiffness and the soil 

modulus distribution become uniquely defined. However if the two 

fail to cross, the procedure relies upon finding the point of 

closest matching of the two relationships. As pointed out by 

Reese and Cox, this case of no unique value will lead to poor 

correlation between the results of using the p-y curves in a 

numerical analysis and the pile results from which the curves were 

derived. 

Points which the authors set outside the scope of their work 

include the correlation of soil properties to the p-y curves. Also 

no mention is made of the use of the p-y curves to model any 

combination of loads other than the one used to derive them, which 

limits their usefulness in predicting other test results. This is 

perhaps the major weakness of the p-y method as presented. 
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The paper however provides a very clear enunciation of the 

p-y hypothesis, and presents a method that seeks to maximise the 

information accumulated from a minimum number of data values 

collected. It seems that their method suffers from a major 

inadequacy when it is considered that the correlation does not 

ensure a coincidence of the two relationships used. This is due 

mainly to the reliance upon superposition of possibly non-linear 

behaviour and so it should not be surprising that such 

inadequacies exist. Also, only a limited number of simple linear 

distributions of soil modulus with depth are available to model a 

complex system of non-linear response. It follows that great care 

is needed when developing means of backfiguring soil parameters, 

and inadequacies in such methods should be well understood. 

Examples of proposed p-y curve criteria are presented in Figs 

2.2 and 2.3 for the two analysis methods derived for soft to 

medium clay soil sites, (Matlock, 1970), and stiff clay sites 

(Reese, Cox and Koop, 1975). Both methods are based upon values of 

ultimate pile reaction, p and the critical soil deflection, y 
u c 

which is related to the strain at half the maximum deviator stress 

in an undrained triaxial test. As shown in Fig. 2.4 the 

theoretically-derived values of ultimate soil reaction are not in 

agreement with the values deduced from the field test of Reese et 

al. (1975) and correction coefficients, A and B, are proposed to 

better model the behaviour. It is inherent in the method of back-

analysis of the field test results that the value of pile reaction 

load is derived from measured bending moments. Thus the ultimate 

resistance of the soil is only assumed to be equivalent to this 

reaction load, with no information about the actual soil stress 

state which is commonly assumed to govern soil strength. 
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Because the same p-y curve may not be applicable to all the 

combinations of head shear and moment that might be applied to a 

pile, as pointed out by Lee and Gilbert (1979), the relative 

magnitudes of the desired pile head shear and moment should be 

duplicated in any testing designed to produce p-y curves. As an 

example the tests of Reese et al. (1975) may be considered where 

they compared the p-y curves from two tests on a six inch diameter 

pile in stiff clay, labelled 3 initially and 4 when re-driven. A 

free head and a restrained, "fixed" head condition were applied to 

piles 3 and 4 respectively and the p-y curves derived. 

The curves for the free and restrained head cases are 

reproduced here in Fig. 2.5 and it is obvious that the two sets of 

p-y responses are not exactly equivalent, as is assumed in the p-y 

method. This is in part due to a lesser load having been applied 

to pile 3 than was applied to pile 4 and, as suggested by Reese et 

al., partly due to small variations in soil properties between the 

sites of each pile test. However, there is a consistent trend in 

the results for the two piles displayed in the curves. 

The restrained-head pile exhibits a stiffer initial p-y 

response than the free head pile below a depth of one metre. At 

about one metre the stiffnesses are similar but the ultimate 

reaction loads for the restrained case are smaller. The fact that 

the ultimate reaction loads of the two piles at the same depths, 

of two and four diameters penetration, vary by a factor of as much 

as two is disturbing. 

The correction coefficient, used by Reese et al. (1975), to 

ensure a match between experimental and theoretically-derived 

values of ultimate reactions, see Fig. 2.4, has typical values of 

0.2 to 0.6. This coefficient varies with depth and thus it is not 
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surprising that similar variations exist between two ultimate 

reactions backfigured for any two piles at any depth. It would 

appear that the poor predictive capability of the p-y theory for, 

and the variation in the experimentally-derived values of, the 

ultimate reaction loads, indicates a response very sensitive to 

changes in material or geometrical properties. 

The large change in ultimate reaction value corresponding to 

changes in material properties, or problem geometry, near the 

surface appears out of proportion to the magnitude of these small 

changes. When the range of ultimate reaction loads predicted by 

various theories is considered, as has been done by Stevens and 

Audibert (1979), it reveals a factor of two between most 

theoretical and observed values. These discrepancies will have a 

marked effect upon the pile load-carrying predictions and the 

load-deflection (p-y) curves which are based upon the ultimate 

reaction loads. Unfortunately, it is impractical to completely 

fail full scale test piles in order to verify the assumption 

that the failure stresses in the soil have been reached. 

Thus, from consideration of the values found in many pile 

tests, ultimate reaction loads may even vary during continued 

loading. This is because no satisfactory definition of failure 

exists for the pile or soil response in most tests, and so there 

is no guarantee that failure loads have been achieved, or that the 

achieved loads can be maintained under an increment of head load. 

Indeed, the pile reaction from the stiff clay-based p-y curves 

suggest the soil failure load decreases with deflection, although 

the mechanics of this feature have not been explained. 
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From the two series of load tests that resulted in the p-y 

methods of analysis for laterally loaded piles in soft to medium 

clay and stiff clay, Sullivan, Reese and Fenske (1980) have 

synthesised what is referred to as a unified method for analysis 

of piles in clay. The essential differences between the two 

methods of Matlock (1970), for soft clay, and Reese et al. (1975), 

for stiff clay, and the unified method are the simplification of 

the p-y curve construction procedure and the depth to which 

"strain"-softening is allowed. 

While representing a unification of the two separate p-y 

methods, two new parameters are introduced that have only limited 

empirical data to guide their choice. Since the variation of these 

two additional parameters represents the main difference between 

the unified and the two earlier p-y methods, reference to the 

recommendations of the soft and stiff clay methods will aid in the 

choice of values for the two parameters. 

The p-y method, and generally any Winkler-type model, is thus 

seen to have a strongly empirical base and ultimately to rely upon 

limited data from field tests using a few head loading conditions. 

The variety of soils and pile dimensions encountered in the 

field, then requires a variety of models in order to cater for the 

practical needs of pile design. 
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2.2.2 Elastic Continuum Methods 

Amongst the earliest uses of elastic continuum theory in a 

lateral pile application is the work of Spillers and Stoll (1964), 

who recognised the inability of Winkler or p-y methods of analysis 

to incorporate a constitutive equation for soil in a valid manner. 

The inability arises from the assumptions of the methods, 

especially the removal of interaction in the system of soil and 

pile, save that connected with bending of the pile. Spillers and 

Stoll preferred to use soil parameters arising from the basic 

constitutive equations of soil rather than define local "moduli" 

that are not independent of pile dimensions and stiffness. 

They considered as their simplest model a homogeneous, 

isotropic, elastic continuum and emphasised the assumption of 

small strain. An elastic line inclusion in a linear elastic half

space represented a pile in the soil, and compatibility of pile 

and soil lateral deflections was employed at discrete nodal 

points. The interaction between pile and soil was approximated by 

concentrated forces at nodal points, and the soil response was 

provided by the equations of Mindlin (1936). As is usual with 

concentrated force methods, a special computational device was 

employed to avoid singularities associated with the deflections at 

the points of force application. 

In recognition of the non-linear character of soil response, 

a limiting force was calculated for each node based upon a 

linearly varying yielding pressure law with depth. Although the 

method of implementing the non-linear behaviour was relatively 

crude, it marks an acceptance of the importance of the non-linear 

aspect of pile response. 
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Matters not considered by Spillers and Stoll, but which were 

thought to be worthy of future research, included the modelling of 

the non-homogeneous nature of soil. 

If the restriction to an elastic homogeneous half-space is 

viewed, using the experience gained from studying the behaviour as 

if it were due to a Winkler response, it will appear patently 

inadequate. However, it is because the Winkler model has been 

used as a basis for comparison with field data that the assumption 

of an increasing modulus of soil reaction with depth becomes 

necessary, which says little about the variation of Young's 

modulus with depth. The elastic continuum model of soil is 

capable of displaying an increasing stiffness (modulus of soil 

reaction) with depth even for the homogeneous Young's modulus case 

without recourse to considering nonhomogeneous profiles. This 

will be shown in Chapter three. 

The modulus of soil reaction and the soil Young's 

are two greatly different quantities that happen 

modulus, 

to have 

comparable numerical values in some circumstances. The modulus of 

soil reaction is a measurable quantity that is a result of the 

pile-soil interaction, whereas the form of the pile-soil inter

action is largely a result of the Young's modulus of the soil in 

the elastic continuum model. Obviously it is better to consider a 

basic parameter of the soil rather than a measured response of 

very strictly limited applicability, i.e. the load-deflection 

response of a particular pile at one depth. 

An obvious deficiency of the model of Spillers and Stoll is 

the assumption that the pile transmits load to the soil by 

concentrated forces at stations down the pile. The model proposed 

by Poulos (1971a) eliminated these point forces and modelled the 

interaction between pile and soil by elements of uniformly 
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distributed load. The rectangular elements of constant normal 

traction were again associated with the nodal points of a finite 

difference pile discretisation. 

This improved the modelling of the interaction stresses, and 

also removed the need for special attention when the deflection of 

a point due to a concentrated force at that point was required. By 

using the integration of the Mindlin kernel (1936) that had been 

accomplished by Douglas and Davis (1964), the deflection of any 

point in the same plane as the thin strip pile could be obtained. 

By using a constant spacing of nodes for the pile, a model for the 

soil consisting of rectangular elements, of the same height as the 

spacing between pile nodes and the width of the pile, resulted. In 

this way the soil nodes along the pile centre-line, at which 

deflections were calculated, were situated at the centroid of 

elements internal to the pile and the centre of the top and bottom 

edges of half height elements at the pile extremities. 

The resulting model gave improved analyses of laterally 

loaded piles and formed the basis of a presentation of behaviour 

that has gained wide acceptance both as a design aid and a bench

mark against which other models are tested. The behaviour 

predicted by the elastic-continuum model showed some similarity 

with that from use of a Winkler soil model, but had marked 

differences. These differences are essentially due to the elastic 

model predicting results that have a complex dependancy upon the 

slenderness ratio of the pile, while the Winkler model results 

simply normalise for any slenderness ratio to one curve. 

Poulos relates the soil-pile interface uniform reaction load 

to the deflection of the centroid of internal elements, and the 

middle of the edges of elements at the upper and lower extremities 
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of the pile. 

by up to 30%, 

face, as was 

This soil model has the drawback of over-estimating, 

the deflection actually arising at the pile inter

pointed out by Randolph (1977). This is because the 

actual interface is essentially rigid across the width. By using 

the centroidal deflection the soil is given an opportunity to 

deform flexibly across the width that is not present in the real 

interface situation. 

The results presented by Poulos suffer from inadequate pile 

discretisation for the case of very flexible pile-soil systems, 

because computational limitations precluded the use of a finer 

nodal spacing. This matter has subsequently been addressed by 

others, notably Evangelista and Viggiani (1976). Evangelista and 

Viggiani have drawn attention to the inadequacies of previous 

laterally loaded pile elastic continuum analyses. Although Poulos 

(1971a) is explicitly mentioned, their comments are applicable to 

perhaps the majority of results presented by others. 

The major difference between the solutions of Evangelista and 

Viggiani and any previous elastic continuum solution, is the use 

of elements of varying length down the pile in an effort to model 

more accurately the region of greatest gradient for the 

displacement of the soil. The use of smaller elements at the pile 

head, grading to much larger elements at the tip, has two effects: 

a) Firstly, it allows a much finer modelling of pile 

bending near its head, and so would be expected to improve 

modelling of flexible piles, where large gradients of 

interaction stress occur near the pile head. 

b) Secondly, it detracts from modelling of the behaviour 

of the pile and soil near the base of a rigid pile, where the 

elements will have a much larger aspect ratio. 
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In Chapter four it will be shown that flexible piles of the 

same cross-section in the same soil, will exhibit equivalent 

responses to head loading, irrespective of their length. Flexible 

piles of solid circular cross-section are those having a pile to 
6 

soil modulus ratio less than 524 for Lld = 10 and 5.24 x 10 for 

Lld = 100, from the use of the relationship of critical length and 

relative stiffness which is proposed in Chapter four. 

When considering the results presented by Evangelista and 

Viggiani, their variable element length analysis gives improved 

results, with the deflections and rotations of piles longer than 

the critical length becoming constant, regardless of the actual 

pile length, and this response is tabulated in Table 2.1. This 

table also includes results from the MBEM analysis developed in 

this thesis, in which an equal number of elements for the 

modelling of the pile critical length was maintained for all but 

the longest pile. The solution of the longest pile is clearly seen 

to underestimate the response because of inadequate modelling of 

behaviour within the pile critical length. It has been assumed 

that the dimensionless influence coefficients in the table of 

Evangelista and Viggiani are in error and require the length terms 

to be replaced by the diameter. 

The improved head response arises because the longer elements 

at the base have virtually no part to play in the analysis of 

flexible piles, and the head response is governed by the upper 

portion which has been discretised finely. However, for a long 

rigid pile (Lld = 100), because of the importance of the entire 

pile length in determining response, a finer discretisation over 

the lower pile portion is required. This may help to explain why 

there is nearly 15 % more deflection predicted by Evangelista and 

Viggiani for stiff piles of Lld = 100 than is predicted by the 
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Poulos analysis. It is also likely that the greatly increased 

possibility for flexibility across the pile face at the top of 

pile, is not consistent with the analysis of a rigid pile, even 

though such a slender rigid pile is not practically important. 

Thus, the newer analysis using a fine discretisation near to 

the pile head obviously improves the accuracy of the answers for 

flexible piles. However it does so to the extent that it raises a 

question as to the applicability of the centroidal deflection 

based model. The use of a uniformly loaded area for the interface 

traction and the assignment of the centroid as the collocation of 

pile and soil, 

The work 

can be considered as being too conservative. 

of Evangelista and Viggiani has highlighted 

important aspects of pile analysis and response: 

a) All piles longer than their critcal length 

two 

have 

the same head response to head loads, regardless of actual 

pile lengths. 

b) The degree of pile discretisation may greatly affect the 

results of an analysis. 

Although using variable lengths of elements improves the 

accuracy of the analysis of piles in an elastic continuum, there 

is the same deficiency in the formulation of the model, concerning 

the assumption of flexible behaviour across an element face, as in 

the method used by Poulos and discussed previously. By using an 

average deflection across the face, to approximate a rigid 

response, and employing a reasonable number of elements within the 

effective length, it will be shown in Chapters three and four that 

it is possible to achieve boundary element results that can be 

considered equivalent to results from more refined finite element 

analyses. 
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Examples of other uses of elastic continuum theory to analyse 

a problem related to the lateral loading of piles but suggested as 

including the behaviour of shear pins, are the papers of 

Apirathvorakij and Karasudhi (1980) and Selvadurai and Rajapaske 

(1985). Both methods employ the same fundamental solution 

technique involving Hankel transforms and Fourier expansions. 

Apirathvorakij and Karasudhi employ a compatibility of both 

uniform horizontal shear and linearly varying vertical tractions, 

(shear forces and bending moments) acting over circular plane 

areas (where the pile is situated), between the elastic continuum 

and a pile whose modulus is reduced by the modulus of the elastic 

continuum. Selvadurai and Rajapaske use the same theory, but 

employ tractions acting upon a boundary of the pile. As such, 

neither method takes proper account of the displaced volume of 

soil due to the presence of the pile. Further, while 

Apirathvorakij and Karasudhi's method can be used to model solid 

circular pile foundations of any flexibility, the analysis of 

Selvadurai and Rajapaske is restricted to rigid piles but does 

allow the effect of varying the pile wall thickness to be found. 

Apirathvorakij and Karasudhi's method is capable of 

calculating the entire consolidation response of an essentially 

permeable pile, although they only present the initial and final 

responses. Essentially, any elastic-continuum-based analysis is 

capable of giving these two results since the drained and un

drained moduli of an elastic soil are simply related. The results 

are consistent with previous methods of analysis, e.g. Poulos 

(1971a), showing that the pile response depends upon the length to 

diameter ratio, the relative stiffness of the pile to the soil 

and, to a lesser extent, upon the value of Poisson's ratio of the 

soil. 
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However, piles that can be classed as flexible in the soil 

are shown to normalise to a common curve, while "rigid" piles 

produce curves of constant response for each particular length to 

diameter ratio when plotted against relative pile to soil modulus 

ratio. This is a result of using the pile diameter to normalise 

the head response and plotting against the ratio of pile to soil 

modulus, and will be further discussed in relation to the minimum 

lengths of flexible piles in Chapter four. Using the pile length 

to normalise head responses, and a relative stiffness based upon 

the pile length and section properties, would have produced 

results of a similar appearance to Poulos' results. However, 

Apirathvorakij and Karasudhi's results would in some respects be 

preferred, since some account has been taken of the need for 

changing the number of elements in the pile as the length changes 

to ensure there are sufficient elements in the effective length. 

The results of Selvadurai and Rajapakse do not need 

consideration of critical pile lengths, since they analyse a rigid 

pile and thus the actual pile length is the effective length. A 

comparison with a Poulos-type analysis shows good agreement for 

the shear and moment distributions with depth for a pile with a 

length to diameter ratio of ten. For squatter, less slender piles 

the comparison is less satisfactory, but Poulos has not recommended 

his method for such a problem, suggesting the solutions of Douglas 

and Davis (1964) would be more appropriate for short rigid piles. 

An interesting feature of Selvadurai and Rajapakse's analysis 

is the ability to consider a finite value of wall thickness to the 

circular pile. 

and a solid 

This leads to limiting cases of a thin rigid shell 

cross section pile, which they showed to have 

virtually no difference in response for lateral loading. This 
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suggests that it is the outside interface of pipe piles supporting 

the interface tractions that are of importance, not the enclosed 

region of soil or the pile base, even for relatively squat piles. 

It can be seen that the isotropic homogeneous elastic 

continuum model has provided the basis for several analyses for 

lateral loading of piles. Several researchers, Poulos (1972), 

Banerjee and Davies (1978) and Pise (1982), have also considered 

means by which non-homogeneous and layered soil profiles can be 

treated. All the analyses contain assumptions about the behaviour 

of the pile-soil system whose validity is difficult to assess. 

However, it is evident in all the results that the pile-soil 

relative stiffness, the length to diameter ratio and Poisson's 

ratio of the soil all have some effect upon the response. 

The different ways in which the results of the various 

elastic based models have been presented, tends to mask the 

similarities between them, and inconsistencies seem to be 

magnified. A natural caution in accepting results that rely upon 

theoretical assumptions which are difficult to justify and a 

preference for empirical approaches, has seen research emphasis on 

other types of models. However, recently there has been an 

increased effort to make elastic-continuum based results more 

acceptable. This has led to the application of elastic finite 

element methods to the problem of lateral loading of piles. 
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2.2.3 Finite Element Models 

Since its introduction, the Finite Element Method has been 

applied to an increasingly wide range of problems in geotechnical 

engineering. The analysis of laterally loaded piles has been one 

such problem and has seen application of the method in two main 

forms. The first form is a fully three-dimensional formulation, 

using block elements of various degrees of sophistication. The 

second form is based upon a semi-analytic approach that 

analytically models variation of quantities in the circumferential 

direction by Fourier series, thus leaving only a two dimensional 

model to be discretised. Both forms are restricted to linear 

elastic response. 

Of the two, the semi-analytic model is by far the most 

economical and consequently can provide results of a higher 

standard than the three-dimensional approach. This higher 

standard arises because of two factors. Firstly, the model uses an 

analytic treatment around the circumferential direction that is 

better than that available from standard finite element 

approximations. Secondly, the two-dimensional model can be used 

with a much finer discretisation than is possible three-

dimensionally, thus leading to more accurate results. 

Kuhlemeyer (1979a) has used a four-noded quadrilateral semi

analytic finite element model to analyse a laterally loaded pile 

in an elastic layer of soil, both statically and dynamically. A 

reduced integration procedure was found to be necessary to obtain 

economical and accurate modelling of the bending of a cantilever 

due to end loading. The standard element, without reduced 

integration, was shown to give a response that was too stiff, 

which is consistent with the restricted form of shape function. 
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Kuhlemeyer (1979b) has used the solution for a cantilever 

response given by Timoshenko and Gere (1972), as an analytic 

check on his finite element model. That solution provides a more 

accurate response than the predictions of simple bending theory by 

taking account of shear deformations. Using the predicted tip 

deflection for the tip loaded stocky cantilever, it is possible to 

show that the answer is at least five percent in error when using 

simple bending theory for beams with a length to diameter ratio 

of less than three. 

This suggests that piles with an effective length in the 

soil of less than three diameters are likely to require 

consideration of deviations from the behaviour given by simple 

bending theory. This conclusion is based upon loading of the tip 

of a cantilever, but should provide an indication of the more 

complex behaviour arising from the distributed loading produced 

during interaction between the pile and soil. Thus a lower limit 

to the length of piles, of three diameters, can be suggested for 

any lateral pile analysis that uses simple bending theory for the 

pile response. 

Kuhlemeyer (1979a) has indicated that the critical length of 

a pile can be estimated as the length that results in a relative 
4 

pile-soil stiffness factor, K = E I lE L, of between 0.05 and 
R p P L 

0.01 where the symbols are defined in section 1.4 and E is the 
L 

soil Young's modulus at the pile tip. Kuhlemeyer's basis for 

these values is the results of Poulos (1972); choosing the K 
R 

value where the tip fixity condition has no effect upon the head 

response to head loads. He proposes that for a given pile and 

soil combination, there is a critical length to diameter ratio, 

beyond which the head response to head loads is unchanged by 

increasing the pile length. This suggests that if a pile has an 
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effective length of less than three diameters, it may be necessary 

to use a more complex beam bending model than the simple beam 

theory which involves plane sections remaining plane. Even if the 

actual pile length is much greater than three diameters, then 

simple bending theory may still no longer be appropriate if the 

critical length is less than three diameters. 

An expression that Kuhlemeyer fitted to the results of Poulos 

(1972), appears to be in error since Poulos' original results 

cannot be reproduced by its use. Instead of the influence 

coefficient for head deflection due to head shear increasing with 

increasing length to diameter ratio, it decreases. This is also 

contrary to the finite element based equations of Kuhlemeyer, 

which can be shown to include a term for the length to diameter 

ratio, when re-expressed in the form necessary for direct 

comparison with Poulos' results. 

An important aspect of behaviour was identified by Kuhlemeyer 

with his recognition of the importance of the relative stiffness 

of-the pile and soil and its relation to the critical length. He 

predicted that the non-dimensional deflection and rotation 

responses, normalised by the pile radius or diameter instead of 

length, will be proportional to a power of the ratio of the pile 

to soil Young's modulus. As long as the pile response is both: 

a) constant for increases of length, i.e. its length exceeds 

the critical length, and 

b) is also not a function of the actual value of critical 

length, 

then Kuhlemeyer's predicted power coefficients are 

ev~r, his finite element results do not support 

correct. How

his predicted 

coefficients derived from use of these two assumptions. 
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The existence of a critical length has been well documented 

and so the second assumption must be in error. 

of flexible piles (those of length greater 

Thus, the response 

than the critical 

length), will be seen to depend upon the critical length of the 

pile; more correctly the critical length to diameter ratio. A 

dependance upon length to diameter ratio is also seen in the 

response of stiffer piles with lengths less than critical. 

This fact will explain why the correct powers in Kuhlemeyer's 

finite element result based equations differ from those of his 

theoretical predictions. Indeed it is necessary that the powers 

of the equations must be of lesser magnitude than those arising 

from Kuhlemeyer's argument. If the powers are larger, then the 

trend of solution with length to diameter ratio is reversed, just 

as it is in one of Kuhlemeyer's re-expressions of Poulos' results. 

An important example in which the argument of Kuhlemeyer is 

correct, is the problem of a pile in a Winkler soil. In such a 

case the effective length to diameter ratio has no effect upon the 

deflection. This is consistent with the empirical basis of the 

Winkler model ignoring the effect of pile diameter, or width, upon 

the load deformation behaviour. 

Randolph (1977) and (1981), also uses a semi-analytic finite 

element model to analyse the response of laterally loaded piles in 

an elastic soil mass. His resulting equations for the response of 

flexible piles can be expressed in a similar form to Kuhlemeyer's 

and are in broad agreement. Randolph (1977), has shown that the 

response of flexible piles in an elastic soil mass is a function 

of the relative stiffness of the soil and pile and the degree of 

inhomogeneity of the soil profile. 

From dimensional analysis, Randolph has found the form of the 
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expressions for head load-deformation characteristics, and used 

the two extremes of a uniform Young's modulus and one that is 

proportional to depth, to ascertain the correct power relation

ships. Again expressions similar to Kuhlemeyer's are found for 

the uniform soil, but the expressions for the non-uniform profile 

are necessarily different. Randolph has then proposed expressions 

that include a non-homogeneity-related term and has checked their 

accuracy against the finite element results. 

Randolph has also considered the problem of a pile in a 

Winkler soil, and for this simple model the actual powers used in 

the expressions can be shown to be determined by the restriction 

that the value of the critical length does not alter the non-

dimensional 

This will 

response, as is implicit in Kuhlemeyer's 

be discussed in more detail in the section of 

argument. 

Chapter 

four in Section 4.2.2. 

Randolph (1981) has presented the results of his finite 

element study in the form of simple equations that are convenient 

for design calculations using a small programmable calculator. His 

design charts allow bending moment, and deflected shape profiles 

to be calculated for any flexible pile in a wide range of soil 

Young's modulus profiles. The cornerstone of his presentation 

method is the pile "critical" length. By non-dimensionalising, 

using the critical length, the expressions obtained for head 

response to head loading of flexible piles are greatly simplified. 

Randolph (1977), and Kuhlemeyer (1979a), both use the same 

concept of 

results of 

symmetric, 

curve-fitted equations of response, based upon 

finite element studies using the economical 

semi-analytic model. This illustrates its power 

versatility in solving problems in geotechnical engineering 
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can be adequately approximated as being axially symmetric. The 

benefit of using the finite element method is the lack of 

difficult-to-verify simplifying assumptions, inherent in the 

modified Boundary Element method, leading to a confidence in the 

results that is governed only by the degree of discretisation in 

the finite element mesh used. 

While the fully three-dimensional finite element method has 

been used in a few instances (e.g. Desai and Appel, 1976) it 

remains an unpopular choice of approach, because of the small size 

of problem that it can economically solve. A parametric study 

using three-dimensional finite elements is not feasible, and most 

applications have been for a particular pile and soil. 

However, finite element modelling of lateral pile response 

has not been restricted to the axisymmetric geometry approach, nor 

to the analysis of the entire pile. Such exceptions include plane 

strain and plane stress finite element models, which have been 

used to model pile-soil load transfer behaviour, and also the use 

of other soil models than the elastic one, e.g. the hyperbolic 

stress-strain soil model. These approaches using the finite 

element method will be discussed in the next section. 
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2.3 Load Transfer Models 

Several investigators have considered forms of the load 

transfer from the pile to the soil, that result from lateral 

loading of a pile, taht are more involved than p-y curves. The 

work of Yegian and Wright (1973) and Baguelin, Frank and Said 

(1977), typify an approach to modelling lateral load transfer that 

considers the soil to behave like unconnected plane strain, or 

plane stress, discs. This greatly simplifies the modelling because 

a manageable, two dimensional analysis can replace the three 

dimensional reality. It also introduces conceptual problems that 

will be discussed during this section, and these raise some doubts 

about direct application of such a model to real pile analysis. 

Baguelin, Frank and Said (1977), present a closed form two

dimensional plane strain solution for the stress distribution and 

displacement field, resulting from a rigid translation due to an 

applied force on a circular ring at the centre of an elastic body, 

confined by a circular rough rigid outer boundary. The expression 

for the displacement in the direction of the applied force 

predicts an infinite value of displacement, as the radial distance 

to the rough rigid boundary tends to infinity. 

This infinite displacement typifies the results found from 

using infinite domain, full- or half-space, plane strain models. 

It occurs because the infinitely long pile involves an infinite 

total force acting upon the continuum, and further, the strains 

produced are integrated over an infinite domain. The combination 

of these two factors lead to theoretically infinite deflections, 

much in the same way as a point force results in an infinite 

stress and deflection at the point of application of the force. 
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This aspect of elastic continuum behaviour at first sight may 

seem alarming, but it must be realised that plane strain in

finitely long footings or pile segments (and indeed point forces) 

do not exist in reality. Only finite areas ever need to be 

considered, and so the two limiting cases of infinite total load 

over an infinite area, and point forces, never actually arise. 

Baguelin et al. proposed fixing of the outer boundary at the 

position which gives the same deformation in the x-coordinate 

direction for the plane strain solution as that for a solution 

based upon superposing a beam on a Winkler-support-theory-derived 

traction distribution on a point force Mindlin-based-elastic-

continuum-model of deformation in the x-direction. This procedure 

seems cumbersome, and Baguelin et al. have outlined several 

difficulties associated with it. It does, however, lead to a 

value of fixed rough boundary radius for use in the plane strain 

pile segment model. Results from the elastic continuum based 

plane strain pile segment and three dimensional far-field model, 

are shown to give answers comparable to those of Poulos (1971a). 

Another finding presented by Baguelin, Frank and Said in this 

paper, and in that of Baguelin, Trezos and Frank (1979), is the 

conclusion regarding the lack of influence of the pile segment 

cross-section shape upon load deformation behaviour. A circular 

pile and a square pile, with the same diameter and width are found 

to behave in essentially the same way. Thus, with the assumption 

of a rigid pile-soil interface, it seems the shape of the inter-

face is not greatly important. This gives some support to the use 

of a thin strip pile idealisation, such as presented by Poulos and 

Davis (1980), which does not directly include the shape of the 

pile cross-section in the soil model. 
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Other aspects treated in the paper include the effect of a 

remoulded softened zone of elastic material near the pile and also 

the effect of soil yield using a Tresca criterion, both using the 

plane strain model. Neither the radial nor tangential shear 

traction distributions were greatly affected by the sizes of 

disturbed zone chosen or the degrees of modulus softening used. 

Their solutions including soil yield show that the soil on 

the side face, where the shear traction is a maximum, fails in 

shear in a thin band first. The growth of plastic zones during 

loading is presented and does not show the mechanism that would 

need to form in the plastic region at collapse. From the shape of 

the load-deflection curve there is also no clear indication of 

collapse, even though the total load is near collapse according to 

the results presented by Randolph and Houlsby (1984). This will be 

considered again in Chapter five. 

It would have been preferable if the loading could have been 

continued up to collapse, but the results do indicate that the 

component of total reaction arising out of shear along the side 

face becomes constant at relatively low load levels, namely about 

one fifth of collapse. This has importance as far as the rate of 

increase of the component of frontal reaction with deformation is 

concerned. The frontal reaction-deflection response actually 

appears to stiffen, to compensate for the loss of incremental side 

resistance and the initial portion of total reaction load

deflection response plots as if elastic behaviour applied right up 

to about two thirds of the collapse load. 

This may well be a phenomenon associated with the plane 

strain confinement, or the rigid boundary assumed in the problem, 

but it still raises questions about commonly-held concepts of 

failure in soil masses. It challenges the concept of a softening 
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soil response as load levels increase. An isolated part of the 

soil may have a stiffening response according to these results. 

The confinement raises a question as to the suitability of 

the analysis for application to the lateral loading of piles, 

especially when soil near the surface is considered. Breakout of 

the soil due to the proximity of the surface, will alter the plane 

strain state and lead to possibly a plane stress state. In the 

undrained state it can be shown theoretically that an increment of 

lateral load leads to an increase in the mean stress at the inter-

face, equivalent to the increase of the radial normal stresses at 

any point around the circumference. Recourse to the Fourier 

representation leads to the radial normal stresses being a cosine 

function of the circumferential position mUltiplied by the stress 

increase occurring at the front of the pile, where the cosine 

takes a unit value, and the circumferentially directed shear 

stress is governed by a sine function and the shear value at the 

very edge of the pile, where the sine value is unity. 

Thus zero mean stress increase is predicted at the sides of 

the pile-soil interface, while the circumferential shear is a 

maximum there. Since the three normal stresses are equal at any 

position around the pile-soil interface, it follows that soil 

yield is unlikely to occur close to the interface except at the 

two sides. The finite element analysis reproduces this behaviour 

with the sides failing first and then a zone of contained plastic 

flow appearing in front of and behind the pile, at some distance 

away from the interface. 

All this presupposes that the soil is sufficiently contained 

to allow the generation of an increment of vertical stress, which 

will not be likely near the soil surface. Further, the plane 
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strain pile segment analysis predicts a wide variation of 

deflection response for different values of Poisson's ratio, as 

shown in Fig. 2.6. Not only is there a forty percent variation 

over the range of Poisson's ratio, but also there is a very steep 

rate of change of behaviour as a value of 0.5 is approached. Most 

researchers have concluded the value of Poisson's ratio has little 

effect upon pile behaviour and neglect it, or use parameters that 

effectively reduce its influence, (Randolph, 1977). 

Yegian and Wright (1973) have described the application of a 

finite element analysis to model a thin horizontal slice of the 

strata through which a pile penetrates, using both plane strain 

and plane stress formulations. Their aim was to generate p-y 

curves by assuming both a non-linear soil stress-strain relation

ship and a non-linear interface joint element between the pile and 

soil. The analytic procedure for developing soil resistance to 

pile displacement relationships was presented and compared to the 

conventional method of predicting p-y curves, (Matlock, 1970). The 

soil 

been 

pile. 

secant 

model used is only applicable to saturated clays and has not 

modified to allow for tensile breakaway of soil from the 

The non-linear behaviour was implemented by an iterative, 

modulus procedure, converging upon the proper values. 

Unfortunately it was not made clear what was meant by "proper"; 

however it was pointed out that convergence was extremely rapid. 

The soil behaviour was modelled by a hyperbolic stress-strain 

model, while the interface response was given by a bi-linear 

expression as a special case of a more general hyperbolic 

expression. The majority of results were found using a plane 

stress analysis, as this was anticipated to be applicable to the 

response at shallow depths where the pile action is concentrated. 

44 



An interesting point arises from the use of an interface 

element 

limited 

interface 

would be 

that could firstly, as a limiting case, 

shear stress and secondly, model a case 

withstand 

in which 

shear strength and soil shear strength are equal. 

expected that no gain in load could occur beyond 

un

the 

It 

that 

found for the second case. This is because any tendency to raise 

the interface shear stress above the soil shear strength would be 

expected to lead to failure of a thin band of soil close to the 

interface, regardless of the bonding strength. The fact that the 

fully bonded limiting case of infinite interface strength led to a 

higher load suggests there is a zone of overstress in the first 

solution. 

Apparently the mesh was sufficiently fine to keep the over

stressed zone small enough to produce only a load increase of less 

than 5 % above the theoretical maximum value, which corresponds to 

an interface shear strength equal to the undrained shear strength 

of the soil. 

A comparison of the finite element and the standard method of 

predicting p-y curves was carried out for two cases: 

a) a "shallow" pile comparison. 

b) a "deep" pile comparison. 

It was noted for the "shallow" case that Matlock's method 

predicts lower ultimate loads, in line with experience, than the 

finite element method. This was suggested as being a 

characteristic caused by breakaway of soil from the pile in 

reality which was not modelled in the method. 

Further, a significant lack of agreement was found for the 

"deep" case, with lower ultimate loads being given by the finite 

element method. It was suggested that the deep case may have 
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significantly more vertical confinement and so a plane strain 

rather than plane stress analysis might be more appropriate. 

No firm conclusions were drawn concerning ultimate loads 

other than to suggest that neither method, Matlock's nor the 

finite element analysis, can be put forward as the paragon since 

the accuracy of neither can be established unequivocally. 

Group analyses were attempted by making efficient use of the 

periodicity induced by assuming smooth, reflective symmetry 

boundaries and restrained, antisymmetric boundaries. In this way 

an infinite row of pile segments between two fixed boundaries can 

be analysed for loading along and across the line of piles. 

Not surprisingly the case of the pile loads along the line of 

the pile group gave much larger deflections. Indeed if an infinite 

extent were modelled instead of using a fixed boundary parallel to 

the line of piles then an infinite deflection would be expected, 

in much the same way as a strip footing on an infinite half-space 

would respond. The fact that any loading on the infinite number of 

pile segments causes an infinite total load to act upon the half

space, must result in infinite deflections. 

The results from this approach should be viewed as an example 

of interaction between pile segments under highly artificial 

circumstances. Actual pile group behaviour is unlikely to consist 

solely of the responses depicted in this paper since: 

a) in general, individual pile reaction loads at anyone 

depth are not necessarily equal as is assumed and 

b) as mentioned in the paper, plane strain and plane stress 

are likely to be only bounds to the true behaviour. 

This paper highlights the lack of understanding of shallow 
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pile segment behaviour, especially with regard to pile-soil 

breakaway, and shows that the degree of confinement at greater 

the paper depths may affect the non-linear response. Although in 

importance is placed in the large variation of ultimate reaction 

load with interface shear strength, it is unlikely to be 

practically important. Since a fully smooth case is not 

realistic, and the maximum shear strength available near the pile

soil interface is only equal to the soil shear strength, there is 

less than a 20% change in ultimate reaction load when the expected 

range of interface strengths are considered. 

It is clear that the load transfer mechanism for laterally 

loaded piles has only been successfully modelled for a restricted 

range of practical situations. Only coarse agreement has been 

achieved for these restricted cases, and obviously a more involved 

model than plane strain or plane stress is required. It does 

appear to be very important that the two situations of complete 

flow of soil around a pile, and breakaway of soil from the pile in 

regions of tensile stress, should be investigated using more 

refined models of behaviour. The deep flowing soil situation has 

received more attention and represents a fairly well-understood 

aspect of behaviour. Unfortunately it appears that the shallow 

breakaway behaviour will have a more important effect upon pile 

response, since the greater part of the effective length of a pile 

may be in the shallow behaviour zone. 
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2.4 Field Tests 

The need for field tests was recognised very early in the 

study of lateral pile behaviour. The lack of models for predicting 

pile response led to an immediate need for field data concerning 

the suitability of piles to withstand lateral load. Normally the 

lateral loads were only a small component of the design loads and 

did not introduce areas of concern. However as piling became more 

widely used, especially for marine applications, the lateral load 

component became more significant. 

The work of Feagin (1935) represents one of the earliest 

field tests reported in a comprehensive manner. His tests were 

aimed at proof testing the piles used in a lock, and so represent 

the class of field test designed to justify a foundation choice in 

a specific application. 

When more advanced means of modelling lateral pile loading 

became available, the emphasis in pile tests shifted towards model 

evolution rather than proof testing. Such a test, in which the 

underlying mechanisms of laterally loaded pile behaviour are 

investigated, is that of McClelland and Focht (1956). 

presented pile reaction load-deflection curves now known as 

curves. 

They 

p-y 

As confidence grew in the application of field test results 

to construct models of pile behaviour, the well known p-y curves 

became the standard approach to pile analysis. Once the p-y 

approach became accepted, then field tests were used as the means 

of correlating soil type and the form of p-y curve deemed to be 

appropriate, e.g. the curves of Reese et al. (1975) for sand and 

those of Lee and Gilbert (1979) for soft clay. 
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A general satisfaction with the use of p-y curves has 

resulted in less full scale field testing in recent years. How

ever, recent activity in offshore areas that do not consist of 

terrestrial sands or soft marine clays has brought to the fore the 

problem of the behaviour of such soils as calcareous sands. While 

work upon the basic properties of calcareous sands is reasonably 

well advanced, much remains to be found out about the behaviour of 

piles under vertical and lateral load in such a soil. The need for 

improvement in understanding of such pile applications may well 

lead to a resurgence of interest in field testing. 

The recent theoretical work, based upon elastic continuum 

principles, of Poulos (1971a), (1971b) and (1972), Randolph 

(1977), Banerjee (1978) and Banerjee and Davies (1978) could be 

used as a basis for comparison with the results of new tests. Such 

a thorough testing of elastic continuum models in predicting field 

tests that have been designed with that task in mind is long 

overdue. This would provide a better understanding of inadequacies 

of the model and may present means of overcoming them, much in the 

same way as field test results have modified p-y theories. 

Two examples of field tests will now be given, one belonging 

to the class of proof testing of a foundation and the other to the 

class of tests investigating the underlying mechanism of load 

transfer down a pile in a marine environment. 
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2.4.1 The Tests of Feagin (1935) 

Amongst 

piles is the 

the earliest works concerned with laterally 

paper by Feagin (1935) in which the results 

loaded 

were 

presented for tests on massive, concrete encased, monolithic pile 

groups in connection with the construction of a lock and dam on 

the Mississippi River, at Alton, Illinois. The soil consisted of 

river sand described as a medium sand with a water table 0.66 

metres below the level of the base of the monoliths. 

The procedures that were used have remained virtually 

unchanged until the present day and indeed the reporting of the 

results was of a standard that has seldom been achieved by more 

recent pile test reports. The loadings consisted of one-way cycles 

of horizontal load applied by a hydraulic jack acting between two 

monoliths or between two single piles. 

The resulting load-deflection responses were decidedly non

linear with a reasonably well-defined failure load for the single 

piles, while the pile groups did not display such a marked 

deterioration in load carrying response with increasing 

deflection. This may in part be due to the fixed head condition 

that was enforced by the massive pile caps, as opposed to the 

free-head nature of the single piles. 

The fixed head pile will provide a much higher failure load, 

since the fixing moment will cause more soil along the pile length 

to oppose the direction of pile movement. The free head pile will 

"waste" some of the soil response as a negative soil reaction in 

order to satisfy the restriction of moment equilibrium, whereas a 

restoring moment is provided by the pile cap in the fixed head 

case. 
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The pile groups were also shown to have a reduced efficiency 

for resisting deflection which was more noticeable at higher 

loads. This aspect of group behaviour is a well recognised 

phenomenon found in both sand and clay soils experimentally and 

also is evident in results from elastic-based analysis methods. 

The cycling of the load showed that the maximum deflections 

progressively increased upon returning to the same load level and 

that a permanent deflection remained upon load removal. 

A further observation of interest was that of a gap behind 

the pile that extended to at least two metres depth when the 

maximum load was applied to the pile group. This gapping is some

what at odds with the proposition made by Feagin that sand would 

have filled in behind the pile in order to produce a permanent 

deflection upon load removal. It would seem that a measure of 

both types of sand behaviour is required, both gapping and in-

filling, i.e. incomplete flow of sand into the gap. 

The conclusions reached were of a specific nature and 

restricted to the soil conditions and piling arrangement tested. 

However, it is obvious from the discussions of this paper, that 

great interest was taken in the work and its value was recognised 

as shedding light on a subject that long had been "obscure". One 
, 

particularly interesting discussion, by Y. L. Chang, (1937) 

proposed that a pile of sufficient length may be considered as 

infinitely long. This is an enunciation of the effective length 

concept, possibly the first of many forms taken by this concept. 

Chang uses what has now become known as the Winkler soil model to 

postulate a depth beyond which the pile is virtually vertical and 

undeformed. This depth is mathematically shown to be close to one 

wavelength of the pile deflection pattern. 
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Essentially the later results of Hetenyi (1946) for an 

infinitely long pile, are presented by Chang, (1937). Chang also 

uses the minimisation of internal energy to arrive at the same 

effective pile length as was proposed from finding the depth to 

zero deflection. 

It is obvious from some of the statements made concerning the 

calibration bending tests on the piles when out of the soil that 

the concept of soil support and rigid body movements were not 

clearly linked. The terms such as "resistance to lateral movement 

supplied by passive pressure of the soil" and "the resistance of 

the pile itself" when used together suggest a lack of under

standing of the nature of pile-soil interaction problems. 

of 

the 

The fact that all of the support is achieved by the loading 

the soil, 

form of 

and that the relative pile-soil stiffness 

the interaction traction distribution 

modifies 

that is 

generated (and thus the relative importance of pile bending and 

rigid body components of deflection), is not apparent in the paper 

or its discussions. 

A similar gap in understanding leads to a discussion of a 

point of rotation called the "zero point". Such a point was 

automatically assumed to correspond to a change in sign of 

reaction load as well as deflection. This is not necessarily true 

and is only an assumption made by the class of theories now 

referred to as Winkler soil models. 

D. P. Krynine, (1937)introduces the zero point to the 

discussion, and also adds some interesting ideas, touching upon 

gapping behind piles, failure loads from a formula and pile 

structural failure, shakedown of pile-soil response, pre-Ioading 
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of piles and permanent deflections. Many of the problems mentioned 

are even today poorly understood and represent areas of research 

in which great gains in knowledge are possible. 

Feagin's paper is a good example of the class of field test 

that seeks to justify the use of a type of foundation to carry the 

loads of a specific application. In this it was emminently 

successful and also led to great gains in the general under

standing of lateral pile behaviour. 

2.4.2 The Test of McClelland and Focht (1956) 

Another paper in which progress was made in the understanding 

of laterally loaded pile behaviour was that of McClelland and 

Focht (1956). They investigated lateral behaviour of a strain 

gauged pile in a marine environment, concentrating upon the pile 

reaction loads induced by horizontal loading and the values of 

pile deflection accompanying the pile reaction loads. The test, 

see Fig. 2.7, was situated in the Gulf of Mexico about seven 

kilometres off the coast in water of about ten metres depth. The 

soil consisted of a deep clay layer which appeared to be slightly 

overconsolidated with a shear strength of finite value at the 

surface and a tendency to increase linearly with depth. 

Their paper possibly represents the birth of the p-y 

although it has seen many changes from the form 

method, 

that was 

originally proposed. The contents of the paper present a 

correlation between consolidated undrained triaxial test results, 

in terms of stress and strain, with soil-pile reaction loads and 

pile deflections. The final result is an estimate of the "soil 

modulus of pile reaction". This reaction modulus at any point was 

found to vary with the depth of that point and also to vary with 

the deflection the point has undergone. This was evident in their 
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Fig. 4, a part of which is reproduced in Fig. 2.8, where a family 

of curves of soil reaction versus pile deflection for several 

depths is plotted. 

In discussion of this paper Peck, Davisson and Hansen (1958), 

expressed some concern about the absolute magnitude of the 

deflections since no check upon actual deflections seemed to have 

been made. Their concern was that rigid body movements may have 

occurred and could well lead to a shift in the absolute value of 

deflections. Their objection was the failure of the point of zero 

soil reaction and point of zero pile deflection to coincide, as 

they state should happen if the subgrade modulus is not allowed 

a zero or negative value. 

However the desire of the authors and discussers to ensure 

the depth to zero deflection and the depth to zero soil reaction 

coincide is perhaps an unfortunate limitation. The results from 

any investigation of a pile test should rely upon field 

measurement for their basis, not upon preconceived ideas of how 

soil reaction and pile movement should be related. Other models 

of soil behaviour, e.g. elastic continuum, do not require such 

limitations on the reaction and deflection and so this suggests 

that the results may not be inconsistent with the use of elastic 

theory. The reason why this aspect of behaviour was subsequently 

not considered as very important is that in the region where the 

soil reaction and pile deflection reach a zero value, the inter

action loads between pile and soil have only a very small effect 

on the overall behaviour of the pile. 

The doubts about the values of deflection derived are also 

strengthened when Fig. 2.7, taken from Figs 2 and 3 of the paper, 

is examined. The pile test setup appeared to consist of a rigid 
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pipe brace restraining the pile from translating, 

rotating, at a point just above the water level. 

and presumably 

The load was 

applied by a jack about 8.1 metres below the brace and 1.8 metres 

above the ground line. This setup however is not consistent with 

the zero moment depicted at the level of the pipe brace. If 

rotation was not restricted sufficiently to produce moments at 

that level, it is still inconsistent that the deflected shape 

should show pile translation at that level. 

How badly the discrepancies affect the curves of Fig. 2.8 is 

not clear, since they occur at a large distance away from the main 

region of interest, which is just below the ground line. It is 

thus likely that the values of deflection used throughout the 

paper are more correctly interpreted as the bending deflections of 

the pile without any rigid body component. 

In this regard the results presented should not be viewed as 

a reliable source of p-y curves as they are understood today. The 

current situation considers y as the absolute value of pile 

deflection and takes great care to assign a value of pile reaction 

p that will accomodate the effects of the loading history on the 

behaviour of any point on the pile-soil interface. 

A further complication in understanding the significance of 

results presented in this paper lies in the method employed to 

obtain the data points. The method used by McClelland and Focht 

necessitated reloading the pile several times in order to obtain 

one full set of gauge readings at all levels. Although attempts 

were made to statistically cater for this in the test reduction 

procedure it is inevitable that some permanent soil deflections 

would have occurred, especially near the surface. 

This is evident in the zero values of soil reaction measured 
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down to a depth of one metre when the maximum static loading was 

applied. Presumably this maximum load was applied several times 

to obtain a full set of gauge readings and a permanent gap may be 

assumed to exist after the first load. A permanent gap is defined 

as one that remains upon unloading with at least the front and 

possibly the back of the pile not touching the soil. This gap 

would not be expected to close at the front until the previous 

maximum load had been applied again, or exceeded. Unless the 

maximum loads were controlled precisely it is conceivable that a 

full gap around the upper section of the pile may have existed 

even when readings were made of the strain gauges at the intended 

maximum load. 

Notwithstanding several shortcomings of the test, the paper 

represents a clear demystifying of laterally loaded pile response 

and introduces a direct and rational approach to correlations of 

pile behaviour with soil response in undrained triaxial tests. 

Judging from the twenty-three pages of lively discussion to the 

fourteen pages of the paper, there was a large degree of interest 

in the topic. The generation of this interest alone is sufficient 

to regard this paper as a significant contribution to the under

standing of laterally loaded pile behaviour. 
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2.4.3 Other Tests 

The paper of McClelland and Focht represents an example of a 

field test that helped a model of pile analysis to evolve rather 

than an attempt to answer a question as to the suitability of a 

particular pile to sustain a given load. The success of this paper 

has led to the large number of tests that have been undertaken in 

order to obtain details of the model that was first proposed in 

the pioneering paper of McClelland and Focht. 

Such tests include those of Matlock (1970) for soft to medium 

stiffness clay sites, Reese, Cox and Koop (1975) for stiff clay, 

Lee and Gilbert (1979) for very soft clay and Reese, Cox and Koop 

(1974) for sand. Each of these tests involved the use of care-

fully instrumented piles loaded in a variety of head shear and 

applied head moment conditions in order to correlate the back

figured reaction load-pile deflection curves to these soil 

conditions. Thus the p-y approach to lateral pile analysis has 

been founded upon high quality field tests of the third type where 

neither pile suitability nor the underlying mechanism of load 

transfer are directly questioned. 

Elastic-continuum-based analyses have not received the full 

benefit of pile tests specifically designed to investigate the 

applicability of an elastic model of soil-pile interaction. These 

analyses have only been applied in retrospect, after the aspects 

of pile-soil response felt to be important for p-y analyses have 

been reported. This generally means the region of loading that 

might realistically be expected to be elastic is not reported with 

the emphasis that later non-linear behaviour receives. 

It seems that a deficiency exists in the range of field tests 

of laterally loaded piles in that the behaviour at low load 
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levels, so important for assessing the accuracy of elastic soil 

models, has been overshadowed by the intense study of later non

linear behaviour. The ability of the elastic models to provide 

excellent fits to a wide range of tests as reported by Poulos 

(1971a), Banerjee and Davies (1978), Randolph (1981) and others, 

suggests that study of a field test using low load levels would be 

most instructive. 

Although not a field test of a pile the pressuremeter has 

been included in this section since it represents a test carried 

out in the field. Broadly three types of pressuremeter are found 

in use for soil investigation: 

a) The Menard pressuremeter that is used in pre-bored holes. 

b) The self-boring pressuremeter that cuts its way downwards 

with minimal disturbance to the soil that surrounds it. 

c) The full-displacement pressuremeter that remoulds the soil 

as it descends. 

The Menard and self-boring type are generally assumed to best 

model the bored pile installation procedure, while the full

displacement version is felt to be more appropriate for driven 

piles. Much of the pioneering work in this field has been carried 

out by Wroth, Hughes, Gibson and Wind le in Great Britain, and 

Menard, Baguelin and Jezequel in France. Work is currently under

way to better understand the results that pressuremeters give in 

terms of basic soil properties, Yeung and Carter (1987). While 

such work is still in progress, many researchers have assumed that 

the results of pressuremeter tests can be used directly as a 

source of p-y curves for use in lateral pile analyses. 

Many statements have been made, such as the opening one of 
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Briaud et al. (1984), that imply the pressuremeter test, and the 

theory used to backfigure soil parameters from the test results, 

have reached a stage of development sufficient to allow the 

prediction of the non-linear lateral response of piles, as 

described by p-y curves. Unfortunately such statements seem 

premature, and a more accurate assessment might be that the 

pressuremeter test has been found to produce a "load-deflection" 

curve that has the same general shape as a standard p-y curve. 

It would be tempting to try and correlate the pressure and 

volume change response of the pressuremeter test with the pile 

reaction and lateral deflection response, as measured in lateral 

load tests. Obviously such an approach will meet with some level 

of success but several points may be raised: 

a) The pressuremeter test is ideally assumed to be an 

axisymmetric test. 

b) The p-y response is ideally assumed to be an 

symmetric phenomenon. 

anti-

c) The pressuremeter test does not affect a region of soil 

of the same diameter as a pile and also has little in 

common with non-circular pile cross-sections. 

d) The pressuremeter test is isolated to a small region of 

depth in the soil profile, whereas a pile is a 

continuous member throughout its buried length. 

Possibly 

pressuremeter 

liken the 

the best way of expressing the viability of 

tests for modelling lateral pile behaviour, is to 

connection to that existing between a triaxial 

compression test and a simple shear test. The non-linear form of 

the response from both tests are patently similar but two 

different sets of parameters are involved in each test; axial 
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strain and deviator stress for the triaxial test, and shear strain 

and shear stress for the simple shear test. The two responses of 

these soil laboratory tests can be individually interpreted to 

provide the same deformation and strength parameters, using a 

common model of soil behaviour. So the results of the pressure

meter and the p-y response should be viewed as two different soil 

responses but capable of being modelled by a common theory. 

Such a theory of soil behaviour, allowing predictions of both 

the response of pressuremeter tests and lateral pile p-y 

responses, has not yet been fully developed. Robertson et al. 

(1984) have highlighted the fact that pressuremeter and p-y limit 

pressures are not equivalent from theory, and that initial 

stresses found in the pressuremeter are not considered by the 

standard p-y method. These facts alone place the problem of 

scaling of the pressuremeter curves, and the correlation of an 

axisymmetric normal pressure with the complex set of normal and 

shear tractions that combine to produce the pile reaction load, 

beyond current theoretical capability. 

The pressuremeter is potentially one of the most important 

methods of in situ testing yet devised, and is destined to become 

a standard, reliable and indispensable tool of geotechnical 

engineering. It is hoped that such a desirable state can be 

achieved without recourse to the neglecting of a sound theoretical 

basis in order to hasten the use of the tool in an incomplete 

form. The rapid and indiscriminate creation of a body of analysis 

methods using pressuremeter results, that do not stand up to 

critical examination, may do more to harm the progress of the 

pressuremeter as a valuable tool than to promote it. 
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2.5 Model Parameters 

Every laterally loaded pile analysis model will require the 

specification of a number of parameters in order to obtain 

response predictions. In general the more complex the model the 

greater the number of parameters that need to be found in order to 

use the model to analyse a particular pile and soil profile. 

The pile properties are commonly believed to be known to a 

satisfactory extent and the use of simple engineering bending 

theory is taken to be adequate. The soil however represents a 

material that requires attention to the non-linear aspects of its 

response. For this reason the parameters chosen to model soil 

response have frequently been found by recourse to soil tests that 

include a large degree of non-linear behaviour. 

2.5.1 P-y Approach 

For clay soils, the family of laterally loaded pile analysis 

methods, known as the p-y approach, generally use a triaxial test 

to determine the axial strain at half the maximum deviator stress, 

(Matlock, 1970). This value of strain is then converted to units 

of displacement for use in the analysis by multiplying by the pile 

diameter and an empirical factor that depends upon the type of 

soil, e.g. Sullivan et al. (1980). This critical displacement is 

then used to construct the pile reaction load-displacement (p-y) 

curve for the depth from which the triaxial sample was obtained. 

The initial stage of the p-y curve (except for Matlock, 1970 

and Lee and Gilbert, 1979) is given by a straight line that 

corresponds directly to Winkler theory of soil response. 

requires a coefficient of subgrade reaction, k (units of 

This 
-3 

FL ), 

which is correlated directly, or indirectly, with the value of 
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soil shear strength. This coefficient may thus be constant with 

depth in a highly over-consolidated soil profile, where the un

drained shear strength is found to be constant with depth. How-

ever, the defined p-y response is controlled by the "secant 
-2 

modulus" of the soil E (units of FL ), which is found by 
s 

multiplying the coefficient k by the depth of the station 

considered. Thus, a linear increase of soil stiffness with depth 

will result even if k is constant with depth. 

Matlock (1970) does not explicitly use a value of E but 
s 

computer programs using his p-y curves presumably have a piecewise 

linear representation of the p-y curve and so a linear portion at 

the start of the curve is still evident. Lee and Gilbert 

essentially employ the same procedures as Matlock and only the p-y 

curve will change, not the method of solution. Thus both these 

soft clay p-y curves will still have an initial straight line 

portion. This means that the generally accepted increase of soil 

strength with depth associated with soft normally consolidated 

clay, will lead to a parabolic increase of Subgrade Modulus, E 
s 

with depth. 

In this way, the variation of initial stiffness of the clay 

with depth is approximated and also the soil shear strength is 

found, e.g. from the maximum deviator stress obtained from tri-

axial tests. The choice of axial strain at half of the maximum 

deviator stress, as a means of obtaining the critical deflection 

y, means there will be a considerable degree of non-linear 
c 

behaviour included in the specification of the soil stiffness. 

Thus, the instantaneous stiffness of the soil upon initial load 

application is not strictly modelled by the p-y approach. 

In the approach of Sullivan et al. (1980) the strength, 
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obtained from the unconsolidated undrained triaxial tests at an 

isotropic 

with an 

ultimate 

confining stress equal to the overburden, 

appropriate bearing capacity factor to 

reaction load available from the soil. The 

is then used 

predict the 

testing of 

soil samples from various depths will then produce a knowledge of 

soil ultimate resistance variation with depth. 

More complex analyses, including those for cyclic loading, 

employ a depth parameter defined by the transition from shallow, 

surface-influenced soil failure to the deeper, "constant" ultimate 

reaction load involving flow of soil around the pile. This 

transition depth is used in an expression used to describe the 

manner in which the residual, large-deflection ultimate reaction 

load varies from the surface down to the transition depth. In 

this way the model can reduce the "stiffness" of the pile-soil 

system in the upper layers and take some account of the results of 

gapping. The numerical value of this transition depth is 

calculated by equating the two expressions for the surface

influenced and the deep-pile failure loads per unit depth and thus 

depends heavily upon the accuracy of these two expressions. 

The unified clay method of Sullivan et al. (1980) has a 

transition depth but it is maintained at a constant value of 

twelve pile widths. This is regardless of the point at which the 

two ultimate reaction load calculations give the same value, which 

is usually between four and six diameters depth. The unified clay 

criterion introduce a new parameter, F, for the prediction of the 

ultimate reaction load at large deflections in the upper soil 

layers where the surface has influence. The unified method also 

uses another parameter, A, that parallels an empirical correction 

for theoretically-derived ultimate reaction loads first used for 

p-y curves in stiff clay, Reese et al. (1975). 

63 



All the clay p-y models also include a term incorporating the 

value of effective unit weight of the soil although it is 
generally acknowledged to have little influence on the computed 

results for piles in clay. The effective unit weight actually 

appears as the source of the vertical overburden stress in the 

expression for ultimate reaction load near the surface, and thus 

can be seen to represent the effect of initial stress. How this 

initial stress has been theoretically incorporated is not clear, 

but it is still included, in the majority of recent p-y models. 

The p-y methods for clay thus require a knowledge of 

a) the material and geometrical properties of the pile, 

b) the axial strain at half the maximum deviator stress in 

triaxial compression tests of the soil from various depths, 

c) the value of soil strength from the triaxial tests or in situ 

vane tests at various depths, 

d)' a soil effective unit weight at the pile stations and 

e) a variety of soil properties such as Liquidity index, 

Plasticity index, Liquid limit, over-consolidation ratio and 

sensitivity, and their variation with depth. 

The above information is then combined with a construction 

procedure that relies heavily upon the estimation of the soil as 

being a stiff or soft clay. A knowledge of the type of clay aids 

in the choice of the value of the numerical constants in the 

unified model, that were proposed in their original form by Reese 

et al. (1975) for stiff clay. The original constants were 

corrections for the inadequacy of the theory used to predict the 

ultimate reaction loads in stiff clays, but the unified model has 

generalised the constants to allow for both stiff and soft clay. 
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The case of lateral loading of piles in sand has received 

somewhat less attention, and the model of Reese et al. (1975) is 

commonly used, see Fig. 2.B. Once again, the theoretical 

predictions for ultimate soil reactions were found to be unsatis

factory and a set of corrections based upon the Mustang Island 

pile tests is now in wide use. The sand type is broadly classed as 

being of a loose, medium or dense nature for the determination of 

the coefficient of subgrade reaction. The variation of friction 

angle and density with depth are also required in order to 

construct the non-linear portion of the p-y curves. 

For sand, the effective unit weight becomes much more 

important than it was for the case of clay, since it directly 

controls the confining pressure and thus the strength in cohesion

less soil. Essentially the two cases of surface-influenced and 

deep-flow failure loads are assumed to exist in sand, as they did 

in clay. The postulated sand failure mechanisms are similar in 

concept to those of clay, but are based upon assumptions that 

cannot be observed in the field. The ultimate reaction load 

theory depends upon an assumed geometry of a failed wedge of soil, 

and it is possible this assumed wedge is not always correct. This 

may help to explain why the empirical correction factor, 

mUltiplying the theoretical ultimate loads, reaches a value of 

nearly three at the sand surface for static loading conditions. 

It is clear that the p-y approaches to predicting the 

behaviour of laterally loaded piles in both sand and clay are 

based upon theories that require considerable assistance from 

empirically-derived corrections. The choice of material parameters 

for the soil has been confined to the commonly-obtained material 

properties. These parameters are incorporated into theories and 
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pile reaction-deflection curve-fitting devices that have been 

shown to be applicable to a range of tests. The final result, the 

p-y curve, is then taken to be an envelope of behaviour which 

hopefully predicts the worst possible situation that can arise. 

It is of the utmost importance that this last statement is 

fully understood. The p-y curve was not originally conceived as a 

description of a load-deflection path, but was a description of a 

secant type of behayiour that only depicts a final value of 

reaction-load and deflection without any information of how that 

was achieved. This is nowhere more clearly seen than in the 

method of catering for cyclic loading where a completely different 

p-y curve to the static one is proposed even though the same soil 

is being considered. 

Because of this the material parameters that are used can be 

assessed as convenient measurements of the.soil from which simple 

theories can predict a response, which subsequently requires 

empirical adjustment in order to agree with experience. As such 

the material properties are not used as the sole factors in the 

determination of the response of piles. Further the response 

predicted is not necessarily the response one should expect, 

except under a range of circumstances that would be deemed to be 

the worst situation possible. 

2.5.2 Elastic Continuum Approach 

In contrast to the envelope philosophy of the p-y method most 

other analyses require the best possible realistic model 

parameters in an attempt to follow a load path technique of 

analysis. This is because many of these methods are directly based 

upon continuum mechanics principles. Unfortunately, to date, it 

appears that no attempts to systematically reproduce the extensive 
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testing and calibration associated with the p-y method have been 

made for a continuum model. 

This is largely due to the restrictions imposed upon the 

continuum models in the past to allow rigorous solutions. These 

restrictions such as uniform Young's modulus with depth have 

seemed highly unrepresentative of real soil. This is perhaps 

unfair, when it is noted that often the pre-conceived ideas of how 

real soil behaves have been formed in the light of experience 

obtained using a soil model that has none of the continuum 

properties such as interaction. 

The Winkler model, in which the much used assumption of no 

interaction throughout the soil mass is made, has often served as 

a method of interpreting pile response. The conclusions reached 

about the soil response from using such a simplistic model should 

not have undue emphasis when considering the adequacy of other, 

more sophisticated continuum based models of soil. 

The most valid criticism of continuum-based models is the 

argument that linear response is only rarely found in soil where

as, an elastic continuum model can only present linear responses. 

Thus, the convenient practice of selecting soil moduli that are 

representative of the stress range, expected in reality in the 

soil, evolved. Although this presents a response that might be 

appropriate to one load level, strictly, it invalidates the use of 

elastic continuum theory. 

It amounts to the entire elastic soil mass having to change 

its Young's modulus with increasing applied load level, which will 

greatly affect the amount of interaction throughout the mass. 

This is unrealistic, and a better method of accounting for non

linear behaviour would be to maintain the same elastic properties 
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for the main mass of soil, but allow a softening or even a 

complete loss of incremental load transmission at highly stressed 

regions on the pile-soil interface. This is a non-rigorous 

application of theories of soil failure mechanisms, but at least 

the elastic continuum model has retained some integrity. 

The continuum model in its simplest form, will require the 

Young's modulus and Poisson's ratio of the soil. The Young's 

modulus value should ideally be a representative one at the state 

of stress expected to be found in the soil, and the value of 

Poisson's ratio one that best fits the nature of the loading. A 

"rapid" load, that is rapidly applied and also quickly removed, 

will require only consideration of the undrained soil model 

parameters. However, even if it is rapidly applied, if a load is 

to be maintained then drained soil parameters are required in the 

analysis of the long term response. The word "rapid" covers a 

range of loading rates which rely upon the rate of redistribution 

of excess pore pressure in the soil, i.e. the soil permeability is 

the governing property. 

This introduces an aspect not considered directly by the p-y 

method, that of the time-dependant nature of soil response. If the 

soil is assumed to be a two-phase (elastic-solid and fluid) 

material there will be an unique relationship between the values 

of undrained and drained model parameters. Any load that is 

applied and maintained will evoke an immediate undrained response 

followed by the slow progression to a drained response. Carter and 

Booker (1981) have explored such behaviour briefly using finite 

elements while Apirathvorakij and Karasudhi (1980) have also 

presented an analysis capable of such a prediction of lateral pile 

response as a function of time. 
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Very little work has been carried out in this area with most 

researchers content to consider the response as either essentially 

undrained or drained in nature, thus employing the appropriate 

value of either the undrained Young's modulus, E and Poisson's 

ratio, 
I I 

V or drained values E and V; where V 
u 
is one half and 

E = 
u I U 

3 EY2(1+V) from the assumption of the shear modulus being 
u 

always constant. The validity of such a procedure cannot be proved 

for every case in which it can be employed, but it does at least 

represent a systematic method of accounting for the increased 

deformation associated with drained soil response. Indeed, it 

appears that no other way of theoretically accounting for the 

time-dependant consolidation behaviour of pile-soil response is 

available, except the two-phase continuum model of soil. 

In order to make some allowance for the non-linear nature of 

the soil there appear to be two choices. Firstly the soil modulus 

can be obtained from tests on soil samples at stress states 

similar to those existing in the ground and subjecting the samples 

to the same stress increments that would occur due to loading, as 

proposed by Lambe (1964). This modulus can then be adjusted during 

loading in the analysis in line with the reduction in stiffness 

evidenced in say a triaxial test on a soil sample, although as 

previously mentioned this is not a strictly valid use of the 

elastic model. 

Alternatively, the appropriate initial modulus may be held 

constant and the device of limiting soil strength employed at the 

pile-soil interface which is more consistent with the use of an 

elastic model. 

Poulos and Davis (1980) have outlined such approaches in the 

introductory chapter of their book on pile foundations, where they 

also emphasise the necessity of considering models of soil 

69 



behaviour that can cover the response over the entire range of 

load 

This 

levels, 

leads to 

using the 

the model 

best possible engineering 

requiring a value for p , 

approximation. 

the ultimate 
u 

interface interaction stress that the soil can withstand, in much 

the same way as the p-y approach does. A generally accepted method 

for clays is to use a value of nine times the undrained shear 

strength of the soil for the deep value of ultimate average 

pressure. A linear variation from a reduced value at the surface 

to the deep value at between three and five diameters is a common 

way of modelling the effect of the free surface. 

However, the elastic continuum method makes no assumptions 

about the pre-failure soil response based upon the ultimate 

interaction stress value that is chosen. This means that the fully 

elastic behaviour of the pile-soil system is not affected by the 

ultimate soil resistance profile chosen. This is not to say that 

the choice of ultimate interaction stress will not affect the 

response of the pile when using a continuum model. The load level 

at which soil yielding first occurs will vary when the ultimate 

interaction stress is changed in an elastic-limiting interface 

stress model. Indeed, failure of soil at one level will be seen to 

affect even the elastic response of nearby soil horizons because 

the system of interaction between horizons has been incrementally 

changed. This means that even elements of soil that have not 

reached a limiting stress, will exhibit a non-linear response 

simply because nearby elements have reached a failure interaction 

stress and will no longer contribute to the nature of the 

incremental pile response. 
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2.5.3 Other Approaches 

Apart from the well known p-y and continuum analyses, there 

are other analyses that provide a link between the two approaches. 

The p-y curve is defined in terms of a load-deflection path and 

the parameters involved are based upon elastic theory in one such 

model proposed by Carter (1984). The initial slope of the p-y 

curve has been related to the Young's modulus of a soil using a 

form of the relationship proposed by Vesic (1961a) and (1961b). 

The Young's modulus for a sand is found from the equations 

for shear modulus attributed to the work of Hardin and Richart 

(1963), but more probably due to Hardin and Black (1966). The 

modulus depends upon the effective confining pressure and the void 

ratio of the soil and also the nature of the particle e.g., round 

or angular grained. An estimate of Poisson's ratio of the sand is 

also required to estimate the initial stiffness of the p-y curve, 

since the shear modulus must be converted to a Young's modulus. 

The Young's modulus for a clay was estimated from a 

correlation of shear modulus to undrained shear strength, Pender 

(1983) which, together with experience, suggested a ratio of 

between 100 and 200 which is similar to the values suggested by 

other authors, e.g. Poulos (1971a). The same form of the 

relationship between the coefficient of subgrade reaction and 

Young's modulus was then used. 

This form of Vesic's original expression was proposed by 

Bowles (1982) and is interesting, since it marks an attempt to 

introduce the concept of a "back" and "front" to the soil-pile 

interface. The original expression of Vesic is multiplied by two 

in order to model the increase in stiffness due to both the front 

and back faces of the pile contacting the soil. 
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The load-deflection transition from the initial stiffness to 

the ultimate load, is modelled using a hyperbolic type expression 

involving the soil reaction to some power, the value of initial 

stiffness and the ultimate reaction load. The ultimate reaction 

load was assessed by a bearing capacity factor for clay that 

varied from five at the surface to twelve at a depth of 3.5 pile 

diameters, thereafter remaining constant. Cohesionless soils were 

treated using an ultimate reaction derived from a limiting 

pressure on the pile given by five times the Rankine passive 

pressure. These ultimate reaction loads are in broad agreement 

with both the p-y and continuum-based recommendations. 

The power used in the hyperbolic expression was found by back 

analysis to be unity for the case of sand and to range from 0.2 to 

0.3 for clay. Good agreement was generally found between the 

results of the model and several field cases that have been 

reported in the literature. The simple p-y load path employed by 

Carter (1984) showed that it is not necessary to maintain exactly 

the shape of the curve found in the field test in order to obtain 

adequate predictions of pile behaviour. This was also evident in 

the simplifications that Sullivan et al. (1980) made to the p-y 

curve definition in proposing the unified clay approach. 

2.5.4 Gapping and Soil Parameters 

Only a few examples of theoretical work considering the 

possibility of gapping around a pile can be found, e.g. Poulos and 

Davis (1980), Matlock, Foo and Bryant (1978) and Swane and Poulos 

(1982). The material parameters required are thus not as well 

known as those for analyses which neglect gap formation. 

The Poulos and Davis analysis requires a knowledge of the in-
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situ lateral stress via a value of coefficient of lateral earth 

pressure and the overburden stress given by the effective unit 

weight of the soil. 

Matlock et al. (1978) employ the standard p-y approach, but 

with the non-linear spring replaced by an assemblage of elastic

plastic sub-elements at each node. Each sub-element acts in 

parallel such that their reactions can be summed to give the total 

reaction at one node. By varying the number of sub-elements at 

each node that are allowed to behave as if a gap were possible, 

from all sub-elements at the surface to none at the previously 

mentioned transition depth, a behaviour pattern commonly felt to 

be appropriate is produced. 

Near the surface the pile passes through a "slack"-zone in 

which only a minimal side resistance to movement is evident. 

Deeper down the pile the confining stress is sufficient to result 

in confined flow of soil around the pile. At even greater depth 

the response is essentially linear. These three responses are 

depicted in Fig. 2.10. 

Figure 2.10a depicts behaviour in terms of reaction load and 

deflection at a station on the surface, showing non-linear initial 

loading to a maximum, followed by a cycle of load. Since the 

loading is not symmetrical, the response also is not symmetric. 

Reloading and unloading are shown to have different stiffnesses, 

which have been magnified here for clarity. The movement of the 

pile through the softened (or gapped) zone is accompanied by a 

small resistance. Some degree of adhesion is assumed, leading to 

slightly larger negative loads at the point of breakaway than can 

be sustained in the "gap". 

In Fig. 2.10b the initial non-linear portion remains, but is 

stiffer due to the larger depth. Unloading and reloading at this 
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depth do not lead to great changes in the position of the pile and 

a confined flow of soil around the pile is assumed. 

In the deep zone of response (Fig. 2.10c), the non-linear 

behaviour is all but absent and an elastic response is evident. 

This would necessarily mean the initial stresses are much larger 

than the changes in stress brought about by soil-pile interaction. 

Since the transition depth is governed by the ultimate 

reaction load, which incorporates a term for the soil unit weight, 

there is possibly some validity in Matlock, Foo and Bryant using 

the above approach with sub-elements. However, the effect of unit 

weight is disguised and no theoretical examination of its 

importance alone is possible since varying it would also vary 

every aspect of the p-y curve. There is little help available for 

choosing parameters above that already given in the various p-y 

methods, and since the analysis is intended to model the dynamic 

response of piles it is outside the main scope of this thesis. 

Swane and Poulos (1985) have used two spring supports, one at 

the back and one at the front of each pile node, and have given 

the springs a variable stiffness dependent upon the soil model and 

loading condition. In this way the three major types of response, 

as in Fig. 2.10, can be broadly. modelled. Their model was 

relatively simple since it was used to analytically investigate 

the cyclic lateral loading of single piles using a load path 

technique. The material parameters are based upon similar 

correlations with soil strength parameters to those of the Elastic 

method and p-y analyses. A significant difference in their method 

is the inclusion of initial stress resultants acting on the two 

sides of the pile before loading commences. 
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It is surprising that, with the exception of Poulos and Davis 

(1980), the methods that attempt to consider the effect of gapping 

on pile response have been for cyclic, and even dynamic, 

behaviour. A more logical approach would be to first consider the 

simpler case of static loading of piles. The repeated loading, 

and even dynamic, aspects of the other two methods requires 

careful choice of soil parameters with little guidance and, as 

used by Swane and Poulos, some consideration of material property 

degradation with the number of cycles and stress level. 

2.5.5 Summary 

The strong similarity between all the approaches is that 

linear, or elastic, parameters govern the initial response and 

continued loading leads to local failure of the soil at a constant 

ultimate interface load. The amount of empiricism and complexity 

of the soil model varies greatly between the methods as does the 

underlying philosophy of each approach. It seems that with the 

same soil parameters one could expect to adjust the empirical 

coefficients of any of the analyses and obtain agreement. 

The parameters that are important for analysis of laterally 

loaded piles have been found to be, 

a) the initial soil stiffness, either as a load-deflection ratio 

or in terms of soil Young's modulus and Poisson's ratio which 

take account of soil permeability and loading rate, 

b) the ultimate reaction load, as a function of a bearing 

capacity factor times the undrained shear strength for clay, 

or the Rankine passive earth pressure coefficient, multiplied 

by an empirical correction for the three-dimensional effects, 

for sand and 
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c) the depth below which the confining stress limits soil failure 

to essentially 

related to the 

plane strain flow; this has loosely 

overburden stress by the expressions 

ultimate reaction load for shallow and deep cases. 

been 

for 

Thus the parameters for the various models fall into three 

categories, namely those dealing with the initial stiffness of the 

pile-soil system, the ultimate strength of the soil when load is 

transmitted to it by a pile and the initial stress conditions in 

the soil prior to loading. Of these, the last is the most poorly 

understood but may well prove to be of great importance in under

standing the finei points of pile-soil interaction response. 
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2.6 Summary of Review 

Although this chapter has by no means given an exhaustive 

treatment of the wide range of literature concerned with the 

behaviour of laterally loaded piles, it does cover a number of 

significant aspects. 

The progression from engineering approximation (e.g. the 

equivalent cantilever) methods (where the soil is all but ignored) 

up to the early attempts at assigning a response law to the soil, 

such as a Winkler model, has been omitted. It was felt that such 

early work, prior to the interest shown in applying say a Winkler 

type of soil model, provided very little insight into the basic 

nature of soil-pile behaviour. 

A standard division into three classes of model has been 

used, in a manner that has previously been employed to consider 

the literature of lateral pile analysis. These three classes are 

shown to have some degree of overlap and also a degree of 

diversity, even within one class. As an example, both the modified 

boundary element elastic continuum and p-y methods employ the same 

basic soil properties when assigning model parameters concerned 

with soil limiting stresses and ultimate reaction loads. But the 

p-y method also maintains a distinct difference from almost all 

other methods in the Winkler class of model by following a 

philosophy of an envelope to behaviour. 

The changing role of a field test from a proof-testing tool, 

to a soil-pile model developing tool, and finally a soil-pile 

model testing tool, has been traced. Many field tests have been 

reported in the literature but only two have been considered in 
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detail here. The undertaking of more field tests in the future to 

provide information about the lateral response of piles in unusual 

soils (e.g. calcareous sand), and to check the suitability of some 

of the newer methods of analysis, is seen to be most desirable. 

Model pile tests have not been reviewed but they do play an 

important role. They have only limited credibility as means of 

predicting large prototype behaviour. Even the use of centrifuge 

modelling to obtain stress distributions similar to field 

conditions may suffer from the difficulties associated with the 

relative size of the soil fabric and the pile. Model tests are of 

most use in confirming the response predictions of analyses that 

allow for geometrical changes, such as the elastic model can. In 

such a case it is the ability of the analysis to theoretically 

predict model response, rather than the dubious extrapolation of 

the model response to full-scale response, that is the reason for 

the test. It then remains to assess the accuracy of the analysis 

with regard to full-scale tests before the analysis can be 

considered as appropriate. 

The parameters required by the various models have been 

reviewed with attention being concentrated in three areas: 

a) The initial stiffness of pile response, 

b) the ultimate soil resistance to pile movement and 

c) the change from surface-affected to deep-pile response. 

The commonly-used properties of the soil have been correlated 

with experience to allow prediction of behaviour as contained in 

the above three areas. The use of empirical calibration is 

widespread and is a cause for concern when comparisons are made 

between various models using the same parameters. Such 

inconsistencies between models is dangerous and suggests that the 
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whole topic of parameters for use in prediction of lateral pile 

behaviour would benefit from closer scrutiny. 

A promising tool, with which a much better inspection of in

situ parameters is possible, is the pressuremeter. Despite the 

claims of some authors, it appears that correlation between pres

suremeter results and lateral pile behaviour is not well catered 

for theoretically. Much work is possible in this area, paying more 

attention to the constitutive model used and its behaviour under 

both axisymmetric and antisymmetric imposed loadings. The 

expanding cavity solutions, so widely used to interpret pressure

meter results, are usually based upon a horizontally oriented 

plane strain approximation. This is thought to be appropriate at 

"great depth", but what amount constitutes a "great depth" is open 

to many interpretations. Improvements in understanding in this 

area may well lead to a clearer knowledge of the depth to reduced 

resistance used throughout the range of p-y methods. 

Although not discussed in the main body of this chapter, 

plane strain cavity expansion theory has also been used to 

estimate the state of stress after driving of a pile in a clay 

soil, Carter, Randolph and Wroth (1980). The results suggest the 

long term final state of stress around a driven pile has a radial 

major principal stress, and the circumferential and vertical 

stresses are equal and represent the minor principal stress. This 

stress state is fortunately similar to that in a triaxial strength 

test rotated through a right angle, and may help to explain why 

p-y curves based upon triaxial test results have correlated well 

with measured p-y responses. 

However, any anisotropy of the soil (or if the pile was pre

bored), would lead to a different predicted state of stress in the 
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soil. It means that the state of stress in a triaxial test would 

not necessarily be such a good representation of the stresses in 

the soil near a pile face. For this reason it would be necessary 

to alter the p-y criteria based upon triaxial results. In practice 

this may help to explain the large number of different p-y models 

proposed for different pile and soil conditions. 

A major finding of this review is that the empirical 

correlations from one theory cannot always be employed 

successfully in other theories. Associated with this fact it is 

also apparent that the assumed soil response, based upon one 

theory, should not be used to gauge the performance of another 

theory, especially when one of the theories lacks the complexity 

of the other. Such a mixture of theories can only lead to mis

understandings or half-truths which obscure the important issues 

and give false conclusions. 

Flowing of soil around piles is one area in which much 

research could be done. A soil's propensity to flow, or its 

ability to maintain a stress-free gap, is one of the most poorly 

understood aspects of soil response pertaining to laterally loaded 

piles. Very little work has been done in investigating the 

formation of gaps in the soil in regions of tensile stress. 

Although many analyses indirectly include some effects from gap 

formation, due to the use of empirically-based models, there is no 

way to isolate the importance of gapping on the overall response. 

The . effect of gapping on the behaviour of laterally loaded piles 

is an area in which much work remains to be done, even before it is 

possible to be definite about the importance, or otherwise, of 

soil breaking away from the pile. 
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The main areas in which gains in understanding of laterally 

loaded 

soil 

pile behaviour are possible are those of 

profile response, non-linear modelling of 

non-homogeneous 

the 

interface in combination with an elastic continuum model 

soil-pile 

of the 

soil, and the study of the formation of breakaway between pile and 

soil. The most promising means of accomplishing these gains are 

by the very economical Modified Boundary Element Method (MBEM) and 

the more accurate but less economical Axisymmetric Geometry Finite 

Element Method (AGFEM). 
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Elements 
in a 50 50 50 25 Variable Pi le 

Length 

Evangellsta 

L/d 10 25 50 100 and 
Viggiani 
any L/ d 

uEd/H 0.580 0.580 0.580 0.482 0.691 

OEd 2 /H 0.233 0.233 0.233 O. 153 0.313 

uEd 2 /M 0.238 0.238 0.238 O. 157 0.313 

OEd'/M 0.304 0.304 0.304 0.301 0.344 

TABLE 2.1 Results of Evangelista and Viggiani (1976) Compared 

with the Results of the Recommended MBEM Analysis of Chapter Three with 

up to Six Elements in the Critical Length. for E/Ep = 10-2. 
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3.1 Introduction 

In Chapter 2 a range of vertical pile lateral loading 

analyses were discussed within three categories, namely: 

a) Winkler methods using empirically-based models of soil 

behaviour with elastic simple beam theory to model the pile, 

b) numerical (Boundary Element) continuum methods of soil 

modelling, with elastic simple beam theory for the pile, and 

c) a direct application of the elastic Finite Element 

method to analyse both the soil and the pile. 

The empirical, Winkler class of method includes the simplest 

possible model for the soil that originally appeared as the beam 

on elastic foundation solution of Hetenyi (1946), but also extends 

to the highly developed 'p-y' method of Matlock (1970), Reese, Cox 

and Koop (1974, 1975). The simpler methods in this class are 

amenable to analytic solution, but the more complex ones require 

an iterative numerical solution procedure. 

It is expedient to initially consider the empirical class of 

solution to the laterally loaded pile problem, since an analytic 

result can be obtained that is free from discretisation error, 

i.e. a precise solution of the model but not necessarily an 

accurate solution to the real pile problem. It must be emphasised 

that this class of solution is only as good as the empirical 

correlations that have been derived from the years of application 

and research of the method. It is also a restricted area of 

research since it cannot be logically extended to incorporate 

interaction between piles in a group. 

Notwithstanding this criticism, the accurate solution of this 

class of problem will provide answers that bear some relation to 
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those from the other two classes, one common characteristic of all 

the methods being the use of an elastic-based model of the pile. 

The Winkler analysis relies upon the concept of a uniform 

traction over a small region on the pile-soil interface producing 

a uniform deflection of the region of soil which is proportional 

to the traction. This proportionality is governed by a constant 

that is termed the Coefficient of Subgrade Reaction and is usually 

connected with a traction and deflection which are normal to the 

foundation and in the direction of loading. 

The shear traction analogy to this normal traction relation

ship is sometimes referred to as the 't-z' method and has been 

employed in axially loaded pile load transfer analyses, (Coyle and 

Reese, 1966; Murff, 1975). As a member of the class of solutions 

employing a Winkler hypothesis it is therefore useful to also, 

briefly, consider axial load behaviour and hence in the present 

study a solution has been found for a compressible axially loaded 

pile in a Winkler soil. 

Using both the axially and laterally loaded pile solutions, 

the general characteristics of pile behaviour, including the 

dependence upon geometry and pile-to-subgrade stiffness ratio, can 

be analytically found for the Winkler soil model. 

The Modified Boundary Element Method (MBEM) is not restricted 

to the (elastic) continuum soil model and can provide numerical 

solutions using a Winkler soil model. By this means the accuracy 

of theMBEM numerical solution technique can be assessed. 

Consequently, the technique can be used in conjunction with the 

elastic continuum soil model with a clearer understanding of the 

requirements for a numerically accurate solution. The MBEM 

technique, using elastic-continuum theory for the soil model, 
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while an advance on the Winkler class, also requires some 

approximations to be made that should be investigated. 

To this end, it is fruitful to employ the third class of 

method, the Finite Element Method. Using the FEM has the benefit 

of a rigorous application of the Theory of Elasticity that is only 

restricted in its accuracy by an ability to refine the mesh used 

to discretise the continuum and maintain a numerically viable 

solution. By comparing the finite element answers for problems 

allied to pile loading with existing solutions, the ability of 

the method to model the effects of lateral or axial load on a 

pile can be assessed. 

In this chapter the three methods are studied, and a reliable 

and computationally inexpensive pile analysis method for an 

elastic-continuum soil is recommended. This method (MBEM) uses 

well-accepted concepts and provides adequately accurate solutions 

for an elastic pile in a linearly elastic soil. Although it does 

not take proper account of the processes that cause non-linear 

behaviour, some modifications are possible and provide an insight 

into the effects of soil yield and soil-pile separation on overall 

response. However, the basic concept on which it is based is a 

linear elastic soil element in which all the interaction traction 

is shared equally between the "back" and "front" of the pile. 

new 

will 

the 

In order to extend the analysis of pile-soil interaction a 

Soil-Structure Interaction (SSI) solution is required that 

logically incorporate the possiblity of gap formation along 

pile length. This new method can be applied using either the 

Winkler or elastic-continuum soil models and is described in 

detail in Chapter five. 
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3.2 Winkler Approach 

In the analysis of laterally loaded piles, frequent use has 

been made of the concept of a Winkler response from the soil in 

contact with the pile. The simple assumption of the deflection of 

a uniformly loaded area being proportional only to the applied 

traction has supported a wide range of analysis methods in 

geomechanics. Its simple form has attracted much attention since 

an analytic solution may be possible. Also, solutions can always 

be checked by referring to the restriction of proportionality 

between load and deflection. 

Having attracted the engineer by its uncomplicated nature, 

the Winkler-based analysis must then be extensively correlated 

with field results in order to provide adequate estimates of real 

behaviour of laterally loaded piles. This area of research has 

been well addressed, especially in connection with p-y methods, as 

discussed in Chapter 2. The correlation of the Winkler solution 

with actual behaviour, or even with the results of more rigorous 

types of analysis, must provide excellent agreement for the fitted 

response over some range of the problems encountered. However a 

different response, or problem outside of the fitted range, may be 

poorly modelled by such an approach and lead to the miscalculation 

of some aspect of behaviour, (Stevens and Audibert, 1979). 

The approach that p-y researchers have employed, has been to 

use a range of empirical correlations between soil type and the 

relevant parameters used in the p-y curve fitting devices, e.g. 

those for soft clay, stiff clay and sand that have been developed 

by Matlock (1970), Reese et al. (1974) and Reese et al. (1975). 

This complexity in the choice of model and reliance upon empirical 

correlations detracts from the initially uncomplicated relation-
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ship that would seem to be a prime reason for the use of the 

method. It can be argued that the application of the simple 

Winkler concept does not warrant the complexity of extensively 

correlating it with other results since this will negate its most 

attractive feature, that of being a palatable, quick solution. 

The most obvious benefit from use of the Winkler method seems 

to be the precision of its analytic solution and not necessarily 

the accuracy with which the solution models the real problem. 

Recently 

consider 

subjected 

the Winkler concept has been used by Swane (1983) 

the difficult problem of shakedown of a single 

to cyclic lateral load. It is this consistent use 

to 

pile 

of 

this concept, in order to provide an insight into more complex 

behaviour, that is the strength of the Winkler method. 

With the understanding that use of the Winkler concept here 

is intended to provide an insight into the theoretical behaviour 

of laterally-loaded piles, including the efficacy of numerical 

models, and is not presented as a final design method, the linear 

response Winkler method will now be considered. 

3.2.1 Coefficient of Subgrade Reaction 

In order to study the problem posed by the pile in a Winkler 

medium model, it is necessary to consider the basic assumption in 

more detail than has been commonly used. The Winkler medium has 

often been thought of as a collection of discrete springs to which 

the foundation loads are transferred by horizontal displacement 

from the bending action of the pile. The discrete spring analogy 

obviously highlights one of the major deficiencies of the method. 

Each spring will act in isolation and have no influence upon any 
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other spring, save through the condition of compatibility with the 

pile. This lack of continuity within the medium precludes any 

systematic consideration of pile group interaction behaviour. 

While the spring analogy has its uses, it can only provide a very 

mechanical or structural quality to the response that belies the 

continuum nature of the soil. 

In general, the traction developed by interaction between the 

soil and an element of the foundation can have a normal and a 

shear component. To more comfortably include both, it is proposed 

here to approach the Winkler concept from a viewpoint different to 

the spring analogy. Here the relationship between load and 

deflection will be seen as an expression of behaviour in the form 

of an isolated Influence Coefficient, i.e. the resulting soil 

deflection is isolated to the loaded region, and deflection other 

than at the load is zero. 

From the wide range of expressions that might be considered 

for variation of the Winkler soil stiffness with depth, a useful 

and tractable form is chosen as a linear increase with depth, from 

an initial surface value which may be zero. Attention is now given 

to the form of the isolated Influence Coefficient. 

Following the usual convention, the increase of traction 

existing at the interface between the pile and soil is taken to be 

directly proportional to the increase in displacement, in the same 

direction as the traction, i.e. for a normal traction increment p 

and a normal displacement increment u , 
n 

p = k u 
n n n 

3.1a 

n 

and for a shear traction increment p and an in-plane displacement 
s 
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increment u , 
s 

Therefore 
-3 

units of FL 

p = k u. 3.1b 
s s s 

the proportionality constants k and 
n 

Experience and intuition suggest 

k 
s 

that 

have 

these 

constants will vary with depth and loading level, but this only 

applies to Winkler-related soil constants as defined here. To 

understand the dimensional units it is necessary to examine more 

closely the assumed interface conditions. 

First it must be recognised that the Winkler concept, as 

proposed here, has no meaning if applied outside of the surfaces 

that are common to the pile and soil, i.e. the interface between 

pile and soil. This leads to a consideration of the likely 

traction distribution that will develop at the interface when head 

loading occurs. Across the pile width, or around the pile 

perimeter, 

loading, u 
x 

the deflection at any depth in the direction of 

will be sensibly uniform, i.e. a rigid deflection 

pattern. However, down the length of the pile the deflection 

pattern will not necessarily be of a rigid nature. 

Lateral behaviour of the Winkler medium can be represented in 

terms of a coincident deflection and traction over a small area, 

within which both are sensibly constant. Thus, we picture the 

interface having a constant x-directed traction around the pile, 

varying along the length and proportional to u • Similarly for 
x 

the axial behaviour a variation will occur with depth, while now 

the vertical shear traction is constant around the pile perimeter 

and proportional to the vertical deflection, u . 
z 

Considering the normal traction at the interface and using an 
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elemental area of width b and depth h, as in Fig. 3.1, equ. 3.1a 

yields, 

I u k bh 
nF = n n = 1 

-r 3.2a 
n 

and for the same element with a shear traction resisting an 

applied vertical or horizontal load, 

and 

face 

I u k bh 
sF = s s = 1 

F 3.2b 
s 

Equations 3.2 define the isolated Influence Coefficients I 
nF 

for the deflections, u and u , of the pile-soil inter-I , 
sF 
with 

n s 
respect to normal and shear total loads, F and F, 

n s 
generated at the interface over the elemental area, b x h. By 

integrating the elemental forces, F and F, generated by rigid 
n s 

displacements, u and u, around the rough pile circumference we 
x z 

arrive at the total load per unit depth of 

F /h = u • ( k + k ) IT'd/2 3.3a 
x x sh n 

F /h = u • k lT'd 3.3b 
z z sv 

This applies to a circular pile of diameter d. For a pile 

idealised as a thin strip of width d eqns 3.4 result. 

F /h = u .k 2d 3.4a 
x x n 

F /h = u.k 2d 3.4b 
z z sv 

Equations 3.3 and 3.4 do not provide information about the 

distribution of traction (around the circumference, or across the 

width of the idealised pile), but show that the basic form of the 
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equations involving the Coefficient of Subgrade Reaction, k 

incorporates the pile diameter, or width, d. 

Since k and k are purely theoretical parameters and not 
n s 

readily amenable to direct measurement or interpretation, the form 

of eqns 3.3 and 3.4 is usually shortened so that 

p = k u 3.5 

where p is defined as p = F / hd. 

The three equations 3.3, 3.4 and 3.5 essentially express the 

same relationship and demonstrate that k in equ. 3.5 is not an 

elementary property of the soil, since it will depend upon the 

geometry of a problem. Also p is not the pressure existing at 

the soil interface, i.e. for the thin strip model it is the force 

resultant of the pressures on the front and the back divided by 

the frontal area h x d. Thus, the Coefficient of Subgrade Reaction 
-3 

k has the dimensional units of FL and does not involve the 

stress in the soil in its definition. The Coefficient of Subgrade 

Reaction is related to the purely theoretical proportionality 

constants k and k but since these are not readily available, 
n s 

the value of k is usually defined by equ. 3.5 and deduced from 

insitu measurements. 

As pointed out by Terzaghi (1955) and more recently Horvath 

(1983), the determination of a Coefficient of Subgrade Reaction 

from surface plate loading tests is fraught with difficulties, 

since it appears to vary with the size of plate used. Horvath 

presents various suggestions, including one that the variation is 

hyperbolic with respect to plate diameter, corresponding to the 

use of a Boussinesq-based Elastic theory to interpret the plate 

load test. This would suggest that k.d(= E ) is a more fundamental 
s 
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parameter and this has two results for pile analysis. The units of 

E are then comparable to those of Young's modulus and the 
s 

"pressure" becomes more realistically defined as the load per unit 

depth (W = F/h) as is used by most p-y theories, giving 

W = E u 
s 

3.6 

It might then appear that the necessary parameter can be 

found from plate loading tests performed at the site of the pile 

installation or from laboratory investigations. Unfortunately the 

situation is more complex. The non-homogeneous nature of the soil 

in the field, and the limited size of the soil mass in tests that 

are possible in laboratories, preclude direct applications of 

Boussinesq's Theory. Also, any analysis of experimental results 

that does not attempt to consider at least the limited soil depth 

for vertical plate loading, will not allow comparison with 

behaviour from elastic continuum theory. 

A further complication is that the normal type of test for 

obtaining an estimate of the soil Elastic Young's modulus, or the 

Coefficient of Subgrade Reaction, is the vertically loaded plate 

test referred to by Horvath (1983). Even for a homogeneous 

isotropic medium, there is no reason to assume that the lateral 

value of Coefficient is the same as the vertical. In order to 

quantify the possible error involved, the results of an elastic-

continuum analysis may be used to compare the response of plates 

at the surface and deeply buried plates. 

Two types of plate geometry, square and circular, and the two 

situations, at the soil surface and at great depth, are 

considered. The deflection of a rigid circular plate at the 
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surface, Poulos and Davis (1974), and at depth, Selvadurai (1976), 

are given in Table 3.1. It should be noted that the orientation 

of a deep plate with respect to the surface will have no effect 

upon the response. Also in Table 3.1 are the mean deflections of a 

uniformly loaded square at the surface, due to Giroud from Poulos 

and Davis (1974) and an approximate solution for response of a 

square at great depth. The approximate solution for a square at 

great depth is based on the use of Elastic Theory and is described 

in section 3.3 of this chapter. As stated, the response of the 

deep square is unaffected by orientation but the surface response 

(of Giroud) is valid only for a uniformly vertically loaded 

square situated horizontally on the surface. 

From the solutions, for surface and deep plates, 

approximations for the ratio of the horizontal to vertical 

Coefficients of Subgrade Reaction, for a circle and a square, may 

be found. The ratio of the influence coefficients of the 

vertically loaded surface area to any deep loaded area varies 

between 2.0 and 2.5 as Poisson's ratio varies from one-half to 

zero. A value of approximately two is expected, since at depth 

the load is transferred to the soil by both the front and back of 

the buried body. If two surface loading solutions were used in an 

attempt to model the effect of burying the area between two half

spaces, the result would give a surface (vertical) to deep 

(horizontal or vertical) influence coefficient ratio of two 

exactly. Since such an attempt makes no allowance for the 

continuity of the free surfaces of the two half-spaces, that are 

here facing each other, it would be expected that the correct deep 

solution would be more than twice as stiff as the surface 

solution. 
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The use of an elastic-continuum model will thus predict the 

buried horizontal and surface vertical Coefficients of Subgrade 

Reaction to be different. This is a reasonable result that could 

have been predicted from considering the form of equ. 3.4a for the 

thin strip pile element (p = 2 k u) and at the surface equ. 3.1a 
n 

(p = k u). 
n 

A commonly accepted characteristic of the Coefficient of 

Subgrade Reaction is an increasing value with depth and this trend 

can also be seen if an elastic-continuum solution is used to 

backfigure the Coefficient for a particular problem. The problem 

chosen here is a vertically oriented rectangular area buried in an 

elastic half-space and loaded horizontally by a uniform pressure. 

Interaction within the elastic mass and the proximity of the 

surface give an average deflection of the rectangle that varies 

with embedment depth and width to height ratio of the rectangle. 

Analysis by the Winkler method does not include the effects of 

interaction within the mass, or the proximity of the free surface, 

and so would predict a constant deflection response for any depth, 

unless the Coefficient of Subgrade Reaction varied with depth. 

Using equ. 3.5 as the definition of the Coefficient of Sub

grade Reaction k and letting E = kd = pd/ti, the value of E 
s s 

that gives the same deflection as would occur for the same problem 

in an elastic mass can be found. Therefore the resulting value of 

E will vary in some manner and this can be compared to the 
s 

variations commonly assumed for E. As a specific illustration, 
s 

the dimensionless average deflection response, I = uE/pd, of a 

square element of soil with length of sides d, is presented in 

Fig. 3.2 and is seen to be a function of depth below the surface. 

With the elastic soil Young's modulus, E constant with depth and 

noting E = Ell represents the Subgrade Modulus, the plot in 
s 
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Fig. 3.3 results, showing a value heading towards zero at the 

surface and reaching a limiting value with increasing depth. 

It would be tempting to pursue this approach but it would 

result in a poor model because the use of elastic-derived 

quantities in a Winkler analysis, will ignore the effect of inter-

action in the soil and lead to an inconsistent modelling. As an 

example, consider uniform vertical loading of a square on the 

surface and horizontal loading of two vertical squares within the 

soil, one at great depth and one at the surface. Thus, a square 

loaded by a normal traction of unit total load is analysed to 

obtain the average deflection of the square, that being taken as 

an approximation for the behaviour of a rigid area. 

Each of the three squares is composed of two component 

rectangles. At great depth the orientation of the square makes no 

difference to the deflection response providing the material is 

isotropic. So at depth, as for vertical loading on the surface, 

it is sufficient to consider the square symmetrically divided into 

two component rectangles without specifying their orientation. At 

the surface the orientation of the buried square is vertical and 

has one side parallel to and at the surface. The vertical surface 

case will thus allow two methods by which the square may be 

equally divided; parallel and at right angles to the surface. 

By taking a mean of the two average deflections of the compo

nent rectangles, the deflection of the rigidly loaded square can 

be estimated, based on a Winkler-style of superposition excluding 

interaction. The elastic-continuum based mean deflections of the 

squares, the deflection from use of Winkler theory and from 

Winkler-style superposition of the elastic-continuum based deflec

tions of the component rectangles are presented in Table 3.2. 

104 



It is obvious that the application of the Winkler-style of 

superposition, to the component rectangle deflections from elastic 

theory, underestimates the average deflection of the square soil 

elemen t. However, direct use of the Winkler method, assuming E 
s 

is constant with depth and equivalent to E, results in the 

predicted deflection being 0.5 for the buried cases and 1.0 for 

the case of surface loading, from use of equ. 3.4a and 3.1a. 

Although the direct use of the Winkler method overpredicts 

the average deflection of both the surface horizontal and deep 

uniformly loaded squares and underpredicts the response of the 

vertical square at the surface, it does have an advantage over the 

mixed Winkler and Elastic-derived method. This advantage is that 

it is consistent, with the result of using Winkler style super

position on the two Winkler-based deflections of the component 

rectangles being the same as the prediction using the full square. 

The correct use of the elastic-continuum method, including inter-

action between rectangles, provides consistent behaviour but 

incorrect use of elastic-continuum based deflections with Winkler-

style superposition leads to inconsistent results. 

Because of the small dependence of pile head response on the 

soil response at depth, the value of isolated Influence 

Coefficient at depth (as was recognised by McClelland and Focht, 

1956) would be difficult to measure accurately by field testing 

of piles. This may explain the wide range of soil stiffness 

variations with depth that have been proposed. It may be 

conjectured that the apparent increase of soil stiffness with 

depth obtained from field test data, is not solely a function of 

basic soil properties increasing with depth and that such a 

stiffness increase will not necessarily continue indefinitely. 
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Thus the Coefficient of Subgrade Reaction, or Subgrade 

Modulus, for normal loading in an isotropic homogeneous elastic 

mass is a function of orientation near the surface and varies with 

depth, becoming a constant at great depth, independent of 

orientation. 

No matter how "unified" a method using Subgrade Reaction 

becomes, it still relies upon empirical correlations and strictly 

only applies to analysis of one type of pile loading with limited 

predictive capabilities. The Elastic method on the other hand is 

quite general and, used intelligently, will allow a far more 

unified approach to modelling of a variety of foundation problems. 

In this thesis the Coefficient of Subgrade Reaction k will be 

combined with the width or diameter of the pile and therefore have 

the same units as Young's modulus. To avoid confusion the term 

"Subgrade Modulus" will be used and given the symbol E as 
s 

distinct from the soil Young's modulus, which will be denoted by 

the symbol E. Thus, E = kd where the diameter d will be the 
s 

projected width of the pile for lateral loading and will be the 

diameter of a circle with a perimeter equal to that of the pile 

for axial loading. 

The argument as to which of the two methods of modelling the 

soil, Winkler or Elastic, is more accurate for pile analysis, is 

not answered in this section. The consideration of how the soil 

behaves compared with the two approaches is very much a personal 

judgement. While the Winkler parameters are only pertinent to the 

analysis of laterally loaded piles, and the model lacks any inter-

action between elements of the soil, the Winkler model represents 

a way to obtain analytic results free from discretisation errors 

for verification of the numerical technique of the MBEM analysis. 
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3.2.2 Uniform Soil Profile Winkler Analysis 

Under this heading, the linear analysis of a single pile in a 

Winkler soil with a uniform Subgrade Modulus is outlined. Both 

the lateral and axial loading of single piles are considered, with 

the solutions being capable of closed form expression. It is 

useful to review the form of this solution for lateral loading and 

then consider the companion problem of an axially loaded pile in a 

soil modelled by a constant vertical Subgrade Modulus. The 

solutions will be valuable for comparison with other methods of 

analysis, checking of computer coding and indicating trends of 

response that might be expected in more complex analyses. 

Lateral Case 

The first complete solution of this problem was by Hetenyi 

(1946), in his work on beams on elastic foundations. He presented 

the deflection, rotation, bending moment and shear force due to 

end loading of an infinitely long beam, and a beam of finite 

length, supported by a Winkler soil. The behaviour of a pile in a 

Winkler soil, as well as that of a beam on an elastic foundation, 

is governed by the differential equation of simple beam bending 

which can be expressed as 

E I 
p p 

4 4 
d u/ dz = W 3.7 

where E I is the constant beam bending stiffness and 
p p 

u is the deflection of the beam in the direction of 

W the distributed reaction load acting on the pile (pd). 

Equation 3.7 will define the behaviour of the pile, and from 
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the compatibility of the soil with the pile, will also define the 

soil response. The distributed soil loading caused by the inter

action of the pile and soil will, for the simple Winkler analysis, 

depend solely upon the distribution of soil deflection. This 

dependence is governed by equ. 3.6, namely W = E u. 
s 

The combination of equs 3.6 and 3.7 together with the fact 

that the soil interaction load must act in opposite sense to the 

pile interaction load, leads to the differential equation 

4 4 4 
d u/dz + 4Y u = 0 3.8 

4 
where Y = E /(4E I ). 

s P P 

The definition and sign convention of variables used in the 

analysis are shown in Fig. 3.4a. The solution of equ. 3.8 is 

straightforward, resulting in the general solution 

Yz 
u = e ( C cos Yz + C sin Yz ) + 

1 2 

-Yz 
e ( C cos Yz + C sin Yz ). 3.9 

3 4 

Any particular solution will specify the values of the 

constants C , C , C , and C , from the boundary conditions at the 
1 2 3 4 

head and base of the pile. The boundary conditions involve the 

specification of the moment or rotation and shear or translation 

of the pile tip or head. Successive differentiation of equ. 3.9 

will provide the analytic expressions for rotation, moment and 

shear, see Fig. 3.4a. Since four constants are involved there 

must be four equations, usually in terms of the boundary 

conditions at the head and tip but sometimes a restraint or fixity 

may be required at intermediate positions along the pile. 
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The four constants may be found numerically or by analytic 

inversion of the four equations in four unknowns. If the 

inversion is performed analytically, then closed form expressions 

such as those of Hetenyi result. It is very often more convenient 

to solve numerically for the constants and thereby allow a range 

of boundary conditions to be incorporated. For computer 

applications it is especially useful to allow the four equations 

to be produced for a generally defined set of head and tip 

boundary conditions. In this way a large variety of head and tip 

restraints may be easily incorporated in one program. 

The solution can be expressed in non-dimensional terms which 

result in the unique specification of any pile in a uniform 

Winkler soil in terms of a relative pile to soil stiffness ratio 

K = E I 4 
R P P / E L 3.10 

s 
4 

where L is the pile length and 4(YL) = K • 
R 

The relative stiffness, K , has been used previously by 

Poulos (1971a) and Bannerjee and Davies (1978) with continuum 

analyses, and in other forms that are directly related (Barber, 

R 

1953). The results for head response from the analysis are then 

presented in a form that is non-dimensionalised with respect to 

head loads H and M, the soil modulus E and the pile length, L. 
s 

These influence coefficients are 

u E L / H = I 
s uH 

2 2 
eEL / H = I u E L / M = I 

s eH s uM 
3 

and eEL / M = I 3.11 
s eM 

It is important to note that I = I since the pile and soil 
uM eH 

obey the reciprocal theorum, attributed to Betti by Love (1928). 
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Therefore a method exists by which the problem of a laterally 

loaded pile in a uniform Winkler soil can be solved for 

deflections, rotations, moments and shears for a wide range of tip 

and head boundary conditions. The solution is valid for all pile 

to soil stiffness ratios, from rigid to flexible, as long as the 

pile and soil remain in intimate contact along the pile length. 

An important characteristic of the solution is that the results do 

not depend upon the pile length to diameter ratio and the diameter 

only appears in the definition of the Subgrade Modulus, E 
s 

Axial Case 

For the case of axial loading of a pile in a Winkler profile 

with a uniform vertical Subgrade Modulus, a similar solution may 

be found to provide the axial deflection, axial load and side 

shear acting on the pile at any depth. Considering the equilibrium 

of a small segment of pile as shown in Fig. 3.4b, it is found that 

dO = 
dz 

t S 
E.........E. 

A 
P 

3.12 

where 0 is the axial compression stress acting over A the pile 
p 

cross-section area and t is the shear traction acting around 
p 

S the pile perimeter with S =~d. 
p p 

The pile axial stiffness (assuming Poisson's ratio of the 

pile is zero) can be expressed as 

where E 

E dw = -0 
P Oz 

3.13 

is the pile Young's modulus and w is the deflection, 
p 

positive downwards. Combining eqs 3.12 and 3.13 provides the 
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differential equation 

2 -t S 
d w = E E 3.14 
-2 E A 
dz p p 

The soil response can be expressed by using a vertical 

Coefficient of Subgrade shear reaction, k with 

t = k w 
s 

where t is the soil shear traction. 

s 

3.15 

Noting that the soil and pile interaction shear tractions 

will be of equal magnitude and opposite sign, the resulting 

differential equation is 

with 

2 2 
d w - a w = 0 
-2 
dz 

2 
a = 11' E / E A and E = 

s P P s 

The general solution takes the form of 

w = 
az 

C e 
1 

-az 
+ C e 

2 

k d. 
s 

3.16 

3.17 

which will require two boundary conditions in order to produce a 

particular solution. The applied head load may be used with 

equ. 3.13 and the derivative of equ. 3.17 to provide one boundary 

condition. The pile tip will provide the other boundary condition 

with the base axial compressive stress, as from equ. 3.13, equated 

with the vertical normal traction generated at the soil-base 

interface as given by 

a = 
b 

k w 
b 

3.18 
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The appropriate choice of k will cover the range of base 
b 

conditions from a zero base load to a fully fixed base. This is 

similar to a previous solution (Murff , 1975) but, like the 

laterally loaded pile model using a Winkler soil, is of limited 

use because of their restriction to a medium with a constant 

horizontal and vertical Subgrade Modulus with depth. 

These two methods of analysis, for the lateral and axial 

response of single piles in a soil that obeys a Winkler response 

law, result in closed form analytic solutions that are unaffected 

by numerical methods of solution. Also, the effect of a variety 

of base and head boundary conditions may be investigated. How-

ever, the specification of the various Coefficients of Subgrade 

Reaction is not felt to be possible except via extensive empirical 

correlation, since they have no theoretical link between 

themselves or any measurable property of soil. 
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3.2.3 Linear Soil Profile Winkler Analysis 

The problem of axial and lateral loading of an elastic pile 

in a Winkler medium with a Subgrade Modulus that varies linearly 

with depth may be expressed in two equations: 

axially equ. 3.14, i.e. 

2 
d w = - t 11'd 
-Z EA 
dz p p 

and laterally equ. 3.8, i.e. 

where z 

d 

u, w 

E 
P 

I , 
P 

t, P 

4 
d u 
-z; 
dz 

= E....Q. 
E I 

P P 

is the coordinate aligned with the pile length, 

is the diameter, (effective pile width for the laterally 

loaded case or effective pile diameter for the same 

circular pile perimeter for the axially loaded case), 

are the deflections in the lateral and axial cases 

respectively, 

is the pile modulus, 

A are the Second Moment of Area and cross section area of 
p 

the pile and 

are the axial pile-soil interface vertical shear 

traction and the lateral pile-soil interface normal 

traction respectively. 

The basic Winkler assumption leads to eqs 3.5 and 3.15, i.e. 

p = k u 
n 

and t = k w. 
s 

Further, the normal traction at the base of the axially loaded 

pile requires equ. 3.18, namely 
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Also, E (z) = E + m. z where 
s so s 

Coefficients of Subgrade side shear, 

k , 
s 
side 

k and k 
n b 

normal and base 

are the 

normal 

Reaction while E is the pertinent value of Subgrade Reaction 
so 

Coefficient at the surface multiplied by the pile diameter, to 

obtain units of stress, and m is the increase of the value of 
s 

Coefficient of Subgrade Reaction with unit depth, again multiplied 

by the pile diameter. Note that E is not the same value for side 
s 

shear, side normal and base normal traction cases. 

The substitution Z = (E + m z)/E is made and the 
so s so 

solution expressed as a power series, 

00 

m n 
u or w = Z La Z 3.19 

m m n 
n=O 

Substitution of equ. 3.19 into eqs 3.8 and 3.14 results in 

two polynomials in Z with coefficients that must vanish for a 

non-trivial solution. Equating each coefficient to zero provides 

the information that m will take values 0, 1, 2 and 3, for the 

lateral case and m becomes 0 and 1 for the axial case. Further 

consideration provides a recurrence relationship for the terms a . 
n 

Choosing any convenient value for a the remaining values of a 
0 n 

can be found for any n. For each m the particular solution will 

require integration constants providing the general solutions, 

u = C u + C u + C u + C u 3.20a 
o 0 1 1 2 2 3 3 

and 

w = C w + C W 3.20b 
o 0 1 1 

Successive differentiation of Eqns 3.20 provides the means of 

incorporating the boundary conditions relevant to each problem. 

Laterally the boundary conditions arise from a knowledge of the 
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values of moment, (M) and shear, (H) occurring at both the top and 

base of the pile, and the relationships 

2 2 2 
M = E I d u = E I (m lE ) d u 

P p ---z p p s so ---z 
dz dZ 

3 3 3 
H = E I d u = E I (m lE ) d u. 

p P -3 P P s so -3 
dz dZ 3.21 

The resulting four equations can then be solved for the four 

integration coefficients C , C , C , and C . 
012 3 

Axially the boundary conditions arise from the known axial 

compressive stress a, at the top of the pile from the applied 
o 

load, P, and the relationship between the base deflection w , and 
b 

normal stress generated at the base of the pile a . 
b 

a = PiA = -E dw/dz z = 0 
0 p p 

a = E w = -E dw/dz z = L 3.22 
b b b P 

The resulting two equations can then be solved for the two 

coefficients C and C . 
o 1 

Equations 3.20 and 3.21 or 3.22 are then used to calculate 

the desired variable at any depth along the pile. The axial 

problem can be seen to have two types of Winkler relationships 

with side shear traction related to vertical displacement and base 

normal traction related to vertical base displacement. This means 

that in general E at the base does not equal E (= E + m L) 
sb sL so s 

on the pile circumference. 

The strict application of Winkler theory to the laterally 

loaded pile case would lead to inclusion of a base (moment and 

shear) response as it rotated and translated, governed by extra 
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coefficients of a similar nature to the Coefficients of Subgrade 

Reaction already mentioned. This condition is usually ignored by 

most lateral pile analyses, since it is expected that the response 

of the long flexible piles usually encountered in practice, have a 

minimal effect from the base interface stresses. 

It must be emphasised that the models used in this section to 

solve the pile problem contain no interaction within the soil 

mass and, especially for the axial case, this may lead to poor 

correlation with observed behaviour. However, it is expected that 

the general trends with variation of relative pile-soil stiffness, 

displayed by these models, will also occur in practical situations 

and in more complete elastic continuum analyses. The benefit of 

using such simple models is the exactness of the solutions 

obtained, with no ambiguity arising from the use of the numerical 

procedures that are usually required by more complex models. 

Once the simple model behaviour is known, the knowledge can 

then be applied to the investigation of the behaviour of the more 

complex models that use solution techniques that have been checked 

for broad agreement with the Winkler results. This is especially 

true for the Modified Boundary Element Method approach that will 

now be described. 
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I 

I 
i 3.3 Boundary Element Approach 

The general name for the method used in this section is 

Boundary Element Method and the specific model employed here is 

sometimes called the Modified Boundary Element Method (MBEM). It 

consists of determining a set of soil deflection influence 

coefficients in terms of distributed loads on a defined surface 

(interface) and the enforcing of compatibility between the soil 

and pile interface deflections. To analyse the pile, the method of 

Finite Differences proves most amenable to this type of problem 

and it is used here, although it is possible to use other methods 

such as a Finite Element Beam model for the pile (Poulos and 

Adler, 1979, and Swane, 1983). 

With compatibility between pile and soil enforced, the 

boundary conditions at the head and tip of the pile are required 

to complete the solution. The four conditions are composed of a 

set of two alternative states, at each end of the pile, 

a) a defined translation or horizontal shear value and 

b) a defined rotation or moment value. 

The chosen boundary conditions can be combined to provide a 

full range of socketed, pinned, fixed or floating ends to the 

piles analysed. 

The soil influence coefficients may be found by a number of 

methods including 

a) a theory based upon the Winkler assumption or 

b) an elastic-continuum based theory. 

By using the Winkler assumption the results can be directly 

compared with the analytic methods developed in section 3.2. This 

provides a check upon numerical accuracy of the Finite Difference 
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scheme employed to model the pile and will provide a guide to the 

degree of discretisation necessary to obtain accurate numerical 

solutions. The continuum based theory may then be employed with 

some degree of confidence and the spurious behaviour due to 

discretisation errors can be more easily assessed. 

At this stage the use of elastic theory, based upon the 

results of Mindlin (1936), is limited to consideration of a 

homogeneous elastic half-space model for the soil. This model is 

thus restricted in its application to real problems and so 

requires 

fulness. 

following 

a number of approximations in order to extend its 

These extensions will be. considered in section 

the section on use of finite elements to model 

elastic soil and pile. 

3.3.1 Winkler Soil Element 

use-

3.5 

the 

The MBEM analysis requires an influence matrix that connects 

soil deflections, at stations down the pile to the distributed 

loads that are generated by the interaction between soil and pile. 

In the terminology of the p-y method, the distributed load is 

given the symbol "p" and the lateral deflection the symbol "y". In 

this thesis "p" will be more correctly given the symbol "W" and 

"y" changed to "u" to avoid confusion with normal traction, 

Cartesian coordinate, y. Thus "p-y" becomes "W-u" and eqn 

will replace the familiar "p = ky" expression, namely W = E 

p and 

3.6 

u. 
s 

It should be noted that W is the total distributed load 

acting between the pile and soil, which does not directly give the 

stress state in the soil. The assumption of complete adherance 

between the pile and soil, together with the inherent assumption 
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that only the total reaction load is necessary to define both the 

pile and soil response, leads to the stress state in the soil 

being antisymmetric. Thus, the stress change in the soil close to 

the pile face due to pile-soil interaction, can be calculated on 

the basis that half the distributed load on the pile will act upon 

both the back and front face of the soil. 

A more complex picture will evolve when non-linear soil 

response and soil-pile breakaway are considered. In this chapter 

attention is restricted to a soil element, either Winkler-based or 

Mindlin-based, that always transfers load at the pile-soil 

interface in an antisymmetric manner. 

The value of E for loading of a pile modelled as a thin 
s 

plate, will thus be seen to be twice that which would be 

associated with loading of a surface foundation assuming the 

Coefficient of Subgrade Reaction, k is a constant. This agrees 
n 

with intuition, as long as the adhesion and antisymmetric 

assumptions are valid. Assuming a linear distribution of E with 

depth leads to 

E(z) = E 
s so 

+ m.z 
s 

s 

3.23 

where the subscript "s" identifies the property as a Subgrade 

related (Winkler) property. The above two equations may be 

combined to provide a variety of expressions for the isolated 

Influence Coefficient as a function of soil modulus distribution 

defining parameters 

u E(d)d / F = 
s 

u E(L)d / F = 
s 

n = E /E(d) or n 
sd so s s 

= E /E(L): 
so s 

(d/h) / (n + (1 - n )z/d) 3.24a 
sd sd 

(d/h) / (n + (1 - n )z/L). 
sL sL 

3.24b 
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Where F is the total force acting over the rectangle of width d 

and height h. 

Thus, a set of influence coefficients consisting of a matrix 

with the on-diagonal terms given by either of the eqs 3.24, and 

the off-diagonal terms set to zero, can be used in the MBEM 

numerical analysis to model a pile in a Winkler-based soil 

profile. This is valid for a soil response described by a surface 

Subgrade Modulus value, E and an increase of Subgrade Modulus 
so 

with depth, m. Any distribution of Subgrade modulus may be 
s 

considered by using 

u E(z)d / F = (d/h) 3.24c 
s 

allowing any soil mdelled by a Winkler-medium problem to be 

analysed by the numerical MBEM program developed in this thesis. 

3.3.2 Mindlin Elastic Soil Element 

The elastic method of analysing laterally loaded piles, that 

is used here, is based upon the equations of Mindlin (1936) for 

the displacements produced by point forces in an elastic 

homogeneous half space. The integration of the Mindlin equations, 

and expression of deflections due to uniform loading of a buried 

rectangle, was accomplished by Douglas and Davis (1964). They 

presented the expressions for both the top and bottom corner 

deflection of a rectangular, vertically oriented, plane area due 

to a uniform normal pressure acting over the area. 

Using superposition with the results of Douglas and Davis it 

is possible to find the deflection anywhere within the plane 

containing the loaded rectangle, both inside and outside the 

loaded area. 
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The use of the integrated Mindlin result obviates the need 

for special attention, that other elastic methods require, when 

the deflection of the loaded area due to its own pOint load is 

considered. Several authors have reported various methods by 

which an infinite deflection at the point of application of a 

point force can be bypassed, e.g. Spillers and Stoll (1964) and 

Randolph (1977), but the chosen method avoids such approximation. 

The use of a normal uniform pressure will also provide a more 

realistic model of the soil stress conditions than point loads and 

gives the width of the pile some influence. If the point-force 

method were employed directly, the result would not depend upon 

the width or diameter of the pile, unless a form of width 

integration were introduced. 

Since the soil-pile interface is modelled as a flat plate it 

has been common to regard the pile as a thin strip, buried within 

the soil but not altering the response of the soil i.e., no 

account is taken of the existence of the hole within which the 

pile is situated. 

inertial effect 

present case is 

The origin of lateral forces must be either an 

or from some movement of a buried object. The 

the latter, with the pile being the buried 

structure moving through the soil. As mentioned the soil ideali

sation makes no allowance for the buried structure shape; however, 

for the distributed load to exist, the structure must be present. 

The easiest concept to accept is the thin strip model (Poulos 

1971a), which implies that, provided the pile is given the correct 

bending stiffness, the pile cross-section has no effect on the 

pile response to uniformly distributed loading. The results of 

Baguelin, Trezos and Frank (1979) suggest that the pile cross

section is of little importance to the overall soil response 
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either, supporting a similar argument for the soil. The actual 

shape of the soil interface element appears to have little effect 

providing the width of the projected area is the same as the 

buried structure width, measured at right angles to pile movement. 

The model used here is a rectangular area (plate) that 

incorporates the loading due to the pile-soil interaction but does 

not include the changes in soil response caused by the physical 

presence of the pile. In this model the normal stresses that are 

generated within the soil near the front and back of the plate, 

are of equal magnitude and opposite in sign, from the condition of 

complete adherance that is implicit in the elastic solution. 

Alternatively, it can be said that the symmetric nature of the 

pile geometry and antisymmetric nature of the loading would 

require any solution, with a discontinuity at the plate, to have 

antisymmetric load in order to maintain the continuity of the soil 

with the plate back and front. 

The uniformly distributed load is represented in the elastic 

mass in the form of a stress jump. Therefore the stress generated 

in the soil immediately in front of the pile and that immediately 

behind the pile, will sum to balance the uniformly distributed 

load applied by the pile. 

It will be apparent that the restriction of adherance between 

pile and soil is not always a completely accurate model of the 

behaviour of laterally-loaded piles. The occurrence of gapping 

behind piles has been noted many times in the literature of 

laterally loaded piles. However, since most other investigators 

have assumed the pile and soil remain in contact, it is prudent to 

adopt this assumption in order to gain a result that is comparable 

with their solutions. 
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Isolated Response of Mindlin Soil Element 

In order to introduce the elastic soil model, based upon the 

results of Douglas and Davis (1964), it is useful to present the 

results of a specific investigation using the elastic-based 

approach and compare it with the results of a Winkler approach. To 

this end the average deflection response of a uniformly loaded 

rectangular area for varying depths of embedment, in an elastic 

half-space will be investigated. 

Any rectangular area may be divided into four component 

rectangles, and a deflection at the point of their common corners 

found by summing the individual deflections of the corners of the 

components. This follows from the property of superposition, that 

all elastic-linear materials will possess, and allows the 

calculation of the deflection at any point within, or outside the 

loaded rectangle. 

If an average deflection of the loaded rectangle were 

required (say) as an estimate of the deflection likely if, as in 

this thesis, the response were rigid, then Gaussian quadrature may 

be employed. By sampling the deflection distribution at points, 

as defined by this integration rule, it is possible to calculate 

the mean deflection of the loaded area. Because of a vertical 

line of symmetry, it is only necessary to calculate half the 

number of deflections needed by the rule if an even number of 

Gauss points are used. 

The mean deflection, u of a uniformly loaded rectangular area 

in an isotropic elastic continuum can be shown to vary with the 

depth of embedment. Figure 3.2 shows the average deflection 

response of a vertical square due to uniformly distributed lateral 

load p, at various depths of embedment z 
t 
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deflection profile but may be considered as a plot of the on-

diagonal values of an influence matrix connecting mean deflection 

and uniformly distributed load. When the embedment reaches twice 

the height of the square, h (or the width, d) the response has 

virtually reached a limiting value. 

As well as variations with depth there will be variations in 

the average deflection response as the aspect ratio (h/d) of a 

rectangular area changes. Figure 3.5 shows the deflection response 

for a rectangle at the surface, and at great depth, as a function 

of aspect ratio and its inverse. The case of a square is in the 

centre of the diagram and either side the dimensionless form is 

different so as to avoid plotting infinite values of influence 

coefficient at both extremes of aspect ratio. The variation with 

Poisson's ratio is shown for the surface-response while the 

depicted deep-response is for one value of Poisson's ratio only, 

since a closed form expression for the influence of Poisson's 

ratio will allow all other values to be derived, see Table 3.1. 

It can be noted that the deep-response gives a symmetrical 

plot about the aspect ratio of unity, whereas the surface-response 

curves are not quite symmetrical, as would be expected. The 

deflection response variation with Poisson's ratio is about ten 

percent over the range 0 to 0.5, and displays a maximum for a 

value of about one-third. This agrees well with the generally 

accepted fact that Poisson's ratio, for laterally loaded 

foundations, is not an important parameter. 

A Winkler analysis of a square loaded area (assuming E = E) 
s 

predicts a constant value of dimensionless response, uE /pd of 
s 

unity, unaffected by embedment depth. In fact, the Winkler model 

would replace all the curves of the Elastic model with just one, 
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which is also shown in Fig. 3.5. The two straight lines, at 

different slopes, result from non-dimensionalising the response 

using the Subgrade Modulus, E, which is obtained by mUltiplying 
s 

the Coefficient of Subgrade Reaction by the horizontal width of 

the loaded area, d. 

This set of curves sheds light upon the reasons for the often 

favourable agreement found between Winkler and Elastic results. 

For small d/h ratios (narrow, vertical areas akin to a pile) the 

Winkler results are similar to those for a continuum, although 

Poisson's ratio now has no meaning in the comparison with Winkler 

results. This agreement is a consequence of the width or diameter 

having been used in the definition of Subgrade modulus. If the 

height were used instead, the agreement would be improved for 

small h/d ratios (akin to a buried horizontal pipe). This 

agreement is subject to the Subgrade Modulus being taken as 

numerically equal to the Young's modulus, which is only felt to be 

a rough approximation. The definition of the Subgrade Modulus 

merely provides it with similar dimensions to the Young's modulus 

and it is strictly not a material parameter but is more correctly 

a measured response from a particular test. 

The agreement found in Fig. 3.5 must be qualified by noting 

that the effects of interaction between elements in the Elastic 

model, will modify the behaviour in any specific application but 

the dominant role is still taken by the self-influence response 

compared here. 

The Mindlin soil element used above is an approximation to 

the deflection of a rigid loaded area. To test if this 

approximation gives reasonable results for rigid areas in an 

125 



elastic continuum, it is possible to compare the trends of the 
• 

deep-response with the results of Brown (1978) for the settlement 

of a rigid loaded rectangle at the surface. Figure 3.6 presents. 

the two sets of results normalised for variation of Poisson's 

ratio, as a dimensionless influence factor plotted against the 

aspect ratio of the rectangle. As mentioned before, there is a 

symmetry of the responses with respect to aspect ratio, and so the 

plot only covers aspect ratios between zero and one. Both curves 

have the same trend with aspect ratio and the ratio of the two 

influence factors is close to 3/7 throughout the range, which 

indicates that the approximate method of predicting the response 

of rigid loaded rectangles is appropriate. 

A further test is to use the numerical results of Douglas and 

Davis (1964) for a rigid vertical plate foundation with one edge 

at the surface of an elastic-continuum. By using a force at the 

head and a restoring moment equal to the force multiplied by half 

of the plate buried length, the equivalent of a uniformly 

distributed load on a rigid plate can be synthesised. Douglas and 

Davis present results for Poisson's ratio of 0.5 only for this 

case and the mean deflection of the rigid uniformly loaded plates 

from their results, for five values of buried length to breadth 

ratio, are presented in Table 3.3. Also in the table are results 

from the approximate mean deflection analysis of a Mindlin soil 

element and the results from using the recommended MBEM lateral 

pile analysis developed in this chapter. 

For realistic plate aspect ratios the results of the 

approximate, mean deflection Mindlin plate analysis developed in 

this thesis are less than 10% in error, and the MBEM analysis 

results are generally in error by much less, when compared to the 

analysis of Douglas and Davis. The use of Mindlin's equations, in 
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the integrated form presented by Douglas and Davis (1964), has 

been shown to be capable of providing reliable results for the 

response of a rigid rectangular loaded area. Further, the 

results, when compared with those from Winkler theory, help to 

explain why and where Winkler and Elastic results might be 

expected to agree. The details of the elastic-based soil model 

based upon the integration of Mindlin's equations will now follow. 

Soil Model Description 

The situation of a representative Mindlin-based loaded soil 

element, j is depicted in Figs 3.7a and 3.7b and the assembled 

model of a pile and soil in Fig. 3.7c. By superposition of 

positive and negative uniformly distributed loads, the effect of 

any loaded rectangular "plate" element upon any point (say i) in 

the same plane as the plate element can be found. Thus, the value 

of the deflection at any point across the pile in any element can 

be found for the desired vertical element spacing. 

The method of Poulos used the centre deflection of the 

flexible rectangular element for the overall plate deflection. As 

revealed by Poulos (1982), this approach overestimates the 

deflections of the pile, since it takes no account of the rigid 

behaviour across the width of the interface when it transfers load 

to the soil. Consequently in the present study it was decided to 

approximate this rigid behaviour by averaging the deflection due 

to a uniformly distributed load on the soil. This averaging could 

be accomplished in many ways, including, 

a) a factor applied to the central deflection, 

b) approximation of the deflection distribution across the 

width by a simple function and taking the average value and 

c) averaging the deflection over the entire element area. 
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The simple factoring of the central deflection would not take 

proper account of any effect from variation of the height to width 

ratio of the plate and so was deemed unsuitable. 

The method of finding an average using a simple function 

approximation is very attractive. From the nature of the model it 

is possible to find the centre deflection and both edge 

deflections, which are the same from symmetry. Having three known 

values of deflection at one depth it is convenient to employ a 

parabolic approximation for the variation with width, such that 

Simpson's rule for integration is easily applied. The resulting 

average deflection, u, using the centre deflection, u , and edge 
c 

deflection, u , is thus given by 
e 

u = (2u + u )/3 3.25 
c e 

The third way mentioned could be accomplished by using 

Gaussian integration over the entire rectangular area, as was done 

for the approximation of a centrally loaded rigid rectangle. This 

involves finding the value of deflection at the Gauss point co

ordinates inside the rectangle, given by the integration rule, and 

summing these deflection values. If use is again made of symmetry 

there is little extra effort involved in calculating the 

deflections at the Gauss points. 

The resulting stiffening of the response, due to the 

averaging of variations of the deflection with height, was deemed 

to be a pre-empting of the deflection pattern that is meant to be 

governed by the pile bending. Further, the results from using 

Gaussian integration were generally very close to those from use 

of the simpler method and, because it gives a somewhat 

conservative stiffness, the second method was adopted. 
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Thus a set of Influence Coefficients [I], relating the 
s 

uniform distributed load W, to the average deflection across the 

plate u, for the nodes of the soil plate elements can be found 
s 

for the thin strip pile model as shown in Fig. 3.7. 

u = [I ] W 3.26 
s s 

This solution is valid for an elastic homogeneous half-space with 

properties defined by a Young's modulus and a Poisson's ratio. 

3.3.3 Boundary Element Analysis 

A variety of approaches was tried using a finite difference 

representation of the pile and a Winkler or Mindlin-based soil 

model. In the chosen method the soil and pile stiffnesses are 

combined and the conditions that are required to produce known 

boundary conditions at nodal points are enforced. Using. the 

finite difference approximation for a fourth order differential 

(with errors of order 2), the matrix for the pile bending 

stiffness may be found, giving a relationship between pile 

distributed loads and deflections. 

Extension to non-uniform pile properties was not done, since 

evidence suggests that the stiffness of the upper portion of the 

pile will be appropriate in most cases. Poulos and Adler (1979) 

have derived correction factors for non-uniform piles, which are 

considered an adequate solution to most tapered pile problems. 

The pile stiffness may be written as 

[K ] u = W W 3.27 
P P P u 
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and the corresponding soil stiffness as 

[K ] u = W + W 3.28 
s s s u 

-1 
for [K ] = [I ] where [I ] is the influence matrix for the 

s s s 
soil as described in section 3.3.2. Subscripts p and s the 

relate the quantity to pile and soil respectively and subscript u 

identifies the interface interaction distributed load, W, that 
u 

must act in opposite senses on the pile and soil, see Fig. 3.7d. 

The matrix [K] and all except four rows and columns of matrix 
s 

[K] relate the incremental loads per unit depth, W acting over 
p 

internal buried (real) elements, to the incremental deflections, u 

at nodal points. The vectors W and W therefore contain 
s p 

externally induced uniformly distributed loads at real elements, 

and vector W contains four extra terms which are determined by 
p 

the boundary conditions and equilibrium of the pile. Soil loads 

W in equ. 3.28, could arise from free-field soil movements 
s 

i.e. W = [K ] u , and the uniformly distributed pile loads 
s s srn 

in equ. 3.27, from inertial forces on the pile. 

u , 
srn 
W , 

P 

A further relationship is proposed to relate the pile and 

soil incremental deflections at real nodal points 

u = u + au 3.29 
p s 

where au is the mismatch in deflection increment between the pile 

and soil, i.e. the extra deflection of the pile relative to the 

soil, when the contact between pile and soil is lost (from both 

front and back). It is necessary to emphasise the difference 

between this approach and the normal understanding encapsulated in 

the concept of gapping behind the pile. "Behind" in most 

instances, refers to the soil side the pile is moving away from, 
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but more correctly should refer to the pile face that experiences 

tension, which may not be consistent with pile movement. 

The gapping of the pile and soil is a complete separation 

here, introducing the concept of a pile node passing freely 

through the elastic soil. This concept is also employed for the 

pair of imaginary nodes, Fig. 3.7, used at the tip of the pile to 

enforce boundary conditions. 

Combining equations 3.27, 3.28 and 3.29 at soil nodes 

[K + K ] u = W + W + [K ] ~u 3.30 
p s p p s s 

an expression may then be found for incremental deflections u , in 
p 

terms of the externally applied head and tip loads, and 

distributed traction increments of the pile W, the distributed 

load increments from such sources as soil 
p 
movements, 

distributed load increments associated with the stiffness 

the pile at "gapped" elements, [K ] ~u. 
s 

This may be expressed as 

u = CC] (W + W + [K ] ~u ) 
pps s 

where 
-1 

CC] = [K + K ] 
P s 

3.31 

W , 
s 

loss 

and 

of 

Considering the pile as elastic and infinitely strong, the 

vector W consists purely of external loads applied to the pile 
p 

and may be assumed constant for anyone load increment. For this 

reason it is permissible to introduce the vector u , 
e 

where u = CC] W 3.32 
e p 
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is the elastic, or externally (head and pile inertial loading) 

induced, deflection vector for the pile-soil system with no free

field soil movement, gapping or soil yield. At this point it must 

be emphasised that 

due to the use of 

[K ] has four more rows and columns than [K], 
p s 

the two imaginary pile nodes at each end, see 

Fig. 3.7d, which enable any combination of defined shear force, 

bending moment, rotation and deflection as the end boundary 

conditions of the pile to be specified. 

The form of the complete W vector may vary between load 
p 

increments, depending on the boundary conditions and the external 

loading, but the terms associated with distributed loading at real 

nodes can be taken as zero, for static behaviour. The same real 

pile nodes will always have uniformly distributed interaction load 

terms, W, compatible with the soil nodes. Understanding this 
u 

provides a means of simplifying the pile stiffness eqs 3.27 and 

3.31 to give at real nodes 

or 

- W = [K ] u + [K He] W 
u p e p s 

- W = W 
u e 

where 

and 

+ [A] W + [B] Au 
s 

W = [K] u 
e p e 

[A] = [K] [cl 
p 

[B] = [A] [K ] 
s 

+ [K ] [c] [K ] Au 
P s 

3.33 

This establishes a relationship for the actual interface 

interaction loads W, in terms of the interface loads W 
u e 

(resulting from a purely elastic response to external head 

loading), the loads arising from the direct external loading of 
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the soil [A]W 
s 

correction [B]~u. 

and the free standing, gapped element load 

At this stage equ. 3.33 is capable of incorporating external 

soil movements and both soil yield and soil breakaway from the 

pile. For linear problems all that is required is for equ. 3.31 

and equ. 3.33 to be applied in order to calculate pile 

displacements and soil-pile interaction distributed loads due to 

head loading. 

Once the pile displacement pattern is known it is a simple 

matter of using the appropriate finite difference operators (with 

errors of order 2) and the equations in Fig. 3.4a to recover 

values of pile rotation, bending moment and shear force at nodal 

positions down the pile. 
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3.4 Finite Element Approach 

The finite element method (FEM) has been used increasingly in 

the past two decades to solve a wide range of problems in 

geomechanics which previously had been solved by less rigorous 

engineering approximations. Such problems usually involve complex 

geometries and/or complex distributions of material properties 

that are found to make analytic, closed form solution impractical, 

if not impossible. 

Examples include soil-structure interaction, seepage, non

linear elasto-plastic, dynamic and many other problems. Some uses 

of the method have possibly been of dubious merit considering the 

extent to which the analyses rely upon material properties that, 

if they can be found, may be of such an uncertain accuracy as to 

not warrant as precise an analysis as the FEM. 

The behaviour of single piles in an elastic continuum is one 

problem that lends itself to a treatment by FEM, and which would 

otherwise leave the only rigourous treatment for their analysis to 

the boundary element method (BEM). It is true that the BEM is 

satisfactory for a pile in an isotropic uniform modulus elastic 

half space, (Poulos, 1971a, Bannerjee and Davies, 1978), but this 

leaves the cases of piles in soil of limited depth and non-uniform 

modulus without rigorous treatment. 

The improvement in computer capabilities in recent years has 

led to the use of FEM in more adventurous applications, perhaps 

unfortunately, at the expense of more elegant methods of solution. 

It is felt however that the semi-analytic FEM using Fourier 

series, as used in this thesis, represents a valid use of a most 

powerful tool for analysis. Such a finite element method is very 

versatile and has been employed in the analysis of wall loads in 
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squat steel silos during earthquake loading, using a quasi-static 

approach, by Rotter and Hull (1985). 

In this section the use of the Axisymmetric Geometry Finite 

Element Method (AGFEM), as applied to the analysis of piles, is 

outlined and then verified as giving an adequate solution to a 

wide range of problems, especially for problems allied to pile 

behaviour. Following the validation, Section 3.4.4 describes the 

extension of the AGFEM analysis to economically model an elastic 

soil profile built up of layers of finite elements that can 

include a pile. Later in the thesis, Chapter five describes a 

specialised use of the AGFEM analysis to take some account of 

gapping in a non-linear analysis of a pile in an elastic soil. 

3.4.1 Axisymmetric Finite Element Analysis 

The theory of finite elements, and in particular its use 

with Fourier Series for problems with axially symmetric geometry, 

has been presented elsewhere by Wilson (1965) and Zienkiewicz 

(1971). Here only the modifications pertinent to the use of the 

method to analyse piles under lateral loading, and the important 

restrictions that are imposed by the method, will be outlined. 

The basis of any finite element model is the expression of 

the distribution of the variables of interest, throughout the 

domain of the problem, in an approximate form as a function of 

discrete values at nodal points. The displacement shape function 

used here is of second order and the nodal points are situated at 

the corners and midsides of a rectangular element. This is the 

well known isoparametric eight-noded quadrilateral finite element 

which, due to its second order shape function, can allow for a 

curved sided geometry if required. 
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With the displacements approximated by a shape function, it 

is possible to differentiate that function and produce a 

relationship for the strains at any point in terms of nodal values 

of displacement. 

Employing an elastic constitutive relationship between stress 

and strain within the domain, the values of stress may similarly 

be expressed in terms of nodal deflections. The Principle of 

Virtual Work may then be employed to solve for the nodal 

displacement in terms of the nodal loading, which is required to 

involve the same total work as the imposed loading. The 

application of Virtual Work will involve integrations over the 

volume of the element domain to produce a stiffness matrix and 

over the loaded area to produce the equivalent nodal load vector. 

The use of Fourier series to model antisymmetric loads acting 

on an axisymmetric body will require the cylindrical polar co

ordinate strain relationships to be modified to account for the 

analytic integration that is performed in the circumferential 

direction. This effectively removes from the formulation of the 

problem any further dependance upon the circumferential variation 

of deflections. 

In cylindrical polar co-ordinates, see Fig. 3.8, the radial, 

circumferential and vertical deflections for the k.th harmonic 

will take the form 

k 
u = U cos(k9 + £) 

r r 
k 

u = U sin(k9 + £) 
9 9 

k 
u = U cos(k9 + £). 3.34 

z z 

where ~ (without a subscript) is a parameter to interchange the 
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sine and cosine functions and is defined to be zero or~/2. This 

form is the one that proves most convenient for computation and 

will allow the more general form of the Fourier series to be 

easily produced (with a associated with £ = ° and b with 
k k 

£ = ~/2), namely 

n 

u = a + L a cos k8 + b sin k8. 3.35 
0 k k 

k=l 

Employing equ. 3.34 in the expressions for first order 

strains in cylindrical polar co-ordinates (Love, 1928), results in 

the expressions below (omitting the superscript k and using £ = 0, 

for clarity), 

E = d U . cos k8 
rr arr 

E = l(kU + kU ). cos k8 
aa r a r 

£ = d U cos k8 
zz dz z 

y = (d U + d U ). cos k8 
rz dz r dr z 

'i/ = [d U l(kU + U )]. sin k8 
ar dr a r r a 

'i/ = (d U kU ). sin k8 3.36 
za dz a r z 

It is seen that the individual expressions for strain contain 

only one trigonometric term each, either a sine or cosine. This 

fact causes the integral over the domain volume to involve terms 

that are multiplied by either the square of the sine or the square 

of the cosine. The integration in the circumferential direction 

.ill thus depend upon the values of the following integrals: 
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2T1' 
2 Jl

o 
sin (kg + £) d9 = T1'(1 - sin2 T1'k.cos2( 1T'k + £)) 

2 T1'k 

2 TT' 
2 S cos (kg + £) d9 = T1'(1 - sin2 1T'k.cos2( 1T'k + n). 

2 TT'k 
0 

3.37 

For integral values of k and 8 taking values of zero or 

T1'/2, there are three possible values for the above integrals 

namely, zero, TT' or 2 1T'. If k is non-zero then both integrals 

are equal to 1T'. For k = 0 the integrals are equal to 0 or 2 T1', 

depending upon the value used for E. There is a physical 

interpretation to these results when k equals zero. If £ is 

equal to zero, then the case corresponds to one in which no y 
er 

and y strains are evident i.e., the well known axisymmetric case 
ze 

in which volume integrals involving 21T' will appear. When 8 is 

equal to1T'/2 every strain except y and y will disappear and 
er 

again 21T' will appear in the integrals. 

a torsional type of loading. 

ze 
This case corresponds to 

It is interesting to note that for the elastic constitutive 

law, the stiffness matrices that result for k equals zero when £ 

is zero and TT'/2, mirror the uncoupling of the two forms of 

loading, i.e. the axisymmetric and torsional cases may be analysed 

using one large stiffness matrix or by splitting the zero harmonic 

matrix into two smaller stiffness matrices. 

For other harmonics, the stiffness matrix does not uncouple 

in this way and the use of £ = 0 or 1T'/2 will involve an apparent 

change in co-ordinate direction only. This means that although 

the general form of the Fourier series, equ. 3.35, has two sets of 
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Fourier Coefficients, a 
k 

and 

and b, the same stiffness matrix 
k 

relating 

complete 

nodal loads deflections may be used to find the 

response, providing the circumferential load and 

deflection signs are changed appropriately. 

This fact would save time when analysing a problem with a 

very general load form. In practice, however, the Fourier series 

that result from approximating most load forms will not need more 

than the Fourier Coefficients implied in equ. 3.34. This is 

because the loads usually possess a line or plane of symmetry that 

will eliminate the equivalent of one set of Fourier Coefficients, 

a or b , as defined by equ. 3.34. 
k k 

When considering the particular case of a vertical pile in an 

Elastic medium the loading required to produce torsional, axial or 

lateral response may be represented as a Fourier series. If we 

assume a general load that would require a number of harmonics in 

order to model it satisfactorily, then the stiffness matrix that 

results would involve an unique set of deflections and loads 

associated with each Fourier term. 

The situation would seem to require a large stiffness matrix 

relating all these loads and deflections involving all terms. 

Fortunately the volume integration for the stiffness associated 

with deflections and loads for dissimilar Fourier terms result in 

integrals of the form: 

211' 

J, sin(k e + ~).cos(k e + ~) de 
1 2 

= o. 

where k F k 3.38 
1 2 

In this manner the various Fourier terms uncouple and the 
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resulting stiffness matrix may be solved for, one term at a 

time, since the "off diagonal" stiffness matrices for individual 

Fourier terms are identically zero. 

This is a fundamental aspect of the method as it has been 

used for many types of analysis. The three-dimensional problem is 

reduced to one containing two dimensions, with the third dimension 

analytically modelled by a Fourier series. Further, the number of 

Fourier terms used does not increase the size of a particular 

problem; it only increases the time needed to solve the problem, 

since the response of each term is solved for separately. 

For axial loading, an inspection of the Fourier terms that 

produce axisymmetric vertical loading will result in the reduction 

of all terms to zero except for the zero harmonic, i.e. k equal 

zero and £ equal zero. Any other terms induce an antisymmetric 

lateral load or self equilibrating loads. 

For torsional loading the axisymmetric solutions will again 

require the k equals zero term and no other non-zero terms. Now 

the value of £ is ~/2 and, as previously mentioned, this case may 

be incorporated in the case with £ equal to zero since the 

torsional and axial responses are uncoupled. 

For lateral loading the only term that contributes to the 

antisymmetric behaviour is k equal to unity. This one term will 

model an antisymmetric load distribution that produces a resultant 

load in the x- direction if £ is zero, or y-direction if £ is~/2, 

from the vectorial combination of radial and circumferential 

tractions. It will also model a linear variation of vertical load 

that will produce an applied moment load. This means that only 
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one harmonic is required to analyse the case of symmetric axial or 

torsional load, and only one harmonic is required for the case of 

antisymmetric lateral (horizontal and moment) load upon a body 

that possesses an axisymmetric geometry, see Fig. 3.9. 

In the use of the two harmonics, zero and unity, to analyse a 

pile in an Elastic medium, the axis of the pile is the axis of 

symmetry and will require special attention. In order that the 

resulting deflection in the x, y or z direction on the centre line 

of the discretisation is single-valued, there is a restriction 

placed upon the radial, circumferential and vertical deflections. 

Consideration of the transformation from cylindrical polar to 

Cartesian co-ordinates for the Fourier term k leads to 

u = A cos(k-1)e + B cos(k+1)e 
x 

u = -A sin(k-1)e + B sin(k+1)e 
y 

u = C cos k.e 3.39 
z 

U - U 
where A = r e 

"2 

U + U 
B = r e and 

2" 

C = U 
z 

If u, u and u are to be single valued at any radius (but 
x y z 

especially along the z axis), for any e value then 

d d d 
u u u 

= y = 
m1 

x 
m1 

z 
m1 

= 0 
3.40a 

or 
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-A(k-1)sin(k-1)9 - B(k+1)sin(k+1)9 = 0 

-A(k-1)cos(k-1)9 + B(k+1)cos(k+1)9 = 0 

- C k sin k9 = 0 3.40b 

For equ. 3.40 to have a non-trivial solution it must have a 

determinant equal to zero, i.e. 

-k (k-1) (k+1) sin k9 sin 2k9 = 0 3.41 

From this, the three values of k of zero, -1 and +1 are 

seen to provide the necessary conditions for a non-trivial 

solution for A, Band C. When it is considered that this non-

trivial solution restriction can be interpreted as a rigid body 

component of any deformation, it is clear that only these terms 

result in any rigid body movements. 

When considering the case of k = 0, equ. 3.39 shows that the 

values of u and u depend upon the value of U and the value of 
x y r 

u is identical to U From this it can be deduced that U must be 
z z r 

zero along the centre line or a multi-valued response is implied. 

The value of U is not directly restricted by equ. 3.39 but for 
e 

axisymmetric vertical or radial load it is necessarily zero every-

where. The case of torsional loading can be shown to lead to u 
x 

and u being dependant upon U and for these to be single valued 
y e 

U must be equal to zero. This means the value of U is zero along 
e r 

the axis for the case of torsional loading and U and U are not 
z e 

restricted but will necessarily be zero for purely torsional 

behaviour. This is consistent with the note made previously about 

the uncoupling of the torsional and the axially symmetric load 

cases. Thus when k = 0 

U = U = O. 
r e 

3.42 
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The case of k = 1 results in a form of equ. 3.39 that is 

similar to the Mohr circle representation of stress on a plane. 

u = A + B cos 29 
x 

u = B sin 29 
y 

u = C cos 9 3.43 
z 

Ifu and u are to be single-valued on the centre line, the 
x y 

term B, connected with cos 29, will need to be equal to zero. 

Likewise, the value of U must be zero for the value of deflection 
z 

u on the z axis to be single-valued. 
z 

and 

This leads to: 

U + U 
r e 

U = 0 
z 

= 0 

3.44 

The case with k = -1 could be thought of as a mirror image 

of the last case discussed. The only difference in the result is 

a reversal of the circumferential coordinate direction and 

equ. 3.44 is then unchanged. 

When the case of k greater than or equal to two is 

considered, it becomes necessary to use the trivial solution to 

enforce a single value to the Cartesian components of deflection. 

U = U = U = 0 3.45 
r e z 

This special treatment of the axis of symmetry has not 

received great attention in the literature. The special cases 

above have been mentioned by Carter and Booker (1981); however 

most investigators have made no reference to the centre line 
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constraints and often have used a hollowed discretised form, thus 

eliminating the centre line nodes. 

Consistent treatment of the continuity of material across the 

centre line of a circular beam is essential in order to reproduce 

simple Elastic beam theory results. For this reason it was found 

necessary to incorporate into the analysis a means of relating the 

values of nodal deflection on the centre-line. The constraint 

used may be written 

u = m u + b 3.46 
i j 

This means m equal -1 and b equal zero, for u equal U 
i r 

and u equal U, provides the necessary restrictions for the 
j e 

k = 1 case along the centre of the mesh. As well as enforcing the 

uniqueness of deflections along the axis of the mesh, the 

constraint coding could also be used to rigidly or flexibly link 

degrees of freedom. In this way it becomes possible to introduce 

rigid body movements and sloping, smooth (shear free but fixed 

normal deflection) boundary conditions if required. 

Before the AGFEM analysis computer program was used to 

analyse laterally loaded pile problems an extensive series of 

analytic checks were conducted, some of which are reported here. 

3.4.2 Validation of Finite Element Analysis 

The Finite Element program that was written to analyse the 

laterally loaded pile problem was tested against a large number of 

elastic solutions. The tests were chosen to check the accuracy of 

the solutions for various loading forms and different harmonic 

terms. 

The most obvious test was to analyse a free-standing 

cantilever, using k = 1, for end shear and moment loading. This 
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establishes the suitability of the selected type of element for 

analysis 

check was 

which is 

of the response of the pile to head loads. A 

on the pile response to uniformly distributed 

a similar type of loading to that induced 

interaction of the buried pile in the soil. 

further 

loads, 

by the 

To verify the program coding for the zero harmonic, and to 

investigate the ability of the finite element program and the 

arithmetic accuracy of the computer to model nearly incompressible 

problems, a sphere and a cylinder of elastic material under 

internal and external pressure was analysed. 

To establish the suitability of the method for analysing the 

response of an Elastic half-space, the results of Gerrard and 

Harrison, as presented in Poulos and Davis (1974), for the loading 

of a circular area on the surface were compared with results of 

the finite element analysis. The loading was for uniformly 

distributed vertical load, uniformly distributed horizontal load, 

vertical traction proportional to distance along the 9 = 0 ray 

(moment) load and a circumferential (torsion) load proportional to 

radial distance, see Fig. 3.9. 

Cantilever Response 

One of the most pertinent tests for the validation of the 

analysis are those for the behaviour of a pile when built-in at 

one end. Indeed, this cantilever response has been used in some 

methods as a means of analysis of pile foundations, by choosing 

what is considered as an appropriately reduced cantilever length 

to cater for the reduction of head flexibility arising from the 

soil support (equivalent bent method). 
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Broadly, the behaviour of a pile may be characterised by two 

types of load : 

a) The load transferred through the supported structure to 

the pile head in the form of a bending moment and shear 

force. 

b) The tractions acting along the length of the pile caused 

by interaction of the pile with the soil. 

The first aspect can be investigated by loading across the 

tip face of a circular cantilever beam, modelled by finite 

elements, with a uniformly distributed lateral shear and a 

linearly varying axial normal traction, which produces a shear 

force resultant and an applied moment, as in Fig. 3.9b and 3.9c. 

Simple bending theory provides a solution that can be compared 

with the results of the finite element analysis and this has been 

done for two pile geometries. 

The pile geometries considered have length to diameter ratios 

of five and fifty with eleven elements lengthwise and one 

radially. The longer cantilever had an element aspect ratio of 

five compared with a ratio of unity for the shorter cantilever. 

Such slender elements for the long cantilever did not cause 

serious errors in the tip deflection due to shear and moment 

loadings, as the deflections were less than half a percent below 

the simple bending theory answers. The solution of the shorter 

cantilever gave an answer 0.8% higher than simple bending theory 

for shear load and 1.0% lower for moment loading. In this case 

good agreement was not necessarily expected, since a slenderness 

ratio of five for the pile is near to the lower limit of three for 

applicability of simple bending theory, as outlined in Chapter 

two. 
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Since most pile applications will involve length to diameter 

ratios greater than five but less than fifty, for the effective 

length of pile, and because the AGFEM analysis uses a more 

complete treatment of elasticity theory than simple bending 

theory, it is felt that the AGFEM analysis provides adequate 

modelling of the head loading condition. 

An important requirement of the soil-structure interaction 

method is the ability of the model used to provide influence 

coefficients for deflection, to give reliable answers for loading 

of sections of the pile with uniformly distributed loads. For the 

pile in a soil these loads arise from its interaction with the 

soil when head loads are applied. The interaction loading referred 

to here is not exactly the traction on the pile from the soil but 

is a resultant, or an equivalent, of such tractions. This point is 

often overlooked in analysis of the pile response due to pile-soil 

interaction but, as will be shown in Chapter five, is of 

importance for the behaviour of the soil. 

For verification purposes this loading is modelled as a 

uniform x-directed traction around the entire circumference and 

extending down the full face of an element of the pile. Using 

simple bending theory it is possible to calculate the deflection 

of any point on the beam when a uniformly distributed load is 

applied over one section of the beam. Here the loaded sections are 

taken to be the element lengths and the points at which 

deflections are calculated are the centres of the regions of load. 

The analysis of two load cases were performed, using the 

previously generated cantilever meshes, with uniform x-directed 

tractions and deflection comparisons on the fifth (interior) and 

eleventh (tip) element from the base. The free end and built-in 
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base elements were both chosen to be half the length of the 

interior elements, in an attempt to refine the regions in which 

internal stresses might be expected to vary quickly with position. 

For the long cantilever, the worst error in the comparison 

was for the deflection of the centroid of the interior element due 

to load on the tip element. This error was -0.9 % while the 

actual deflection of the fifth element was only 22% of the 

deflection of the tip element. 

When loaded at the fifth element the long cantilever analysis 

gave answers for the deflections of both elements that were in 

error by less than -0.9%. The accuracy of the deflection of the 

tip, when load is applied near the centre of the beam, proves that 

rigid body movements are well catered for in the finite element 

model. 

When results for the short cantilever are compared with 

simple bending theory predictions, it is found that agreement is 

not so favourable. The worst error is 9.6% for the deflection at 

the mid-element centroid due to load on the mid-element. This is 

expected since effectively it represents a tip loaded cantilever 

with a length to diameter ratio of only two. The behaviour of 

such a squat cantilever is influenced by extra deformation due to 

shear and so simple bending theory cannot apply. 

The deflection of the tip element centroid due to the mid

element loading is only 1.8% in error compared to the simple 

theory. It can be argued that the AGFEM solution to this problem 

is preferable to the one from the simple theory of bending. Since 

it is not envisaged that results for such squat piles would be 

practically useful this remains of theoretical interest only. 
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The final check using the two cantilevers was for the 

response arising from a uniformly distributed loading over the 

entire length of the beam. This load was applied to the finite 

element problem as a self weight of the beam material. The errors 

in the mid and tip element deflections were -0.9% and -0.5% 

respectively for the long cantilever and 4.7% and 1.2% for the 

squat cantilever. The results confirm the accuracy of the 

modelling of pile bending and also give confidence that the self

weight capability of the analysis is correctly implemented. 

It can be noted that generally the errors for the long pile 

were very small and negative while for the short pile they were 

positive. This may be interpreted as saying the simple theory of 

bending, in which plane sections remain plane, will underestimate 

the deflections of short squat beams while the simple theory 

results agree well with finite element results for beam slender

ness ratios of up to fifty. 

The load cases considered as important for modelling the 

pile, with regard to pile-soil interaction, have been analysed 

using the finite element approach and comparisons made with simple 

bending theory. Recognising the inapplicability of the simple 

theory for squat beams, and considering the likely slenderness 

ratio of piles in common use, it is shown that the finite element 

analysis using eleven elements is more than adequate to model the 

pile response. The validation also confirms the implementation of 

traction and self weight loading in the finite element analysis 

has been successful. 

This represents a good check upon the method for the case of 

analyses using the first non-zero harmonic. The next two cases 

will examine the use of the method with the zero harmonic. 
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Elastic Sphere and Cylinder 

The analytic solution for an elastic cylinder and an elastic 

sphere under both internal and external pressure has been 

presented by Lin (1968). The expressions for radial deflections, 

radial-, axial- and circumferential-stresses are given and the 

results of a finite element analysis of a sphere and a cylinder 

using the zero harmonic can be compared with them. The meshes used 

are shown in Fig. 3.10 and the results were obtained for a number 

of Poisson's ratios in order to gauge the viability of modelling 

nearly incompressible behaviour. The true radial deflection is a 

function involving both a linear and an inverse squared function 

of the radius for the sphere and a function of the radius and the 

inverse of radius for the cylinder problem. 

The isoparametric element used in the finite element program 

allows for a quadratic variation of deflection which proves to be 

able to closely model the above distributions. The problem with 

the finite element formulation, however, is that the fully 

incompressible case cannot be modelled because the bulk modulus 

becomes infinite and cannot be handled by the normal mathematical 

framework. Poisson's ratio ranging from 0 to 0.495 was used and 

an internal to external pressure ratio of 0.5 for both the sphere 

and cylinder test cases. 

Typically the answers from the finite element program for the 

spherical problems were well within 0.5% of the analytic solution 

for radial deflections and within 1% for the stresses over the 

range of Poisson's ratio used. For the cylindrical case, with 

Poisson's ratio zero, the finite element analysis gave the exact 

solution for deflection and stresses. However, as Poisson's ratio 

was increased the solution strayed slightly from perfect agreement 
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so that at 0.495 the response was nearly 4% in error for 

deflection of the outer radius and for some of the stresses. 

The reason for this is that the near incompressibility of the 

material causes the numerical stiffness matrix terms to become 

very large. It was also noticed that there were small deflections 

occurring in the axial direction of the cylinder that violated the 

plane strain condition. These deflections were removed by fixing 

all the axial degrees of freedom to zero, but no appreciable 

change in accuracy was achieved. 

It was felt that, considering the accuracy with which the 

spherical problem and the plane strain cylinder problem were 

solved, further development of the cylinder mesh was unnecessary. 

Further, using a Poisson's ratio between 0.48 and 0.49 would 

provide reasonable estimates of undrained behaviour with the value 

similar to that chosen by other investigators, Rowe (1977), Balaam 

(1978) and Redman (1980). It should be noted that the value of 

Poisson's ratio at which the near-incompressible analysis becomes 

unstable is largely a function of the word length of the computer 

used. The above authors all used the same computer as the present 

writer and employed double precision arithmetic. 

Thus, problems modelled by the zero harmonic can be analysed 

successfully using the finite element program. 

Half-space Response 

In order to gauge the ability of the program to analyse the 

response of the soil, four load cases were modelled using a mesh 

of large enough dimensions to allow comparison with the elastic 

continuum half-space results of Gerrard and Harrison, as presented 

in Poulos and Davis (1974). The mesh is depicted in Fig. 3.11 and 
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contains 501 nodes and 150 rectangular elements. 

The four load cases involve the analysis of two different 

Fourier terms, zero and one. The zero harmonic will model the 

vertical mode and also the rotational mode of deformation about 

the vertical axis. The first harmonic provides a solution for 

lateral deflection and lateral rotation. Superimposing the four 

cases encompasses any possible mode of deformation of the vertical 

axis in one particular vertical plane. 

The deformation in the direction at right angles to the 

previous vertical plane follows as a simple new load case and a 
o 

90 rotation of axes about the z-axis. In this way the three 

deflections and three rotations that completely define a general 

response can be obtained. This work is limited to the response of, 

and load in, only one vertical plane but it is entirely possible 

to extend the methods used to a general method, such as would be 

required for pile group analysis. 

Considering the zero term, the two cases of uniform vertical 

surface traction and radially linearly increasing circumferential 

shear traction, see Fig. 3.9a, on a material with Poisson's ratio 

of 0.3 are analysed. The deflections at the surface on the edge 

of the loaded circle are compared with the tabulated solution 

given by Gerrard and Harrison. The circumferential deflection was 

0.7% below the tabulated value for the torsion load and the 

radial and vertical deflections for the uniform load were under-

estimated also, by 1.0% and 2.4% respectively, see Table 3.4. 

The errors in deflections resulting from a uniform horizontal 

traction (shear load) and a linear variation, in the x-direction, 

of vertical normal traction (moment load) from the analysis by the 

152 



first harmonic are tabulated in Table 3.4. Once again the 

deflections compared are those at the surface on the edge of the 

loaded area. The radial and vertical deflection values occur along 

the 9 = 0 ray while the circumferential deflection value is for 

the 9 =~/2 ray. The values of error at other values of 9 may be 

found by mUltiplying by cosine 9 for the radial and vertical, and 

sine 9 for the circumferential, deflections. This means the 

tabulated values of error are the maximum values that occur around 

the circumference of the loaded circle. 

Table 3.4 shows that the worst error is for the vertical 

deflection of the shear load case. This result is not as bad as 

it appears when it is realised that the actual deflection is only 

11% of the maximum deflection, occurring at the centre of the 

circle, and is also at right angles to the direction of load. 

Generally the response of the mesh gives results that are within 

three percent of the values predicted using the 

Gerrard & Harrison. 

results of 

The deformed mesh geometry of three of the test cases is 

shown in Fig. 3.12. It is obvious that more mesh refinement is 

possible in the region of the load, but it can be said that even 

with this relatively coarse modelling the results are more than 

adequate for engineering purposes. 

Cases of the above loading were also applied to other meshes 

with values of Poisson's ratio of 0 and 0.48. When Poisson's ratio 

is zero the results of the finite element program agree very 

closely with the published results. This might be expected since 

the effect of confinement from the rigid boundaries used on the 

mesh will be minimised for this case. When approximating an in

compressible material the worst deflection error in the direction 

of loading is about 6%, and generally is of the order of 4%. 
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Thus the response of an elastic isotropic homogeneous half-

space can be modelled with sufficient accuracy. The finite element 

method however is capable of analysing an elastic isotropic medium 

that has a non-homogeneous Young's modulus. This fact is crucial 

for the development of an approximate method for modifying the 

Mindlin, homogeneous medium, results to cater for non-homogeneous 

modulus distributions with depth. 

To test the non-uniform modulus response of the method it is 

possible to use the results of Brown and Gibson (1972). In their 

paper the form of the vertical deflection profile at the surface 

and the magnitude of the central deflection are presented for 

uniform vertical loading of a circular area. Poisson's ratio and 

the degree of inhomogeneity are varied for the case of a deep 

stratum of elastic material. In a previous paper considering the 

case of zero surface modulus, Gibson et al. (1971), it was 

stated that when the incompressibility condition was relaxed 

(i.e. 0 <V< 0.5) the settlement within the loaded area became 

unbounded and non-uniform. The response of uniform settlement 

within the loaded area, and zero outside it, is only associated 

with the loading of an incompressible half-space having zero 

surface modulus, with the result resembling the behaviour 

predicted by a Winkler foundation, i.e. 

2 
w m d = 6 3.47 

P TI' 

in the loaded area where E = mz 

Thus, using equ. 3.47, it is possible to approximately check 

the finite element program answers for the results of uniform 

loading of a circle on a nearly incompressible material, Poisson's 

ratio of 0.49. As mentioned previously Poisson's ratio of one 
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half is not accomodated by the FEM formulation. Also the non-

homogeneous nature of the material is numerically modelled. The 

variation of modulus with position has been achieved by varying 

the value of modulus for each Gaussian integration point used in 

the integration scheme. Four integration points per element were 

used and so in that sense the modelling for modulus variation is 

approximate. 

With the above approximations it was still expected that the 

finite 

result 

element analysis would provide a reasonably 

to the published values. The results indicate 

comparable 

that the 

settlement is overpredicted in the loaded region at the centre by 

2.6%, in the middle of the (largest) first radial element by 13.8% 

and at the corner of the first element by 7.2%. Use of a finer 

mesh size for the remaining two elements under the uniform load 

kept the deflection errors to between 6.4% and 11.8%. 

The node at the edge of the loaded area theoretically has a 

multi-valued response since outside the loaded circle there is no 

vertical deflection from the analytic solution. The finite element 

solution for deflection of this node can be compared to the 

analytic solution if the average of zero and the uniform internal 

deflection is compared. This gives an error of 4.1%. The area 

outside the loaded region showed insignificant deflections when 

compared to the maximum deflection. 

Consideration of this "Gibs on" soil problem provides an 

encouraging degree of agreement and suggests that the AGFEM 

program provides solutions that are probably of comparable 

accuracy to those from analysis of a homogeneous half-space. The 

use of near-incompressibility and the finite depth of layer for 

the AGFEM analysis means that comparison with an incompressible 

and semi-infinite mass of elastic material is only approximate. 
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Although no analytic solution has been found, the problem of 

lateral shear and moment loadings may also be considered for the 

"Gibson" soil profile and both provide Winkler type results. 

Lateral shear gives a uniform horizontal rigid body deflection of 

the loaded area, and the area outside the load has no appreciable 

lateral deflection when compared with the loaded area. The 

vertical deflections are also very small everywhere for shear 

loading. The linear vertical traction (moment) case also showed 

much smaller deflections outside than inside the loaded area. The 

vertical deflections are now virtually linear, just like the 

traction distribution, and the horizontal deflections in the x

direction change sign within the radius of the loaded area, 

leading to a very small average deflection. 

Approximate expressions for the influence coefficients for 

mean deflection and rotation due to shear and moment loading were 

found to be 

2 
u m d /H = 16 

3 3 
9 m d /H = u m d /M = 2.7 

4 
and 9 m d /M = 32 3.48 

The cross-terms are equal, due to the reciprocal theorem, but 

the responses given for deflection and rotation are an approximate 

average because the distribution of vertical or x-directed 

deflection varies with radial position. 

Since Gerrard and Harrison's results for a uniform medium 

show the cross-term influence coefficients for average deflection 

or rotation tend quickly towards zero as Poisson's ratio increases 

to one half, the small magnitude of the cross-term coefficients 

156 



from the FEM result is entirely appropriate. It would be expected 

that a "Gibs on" soil would behave in such manner, especially 

considering the analogy to Winkler behaviour for surface 

deflection response. It is worth noting that only the surface 

behaves like a Winkler material; the material away from the zone 

of zero modulus quickly shows the type of deflection response more 

commonly found from elastic homogeneous continuum analyses. 

The finite element program has proved capable of reproducing 

the results of loading of an elastic half-space by horizontal, 

vertical, torsional and lateral moment tractions. The case of 

vertical 

entirely 

deflection response is an aspect that is not modelled 

satisfactorily since the finite depth of the elastic 

layer, as modelled using finite elements, affects the response. 

Because the vertical response is usually of very little 

interest in cases of lateral loading, it is considered that the 

finite element method provides the most accurate and convenient 

available method for obtaining the response of the soil. This is 

especially true when it is realised that, to date, 

of generally non-homogoneous soil profiles is only 

possible using the method of finite elements. 

the behaviour 

practically 

In order to check the program validity for terms greater than 

one, in the Fourier series representation of loading, a series of 

analyses was also carried out on a cylinder of Elastic 

which will not be reported here. The final comparison, 

material, 

which is 

not reported here, involved the effect of gravitational load upon 

a simple plane strain cylinder of Elastic material with a free 

internal and a rigid outer boundary. The gravitational loading 

acts across the axis of the cylinder, requiring the first non-zero 

Fourier term to model the antisymmetric load. 
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3.4.3 Mesh Boundary Investigation 

The Finite Element Method has been applied to problems that 

involve an infinite extent to the body that is modelled. Accurate 

modelling of such a problem can proceed in two ways: 

a) The mesh may be terminated with an appropriate boundary 

condition at a distance from the load that is thought to give 

almost no effect upon the response of interest. 

b) The mesh may be extended only to a relatively close 

boundary, but one that is given a freedom of movement 

consistent with the response achieved if the material were to 

continue to infinity. 

Method a) can be called the "equivalent half-space" method 

while b) is referred to as the "infinite super element" method 

(Rowe et al., 1978). The methods have both been used widely in 

numerical studies with the second method usually thought of as 

being the more theoretically sound. However, the type of problem 

will determine the most suitable method for any particular 

application. For instance, the boundaries in meshes used for 

dynamic analyses may introduce reflected energy that distorts the 

model's true response. In these cases it has been found necessary 

to use energy-absorbing boundary infinite super elements to give 

the far field response correct modelling (Velez, Gazettas and 

Krishnan, 1983). However, this is needed as a result of the 

dynamic nature of the problem. 

An example of the equivalent half-space method is the use of 

smooth lateral boundaries with fixed normal deflections for both 

plane strain and axisymmetric finite element meshes. The extra 

freedom gives larger deflections that agree more closely with 

theoretical results based on infinite lateral or vertical extent. 
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This is probably a misleading improvement for plane strain 

problems. The reason is that, 

the shear-free laterally fixed 

from consideration of symmetries, 

boundary effectively converts the 

problem to a system of periodic strip loads. In such a case it is 

qUite possible that reducing the distance from the centreline of 

the strip to the shear-free boundary may actually increase the 

vertical deflections, since this represents a system of more 

closely spaced strip footing loads and thus larger total load on 

the continuum. With axisymmetric analyses it is not clear how 

such a shear-free boundary affects the response. Balaam (1978) 

has successfully used such a boundary, see Fig. 3.13, to model a 

hexagonal region of influence for sand drains by analysing a 

circular pile-soil-unit region with a shear-free radial boundary 

in an axisymmetric finite element analysis. 

Since axisymmetric finite element analysis is a subset of the 

more general finite element method used in this work it is obvious 

that careful attention must be paid to the position and type of 

boundary to be used in the analyses carried out. The analysis of 

major interest to this work is that for the first non-zero Fourier 

harmonic term, although other harmonic terms will be important for 

modelling asymmetric load cases. The first non-zero term is the 

one that governs the behaviour ofaxisymmetric geometry problems 

under antisymmetric load. Without this term there is no net load 

or displacement laterally and so this term is the one required in 

order to model laterally loaded piles. 

A series of test cases were performed with meshes with 

different radial and vertical boundary dimensions and different 

boundary conditions. A range of pile-soil stiffnesses were 

modelled to cover pile responses from flexible through to rigid. 
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Uniform soil case 

The meshes were automatically generated using an algorithem 

for the radial element widths, such that on a logarithmic scale 

the radii of the Gauss points fall on a more or less regular 

spacing. This gives the elements of the soil near the pile face 

an opportunity to model the complex and rapid rate of change of 

displacements and stresses that must occur in this region. Such a 

treatment can produce very thin elements near the pile face and 

very wide elements at the outer boundary to the mesh. 

While not appearing to be a good method of discretisation it 

was found that very large aspect ratios for the element sides 

could be employed and still provide a reasonable solution. 

Although not proven, it seems likely that meshes retaining the 

rectangular geometry of the element, rather than making use of the 

capability of the finite element method to model non-rectangular 

geometries, will provide a better modelling of stresses at Gauss 

points. The improved stresses are then reflected in improved 

strains and thus deflected shapes. 

The meshes consisted of 8 elements radially, and 12 elements 

vertically with the central uppermost 8 elements representing the 

pile. A pile with Lld = 20 was chosen and the values of the depth 

and radial width of the entire mesh were varied in order to gauge 

the effect of the proximity of the boundaries. After a preliminary 

study, a completely rough boundary condition was chosen, in order 

to model the far field behaviour of zero strain. As noted 

previously, smooth boundaries are sometimes used, but can cause 

unexpected results. This was particularly so for the smaller 

radial boundary meshes and the response connected with moment 

loading. 
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If a smooth boundary, only radially fixed, was used for the 

smaller radius meshes it was possible to obtain larger deflections 

and rotations than were achieved with larger radius meshes. The 

sliding, both vertically and circumferentially, at the radial 

boundary led to a larger than desired set of radial stresses 

directly in front of and behind the pile and consequently larger 

radial strains and hence deflections. 

Such behaviour near the pile was deemed to be unrepresent-

ative of both the theoretical half-space response and any 

practical single pile situation. Thus, nodes which were fixed in 

all three directions were used on the radial boundary. The 

boundary conditions on the base of the mesh had a less severe 

influence upon results and a realistic condition was assessed as 

being also the one of fully fixed nodes on the base. 

The above discussion is based upon results using Poisson's 

ratios of 0.3 and 0.48 for the soil and of 0.2 for the pile. From 

the results of analyses in which Poisson's ratio was varied, it 

was found that it had only a minor effect, as long as results were 

presented normalised to the Young's modulus, rather than the Shear 

modulus. Thus the bulk of results presented in this thesis are for 

Poisson's ratio of 0.3 unless stated otherwise. 

The analyses performed covered a range of radial boundaries 

from 3.75 to 60 pile diameters for a vertical height of mesh equal 

to twice the pile length and a range of vertical heights of mesh 

from 1.1 to 4 times the pile length for a radial boundary at 30 

pile diameters. 

The results of the two series of analyses are presented in 

Tables 3.5 to 3.10 as a tabulation of influence coefficient 
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against relative stiffness. The non-dimensional influence 

coefficient is based upon the pile length and the uniform Young's 

modulus of the soil, while the pile-soil system 
4 

relative stiffness 

is measured by the factor K 
R 

= E I 
P P 

/ EL . For the case of a pile 

in a homogeneous elastic soil the value of K can be related to 

the ratio of critical 
1/4 

L /L = 11' f'I K 
c R 

R 
length to real pile length by the equation 

The full height of the mesh is given the symbol h and the 

distance from the centre to the radial boundary the symbol s. 

Throughout the analyses the pile length and diameter were kept 

constant, as were the number of elements in the mesh. It would 

appear desireable to also change the number of elements in the 

mesh to maintain a similar element geometry near the pile. This 

was not done for two reasons: 

1) part of the aim was to model the half-space response as 

economically as possible. Thus, performing the parametric study 

using more elements was prohibitive because of the computer time 

needed. Also, there would have been some analyses at smaller s/d 

ratios that would have meshes with very few elements radially and 

thus a poorer modelling ability. It must be remembered that it is 

the influence of the position of the boundary that is being 

studied, not the ability of the analysis to be accomplished by a 

minimum of elements. The chosen number of elements was considered 

optimal for the accuracy of modelling required. 

2) the study would provide an indication of the limit of 

feasible solution by exhibiting a deterioration of response once 

the mesh became over-stretched. 
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Table 3.5 shows the half-space head response due to head 

shear is poorly modelled, i.e. lower influence coefficient values, 

for the smallest radial dimensioned mesh. This is true for the 

full range of pile/soil stiffness but is most severe for the rigid 

piles and less severe for the most flexible piles. As the radial 

dimension increases the response improves, i.e. the influence 

coefficient increases, until a mesh of 30 diameters lateral extent 

is reached. The mesh with the radial boundary at 60 diameters 

exhibits a reduced influence coefficient value for all pile-soil 

stiffnesses and suggests that a practical limit on the radial 

dimension, using 8 radial elements, is somewhere between 30 and 60 

diameters. 

The reduction in influence coefficient at the large radius, 

from the maximum that was obtained, is less severe than for the 

smaller radius mesh. This suggests the finite element model is 

still capable of reasonable economic solutions at least up to the 

radius of 60 pile diameters. Further, it may be said that adequate 

solutions are possible from meshes of a radius of 15 diameters. 

These comments must be viewed in the light of the pile 

geometry employed and the value of critical length as 

characterised by the pile-soil relative stiffness factor K. 

Considering the head deflection due to head shear, 

from Table 3.5 that, for the most flexible pile (K 

it can be 
-6 

= 10 ) 

R 
seen 

the 
R 

influence coefficient increases with increasing s/d ratio upto a 

ratio of 15. Thereafter it decreases slightly due mainly to the 

reduction in the number of effective elements near the pile. This 

is because the number of radial elements is fixed at 8, which 

means only one or two radial elements were expected to model the 

response in the soil over a distance of a pile critical length. 
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From the calculation of pile critical length, L, it can be 
c 

shown that the most flexible pile and the smallest radial boundary 

mesh have a s/L ratio of 1.34 and the influence coefficient is 
c 

only 91% of the maximum response. The maximum response occurs for 

an s/d of 15 and reduces by only 1% at s/d of 30 thus 'suggesting 

the optimum response will be at some intermediate distance. If s/d 

of 30 is used this represents a mesh with the radial boundary at 

about ten critical lengths from the pile. 

Considering 

flexible pile (K 
R 

the same deflection response for the next most 
-4 

= 10 ) we find a similar picture but with an 

increased variation betwen the largest influence coefficient and 

the influence value obtained from the smallest radial mesh. The 

smallest radial boundary mesh gives an answer only 83% of the 

maximum value. This is because now the boundary is fixed at a 

radial distance of less than half the critical length. 

For the almost rigid piles analysed in the test (K > 1), the 
R 

effect of lateral boundary position played a major role in the 

maximising of the deflection and rotation response. With the 

radial boundary at the shortest distance, 3.75 pile diameters, a 

40% reduction in head response was obtained. This is consistent 

with the important pile dimension, the actual length for rigid 

piles, being much greater than the distance to the radial 

boundary. As for the case of flexible pile response, it was found 

that the depth of layer had very little effect on the response of 

piles for layer depths down to just 1.1 times the pile length, as 

shown in Tables 3.8 and 3.9. 

The results suggest an optimum is a radial boundary at 

between 5 and 10 times the pile critical length or the real 

length, which ever length is shorter, and a layer depth between 

1.5 and 2 times the pile critical length or the real length. 
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3.4.4 Profile Building Analysis 

This analysis uses layers of finite elements to build a 

series of soil profiles of increasing depths. The initial base 

layer of the profile is analysed to get an influence matrix 

relating nodal deflections and loads on its upper surface. The 

next layer to be added is analysed separately to provide a second 

influence matrix relating nodal deflections and loads on both its 

upper and lower surfaces. For each of the two layers, the 

following relationship is derived: 

[1] F = u 3.49 

T T 
where F = (F , F ) is a vector of nodal loads, 

1 2 

T T 
u = (u , u ) is a vector of nodal deflections 

1 2 

[ I >' ] 11 
[1] = 1 is the influence matrix 

21 22 

and subscripts 1 and 2 correspond to the upper and lower surfaces 

of one layer. 

Figure 3.14 shows the original layer and illustrates the 

situation before the two layers are combined on their common 

interface, (lower surface of body (ii) and upper surface of body 

(i) ). Compatibility conditions can be derived for the nodal loads 

and deflections at this interface, as follows: 

u - u = AU 
-1 =2 

F - F = .6.F 3.50 
-1 =2 
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where au and aF are the mismatch of nodal deflections and 

loads occurring at the interface and the number of underlines 

indicates the body number (i) or (ii). 

Equations 3.49 and 3.50 can be used to derive the influence 

matrix for the deflections of the upper surface of body (ii) u , 
=1 

for the combined in terms of the loads on that upper surface F , 
=1 

body composed of bodies (i) and (ii), i.e. 

• T 
u = [I - I I ] F + 1[1 aF - au] 
=1 =11 =12 =1 -11 

• -1 
where I = I [I - I ] 

=12 =22 -11 

3.51a 

and using the fact that aF and au are normally zero, leads to 

u = [I'] F 3.51b 
=1 -1 =1 

• T 
where I' = [I - I I ] is the new influence matrix of the 

-1 =11 =12 
combined bodies (i) and (ii). By introducing a new body (ii) the 

procedure can be repeated using the previously calculated response 

of the already combined bodies as a new initial, base layer. 

Considerable computational economy can be achieved if the body 

(ii) is the same for each layer, thereby necessitating its 

stiffness formulation and solution once only during the entire 

building of a particular profile. 

Because the end result is simply an influence matrix relating 

the loads and deflections on the surface of the soil profile, it 

is a simple task to store this matrix for later use in further 

analyses. For example, the solutions presented herein are 

produced by first analysing a finite layer composed of soil 

elements, increasing the profile depth until the average 

deflection of a circular loaded area on the soil surface does not 
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significantly change when the depth is further increased. This 

"converged" influence matrix can then be used to calculate the 

average deflection and rotation of the soil within the loaded area 

to provide an estimate of the response of a rigid surface footing 

on an elastic half-space. 

The same influence matrix can then be used as the starting 

base layer for an analysis with layers containing both soil 

elements and the stiffer elements of the foundation. This saves 

analysis of the same "converged" block of soil layers for each 

pile to soil stiffness ratio that is considered. The depth of the 

"converged" base layer is sufficient to eliminate the effect of 

the finite depth of the soil profile for all but long stiff piles. 

The present analysis uses fully fixed boundaries to the base 

and sides of the final solution in order to simplify the influence 

matrix formulation. This is not a restriction of the method as 

special substructuring techniques can be employed to account for 

any rigid body modes of movement that require arbitrary fixities 

to be incorporated, c.f. Rowe et al. (1978). The chosen boundary 

conditions were considered the only appropriate ones for the 

comparison of various Poisson's ratios of the soil and the 

different types of loading employed on the half-space model. 

Ten radial elements in total, with two of these elements 

under the loaded area to represent the pier, or the soil under the 

surface footing, were used in order to retain a reasonable size 

for the deflection influence matrix. A banded solver was used for 

the small half-bandwidth system of equations of the finite element 

layer stiffness matrix, and a Gaussian solver with partial pivot

ting was used for the inversion of the combined influence matrix. 

167 



The use of two equation solution techniques actually res·ults 

in a reduction of storage requirements when ten or more radial 

elements are used in the analysis. The fully populated nature of 

the combined influence matrix reduces any benefit from the use of 

the banded solver while the Gaussian solver provides an accurate 

matrix inversion. During the solution process, the symmetry of the 

influence matrices used, and also the range of the maximum and 

minimum pivot, were monitored to indicate numerical instability. 

For the case of axial load the use of thin layers of finite 

elements to model the soil, means the in-plane stiffness far 

exceeds the normal stiffness of the layer. This has the effect of 

introducing large differences in the magnitude of terms in the 

influence matrices and results in numerical difficulties. For 

this reason, and the fixed vertical extent of the depth of soil 

beneath the pile base, the method is not suitable for analysis of 

long stiff piles. 

All analyses presented in this thesis were carefully checked 

against standard finite element solutions of each problem, and 

where possible analytic solutions, to ensure the accuracy of the 

results. The results obtained using this method are considered to 

be accurate and are likely to be better than standard finite 

element solutions because of the finer overall discretisation of 

the problem. 
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3.5 Recommended Method for Linear Analysis 

The three approaches described in the previous sections have 

dominated the analysis of laterally loaded piles. None of the 

approaches represent a definitive version of laterally loaded pile 

analysis: 

a) The 

calibration 

Winkler type of method requires extensive 

with experience to become practically useful and 

has limited predictive capabilities. 

b) The MBEM analysis requires assumptions about non

homogeneous elastic-continuum interaction with the pile that 

reduce its theoretical integrity. 

c) The FEM analyses are usually impracticable for most 

real problems, although Elastic Theory is given its most 

rigorous treatment by this method. 

All these models are restricted to soil-pile interfaces that 

do not exhibit theoretically predicted non-linear response, nor do 

they allow for pile-soil breakaway. 

In this section the MBEM analysis is modified in a logical 

manner to allow for consideration of limited soil depth and soil 

non-homogeneity with depth. Recourse is made to the AGFEM 

analysis to check the modification proposed for the homogeneous 

elastic-continuum model in order to give non-homogeneous soil 

behaviour. 

The possibility of localised soil bearing capacity failure at 

stations down the pile and the concept of a non-linear interface 

element, between the pile and soil, will be introduced to model 

non-linear behaviour in Chapter five. 
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3.5.1 Mindlin-based Soil Layer of Finite Depth 

The elastic Mindlin soil element is derived from the 

behaviour of a homogeneous elastic half-space. It follows that a 

finite depth layer of soil cannot be strictly modelled. The work 

of Poulos (1972) presented a variety of methods by which the 

Mindlin based analysis can be adjusted to provide adequate 

approximation to the behaviour of a pile with a socketed or pinned 

tip in a soil of limited depth. In general the choice of method 

of approximation made very little difference to the head response, 

with the largest effect for rigid piles with fixed tips. The 

various approximations attend to the problem of reducing the half

space influence coefficients in order to give zero displacement at 

the bottom of the layer, where the pile tip is pinned or socketed. 

The horizontal equivalent of the Steinbrenner approximation 

was intuitively found unsatisfactory by Poulos. The correction of 

the influence matrix values by subtracting the deflections at the 

tip, for the loading of successive elements, will overcompensate 

for the lack of stiffness of the upper elements. The further the 

element is from the rigid base, the smaller becomes the expected 

effect of the rigid base upon the element deflections. This method 

also makes no allowance for the conservation of symmetry of the 

influence matrix that is required by the use of elastic theory. 

When the influence matrix is expressed in terms of average 

element displacements and total forces at elements, the use of 

elastic theory should result in a symmetric matrix. This feature 

of elastic theory should also be displayed in the head response, 

with the deflection due to applied moment and the rotation due to 

applied shear being equal from the reciprocal theorum. 
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This conservation of symmetry is not observed in the 

preferred "mirror image" method of Poulos. However, it seems 

likely that the preferred form of the approximation, for the 

behaviour of elements distant from the rigid base, provides a gain 

in accuracy of modelling of behaviour, that gain being greater 

than the errors involved in using a slightly non-symmetric soil 

influence matrix. 

Another possibility that was considered is to use the 

influence coefficients for an elastic half-space in the boundary 

element analysis without modification, but with the displacement 

of the tip elemenc restrained to be zero. This method takes no 

account of the layer depth and arbitrarily assumes a displacement 

profile for the soil below the supposed rigid base. 

A more satisfactory approximation is to use the fact that the 

displacements of any soil at and below the level of the pile tip 

should be zero in the rigid base. This will still be an 

approximation, since the displacements of points in the rigid 

base, other than on the extended pile length, Will not necessarily 

be zero. One possible way of achieving this zero displacement 

regime is as follows. 

The soil elements in the model may be extended below tile 

actual pile tip, for some length deemed sufficient to model the 

rigid base. It can be seen that the previous fixing of just one 

node at the tip is one limit of such a method, while extending the 

zero deflection soil elements to infinity is the other limit. A 

convenient distance to maintain zero displacement elements might 

be seen as five pile diameters, since the influence of a loaded 

soil element upon another element is very small at that spacing 

when compared to the self influence. 
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The soil influence matrix for a homogeneous soil may be 

partitioned, so as to separate the quantities of load and 

displacement into one set for the soil layer and another set for 

those in the "rigid base layer". 

[:" :'b] [:,].[:'J 
3.52 

bs bb b b 

where subscripts sand b refer to the upper soil layer and lower 

rigid base layer. If the lower deflections, u, are equated to 
b 

zero, then there is established a relationship between the upper 

soil loads, W, and the lower soil loads, W. Employing this 
s b 

relationship for the upper deflections u we find 
s 

u = [ I 
s ss 

-1 
I I I ] 
sb bb bs 

W 
s 

3.53. 

Equation 3.53 shows the modification would retain any 

symmetry in the original influence matrix, unlike the "mirror 

image" modification preferred by Poulos (1972). The modified 

influence matrices from both the "mirror image" and the new method 

outlined here, have been found to be very similar from a limited 

number of calculations made for an Lld = 10 pile. 

It is considered that the elastic analysis of a relatively 

stiff socketed or pinned tip pile is best accomplished by using 

the Finite Element Method, since there are none of the above 

approximations involved in this form of elastic analysis. The 

stiff piles encountered in practice are usually short enough to 

allow good modelling with an economical number of finite elements. 

Further, socketed rigid piles are less common than the more 

practical case of flexible piles. Very few piles would be designed 
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outside of the flexible range, and as such have a head behaviour 

that is virtually independant of the tip condition. 

Various researchers, including Carter and Booker (1981), and 

Velez, Gazetas and Krishnan (1983), have used this aspect of pile 

behaviour to employ limited depth finite element mesh geometries, 

for essentially socketed piles, to provide results for the 

behaviour of flexible floating piles. 

In respect of the above it was deemed unnecessary to deeply 

investigate this aspect of behaviour and felt sufficient to out

line the possibility of adapting the Mindlin based solution. The 

results of Poulos (1972) and the trends evident in the results 

presented later for the Winkler soil model are suggested as 

adequate solutions, while the use of Finite Element Methods in 

particular cases may be worthwhile when a more accurate solution 

is desired. 

3.5.2 Modification for Non-Homogeneous Soil Profiles 

The often referred-to limitation of analyses based upon 

Mindlin's equations, is the restriction to soils that are 

homogeneous and isotropic. While the isotropic restriction 

remains, it is possible to postulate a non-homogeneous response, 

as has been done by Poulos (1972), Pise (1982) and also by 

Banerjee and Davies (1978). While such methods have provided 

useful results, there has been little checking of the analytical 

basis of the modified solutions, with the exception of Banerjee 

and Davies. 
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Any result of the modification of the homogeneous response 

should be expected to obey, at least approximately, the reciprocal 

law, as typified by the Maxwell-Betti theorum in structures, which 

leads to symmetric influence matrices. The modifications must then 

be shown to be symmetric in their effect upon the influence 

matrix. For this reason the early results of Poulos for non

homogeneous soil have been shown to be approximate in the sense 

that his method of modification was not symmetric. In a later 

paper (Poulos, 1979), it was recommended that the mean of the soil 

moduli at the influencing and influenced element be taken in order 

to modify a homogeneous solution. This does represent a symmetric 

effect upon the influence coefficents and has been generally 

adopted in analyses that use a modified form of the equations of 

an homogeneous elastic half-space response. 

This mean-modulus modification pays some regard to the 

importance of the elastic properties of the soil between the 

influencing and influenced elements. It represents a form of the 

equivalent modulus concept, which assumes the essential response 

of some system composed of non-homogeneous material can be 

represented by taking an equivalent modulus in a homogeneous 

model. This approach is attractive for its economy but must be 

used with caution since there is no sound theoretical reason for 

its use and virtually resorts to a Winkler based approach. 

The Poulos-type mean modulus method was tested in an axially

loaded pile application, where all the elements were of the same 

size. However, the modified boundary element model used here for 

laterally-loded pile response involves half elements at the head 

and toe of the pile. This introduces a disturbance to the natural 

trend for symmetry in the influence coefficient matrix, that 

should naturally result from observance of the reciprocal law. 
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Using a definition for the influence matrix based upon unit 

uniform normal tractions acting over elements, leads to the head 

and toe elements sustaining only half the total force that arises 

at internal, full elements. Further, the use of displacements at 

discrete points, and at both the centre depth of internal elements 

and top or bottom edge of the first and last elements, will lead 

to inconsistent sampling of the changing patterns of response 

within elements. For these reasons the influence matrix relating 

traction and displacement for the soil model will not be 

symmetric, although it should show a strong tendency to symmetry 

for internal element response. 

In order to properly assess the modification to the 

homogeneous solution, it is necessary first to ensure that there 

is no contradiction of the reciprocal nature of elastic behaviour. 

According to Love (1928), Maxwell in 1864, demonstrated the 

reciprocal theorem with particular reference to structural 

behaviour, and by formulating the problem in terms of work, the 

elastic continuum behaviour may also be demonstrated to obey the 

reciprocal theorem. To this end it is convenient to define the 

interface traction to be uniform and then it becomes necessary to 

define the deflection to be an average over the element. 

These definitions of distributed load and average deflection 

over areas ensure the symmetry of the influence matrix, because 

the terms to be related can be used directly to calculate the work 

done by the total force at an influencing element over the 

displaced region of its own or any other element. Brown and Booker 

(1976) have pointed out the facility of using such definitions for 

a numerical model of a raft interfaced to a visco-elastic soil 
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model. The resultant symmetric, positive definite influence 

matrix, I , can be expressed as 
ij 

( u E d ) / F = I 3.54 
ij ref j ij 

where u is the average normal displacement at the i.th element 
ij 

due to load on the j.th element, E 
ref 

is a convenient reference 

Young's modulus, d is a representative dimension (here the element 

width is used) and F is the total force resulting from a uniform 
j 

normal traction over A , the j.th element area. 
j 

The form of u will vary depending upon the form of the non-
ij 

homogeneity and for the homogeneous case is given directly by the 

equations of Mindlin integrated over a rectangular vertically 

plane region. Any postulated form of modification must allow the 

recovery of the homogeneous answer and also maintain a symmetrical 

effect. To this end a form of modification similar in nature to 

the mean modulus proposal is defined as 

~~ 

u = u E / E 3.55 
ij ij ref ij 

""j~ 

where u is the mean displacement at a node in a homogeneous 
ij 

soil whose modulus is E and E = (E A + EA) / (A + A), 
ref 1J 1 1 j j i j 

a weighted modulus for interaction between elements i and j in a 

non-homogeneous case. 

In this way the influence matrix, I ,can be prepared for a 
ij 

non-homogeneous material. The method gives extra weighting to 

whichever of the loaded or influenced areas is the largest. The 

modulus values that correspond to each element are taken to be the 

average value over the depth of the element, in keeping with the 

concept of an equivalent modulus. This average also avoids the 

possibility of assigning zero modulus to the element at the 
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surface for the case of soil modulus proportional to depth. It is 

convenient to take the reference modulus, E ,to be the value at 
ref 

the tip of the pile, noting that this is not necessarily the same 

value as for the modulus of the element at the pile tip. 

This formulation results in a symmetric modification of the 

influence matrix and gives extra weight to the moduli of larger 

elements of the discretised soil. While this appears intuitively 

correct it is no more than an approximation, and it is necessary 

to investigate the worth of such an approach before applying it to 

lateral pile response analysis. It must be emphasised that the 

adequacy of this approach for lateral pile response analysis will 

not mean that a universal application of such an approach to other 

problems will always be adequate. 

Indeed, the modification depends upon the region of major 

straining being close to at least one of the points at which the 

weighted average modulus would be found. A hypothetical example 

where this is not true is a cantilever with non-homogeneous 

modulus with length, where the largest bending moment, and there-

fore strain, being at the base means the major straining may well 

occur away from either of the influencing or influenced points on 

the beam. In such a case the required equivalent modulus has no 

similarity to the weighted average modulus employed in this 

modification. 
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Mindlin Non-Homogeneous Soil Verification 

Apart from the work of Davies and Bannerjee (1978) there has 

been little advance in the analysis of point loads acting in 

elastic continua with non-homogeneous Young's modulus. The results 

of Mindlin (1936), say expressed in the form derived by Douglas 

and Davis (1964), remain the most commonly employed model upon 

which some modification is imposed to approximate the effect of 

non-homogeneity. The finite element method currently provides the 

best means with which to properly take account of non-homogeneous 

Young's modulus. Thus, the method of modifying the Mindlin 

solution, if it is to provide adequate modelling of lateral 

loading of non-homogeneous soil profiles, must be shown to work 

satisfactorily on the results from a finite element analysis of a 

similar problem. 

The Mindlin-based model is a strip in an elastic half-space, 

i.e. a region in the continuum corresponding to the pile, but with 

zero thickness and width equal to the pile. The Mindlin-based 

problem is defined by applying an x-directed uniformly distributed 

loading on rectangular elements of the discretisation, which is 

not defined in terms of stress resultants on the soil but is 

directly related to the resultant distributed load acting. 

The axisymmetric geometry finite element model consists of a 

large cylinder of elastic soil of finite radius and depth, with a 

central circular hole where the pile would be situated. In a 

similar manner to the Mindlin-based analysis, the finite element 

model uses an x-directed distributed traction, but now around the 

circular hole face. Both of the assumed interface tractions have 

no resultant load across the direction of loading, i.e. across the 

pile face. However, the finite element modelling does include 
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circumferential shear, but it is self-equilibrating in the y-

direction. 

The deflection of the Mindlin soil element, is at the mid

height of internal elements of constant height and the upper and 

lower edges of the top and bottom half-height elements, see 

Fig. 3.7. An average deflection across the element face at these 

nodal depths is found, as defined in Section 3.3.2. This means a 

similarly defined deflection should also be found from the finite 

element-based response. In this case, with load in the 9 = 0 

direction, it can be shown that the average of the x-directed 

deflections at 9 = ~/2 and 9 = 0 can be used. This means the 

deflections found in the finite element analysis, Fourier 

coefficients U and U , can be directly used. 
r 9 

While the finite element model has been devised to be similar 

to the Mindlin model, this leads to two results: 

The average deflection used to describe the soil behaviour is 

not a true average deflection over the entire height of the 

elements of either model, although the value is close to the true 

average. If an average deflection over the entire surface area of 

the applied load were used, in conjunction with unit resultant 

force applied by the uniform tractions, a symmetric set of 

influence matrices results. Thus the soil influence matrices from 

both analyses are somewhat non-symmetric. While this does not 

affect the quality of the eventual pile solution, it makes 

checking for errors in formulation more difficult. 

Secondly, it is a characteristic of the finite element 

formulation that any coarseness of the mesh will result in locally 

poor deformation patterns for some elements; this is especially 
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true for the elements with lower modulus near the surface in 

highly non-homogeneous profiles. When the average deflection of 

an entire element is found, the locally-affected deflection 

pattern smooths to give a more satisfactory result. This complete 

averaging is not the method that was employed by the Mindlin-based 

soil analysis, and so the comparison here has been restricted to 

averaging the deflection at the same depth as the Mindlin-based 

soil nodes, see Fig. 3.7b. 

Two finite element meshes were used, to analyse pile length 

to diameter ratios of ten and twenty. Both meshes had eleven 

elements for the pile length, a rough radial boundary at twenty 

pile radii and a rough base boundary at a depth of two pile 

lengths. The uniform uni-directional traction was applied to each 

element of the interface in turn and the deflections of the 

desired nodes recorded in a soil influence matrix. This procedure 

was followed for the soil non-homogeneity ratio, E lE equal to 
o L 

1.0, 0.5, 0.3 and zero. 

The eight interface geometries were also analysed using the 

Mindlin soil element, using the suggested modification procedure 

to predict the non-homogeneous response. The resulting soil 

influence matrices were then output for comparison with those from 

the finite element analyses. This comparison indicated that the 

soil response from the finite element method was 82% of that 

obtained from the Mindlin half-space approach for the deflections 

due to self influence of loaded elements. 

This difference was expected and arises because the results 

from using the finite element mesh are affected by the proximity 

of the boundaries, mainly the radial boundary. The infinitely 

large volume of material in the Mindlin solution, that can strain 
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and add to the total deflection, can never be modelled using 

conventional finite elements. However, this extra deflection 

presents itself as a rigid body motionthat is fairly constant over 

the entire length of the interface. As such, it will have little 

effect upon the interaction behaviour between loaded elements, 

which is of importance here. 

Despite the differences between the two problems in form of 

loading and geometry of the discretised elastic soil, the two sets 

of results are very similar. This similarity of both responses, 

suggests that soil response is not sensitive to changes of pile 

cross-section geometry, as was suggested by Baguelin et al. 

(1977) • 

Because there is some difference between the deflections 

predicted by the two models of the interface, direct deflection 

comparison of the two does not represent a fair nor appropriate 

test of the prediction of non-homogeneous behaviour by the 

proposed method of modifying the homogeneous response. In order 

to accomplish this, the finite element results for a homogeneous 

soil will be modified using the chosen method to predict the non

homogeneous deflection response. This modified homogeneous finite 

element solution can in turn be compared with results using the 

non-homogeneous soil profiles directly in a finite element model. 

Figure 3.15 shows the deflected soil profiles based upon the 

influence matrices found by the modified Mindlin analysis and the 

direct finite element approach, for Lld = 10. The load is applied 

at the depth of the third element from the surface. It should be 

noted that the actual soil profiles differ slightly from those in 

the figure, since only one horizontally averaged deflection point 

at the centre depth of each element is used to define the curve. 
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It is apparent that the two methods of analysis have their 

worst agreement in the upper portion of the curves, for the highly 

non-homogeneous case of a modulus proportional to depth. This 

arises because the average deflection across one depth (at the 

centre of the element) is used in the influence matrix. If the 

average deflections over the entire area of the elements were 

compared, the discrepancy would be less severe than this method of 

plotting the profiles suggests. 

The two sets of curves also display the larger bulk movement 

of the soil in the results based upon an elastic half-space, 

compared to the finite element results. As mentioned, this is due 

to the finite boundary to the region modelled by the finite 

element analysis. But, significantly the two methods both give 

the same trends with depth and non-homogeneity factor. A similar 

picture to that depicted for Lld = 10 was found for the longer 

length to diameter ratio case of twenty. 

The appropriate comparison, to check the modification 

procedure, is that between the results of the non-homogeneous 

finite element analyses and the predictions for non-homogeneous 

response from the modified homogeneous finite element response. 

This has been done in Figs 3.16 and 3.17. Figure 3.16 is a 

profile of the ratio of predicted to actual soil deflection for 

loading of the third element. Figure 3.17 is a plot of the same 

ratio of deflections, but for the self-influence of loaded 

elements and is not a soil response profile. 

It is clear from the plots of the ratio of predicted soil 

deflection (using the modified homogeneous solution) to the 

deflection from the actual non-homogeneous solution, that the 

modification generally leads to an over-prediction of the 
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deflections down the profile. While this may reach a value of 

thirty percent near the base of the profile, the large apparent 

error should be viewed in the perspective that the total 

deflection involved is several orders of magnitude smaller than 

the maximum deflection due to self influence. Also, the largest 

influenced-deflections are typically only between one third and 

one half of the self-influence deflection. When these errors are 

scaled it becomes apparent that they are not significant. 

For the response depicted in Fig. 3.16 near the surface above 

the third element, the highly non-homogeneous nature of the soil 

leads to localised perturbations in the deflected shape from the 

finite element analysis that make the comparison based on only one 

deflection magnify the apparent error. In the case of longer 

piles, the local deformation means the top element deflection has 

been over-predicted and second element deflection under-predicted 

by the finite element analysis of the non-homogeneous profile. The 

predicted response from the homogeneous analysis possesses errors 

that are in the opposite sense. Thus, the modification of the 

homogeneous solution actually seems to improve the accuracy of the 

non-homogeneous solution that results. 

The adequacy of the modification method is better displayed 

in Fig. 3.17, where the accuracy ratio for the self-influenced 

behaviour is plotted against position in the profile. This 

figure shows the accuracy of the upper two elements are the worst. 

But again it could be argued that the non-homogeneous responses, 

predicted using the modified homogeneous response, are preferable 

to those from the actual finite element analysis of highly non

homogeneous profiles. The trend is consistent with the large 

strains and magnified errors of the smaller modulus material 

leading to an over-prediction for the top element and an under-

183 



prediction for the second element responses. 

It may be that finer meshes and the definition of the 

influence coefficient in terms of the average deflection over an 

entire element area, would lead to a better performance in the 

above tests. However, these improvements concern the behaviour of 

the finite element model, not the method of modification of the 

homogeneous elastic half-space used in the boundary element model. 

It has been shown that the proposed method of modification of 

the homogeneous soil influence matrix gives adequate influence 

matrices for non-homogeneous elastic soil profiles, based upon the 

results of its application to a finite element model. Thus, the 

modification is expected to give satisfactory answers when applied 

to the Mindlin-based elastic model of the soil. This adequacy is 

strictly only limited to the behaviour of the types of soil 

profiles checked here, i.e. with a linear increase of Young's 

modulus with depth. Severe step changes in Young's modulus might 

not be expected to be as accurately modelled by the modification, 

but their consideration will be delayed until Chapter five, where 

they will be considered in association with the new analysis 

method developed there. 
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3.6 Conclusion 

Section 3.2 describes an analytic solution of single 

laterally loaded piles using a Winkler soil model, which gives a 

discretisation-free result of a problem that can also be solved 

numerically using the MBEM approach of section 3.3. This provides 

a valuable check upon the accuracy of the MBEM solution procedure 

and indicates the degree of discretisation necessary to achieve 

this accuracy. Further, the simple Winkler-based answers agree 

favourably with elastic continuum-based ones for the problem of 

distributed loading of thin vertical regions of soil, akin to a 

pile projected shape, see section 3.3.2 and Fig. 3.5. 

The elastic finite element method employing analytic 

modelling of the circumferential behaviour (section 3.4), has been 

used as a benchmark program against which to assess the accuracy 

of the modifications in the recommended soil model that was 

developed from an isotropic homogeneous elastic half-space model. 

Extensive checks of the accuracy of the finite element program 

have been made and some of them reported here in section 3.4.2. 

The recommended method for analysis of single laterally 

loaded piles in an elastic continuum is presented in section 3.3 

and 3.5. The necessary modifications for soil of limited depth 

and non-homogeneous Young's modulus with depth have been 

described. Checks with the finite element answers were made for 

the non-homogeneous modification and the limited depth 

modification method was compared with existing methods. In this 

chapter the MBEM analysis has been developed to give accurate 

linear elastic solutions to the problem of a single laterally 

loaded pile in both a Winkler and elastic continuum soil. 
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Load Deflection of a Mean Deflection of 

Type Uniformly Loaded a Uniformly Loaded 
Rigid Circle Square 

Vertical wE .. wE 1( 

at Pvd = "4 ( I - • 2) pd = 3,"TI( 1 - • 2) 

Surface 

(Poulos & Davis, 1974) (Giroud, 1972) 

Normal uE .. 2 (1 + .) (3 4. ) uE ,,- 2 (1 + .) (3 4. ) - -at pd = TI .. ( I . ) pd = 26 ,,- ( I . ) Depth - -

(Se I vadurai, 1976) (Section 3.3) 

TABLE 3.1 Eqllations for Deflection of Uniformly Loaded Rigid 

Circlllar Plates and Mean Deflection of Uniformly Loaded Sqllares in an Isotropic 

Homogeneolls Elastic Medillm. 

Elastic Winkler No Interaction: 
Load Case E, Es = E Superposition Winkler/ • pd - Esu Solution Elastic 

Horizontetl 
Surietce Squetre 0.861 1.0 0.592 
l l l l l 

Verticetl 
Shetllow Squetre 

0.408 
d 0.559 0.5 0.367 

0.327 

d , , 

0.559 0.5 0.364 

Any Orientettion 0.404 0.5 0.278 Deep Squetre 
L..... __ .. __ 

TABLE 3.2 Average Deflection Reslllting from Loadil'g of a Unit Sqllare by Unit 

Applied Traction for SlIr face a/ld Bllried cases (E - 1 , = 0.3, 

Elastic Theory Parameters). 



liE (. 
pd a 0.5) 

L 
d Rigid Plate MBEM Rigid Approx. Mean of Douglas and Flexible Area Pile Analysis 

Davis (1964) (21 e I emen t s) 

0.25 0.230 0.267 0.247 

0.5 0.394 0.390 0.367 

1 .0 0.500 0.535 0.508 

2.0 0.665 0.694 0.662 

5.0 0.900 0.910 0.879 

------ --------

TABLE 3.3 Various Estimates of the Mean Lateral Deflection of Vertical Rigid 

Plates and Piles of Different Buried Length to Breadth Ratios in an Elastic Isotropic 

Homogeneous Soil Due to Uniformly Distributed Lateral Load. p . 

Load Error in Deflection % 
Case u v w 

Axial - 1 .0 - -2.4 

Torsional - - 0.7 -

Horizontal -2.0 -2.2 -7.6 

Moment - 2.8 - 0.8 -0.6 

TABLE 3.4 Differences in Maximum Deflection at the Edge of a Circular 

Loaded Region on an Elastic Half-space. • - 0.3. between the AGFEM Analysis 

and the Results of Gerrard and Harrison (Poulos and Davis. 1974). 



KR 

KR 

u E L 
H 

s/d 3.75 7.5 I 5 30 60 

10- 6 14.74 15.78 16. 12 15.96 15.53 

10- 4 
6.96 8.02 8.40 8.24 7.79 

10- 2 2.53 3.22 3.68 3.75 3.45 

10- 1 1.89 2.54 3.00 3.09 2.82 

10' I .80 2.45 2.91 3.01 2.73 

10 ' I .79 2.44 2.90 3.00 2.73 

10 2 1.79 2.44 2.90 2.99 2.72 

TABLE 3.5 Influellee Coeffieie1!1 for Defleetioll due to Shear for a 

Lld - 20 pile and hlL - 2. 

u E L' 
and 

8 E L' 
M H 

s/d 3.75 7.5 15 30 60 

10- 6 193.4 195.7 195.2 193.9 192.9 

10- 4 55.5 58.5 58.4 57. I 55.7 

10- , 6.72 7.78 8.30 8. 14 7.52 

10- 1 3. 14 4.02 4.54 4.46 3.96 

10' 2.66 3.54 4.06 3.98 3.48 

10 ' 2.61 3.49 4.01 3.93 3.44 

10' 2.61 3.48 4.00 3.92 3.43 

TABLE 3.6 Influence Coeffieiem for Deflection due 10 Moment and Rotation 

due to Shear for a Lld - 20 pile and hlL - 2. 



s/d 

KR 

10- 0 

1 0 - 4 

10- , 

10- , 

10° 

10' 

10' 

8 E L3 
M 

3.75 7.5 1 5 30 60 

23001 22996 22970 22940 22936 

1038 1053 1049 1040 

36.6 39. 1 40. 1 39.5 

8.78 10.4 1 1 . 3 1 1 . 1 

5.44 7.03 7.89 7.62 

5.09 6.69 7.54 7.28 

5.06 6.65 7.51 7.24 

TABLE 3.7 Influence Coefficient for Rotation due to Moment 

for a Lld = 20 pile and hlL - 2. 

1034 

38.0 

10.0 

6.66 

6.31 

6.27 

I 



u E L 
H 

h/L 1 . 1 1 .25 1 . 5 2 4 

KR 

10·· 15.92 15.93 15.95 15.96 15.96 

10·- 8.21 8.22 8.23 8.24 8.24 

10· 2 3.71 3.73 3.74 3.75 3.74 

10· 1 3.06 3.08 3.09 3.09 3.09 

10· 2.97 2.99 3.00 3.01 3.00 

10 ' 2.96 2.98 2.99 3.00 2.99 

10 2 2.96 2.98 2.99 2.99 2.99 
~-

KR 

h/L 

10· • 

10. 4 

10. 2 

10· 1 

10· 

10 ' 

10 2 

TABLE 3.8 Influence Coefficient for Deflection due to 

Shear for a Lld = 20 pile and sld - 30. 

u E L2 
and 

8 E L2 
M H 

I . I I. 25 1.5 2 

193.8 193.8 193.8 193.8 

57.0 57.0 57.0 57.0 

8 . I I 8. 12 8. 13 8. 14 

4.41 4.44 4.46 4.46 

3.92 3.96 3.98 3.98 

3.87 3.92 3.93 3.93 

3.87 3.91 3.92 3.92 

- - L-____ ._ --_._---- ~ ~ 

4 

193.8 

57.0 

8. 13 

4.45 

3.97 

3.92 

3.92 
, --_._-_.-

TABLE 3.9 Infil,ellce Coefficient for Deflectioll due to Moment and 

Rotation due to Shear for a Lld - 20 pile and sld - 30. 



h/L 

KR 

10- , 

10- 4 

10- 2 

10- 1 

10° 

10 ' 

10 2 

8 E L' 
M 

I . I I .25 I . 5 2 4 

22943 22942 22941 22940 22939 

1040 1040 1040 1040 

39.3 39.4 39.5 39.5 

10. 7 10.9 I I . 0 I I . 0 

7.25 7.49 7.59 7.62 

6.90 7. 14 7.25 7.28 

6.86 7. 10 7.21 7.24 

TABLE 3.10 Influence Coefficient for Rotation due to Momellt 

for a Lld - 20 pile and sld - 30. 

1040 

39.5 

I I . 0 

7.60 

7.26 

7.22 

I 
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CHAPTER FOUR - LATERAL PILE RESPONSE EFFECTIVE LENGTH CONCEPT 

AND LINEAR RESULTS 



4.1 Introduction and History 

In order to provide a clear picture of the effect of relative 

pile-soil stiffness, recourse can be made to the proposition that 

an effective length of pile, equal to or shorter than the actual 

pile length, is associated with lateral pile behaviour. Such 

hypotheses have been proposed many times in the past. The name of 

the original proposer is difficult to determine from the 

literature. The American Society for Testing and Materials 

Special Technical Publications 154 and 154a (1953) include perhaps 

the earliest public discussions of the existence of an effective 

pile length which refer to work published in 1935. 

The commonly held belief that only a limited number of 

diameters of a flexible pile length were active (or effective) in 

resisting load was also evident in the discussion of McClelland 

and Focht's paper of 1956. However, it was clear that the idea 

had not gained complete acceptance and that much of the 

quantitative work was based on the recommendations of Hetenyi 

(1946) or the work of Reese and Matlock (1956). While the lack of 

importance of the real pile length for flexible pile behaviour has 

been discussed widely, it has been assumed without comment that it 

is the actual pile length that is effective, if the pile is 

relatively stiff with respect to the soil. 

During the 1950's, the emphasis of research was directed at 

correlating the Coefficient of Subgrade Reaction with soil type 

and even elastic parameters. The question of effective length 

remained relatively inconspicuous. One use of it was to explain 

why inconsistent field test and theoretical results beyond the 

effective (or critical) length were unimportant. 
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To a large extent, the critical length of a pile remained as 

a property of the Winkler soil model applied to lateral pile 

behaviour. The elastic continuum analyses, that were produced to 

model pile behaviour, were not expected to give results for which 

the ~inkler critical length applied. 

Poulos (1971a) showed that for a particular pile in a soil 

with a uniform Young's modulus, the effect of increasing the pile 

length was to reduce the head deflection due to shear loading 

until a limiting value was achieved. His analysis of a concrete 

pile for 

length at 

three values of soil Young's modulus showed 

which the pile head response achieved this 

that the 

limiting 

value changed with the soil parameters. The trend was for the 

pile in a softer soil to achieve a constant head response, with 

increasing pile length, at a longer pile length than in the 

stiffer soil profile. This trend was the one predicted from using 

the various estimates of critical length that had been proposed in 

the literature for piles modelled using subgrade-reaction theory. 

Reese and Matlock (1956), Matlock and Reese (1960), Vesic 

(1961), Oteo (1972) and others h~ve proposed equations that give 

the length within which the pile was deemed to be effective. None 

of the equations appear to have been tested against the results of 

elastic analyses although such a move was often recognised as 

potentially interesting and worthy of further consideration. 

Apparently, it was not until the finite element work of 

Randolph (1977) that a serious attempt was made to predict the 

critical length of a flexible pile in an elastic continuum. 

Randolph's recommendations are based upon fitting a curve through 

points of estimated critical length, based upon the results of a 

finite element parametric treatment of piles of varying length, 
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and relative pile-soil stiffness. In other words, a matter of 

judgement was involved in the choice of the length beyond which 

extra pile length was deemed ineffective, although the application 

of dimensional analysis defined the general form of the variation 

of the critical length with relative pile-soil stiffness. 

At present, the work of Randolph represents the most complete 

investigation of critical length for an elastic medium containing 

a laterally loaded pile. For the subgrade reaction method, 

Matlock and Reese have provided the most commonly-used expression. 

In the present work, the equation for the critical length will be 

defined for the Winkler soil model and shown to apply to the 

results from the elastic continuum method. As both methods support 

the same expression for critical length, it can be concluded that 

it is a theoretical property of lateral pile response, not just a 

result associated with one method of analysis. 

In section 4.2 the effective length hypothesis and comparison 

of the equation for critical length, based upon the Winkler model, 

with other proposed expressions is made. Also the use of the pile 

critical length for presentation of results is discussed. 

After this is a section verifying the hypothesis using three 

approaches to the analysis of laterally loaded piles. Included is 

a section about the general position which piles occupy in the 

wider class of problems that are amenable to elastic continuum 

analysis. Then the critical length of flexible laterally loaded 

piles will be shown to have parallel lengths for axially loaded 

compressible piles and flexible strip footings. 

Section 4.4 considers the problem of dimensioning a test pit 

for the large scale model testing of off-shore piles with due 

regard to the existence of a pile critical length. 
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4.2 Effective Length Hypothesis 

When the response of a pile head to lateral loading is 

considered, it is postulated that: 

For a given soil, containing a pile of certain cross

sectional properties, there exists a length of pile that 

provides a critical head stiffness which is not increased by 

an increase of pile length. 

Such a definition has been implicit in many previous 

statements on the behaviour of piles. The word "critical" is 

sometimes replaced by the words "effective" or "elastic" but in 

every case it is used with the word length. To some extent this is 

unfortunate because other methods of pile analysis, the equivalent 

bent method for example, also use the words "effective" or 

"critical" in respect of length. Indeed, buckling of piles 

involves a "critical length" and so a measure of confusion is 

bound to accompany the use of the words "effective" and "critical" 

when associated with pile length. 

A more acceptable term might be "effective depth", or 

"critical depth", implying that the quantity is not solely a 

property of the pile like the actual pile length. Use of the term 

"length" tends to obscure the fact that the pile and soil 

stiffnesses both combine to define the critical depth, beyond 

which any extra pile penetration has very little effect on head 

load response. The word "depth" also reinforces the concept that 

the nature of the quantity is such that the critical depth always 

exists, even though the pile tip may not penetrate to that depth. 
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It should be noted that in the hypothesis no restriction is 

placed upon the form of the soil modulus distribution with depth. 

In fact, the critical length concept applies equally well to any 

soil profile that has a smooth variation of modulus with depth. 

Also the pile cross-section may vary with depth in a known manner. 

It is obvious that soil profiles which have step changes, i.e. 

layered profiles, will to some extent modify the approach to use 

of the critical length concept. If the homogeneous upper layer is 

sufficiently stiff then no appreciable load would reach the 

remainder of the pile in a softer lower layer. This case requires 

special treatment of the soil involving a uniform modulus with 

depth and the pile length equal to the layer depth. 

Any pile longer than, or equal to, the "critical" length is 

termed flexible while shorter piles may be described as either 

rigid or of intermediate flexibility. For the shorter piles the 

head response to head load will vary with changes of pile length 

and so the "effective length" of such piles will be the actual 

pile lengths, while the "effective length" for the case of (long) 

flexible piles will be the critical length, since the actual pile 

length is no longer important. Thus, the effective length of a 

pile-soil system can be defined as the shorter of the actual pile 

length and the calculated critical pile length. 

The effective length concept does not suggest that the 

effective length to diameter ratio is unimportant. This is only 

true for the simplistic approach taken by Winkler-based analyses. 

In general, the same effective length of pile will not mean the 

same head response stiffness for two piles, unless both diameters 

(i.e. the effective length to diameter ratios) are equal. 
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4.2.1 Critical Length Equation 

Just as the simple Winkler model of soil behaviour can be 

employed to examine the trends of pile response as various 

parameters are changed, so too can it be used to shed light upon 

the requirements of an expression for predicting the critical 

length. By recourse to the analytic solution for pile behaviour 

in a Winkler uniform Subgrade Modulus soil, the variation of 

behaviour with increasing pile length can be examined. Recalling 

equ. 3.9 

yz 
u = e (C cos yz + C sin yz) + 

1 2 

-Yz 
e (C cos Yz + C sin yz) 

3 4 

it is obvious that the variation of deflection with depth is 

governed by the product of exponential terms and cyclic terms with 
1/4 

a period (wavelength) of P = 2 ~/Y, where Y = (E /4E I) and 
s p p 

E is the Subgrade Modulus. 
s 

The values of the coefficients will depend upon the boundary 

conditions at the buried tip and the head of the pile. Because of 

the impossibility of a head load causing a deflection distribution 

down the pile that increases in magnitude with depth in an 

exponential manner, C and C must both be zero. Coefficients C 
1 2 3 

and C are not bounded in this way since the exponential decay 
4 

term will always enforce a value tending to zero for large depth. 

When it is recognised that the aim is to locate the minimum pile 

length that behaves fully flexibly, it can be seen that the tip 

boundary conditions of zero bending moment and shear force are 

applicable. 
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Hetenyi has solved this problem for the case of a pile of 

infinite length in a uniform Subgrade Modulus soil. His solution 

for deflection, u and rotation, S down the pile in terms of head 

shear, H and moment, M may be written 

-Yz 
uE = 2Ye [Hcos Yz + MY(cos Yz - sin yz») 

s 

2 -Yz 
SE = 2Y e [H(cos Yz + sin yz) + 2MYcos yz). 

s 4.1 

It should be noted that only the exponential decay terms of 

the general solution remain, thus ensuring that the deflection and 

rotation both decay with depth. From the cyclic nature of this 

solution, the deflections and rotations will also be zero at an 

infinite number of depths corresponding to intervals of one half 

wavelength. Neglecting the constants in equ. 4.1, the resulting 

pattern of the deflection and rotation distributions due to head 

shear and moment can be plotted against Yz, as in Fig. 4.1a. It is 

evident that for Yz greater than 2~ there is very little effect 

upon the pile deformation due to head loads. From the reciprocal 

nature of the problem it must follow that the head response will 

suffer very little effect from the loads generated at and below 

the depth of one wavelength of the solution (2 ~/Y). 

Not too much importance should be placed on the cyclic nature 

of the solution, i.e. the stationary points in the deflection or 

rotation distibutions. Of much more importance is the exponential 

decay term which "damps" the solution, leading to very little 

response at a depth ofw/y. If the inverse exponent term is 

considered, it is found that the maximum value is unity at zero 

depth and by the time the depth is one half wavelength of the 

cyclic component it becomes less than 5% of the maximum value. 
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Because the smallest depth to represent a critical length of pile 

is required, in order to be of most advantage in producing and 

assessing an economical pile design, the choice of critical depth 

will be taken as one-half of a wavelength of the solution of a 

laterally loaded pile in a uniform Subgrade Modulus Winkler soil. 

Thus the product of an exponential decay and a sinusoidal 

function governs the variation of deflection, rotation and also 

bending moment and shear force with depth. It follows that for the 

loading of a semi-infinite beam in a Winkler soil the critical 

depth at half a wavelength of the solution is 

z = 1/2 . zrr/y or 
c 

1/4 
E I 4.2 

z = ITfi E E 
c E 

s 

This is really a restatement of the classification proposed 

by Hetenyi, that piles with length greater than a critical length 

IT/Y behave flexibly and he further suggests that piles of length 

less than one quarter of the critical length behave as if the pile 

were rigid. 

The critical length is thus based upon a half wavelength of 

the solution of a pile in a uniform Winkler soil. The cyclic 

nature of the solution, expressed by equ. 4.1, ensures a zero 

response at points down the pile and the exponential decay rapidly 

damps the solution. This damping is a more important feature than 

the cyclic nature of the response when considering the lack of 

effect from pile penetration beyond the critical depth. 
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The exponential decay and periodic nature of the solution 

combine to produce a depth below which the pile deformation, and 

therefore stress-resultants, will be neglible when compared to 

their maximum values. Having predicted the form of the equation 

for critical length by recourse to the analysis based upon the 

uniform Winkler soil, it remains to investigate the expressions 

proposed by others in the light of this and extend the proposed 

expression to consider a soil with a linear increase of modulus 

with depth. 

Other estimates for the critical length, L, may be broadly 
c 

classed as having their basis in such work as that presented by 

Hetenyi or resulting from the restrictions imposed by dimensional 

considerations. 

The former class includes the equations proposed by 

Barber(1953), Vesic(1961a), Broms(1965) and Oteo(1972) and have 

the form 

1/4 

L s c( Eg\} 
s 

4.3 
c 

This expression assumes the equivalence of the Young's modulus and 

Subgrade Modulus of the soil and has various estimates for C of 

5.6, rr and a range of values between 1.2 and 1.3. For a soil with 

a modulus proportional to depth, E = n z, 
h 

becomes 

1/5 

L = 4( E(p )-
c 
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From the results of dimensional analysis and using the 

Winkler soil model, Matlock and Reese (1960) have proposed an 

expression that would predict a critical length in a soil with a 

Subgrade Modulus varying as 

E 
s 

n 
= k z 4.5 

where the exponent n takes values from zero to one and k is a 

coefficient whose dimensional units depend upon the value of n. 

This expression for critical length takes the form of 

L = 
c 

(

El jl/(n+4) 

5 p P 
k 

4.6 

and can be seen to be similar to Broms' expression for the 

linearly increasing modulus soil when n = 1, and broadly agrees 

with the upper estimates for a uniform soil when n is zero. A 

close study of the curves presented by Matlock and Reese (1960) 

suggests that a constant of 4 would give a better approximation to 

the depth beyond which additional pile length causes insignificant 

reduction in the response of the head, as proposed by Broms. 

With the exception of the work by Oteo, all the previous 

expressions for the critical length of a pile have been, to some 

degree, 

Winkler 

Randolph 

critical 

based upon considering the results of analyses using 

model. Another, more recent exception is the work 

(1981) who has also proposed an expression for 

length of a pile in an elastic continuum soil. 

the 

of 

the 

His 

equation is based upon both the results of a finite element study 

and the restrictions imposed upon the expression from dimensional 
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considerations, and can be expressed as 

~ = 
c 

2 (E I )2/7 
.93 P ~ E J 

c/2 

4.7 

where E = E 
c/2 

over the pile 

+ 0.5 m ~ is the soil Young's modulus averaged 
o c 

critical length. 

The use of a power of two-sevenths leads to the inclusion of 

a term for the square root of the diameter in order that the 

equation remains dimensionally correct. It should be emphasized 

that the form of the expression presented here is far removed from 

the original elegant expression of Randolph, which is in terms of 
-/: 

G = 0.5 E(1+3V/4)/(1+V) (which is a factored Shear modulus 

involving the Poisson's ratio of the soil) and an equivalent pile 
4 

modulus, E I /(Wd /64), (Randolph, 1981). Strictly, the expression 
p p 

reproduced here as equ. 4.7 is also approximate, since the 

variation of Poisson's ratio from zero to one half gives only a 3% 

variation in Randolph's critical length and so dependence upon 

Poisson's ratio has been removed for the purpose of comparison. 

The new expression (equ. 4.8) proposed in this work is 

essentially the same as equ. 4.2 and equ. 4.3, with C taking a 

numerical value of J2w (= 4.44), but with E replaced by E , the 
s c 

elastic Young's modulus at the critical depth of the soil profile. 

One similarity with the expression of Randolph is that the 

expression for critical length includes a term that depends upon 

the value of the critical length. This means that in general, in 

the same manner as Randolph has described, some iteration is 

necessary, using an initial guess of L in E = E + mL to 
c c o c 
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calculate the critical length as given by the expression 

L = 
c (

4 IT 
4 

E 1 ~1/4 
P P 

I 
<.: 

4.8 

Using this form of expression for the critical length 

maintains dimensional compatibility without recourse to the 

inclusion of any other terms in the expression, other than the 

pile stiffness Eland a maximum of two terms, E and m, that 
p p 0 

define the soil Young's modulus distribution with depth, where 

E = E + m z. 4.9 
z 0 

Two cases arise where iteration is unnecessary, namely a 

uniform modulus and a modulus proportional to depth. The case of 

uniform modulus does not require iteration since any depth has a 

modulus value identical to the value at the critical depth thus 

where E 

L 
c 

( 

1/4 

=lTJ2" El) P P 
E 

o 

4.10a 

= E. For a modulus proportional to depth 
c 0 

c 

(: w' 
)

1/5 
E 1 
E-..L . 
m 

4.l0b L = 
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4.2.2 Effective Length and Presentation of Results 

Considering head response to head loading for one pile cross

section and one soil profile, the actual length of the pile may be 

an important parameter for normalising head response when that 

length is less than the critical length given by equ. 4.8: 

L 
c 

=1l'j2(EI 
P P 

1/4 
/ E ) 

c 

where E = E + mL. But flexible piles, with length greater 
c 0 c 

than critical, will achieve a limiting head response regardless of 

the pile length. 

It is found that iteration using equ. 4.8 quickly converges 

to a value of E and L that are compatible when the mOQulus of 

the 
c 

soil profile 
c 

is not uniform with depth, or linearly 

proportional to depth. No instances of failure to converge have 

been found in any of the examples undertaken during this work. 

While equ. 4.8 could be solved and tabulated, the time spent in 

calculating L is worthwhile for the information gained about the 
c 

relative importance of small changes in critical length and the 

changes in modulus at the depth of the critical length. 

So, on the understanding that the only varying quantity is 

the pile length, for any pile with length longer than the 

calculated critical length, the head response to head loading is 

invariant with length of pile. Considering that the critical 

length is constant, because the pile cross-section properties and 

soil profile do not vary, then the descriptor of the soil 

inhomogeneity, ~ , is also constant, where 
c 

~ = E / mL 
c 0 c 
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Thus a non-dimensional representation of deflection and 

rotation due to shear and also moment takes the form 

u E L / H = constant = I 
c c lc 

2 2 
9 E L / H = u E L / M = constant = I 

c c c c 2c 

3 
9 E L / M = constant = I 4.12 

c c 3c 

This system of non-dimensionalisation is basically the 

standard one, similar to the method used by Barber (1953), Poulos 

(1971a) and Bannerjee and Davies (1978) , with the addition of the 

subscript, c, here to signify the value as being associated with 

the critical length. Now it is possible to investigate what 

effect this constant response, for increasing length, has upon the 

picture as given by the standard influence coefficients. 

When the constant response behaviour is incorporated into the 

standard I , I and I system, which uses the actual pile 
uH uM,9H 9M 

length, it yields 

I = uE L/H = uE L /H k . L/L 
uH L c c c 

2 2 2 2 
I = 9E L /H = uE L /M = uE L /M . k • (L/L ) 

uM,9H L L c c c 

3 3 3 
I = 9E L /M = 9E L /M . k • (L/L ) 4.13 

9M L c c c 

where k = (~ + L/L )/(~ + 1), while ~ and L are cons tan t. 
c c c c c 

It is now clear that the standard system of presenting 

influence coefficients against a relative measure of pile-soil 

stiffness, involving the actual pile length, must display some 

special properties for piles longer than their critical length. 
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For a constant value of ~ (i.e. a fixed soil profile) the 
c 

standard influence coefficient must be a function of the length of 

pile as given in equ. 4.13, leading to 

I = I 
i ic 

i 
(k L 

1 

i+l 
+ k L ) 

2 
4.14 

where i = 1, 2 and 3 and I 
1 

= I ,I 
uH 2 

= I = I and I = I 
eH uM 

with I as in equ. 4.12 and 
ic 

constants k 
1 

= ~ 

The standard 

-i 
L /(~ + 

c c c 

method 

-(i+1) 
1) and k = L /(~ + 

2 c c 

of presenting these 

3 eM 

1 ) . 

influence 

coefficients, as in Fig. 4.2, is to plot their logarithm against 

the logarithm of the relative stiffness K , where 
R 

4 
K = E I /E L 

R P P L 

4 
= E I /(E L 

P P 0 

5 
+ mL ). 4.15 

The simplest cases to investigate are the extremes of a 

constant modulus with depth, E and a modulus proportional to 
s 

depth, E = m L. The constant modulus case has an ~ of infinity 
sL 

and therefore k vanishes while 
2 

c 
k has a finite value and K 

1 R 
becomes a function of the inverse of length to the fourth power. 

Thus the slopes of the plot will be -1/4, -1/2 and -3/4 for the 

cases of i equal 1, 2 and 3. The equations from Hetenyi's 

solution for a semi-infinite beam on a Winkler foundation can 

easily be shown to provide results of this form. 

1/2 -1/4 
uE L /H = 2 K 

s R 

2 2 -1/2 
eE L /H = uE L /M = K and 

s s R 

3 1/2 -3/4 
eE L /M = 2 K 4.16 

s R 
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The case of a modulus proportional to depth has an ~ of zero 
c 

and so k now vanishes leaving k finite and K is now a function 
1 2 R 

of the inverse of length to the fifth power. Thus the slopes on 

the plot will be -2/5, -3/5 and -4/5 for the three influence 

coefficients. Using the results from the analysis of a pile in a 

Winkler medium of section 3.2.3, the influence coefficients take 

the form 

-2/5 
uE L /H = 2.43 K 

sL R 

2 2 -3/5 
SE L /H = uE L /M = 1.62 K 

sL sL R 

3 -4/5 
SE L /M = 1.75 K 4.17 

sL R 

These results are in agreement with those of Scott (1981) and 

Barber (1953), and can be accurately reproduced by the BEM model 

using a Winkler soil influence matrix. The characteristics of 

flexible pile results (both uniform and proportional modulus) when 

presented in this standard form, rely upon the normalised results 

for different length to diameter ratios falling on the same curve. 

This happens for the simple Winkler model results, but Poulos 

(1971a) has shown that the standard system of non-

dimensionalisation does not completely eliminate the variations in 

head response influence coefficient, due to changing length to 

diameter ratio, for the elastic-continuum model. 

The elastic continuum results of various other researchers 

for uniform and proportional modulus soil profiles have been 

studied and re-expressed in the form 

b. c. 
I = A (L/d) ~ K ~ 4.18 

i i R 
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Further, the values of the exponents band c are linked as a 

result of any influence coefficient based upon diameter, instead 

of length, being required to present a limiting value for flexible 

piles. Thus 

b. = i + 4c. for Cl< = 0 
1 1- C 

and b. = . i + 1 + Sc. for Cl< = o . 4.19 
1 1- C 

Table 4.1 shows the actual values presented by various 

authors, 
-4 

or values backfigured from their curves in the region 
-3 

10 < K <10 ,and results from the finite element method used in 
R 

the present work for the solution of head response to head loads. 

The values either obey the restrictions of equ. 4.19 exactl~ or in 

the case of backfigured number~ are essentially correct. Blaney, 

Kausel and Roesset (1976) and Bannerjee and Davies (1978) both 

suggest that the standard influence coefficients are essentially 

independent of pile length to diameter ratio and thus should have 

exponent values exactly the same as the Winkler model predictions. 

A standard parameter defining the nature of the soil in

homogeneity has been often been defined as E lE, whereas in this 
o L 

thesis an equivalent parameter, Cl< has been defined. For a fixed 

value of the parameter 

Cl< = E ImL, 
o 

4.20 

which has a similar role to Cl< but is most pertinant to stiff 
c 

piles of length less than critical, the soil modulus profile must 

change its character as the length varies, or the pile stiffness 

varies and the pile length remains constant. 
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This means that for the length of pile increasing, the basic 

properties of the soil E and m must change in order to preserve ~ 
o 

as a constant. Thus the influence coefficients I will no longer 
ic 

be constant and the reasoning applied previously cannot be used. 

If the length to diameter ratio of the pile is maintained 

constant, then it becomes necessary to change the pile stiffness 

E I 
P P 

will 

in order to vary K and the critical length to diameter ratio 
R 

also change, which for the elastic model of soil will change 

the response, I 
ic 

When ~ 
c 

longer equal, 

is finite and non-zero the value of ~ and ~ are 

but 

c 
i . e. the same soil profile will have one value of 

any number of ~ values as the length changes. Only when 
4 

1/4~ will the actual pile length 

no 

~ 

c 
the 

be relative stiffness K = 
R 

equivalent to the critical length and ~ equal ~. Thus only when 
c 

~ is given values of zero and infinity will a simple picture 

evolve for the standard influence coefficients in terms of K . 
R 

The influence coefficient for head deflection due to head 

shear on a pile in a Winkler soil for intermediate values of ~ are 

plotted in Fig. 4.2 and especially for the two values ~ = 0.025 

and ~ = 0.125 a definite 

logarithm of K 
R 

for the 

curvature can be seen with respect to the 
4 

flexible piles (K <1/4~). This is a 
R 

function of the non-dimensional form, as chosen by Barber (1953). 

While this form is convenient for relatively stiff pile-soil 

systems it does not take advantage of the existence of a pile 

critical length and results in an awkward representation of the 

results. In section 4.3.1 a form of presentation based upon the 

pile critical length will be presented which simplifies the 

results. 
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4.3 Verification of Critical Length Concept and Results 

The equation for critical length has been derived from the 

analysis of a pile in a uniform Winkler profile, so that 

confirmation of the existence of, and the accuracy of the 

expression for, the critical length in such a case will be 

expected to be easily proven. However, the infinite number of 

different cases of a Winkler soil with stiffness increase 

proportional to depth should not be assumed to automatically 

support the critical length concept, let alone allow its 

representation by such an equation. 

The first stage in confirming that the critical length 

concept is valid for general laterally loaded pile analysis, is to 

show its applicability to the analysis of piles using the Winkler 

model of soil response. Here the head deflection and rotation due 

to head shear force and applied moment are used as measures of the 

response stabilisation with increasing pile length, keeping all 

other soil and pile parameters constant. 

It should be noted that the critical length concept does not 

imply that the entire distribution of response down the pile 

becomes constant for increases of pile length; but only that pile 

response at a depth greater than one half-wavelength of the 

solution distant from the head, does not affect the behaviour of 

the head due to head loads. Thus the response of the pile in the 

entire region of the critical length may not be the same as it was 

before the increase of pile length. 
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4.3.1 Results of Winkler Analysis 

The analysis of a pile in a uniform Subgrade Modulus Winkler 

soil has been used as the basis of the expression for the critical 

length of piles. The analysis of a pile in a Winkler soil with a 

linear increase of Subgrade Modulus with depth, m , results in a 
s 

solution in terms of an infinite series. This solution displays a 

cyclic nature with rapid damping, similar to the simpler closed 

form uniform soil solution, see Fig. 4.1. However, a difference 

between the uniform and linearly varying Subgrade solutions is 

that the latter has a wavelength that varies with depth. 

In order to extend the applicability of the equation for 

critical length to include the case of linearly increasing soil 

stiffness with depth, it has been implicitly assumed that the 

modulus value at the critical depth should be used in the 

equation. This will involve an iterative procedure for the 

calculation of the critical length. Essentially the iteration is 

solving a fifth order polynomial in L and convergence is achieved 
c 

very quickly. Figure 4.1b shows that, as for the uniform case, 

the effect of head loading on response at a depth of one half of 

the chosen wavelength is satisfactorily small (less than 5 %,say). 

Following from the discussion of the effective length 

concept and the presentation of results, a new form is introduced 

here, and is designed to cover the entire range of pile flexibili-

ties in a Winkler soil. The standard influence coefficients are 

employed, but now they are plotted on a normal scale against 

values of L/L between 0 and 1.0 for various values of~. Effect-
c 

ively, this covers the range of rigid to flexible piles and 

provides a way of checking for the existence of a critical length. 
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By changing from the standard influence coefficients, I, to 
i 

the set using the critical length, I , and employing ~ instead 

of~, it is possible to plot the newirnfluence coefficie5t at an 

abcissa of L/L equal 1.0 for a pile of length twice the critical 
c 

length. If the end of the curves and the plotted points, using 

the new non-dimensional scheme but retaining the same plot, are 

coincident, there has been no change in actual head response for a 

doubling of pile length. Therefore by viewing the results in 

Figs 4.3 to 4.6 the critical length can be proved to exist and be 

reasonably modelled by equ. 4.8. 

The results presented in this section are for a pile in a 

Winkler soil and comprise the response of the pile head, in terms 

of deflection and rotation due to shear and moment loads, for, 

a) a pile with the tip free from any restraint, 

b) a pile with the tip fully socketed, 

c) a pile pinned at the tip to stop translation and 

d) a pile fixed at the tip against rotation but free to 

translate. 

The first two cases are common boundary conditions for 

laterally loaded piles, while the last two are not usual, and 

represent extremes of behaviour that are unlikelty to occur 

separately. Case c) may occur where the pile penetrates enough of 

a hard layer to limit translation, but insufficient to cause any 

rotation restraint. Case d) may occur if the base of the pile has 

been enlarged in a thin horizontal plane, such that rotation is 

restricted but little, if any, resistance to translation is 

generated. This latter case is of very little practical use but 

does emphasise an important feature of tip fixity conditions. 
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Considering Fig. 4.3b, which shows the influence coefficients 

for head deflection due to head shear on a pile with a socketed 

tip, it will be seen that the pile has a zero deflection influence 

coefficient if it has a length to critical length ratio less than 

a quarter. For all other tip conditions, Figs 4.3a, 4.3c and 

4.3d, it can be seen that the rigid pile (L/L < 0.25) will have a 
c 

non-zero finite deflection influence coefficient that is 

unaffected by the L/L ratio. However, it is important to note 
c 

that the fixing of the tip produces the greatest decrease in 

deflection when compared to pinning. This means that the 

introduction of a moment resistance upon the tip will produce the 

greatest benefical effect upon head deflections for stiff piles. 

In Figs 4.3b and 4.3d, for ~=QOand piles with length greater 

than half the critical length, the prevention of rotation of the 

tip produces a dimensionless head response that is approximately a 

linear function of length. This means that as the length of the 

pile increases, if the tip is fixed against rotation, the pile 

head deflection will become constant beyond a length of half the 

critical length. For piles with fixed tips, the point of 

rotational restraint represents a point of symmetry that can be 

thought of as introducing a mirror image of the real pile. In 

much the same way that lengths used in calculating Euler buckling 

loads depend upon end restraints, so too the critical length may 

be found to depend upon the tip fixity. In the present case, by 

dividing the normal value L by two, a new critical length of one 
c 

quarter of a wavelength of the long pile solution may be defined. 

In Fig. 4.4 the deflection response of the pile head to 

moment loading of the head (and by the reciprocal nature of the 
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problem, the rotation of the pile head due to shear loading), is 

presented on four graphs. As the dimensionless head deflection due 

to shear for a socketed tip pile exhibited a zero value for piles 

with a length less than one quarter of the critical length now as 

well, the fixed tip results also show this response. In effect 

this is portraying the situation in which the pile is so stiff 

compared to the soil medium, that all the applied load is 

transferred to the tip fixing medium. This obviously requires a 

very strong medium in which the tip is founded; the problem of 

partial fixity for an elastic continuum soil model is considered 

by Poulos (1972). 

Even though the top of a fixed tip stiff pile (L/L < 0.25) is 
c 

not prevented from translating, its deflection will be extremely 

small under moment load, see Fig. 4.4b, since the moment is 

essentially not transmitted to the soil, but is carried almost 

completely by the tip fixity due to the large pile stiffness. 

Likewise a finite rotation influence coeffiecient cannot occur due 

to head shear since the pile stiffness and tip fixity preclude any 

significant loading of the soil. It must be emphasised that these 

zero value result from using the soil Subgrade Modulus in the non

dimensional influence coefficients used here. If the results were 

non-dimensionalised using pile stiffness El, then the response 
p p 

of these zero influence coefficient cases would become identical 

to that given by simple bending theory for a cantilever under end 

shear and moment loading. 

The previously described influence coefficient for deflection 

due to shear exhibited a linear portion to the curves for ~~ and 

this arises as a result of the reduced critical length pertinent 

for piles with a rotation restraint. The influence coefficients 

for deflection due to moment, and rotation due to shear, will also 
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display this effect of a reduced critical length. However, the 

form of the non-dimensionalisation will mean that the function is 

no longer linear beyond L/L > 0.5, but is a quadratic due to the 
c 

length-squared term. 

For the influence coefficients of rotation due to moment 

loading, presented in Fig. 4.5, for the case of ~~ flexible 
• 

piles with a fixed tip at a depth greater than half of the 

critical depth present a cubic variation with length. The cases 

corresponding to other values of~, for this coefficient and the 

others, will present curves that are more complex functions of 

length as given by equ. 4.14. The curves simplify again for the 

case of ~=O when the exponents previously discussed for ~=oo each 

become increased by one. 

The results for a fixed head pile will similarly show such a 

reduced critical depth and are presented in Fig. 4.6. The response 

of a fixed head or pinned head pile can be readily found from 

combination of the results presented in Fig 4.3, 4.4 and 4.5 by 

using the formula, 

u E L 
o L 

2 

= I H + I 
uH 

M/L 
uM 

eEL = I H + I M/L 
o L eH eM 

4.21 

where u and e are the translation and rotation required by the 
o 0 

condition at the pile head. From the values of u ande, the 
o 0 

dimensionless ratio of shear to moment required at the pile head 

HL/M· = (I u 
eM 0 

- I e L)/(1 
uM 0 uH 

e L - I u) 4.22 
o eH 0 

can be found. With this ratio used in equ. 4.21 the desired 
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response of the head and the loads required can be found. This may 

be especially useful if a relationship exists between head 

deflection and rotation which will define the ratio of the shear 

to moment acting at the pile head at ground level. 

The effect of an outstand section, at the top of which the 

shear load is applied, can be easily calculated using simple 

closed form expressions for response of a cantilever. This aspect 

is left until the chapter on non-linear behaviour. 

This presentation of the results for a pile in a Winkler soil 

has relied upon the critical length and a special property of the 

Winkler model. This property is the way results for different 

length to diameter ratios non-dimensionalise to one curve as long 

as E is deemed to be a soil parameter independent of pile 
s 

geometry (and E = k d = E). The points added to the rightmost 
s h 

side of the curves in Figs 4.3 to 4.6 demonstrate the viability of 

the effective length concept, in which the response of stiff piles 

are effectively governed by the actual pile length and the 

response of flexible piles by the critical length. 

Thus, the results of the Winkler model with homogeneous and 

non-homogeneous profiles verify the existence of a critical length 

and can be simply expressed for the entire range of flexibilities 

by a plot of influence coefficient, I (equ. 4.13) versus actual 
i 

length to critical length ratio (L/L ) for different values of an 
c 

inhomogeneity measure, ~ (equ. 4.17). The case of piles longer 

than L (equ. 4.8) is covered by using the I value for L/L = 1 
c i 

and the appropriate ~ value and recognising these are 
c 

equivalent 

to I (equ. 4.12) and ~ (equ. 4.11) for a flexible pile. 
ic c 
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4.3.2 Results of MBEM Analysis 

Having shown that the Winkler analysis gives results that 

conform to the concept of an effective length, the problem of a 

pile in an elastic continuum soil is considered now. The first 

step is to show that, for an increasing length of pile in any 

particular soil, the head response reaches a limiting value. To 

be specific, the case of a uniform soil problem, like that 

considered by Evangelista and Viggiani (1976), will suffice. The 

results of inhomogeneity variation are accurately modelled by the 

MBEM analysis using a Winkler soil influence matrix. Since there 

is a strong similarity between the elastic analysis and Winkler 

analysis methods, as incorporated in the MBEM program, the 

inhomogeneity factor in the elastic analysis can be expected to 

produce similar trends to that of the Winkler analysis. Thus, a 

uniform soil case is adequate to show the existence of a critical 

length. 

The 

deflection 

nature of 

approach chosen for the MBEM model uses the average of 

across the width of an element to model the rigid 

deformation across a pile face. This gives better 

with finite element results than do approaches that agreement 

ignore pile-soil interface stiffness. It will still be 

conservative, since it uses the displacement at the centre depth 

of the uniformly loaded element that must be near the maximum 

value of the displacement as it varies with depth. The results of 

the analysis developed in section 3.3, employing the above amended 

average deflection soil model, have been compared with the 

flexible results from the analysis of Evangelista and Viggiani in 

Table 2.1. 
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In order to maintain a consistent modelling of the effective 

length of the pile, the aspect ratio of the elements was held 

constant for the first three values of Lld analysed. This required 

an increase in the number of elements from 11 for the shortest 

pile to 51 for the Lld = 50 pile. The Lld = 100 pile was analysed 

using only 51 elements, resulting in a doubling of the element 

aspect ratio. This case of the longest, most flexible pile can be 

shown to have a pile length of fifteen times the effective length 

while the shortest, most flexible pile is only one and a half 

times as long as the effective length (L = 6.6d). 
c 

The result of the comparison shows that the model used 

provides results 16%, 25% and 12% lower, for flexible pile values 

of influence coefficients I , 
uH 

of Evangelista and Viggiani. 

I = I and I , than the model 
eH uM eM 

This brings the results closer to 

those from more complex Finite Element analyses, such as those of 

Randolph (1981) and Kuhlemeyer (1979). 

The longest pile (which was modelled using the larger element 

aspect ratio) compared least favourably, but considering that only 

three elements were assigned to cover the behaviour in the 

effective length of the pile it is primarily a fault of the 

analyser, rather than a defect of the analysis. It appears that 

at least six, and preferably more, elements should be assigned to 

the effective length in order to gain the same head response, 

irrespective of pile length, found above for the three shorter 

piles. 

The results of the analyses of various researchers who used 

finite element methods, and those from a Boundary Element Method, 

are compared with the results of analyses carried out by the 

author using the finite element method, in Fig. 4.7. Subgrade 
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Reaction theory (Winkler assuming E =E) results are also plotted. 
s 

The plot covers one value of L/d=25 and gives the uniform soil 

influence coefficients as I 
pH 

and those of a modulus proportional 

to depth (",=0) as I' , which are both the same as equ. 4.13. For 
pH 

the Winkler results are the most conservative while this Lld ratio 

the Boundary Element and finite element results generally agree. 

In Fig. 4.8a to 4.8c the three influence coefficients of 

equ. 4.13 are plotted against K for ",=0 and ",=00 for the original 
R 

modified boundary element analysis of Poulos (1971a), a similar 

formulation (but improved discretisation) analysis of the author 

(analysis A), the MBEM rigid face analysis suggested in this 

thesis (analysis B) and the previously mentioned finite element 

results of the author. 

It is clear that the finite element results and those from 

the MBEM analysis B are in close agreement. The results of 

analysis A and Poulos agree well (as might be expected) except for 
-4 

pile-soil systems with K < 10 where the improved discretisation 
R 

of analysis A gives higher values. 

Figures 4.7 and 4.8 verify that the finite element analysis 

used in this thesis is of comparable standard to those used by 

others. Boundary element and Winkler based results generally are 

more conservative than finite element results, but by appealing to 

the rigid nature of the behaviour across the face of the pile 

(analysis B), results nearer to those from the finite element 

method can be achieved. 

Section 4.2.2 showed the results of elastic continuum 

analyses do not non-dimensionalise simply for the case of 

different ratios of length to diameter or critical length to 

diameter. For this reason the previous scheme of presenting the 
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results of the Winkler analyses (Figs 4.3 to 4.6) and the standard 

scheme of influence coefficients versus K for elastic continuum 
R 

answers (Figs 4.7 and 4.8) becomes unwieldy. 

A new scheme has been adopted, in which the extremes of rigid 

and flexible behaviour will provide the means of presenting the 

data. In this way the head response and bending moment 

distributions for a wide range of soil inhomogeneities can be 

presented without great loss of coverage. Indeed, the case of 

intermediate stiffness pile-soil systems can be computed using 

data from both extremes and interpolating using the form of the 

Winkler results Figs 4.3 to 4.6, or the solutions of Fig. 4.8. 

Rigid Pile Results 

Influence coefficients for head response to head loading as 

functions of Lld, and the distributions of bending moment with 

depth, for stiff (rigid) piles are presented in Figs 4.9 and 4.10. 

For each influence coefficient,Fig. 4.9 shows two horizontal lines 

that are the results of the Winkler analysis of piles in 

equivalent inhomogeneous soils for ~=O and ~~. 

As can be seen, between an Lld of 20 and 40, the Winkler and 

elastic continuum results are nearly equal which explains why 

comparison of these two theories (e.g. Poulos, 1971a) for an Lld 

of 25 reveals no major discrepancies. As might be predicted, the 

smaller Lld becomes, the larger is the difference between the two 

results. This corresponds with a general conviction that Winkler 

theory is inadequate for short piers and caissons. 

The range of length to diameter ratio covered by this set of 

curves exceeds 100 for theoretical completeness only, since rigid 

behaviour would be most unlikely in such slender piles. In 
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Fig. 4.10 the extreme of 100 and a reasonable lower value of 

Lld = 10 have been used to present the small range in the 

distributions of bending moment for rigid pile behaviour. By far 

the largest variation is associated with the inhomogeneity factor, 

especially for the moments generated by head shear. 

Flexible Pile Results 

For the flexible pile case, the corresponding curves to those 

of the rigid pile case are presented in Figs 4.11, 4.13 and 4.14. 

The critical length, L replaces the actual length, and the soil 
c 

modulus at the critical length, E , 
c 

replaces the modulus at the 

depth of the actual length, E . The measure of inhomogeneity is 
L 

now Qc =E ImL and once again the two results of an equivalent 
c 0 c 

Winkler analysis for Qc =0 and Qc =00 plot as two horizontal lines 
c c 

as functions of L Id across Fig. 4.11, for each influence 
c 

coefficient. Once again the region around L Id = 25 sees the 
c 

Winkler results agree with those from the MBEM elastic continuum 

program, but now the evaluation of previous comparisons is not 

directly possible because of the use of the critical length. 

The results of most interest are those for critical length to 

diameter ratios between 5 and 40, but the values at 100 are 

included as a guide to the shape of the curve beyond an L Id of 
c 

60. All the results of this case, and the rigid case, involve 

fifty full elements (i.e. 51 nodes) to model the full pile length. 

This case was modelled by using an actual pile length twice the 

critical length to ensure that the pile was flexible, but analysis 

using the actual length equal to the critical length gave no more 

than a maximum of 5% increase in response. This small increase is 

entirely comparable to that found for the Winkler results. 
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The results do not cover cases of L Id less than 2 since in 
c 

Chapter two it was suggested that the engineering bending theory 

upon which the pile analysis in the MBEM progam is based is 

unreliable for beams of length less than 3 diameters. In the next 

section, the finite element method, which does not rely upon 

simple engineering bending theory, will be used to consider piles 

(or rather caissons and block circular footings) as special cases 

of elastic continuum analysis of lateral loading. 

The bending moment distributions for flexible piles in an 

elastic continuum soil are considered next, and a comparison is 

possible with the curves of Randolph (1981). In Fig. 4.12 the 

bending moment distributions for three values of his inhomogeneity 

factor p =E lE (where E = E + O.Sm..Q and ~ is given by 
c c/l c c/2 0 c c 

equ. 4.7) are reproduced for head shear and moment loads. The 

same trends are evident in Fig. 4.12 and Fig. 4.13, with the 

uniform soil presenting the smallest maximum bending moment at 

about the same relative level in both figures, and the maximum 

increasing and becoming deeper with increasing inhomogeneity. 

However a significant difference from Randolph's results is the 

MBEM prediction of a larger increase of non-dimensional moment 

with increasing L Id value. For the practical range of critical 
c 

length to diameter ratios the variation may not be as significant 

as the wide range of L Id covered in the figures implies. 
c 

Figure 4.14 and Fig. 4.12 respectively display the bending 

moment distributions from the MBEM analysis and the results of 

Randolph for loading of the head by a moment. Again the trends of 

the two figures are the same with perhaps the two analyses 

agreeing most closely for L Id of 10 which is a typically 
c 

encountered value 
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4.3.3 Results of Finite Element Analysis 

In order to verify the existence of an effective length, the 

response of a pile with various lengths in a particular soil was 

analysed. This can be accomplished economically using the 

boundary element approach but requires excessive computer time to 

apply the finite element method. Thus, the finite element layer 

building approach was devised to analyse a large number of cases 

of piles of various length. Further, the piles were lengthened by 

only one layer of elements for each new case analysed, leading to 

a better defined curve of pile response versus pile length than is 

possible using conventional full-mesh approaches. 

The "building" method was thus ideal for the task of 

illustrating the existence of the effective length for any 

combination of pile and soil. It also proved to be a good method 

of calculating two other aspects of foundation behaviour: 

a) The average deformation of a flexibly loaded circular 

area on an elastic layer of finite depth. 

b) The load-deformation response of circular foundations 

for a wide range of length to diameter ratios. 

For generality, the three cases of a horizontal force, 

vertical force and lateral moment loading were considered 

uniform horizontal and uniform vertical applied tractions 

using 

and a 

linearly varying vertical traction at the free surface of the 

elastic layer or foundation. The three tractions that were 

employed have been shown in Fig. 3.9 and the average responses 

were defined as the uniform deflection or rotation in the 

direction of the applied traction based upon equivalent volumes of 

the displaced shapes. 
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The results of the "building" analysis can be directly 

compared with the results using the "full-mesh" finite element 

method, compared with results for a similar aspect ratio rigid 

plate foundation (as modelled by Douglas and Davis, 1964), and 

finally compared with the results from the MBEM program developed 

in this work. The last two comparisons involve considerably 

simplified models, with the boundary element answers expected to 

be the least appropriate for squat rigid foundations. 

The results presented are for deformation of a circular 

loaded area on a finite elastic layer, the head response of 

circular foundations for a wide range of length to diameter ratios 

and the head response of flexible laterally loaded and 

compressible vertically loaded piles of circular cross-section. 

Where possible the results are compared with previous solutions. 

Finite Element Analysis : Full Mesh 

A standard pile to soil Young's modulus ratio of 5200 was 

chosen in order to keep the foundation behaviour rigid for all 

cases but the longest piles considered. The same basic mesh was 

used to analyse foundations with a length to diameter ratio of up 

to four, and contained three radial elements and up to six 

vertical elements in the foundation. For ratios of five and 

greater only one element was employed to model the pile radius and 

up to eleven elements were used to model the pile length. This 

was found to give an adequate representation, consistent with the 

reduced importance of the base in more slender foundations where 

the majority of support is derived from the foundation sides. 

The meshes maintained a fully-fixed radial boundary at twenty 

foundation radii, and for the foundations with a length to 

diameter ratio up to four, a fully-fixed base boundary at twenty 
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foundation lengths except for the surface footing case where a 

base at twenty foundation radii was used. This system became 

impractical for larger length to diameter ratios and so the base 

was placed at twice the pile length. 

The results are presented in Fig. 4.15 where the four 

dimension less responses of 

a) horizontal deflection due to shear, 

b) rotation due to shear and deflection due to moment (which 

are identical from the reciprocal nature of the problem), 

c) rotation due to moment and 

d) vertical deflection due to vertical normal load 

are presented against length to diameter ratio (and its inverse). 

Two apparent anomalies appear at the extremes of small and large 

length to diameter ratio. The deflections in the direction of 

applied load for the length to diameter ratio of 0.1 are not 

consistent with a smooth representation of behaviour. The vertical 

deflection response also shows a discontinuous relationship at a 

length to diameter ratio of five. Both of these aspects of 

behaviour are due to the limitations of the adopted mesh and 

depend on the form of loading. 

Considering the case of the small length to diameter ratio, 

it can be seen that the mesh is only twice as deep as the diameter 

of the foundation. For such a thin layer it is conceivable that 

the vertical deflection of a rigid circular foundation due to 

vertical load would be smaller than that associated with thicker 

layers, as will be shown in the next part of this section. The 

case of a zero thickness layer must result in zero deflection and 

for the other limiting case of a layer of infinite thickness, a 

Boussinesqu-based solution predicts a finite vertical deflection. 
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It can be seen that the horizontal response to horizontal 

loading is not so much affected by the layer thickness, as the 

vertical response. However, it can still be conjectured that the 

proximity of the rough rigid base will reduce the deflection that 

would occur if the layer were of infinite thickness. It appears 

that the rotational response and response to moment loading are 

not so severely affected by the proximity of the rough rigid base. 

The other extreme, of foundations with large length to 

diameter ratio, also exhibits a response that is a function of the 

mesh geometry. The vertical deflection due to vertical loading is 

seen to display an abrupt change at dlL = 0.2, and is connected 

with the changing of the deep mesh to one with a total depth to 

foundation length ratio of only two instead of twenty. It is 

clear that the response of vertically loaded rigid piles depends 

upon the layer depth to foundation length ratio. 

As an example of the effect of the base boundary upon the 

response, a BEM program (Poulos, 1979) was used to obtain the 

response of two piles with an Lld of two and four with the base at 

a depth of twenty pile lengths and a pile with an Lld of 5 with 

the base at two pile lengths deep. The BEM results are plotted in 

Fig. 4.15 and agree well with the full-mesh FEM results. 

Thus, attention must be paid to layer depth when comparing 

results of vertical loading analyses for shallow footings on thin 

layers of soil or deep pile foundations in soils of limited depth. 

To cater for this using a finite element analysis leads to a large 

number of meshes, and repeatedly solving the same problem to 

establish the dependence upon the ratio of layer depth to pile 

length. This problem is overcome by using the finite element 

building analysis, the results of which will now be discussed. 
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Finite Element Analysis Profile Building 

The profile building analysis provides an efficient means of 

predicting the head response of a large number of cases of 

foundations with various length to diameter ratios. To model 

foundations in an elastic continuum using this analysis, it is 

necessary to first establish a layer of soil that is deep enough 

to provide a response approximating that of a semi-infinite 

elastic continuum. This is achieved by checking the response of 

the loaded area after the addition of each layer, for the three 

loadings of Fig. 4.16, and stopping building when the response is 

essentially constant (converges) for the addition of extra layers. 

The choice of response is most conveniently taken as the 

average deflection or rotation of a loaded circular area on the 

surface. This area corresponds with the position where the base of 

the foundation will be placed for the layers that contain the 

stiffer elements of the buried circular footing, pier or pile. It 

is necessary, but not sufficient, that the response of the surface 

at which the building of the foundation commences should be 

unaffected by the layer depth. Any analysis of a foundation on a 

layer whose response is affected by layer depth, will necessarily 

also have a response that is affected by the limited layer depth. 

The average response must therefore be monitored during the 

building of the base layer, prior to commencing the foundation 

modelling. It can be conjectured that the average response of the 

circular loaded area will be a good measure of the response of a 

rigid surface footing. Therefore an approximation for the 

response of a rigid circular foundation on the surface of a layer 

of finite depth should be found for different ratios of layer 

depth, h, to foundation diameter, d. 
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Surface Loading on a Finite Homogeneous Elastic Layer 

The problem is defined in Fig. 4.16, and Figs 4.17, 4.18, and 

4.19 present the average-deflection and average-rotation of a 

circular area loaded by a uniform vertical (axial) load, 

horizontal uniform (lateral) shear and linearly varying vertical 

(moment) load for a wide range of layer depth to diameter ratios. 

Results were obtained for six values of Poisson's ratio and are 

presented as dimensionless influence factors. 

Also in the figures are the results of Gerrard and Harrison 

from Poulos and Davis (1974), shown by arrows for the d/h ratio of 

zero i.e., a uniform homogeneous elastic "half-space" response. 

This set of results are also shown in tabular form in Table 4.2 

where the average dimensionless responses, including the effects 

of Poisson's ratio, are compared to the average of the six 

responses found for the values of Poisson's ratio used in the 

numerical study. 

The theoretical results of Gerrard and Harrison can be used 

to calculate the average responses by means of closed form 

expressions for two of the surface loading cases, but the 

remaining three responses require numerical integration of tabular 

data to find the average. This numerical treatment conforms with 

the way the nodal quantities are treated in the finite element 

building analysis to find average responses. Thus values of 

"-theoretical and numerical response are directly comparable. 

All responses from the analysis compare favourably with those 

from Gerrard and Harrison, most errors being less than +1.5%. The 

building analysis result for vertical response, that was 3.6% 

smaller, is consistent with the finite depth in the analysis. 
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Table 4.2 presents results for the response of a layer with 

infinite depth to diameter ratio, non-dimensionalised with respect 

to Poisson's ratio. For any other values of layer depth to 

diameter ratio it will not do so, thus the six curves for 

Poisson's ratio are plotted separately in the figures. Of the 

five responses of Table 4.2, two are equal from the reciprocal 

theorem and thus only four sets of curves are drawn for variation 

of response with layer ratio in Figs 4.17, 4.18 and 4.19. 

The influence values for layer depths less than one quarter 

of the foundation diameter cannot be found from the building 

analysis. This is due to the choice of one-eighth of the 

foundation diameter for the height of the elements that make up 

each layer. The smallest value of total layer depth that can 

reasonably be used requires at least two layers of finite elements 

and so the curves below hid of one quarter are extrapolations to 

the influence values of zero that arises for a zero depth layer. 

The lower set of curves in Fig. 4.19, for the cross-term 

responses of deflection due to moment and rotation due to shear, 

show an interesting phenomenon for nearly incompressible soil and 

small layer depth-to-diameter ratios. Whereas the rotation and 

deflection have normally been found to be equivalent in sense to 

that at the end of a tip loaded cantilever, these results indicate 

a reversal of this. The average rotation due to shear and average 

deflection due to moment loading may result in influence values 

less than or equal to zero. This behaviour is apparent for 

Poisson's ratio of one half, for any layer depth to foundation 

diameter ratio, and also for other values of Poisson's ratio, for 

small layer depths. 
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This behaviour appears to result from the rigid base to the 

mesh restricting the deformation of the material below the 

footing. The confining effect of the base leads to the compressive 

zone immediately in front of, and below, the footing, causing 

heave. This heave overcomes the tendency of the footing to rotate 

in the normal sense and is heavily dependent upon the degree of 

incompressibility of the soil. Likewise, the deflection from an 

applied moment load is affected by the confined layer depth 

causing the compressive region to react against the base, 

reversing the "normal" direction of deflection. 

The increase of this "negative" deformation, with reducing 

layer depth and increasing Poisson's ratio, can also be found from 

analyses of plane strain, strip loading problems. A Finite Layer 

analysis, Booker and Small (1982) was modified by the writer to 

cater for horizontal and moment loading. Results were obtained for 

varying layer depths, in the same manner as for the circular 

loaded areas. Figure 4.20 presents the curves of non-dimensional 

response, for Poisson's ratio of 0.4, against the layer depth to 

strip width ratio, h/b and its inverse. Once again, the cross

term response involves influence coefficients less than zero for 

small layer-depth to strip-width ratios. This suggests that such 

behaviour is not a feature of the.circular loaded area problem, or 

the finite element method, since a similar trend is seen in strip 

loaded problems analysed by a diffrent method. 

The results for average response of circular loaded regions 

on a soil of limited depth subjected to lateral, axial and moment 

type loads have been presented. They compare well with previous 

published results and show similar trends to those found for strip 

loading with the same load types. 
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The results for mean deformation of a flexibly loaded 

circular region presented here, do show an aspect of behaviour 

that is to some extent governed by the existence of a critical 

length for laterally loaded piles. The use of equ. 4.8 for the 

case of pile and soil having the same Young's modulus yields a 

critical length of 2.09 diameters. From the three sets of curves 

in Figs 4.18 and 4.19 it can be seen that for d/h values less than 

about 0.5 the responses have virtually reached their converged 

values. This provides an unexpected verification of the critical 

length concept for the case of a pile of very high flexibility. 

Thus the building analysis has been shown to provide a set of 

solutions for the response of circular foundations that are 

sufficiently accurate to allow prediction of the behaviour of 

rigid loaded circular foundations on an elastic layer. This is 

the first step towards the calculation of the respone of buried 

cylindrical foundations, which will ultimately lead to the 

modelling of flexible circular piles. By obtaining a layer of 

elastic soil that responds like an elastic half-space it is 

possible to continue building upon that layer with further layers 

that contain elements of the circular foundation. The method may 

then be used to solve problems in which the pile is modelled; with 

confidence in both the results obtained and also in the capability 

of the analysis to solve a wide range of foundation types, that 

are amenable to solution by the same method. 
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Axisymmetric Foundations of Varying Length to Diameter Ratios 

For conciseness, only the case of uniform modulus with depth 

will be presented to show the existence of a critical length in 

the results of the building analysis. To each of the base layers, 

that provided the results for surface loading of a finite layer of 

elastic material, a series segments 
-1 0 

with 
1 

10 , 

a pile to soil modulus 

of new layers containing pile 
4 

ratio given by E I lEd = 10 ,10, 
2 3 4 p p 

10 , 10 and 10 , were added. 

The results of the second stiffest modulus ratio have been 

plotted with the full-mesh results on Fig. 4.15 for Poisson's 

ratio of 0.49, and examination of this figure shows the two finite 

element methods both give essentially the same response. The 

slight differences between both sets of results are compatible 

with the previously noted effects of the mesh geometries and the 

existence of an effective length. The building analysis case has 

a stiffer pile to soil modulus ratio than the full-mesh case and 

this means the two curves diverge near d/L=O and stabilise to give 

two different "converged" deflection values. The building result 

reaches a constant response at a larger critical length and with a 

smaller response than the full-mesh finite element results which 

are consistent with the prediction of equ. 4.8. 

Flexible and Compressible Piles:Building Analysis 

The building of the layers containing pile segments continued 

for each pile segment to soil stiffness ratio until the axial or 

lateral response became approximately constant. These constant 

values of response represent the behaviour of compressible and 

flexible piles, and the values of pile length at which they were 

achieved represent an estimate of the critical length. The 
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average value of the various estimates for L for the six values 
c 

of Poisson's ratio was about 90 % of the predicted value from use 

of equ. 4.8. This is a result of the convergence criterion for 

the response necessarily providing critical length estimates that 

can never reach the true value since the converged response can 

never be achieved. The variation in response as the critical 

length is approached becomes smaller and means a significant 

change in estimated critical length will be associated with small 

changes in response. 

Figures 4.21 to 4.24 present the "converged" response of 

laterally flexible and axially compressible piles from the 

building analysis as a function of Poisson's ratio for various 
4 

values of the relative stiffness measure K 
d 

be used to calculate the critical length to 

1/4 
L Id = 11' J'l K 

c d 

= E I lEd, which can 
p p 

diameter ratio from 

4.30 

The values of response given in these curves agree with the 

results of full-mesh finite element analyses and thus are slightly 

lower than the more conservative MBEM elastic continuum results. 

Also plotted on these figures is the response of the soil 

layers, previously presented in Figs 4.17 to 4.19, that were used , 
as the starting layer for each pile to soil stiffness case that 

was modelled. It can be seen that the soil layer response is 

markedly affected by changing Poisson's ratio whereas the pile 

response only exhibits a minor dependence. The dashed lines in 

the curves are from the solutions presented by Gerrard and 

Harrison for the response of an elastic half-space and the 

building results (for h = 20d, see Fig. 4.16) show excellent 

agreement. 
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4.3.4 Existence of Other Critical Lengths 

The critical length concept is not restricted solely to the 

behaviour of laterally loaded piles. The results of both the 

Winkler analysis and Elastic theory for the problem of an axially-

loaded pile also present responses that are considerably 

simplified by use of a critical length. Further, it is possible 

to see the presence of a critical length in strip raft behaviour. 

The Winkler model of soil response has been presented in 

section 3.2 where a solution for axial loading of a pile involved 

exponential terms, equ. 3.17. The power to which the number e 

is raised, az can be treated in the same way as Yz for lateral 

loading and the depth to result in az =~ can be shown to be 

1/2 
z = ('TT' E A /E) 

c P P 
4.23 

Thus a critical length for axial loading of piles may be proposed 

and compared to the results from the Winkler and elastic continuum 

analysis of axially loaded piles. 

In Fig. 4.25 the results of the Winkler analysis of a pile in 

a uniform Subgrade Modulus soil are presented as a dimensionless 

influence coefficient for axial deflection due to axial load 

plotted against a measure of the relative pile-soil stiffness, 
2 

K = E A /E L for various values of soil side to base stiffness 
pps 

( E dL/E A ) ranging from zero base restraint to a vertically 
s b p 

fixed base. For K less that 1/ W, as predicted by the critical 

length concept, all the various values of base-soil stiffness 

become irrelevant and show that such piles are fully compressible, 

i.e. the head response is independent of pile length. 
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Figure 4.26 presents the results of the building analysis for 

vertical response of circular foundations and the results of the 

BEM analysis of Poulos (1979), used previously. Care was taken to 

ensure the BEM analysis was for the same pile length to layer 

depth ratio as the building analysis. Both analyses agree well, 

even for very small pile to soil modulus ratios, and exhibit a 

response that reaches a constant value as the length increases. 

This constant response demonstrates the existence of a critical 

length for axial loading of pile foundations and the vertical 

arrows are at the predicted values of L Id for vertical response. 
c 

The ratio of lateral critical length (equ. 4.8) to axial critical 

length (equ. 4.23) can be calculated and for most cases the axial 

critical length will be significantly greater. Although the 

difference between the two depends upon the cross sectional 

properties a figure of four times is perhaps typical. 

The results of Brown (1978) for bending moment distribution 

in a strip footing, Fig. 4.27, with a length to width ratio of 10 

and a low value of strip-soil relative stiffness (defined in the 

figure) depict distributions of bending moment and deflection that 

can be explained by means of the critical length concept. 

a) For a force applied at 1% of the strip length from t.~ end 

of the raft (s = 0.01) the bending moments decay to small 

values over the half of the raft opposite the loaded end. 

b) Once the load has moved in from the end by 20% of the 

footing length (s = 0.2) the maximum moment has reached a 

peak that does not change as the force is moved to the centre 

of the raft. 

Similar statements may be made for the reaction dist~ibution 
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under the raft (not reproduced here) and the deflected shape of 

the raft, shown in Fig. 4.27b. Thus, considering a raft-soil 

combination, initially with the same relative stiffness factor and 

LIB, the critical length concept suggests that after extending 

only its length its behaviour near the load could be predicted 

satisfactorily using these results for a raft with an LIB of 10. 

If the stiffness factor, K = 0.001, is converted into the pile

soil stiffness factor, K, the raft-soil system can be shown to 
R 

possess a critical length, L of about 0.55 of the actual length. 
c 

The two responses of Fig. 4.27 indicate the raft is flexible with 

behaviour consistent with the above value of critical length, 

calculated using equ. 4.8. 

The effective length concept is shown here to have other 

applications in soil-structure interaction problems and indeed 

many more problems can be approached satisfactorily, using the 

critical or actual dimension for non-dimensionalisation according 

to the relative stiffness of the structure and soil. The axial 

critical length is not investigated in detail here but it would 

help in explaining the apparent lack of complete mobilisation of 

shaft friction for long compressible piles. Randolph (1983) and 

Poulos (1982) have each implied the existence of a critical length 

for axial loading. 
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4.4 Critical Length Applied to the Design of a Test Pit 

As a method of analysis, the MBEM can provide economical 

solutions for a range of loading conditions, and take account of 

limited soil depth, but is unable to incorporate the effect of a 

lateral boundary to the extent of the soil. To accomplish a 

logical treatment of the effects of a lateral boundary, the finite 

element method may be employed. The results can then be assessed 

with due regard to the effective length of the pile involved. The 

results presented in Section 3.4.3 were assessed in this way for a 

uniform soil, and here the same will be done for a soil with a 

Young's modulus proportional to depth by 

hypothetical problem of field testing. 

considering a 

A series of tests on large scale model piles in a pit filled 

with a calcareous sand were to be carried out in order to 

investigate the response of typical off-shore piles to lateral 

load. The pit dimensioning was critical for the logical 

consideration of the far-field effects associated with the large 

lateral extent of the soil in the off-shore situation. Too small 

a pit would modify the response of the model pile to such a degree 

that it would change its behaviour compared to the prototype pile. 

Too large a pit would require expensive excavation and filling 

operations for no benefit in response of the piles tested. 

In order to assess the minimum feasible pit dimensions a 

finite element analysis was used to model various pit geometries 

and recourse was made to the critical length to evaluate the 

results. The analysis employed a circular pit geometry but the 

use of a square cell, that completely enclosed the cylindrical 

model of the soil, would allow a fair comparison when more than 
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one pile was tested in a rectangular pit. Indeed, it seems likely 

that across the line of action of the loading the dimensions could 

be further reduced. 

It is well-accepted that piles of length greater than a 

critical depth of penetration are flexible in response to lateral 

load, and have no dependance upon the actual length of pile. Thus, 

the use of a pit extending down to the critical depth would be 

required to remove the effect of the base of the pit on pile 

response. It remained to assess the effect, upon head response 

and moment distribution, of the nearness and character of the 

lateral boundary of the pit. 

The boundary condition most relevant to the material at the 

pit sides was considered to be a full fixity in radial, 

circumferential and vertical directions. This was for two reasons. 

Firstly, the decay of deflections and stresses with distance 

from the pile mean a realistic boundary condition to emulate far 

field effects in a static analysis was a fully rough boundary. Any 

attempt to include sliding of the material around or up the sides 

of the pit, would not model the far field accurately and could 

introduce spurious behaviour. 

Secondly, the sand filling the pit would be very unlikely to 

experience enough shear at the boundary of the pit, due to pile 

loading, to cause sliding and the sides of the pit would be 

considered stiff enough to limit the normal deflections. A fully 

fixed condition at the boundary would thus appear to be the most 

appropriate for the present purpose. 

The prototype pile size would be a maximum of 1.83 m diameter 

for the present requirement. The material through which the pile 

would be installed was not well defined but in the light of 

previous experience four typical profiles were assumed. These had 
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a linear variation of Young's modulus with depth from zero at the 

soil surface obeying the relationship 

E = m.z 4.24 

where m = 0.5, 0.75, 1.25 or 2.0 MPa/m and z is measured in 

metres. For the pile of 1.83 m diameter a pile wall thickness of 

75 mm was taken to be appropriate, 

stiffness of the steel tube pile E I 
P P 

thus leading to 
2 

= 33494 MNm . 

Employing equ. 4.8 for the critical pile length 

4 1/5 
L = (41f E I /m) 

c p p 

a bending 

a table of critical lengths and critical length-to-diameter ratios 

for the four soil parameters was produced, as in Table 4.3. Using 

the soil parameter m = 0.75 MPa/m as a conservative value, and the 

critical length to diameter ratio predicted by equ. 4.8, the model 

piles of the pit could be designed. 

It was desirable to use model piles of the largest possible 

diameter to avoid introducing effects caused by grain size 

scaling. Thus, a 381 mm (15 inch) diameter pipe was chosen as a 

practical maximum dimension pile for testing. By recourse to 

equ. 4.8 the value of wall thickness for each soil profile, that 

ensures the critical lengths of Table 4.3 were achieved, can be 

calculated. 

Table 4.4 displays the three wall thickness corresponding to 

the pile of 381 mm diameter and piles of 305 and 229 mm diameter, 

together with the pile critical lengths, for the soil with 

m = 0.75 MPa/m. Critical lengths corresponding to the other soil 

profiles may be obtained from the use of Tables 4.3 and 4.4. 

254 



The longer length of the 381 mm diameter pile would be most 

critical for the pit dimensioning and so this was chosen to be 

modelled using the axisymmetric geometry antisymmetric load finite 

element program. The soil modulus used involved m = 0.75 MPa/m, 

erring on the softer side of the response so as to be 

conservative, i.e. a longer critical length. 

Results from the investigation of moving the lateral boundary 

of a rectangular finite element mesh, and employing a uniform soil 

modulus with depth, section 3.4.3, indicate two main points: 

i) a boundary must be beyond three critical lengths before 

the response is unaffected by the width of the mesh although the 

worst reduction in response for a boundary at one critical length 

is only 5% • 

ii) there is a degree of mesh refinement necessary in order 

to accurately model the behaviour. and if the same mesh is 

"stretched" too far the modelling would suffer. 

As the the above points were deduced from a uniform soil 

analysis of the effects of different boundary positions of a 

finite element mesh, the analysis for the case of a Young's 

modulus proportional to depth was required and also a brief 

investigation of the possibility of sloping the sides of the pit 

without markedly changing the pile response. 

In total, eight analyses were performed with a pit depth of 

6.0 m (L = 5.84 m) and using radial dimensions for the mesh of 
c 

1.5, 3.0, 6.0, 9.0 and 12.0 m. Four of the eight analyses, for 

the surface radial boundary at 3.0 m, were used to investigate the 

changing response as a function of the slope of the pit side. 

The results for the vertical sided pit in terms of head 

deflection and rotation due to a shear force and applied moment at 
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the head are presented in Fig. 4.28. Also shown is the response of 

the pile in a pit with a 1:6 sloping side. 

The bending moment distributions with depth are plotted in 

Fig. 4.29 for the four cases of the second largest lateral 

boundary, the 3.0 metre boundary with both vertical and 1:6 

sloping sides and the 1.5 metre boundary results. 

Figure 4.28 shows that, compared with a uniform modulus, the 

linear modulus variation has reduced the minimum distance to the 

fixed lateral boundary, before reductions in head response become 

evident, from three to about one times the effective length. If a 

3.0 metre radius pit was used the response is only reduced by 

7.5%, for the worst case of head deflection due to head applied 

shear force. A slope of 1:6 increases this discrepancy to 9% while 

a 1:3 slope causes a reduction of 10.5% in the head response. 

Figure 4.29 shows the bending moments generated by unit head 

shear force and moment loading and demonstrates remarkably little 

change in moment distribution between the three cases. The 

response plotted for the radial boundary at 9.0 metres is 

equivalent to that for the 12.0 metre boundary and virtually the 

same as that for the 3.0 metre response. The 1.5 metre boundary 

has the only response that differs significantly from the other 

cases, being smaller below a depth of 1.5 metres consistent with 

the proximity of the sides reducing the interaction of the upper 

soil with the lower layers. 

The effect of slope upon bending moment distribution is 

negligible for the 1:12 and 1:6 slopes but showed some deviations 

at the point of maximum bending moment in the case of the 1:3 

slope. The confined response caused by the shallowest slope 

actually gave larger maximum moments, which is a disturbing trend 

as far as modelling the far field effects is concerned. 
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The above results suggested that the optimum size of a pit 

for testing piles of a flexible nature, using a calcareous sand, 

and for the correct prototype to model scaling, would be a 3.0 

metre radius with a slope of 1:6 on the sides. The pile of 381 mm 

outside diameter would require a thin wall of about 3 millimetres 

in order to retain the same effective slenderness ratio as the 

maximum diameter prototype pile. While this thickness would 

probably be too small to allow safe driving, it would depend upon 

the soil actually used whether this limiting value is required. If 

the soil were to have a value of modulus increase with depth equal 

to (say) 1.0 MPa/m and a value of critical pile length of 6.0 

metres was desired, then the thickness required would become 

4.5mm. 

It should also be stressed that piles with actual lengths 

just less than their critical length also behave as if they were 

flexible. Thus, the above arguments could be applied again, to 

slightly stiffer piles in order to consider the effects of varying 

the prototype pile size and soil properties. It would be expected 

that the soil property used here would be adequate and err on the 

conservative side, which means that a smaller dimensioned pit 

would be possible but would not necessarily be desirable. 
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4.5 Conclusion 

In this chapter the linear response of a pile to lateral load 

has been considered using a Winkler analysis, MBEM elastic 

continuum analysis and elastic finite element methods, with regard 

to the concept of an effective length that can characterise the 

response. The concept of effective length requires the definition 

of a critical length, beyond which all piles behave flexibly, and 

this critical length is shown to be evident in many types of 

problem in foundation analysis. A comparison of the three methods 

of solution of the laterally loaded pile problem is informative 

and suggests reasons for the variable agreement found between the 

three methods. This comparison is facilitated by introducing the 

concept of an effective length for the pile and soil system. 

The method of analysis of "thin" piles, i. e. the analytic 

Winkler solution and the numerical MBEM analysis, rely upon the 

modelling of the pile as a thin strip beam that behaves according 

to simple engineering bending tpeory. These "thin-pile" models 

demonstrate the existence of a critical length, that can be 

predicted by the equation developed from the simple Winkler model 

analysis, equ. 4.8. 

The axisymmetric finite element analysis for anti-symmetric 

loads, models the true geometry of circular piles and does not 

rely upon simple bending theory. In this Thesis the finite 

element method has taken two forms, namely a standard (full-mesh) 

approach and a substructure (building) approach. The second 

method was developed to enable a large number of pile geometries 

to be economically analysed in order to provide a fine definition 

of the critical length. 
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As a by-product of the investigation of the critical length, 

the building analysis produces results for the response of a 

flexibly loaded circular region on a finite layer of homogeneous 

elastic soil. This response provides a further demonstration of 

the existence of a critical length from the depth of layer that 

behaves essentially the same as an elastic half-space. The 

critical length equation is shown to give a good prediction of the 

depth of layer at which this constant response is first achieved 

during the building process. 

The results of the profile building analysis include the 

behaviour of rigid circular block footings, short stiff piles and 

long flexible piles, solutions which previously have not been 

obtained from a single analysis. 

The existence of an effective, or critical, length of 

laterally loaded piles has been proposed before, Barber (1953), 

Matlock and Reese (1960) and Randolph (1981), and various 

expressions have 

the simplified 

been produced to calculate it. By recourse 

method (Winkler analysis) an expression for 

to 

the 

critical length is derived and then the other two methods are used 

to confirm the applicability of this expression to the elastic 

continuum method of analysis. Also, from the Winkler analysis of 

axial loading, an expression for the axial effective length, 

beyond which a pile is virtually fully compressible, is derived 

and its effect on axial behaviour is examined briefly. 

The solutions for linear lateral pile response from this 

Chapter are directly comparable to previously-published solutions 

and are considered to provide a standard series of solutions for 

the linear response of single laterally loaded piles. 
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UNIFORM SOIL MODULUS WITH DEPTH 

Source 
Al bl cl A2 b2 c2 A3 b3 c3 

Randolph 
.69 3/7 -1/7 . 5 I 2/7 - 3/7 .93 1/7 - 5/7 (1981) 

Kuhlemeyer 
.68 .32 -.17 .43 .37 - .41 .63 .35 - .66 ( 1979) 

Bannerjee 
and Davies 2.0 0 -.20 .80 0 - . 5 I I . I 0 -.78 

(1978) 

Hlaney. 
Kausel and .60 0 - 1/4 .94 0 - 1/2 .66 0 -3/4 Roesset 

(1976) 

(Winkler) 
Hetenyi /2 0 - 1/4 I .0 0 - 1/2 /2 0 -3/4 

(1946) 

Present 
work Finite .69 .28 -.18 .49 .27 - .43 .96 . 14 - .72 

Element 
------ - -----

SOIL MODULUS PROPORTIONAL TO DEPTH 

Randolph 
1.06 3/9 -3/9 .87 2/9 -3/9 1.20 1/9 -7/9 

(1981) 

Bannerjee 
and Davies I. 89 0 - .39 I .28 0 -.59 I .23 0 - . 8 I 

(1978) 

(Winkler) 
Hetenyi 2.43 0 -2/5 I .62 0 -3/5 I . 75 0 -4/5 

(1946) 

Present 
work Finite I .26 .24 -.35 .97 .19 -.56 I . 37 .083 - .78 

Element 

TABLE 4.1 Simplified Equations of Head Response from Variolls Allthors 
b· c· in the form Ii = Ai (L/d) I KR.I 



Dimensionless Gerrard & Harrison "Building" Error I (·numerical Mean Response integration) Analysis % ' 

uEd 3.38* l...cl.l - I . 5 H (I + v)( I - v /2) ". ". 

OEd 2 2 I .97 - I . 5 H (I + v)( I - 2v ) ". ". 

uEd 2 2 I. 98 - I . 0 M ( I + v) ( I - 2v ) ". ". 

OEd 3 
7.18* 7.27 +1.2 M( I - V 2 ) 

wEd 3.38* 3.26 -3.6 P ( I - V 2) ". ". 

---------------_ .. - ------- ---

TABLE 4.2 Comparison of Influence Factors for Mean Deformation of a Circular 

Area on an Elastic Half-space from the Results of Gerrard and Harrison 

(Poulos and Davis. 1974) and the "Building" Analysis. 

m 0.5 0.75 I .25 2.0 (MPa/m) 

Lc 30.43 28.06 25.34 23.06 (m) 

Lc/d 16.63 15.33 13.84 12.60 

TABLE 4.3 Critical Lengths for Prototype Pile 1.83 m Diameter. 

Diameter 381 305 229 
(mm) 

Thickness 2.94 I . 87 I .05 
(mm) 

Lc(m a 0.75) 5.84 4.63 3.50 (m) 

TABLE 4.4 Pile Thicknesses for the Three Model Piles. 
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5.1 Introduction 

In this chapter, the analysis of piles under lateral loading 

is extended to incorporate two forms of non-linear behaviour. 

These are; 

i) non-linearity associated with geometrical changes, such as 

the formation of gaps between the pile and soil. 

ii) non-recoverable deflections, such as accompany soil 

yield. 

The type of non-linear response arising from material 

property changes, such as damage and degradation, and apparent 

material property changes, such as those related to pore pressure 

generation, have not been considered. 

In order to introduce gapping and soil failure it is 

convenient to consider both gap formation (Section 5.2.1) and soil 

failure (Section 5.2.2) as realistically as possible. 

Means by which the effects of gap and yield behaviour can be 

unequivocally assessed, using analytic procedures, are then found 

for the Winkler soil model in section 5.3. Despite being somewhat 

inadequate, applying the Winkler soil model to the specific prob

lem of full gap formation along the effective pile length during 

loading, illuminates the theoretical aspects of such behaviour. 

Next, the MBEM technique is extended to include both types of 

non-linear phenomenon. By using a Winkler soil influence matrix, 

instead of that for an elastic continuum, the MBEM formulation can 

be checked against the results of the preceding section. However, 

the method remains limited to an exactly antisymmetric interaction 

traction interface element between pile and soil at any depth. 
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Thus, the non-linearity due to geometrical changes to the pile

soil interface brought about by gap formation, i.e. an asymmetric 

traction distribution, cannot be modelled properly. 

A more appropriate method of analysis requires consideration 

of more than one interface element at any depth. To accomplish 

this a new Soil Structure Interaction (SSI) approach, based upon 

load-deflection influence matrices rather than stiffness matrices, 

is developed. Although more than two faces (front and back) could 

be used, the added complexity of more faces is not justified at 

this stage. The suitability of using just two faces (in a 

"biface" model) is given some support by analysing for the load

deflection response of a plane strain pile segment. Such an 

analysis has often been proposed as a useful model for lateral 

pile analyses, although it does have several limitations. The 

behaviour of this plane strain model is shown to be adequately 

determined using a finite element based analysis. This involves 

modelling the pile-soil interface by a uniform uni-directional 

traction around either the front or back half of the pile 

circumference. 

The biface SSI pile analysis is shown to provide good linear 

results for elastic continuum based models without gapping or soil 

failure, by analysing a two-layer soil problem and comparing the 

results with those from a published solution (Pise, 1982), and the 

results of using both the MBEM and FEM techniques. The non-linear 

biface analysis formulation is also checked by using a Winkler 

soil influence matrix, and the results of this numerical model 

compare very favourably with the behaviour from direct application 

of Winkler theory. 
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The SSI approach can efficiently take account of gaps forming 

between the pile and soil in zones of tensile interaction stress, 

and also incorporate a simple interface soil failure model based 

upon active and passive failure of the soil. The analysis 

developed in this chapter is believed to be the first application 

of elastic continuum behaviour that avoids assumptions (save those 

of a biface model) about the form of interaction between the back 

and front interfaces used to model the soil. The analysis 

represents a rational means of assessing the importance, or 

otherwise, of gap formation upon the response of laterally loaded 

piles. 
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5.2 Aspects of Non-linear Behaviour 

Before describing any of the non-linear analyses, it is 

convenient to introduce the concepts of separation of the pile 

from the soil (gapping) and the failure of the soil. Both these 

phenomena have been associated with laterally loaded pile 

behaviour, although neither have received much analytic treatment, 

individually or in combination. The work of Matlock, Foo and 

Bryant (1978), Poulos and Davis (1980) and Swane and Poulos (1982) 

represent examples of previous treatment where either spring-based 

models or assumptions about elastic interaction with gaps present 

have been used. This work attempts to avoid both of these courses 

by using the simplest model that is consistent with an elastic 

continuum-based soil and the current understanding of gapping and 

failing soil response. 

5.2.1 Separation 

When considering the actual behaviour of piles it must be 

recognised that adhesion cannot be relied upon to maintain 

contact between the pile and soil, thus separation will occur. 

This separation, due to tensile interaction tractions, will be 

controlled by the state of stress prior to the increment of 

tractions. The initial stress may arise from pile installation, 

i.e. driving and remoulding of the soil, or may arise from the set 

up of a bored pile, i.e. subsequent creep or consolidation of the 

surrounding soil. A particular subset of the latter is due to the 

effect of lateral soil movements and associated non-symmetric 

stresses, as evidenced by Heyman and Boersma (1961), Bernal and 

Romana (1977) and others. More commonly the initial stress is 

treated as being axisymmetric. 
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Pile installation by driving will cause modifications to the 

soil properties and result in a residual stress distribution. 

These changes from the initial conditions in clay have been 

considered by Carter, Randolph and Wroth (1980). Their results 

provide a reasonable estimate of the residual stress distribution 

after driving that will be employed in this chapter and Chapter 6. 

Calculation of residual stresses after pre-boring and 

installing a pile, do not appear to be as satisfactorily treated 

as do those from the driven pile case. As a first approximation it 

is assumed here that the overburden stress will provide a 

reasonable approximation for the in-situ radial stress in the soil 

around a bored pile, i.e. a hydrostatic stress state at the pile 

interface. The problem of a driven pile involves extensive 

remoulding of the region of soil around the pile and as such is an 

upper limit to the range of possible disruptions to the soil 

caused by pile installation. The pre-bored pile installation 

causes relatively minor remoulding, although the soil behaviour is 

usually no longer considered to be in the elastic range. This 

mixture of elastic and limited plastic straining leads to a 

complex and highly individual installation history for every pre-

bored pile. 

The initial radial effective stress (before pile 

installation) can be thought of as equal to an "at rest" earth 

pressure coefficient, K, multiplied by the vertical effective 

overburden stress and may be considered a lower bound to the 

initial effective stress on the pile after installation. Assuming 

K , the one-dimensional (no lateral strain consolidation) value of 
o 

K is less than one and neglecting K, gives the extreme lower 
a 

bound to the value of lateral stress. The upper bound to the 
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lateral stress after moderate to extensive plastic strain 

behaviour may be found from empirical adjustment of the Rankine 

passive earth pressure or from cavity expansion analyses. 

The attainment of sufficient tensile interaction stress to 

just eliminate the initial stress at some region on the interface 

leads to separation between pile and soil. Recognising that 

lateral stresses exists prior to loading, and assuming an axi

symmetric distribution of such a stress state, the onset of 

separation will be dependent upon lateral load level, but not on 

load direction. 

In general, except in highly over-consolidated or non

homogeneous soil, the distribution of lateral stress with depth 

will be linear after pile installation due to a linear variation 

of strength with depth (driven piles), and due to the linear 

overburden pressure (pre-bored piles). This fact leads to early, 

if not immediate, separation of the soil from behind the pile 

during loading of piles in clay. The upper portion of the pile 

attracts large interaction tractions and so it would be expected 

that separation commences at the surface. The junction between 

separation and full contact will move down the pile with each 

increase of head load, until it reaches a zone that will allow 

development of the tensile traction increment without producing an 

actual stress less than zero. The phenomenon results in a 

reduction in stiffness of the upper portion of the pile-soil 

system and a redistribution of interaction tractions to deeper 

sections more able to sustain the increments of tensile inter

action tractions. The pile will have separation occurring along a 

finite (but not necessarily continuous) portion of its length, 

that grows with increasing head loading. 
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Assuming the induced interaction traction distribution down 

the pile, consisting of equal but opposite increments at the back 

and front of the pile, is unchanged by separation, results in no 

negative interface interaction tractions and a doubling of all 

positive (compressive) interaction tractions. Thus, for a Winkler 

soil it may be postulated that the effect of separation is a 

reduction in stiffness to one half of the fully contacting 

stiffness because, in the limiting case, no more than half the 

area of the pile interface will remain in contact with the soil. 

It will be shown that this simple argument has some truth 

but, (even in a Winkler soil) the actual situation needs more 

attention to the modifications to pile-soil interaction caused by 

gap formation. 

By considering a pile in an elastic medium that also has the 

ability to fissure, a very complex picture arises in which the 

back (tension side) of a pile may not completely break away from 

the soil, or may fissure at some distance from the pile-soil 

interface. Indeed, for a circular cross-section pile the 

prediction of the region of contact is not a trivial exercise and 

raises questions about the validity of small strain formulations. 

To simplify the problem, and maintain a realistic analysis, 

the approximation of a biface soil-pile system with a front and 

back element at any depth is used. The onset of an average tensile 

total interaction traction, over the back or front element of the 

interface, leads to the immediate and complete separation of soil 

from that back or front element. In reality, partial breakaway of 

an element would occur at smaller interface tractions, locally 

within the area of the element or in the soil near the interface, 

but final complete separation would occur at higher tractions than 
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the "average" model predicts. This scheme proves most amenable to 

computation and if further discretisation around the circumference 

into more than two elements were used, the "average" model 

would be able to model the progressive nature of the breakaway. 

5.2.2 Soil Failure 

In order to model non-linear soil behaviour in the simple 

interaction analyses proposed in this chapter, it is necessary to 

specify the upper and lower limits of the interaction traction 

that can be sustained at the interface. Outside these limits, the 

soil is said to be failed, and will deform indefinitely without 

any increase of interaction traction. The difference between the 

model proposed here and previous models is that for the first time 

a quantity that is a measure of plastic work is defined and used 

as an integral part of the analysis. The sign of plastic work 

allows determination of when soil elements should unload and 

return to an elastic state. 

It is useful to consider some of the concepts that have 

developed to describe soil failure theoretically with 

been 

the 

assumptions of no viscous effects or consolidation. The stresses 

accompanying external loading of the soil are limited to obey some 

failure criterion, expressed in terms of the stresses. When a 

region of soil fails it is assumed to be constrained by a set of 

rules governing the kinematics of the flowing volume of yielded 

soil. While the yielded soil region is contained within an 

elastic portion of the body and has not developed a kinematic 

system that allows an indefinite amount of deformation, the 

loading may be stopped short of collapse, and then continued 

without altering the load-deformation response characteristics. 

307 



Thus, time does not enter the theoretical scheme as a variable. 

Real soil does behave differently from the theoretical 

picture presented above, in that creep under constant load, and 

excess pore pressure generation and redistribution (consolidation) 

will all modify the validity of the assumption of a solution 

independant of time. Further, the theoretical collapse load may 

well be founded upon a kinematic collapse mechanism that will only 

be valid for small deformations. Although large strain analyses 

have been produced for footing problems, and are generally thought 

to give little improvement over standard small strain results 

(Carter, 1977), the case of laterally loaded piles has not been 

considered in detail. It is possible for small-strain-based 

collapse loads to be lower or higher than those that would be 

found using the more complex large strain formulations, and 

presumably the same could be said for real soil collapse loads. 

It is the possibility of a mechanism of flow occurring that 

is addressed by most theories used to predict the ultimate inter

action traction on the pile at which soil collapse occurs. It can 

be seen that the attainment of a failure stress state and failure 

mechanism, must be accompanied by a rate of strain that is 

maintained. It is this aspect of failure, requiring a load path 

treatment of elements of soil that fail, consistent with the order 

in which they occur, that is often overlooked in engineering 

approaches to the modelling of soil failure. The requirement of 

positive plastic work in the plastic region is also a result of 

applying a rigorous theory of plasticity that is often ignored in 

analyses of non-linear behaviour (Davis, Ring and Booker, 1974). 

Thus any model that purports to be based upon, or directly 

uses, plasticity theory must pay at least some regard to: 

a) the sequence of soil elements reaching collapse loads, 
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b) the change from stress increment control to strain 

increment control at failed elements and 

c) avoiding any negative plastic work in failing soil. 

It is not impossible to obtain answers of engineering use 

when neglecting any or all of the above three points, but it is no 

longer a valid use of plasticity theory. Thus the results would be 

based upon expectations of behaviour and not involve a reasoned 

argument capable of explaining the characteristics of the failure. 

The modelling of soil behaviour here has been pursued using 

an elastic based theory to explain the transfer of stress and 

strain throughout the soil mass. It follows that the inclusion of 

non-linear, localised soil failure behaviour should also have some 

theoretical basis. To incorporate even the basic Mohr-Coulomb 

failure criterion into the behaviour of elastic soil under lateral 

pile loading would prove a large task. The work of Lai (1987) 

represents the state of the art of such approaches, e.g. the work 

of Winnicki and Zienkiewicz (1979), and is mainly of benefit in 

research investigations and application to specific foundations. 

A theoretically-based and practical model of failure of soil 

due to lateral loading is developed in this Chapter. The main 

elements of a solution based upon plasticity theory, especially 

the concept of ensuring only positive plastic work, is 

incorporated into the non-linear MBEM analysis (which makes no 

distinction between the interface at the front and the back of the 

pile) and the SSI analysis (which includes failure of the front 

and back faces separately at anyone depth in the soil). The use 

of this engineering approximation of behaviour at the interface 

proves to be of sufficient sophistication to produce a useful 

numerical model of the non-linear lateral loaded pile resonse. 
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5.3 Winkler Model and Non-linear Behaviour 

In this section the Winkler soil model will be used as the 

basis of analysis for single piles where non-linear elastic 

gapping, non-linear soil response and non-linear pile response 

will be modelled. The concepts involved in the modelling of a 

laterally loaded pile using the Winkler soil model have been 

introduced in Chapter 3. Here they are further examined in the 

context of the new approach to modelling the soil-pile interface 

with a separate front and back. 

5.3.1 Winkler Elastic Non-linear Gapping 

Most models assume the soil acts as one unit for the front 

and back, behaving according to one "pressure"-deflection 

relationship i.e. one value of pressure and deflection for both 

the front and back. The "pressure" in this sense is actually the 

load per unit of pile length and arises from an anti-symmetric 

distribution of interaction traction around the pile. 

The consideration of a front and back interface at anyone 

depth along the pile raises an important question: 

Does the front face load cause deflection on the back face? 

To be consistent with the Winkler model for the soil, the 

answer must be that no deflection occurs on the front face due to 

load on the back, and vice versa. For the pile however, the 

deflection of the pile front and back face are equal regardless of 

the face of the pile that is loaded. 

The linear response of each soil face is unaffected by the 

loss of contact with the pile by other soil faces, by definition 
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of the Winkler model, and still may be expressed by equ. 3.6 

W = E u 
s 

although E will not be the same value as the one used in the 
s 

analysis that assumes contact between front and back of the soil 

with the front and back of the pile. 

It may be argued that the Winkler approach is a poor one, 

because it predicts the front and back soil faces to act 

completely independently. This is intuitively unsatisfactory since 

it isolates the front from the back at any depth down the soil. 

The Winkler hypothesis has been acceptable for lateral pile 

analysis because the behaviour of the pile depends mainly upon the 

response of soil immediately at right angles to the pile axis. The 

interaction between two horizons of soil for lateral loading is 

thus small when compared to the interaction for the axial pile 

case, where the direction of load transfer is along the pile. 

Now however, lateral loading would be expected to have a 

sizeable effect upon soil response in the same horizontal plane, 

in the direction of the loading, especially since the front and 

back soil face have common points at the sides. The Winkler 

hypothesis then would require some modification in order to 

realistically incorporate this interaction. The behaviour will 

thus greatly depend upon the initial state of stress and 

consideration of the avoidance of tension. 

Thus, a rigorous application of the Winkler model exhibits an 

unlikely isolation of response, while a less strict approach using 

Winkler theory requires approximations of the behaviour to be 

made, but with no theoretical background to justify their choice. 

In this situation it is better to apply the model rigorously, and 

maintain simplicity while recognising the drawbacks of that 
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approach, rather than to incorporate assumptions that have no 

theoretical basis. When the front/back "biface" pile analysis 

technique has provided a simple but accurate solution for the 

Winkler soil model, its application to an improved Elastic based 

analysis may proceed with more confidence. 

It is important to realise that conventional Winkler or 

Subgrade Reaction analyses lump together into one term the 

stiffnesses of the front and back soil elements, that now have 

been separated into two components. For this reason the Subgrade 

Modulus for the biface model differs by a factor of two when 

compared with the standard value of Subgrade Modulus. 

To explain, it is useful to consider the basic Winkler 

expression (equ. 3.5), p = k u. When this is applied in the more 

common (no gap) analysis, it refers to the total traction load 

transferred by the pile to the soil, as being a linear function of 

the deflection. The total load is represented by an average 

pressure, p, i.e. the total force on the pile element divided by 

the area of the element. Thus the total distributed load on the 

pile is simply W = pd , while the same total distributed load on 
p 

the soil is shared equally between the front and back face as 

compression and tension increments, W and W ,with 
s(front) s(back) 

magnitude pd/2 . 

Since the average values of the soil tractions on the front 

and back face govern breakaway, it is clear that these must be 

used in the analysis. Therefore 

W = -W + 
P s(front) 

W 
s(back) 

5.1 

may be written while soil is in contact on both faces and leads to 
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W = -(E 
p s(front) 

+ E ) u 
s (back) p 

5.2 

since 

W = E u 
s(front) s(front) s(front) 

W = E u 
s(back) s(back) s(back) 

and u = -u = u 
s(front) s(back) p 

By assuming the soil is axisymmetric in character, the fact 

that E 
s (1/2) 

= E 
s(front) 

= E can be used with equ. 5.2 
s(back) 

to 

write 

W = 2 • E u 5.3 
p s(1/2) p 

which is the standard form with E = 2 • E where the 
s s(1/2) 

negative sense is assumed. Similar equations were presented in 

section 3.2.1, dealing with the Coefficient of Subgrade Reaction. 

The obvious uncertainties associated with measuring the actual 

value of E and 
s 

model parameters 

E from actual pile tests, make the Winkler 
s(1/2) 

difficult to obtain without some ambiguity as to 

their applicability. 

Limiting States of Breakaway 

For both rigid and flexible piles, for the two cases of a 

Subgrade Modulus uniform and proportional to depth, the limiting 

case of full breakaway along the effective length will be 

investigated. The effective length, as defined in Chapter 4, is 

the lesser of the actual and calculated critical pile lengths. 

Consider a flexible pile in a soil with a Subgrade Modulus 

proportional to depth, so that there are 
2 

coefficients 
4 

(e.g. urn L /H = I , noting that 

L = (41T 
1/5 s c uH 

El/m) is the effective length. 
c pps 
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Now suppose breakaway occurs along the entire effective 

length. At the element level of discretisation, the loss of 

contact is incrementally equivalent to a halving of the soil 

stiffness, since no further unloading is possible on the separated 

tension faces. If it did not halve it would mean the stiffness of 

the face remaining in contact would have to change which is not 

predicted by the Winkler model, so we may assume a new Subgrade 

* Modulus distribution with m = m /2. So a new effective length 
* s s 

L controls where 
c 

-1: 4 -1: 1/5 
L = ( 4 "TT' E I / m ) 5.4 

c P P s 
-I: ,~ 1/5 1/5 

and L /L = (m /m ) = 2 
c c s s 

There is no change in the influence coefficients for a 

Winkler soil, because changing L /d does not alter the flexible 
c 

pile response. For an elastic continuum, changing L /d would 
c 

change the influence coefficient in general; only for longer L /d 
c 

does the influence coefficient become nearly constant as L /d 
c 

varies. So the original displacement 

2 
u = I H / m L 

uH s c 
of: 1:2 

becomes u = I H / m /2 L 
uH s c 

* * 2 
Thus u /u = 2( L /L ) 5.5 

c c 
of: -2/5 

or u /u = 2 . 2 

This means the incremental deflection due to shear at the 

pile head will increase by about 52% over the instantaneous 

original full contact deflection. Similar expressions can be 

found for the rotation due to shear and deflection due to moment 

(which will both be equal) and the rotation due to moment. 
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Now suppose breakaway occurs along the entire effective 

length. At the element level of discretisation, the loss of 

contact is incrementally equivalent to a halving of the soil 

stiffness, since no further unloading is possible on the separated 

tension faces. If it did not halve it would mean the stiffness of 

the face remaining in contact would have to change which is not 

predicted by the Winkler model, so we may assume a new Subgrade 

* Modulus distribution with m = m 12. So a new effective length 
* s s 

L controls where 
c 

.. :: 4 ,,': 1/5 
L = ( 4 11' E I I m ) 5.4 

c P P S 
ok ,~ 115 1/5 

and L IL = (m Im ) = 2 
c c s s 

There is no change in the influence coefficients for a 

Winkler soil, because changing L Id does not alter the flexible 
c 

pile response. For an elastic continuum, changing L Id would 
c 

change the influence coefficient in general; only for longer L Id 
c 

does the influence coefficient become nearly constant as L Id 
c 

varies. So the original displacement 

2 
u = I H I m L 

uH s c 

* 1:2 
becomes u = I H I m 12 L 

uH s c 

* 1: 2 
Thus u lu = 2( L IL ) 5.5 

c C 
"i: -2/5 

or u lu = 2 . 2 

This means the incremental deflection due to shear at the 

pile head will increase by about 52% over the instantaneous 

original full contact deflection. Similar expressions can be 

found for the rotation due to shear and deflection due to moment 

(which will both be equal) and the rotation due to moment. 
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The ratios of deformation increase due to gapping are 

-!: 3/5 
(u /u) = 2 

H 

* .. " 2/5 
(u /u) = (e le) = 2 

M H 

* 1/5 
and (e le) = 2 

M 

which numerically are 1.52, 1.32 and 1.15 respectively. 

These results are possible because the soil modulus maintains 

the same distribution pattern, even though the magnitude of the 

effective length changes. This means the same non-dimensional 

solution covers the full contact modulus distribution and the full 

breakaway distribution cases. If the modulus distribution were 

intermediate to a proportional variation with depth and uniform 

( 0 < E /mL < 00), then the value of non-dimensional influence 
o c 

coefficient also changes with effective length (as the parameter 

describing the distribution of modulus E /mL varies) and the 
o c 

above procedure must use the solution presented in section 3.2.3. 

For a uniform Winkler soil, changing the effective length 

does not change the pattern, or even the magnitude of the soil 

modulus with depth. Thus, results can also be easily found for a 

pile in a uniform Winkler soil for the case of complete breakaway 

over the effective length of a flexible pile. 

The ratios of deformation increase due to gapping are 

* 3/4 
(u /u) = 2 

H 
1. * 1/2 

(u /u) = (e le) = 2 
M H 

"I. 1/4 
and (e le) = 2 

M 

which numerically are 1.68, 1.41 and 1.19 respectively. 
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The influence coefficients for a stiff pile, where the 

critical length is longer than three actual pile lengths, will 

give an indication of the loss of stiffness due to complete 

separation along the length of a rigid pile in a Winkler soil. 

Since the effective length is now the actual pile length, which is 

unchanged by reducing the soil stiffness to half the original, it 

is easily found that the deflections and rotations double due to 

breakaway for all cases. 

The implications for flexible piles from these results are: 

Assuming the pile gaps along its entire effective length with 

gaps forming behind and in front at depths where tension occurs, 

the worst deterioration of the incremental deflection response is 

a) a 68% increased deformation for the uniform Winkler soil 

profile and 

b) a 52% increased deformation for the proportional Winkler 

soil profile. 

The most critical situation will occur for the uniform case 

and the maximum possible reduction in stiffness for any linear 

distribution of Subgrade Modulus with depth is fairly closely 

bracketted by cases a) and b) above. 

This result depends upon the supposition that the soil faces 

at the back and front of the pile have no means of influencing 

each other, and the total response experienced by the pile is the 

sum of the two equal magnitude incremental responses from the two 

soil faces. Because this is the only assumption that has any 

theoretical foundation using Winkler theory, and because it is 

probably true to say influence is possible between back and front 

soil faces, there is a need for a more involved model. 
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Finite Gap Length 

The final analysis presented here that uses a Winkler soil 

model, is for the problem of the incremental response of a fixed-

head pile with a pre-formed gap extending from the soil surface. 

A diagram of the problem is given in Fig. 5.1, where the shear 

forces, bending moments, deflections, rotations and dimensions 

used in the analysis are depicted. The pile and soil have no 

contact within the gapped length, and thus the response is a 

measure of the head stiffness, (say) about zero load, after cyclic 

loading has failed the soil either side of the pile. 

The problem is treated as a cantilever and a pile that are 

joined at the bottom of the gapped length, where an initially 

unknown shear force and bending moment can be thought to act upon 

the bottom of the upper section, of length z , and the top of 
g 

the 

lower pile, 

deflection u 
f 

of length L = L - z 
o g 

For the upper pile section the 

and rotation e may be expressed using the equations 
f 

for response of a cantilever as 

3 2 
E I u = H z /3 M z /2 

P P f g g g g 

2 
E I e = H z /2 M z 5.6 

p p f g g g g 

For the embedded lower pile section, the influence coefficients 

from any source, including elastic continuum solutions, may be 

used to give 

E L u = 
L g 

E L e = 
L g 

H I + 
g uH 

H I + 
g eH 

M /L I 
g uM 

M /L I 5.7 
g eM 
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Equilibrium of the forces and moments on the upper pile section 

leads to the head shear load and fixing moment being expressed as 

H = H 
o g 

M = M 
o g 

H z • 
g g 

5.8 

The compatibility of rotation at the junction between the 

cantilever and embedded pile sections provides the means with 

which to determine the unknown bending moment, M 
g 

2 
M /L = H /2 [(z /L) 2 K I ] / [z /L + 

g g g R eH g 
4 

where K = E I / E L 
R P P L 

K I 
R eM 

5.9 

By choosing a value of z and using equs 5.8 and 
g 

] 

5.9 the 

unknown bending moment, M and fixing moment, M may be expressed 
g 0 

in terms of the head shear, H . 
0 

It must be emphasised that this solution only applies while 

the pile makes no contact with the soil along its gapped length. 

Essentially the problem solved here is similar to that of a pile 

with an outstand. The extra factor in the problem is that the 

more useful case of a fixed-head pile has been modelled. 

The two types of problem presented here will provide the 

means with which to test the validity of the programs developed in 

sections 5.4 and 5.5. These programs can use either a Winkler or 

elastic continuum soil influence matrix and will allow 

considerable freedom of load and head fixity conditions, as well 

as the ability to model soils with complex non-homogeneous 

properties. 
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5.3.2 Winkler Plastic Non-linear Soil Failure 

In section 5.3.1 the Winkler model was used to give the 

response of a pile within a gap that extends from the surface down 

to some finite depth. In this section that basic model will be 

extended to include the effect of soil failure tractions acting 

over the previously fully gapped length. Figure 5.1 shows the 

basic model and the distribution of ultimate traction that the 

soil can sustain when it fails. The idea to extend the previous 

solution was first suggested by Dr. M. F. Randolph in a personal 

communication and was then developed jointly with the writer. 

The differences from the gapped analysis involve the addition 

of extra terms to the upper and lower pile responses, as 

determined by the distribution of ultimate traction employed. For 

the distribution that is proportional with depth the extra terms 

in equ. 5.6 for response due to distributed loading of a 

cantilever give 

3 2 5 
E I u = H z /3 M z /2 + 11/120 n z 

p p f g g g g g 

2 4 
E I 8 = H z /2 M z + 1/8 n z 5.6a 

p p f g g g g g 

and the extra terms in equ. 5.8 give 

2 
H = H + n z /2 

0 g g 
3 

M = M H z n z . 5.8a 
0 g g g g 

Equation 5.9 also changes to become 

2 
M /L = H /2 [(z /L) 2 K I ] / [z /L + K I ] 

g g g R 8H g R 8M 
4 2 

+ n/8 . (z / L ) / [z /L + K I ] 
g g R 8M 5.9a 
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The solution procedure is as before but now the depth to the 

change from plastic to elastic conditions is used to specify the 

head loads instead of the depth of the gap. With this analysis 

the formulation of the two numerical analyses developed in this 

chapter can be thoroughly checked for static loading of a pile in 

a Winkler soil that only fails from the surface down to a finite 

depth. To consider failure of soil in which the ultimate reaction 

load changes sign down the pile requires further sub-structuring 

of the pile. With the limited nature of the Winkler model, such 

development of the analytic based solution was not warranted. 

5.3.3 Winkler Elastic Linear Soil and Pile Failure 

In this section the Winkler model will be employed to 

demonstrate the manner by which a pile with finite strength, and 

which can form plastic hinges, can be modelled in a linear elastic 

Winkler soil. The specific problem of a fixed-head pile, and two 

cases of rigid and flexible pile-soil systems will be considered. 

Rigid Pile in a Uniform Winkler Soil 

The head flexibility matrix of a stiff pile in a uniform 

Subgrade Modulus soil (where H and M act in the same sense as H 

and M ) can be written as 
o 

u 4 6 
0 

9 6 12 
0 

E L u = -2 -6 
s L 

9 6 12 
L 

L L 0 

-2 6 H 
0 

-6 12 M /L 
0 

4 -6 H 
L 

-6 12 M /L.J 5.10 
L 

where subscripts 0 and L refer to the head and tip of the pile. 

To consider the possibility of a bending moment achieving a 

plastic value, the expression for bending moment as a function of 
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depth down the pile is required. Making use of the rigid body 

movements (u and 8 ) and the Winkler soil load deflection 
0 0 

relationship (W = E (u 8 z» it is possible to obtain the 
s 0 0 

expressions for the bending moment, M and shear force, V = dM/dz. 

3 2 
M = M + H z + E (8 z /6 u z /2) 

0 0 s 0 0 

2 
V = H + E (8 z /2 u z) 5.11 

0 s 0 0 

In the above form the substitution of the incremental 
. 

relations for a fixed-head, 8 = 0, u E L/H = 1 and M = -H L/2 
o 0 s 0 0 0 

(where dots indicate an increment) suggest that the bending moment 

is a maximum at the pile tip. The value of this maximum is 

however zero and so the applied moment, M is the actual maximum 
o 

value. Therefore, the head will achieve the plastic moment M 

first and subsequent loading will have M = o. 
o 

Expressing this non-dimensionally leads to 

H L/M = 2, M = -M 
0 Y 0 Y 

2 
u E L /M = 2, 8 = o. 

o s y 0 

which represents the limit of pile linear response. 

5.12 

y 

For continued loading of the head the response becomes 

incrementally like a free-head pile with pure shear loading. The 

incremental response can be obtained from equ. 5.10 and added to 

that existing when the load and deflection of the fixed-head pile 

are as given by equ. 5.12. Expressing the total bending moment as 

a non-dimensional function of incremental head shear, H , 
o . 2 3 

M/M = -1 + (2 + R )z (1 + 2R )z + R z 
Y Y Y Y 

where R = H L/M . 5.13 
y 0 y 
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By differentiating the bending moment expression, equ. 5.13, 

it is possible to calculate the depth at which the maximum bending 

moment is located. This occurs for 

z/L = (2 + R )/ 3R or 1. O. 5.14 
Y Y 

The second value is the trivial solution, as found earlier, and so 

the first value is substituted into equ. 5.13 and the expression 

for M/M equated to + 1 to ensure the maximum bending moment is a 
Y 

plastic hinge. When the value of M/M = 

Y 
work at the plastic 

-1 the solution involves 

negative plastic 

discarded, leaving 

R = 
Y 

z/L = 

9.817 

0.401. 

hinge and so can be 

and 

5.15 

The total solution at the instant the second plastic hinge forms 

is 

H L/M = 11. 82 M = -M 
0 Y 0 Y 

2 3 
u E L /M = 41. 27 9 E L /M = 58.90. 5.16 

o s y o s y 

The second plastic hinge forming will not bring about 

collapse, even though it is a highly undesirable state, and 

collapse will not occur if more plastic hinges appear. The soil 

will still support the pile because it is not allowed to fail in 

this simple model. Thus, the loading may continue and the 

flexibility of the pile with two yield moments may be calculated. 

To do this, the deflection of the upper part of the pile above the 

second plastic hinge is calculated as if the remainder of the pile 

no longer existed. Thus, a pile with a length 

of the original length, is analysed and the tip 
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head shear increment, H and an unknown tip shear, H calculated. 
0 c 

The lower pile section is then analysed as a separate entity (a 

pile with a length L that is 0.599 of the original length) for an 
2 

unknown head load, H . The two expressions are for the same 
c 

deflection of the pile at the location of the second plastic hinge 

and by equating the two the incrememntal shear H can be found in 

terms of H . 
o 

H = -H /(2L /L + 2) 
col 2 

c 

5.17 

By using equ. 5.10 and equ. 5.17 the incremental behaviour of 

entire pile, with two plastic hinges, can be calculated 

analyses of two separate piles of lengths L and L . 
1 2 

resulting incremental head response is 

. 2 . 
u E L/H = 8.48, 9E L /H = 26.12 5.18 

o s 0 s 0 

the 

from 

The 

which for some convenient value of H can be calculated and added 
o 

to the response of equ. 5.16 to provide a measure of the new head 

flexibili ty. This has been done and the result is plotted in 

Fig. 5.J, where the numbers correspond to the order in which the 

particular plastic hinge forms and also appear on the load-

deflection curve. 

The procedure could be repeated to find new plastic hinges in 

the section of the pile of length L, but this has not been done 
1 

for the results presented here. Throughout the analysis a check 

upon the sign of incremental plastic work at plastic pile sections 

must give positive values. The calculation of plastic work 

involves evaluating M.~9, where ~9 is the mismatch in the 

incremental rotations of the pile either side of the plastic 

moment. 
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Flexible Pile in a Uniform Winkler Soil 

While it is a simple problem with which to introduce the 

analysis, the rigid pile is not a very practical case. 

useful problem of a flexible pile will be considered now. 

The more 

The equation for a flexible pile, corresponding to the 

equ. 5.10 for a rigid pile response, can be written without gross 

errors as 

2 
u ZTr ZTr 0 0 H 

0 2 3 0 
(3 ZTr LiT!' 0 0 M /L 

0 2 0 c 
E L u = 0 0 ZTr-ZTr H 

s c L 2 3 L 
(3 0 o - 2TT' 411' M /L 5.19 

L L c 

The linear fixed-head response continues upto the first plastic 

hinge forming at the head, and is limited to states less than 

H L /M = 2TT', M = -M 
o c Y 0 Y 

2 2 
u E L /M = 2TT', (3 = o. 5.20 

o s c y 0 

Expressions for the variation of bending moment and shear force 

with depth are 

-1 -az 
M = a .e .sin az.H 

0 

-az 
+ e .(cos az + sin az).M 

0 
-az 

V = e . (cos az sin az).H 
0 

-az 
2a.e .sin az.M 5.21 

0 

for head loading of a flexible (semi-infinite) pile, from Hetenyi 

(1946), where a = 11'/L. From eqs 5.21 the corresponding equation 
c 

to that for a rigid pile, equ. 5.13, can be found and using the 

324 



fact that V = 0 to determine the expression for R 

-az 
M/M = e /(sin az 

y 
cos az) 

gives 
yc 

5.22 

where R = H L /M = ZIT.cos az/(sin az cos az) 
yc 0 c y 

Solution of equ. 5.22 for M/M = 1 gives a value for the 
y 

depth to maximum bending moment, and the load at which this 

bending moment is equal to the plastic moment, namely 

R = 
yc 

z/L = 
c 

9.015 and 

0.3305. 5.23 

Using the value of R the total solution at the instant the 
yc 

second plastic hinge appears is 

H L /M = 15.30, M = -M 
o c Y 0 Y 

2 3 
u E L /M = 73.38, S E L /M = 177.95. 5.24 

o s c y o s c y 

The incremental response of the pile with the two plastic 

hinges can then be found as before, by separating the problem into 

two piles with only continuity of deflection at the second plastic 

hinge. As a simplification the upper pile can be treated as rigid 

and the lower pile as flexible. This assumption has been checked 

by using the correct equations for response of piles of 

intermediate stiffness, and an original length twice the critical 

length. An error of less than 3% in the head deflection 

H L /M = 25.30) arises from the assumption of a rigid upper 
o c y 

flexible lower pile. The incremental response is given by 

H = -H /(2 + ~L /L ) 
col c 

and u E L /H 
o s c 0 

= 10.11, 
2 • 

SE L /H 
s c 0 
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and the total response is shown in Fig. 5.~. Once again, no 

attempt has been made to predict the third plastic hinge. 

The curves of Fig. 5.2 and Fig. 5.3 can be used to estimate 

the loss of stiffness due to pile failure, for stiff and flexible 

piles. Providing the actual pile length is outside the range 

L /3 < L < 1. 33L the assumptions made for the flexible or rigid 
c c 

pile solution are appropriate. Within that range of lengths, the 

procedure may be used with the correct solution for a pile of 

intermediate stiffness (Hetenyi, 1946) to obtain precise 

solutions. It appears that no gross errors are involved in the 

use of an appropriately weighted average of both solutions, since 

for a pile with L = 1.33L the two solutions for head deflection 
c 

at R = 15 differ by only 3%. 
y 
Variations in the procedure allow treatment of piles with a 

defined head shear and moment ratio and soils that are not 

uniform. For the problem of fixed-head piles in overconsolidated 

clay the solutions presented here are adequate for preliminary 

assessment of the loss of head stiffness caused by pile failure. 

The above procedure can be applied to a soil modelled as an 

elastic continuum, but the two pile sections will now influence 

each other and an incremental approach is necessary. If the pile 

is thought to become unserviceable as soon as the first plastic 

hinge forms, the analysis described here would be all that is 

needed to estimate the head flexibilty change due to pile failure. 

More involved considerations such as using the continuum model, 

modelling progressive pile yield and including soil failure, while 

of use in pure research investigation, are not a significant 

practical advance over the linear Winkler soil model described 

here. 
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5.4 MBEM Non-linear Behaviour 

Section 3.3.3 described a modified boundary element analysis 

for the laterally loaded pile problem, in which the concept of 

complete loss of contact between pile and soil (gapping) was 

introduced in terms of deflection mismatch, Ab. The implementation ~ 

in the MBEM analysis of the effect of soil gapping and failing 

will be presented in this Section, together with a parametric 

study for soil failure. First, there is a discussion of the 

interface element developed using the mismatch concept. 

5.4.1 Soil-pile Mismatch Model 

The concepts involved will be discussed first and then the 

discussion of the modification to the MBEM analysis will follow. 

Soil Gapping and Yielding Interface Element Concept 

Section 3.5.2 detailed the manner by which the Mindlin plate 

element can be extended to allow for a soil profile that is not 

uniform. Just as the non-homogeneous elastic behaviour of the 

soil can be approximated, so can the pile-soil interface response 

with regard to non-elastic behaviour. This is effected by using a 

non-linear interface element connecting an element of pile to an 

element of soil. The non-elastic behaviour is confined to the non-

linear interface element and may take a range of forms. 

Various forms of interface element have been used, mainly for 

finite element application to problems involving limited shear and 

normal stress transmission between bodies, e.g. Goodman et al. 

(1968). Also, Spillers and Stoll (1964), Rowe, Booker and Balaam 

(1978) and Poulos (1982) have employed forms of a limiting inter

face traction interface in basically elastic analyses of lateral 
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and axial pile problems. With the exception of Rowe, Booker and 

Balaam, no detailed descriptions are provided concerning the 

implementation of the limited traction rules in the pile analysis 

methods. In this thesis the behaviour of the interface is strictly 

defined, thus allowing a more complete and correct analysis. 

The interface rules used here are capable of defining a wide 

range of responses and therefore provide a common theoretical 

concept connecting the range of responses. The formulation 

involves the assumption that the presence of the non-linear inter

face element has no effect upon the elastic response. For this 

reason, in order not to change the geometry of the pile-soil 

interface, the interface element is assumed to be of negligible 

thickness. This is consistent with the assumption of infinitely 

small strain that is inherent in most, if not all, of the methods 

currently used to analyse piles. The degree of simplicity of the 

non-linear interface element does not warrant the consideration of 

such a refinement as a finite strain formulation. 

Since the pile cross-section only appears in the analysis in 

the form of a pile width, the actual shape of the interface 

element need not be determined. However, because the elastic 

behaviour has been found to be largely independent of pile cross-

section, 

non-linear 

it is consistent to assume the same independence for the 

behaviour. A detailed description of the interface 

element will now follow in which the parameters used will be 

defined and then their significance discussed. 

The underlying concept of the interface element is that the 

deflection of the pile and the deflection of the soil are not 

necessarily equal and the mismatch occurs within the non:linear 

interface element. The reaction load, W that is transmitted by 
u 
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the interface element, will increase until the limiting value, W 
y 

is reached, without any change in the initially zero mismatch in 

deflections of the pile and soil. Beyond this, a mismatch in 

deflection, bu occurs in the interface element, and will be a 

function of the response of the pile and the remaining elastic 

soil elements. This mismatch must be such that the product of 

element total reaction force and the deflection mismatch increment 

is always positive. 

This is a much simplified form of the classical plasticity 

restriction that plastic work within a failed zone must be every-

where positive. If this rule is not obeyed then it would be 

possible to recover some of the plastic strain that has occurred. 

Davis, Ring and Booker (1974) have presented a clear exposition of 

this aspect of plastic behaviour, and illustrated how erroneous 

results may follow if negative plastic work is permitted. 

Indeed, in any form of analysis with a changing load path it 

is essential to be able to predict when, and which, portions of 

the body return to an elastic state. A return to an elastic state 

may even occur in a mono tonic loading sequence if a redistribution 

of stress away from a previously failed region occurs. This has 

been ignored in many other non-linear analyses and usually cannot 

be incorporated because of an inadequate soil model. 

Depicted in Fig. 5.4a and 5.4b are the two types of behaviour 

that can occur. The horizontal axes are the mismatches in 

deflection between the pile and the soil, Au and the vertical axes 

are the interaction load per unit length (W ) transmitted by the 
u 

interface element from the soil to the pile. In Fig 5.4a the three 

possible incrementally elastic states are shown; which one is 

pertinent depends upon the previous maximum deflection mismatch 

that has been generated and the width of the gap created. 
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Case (i) applies when the interface load is given by 

Iw I < LW. 5.26 
u y 

Also, the pile is between the last position to which the pile 

failed the soil in the interface element ~u, and the position of 
L 

the soil face in the interface element that was not just recently 

being failed by the pile, i.e. in a gap which has width u. This 
g 

rigid behaviour, when referred to the mismatch deflection, leads 

to an elastic incremental load deflection response in the gap. It 

can be seen that the deflection mismatch ~u, magnitude of total 

gap formed, u, and the last position of the right hand side of 
g 

the gap, mismatch ~u, will define the state of the non-linear 
L 

interface element, i.e. ~u - u < ~u < ~u . 
L g L 

Cases (ii) and (iii) arise when the pile has regained contact 

on one of the sides of the already formed gap. For these cases the 

interaction load has limiting values for the positive and negative 

loads that are dependent upon the face of the soil in the non

linear interface element that is in contact with the pile. The 

larger magnitude allowable load corresponds to a compressive 

traction upon the face and the smaller load to either an adhesive 

traction on the face, or a minimum load arising from side 

resistance on the pile moving in the gap. The sign convention 

adopted means that positive reaction load corresponds to a 

compressive stress in the soil on the right hand side of the gap. 

Figure 5.4b shows plastic interface behaviour and it should 

be noted that the failure loads only correspond to compressive 

stress at the soil face in contact with the pile, or a tendency to 

produce compressive stress on the face towards which the pile 

moves. This feature arises because of the requirement that the 
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plastic work should be positive. The sign of the sustained load 

and sign of the mismatch deflection increment must be the same. 

Cases (ii) and (iii) correspond to having attained the 

compressive failure load, which is defined as having a value W . 

When the load W 
y 

is maintained at the interface, 
Y 

the gap between 

the pile and soil, u , will in 
g 

is postulated to be a function 

general grow. The growth of the gap 

of the plastic deflection. A simple 

linear dependence of gap growth on plastic deflection is the 

obvious first choice, when initially investigating the model 

response, but it is clear that more complex functions may be 

applied. Attention is here directed towards a model in which some 

fraction, g, of the plastic deflection in the interface element is 

converted into a gap behind the pile. In this sense "behind" is 

used to specify the face that is opposite to the current direction 

of movement of the pile. 

u = g.au 
g 

5.27 

When loading reverses, the pile will move back upon its previous 

course and eventually lose contact with the soil face. 

Case (i) has the pile element in the gap and moving at some 

constant load until recontact is observed (iii). This constant 

load is defined as some fraction, f, of the load to cause failure, 

equ. 5.26. As with the failure load (ii) and (iii) any deflection 

mismatch increment (i) must result in positive plastic work 

leading to unloading and "rigid" elastic interface behaviour if 

the direction of pile to soil mismatch reverses. 

The choice of the values of f and g will markedly influence 

the behaviour of the model during repeated loading, but for 
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monotonic loading these parameters do not affect pile response 

until near to collapse. This means that in this model the 

introduction of gapping does not affect the maximum load capacity 

of the pile or the load-deflection response for virgin load paths 

until near the collapse load. Only the cyclic response at loads 

less than the previous maximum will be affected. The changes in 

elastic interaction behaviour due to gapping require a more 

complex model and will be considered in detail in Section 5.5. 

Varying the value of f from zero to one will model an inter

face behaviour that for a pile element within the gap, provides no 

resistance at one extreme, and causes no reduction in resistance 

from the fully contacting case at the other extreme. The value of 

f will only change the response while the load is varying, i.e. as 

would occur with cyclic loading. It would be possible to link the 

failure load W to the amount of plastic straining and so produce 
y 

a hardening or softening response. At this stage this aspect is 

not pursued, since the chosen model of constant ultimate load is 

considered adequate to model many aspects of the non-linear 

behaviour of piles under lateral loading. 

A non-zero value of f allows for the generation of some 

resistance within the gap. This resistance may arise from 

a) side shear acting upon the pile or 

b) some reduced strength available in a disturbed zone as 

defined by the gap width. 

In reality if a complete gap forms, with loss of pile contact 

from the back and front soil face, the two sides of the pile may 

still remain in some degree of contact with the soil and attract 

some shear resistance. In this case, it may be realistic to allow 

this resistance to reduce during cycling, much as has been done 
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with skin friction in cyclic analysis of axially loaded piles 

Poulos (1982). 

Varying the value of g from zero to one corresponds to the 

transition between the extremes of no gap formation and complete 

gap formation during plastic deflection. A value greater than 

unity seems to be unlikely, but relief of horizontal stress may 

cause collapse or spalling of the hole over the upper sections of 

the gapped length, thus causing the infilling of the lower section 

of the gapped length of the pile. This form of behaviour has been 

observed in tests performed on piles on loose sand, (Swane, 1983). 

It should be noted that in the case of a full gap, with no 

reduction in soil strength within that gap, the model performance 

is identical to that if no gap forms. When the gap that forms is 

a fraction of the plastic deflection (less than unity), the gap 

formation is an expression of the extent to which soil 

around the pile. Zero gap formation implies complete flow, 

flows 

while 

complete gap formation corresponds to no flow of soil in the 

non-linear interface element around the pile. 

An important feature of this model is that the deflection 

mismatch, which corresponds to plastic deflection, must be under

stood to be a relative measure of deflection. It is helpful to 

consider the non-linear interface element as a small region of 

soil through which a pile segment passes when the failure state is 

reached. The model may be visualised as shown in Fig. 5.5. The 

thickness of the pile has no part to play in this representation 

although, in fact, it may have a profound effect upon the 

resistance encountered by the pile whilst in a gap; this effect is 

dealt with by choice of an appropriate f factor. 

Figure 5.5a shows diagrammatically the pile segment connected 

to the soil by the interface element before loading commences. For 

333 



simplicity it is assumed that no initial gap exists but this may 

not be true and is not a requirment of the method. The dimension 

of the pile gap is thus taken as zero, as are the unloaded values 

of deflection and mismatch in deflection of the pile and soil. 

Figure S.Sb shows the result of loading that remains within 

the elastic state; with the interaction traction, W less than 

the failure traction, W The pile deflection, 
y 

deflection, u, 
s 

are both equal and no gap, u 

deflection, au, can occur. 
g 

u 
u , and the soil 

p 
or mismatch in 

After the first plastic state has occurred the pile has 

deflected more than the elastic soil by the amount, au. This 

mismatch in deflection, au, is equal to the plastic deflection in 

the interface element and is accompanied by the growth of a gap 

behind the pile, u. This gap growth is governed by the g 
g 

parameter and the value of the increment in mismatch of pile and 

soil deflections. This is depicted in Fig. S.Sc. 

In Fig. S.Sd elastic unloading takes place and the increment 

in pile and soil deflection are again equal but the total pile 

deflection is not the same as the total soil deflection. 

In Fig. S.Se the pile has broken away from the front of the 

soil and is moving towards the soil at the back. This is assumed 

to happen with a constant resistance to movement that is defined 

by some fraction of the ultimate available resistance, i.e. f.W • 
Y 

The mismatch in pile and soil deflection is again changing but now 

the gap, u is not growing. Further, the product of the inter-gap 
g 

resistance and the increment in deflection mismatch must be 

positive, following from the restriction of positive plastic work. 

Upon recontact with the back of the soil, the situation 

reverts to a state somewhat similar to that in Fig. S.Sd and if 

the reversal of loading continues, the mirror image of Fig. S.Sc 

334 



is arrived at. Thus two states are defined, one elastic and one 

plastic, and within each state there is a further subdivision. 

The elastic state may be elastic within the gap or at one extreme 

of the gap, and similarly with the plastic state. Therefore, the 

previous and current values of the deflection of the front and 

back of the interface element must be known at any time throughout 

the analysis in order to specify the state that exists. 

The final non-linear interface response is shown in Fig. 5.6, 

where interaction load W and gap width u 
g 

are plotted against the 
u 

relative measure of deflection AU, for a hypothetical cycling of 

load. Thus, the plot is not the same as the normal p-y plot of 

the theory of Subgrade Reaction which includes elastic as well as 

plastic deflection components. It will be apparent that there is 

no theoretical restriction on the product of interface failure 

load and the increment in total deflection. Providing the 

increment in deflection mismatch is of the same sign as the inter-

action load the sign of the pile total deflection is immaterial. 

In terms of Wand u versus AU, Fig. 5.6 demonstrates the 
u g 

element response obtained from a hypothetical cycling of a load 

on the pile. Symbols (a) to (e) in the diagram correspond to the 

states possible in the interface element, as depicted in Fig. 5.5. 

The only possible responses while the load is less than the 

ultimate are: 

Points (a) which correspond to the initial elastic loading. 

Points (b) which correspond to elastic loading and unloading. 

Points (c) depict the growth of the gap, u , during failure. 
g 

Points (d) represent the same behaviour as (a) and (b) but now 

at one extreme of the gap. 

Points (e) correspond to the pile moving in the gap. 
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5.4.2 Description of Non-linear MBEM Analysis 

First, an allowable fraction of the head load increment is 

calculated, so that the next critical condition (failure, gapping 

or recontacting) at one element, will just occur. For the pile-

soil system the allowable fraction of the induced interface load 

increments, W, may be found for a head load increment and added 
u 

to any existing loads at the interface. The result is that the 

current load increment causes no new failure, recontacting or gaps 

in the soil. There are many possible criteria for introducing soil 

failure or gapping, and these may depend upon critical deflection, 

load, strain or stress conditions in the soil or pile. 

Major differences between this and previous approaches to 

implementing non-linear behaviour, lie in the manner in which the 

return to an elastic state, or recontacting of the soil and pile 

interface, is accomplished. A valid set of critical conditions can 

be defined and the solution proceed with the correction required 

for the pile-soil system response. The possibility and details of 

reversal of those critical conditions can be deferred for the 

moment, i.e. the critical conditions are assumed to be maintained. 

Information concerning the nodes which have gapped or failed 

for the present valid state is then used to rearrange equ. 3.33 

to give the unknown quantities on the left and known quantities on 

the right of the equality. The program ensures that only one new 

yielding, gapping or recontacting node will be involved each time 

a new fraction of load is considered. If any node involves 

negative plastic work the incremental solution for the current 

fraction of load must be recalculated with the elements having 

negative plastic work allowed to return to an elastic state. 
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Failure of a soil node when the soil reaches a limiting 

stress, or load, means further increments in Ware normally equal 
u 

to zero. It is possible to incorporate hardening of the soil 

response by allowing a certain interaction load increase, after 

yielding, dependent upon (say) the accumulated plastic deflection 

Au. Here it will be assumed that an isolated region of soil has 

failed, but that the elastic geometry of the soil system is 

unchanged, and further that W is zero until a return to an 
u 

elastic state is achieved. The vector containing the failure loads 

will be specified as Wand is a total, not incremental quantity. 
y 

When the node fails or gaps there is a known total inter-

action load and so the allowable incremental interaction load W 
u 

on that node may be calculated. For generality we introduce a 

finite load available when the pile moves in the gap, f.W, that 
y 

may be zero. The incremental deflection mismatch between pile and 

soil, AU, is non-zero for gapped and failed nodes and every non

zero occurrence of the quantity Au must be transferred to the left 

of the equality. 

The original equ. 3.33 from section 3.3.3, neglecting the 

soil-movement-induced term, W 

I o 

o I 

W 
u1 

W 
u2 

= 

W 
e1 

W 
e2 

s 

+ 

can be expressed in the form 

B 
11 

B 
12 

B B 
21 22 

Au 
1 

Au 
2 

5.28 

Upon rearranging equ. 5.28 the system may be reduced to two 

sets of known and unknown quantities and will take the form 
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. 
B 0 I I au 

11 1 w + W j l:" 
eau ] 

e1w u1 + 2 
= 

5.29 
e2 22 

B IJ lW 
21 u2 

in which one group of unknowns consists of a vector containing Au 

values at gapped or failed elements and the remaining group of 

unknowns consists of a vector of interaction load increments, W 
u2 

at linear elements. The right hand side of equ. 5.29 includes the 

known externally induced incremental elastic loads, W plus the 
e 

necessary interaction load increments Wand a term for the 
u1 

effect of the pile-soil deflection mismatches that occur at 

elastic nodes, Au which are usually taken to be zero. 
2 

Elements 

of W can be found from the load required to maintain the 
u1 

critical condition and will be taken as zero in the current 

method, which uses load steps defined by the attaining of critical 

conditions one at a time and uses a constant plastic failure load. 

The form of equ. 5.29 allows for solution of the matrix 

for the righthand side W + W 
e1 u1 

and the determination of au 
1 

B 
11 

with 

little computational effort. The values of Au then permit 

equ. 5.28 to gice the interaction loads W 
u 

1 
directly. Thus, the 

procedure only involves solution of the full matrix B of equ. 5.28 

when all the nodes have become non-linear. 

In summary, the elastic-plastic model includes the effect of, 

a) a constant reaction load at a failed element of soil, 

b) the growth of a gap as a function of plastic deflection, 

c) a residual reaction load when the pile moves in the gap, 

d) changes of state from plastic to elastic and 

e) recontact of the pile and soil at the limits of the gap. 
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Discussion of Model for Soil Yield and Gapping 

The proposed three-parameter model will produce a response at 

an interface element as seen in Fig. 5.6. The parameters f and g 

are arbitrarily chosen here to be one-quarter and one-third 

respectively; varying the values will only change the degree of 

the response, not the general form. 

In Fig. 5.6a the first, second and third cycles of response 

caused by some cyclic load on the pile head are plotted. It is 

assumed that the range of the pile and soil deflection mismatch is 

unaltered by cycling. It is obvious that the response is not 

symmetric but is heading towards an anti-symmetric final response. 

This final response is the same as the one obtained after the 

first cycle when using a unit value for g. Physically this means 

the gap is continually growing, as shown in Fig. 5.6b and this 

growth is linked to repeated returns to the ultimate load. It is 

considered that this assumption, with gap growth independent of 

previous load history of the interface element, is unrealistic. 

The gap is increased even though the pile is passing through the 

already heavily remoulded soil of the non-linear interface. 

If it is assumed that any plastic deflection, of both 

previously failed as well as unfailed soil 

will result in gap growth, then the response 

interface material, 

gradually "shakes 

down" towards a final response after a large number 

This final behaviour is the same as if one hundred 

plastic deflection were converted to a gap, i.e. g 

of cycles. 

percent of 

equal unity. 

Previous pile analyses have suggested that shakedown occurs after 

the first cycle of load, Swane (1983). Thus, the three parameter 

model may require alteration. 
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It is considered that allowing every excursion to the yield 

load to cause gap growth is unrealistic. So a new model is 

proposed in which only upon the initial passage of the pile 

through the failing interface material will the mechanism of gap 

growth come into play. The subsequent failing of the soil will 

happen with the re-failed soil flowing around the pile. The total 

width of the gap will not again increase until new extremes of 

plastic deflection are attained. 

This situation is presented in Fig. 5.7 and as shown the 

response now "shakes down" after the first cycle of load. Regard

less of which of the two responses of Figs 5.6 and 5.7 are more 

correct, the second model provides the limiting soil response of 

the first with much less computing effort. The limiting response 

can be taken to be the one of interest in most applications. 

As noted previously, the presence of gapping will only become 

evident when loads are less than the previous maximum load. Thus, 

the MBEM analysis will provide results comparable to previous non-

linear pile analyses for mono tonic static load paths, using an 

improved theory. 

5.4.3 Non-linear Soil-pile Response Parametric Study 

The non-linear MBEM analysis can be used to solve for a wide 

variety of soil types and load forms. Here, attention is limited 

to piles in a uniform elastic continuum soil with a constant soil 

failure load with depth. Results are obtained for two piles with 

length to diameter ratios equal to their critical length to 

diameter ratios, which are then shown to provide good estimates 

for piles with lengths longer than critical. Thus the effective 

length concept (L being the shorter of the actual and critical 
e 

lengths) is also an aid for assessing non-linear pile response. 
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With a soil failure load Wand an effective length of 25 
y 

diameters, a pile was analysed for 8 ratios of head shear to 

moment. The ratio for a flexible pile is defined as 

~=M/HL 5.30 
c o o c 

and took values over half the entire range of possible head shear 

and head moment combinations, because the problem possesses 

symmetry, with two possibilities associated with the one value of 

~, e.g. negative shear and negative moment gives a positive ~ 
c 

just as positive shear and moment does. 
c 

The values begin at -0.5 

and end with -0.5. The two values involve a change of sign of 

both the head shear and moment, and give half of an anti-symmetric 

plot as in Fig. 5.8, where non-dimensional head shear and moment 

are plotted against head deflection and rotation respectively. 

The values of ~ are chosen so that between each value at the 
c 

collapse load of the pile, as calculated using the theory of 

Appendix I, the point of sign change in the load distribution 

moves one tenth of the pile length, starting at the surface. This 

ensured an even spread of curves and meant that the point of sign 

change in the pressure distribution was at the junction of two 

elements at collapse, which gives an improved modelling. 

The form of result presentation of Fig. 5.8 has the drawbacks 

of hiding the response for deflection due to pure moment, and 

rotation due to pure shear, and not presenting a well-normalised 

response with respect to the collapse load. Thus, the head shear 

and moment loads were converted into a vectorial quantity in H vs 

M /L space with a magnitude given by 
o e 

2 
R = 

2 
H + 

o 

2 
CM /L ) 

o e 
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and direction given by W,where tan(W) = M /H L . 
0 o e 

Values of R at collapse are designated as R and for the 
u 

entire range of values of ~, Fig. 5.9 plots R for five 
u 

distributions of soil failure loads, where W is the value of W 
0 Y 

at the surface and W is the average value over the effective 

length of the pile. By using R and normalising with R, the 
u 

correction factors are defined by the expressions 

u = F u 
u e 

and e = F e 5.32 
e e 

where u and e are 
e e 

Figures 5.10 

linear-based deformations from Chapter Four. 

and 5.11 present the non-linear soil failure 

deflection factors for piles with both actual and critical lengths 

of 10 and 25 diameters respectively. There is some difference 

between the responses of the two piles with different length to 

diameter ratios, but the general form is consistent. The cases of 

negative values have factors that do not conform to the accepted 

mono tonically-softening response associa ted with non-linear 

behaviour. A reversal of deflection is even predicted for the 

~ = -0.388 case, which can be seen more easily in Fig. 5.8. 

The apparently abnormal behaviour becomes understandable when 

the problem is considered in more detail. A clue to understanding 

comes from the fact that the point of zero pressure, which has 

already been mentioned in connection with the collapse load, will 

normally move down the pile as more non-linear behaviour appears 

in the soil. However, for certain negative ~ values (to be 

specific, when a negative moment is assumed) the elastic distribu-

tion of pressures will have a small compressive component near the 

surface from the positive head shear, while the negative moment is 

342 



sufficient to induce a larger component of compression in the 

opposite face of the soil. Thus, a small zone near the surface 

with a compression inconsistent with the sign of head shear, 

results in a negative initial deflection of the pile head. 

When loading is continued to collapse, the point of zero 

pressure actually moves down the pile, toward the tip. This 

result is the only one possible from the requirement that the 

failure load distribution and plastic deflections (which are 

several times larger than the elastic ones) should not result in 

negative plastic work. So collapse of the pile-soil system is 

accompanied by deflections consistent with the direction of head 

shear, i.e. a positive deflection, rather than the elastic-based 

deflection. For this to happen, previously failed soil will 

become elastic, and then fail in the opposite sense. Therefore, 

the importance of obtaining solutions without negative plastic 

work is paramount, if a sensible method of following load

deflection response to collapse is required. 

The particular case of fixed-head piles presents an 

interesting feature of non-linear lateral loading. The boundary 

conditions at the head become mixed, with shear load defined and 

rotation defined. The result is that the head fixing moment will 

vary during shear loading, much in the same way that the head 

rotation will be non-linear for head shear loading with zero head 

moment for a free-head pile. The initial elastic fixing moment 

and the fixing moment at collapse can be calculated easily from 

the linear influence coefficients of Chapter Four and the 

equations in Appendix I, and represent the limits of the possible 

values of fixing moment. 

From Fig. 5.8b it can be seen that for ~ = -0.233 the 
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rotation of the head, for the free-head pile, is initially small 

and negative, but collapse is preceded by the rotation reversing 

and momentarily passing through the fixed-head state. This ~ 

value represents one of the intermediate values for head fixing 

moment for a fixed-head pile. It is also seen from Fig. 5.8b that 

the collapse value of ~(= -0.5) does not give a fixed-head 

response, although near collapse incremental rotation is small. 

The case of a fixed-head pile has been analysed and the 

results are presented in Fig. 5.8c. Head shear is plotted against 

head deflection and fixing moment in two plots, for four values of 

length-to-diameter ratio. The manner in which the head fixing 

moment varies with head shear is clearly non-linear and becomes up 

to three times that predicted by linear-elastic analysis. 

The curves of Figs 5.10 and 5.11 were produced using a pile 

length equal to the critical length and so the non-dimensional 

collapse load ratio R/R always has a value of one at collapse. 
u 

The curves can also be applied to piles that have a length longer 

than critical and this aspect is investigated in Figs 5.12 and 

5.13 for the two L Id ratios chosen. To investigate the validity 
c 

of applying the curves of Figs 5.10 and 5.11, three values of ~ 

were chosen and four piles of various lengths analysed to produce 

load-deflection correction factors for non-linear soil response. 

Figure 5.12 depicts the response for a pile with L Id of 10 
c 

for values of Lld of 7.5, 10, 12.5 and 20. The case of ~ = 0 
c 

shows the pile response indicating collapse at a load of 75% of 

the normalised critical length collapse load R/R for piles with 
uc 

L Id = 7.5. This is the correct response and for other values of 
c 
~ the correct response can be calculated using Fig. 5.9. 
c 

Figure 5.13 depicts the response for a pile with L Id of 25 
c 
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for values of Lld of 20, 25, 30 and 50. The case of ~ = 0 the 
c 

pile response indicates collapse at 80% of the normalised critical 

length collapse load R/R for piles with L Id = 20. Again, this 
uc c 

is the correct response and for other values of ~ the correct 
c 

response can be calculated using Fig. 5.9. 

Both Fig. 5.12 and Fig. 5.13 illustrate clearly that the non-

linear response of piles longer than the critical length 

(flexible), is conservatively predicted by the curves for a pile 

with length equal to the critical length. Great simplifications 

are possible when this fact is employed, as long as it is under-

stood that the critical length collapse load does not always refer 

to collapse of the soil, but the attaining of a deformation 

consistent with an unserviceable pile foundation. 

The analysis used to obtain these curves has been thoroughly 

checked against answers for a pile in a Winkler soil from Section 

5.3. Further, the incremental response of piles in a non-linear 

continuum soil from the MBEM analysis has been checked. This was 

done for cases where soil failure extends from the surface down to 

a finite depth. The pile-soil interaction equations may be 

assembled with the failed portion of pile assumed to not be in 

contact with the soil. This direct solution was found to agree 

exactly with that from the non-linear MBEM program. 

While the results presented in Chapter Four included the 

bending moment distributions due to head shear and moment, no such 

curves are given here. Instead, it is recommended that the theory 

of Appendix I, in providing the equation for bending moment 

distribution at collapse, is sufficient for design of pile cross-

sections. If the effective length is used, adequate values of 

maximum bending moment and its location can be determined. 
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5.4.4 Comparison with Previous Non-linear Results 

The results presented in this thesis can be compared to 

previous solutions for lateral loading of piles in non-linear 

elastic continuum soil models. The analyses of Poulos and Davis 

(1980) and Davies and Budhu (1986) are used and represent the only 

comprehensive sets of results available in the literature. 

Davies and Budhu have presented a wealth of data on the non

linear response of laterally loaded piles, derived from a boundary 

element analysis where the soil is modelled as an elastic 

continuum and the pile as an elastic flexural member. By 

assigning limiting values of tensile and compressive normal 

traction and shear traction that act on the pile, an incremental 

form of the equation of flexure of the pile is used to define the 

nature of the redistribution of interaction tractions to interface 

elements that are still linear elastic. The modified boundary 

element model used in this thesis is somewhat closer to that of 

Poulos than the model used by Davies and Budhu. 

In the technique used in this thesis the mismatch in 

deflection which would have occurred in the elastic soil (under 

the total interaction traction distribution with soil failure) and 

the pile (under an equal but opposite set of tractions), is 

evaluated directly. This mismatch is an integral part of the 

solution and is a measure of the plastic deflection. It is not 

clear from the paper of Davies and Budhu how the authors' 

incremental algorithm treats this problem. 

It is not possible to determine from the paper of Davies and 

Budhu whether negative plastic work, the definition of which 

varies according to the non-linear model used, has occurred in the 
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analysis of the authors. In the MBEM analysis this quantity is 

evaluated by multiplying the incremental "mismatch" displacement 

by the total interface traction. Since negative plastic work is 

an indication of soil stresses being wrongly held on the yield 

surface, it occurs when soil should be returning to an elastic 

state. Thus, for failed elements, the sign of incremental plastic 

work and elastic unloading are inextricably linked. 

A comparison is made of results from the MBEM analysis, those 

of Poulos and Davis (1980) and those of Davies and Budhu for the 

example of a solid circular pile in a soil, as given in Fig. 5.14. 

The results, also in Fig. 5.14, show the non-linear load-

deflection response of the head according to Davies and Budhu, 

Poulos and the MBEM analysis, for a pile with an installed length 

of 10 diameters. The results are derived from reading dimension

less curves designed to modify elastic predictions of response. 

The correction curves of Fig. 5.10, those presented in Poulos and 

Davis (1980) and those of Davies and Budhu (1986) were used. 

In Fig. 5.14, the results of Poulos and the Author agree 

well, as might be expected, but Davies and Budhu's results exhibit 

an earlier departure from linear behaviour and a larger deflection 

until near the ultimate collapse load (considering failure of the 

soil only) • Davies and Budhu's sets of curves and equations are 

intended to be applied to piles longer than their predicted 

effective length (L Id = 4.8). This is also true of the results 
e 

from the MBEM analysis, provided the critical length proposed in 

Chapter Four is used. As an illustration, Fig. 5.14 shows results 

from direct use of the MBEM analysis for four piles with the same 

properties as the example pile, but now with values of length to 

diameter ratio = 5, 10, 15 and 20. For these cases 20 elements 
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were used to model either the critical length or the installed 

length of the pile (whichever was smaller, Le. "effective"). 

It may be seen from Fig. 5.14 that the three curves for 

Lld = 10, 15 and 20 are essentially the same for loads up to about 

80% of the collapse load for piles with an actual length equal to 
2 

the critical length, viz H/C d = 41.4. Piles longer than the 

critical length will 
2 

H/c d = 41.4, and for 
u 

u 
have collapse 

such cases (Le. 

loads larger than 

Lld = 15 and 20) the 

responses are almost the same, see Fig. 5.14, until their 

individual collapse loads are approached. Davies and Budhu's 

predictions, which essentially provide a "backbone" curve for all 

"flexible" piles, are more conservative than those of the Author 

for low loads, but comparison of the responses in Fig. 5.14 

demonstrates a reversal of this when loading exceeds the Author's 

critical length based collapse load. 

The MBEM analysis predicts a sensibly different linear 

response for piles of length 5 and 10 diameters, but according to 

Davies and Budhu's effective length they should behave 

identically. Even allowing for the differences between the models 

used to analyse the non-line~r response of piles in a failing 

soil, it appears that the results of the two techniques are 

inconsistent. 

Further, a comparison of the non-linear correction curves of 

Davies and Budhu with those of the MBEM analysis, suggests a more 

complex non-linear form may be required than the essentially 

parabolic load-deformation relationship (linear correction) they 

propose. While some of the curves of Fig. 5.10 may be closely 

approximated by straight lines, e.g. for head loads with a 

positive moment ratio, by no means can the curves with M/HL < 0 be 
c 
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simplified to linear corrections. 

The results of the MBEM analysis and those presented by 

Davies and Budhu represent a new method in a field that has very 

little established work with which to make comparisons. The 

widely used p-y approach does not represent a solution with which 

the formulation of the method may be assessed, rather it 

represents a different method of analysis of the same problem. 

The type of comparison made here represents one way with which to 

establish the elastic-plastic method as a reliable and convenient 

alternative to the more established and empirical p-y methods of 

analysis. 
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5.5 Finite Element Method Non-linear Behaviour 

Although the MBEM analysis has been developed to model non
linear response based upon soil failure and gapping, it still 
remains a method with no intrinsic differentiation between the 
front and back faces of the soil-pile interface. The only way in 
which the effect of a separate front and back is included is 
within a non-linear pile-soil interface element. The finite 
element method described in Chapter Three, presents a method by 
which the soil and pile may be assigned a separate front and back 
face at any depth, upon which unequal interface stresses act; thus 
extending the elastic continuum model to take account of a 
different interaction stress on the back and front face in a 
gapping and failing soil. 

First a Soil Structure Interaction analysis for laterally 
loaded piles is described, without specifying the source of the 
soil or pile model, nor assuming the restriction of a biface model 
of interaction. The biface approach is then developed with the 
help of a plane strain pile segment analysis, of the type 
discussed in Chapter Two. The linear elastic response from the 
pile analysis is checked with existing solutions for a two-layer 
soil problem and the non-linear response is assessed by using the 
analytic response for a Winkler soil found in Section 5.3. The 
response of the biface model is then investigated for soil failure 
with unequal pressures on the front and back faces, for both a 
Winkler and an elastic continuum model of the soil. 
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5.5.1 Soil-Structure lnteraction:Analysis 

Most methods of analysing laterally loaded piles in an 

elastic soil employ the modified boundary element approach for the 

soil response, and the equation of flexure from simple bending 

theory for the pile. When the stiffness matrices of the pile and 

soil have been found their combination may take many forms. The 

resulting equation is some expression of a soil-structure inter

action problem. Rowe, Booker and Balaam (1978) have presented a 

general form for soil-structure interaction problems and it is 

this form, using influence matrices rather than stiffness 

matrices, that provides the basis for the analysis used here. 

The first step is to produce the relationship connecting 

forces due to uniform soil loads to average soil displacements at 

elements of the discretisation. 

u Ed = [I] ( F + F ) 5.33 
s s u se 

Similarly the pile relationship is evaluated, 

u E d = [I] 
p p 

where [I] , [I] 
s p 

E, E 
P 

u , u 
s P 

F , F 
se pe 

F 
u 

[A] 

e 

p 
(-F + F ) + [A]e 5.34 

u pe 

are the soil and pile influence matrices, 

are representative soil and pile moduli, 

are the deflections of soil and pile, 

are the external loads on the interface, 

is a vector of pile-soil interaction loads, 

is the kinematic matrix connecting element 

deflections to the rigid body movements and 

a vector of rigid body movements, u and e . 
o 0 

The extra terms [A]e for the pile relationship, arise from 
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the need for restraint of the pile in order to apply loading and 

obtain an influence matrix. Once the pile is attached to the soil, 

the pile restraint arises from compatibility of pile and soil and 

equilibrium of the forces and moments generated at the arbitrary 

points of restraint. 

For the case of the pile it is found convenient to choose 

restraint conditions at the head of the pile, where the loading is 

usually applied. The simplest fixity is that of no lateral 

deflection or rotation at the ground level. This choice then 

determines the rigid body motions as the displacement, u and 
o 

rotation, 9 of the pile head and also the form of the [A] matrix. 
o 

Having produced them by some means, eqs 5.33 and 5.34 may be 

used to provide an expression of the mismatch in pile and soil 

deflections, 

E d (u 
r p 

- u ) = -( [r'] + [r'] ) F 

where 

and 

s p s u 

+[r'] F -[r'] F +[A]9Ed 
P pe s se r 

[ r ' ] 
p 

= E lE 
r p 

[r] 
p 

[r'] = E lE [r] 
s r s 

. 5.35 

E is a convenient reference modulus. 
r 

The reference modulus can be varied according to the relative 

magnitude of the elements of the influence matrices in order to 

maintain the elements in [ r ' ] and [r'] of the same magnitude. 
p s 

The kinematics matrix may now be used again, transposed, to 

provide the statics matrix for the equations of equilibrium of the 

forces acting on the pile 

T 
- [A] F 

u 
= - 0 5.36 
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T 
where f/l = (H,M) 

o 0 

If the A matrix is non-dimensionalised and represented as A 

then the two equations 5.35 and 5.36 may be combined to yield. 

[ -: 
with 

T 
-A 

I ] [:J " [!] 
[I] 

b = 

= [I'] 
p 

E d ( u 
r s 

~ = I-H 

9 = 

o 

-M /d 
o 

u E d 
o r 

9 E d' 
o r 

+ [I' ] 
s 

-u )+[1'] 
p p 

5.37 

F - [I'] F 
pe s se 

From this formulation it is readily seen that the head 

influence coefficients can be easily recovered in dimensionless 

form, from the two vectors 9 and ~, as follows: 

u E d/H ,u E d'/M ,9 E d'/H and 9 E d 3 /M 
o r 0 0 r 0 0 r 0 0 r 0 

Equation 5.37 relating loads to pile-soil deflection mis-

matches, is seen to be similar to equ. 5.28 in Section 5.4.2, and 

so with ~u replaced by u - u, the scheme of allowing for pile
p s 

soil deflection mismatches can be repeated for the new SSI model 

to give non-linear behaviour. Also, the external loads applied to 

the pile and soil, F and F , can normally be taken as zero 
se pe 
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unless (say) surface loading is applied to the soil. 

In determining the soil and pile response, finite element, 

finite difference or analytic methods could be used. 

method used here for the soil is finite elements 

The specific 

with axi-

symmetric geometry, using Fourier series to allow for the 

variation of quantities in the circumferential direction. This 

has already been presented in Chapter Three (the AGFEM analysis), 

and the extensions necessary to employ "patch" loadings are given 

in Appendix 11. The soil is fixed at the mesh boundary, so that 

only a finite volume of soil is modelled. The case of an elastic 

half space requires zero strain at an infinite distance from the 

applied load, but for practical purposes there is a finite region 

beyond which the load has negligible influence. It is this limited 

region 

finite 

of influence that allows a finite bounding of any elastic 

element discretisation to still reproduce good 

approximations to half-space response characteristics. 

At least two broad alternative representations are possible 

for the pile. A model utilising the same finite element technique 

as used for the soil may be employed to create the pile influence 

matrix or a completely different representation may be used. Such 

alternative representations include the use of simple bending 

theory with a finite difference scheme (as has been employed in 

the boundary element approaches), or an analytic solution for a 

cantilever loaded by isolated uniform distributed loads. 

The analysis is not necessarily restricted to one plane of 

loading or a biface model and can also be extended to include 

axial and torsional loading. For a single pile subject to lateral 

loading, the biface model and loading in one plane however was 

considered sufficient. 

354 



5.5.2 Biface Analysis 

For a circular cross-section pile the biface model is 

depicted in Fig. 5.15, where the geometry of the interface and the 

extent of the traction applied to one face are given. The effects 

of the simplification of using just two faces at one depth cannot 

be judged, because other solutions for this problem do not exist. 

To gain complete vindication of the applicability of the biface 

model to problems of lateral pile loading, would require complex 

three dimensional analyses with progressive soil breakaway. The 

biface model must be accepted as being an improvement over 

existing models and the most accessible analysis of the possible 

ones that can address this problem. 

The technique used to give the response for the biface model 

involves modelling uniform directed tractions, around half of the 

pile-soil interface, using a limited number of the Fourier terms 

of a series that in the limit would provide the desired traction 

distribution. This aspect of the biface model can be checked and, 

to this end, the plane strain pile segment is employed. 

Modelling of Plane Strain Pile Segments 

A plane strain pile segment analysis has been suggested as a 

method of obtaining soil response to pile loading. The assumption 

often made is that the soil behaves as thin discs at stations down 

the pile, with the behaviour of each disc isolated from all 

others. In fact, a plane stress disc might be more appropriate, 

Yegian and Wright (1973), however, it may be said without question 

that the plane strain pile segment is a problem that is similar to 

that of a laterally loaded pile. To be precise, it represents a 

pile of infinite length loaded in such a manner as to induce a 

constant interaction load along its entire length and no rotation. 
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Without relying on the plain strain pile segment being a good 

way to represent a laterally loaded pile, it can be used to: 

a) provide a means of assessing the difference in behaviour 

between rough and smooth interfaces. 

b) verify the applicability of the biface analysis approach 

to an elastic soil-structure interaction problem. 

c) with an elastic-plastic soil model it can assess the 

effect of gapping upon the failure load. 

a) Rough and Smooth Pile Segment 

It is normally considered that sufficient pile-soil interface 

shear can be generated without vertical or circumferential slip. 

However, it is useful to bound the magnitude of increase in 

deflection, above that occurring for a rough interface segment, 

caused by the interface being unable to sustain any shear 

tractions in the circumferential direction. 

In order to model the smooth case, the axisymmetric geometry 

finite element method (AGFEM) is used with dual nodes at the 

interface between the pile segment and elastic soil. This is 

depicted in Fig. 5.16a, where the two (AGFEM) meshes for direct 

analysis of the plane strain pile segment and the biface modelling 

of the plane strain rigid pile segment problem are drawn. The 

upper mesh is for the antisymmetric direct analysis, with Fourier 

term k = 1 in which the rigid pile segment is modelled by stiffer 

finite elements for the first three radial elements and the 

constraint u = U is imposed for nodes numbered i equal 
ri ri+3 

to 16, 17 and 18 at the interface between the rigid pile segment 

and the soil. 

It is a feature of the finite element program that the linear 
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constraint may be applied to the coordinate-based degrees of 

freedom of one particular node. This allows a direction-defined 

constraining boundary to the finite element mesh to be used, which 

may be an important feature in specialised applications. If the 

direction in a vertical plane is given by ~ then, as in Fig. 5.16, 
o 

u = U tan ~ will apply, with ~ measured anti-clockwise from 
z r 0 0 

the horizontal plane. An application of a similar type has already 

been mentioned in Chapter Three, for radial and circumferential 

deflections along the centre line of the axisymmetric elastic 

= -U for k = 1. 
r 

body, where U 
8 

For the present problem, because the radial and vertical 

deflections (u and u ) are both modelled by a cosine variation 
r z 

with circumferential position, deflection maxima (U and U) may 
r z 

be visualised as being in the same plane (8 = 0) while the 

circumferential deflection, u 
8 

with a sine 
o 

variation is a 

maximum, U in a 
8 

plane at right angles (8 = 90 ). Thus the imposed 

constraint at the pile-soil interface for a Fourier analysis with 

k = 1 can be interpreted as a rigid body lateral translation of 

the pile segment. 

The results of the analysis of the plane strain pile segment 

predict an increase in deflection of the smooth pile segment when 

compared to the rough case of the order of 19%, since 

u Eh/F = 0.532 (Rough) and 
x x 

u: Eh/F = 0.633 (Smooth) 
x x 

where h is the thickness of the plane strain disc, E the Young's 

modulus of the soil, Poisson's ratio of the soil is 0.3 and F is 
x 

the total force in the x-direction. 

This difference is understandable, since the smooth interface 

has no contributions to resistance from the shear, caused by 
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circumferential compatibility, which is symmetrical about the line 

of action of the resultant of the external loading for the rough 

pile. The result does not follow the grossly simplified concept 

of halving the stiffness that Winkler type theory would suggest 

(assuming shear and normal Coefficients of Subgrade Reaction are 

equal) . The elastic continuum model predicts a more complex 

redistribution of strain throughout the body. 

The Fourier coefficients for the stresses near the interface 

are given in Table 5.1. These values are obtained by linear 

extrapolation to the interface, of the stress values at the Gauss 

points and generally are within 5% of the Gauss point values, 

thus verifying the adequacy of the mesh discretisation. 

From these results it can be seen that the interface 

tractions take the form. 

p = F / TT'r cos e (Smooth), 
rr x o 

p = F /2 TT'r cos e (Rough) and 
rr x 0 

t = - F /2 TT'r sin e (Rough) . 
re x 0 

These tractions are consistent with the equilibrium of the 

generated 'interface tractions and the x-directed force, F in both 
x 

cases. The rough case agrees with the analytic solution of 

Baguelin, Frank and Said (1977) for tractions, see later, 

equ. 5.41, and the load-deflection behaviour which was presented 

in Fig. 2.6 of Chapter Two, see also later, equ. 5.42. 

From the cosine variation of the vertical stress with 

circumferential position, it can be deduced that both the rough 

and the smooth interface cases involve a bending moment. However, 

the stresses that produce the bending moment are not a linear 

358 



function of position from the neutral axis and so simple bending 

theory is not applicable. The pile segment neither hogs nor sags, 

since the restriction of no vertical strains enforces longitudinal 

elements of the pile segment to suffer no relative displacement 

along its (infinite) length. However, it still may support a 

hogging or sagging "bending moment" from the "Poisson's effect" 

that generates stresses without accompanying strains. 

If the vertical axis is viewed as being horizontal and the x 

axis (i.e. the direction of loading) is directed downwards, the 

problem is similar to a long pipe buried deep in an Elastic soil. 

The pipe is loaded by gravity acting upon material passing through 

the pipe. The indications are that the assumption of a fully 

bonded, rough interface will lead to a "sagging moment" being 

generated while the smooth interface assumption, with only radial 

compatability, predicts a "hogging moment". These moments are an 

indication of the restraints required to satisfy the plane strain 

restriction of the analysis. How much of this behaviour is a 

result of the fixing of the boundary of the mesh used is open to 

conjecture. Thus the application of this result to the settlement 

of a long, buried pipe is somewhat questionable. 

With regard to the behaviour of laterally loaded piles, the 

only case that might provide a true plane strain condition is that 

of a fixed head, rigid, long pile under lateral load. Such a large 

pile to soil relative stiffness would rarely, if ever, occur for 

piles that are long enough to allow consideration of the deep pile 

segments as a plane strain problem. 

Of more concern is the circumferential stress generated 

within the soil near the interface. The smooth case predicts 

tensile stresses in the soil near the front face with a magnitude 
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of the order of one-quarter of the compressive radial stress. This 

is in contrast to the circumferential compression of nearly half 

the radial compression predicted for the rough case. Thus, the 

rough and smooth interface assumptions tend to cause tension in 

the soil near the interface but on different sides, i.e. in front 

of, or behind, the advancing pile segment. 

When deciding which of the two assumptions is more 

appropriate, it is useful to consider the kinematics involved in 

each case. For the rough interface case the pile and soil will 

undergo the same average deflection in the x coordinate direction, 

i.e. the direction of the resultant of the applied load. 

Consideration of the smooth case however will lead to the soil and 

pile having different average deflections. This arises from the 

definition of the average deflection u as 
x 

where 

2 TI'r • u = 
o x 

2 
u = U cos 8 

x r 

J 
2 uTI' r 

x 0 

d8 

o 
2 

U sin 8. 
8 

5.38 

This is the value of uniform x-directed deflection, that when 

mUltiplied by the arc length of the back or front half of the pile 

circumference, produces the same sum as if the actual variation of 

x-directed deflection were integrated around the back or front 

half of the pile circumference. The integration leads to 

u = (U 
x r 

U ) / 2. 
8 

5.39 

The smooth pile-soil interface will undergo a smaller average 

deflection in the x direction since the relative slipping around 

the sides of the pile leads to a smaller magnitude circumferential 
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deflection, given by U, than that which occurs for the rough 
9 

case. A more complete investigation of this aspect requires a 

change to finite, as opposed to infinitely small, deformation 

theory. This aspect is outside the scope of the current work. 

The assumption preferred for the laterally loaded pile biface 

analysis is to take the average deflections of the pile and soil 

when analysed separately, and as defined by equ. 5.38. The 

average is extended vertically over the area of the interface 

element by recourse to numerical integration of the shape function 

of the finite element. By this manner, the average deflection of 

the soil from an analysis using the applied tractions as shown in 

Fig. 5.17a (i.e. just the anti-symmetric term k = 1) and the lower 

mesh of Fig. 5.16a yields a value of 

u Eh/F = 0.532. 
x x 

This value agrees exactly with the answer from the analysis that 

actually modelled the pile segment, and this value is within 0.3% 

of the analytic answer for the rough pile-soil interface. 

Thus, the average deflection used to model the response of 

the plane strain pile segment interacting with the soil, provides 

an adequate means of representing the soil and pile. The effect 

of assuming a smooth pile-soil interface is to increase the 

deflection by only 19% and involves behaviour more suited to 

analyses capable of modelling large deflection/strain behaviour. 

The plane strain analysis suggests an average deflection-based 

influence coefficient and a rough interface represent a suitable 

form for soil-structure interaction analyses. 
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b) Biface Test Problem 

It has been proposed by Baguelin, Frank and Said, (1977) and 

others, that the behaviour of the soil and pile at depth can be 

approximated by a horizontal plane of soil containing the pile 

segment acting in plane strain, i.e. no vertical strains. This 

approximation of plane strain has also been the basis of much work 

concerning the non-linear and plastic collapse behaviour of deep 

pile segments, Poulos and Davis (1980), Randolph & Houlsby 

(1984). Therefore a precedent for such an approach as an aid to 

analysis of laterally loaded piles exists. 

While the three dimensional nature of the pile problem does 

not necessarily contain any strictly plane strain behaviour, it 

seems that a plane strain analysis is a closely related simple 

test problem that can be considered when assessing the accuracy of 

the proposed front-back biface method. It must be emphasised that 

the results of this test problem are not proposed as being of 

value in any pile analysis that is contained in this work. It 

merely the ability of the proposed method to analyse the 

problem, which also has often been applied to analysis 

laterally loaded piles, that is considered here. 

is 

test 

of 

ways: 

The plane strain pile segment problem can be solved in three 

a) analytic solution,as presented by Baguelin et al. (1977). 

b) the conventional plane strain finite element analysis, see 

Figs 5.16b and 5.16c. 

c) the axisymmetric geometry finite element analysis, see 

Fig. 5.16a. 

Of these, the analytic solution has been commonly restricted to a 

full contact analysis, although Pyke and Beikae (1984) have 

presented a solution designed to model breakaway, while the finite 
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element solutions can allow for soil-pile breakaway. 

The mesh of Fig. 5.16c has been constructed in such a way 
that the pile and soil make no contact over a specified section. 
Actually, the nodes at which separation is forced are dual nodes 
with no compatibility between deflections, which does not 
eliminate the possibility of the pile and soil elements 
overlapping. The finite element employed here uses a quadratic 
shape function and therefore cannot exactly model the circular 
geometry which involves trigonometric functions. Thus, attempts 
at calculating the regions of overlap are not conclusive. 

The axisymmetric finite element meshes for the plane strain 
problem are given in Fig. 5.16a, and can be seen to provide a much 
more economical analysis than the normal plane strain meshes of 
Figs 5.16b and 5.16c. Further, the geometry of the region 
discretised corresponds exactly to the circular geometry of the 
pile segment problem. From this regard, the AGFEM results are 
more accurate than the plane strain FEM results, given the same 
radial arrangement of elements. 

Because the analysis is not required to model an infinite 
extent of soil and to improve the accuracy of the plane strain FEM 
analysis, it is appropriate to make no attempt at modelling an 
infinite lateral extent to the plane strain problem. Baguelin et 
al. (1977) have indicated that a model with a fixed boundary at 
more than thirty pile radii was a fair approximation to pile 
behaviour. Therefore, the rough circular boundary was chosen to 
be at a distance of ten pile-segment radii from the centre of the 
pile segment. This provides a domain that can be accurately 
discretised and the circular geometry is matched precisely by that 
of the axisymmetric geometry in the AGFEM analysis. 

363 



The mesh chosen for modelling breakaway is shown in 

Fig. 5.16c and schematically indicates the restraints employed to 

take advantage of the symmetry of the geometry and the loading. 

The inner radius of the pile segment is one-half while the outer 

radius is unity. The circumferential discretisation gives sixteen 

equal-angled segments, while radially the element widths grade 

from small values near the soil-pile interface to larger values 

near the fixed outer boundary at 10 interface radii. The inner 

three radial elements model the pile segment and are assigned a 

Young's modulus that is one thousand times that for the remaining 

eight radial soil elements. This ensures that the pile has an 

essentially rigid response when compared with the soil. 

By using such a stiff pile-to-soil modular ratio, for the 

full contact problem, shown in Fig. 5.16b, the load can be applied 

on the inner surface of the pile segment in virtually any form 

(discrete nodal forces or distributed load) that has an imbalance 

in total x-directed forces. A unit depth and a unit positive 

radial load over the front half (and from the symmetry of the 

problem a negative radial load over the back half of the plane 

strain pile segment) at a radius of one-half, gives a resultant x

directed load, F of unity. This loading is transferred to the 
x 

soil at the interface radius of unity. Because of the rigidity of 

the pile the stress distribution in the soil near the interface is 

unaffected by the distribution of the applied load. 

Baguelin et al. (1977) have presented equations for the 

stress state in the soil and at the interface these result in the 

approximate expressions 

F 
o = x. cos 9 
rr 2 TT'r 

o 

364 



F 
0 = x V . cos El 

ee 2 lTr 1 - V 
0 

F 
T = - x sin El 

re 2 lTr 5.41 
0 

As seen in Fig. 5.17a, the finite element results for the inter

face stresses (which are the same from both meshes, Fig. 5.16b and 

Fig. 5.16c) fit the above equations very well, especially when it 

is considered that the stresses from the finite element method are 

at Gauss points some small distance from the interface. 

Thus the finite element and theoretical solutions for inter-

face stresses both agree for the case in which the pile segment 

and soil remain in contact. The case of a smooth pile-soil inter-

face was considered in the previous section using the axisymmetric 

geometry finite element method. This solution for a full contact 

case is a result consistent with the assumptions made by most 

researchers, who have assumed that full contact is preserved. 

Also provided by Baguelin et al. (1977) is enough information 

to derive an expression for the deflection of the rigid pile 

segment as a function of Poisson's ratio. This has been plotted in 

Fig. 2.6 as a dimensionless influence coefficient using the 

equation 

uEh = 1 ~' +V) \0 -4V) '"(R/, )' - 2 I 5.42 
-r 81F 1 - V) 0 (3 - 4V) 

x 
where R is the fixed outer radius. 

Also plotted are two sets of points corresponding to an 

approximate solution found in Chapter Three for the average 

deflection of a rigid square situated vertically, both at the 

surface and at infinite depth in a homogeneous elastic half-space. 
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It can be seen that the solution is very sensitive to values of 

Poisson's rat io as the incompressible limi t of behaviour (V = 0.5) 

is approached. The rigid square behaviour is seen to bracket the 

plane strain result, suggesting that the plane strain behaviour is 

not vastly different from the fully three-dimensional response. 

However, the three-dimensional behaviour is known to be 

insensitive to variation of Poisson's ratio. The opposite applies 

to the results of the plane strain problem, and thus it could be 

inappropriate to use it for undrained conditions. 

The mesh of Fig. 5.16c, with the dual nodes, is used to 

analyse the problem where the back of the pile segment has no 

compatibility of deflections over the chosen arc length. For the 

biface analysis this arc is fromIT/Z < 9 < IT (and~ < 9 < ]w/Z 

from symmetry) and the resulting interface stresses are given in 

Fig. 5.17b. Clearly the stress distribution becomes more complex 

than that in Fig. 5.17a, since stress concentrations arise at the 

junction of the full-contact region and the stress-free face. 

The average deflection of the front face of the soil (and 

pile segment) u , and the average deflection of the back face of 
FF 

the soil u , due to loading of the front face, are the 
BF 

quantities that are required in a biface SSI analysis. From the 

plane strain finite element results these deflections are 

u Eh/F = 0.719 and 
FF x 

u Eh/F = 0.351. 
BF x 

Thus, the AGFEM analysis must be shown to produce adequate 

estimates of these deflections and the first stage is to define 

the form of the interface traction that will be used for the half-

contact analysis. Fig. 5.17b presents the form of the interface 
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traction found from tha finite element analysis and shows one of 

possible method of approximation. By defining the radial normal 

traction to be a cosine function and the circumferential shear 

traction to be a sine function of circumferential position 9, 

within the range -~/2 < 9 <~/2, and both tractions to be zero 

elsewhere, there is reasonable agreement with the finite element 

result. Another alternative is to assign the radial normal 

traction a cosine squared variation and take the shear traction as 

the product of a sine and cosine function. 

The former traction distribution results in an x-directed 

uniform traction around the interface, while the latter induces a 

uniform normal stress in the x coordinate direction in the soil. 

Both of these forms were considered as possibilities and, using 

Table 11.1, could be synthesised by the AGFEM analysis using the 

" patch" loading of Appendix 11. Table 5.4 presents the 

intermediate results in the form of the Fourier coefficients of 

deflection due to unit Fourier load term, the deflections after 

mUltiplying by the Fourier terms for x-directed traction load, p 
x 

and the deflections after mUltiplying by the terms for loading as 

an x-directed uniform stress in the soil, a 
xx 

The last column does not contain entries for Fourier terms, k 

higher than two. This is because of the use of an average x-

directed deflection in the model. The definition of the average 

deflection, equ. 5.38, leads to the front and back deflections due 

to loading of (say) the front face being calculated by 

1 1 
u = ( U - U )/2 

FF r 9 
BF 

0 2 2 4 
.! 2/Tr [ U + ( U - 2 U )/3 - ( U 

6 
+ ( U 

r 

r r 

6 
- 6 U )/35 -

9 
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Since, for k greater than 2, the Fourier terms used to model the 

uniform-stress load case only have non-zero values for odd terms, 

and only even terms are involved in the average deflection calcu-

lation, there is no influence for any term greater than 2, i.e. 

0 1 2 
P = P + P cos 9 + P cos 29 + 

r r r r 
1 2 

p = p sin 9 + P sin 29 + . . .. 5.44 
9 9 9 

0 1 2 
where p = 1/4 , P = 4/31T', P = 1/4 

r r r 
1 2 

p = -2/31T' and p = -1/4 
9 9 

which is all the that is required from the series in order to 

provide an exact value for the average deflections. 

However, the x-directed traction loading does not present 

such a feature, since the load form is now given by the series 

p 
r 

P 
9 

= 1 + 1 cos 9 + 2 cos 29 - 2 cos 49 + 2 cos 69 ••• 

= 

1T'"2 :nr I"51'F TIlf 

1 sin 9 - 4 sin 29 + 8 sin 
"2 :nr 151T' 

49 - 12 sin 
TIlf 

5.45 

69 ••. 

which contains even terms that coincide with those of the equation 

for the average deflection, equ. 5.43. The results from Table 5.4 

for the deflections in the case of an x-directed traction, pare 
x 

u Eh/F = 0.771 and 
FF x 

u Eh/F = 0.292. 
SF x 

While those for the uniform x-directed stress, a are 
xx 

u Eh/F = 0.808 and 
FF x 

u Eh/F = 0.255. 
SF x 
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Comparing these results with those from the plane strain 

control problem, reveals a closer modelling is possible using the 

x-directed traction scheme of loading. The analysis has used six 

terms in the x-directed traction case and the effect of the last 

three terms is not very significant. Indeed, the use of only the 

first three terms gives an answer closer to that from the control 

problem than that from using six terms, u being 6% higher and 
FF 

u 17% lower than the control answers. Considering the fact that 
BF 

the AGFEM mesh and analysis are likely to be more accurate than 

the plane strain FEM analysis, and the greater degree of 

uncertainty associated with the actual form of the biface 

condition with respect to a real soil, the x-directed traction 

model is seen to give sensible and adequately accurate results. 

c) Non-linear Model of Soil-Pile Interface 

Standard methods of incorporating non-linear soil behaviour 

have involved estimating the ultimate lateral load required to 

cause collapse of an element of soil containing the pile. The 

loads can be found by engineering approximation analyses, 

results from classical plasticity for simplified problems or from 

experience with previous full scale tests, e.g. Matlock and Reese 

(1960), Poulos and Davis (1980) and Broms (1965). 

These failure loads for an element of soil take no account of 

the proximity of other failed soil elements and do not incorporate 

three-dimensional behaviour except in an approximate manner. The 

loads are also implicitly linked with the behaviour of the full 

pile cross-section, i.e. they include the back and front in the 

one element. There is no formulation for loads on a pile segment 

where the front and back are treated separately. The closest any 

method of analysis comes to this is when a gap is assumed to have 

formed behind the moving pile, (Matlock, Foo and Bryant, 1978). 
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For this reason a new approach has been adopted herein, 

employing elements of previous work but being strictly applied to 

the behaviour of the front and back soil elements. Swane (1983) 

has introduced a degree of rational organisation to the various 

modes of pile movement through the soil at failure. He divides the 

soil response into three categories namely 

a) adhesive, 

b) gapping and 

c) flowing soil behaviour. 

He recommended the situations within which each type of 

failure may occur. The method of incorporating the various stages 

of behaviour was an assignment of separate tension and compression 

properties to the Winkler springs. 

Within the framework of elastic soil behaviour,applied here 

to the analysis laterally loaded piles, it is not possible to 

change spring stiffnesses since none are assumed in the method. 

The approach adopted here has been to use a deflection mismatch 

between the pile deflection and the soil deflection that would 

have occurred if the interface only transmitted a limited amount 

of load. All the while the soil is elastic and linear the mismatch 

in pile and soil deflections is seen to be zero. 

As an element of soil reaches a critical state the pile and 

elastic soil can be thought of as losing contact and a mismatch in 

deflection arises. If the pile is moving away from a soil face, a 

gap situation may arise or the soil may flow to fill in the 

mismatch in deflection. Alternatively, if the pile is moving into 

the soil the mismatch between the pile and the elastic soil may be 

interpreted as a plastic deflection. This plastic deflection or 
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flow may be thought of as existing in a thin film of soil at the 

pile-soil interface and is non-recoverable. 

If axial behaviour is considered "his would be quite 

realistically a case of slip between two elastic bodies. For 

lateral behaviour however the slip becomes an actual penetration 

of the pile into the failed region. If it is considered that the 

soil which is failing does so in a thin band, then the elastic 

region of soil involved in interaction with the pile is 

essentially unaltered. 

A limited investigation into the non-linear response of an 

elastic-plastic soil model for the specific problem of a circular 

pile section acting in a plane strain soil that obeys the Tresca 

failure criteria is considered. Both full contact and the half-

contact situation associated with the biface model are analysed 

for a soil with an undrained shear strength, c. In a total 
u 

stress analysis, the initial stress value makes no difference to 

the result, since it is assumed that there is no change in 

effective stress and thus the back and front soil has the same 

shear strength. 

The elastic-plastic plane strain finite element program was 

first checked against the solution of Koiter (1953) for the 

problem of a plane strain elastic-plastic cylinder under internal 

pressure. The results are given in Fig. 5.18 as a plot of 

internal pressure against the deflection of the internal radius. 

The indications are that the deflection for a given load level, 

and also the collapse load, will be slightly overestimated. 

The mesh of Fig. 5.16b was used to analyse for the load

deflection behaviour of the pile segment upto collapse of the 

soil. Figure 5.19 shows the load-deflection curve resulting from 
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the analysis. The collapse load predicted by Randolph and Houlsby 

(1984) is indicated in the figure, and as might be expected, the 

finite element analysis overpredicts the collapse load. However, 

the fine discretisation and the nature of the problem do allow a 

definite value of the collapse load to be found, which has often 

not been the case for other attempts at calculating collapse 

loads using finite elements, e.g. Baguelin et al. (1977). 

Also in Fig. 5.19 is a curve resulting from analysis using 

the mesh of Fig. 5.16c with half-contact. The larger size of the 

mesh and the large strains associated with the amount of load that 

could be applied before computing time became grossly excessive, 

precluded loading to collapse. The results obtained suggest that 

the load may well continue to increase but that excessive 

deflections would occur long before true collapse was achieved, 

although an apparent collapse lower than that for full contact 

might be proposed. 

Rowe and Davis (1982) have presented results for the problem 

of a soil anchor using an elastic-plastic finite element model 

with allowance for breakaway. They also conclude that the 

collapse load with breakaway is the same as that with no break

away, but failure of the anchor is evident long before this from 

excessive deflection. 

For the biface model the soil failure load is not affected by 

breakaway of soil from the opposite face. This assumption is 

consistent with the findings of this section and those of others. 

Until a more advanced analysis of the three-dimensional nature of 

pile-soil interaction is forthcoming, the biface model, as 

presented here, remains the most promising tool with which to 

account for non-linear behaviour. 

372 



5.5.3 SSI Analysis Verification 

The SSI analysis using the finite element-based soil and pile 

influence matrices is checked by analysing a simple two-layer soil 

problem. This establishes the correctness of the analysis for 

linear elastic problems and provides some more proof of the 

effectiveness of the non-homogeneous modification method used in 

the MBEM analysis. The non-linear behaviour is checked by 

modelling a non-linear elastic gapping problem using the influence 

matrix from an analytic solution of a cantilever with uniformly 

distributed loading over elemental areas and a Winkler-based soil 

influence matrix. Finally, the method of approximation for the 

interface traction distribution is assessed for the SSI biface 

analysis using an elastic continuum soil. 

Two-layer Soil Problem 

A set of solutions for laterally loaded piles in a two-

layered elastic continuum soil has been presented by Pise (1982). 

He employed the point force solution of Mindlin (1936) in an 

unspecified manner that allowed treatment of a non-homogeneous, 

layered soil. His results cover three values of relative 
4 -1-3 

soil stiffness, given by E I lE L values of 10 ,10 and 
p p b 

using twenty elements in a model similar to that of Spillers 

pile
-5 

10 

and 

Stoll (1964). The modulus of the base layer, E has been used as 
b 

the representative soil modulus for non-dimensionalising the 

response and a top modulus, E to base modulus ratio, and, to-
t 

gether with a ratio of the top layer thickness L to full pile 
s 

length L, defines the problem. The variation of response with 

length to diameter ratio has not been presented and the results 

are strictly only valid for the chosen length to diameter ratio of 

twenty five. 
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The three methods developed in this thesis for analysis of 

piles in an elastic continuum have been used to analyse this 

problem and the results are in good agreement with one another. 

Figure 5.20 depicts the deflected shapes of the stiff and flexible 

piles from the three methods of analysis. As might be expected 

the MBEM analysis predicts larger deflections, consistent with the 

infinitely larger volume of soil that is modelled compared to the 

SSI and full mesh direct FEM analyses. The bending moment 

distributions for the stiff pile are presented in Fig. 5.21 and 

again the agreement between the SSI and FEM direct analyses are 

very good and the MBEM analysis, with its modification of the 

uniform soil response, predicts less than 10% more for the maximum 

bending moment. 

The results of Pise are very close to those from the MBEM 

analysis, typically being within 10% of each other for the head 

deflection due to head shear and the value of maximum bending 

moment. For this reason the results of the MBEM analysis only are 

plotted in Figs 5.22 and 5.23, where the above-mentioned head 

deflection and maximum bending moment from the SSI and FEM 

analyses are compared. The results for small layer and modulus 

ratios provide the least satisfactory agreement, where the effects 

of the coarseness of the SSI discretisation become evident. 

The SSI analysis for a pile in an elastic continuum agrees 

with results found from direct analyses using the FEM meshes and 

the MBEM analyses, and further, all the methods are in good 

agreement with the results presented by Pise for a pile with a 

length to diameter ratio of 25 in an elastic continuum. Thus, the 

SSI analysis gives satisfactory results for a linear elastic 

continuum based laterally loaded pile. 
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Non-linear Elastic Gapping 

While the study of the Winkler soil model is a good way to 
introduce soil-pile breakaway behaviour, questions arise about the 
applicability of such an approach that limits the usefulness of 
the Winkler results. One use for the Winkler results is to 
confirm the modelling technique used in the biface Soil Structure 
Interaction (SSI) program. By comparing the predictions from the 
SSI approach for a Winkler soil with results from the theoretical 
analysis of section 5.3, it is possible to quantify the errors of 
the SSI numerical method. 

Since the Winkler solution is independent of the value of 
length-to-diameter ratio it is only necessary to use one value of 
this ratio. To non-dimensionalise the rigid pile solution it is 
best to use the pile length and soil modulus at the tip. If a 
flexible pile is considered, the critical length should be used, 
together with the modulus at that depth. An intermediate 
flexibility pile solution is most conveniently made dimensionless 
by using the actual pile length and tip modulus. These two schemes 
are used in an unconventional presentation of the limiting cases 
of rigid and flexible piles where SSI results for head shear and 
moment loading are compared with those from Winkler Theory. 

The results for a rigid pile in a uniform Winkler soil are 
plotted in Fig. 5.24, and are presented as four curves, two for 
deflection and rotation with full contact and another two for full 
breakaway. The standard response of head deflection and rotation 
to head shear and moment are shown in a non-standard form, each 
response being multiplied by quantities that ensure the slopes of 
the lines represent the incremental form of the influence 
coefficients given in Section 4.2.2, I ,I = I and I 

uH eH uM eM Each curve is actually two curves super-imposed, each 
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starting at zero load and being the result of two loadings of the 

pile head; first with a unit shear alone, (H=l,M=O) then the unit 

shear is reduced to zero while at the same time applying a value 

of moment numerically equal to the effective length of the pile 

(H=O,M=L ); the procedure was then reversed, applying the moment 
e 

first, then the unit shear as the moment was removed. 

Because no non-recoverable deflections are involved, the 

solution cannot produce locked in residual stresses upon load 

removal, above those existing before loading. With no permanent 

deflections all load paths leading to the same total load must 

result in the same total response, although the individual paths 

may be very different. Both load paths result in the same 

deflection and rotation at the same head loads which verifies that 

the elastic nature of the linear and non-linear problems is 

correctly modelled. The deflection and rotation responses meet 

along the horizontal axis, for each of the two cases of breakaway 

and no breakaway, since the solutions obey the reciprocal theorum. 

The results for full separation have been obtained by using 

very small self-equilibrating loads for the unloaded state, in 

order to model the insitu lateral stress condition. The program 

was organised to allow progressive breakaway and so is unable to 

model the case of breakaway occurring at the instant of loading. 

It would be possible to do this by using large initial stresses 

which inhibit all breakaway, and employing a Subgrade Modulus of 

half the normally chosen value, but this would also avoid checking 

the solution scheme. 

The preceding analyses assume a simple model in which equal 

support from front and back of the soil at anyone depth will be 

available up until separation of a front or back face occurs. 
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Swane (1983) has used a model wherein the stiffness of tension and 

compression elements at one depth are allowed to vary. However the 

simplest assumption is most convenient to use here, in order to 

quantify the errors arising from the SSI method. From the above 

it is obvious that some small region of the loading history will 

involve the progressive growth of zones of separation. The small 

initial stress chosen has minimised the extent of this region but 

it is not possible to completely remove such behaviour and still 

maintain a stable solution. 

It was noticed that the load level at which the response is 

virtually equivalent to full separation can be well short of that 

at which all elements have separated. This indicates the minor 

influence that some individual elements have upon total response. 

However, too coarse an arrangement of elements will negate the 

validity of the above statement. The insitu stresses chosen 

ensured full separation at the maximum head shear and moment loads 

that were applied to the rigid piles in Winkler soils with both a 

uniform and linear distribution of stiffness. 

Careful study of the response of a rigid pile in a 

proportionally distributed stiffness (linear) Winkler soil, 

Fig. 5.25, shows that the "full-contact" rotation due to moment 

* load (S,M=L) and the "complete-breakaway" deflection (u ,H=l) due 

to shear load are not on the same point at maximum applied load. 

This coincidence might be expected since analytically 

uE L/H = 18 (full contact) 
L 

* thus leading to u E L/H = 36 (complete breakaway) 
L 

which is the same as SE L/M = 36 (full contact). 
L 
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However, this coincidence of the complete breakaway and full 

contact results relies upon complete breakaway forming at the 

instant the load is applied. It has already been mentioned that 

such behaviour is not available from the program and indeed, such 

a response is most unlikely to occur practically. Thus, the 

responses will only be comparable to the analytic solution when 

incremental behaviour is considered, i.e. the slopes are equal. 

Table 5.2 compares the incremental response values of derived 

ratios of breakaway to full contact response of rigid piles from 

the numerical results with the analytic answers from Section 5.2. 

Also included in the Table are the values of response ratio 

achieved from considering a flexible pile in both a uniform and 

linearly increasing stiffness Winkler soil. The numerical results 

are very good, the maximum error being less than 0.25%. 

It is clear that rigid and flexible piles in both a uniform 

and linearly varying stiffness Winkler soil profile, reach a 

limiting response where all effective elements of the pile have 

separated from the soil where tension is imminent. The rigid pile 

has separation throughout the full length of the pile. A flexible 

pile may achieve separation along its full length, but at least 

must have gapped over its effective length before the incremental 

response stabilises. Both rigid and flexible piles essentially 

attain full separation response before all elements have separated 

within the effective length. This shows the lack of importance of 

the response of single elements upon the head behaviour, 

especially when those elements are not near the head of the pile. 

An element near the head will naturally produce a larger 

change in head response as it separates than an element at greater 

depth. But, providing the pile has sufficient elements in its 

effective length, the contribution of each element is small enough 
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to produce a relatively smooth head response curve. 

Figure 5.26 shows an enlarged view of the early stages of 

loading for the flexible pile in a uniform stiffness with depth 

Winkler soil. The smooth curve is a result of using 30 elements in 

the pile discretisation. To gauge the effect of the number of 

elements the analysis was repeated using 20, 10 and 5 elements 

elements and these results are also plotted. 

The linear elastic portions of the curves exhibit a variation 

of response as the number of elements increases, with the 20 and 

30 element results agreeing and giving a response only 1% less 

than the true deflection. Because of the low initial stresses 

specified in the problem, the non-linear elastic response deviates 

from the linear one at very low loads and essentially reaches a 

complete breakaway response at the top of the plot. The 5 element 

analysis shows distinct points where the response changes as new 

elements breakaway, but the more finely discretised curves are 

much smoother. Thus, the SSI analysis is shown to give excellent 

results for the effect of breakaway upon a pile in a Winkler soil, 

provided there is an adequate number of elements (say between ten 

and twenty) in an effective length. 

Effect of the Form of Interface Traction and Head Restraint 

The two traction distributions discussed in Section 5.5.2 

were both used to analyse a pile in an elastic continuum soil for 

comparison of the results with those from a direct finite element 

analysis. As well, the effect of the manner of fixing the head of 

the pile, to obtain the influence coefficients, was investigated. 

The results are presented in Table 5.3 where the difference 

in response from fixing the deflection of the entire cross

section of the head of the pile and just fixing that of one node 
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at the circumference is seen to be very small. Thus the more 

easily applied case of full fixity was chosen, because fixing just 

sufficient nodes to generate the restraints necessary to allow 

load to be applied will require the definition of the traction at 

the pile head. It is simpler to assume the pile head cross

section does not deform in the horizontal plane than to introduce 

the extra variable of a traction distribution that does not give 

any significant change to the results. 

The choice of uniform stress or uniform traction loading does 

not appear to be important for the response of the head, since 

both methods overestimate, almost equally, the results when 

compared to the full mesh answer. Thus, with regards also to the 

results from section 5.5.2 the uniform traction load was employed. 

Non-linear Elastic Gapping Results 

The results for behaviour with gapping and soil yield 

(involving unequal soil pressures on the front and back of the 

pile), depend upon the number of Fourier terms modelling the uni

directional uniform traction, see Appendix 11. The SSI results 

for analyses of laterally loaded piles in a continuum here employ 

three terms only (0,1 and 2), since a comparison with results 

found using up to 8 terms showed neglible differences (less than 

1%) for the incremental response at limiting states of breakaway, 

as defined for the Winkler response of section 5.3.1. 

The results from the elastic continuum analysis show a 

variation with critical length to diameter ratio that was not 

evident in the results from the Winkler analysis. Another major 

difference is that the rigid pile solutions, although following 

the Winkler trend in possessing a higher breakaway to contact 

deformation ratio than the flexible pile solutions, do not achieve 

the one unique value that is numerically two for a Winkler soil. 
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The trend is for the cases with smaller pile effective length-to-

diameter ratios to have the larger effect due breakaway. 

Flexible piles in a uniform elastic soil with effective 

lengths equal to four diameters possess response increases due to 

the limiting state of breakaway given by 

..... 

(u lu) = 1.418, 
H 

.. ~ -.'. 
(u lu) = 1.363; (e le) = 1.349, 

M H 
.... , 

and (e le) = 1.153. 
M 

While in an elastic soil with Young's modulus proportional to 

depth the ratios of deformation increase due to gapping are given 

by 
..,,'. 

(u lu) = 1. 336, 
H 

... ~ -.': 

(u lu) = 1.241; (e le) = 1. 240, 
M H 

,', 
and (e le) = 1.114. 

M 

Rigid piles in an elastic uniform soil with lengths equal to 

eight diameters possess response increases due to breakaway given 

by 

-!: 

(u lu) = 1.372, 
H 

-1. * (u lu) = 1.409; (e le) = 1.409, 
M H 

1. 

and (e le) = 1.399. 
M 

while in an elastic soil with Young's modulus proportional to 

depth the ratios of deformation increase due to gapping are 

,'. 
(u lu) = 1.426, 

H 
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.. :. 'k 

(u /u) = 1.451; (e /e) = 1.452, 
H M 

-.': 

and (e /e) = 1.466. 
M 

These results conform to the trends exhibited by the Winkler-

based answers and differ in the aspects that characterise the 

additional elements found for linear response continuum solutions, 

namely: 

a) the added importance of the effective length to diameter 

ratio. 

b) the stiffening of response associated with soil-soil 

interaction. 

Thus, the SSI biface model can give accurate analyses of 

lateral loading of piles in a linear elastic continuum, non-linear 

gapping analyses for piles in a soil modelled as a Winkler medium, 

and also present reasonable results for a pile in a linear elastic 

continuum modelled soil with gapping. 
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5.6 Non-linear Biface Model Response 

A soil-structure interaction method for linear analysis has 

been presented in Section 5.5 and in Section 5.4 it has been shown 

that non-linear behaviour can be included, based upon rules of a 

general type commonly held to be obeyed by soil. To illustrate the 

model a rigid pile in a non-linear Winkler soil is presented, 

since it is the simplest problem that illustrates the major points 

of the model used for the soil-pile interface behaviour. 

The soil parameters have been chosen such that the head load

deformation linear response and the head loads at collapse are 

equal for each of four cases. To this end, the slopes of the 

interface stress-deflection curves for the soil elements are all 

the same and the difference between passive and active failure 

stresses is maintained constant. 

The four assumed interface stress-deflection responses of a 

Winkler soil interface element, at either the front or back, are 

depicted in Fig. 5.27, namely the responses when: 

1) the initial stress is midway between the active and 

passive values. 

2) the initial stress is at the active value. 

3) the initial stress is at the passive value. 

4) the low initial stress and zero or negative active 

failure stress means a tendency to cause tension results in a 

gap. 

The loading consists of two sets of two-way load cycling, the 

first just beyond the elastic range of the pile-soil system, 

followed by cycling at just below the failure load. The resulting 

pile element reaction load per unit length at a typical station 

383 



near the surface is plotted against pile deflection in Fig. 5.28 

for all the cases. The reaction load is a result of the 

difference between the unequal stresses acting on the front and 

back faces. This is the typical "p-y" response commonly used in 

some lateral pile analyses. 

In cases 1), 2), and 3) the soil remains in full contact, by 

flowing around the pile, and it is possible that a combination of 

passive and then active failure states can cause a return to the 

initial stress-zero deflection state, although this is most un

likely to be the case. More commonly the active and passive stages 

of the element response will alter the value of interface stress 

associated with zero deflection. It can be seen in the figure 

that in case 4) if the soil interaction stress reduces to zero, 

thereafter the deflection remains constant until recontacting is 

predicted. In all four cases the attainment of a passive failure 

stress would cause plastic deflections that would not be recovered 

and alteration or even removal of the stress associated with the 

original zero deflection position is possible. 

If the Winkler soil face breaks away from the pile, producing 

a gap as in case 4), it will undergo no further movement until 

recontact, unlike the continual deflection experienced by an 

elastic continuum based soil interface element. Since only passive 

failure is possible at any gapped element, the permanent 

deflection always occurs in the same direction and eventually may 

lead to zero interface stress at zero deflection. Even more 

likely is a state in which zero soil deflection and contact is no 

longer obtainable, i.e. a permanent gap is formed. This gap 

response assumes the soil will not flow around the pile at passive 

failure to fill in the gap. 
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Thus the case of full contact may be readily associated with 

both sand and clay, while gap formation is more relevant to clay 

response. It would not be expected that sand would be able to 

maintain a stress-free face, but would experience flow. This flow 

would then result in an active pressure on the pile, controlled by 

the movement of the pile. Some calcareous sands appear to be an 

exception to the above argument. It would appear that the platey, 

relatively degradable particles do not promote a stress-free 

flowing situation and exhibit an apparent cohesion. 

Zero Bias Response 

For the case of an interface with an initial stress value 

midway between the active and passive stresses, curve 1) of 

Fig. 5.27 is relevant. It must be remembered that an average 

stress on the individual front and back soil element faces, along 

the line of head loading, is being considered here. Since there is 

no bias towards either failure stress, this state is described as 

. having a "zero bias". 

Upon head loading of the pile, an interaction load must 

develop at the interface elements to preserve equilibrium. For a 

typical case, this load is the result of the front face stress 

increasing and the back face stress decreasing. Since the 

stiffness of both faces are the same, with an equal magnitude 

deflection, an equal but opposite sense stress change must occur 

on the front and back faces of the pile/soil. Since the total 

reaction is found from the difference in compressive stresses on 

the front and back faces, a pile reaction load-deflection response 

will arise that is twice as stiff as the individual component soil 

reaction load-deflection responses, see Fig. 5.28a. 

The front and back face must reach their passive and active 

failure state at the same deflection (i), because of the symmetric 

385 



nature of the problem. This means that when the back soil remains 

in contact with the pile, both the front and back faces undergo 

the same amount of plastic deflection that is non-recoverable. It 

is only the sense of the stress on each of the two faces that is 

different and so a symmetrical response must follow as long as the 

head loading is symmetric. Thus, closed hysteretic reaction load

deflection loops characterise the response of the zero-bias case. 

The combination of the bilinear elastic plastic responses at each 

station results in a multi-linear response at the head, as seen in 

Fig. S.29a. Since the applied head load is symmetrical, the pile 

element response and the head response are also symmetrical. 

Such a response is typical of many soil behavioural models, 

notably the class of hysteretic model often termed the Ramberg

Osgood model. Unlike models such as the Ramberg and Os good one, 

the response here is directly attributable to simple rules of 

elemental soil behaviour and does not rely upon empirically 

derived data to fix the shape of the response curves. The rules 

used, here with the Winkler model, are equally applicable to the 

more consistent elastic soil model. This enables the combination 

of the benefits of the linear soil response model with commonly 

accepted concepts of limiting stresses in non-linear soil models. 

While the zero bias response may be typical of undrained clay 

behaviour, it does not typify the response of drained clay or 

sand. Undrained behaviour means that total stress analysis is 

appropriate and undrained shear strength controls the failure 

stresses. In the section using the plane strain pile segment it 

was proposed that proceeding from the at-rest state to failure, 

the stress increments on the front and back of the pile were of 

equal magnitude and opposite sign. As long as the pile-soil inter-
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face can withstand tension, or while the initial stress is 

sufficient to eliminate tension, the zero bias model is 

appropriate for undrained response. 

If drained conditions exist, then the increase in mean 

effective stress at the front element is accompanied by a decrease 

in effective stress at the back element. Since the soil strength 

in general is a function of mean effective stress, the active and 

passive limiting stresses will be affected differently (one 

decreasing, the other increasing). 

A commonly accepted method of predicting the drained ultimate 

reaction load, is to use a distributed failure load based upon 

three to five times the passive failure stress as given by Rankine 

earth pressure theory and the pile frontal width. This simple 

device has been found to agree reasonably well for a limited range 

of lateral pile tests in frictional soil. For drained conditions, 

the active pressure acting behind the pile will be much smaller 

than the passive stress and so is often neglected in other 

methods. The factor of three to five may be seen as an attempt to 

allow for the three-dimensional nature of the problem and the fact 

that plane strain conditions do not apply. These "real-life" 

variations from the theoretical model may one day be accomodated 

in a range of theories based upon pressuremeter results. Until 

such theories are formulated and tested, relatively crude but 

apparently reliable approximations must be used. 

Active and Passive Bias Response 

The drained case with no gapping is similar to the undrained 

case, but now the absolute magnitude of the interaction stress 

changes, from the initial stress state at the interface, that are 

required to produce active and passive failure will not be equal. 
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The usual case will involve the active face failing before the 

passive face and so an active bias state is defined. If a 

situation arises in which the soil is initially close to passive 

failure on both sides then a passive bias state results. 

a 

Observing 

fully active 

the response at the improbable two limit states of 

and fully passive bias, would be expected to 

provide bounds upon the response of the model. Thus the limiting 

cases 2) and 3) can be analysed and are shown in Fig. S.28b. 

With the fully active bias case, initially the back face will 

not accomodate any reduction in stress and so will move with the 

pile and allow a mismatch between the interface element and the 

remaining elastic soil. Since the only resistance arises from the 

linear behaviour at the front face, the total pile reaction load

deflection response will be equivalent to the front face soil 

reaction load-deflection response alone (i). 

The front face at one depth reaches passive failure and at 

that element of the pile, assuming positive plastic work only is 

involved, deflection at a constant reaction load occurs until the 

head load is all applied (ii). At this stage, a large amount of 

permanent deflection has occurred in the positive direction. How

ever upon unloading only the same amount of elastic response is 

available as was available for the zero bias case. 

The unloading of the head of the pile results in the inter

faces returning to the linear response state and unloading of 

compressive stress from the front face, with an increasing 

compression of the back face. Because both faces now contribute to 

the response, the unloading proceeds with an incremental stiffness 

of twice the original value, (iii). Swane (1983) has predicted 

similar behaviour, although his model was based upon a somewhat 
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different approach to modelling the pile and soil behaviour. 

The initial purely active flow phase introduced an apparent 

compression of the soil at the back of the pile and a reduced 

compression on the front face. This effectively results in a 

deflection offset accompanying the state of zero reaction load 

upon the pile. Subsequent to the initial load, the symmetric 

nature of the response means the front and back soil elements at 

anyone depth will both fail at the same time, and never again 

will just active flow alone occur. Thus a permanent offset is 

apparent in Fig. 5.28b that was not present in Fig. 5.28a, 

although the shape of the stabilised reaction load-deflection 

loops are the same. 

Upon first application of the larger cyclic load, the new 

active flow phases occurring at stations down the pile that were 

previously fully linear, mean large plastic deflections arise at 

all previously non-linear elements (iv). These non-recoverable 

deflections mainly occur in the same sense as those during the 

initial load, since the cyclic head load was first increased in 

the same direction as the initial head loading. Thus the load 

deflection loop is offset further in the direction of initial 

loading. If the load were increased in an opposite sense to the 

initial load, i.e. increasing the amplitude on the negative load 

leg of a cycle, the larger plastic non-recoverable deflections, 

associated with the higher cyclic load, cause the load-deflection 

loops to shift in the opposite direction to the initial load. 

This has important implications for tests where successive 

trains of cyclic loads are applied to a pile. The sense in which 

the additional cyclic load is first applied will affect the load-
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deflection response of the head. This will be true for any 

situation in which the value of initial stress gives rise to an 

unequal bias with respect to the active and passive stress states. 

If the other limiting case of an initial stress state fully 

biased to the passive pressure is considered, it transpires that 

no material changes to the active bias case response are observed. 

The equivalence of the active and passive bias cases may be under

stood when it is realised that equivalent incremental responses 

are achieved whether a face unloads from ultimate compression to 

a lower limit or loads from a lower limit to ultimate compression. 

The head response for both cases is given in Fig. 5.29b. 

This equivalence of the pile response for the two limiting 

cases of active and passive biased initial stress is also evident 

in any pair of initial stress states that are equally removed from 

the zero bias stress state. This means that the behaviour of a 

pile in a soil can be normalised according to the deviation of the 

initial stress state from the mean value of the passive and active 

stresses. An initial stress equal to the mean value of the active 

and passive failure stresses being the zero bias stress state. 

While the theoretical model predicts such a feature it must 

be realised that, practically, it relies upon the flow of soil in 

an active state. There is some evidence from model pile tests 

carried out in sand, that flow may not occur or at best an in

complete flow of soil around the pile may arise. It seems that a 

measure of the soil flow ability could be made by measuring the 

difference in response from model lateral pile tests with an 

active and then a passive biased initial stress. However until the 

active and passive character of the soil response is clearly 

understood this must remain only a theoretical possibility. 
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Figure S.30a presents results for static loading to failure 

of a rigid pile in a uniform Winkler soil, for various values of 

initial stress. The initial stress, p , the mean of the active and 
o 

passive failure stresses, p and the difference between the 
m 

passive and active failure stresses, p are defined in the figure 

and used to 
y 

specify the initial stress state. The use of a "bias 

parameter" based upon the absolute value of the difference between 

p and 
o 

passive 

p divided by p allows two cases of equal active 
m y 

bias to be defined by one curve. A zero value for 

and 

the 

parameter is associated with a zero bias and a value of one half 

signifies a fully active or fully passive bias. 

It can be readily seen that the zero bias case presents the 

largest range of linearly elastic response to initial head load, 

while the fully biased cases exhibit an immediate reduction in 

stiffness. Although the initial response is again linear for the 

fully biased cases, it is linearity associated with the formation 

of non-recoverable deflections. It is the instant attainment of a 

fully failed state at one of the two soil elements at each depth 

down the pile, that produces linear behaviour totally controlled 

by the remaining unfailed element faces. 

Interestingly, a picture similar to the results from the 

elastic-plastic soil plane strain pile segment problem is evident. 

There is an initial difference of stiffness between the responses, 

just as there was between the fully contacting and half contact 

pile segment responses. The fully contacting plane strain case 

corresponds to a zero bias case and the half contact pile segment 

to the fully biased case of a rigid pile in a Winkler soil. There 

is a large increase in pile deflection required to achieve the 

full collapse load, which was held constant for all cases of 

initial stress. This parallels the results of Rowe (1978) where he 
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states that breakaway of soil from behind a plane strain anchor 

will not change the collapse load, but will greatly increase the 

deflection at which that load is achieved. 

Thus, if the collapse of a pile-soil system is to be 

considered, great care must be taken over how it is defined. A 

deflection definition based upon a percentage of the pile diameter 

contains no information about soil strength or the initial state 

of stress. As such it must not be interpreted as a collapse load, 

but may be viewed more correctly as a serviceability condition. 

The intermediate bias states show a transition from the zero 

bias state with progressively less pure linear behaviour, until 

the active, or passive, flow-based linearity of the fully biased 

states is reached. 

Apparent in the curves is the stepwise linear nature of the 

solution. This follows from the finite discretisation of the 

pile-soil system, where only the points corresponding to critical 

states occurring represent exact solutions for load-deflection 

response. Although smooth curves could be drawn through these 

points, corresponding to the states at which a critical condition 

has arisen, this has not been attempted. In some cases two curves 

may thus seem to touch, which is a result of linear interpolation 

between the load-deflection points at which elements first become 

failed. The points at which critical conditions of elements arise 

for the various bias states, will always present a progressive 

change of behaviour with no overlap. 

Soil-pile Breakaway 

The Winkler model with a limiting stress cutoff, used with 

the biface soil-structure interaction approach, displays a 

complexity of response that is not usually associated with such a 
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simple model. By introducing two faces at any depth along the 

pile, the opportunity exists for soil-pile separation governed by 

the state of initial stress and also the inability of a soil to 

sustain tension. 

Separation will now be considered by referring to Fig. 5.28c, 

which displays the 'p-y' response of the top element of the 

discretised pile. Beginning at the origin, the first increase of 

head load is mirrored by the interface reaction load increasing 

until (i), a state at which the most severely tensioned element 

face reaches zero traction. This is the state at which breakaway 

occurs on the back face and the pile reaction load-pile deflection 

response is governed by the remaining contacting element face. 

The curve denoted by a single arrow head is followed on the 

initial load and illustrates the change in response due to break

away of the back face as a change of slope at (i). Upon reaching 

the front element failure load at (ii), a deflection-defined 

response, governed by the remaing linear elastic elements, ensues 

until negative incremental plastic deflection would occur if no 

change of state were made. Reversal of the head load causes such a 

negative plastic deflection at (iii) and so unloading of the front 

face occurs in a linear elastic manner until the back soil face is 

recontacted by the pile at (iv). That face was left by the pile 

and, true to a Winkler model, had not moved since no load acted 

upon it, so the point of breakaway (i) and recontact (iv) occur at 

the same pile deflection but different pile reaction loads. 

The original incremental stiffness is regained during un

loading after (iv), until the front face reaches a zero inter

action traction at (v). Since irrecoverable plastic deflection had 

been produced in the first load, and there is still only the same 

393 



deflection available in the linear range, the breakaway of the 

front face occurs at a smaller magnitude of negative deflection 

than the positive deflection for separation of the back face. 

Thus, there is a lack of symmetry in the front and back face 

behaviour, controlled by the direction of first load and the 

amount of plastic deflection. 

With continued unloading, the pile element again experiences 

the reduced stiffness of response due to breakaway and then yields 

the soil of the back face until (vi). In the two-way cycling 

applied, the plastic deflections occur at maximum load in each 

direction and are equal. Because no unloading at element faces is 

associated with the cycling of the head load, except when the head 

load reverses, subsequent cycles do not cause soil failure unless 

the head load magnitude increases, i.e. plastic deflections only 

occur in the first load cycle leading to first cycle shakedown. 

The single arrows represent paths that are only followed 

during the first cycle of load and the second and subsequent 

cycles occur along the paths with double arrowheads. This response 

is a result of shakedown during the first load cycle, and, because 

no irrecoverable deflections are permitted, the response has a 

symmetry that was not evident during the first cycle. No new 

plastic deflection will occur in this state although the yield 

loads may be repeatedly reached. 

This shakedown state will continue to exist until an increase 

of maximum load on the pile head forces more irrecoverable plastic 

deflection to occur. The new plastic deflection is in response to 

the need for equilibrium of the extra applied force, which can 

only be achieved by increasing the load carried at previously 

linear elements. Such load increases will, in turn, cause elements 

to reach their limiting values of load and so introduce 
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irrecoverable deflections governed by the behaviour of an 

increasingly smaller set of remaining linear elements. 

The physically shrinking zone of soil, along the pile with 

purely linear response, cannot be accurately modelled by numerical 

means that involve spatial discretisation, as employed here. The 

continued reduction in the physical size of the linear zone forces 

the modelling of response by progressively fewer elements. It has 

already been emphasised in this thesis that a sufficient number of 

elements must be maintained in the effective length of a pile. 

Since the size of the linear response zone of the pile length is 

small, it seems almost certain that a rigid response is 

appropriate and so analytical expressions for the response of 

rigid piles for a Winkler soil model could be used. Swane (1983) 

has commented upon the need for adequate numerical modelling in 

order to obtain unique shakedown loads and employed such an 

analytic approach. 

The progressively poorer modelling of the shrinking linear 

region, will affect the response of piles when head loads close to 

the static collapse loads are applied. As such, the pile would 

normally be considered unsatisfactory, without a real need to 

investigate the load-deflection response. However one possible 

exception, is when piles of unequal sizes are used in a group and 

the collapse of one of the weaker foundation elements is an 

integral assumption made in the design. 

Thus, the cycling near static collapse of the next stage of 

loading, must be viewed as possibly being affected by the problem 

of poor discretisation of the small linear response region. This 

is also true of the second stage of cycling for the previous cases 

considered. It becomes more apparent for the case where soil 
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gapping is incorporated because the loss of lateral pile support 

is more easily visualised as breakaway rather than failure of the 

soil. Indeed, care must be exercised when only two element faces 

remain in a linear and contacting state. Both elements must be at 

different depths in order to allow equilibruim of any increment of 

moment caused by extra load at the pile head, or an ill

conditioned set of interaction correction equations result. 

The second stage of cycling employed here, did not remove all 

linear soil response, which would have involved a deformation

defined rather than load-defined problem. The first increase to 

the larger cyclic load introduces new plastic deflection at the 

front face first. Reversal of the head load causes an incremental 

response for the unloading that is purely a result of linear 

unloading of the front face. The amount of permanent deflection 

is so large that it exceeds the amount of linear deflection 

available for the front face. No change in the pile element 

response load around zero total reaction load signifies the pile 

passing through a complete gap, i.e. the pile is free-standing 

over the length of the element. Recontacting occurs at the same 

deflection at which recontact occurred during the shakedown 

response of the previous load, because the back face of the soil 

has no knowledge of the permanent deflection at the front face. 

For further loading, there is no response for this pile 

element that involves both soil faces acting together. This is 

partly a result of using the Winkler model, in which no inter

action occurs between the front and back soil faces, and partly 

due to the "lumping" of all side-face behaviour into the front and 

back faces. A more complex model would involve four instead of two 

faces to the pile at any depth, but this added complexity has been 

deferred in favour of establishing the two-face model as a first 
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and necessary step. The elastic continuum soil model does not 

have the limitation of no interaction that is inherent in Winkler 

theory, but will incorporate the assumption of biface behaviour. 

The two-way nature of the applied head load again results in 

a shakedown response that is symmetric and the path shown by three 

arrowheads in Fig. 5.28c is obtained after the first cycle of the 

new load. The portion of the curve passing through zero reaction 

load represents the pile in a gap between the two soil faces, and 

the two sloping portions either side represent the linear loading 

of each isolated soil face. Figure 5.29c presents the load

deflection response of the head of the pile for the gapping model. 

The hysteresis loop for the small cyclic load is seen to be much 

smaller than those for the zero and fully biased cases, 

Figs 5.29a and 5.29b where the shakedown response of the 

cyclic load is denoted by two arrowheads. 

shown in 

larger 

The shakedown head load-deflection response is seen to have 

its lowest stiffness for small loads around zero, but does not 

achieve a zero stiffness, since this would indicate no contact 

between the pile and soil along its entire length. The reduction 

in head stiffness is nevertheless alarming and may well give cause 

for concern when the effects of small displacements or loads, say 

due to vibrations, are important. 

The initial load-deflection curves for all the cases with an 

equal bias are the same and the end points of the cycles of load 

are also equivalent. Even the cases with an unequal bias have 

hysteresis loops for the full contact case that are equivalent. 

The effect of an increasing bias is seen to be a translation of 

the hysteresis loop and the effect of gapping is to leave 

shakedown loops with a zero area, implying only geometrical non-
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linearity with no non-recoverable deflections. All of these 

responses are available from the one" soil-structure interaction 

analysis using the same basic soil properties, with only the bias 

of the initial stress and the magnitude of the active failure 

stress varying. 

The problem of a rigid pile in an elastic continuum has been 

modelled using the axisymmetric geometry finite element analysis 

to produce the influence coefficients for the SSI program, and the 

results for static loading are presented in Fig. 5.30b. This 

figure may be directly compared to the one above, which is for a 

rigid pile in a Winkler soil. The most noticeable difference is 

the much smaller effect of the bias parameter upon the load

deflection response, which is a result of the interaction now 

existing between all the faces of the soil. 

The integrity of the soil in the elastic continuum model, 

reduces both the deflection for a given load and the effect of the 

initial stress bias upon response, when compared to the Winkler 

results. The interface traction-deflection curves, as depicted in 

Fig. 5.27 for the Winkler model, cannot be drawn for the elastic 

continuum soil beforehand, since the elastic slopes of the curves 

depend upon the ratio of head shear to moment and will be 

affected, to some extent, by any change of state arising at any 

other element face because of interaction through the soil. 

Despite the added complexity of the elastic continuum model, 

the general conclusions from the study of the Winkler results 

still apply to the continuum results. This does not mean that the 

Winkler results are suggested as being preferable to the continuum 

results, but rather that the basic laws governing soil-pile 

behaviour are evident in both models. The lack of interaction in 
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the Winkler model is still a serious deficiency that can be over

come, by the continuum model, which can include interaction. The 

Winkler model represents a highly simplified approximation to 

continuum behaviour that is unnecessary, but does serve as a 

useful means of simplifying the presentation of the behaviour of 

the SSI analysis. 

Broadly, the response of the model of gapping behaviour with 

respect to head load level has two regions, in which: 

a) the effect of the initial stress has not been lost. 

b) there is no remnant of the effect of the initial stress 

state evident in the response. 

These two features are also often present in models of soil 

behaviour and it seems likely that both lateral pile behaviour, as 

modelled here, and many soil behavioural models are closely linked 

by underlying premises of soil response. The existence of non

recoverable deflections or strains, the impossibility of any form 

of negative plastic work, and the importance of the level of the 

load or stress, represent three such features that are present in 

both types of model. 

In essence, a parametric study would be possible to present 

the effects of both gapping, and active and passive failure of the 

soil using the elastic continuum based SSI analysis. From the 

results presented in this section it may be seen that separation 

does not greatly alter the response due to mono tonic loading but 

is important when repeated loading is considered. Because of the 

multiplicity of parameters involved and the restriction to static 

loading for the topic of this Thesis, it is not feasible to 

present a parametric study at this stage. 
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5.7 Conclusions 

The same broad categorisation, into three classes of analysis 

of single piles subjected to lateral loading, has been employed to 

present the theoretical non-linear behaviour arising from soil

pile separation, soil failure and pile failure. Each class has 

beneficial aspects to commend it, but only the discrete analysis 

by the finite element method is able to accurately take account of 

varying the extent of the region over which interaction between 

the pile and soil occurs during loading in a continuum. 

The ease with which solutions can be produced 

Winkler soil model, make it ideal for investigating 

effects of non-linear soil and pile response, and 

using the 

the major 

developing 

analytic results that can be used to check the behaviour of more 

complex analyses. The lack of a basic material property in the 

formulation of the Winkler soil, reduces the practical usefulness 

of its results. 

Versatility is the major attribute of the modified boundary 

element method when applied to single pile analyses, since the 

soil interaction response provides the basis of the model and 

remains unaltered by the conditions applied to the pile-soil 

interface. By defining a mismatch in deflection between the pile 

and elastic soil as being non-recoverable, an improved non-linear 

soil interface model is achieved which allows for "unloading" of 

failed soil in response to the need to avoid negative plastic 

work. However, nowhere in its formulation does it allow for the 

fact that the region over which the interface interaction loads 

act can change during loading, i.e. soil-pile breakaway at the 

interface is only modelled within a non-linear interface element. 
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Inclusion of soil-pile breakaway is accomplished by 

developing a new soil-structure interaction analysis in which the 

regions over which the interaction tractions may act are modelled 

separately, as a Winkler soil or a continuum soil using a finite 

element technique, thus allowing loss of contact between pile and 

soil. The biface model is used to introduce the analysis and its 

use is supported by analysing a plane strain pile segment by 

traditional finite elements and the axisymmetric finite element

based technique. The linear elastic continuum and non-linear 

elastic gapping Winkler response are shown to be adequately 

modelled by the SSI pile analysis and the behaviour resulting from 

non-linear soil response is presented. Further, the SSI analysis 

reproduces the results of direct application of the MBEM analysis 

for the pile analysed in Fig. 5.14. 

Several commonly observed aspects of non-linear response are 

evident in the results and this suggests that the continuum-based 

models are capable of predicting pile response directly, rather 

than relying upon pre-determined empirical devices to reproduce 

the soil response. Further, the SSI analysis represents a useful 

way to assess the importance of gap formation upon pile response, 

without relying entirely upon assumptions about soil behaviour 

that limit the predictive capabilities of any resulting model. 

401 



Developed Smooth Rough 
Interface Interface 

Interface 

Stress Pi le So i I Pi le So i I 

Srr 0.318 0.318 o. 161 o. 161 

T r 8 0.000 0.000 -0.157 -0.157 

S88 0.072 -0.088 -0.441 0.068 I 

Szz 0.078 0.069 -0.056 0.069 

-

TABLE 5.1 Stresses Developed near the Interface between the Soil 

and the Plane Strain Pile Segment for unit Force. 

So i I Response due to Response due to 
Pile Head Shear Head Moment 

Modulus 
• • • • Type Profi le ulu 818 u/u 8 18 

Num' I 2.000 2.000 2.000 I .999 
UNIFORM 

Anal yt i c 2.000 2.000 2.000 2.000 

RIGID 

Num' I 2.000 2.000 2.000 2.000 
LINEAR 

Anal yt i c 2.000 2.000 2.000 2.000 

Num' I I .679 I. 411 I. 41 0 I. 187 
UNIFORM 

Analytic I .682 I. 414 I. 414 1.189 

FLEXIBLE 

Num' I I. 5 I 8 I . 321 1.322 I . 150 
LINEAR 

Analytic I. 5 16 1.320 1.320 I. 149 
, 

TABLE 5.2 Ratios of Incremental Response with Complete Breakaway 

to FilII Comact Response for the Winkler Model. 



Load Pile uEd/ H 
2 2 3 

Type Fixi ty 
OEd/H uEd/M OEd/M 

Uniform Fu 11 0.3872 0.1038 0.1039 0.06396 

/1 xx Just 0.3883 O. 1049 0.1051 0.06599 

Uniform 
Px Fu 11 0.3874 O. 1039 0.1039 0.06399 

Traction 

Finite Element 
Fu 11 Mesh 0.3638 0.0950 0.0951 0.06055 

Results 
~- - - - -~ -

TABLE 5.3 Comparison of Full Contact Response for the SSI Model for 

Different Head Fixity Conditions and Assumed Pile-Soil Interface Tractions 

with a Full Mesh FEM Analysis. (L/d=lO, L c/d=11.8). 

k Pr= Prcos kO Po=kposin kO Px /1 xx 
Fourier 

kpr=l kpO=1 

Term k Ur Uo Ur Uo Ur Uo Ur Uo 

0 I .256 0 0 0 0.400 0 0.314 0 

I I .988 -1.346 -1.346 2.003 1.667 -1.674 1.129 -0.966 

2 1.326 -0.893 -0.893 1.326 0.660 -0.788 0.555 -0.555 

4 0.520 -0.260 -0.260 0.520 -0.066 0.099 

6 0.327 -0.141 -0.141 0.327 0.021 -0.038 
- .. - - - - -

TABLE 5.4 Plane Strain Pile Segmellt " Deflections for Unit Fourier Load Terms 

and Resultant De/lections after their Combination to Model a Uniform x-directred 

Traction, Px and a Uniform x-directed Normal Stress in the Soil. 
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6.1 Introduction 

This Chapter reports comparisons between experimental and 

theoretical pile behaviour, using a series of model pile tests 

performed by the writer. Also, the measured response in reported 

full-scale lateral loading pile tests is compared to the response 

predicted by the analysis method developed in Chapter 5. 

Broadly the experimental investigation comprised two phases:-

a) small model pile lateral load tests in beds of clay 

consolidated and tested under vertical overburden pressure. 

b) larger-scale pile tests using a strain-gauged pile in 

prepared beds of clay without overburden pressure present 

during the test. 

Connected with the lateral pile tests were a number of Quick 

Undrained (QU) triaxial tests performed upon samples cored from 

the bed of clay after the lateral pile tests. 

Tests in category a) were conducted to provide experimental 

results for a soil body in which the stress state can be 

reasonably predicted. Due to limitations of the testing equipment, 

it was impractical to test, under an overburden pressure, piles of 

sufficient dimensions to allow strain gauging. This necessitated 

the series of tests b) on larger beds of clay prepared under a 

consolidation pressure and then allowed to swell back to 

atmospheric pressure. The pile used in these tests was strain

gauged (see Swane, 1983) in order to record values of bending 

moment at several locations, and the "open vessel" technique of 

testing allowed free access to the outstand of the pile for 

deflection and rotation measurement. 
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6.1.1 Data ACquisition and Manipulation 

Before presenting the closed-vessel, open-vessel and tri

axial test results there follows a description of the method by 

which data from these tests was gathered, stored and reduced. 

The nature of the tests required accurate and frequent 

measurement of deflections, loads, pore water pressures and 

bending moments. In order to accomplish these measurements a data 

acquisition system was used. A Hewlett Packard Data Acquisition 

System was available for this purpose, but had not been 

commissioned. During the procedure of readying the system for 

actual use, much was learned about the requirements and 

limitations of electronic measuring equipment, but also the large 

range of its capabilities was recognised. 

The use of electronic data acquisition methods led to a 

number of benefits:-

a) the readings could be taken more frequently than is possible 

by manual methods. 

b) the readings were more accurate and consistent than manual 

readings. 

c) the reading of instruments continued overnight. 

d) the received data was immediately available in result form. 

e) the system could also be used to actuate switches and fully 

automate the test procedure. 

f) the data could be stored on disk to be accessed later for 

comparison with other tests. 

The main components of the system and their tasks will now be 

described. 
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Digital Voltage Measurement 

The majority of electronic measurement devices provide a 

voltage output that varies as a function of the measured quantity. 

To supply the computer-based system with digital data a voltmeter, 

or rather an analog to digital signal converter, is required. This 

converter is the Digital Volt Meter (DVM), and the quality of the 

data collected by the system is directly governed by its quality. 

The HP3455A DVM has a 6 digit display, measuring to one 

micro-volt. This resolution is more than adequate for most 

transducer outputs and proved useful for identifying problems of 

drift and transducer instability. Accurate readings require long 

signal integration times and so less readings per second are 

possible than with less accurate readings. This conflict means 

that if very fast readings are required, the scatter in such a set 

of readings may reduce the accuracy to an undesirable level. For 

the system used in the high resolution mode the maximum reading 

rate was about ten per second. This rate is adequate for the tests 

undertaken and any faster reading rate is well into the realm of 

dynamic behaviour and so outside the scope of the prsent work. 

Scanner 

The scanning system consists of a plugboard that allowed data 

lines from the tests to be connected to any desired input channel 

of the scanner. The scanner directs the instrument signals to the 

DVM where they can be read individually and also closes switches 

to operate loading machines. 

Controller 

The device used to control the data aquisition system is a 

HP9825 micro-computer. This micro-computer provides the means by 

which the experimenter interacts with the testing and alters the 

flow of data and course of the test. 
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Peripherals 

When the data has been collected into the memory of the 

micro-computer, it remains to present this data in an acceptable 

form and store it for future reference. 

A thermal printer provided a means of rapid and immediate 

communication with the operator and also gave an immediate hard

copy of the test results. Legibility and long term readability of 

the thermal type printer paper was poor and a high quality daisy 

wheel impact printer was employed to provide permanent tables of 

data as required after the end of a test. 

A single line, light emitting diode display on the HP9825 was 

the quickest form of communication with operator, but also the 

most temporary. All important warnings and messages were printed 

as well as displayed. 

A hard bed plotter was used for obtaining graphs of the 

variables measured in the tests and had the ability to digitise 

and change pen colour automatically. Any test that required long 

term plotting used the fact that the plotter caps and returns the 

pen on command from the controller, to avoid drying out the pen. 

The available mass storage peripherals included mini-disk 

drives and magnetic cassette tapes. The cassettes were of a type 

peculiar to the manufacturer of the controller and the disk drives 

were 8inch with 1500 records available for data. The disk drives 

proved very reliable and allowed very quick transfers of data 

during testing and after for data reduction. 

The magnetic cassette is a serial access system, meaning the 

required information must be searched for from wherever the tape 

437 



was positioned. If the data was at the end of a tape and the tape 

rewound to the beginning, delays of approximately 30 seconds to 2 

minutes could occur while the tape is being searched. This delay 

was critical when data was being acquired from a test while other 

data was transferred onto a cassette. This delay was minimised by 

positioning the tape during a period of inactivity in the data 

acquisition phase. 

The problem of time delay in data transfer was overcome with 

the use of a disk drive storage system and direct access to the 

data by storing the values in data records. Blocks of data were 

formed 

This 

and then transferred to a specific record within a file. 

means that the data can be retrieved by skipping directly to 

the record required instead of reading all the data in the records 

between the file pointer and the required record. 

Power Supply for Measuring Instruments 

Just as the accuracy of the DVM directly controls the quality 

of data recorded, so does the performance of the power supply used 

to energise the measuring instruments. If the power supply does 

not maintain the voltage and/or current that the instrument 

requires, the output that is read from that instrument can be 

badly affected. The power supply used had a very low 

(virtually unmeasurable) drift in its output and was capable of 

recovering the desired output value when extra demands were made. 

Most measuring devices require a constant voltage. However, 

some strain gauge applications may benefit from a constant current 

source. The option of constant voltage or constant current was 

investigated for the strain gauging operation and for simplicity 

the constant voltage method was used. 
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SYSTEM OPERATION 

Signal Sources 

The measuring instruments can be thought of as signal sources 

that, given a constant power supply, will vary their output signal 

as a function of the response being measured. 

Linear voltage deflection transducers to measure deflections 

as small as 0.001 mm upto 50 mm were used, depending upon the 

expected magnitude of deflections. It is important to use the 

correct range transducer; the larger the deflection range of the 

transducer, the less likely it is to sense a small change in 

deflection accurately. Most transducers were found to be very 

nearly linear in output versus deflection within the range of the 

maker's specifications. 

The transducers available were of a wire wound resistance 

change type or used an electronic circuit to sense the position of 

a metal core in the body of the transducer. The wire wound type 

was linear but produced step changes in its lower limit of 

readability. The metal core in an electro-magnetic field type can 

be slightly non-linear but has a definition of change dependant 

only upon the accuracy of the system DVM and was the type used for 

the measurement of deflection in all tests. 

Pressure transducers rely upon movement of a strain-gauged 

plate, and thus need a volume change of the fluid in which the 

pressure is measured, i.e. measuring the pressure may change its 

value if the volume change is significant. This effect will only 

be important in a few specialist applications, e.g. K one-
o 

dimensional triaxial tests; for the Quick Undrained triaxial tests 

carried out, the effect was negligible for the triaxial sample 

volumes used. 

439 



The conventional proving ring was converted to a load cell by 

using a deflection transducer to replace the dial gauge, using a 

more accurate small-stroke transducer for very stiff proving rings 

and longer-stroke transducers for more flexible rings. If it is 

assumed that the proving ring has a linear load-deflection 

behaviour and the transducer is linear in the range in which it 

will deflect, the voltage changes linearly with change in load. 

The measurement of strain gauge resistance is best 

accomplished using some form of a bridge circuit to measure a null 

balance or potential difference. Using a full bridge and a 

temperature-controlled environment, readings were repeatable with

in 5 microstrain over a long period of time. 

Signal Conditioning 

The signal that is generated by the measuring device may 

depend upon many factors apart from the response it is meant to be 

measuring. The temperature, proximity of electrical machines, and 

radiation from equipment, may all modify the signal on its journey 

from source to DVM. As well, most transducers and load cells are 

temperature sensitive to some degree and the application 

determines whether the effects are serious enough to warrant 

temperature control. All test equipment was housed in constant 

temperature rooms and so this potential problem did not arise. 

Any system of data lines connecting measuring instruments to 

the DVM may allow a stray current to return to the DVM via an 

earth loop. The "earth" between the instrument end of the data 

lines and the DVM measuring terminals may allow such loops of 

current, which will modify the signal that is measured. A system 

whereby this earth loop is allowed, but also eliminated from the 

measured value was used, which routed this current away from the 
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DVM measuring terminals in all tests. This constitutes a 

"Guarded" measurement, not to be confused with a "common earth" 

method of eliminating earth loops, which may produce measurable 

potential differences between signal receiver and source. 

Shielding signal protection was also employed, in which a 

screen of metal around the data lines intercepted and earthed any 

induced currents from surrounding electrical activity. The shield 

must be free at one end and earthed at the other to eliminate 

possible earth loops. 

The signal conditioning system used for the tests here was 

found to be more than adequate for the measurements required. 

Calibration 

The majority of measuring devices used were designed to give 

a voltage response proportional to the measured quantity. However, 

commonly the output voltage with respect to the change in the 

measured quantity was not exactly a linear function. One way of 

obtaining a more accurate measure is to fit a function to the 

voltage response. The basic polynomial was used to find a poly

nomial curve to fit a set of data consisting of voltage response 

versus measured quantity. The choice of the degree of the poly

nomial fit will be governed by the required accuracy and the 

amount of work needed to use the calibration practically. A tenth

order polynomial may provide good correlation between measured 

response and input response, but take too long to convert voltage 

readings to measured responses. 

As with all calibrations, the use of any device outside its 

calibrated range can cause serious errors. This is particularly 

evident for high order polynomials which can approach infinity 

outside the range very quickly. The lower the order of the poly-
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nomial the less chance there is that this asymptote to infinity 

will occur just outside the calibration range. Indeed the linear 

fit will never suffer from this problem and is to be preferred if 

measuring outside the calibration range is unavoidable. The tests 

undertaken here were always carefully carried out to ensure that 

no measurements were made outside of the calibrated range. 

Summary 

At the University of Sydney, School of Civil and Mining 

Engineering, the Soil Mechanics Laboratory has been using a micro

computer to control and read a wide range of tests. The computer 

is a Hewlett Packard HP9825 and controls a HP3052A Data 

Acquisition System containing a HP3455A DVM and HP3495A Scanner. A 

HP9872A Plotter with four pens and a HP9871A Impact Printer 

provide hard-copies of the test results. The HP9825 has a cassette 

tape drive and a HP9885M Master Disk Drive and a HP9885S Slave 

Disk Drive provide a system of mass data storage and retrieval 

that is quick and safe. The HP9825 also has a one line display and 

a small thermal printer. 

Communication on the system is via an HP-IB interface bus 

which links the Controller, Impact Printer, Plotter, Disk Drives, 

DVM and Scanner. A second interface is used to connect to a quartz 

time-clock that has the ability to interrupt the main controller 

in order to service a required function at set time intervals. 

Power is supplied by a very accurate HP-6113-A DC Variable 

Current and Voltage power supply for strain gauge work and a 

constant 5 volt HP-1818-A power supply for all other transducers. 
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6.2 Closed-vessel Clay Tests 

In order to gain some experimental data on laterally loaded 

pile response, a series of loading experiments were carried out 

using equipment designed for closed-vessel lateral pile tests in 

clay. The clay was Kaolin, as used by various researchers at The 

University of Sydney, Rowe (1977), Balaam (1978), Redman (1980) 

and Swane (1983). Since very little data on laterally loaded 

piles with regard to undrained and drained behaviour is available, 

this aspect was addressed in the test program. 

The clay was maintained under a uniform vertical pressure in 

a cylindrical steel vessel with a 30Smm diameter and of length 

420mm, and so did not model the commonly assumed situation in 

which the vertical stress increase is approximately proportional 

to depth. As such, the test is not designed to be a full scale 

model of a prototype, but is an attempt to indicate the behaviour 

of the clay at one depth, i.e. one overburden pressure. 

The pile will behave flexibly or rigidly depending upon the 

cross-section bending stiffness, and the overburden pressure used, 

because the clay Young's modulus is commonly found to vary with 

consolidation stress-level. The results were reviewed for: 

a) the consolidation response to dead loading. 

b) the overall load-deflection response characteristics. 

A series of exploratory cyclic lateral loading tests on piles 

in clay and calcareous sand under overburden stress and on clay 

with zero overburden were also performed, but due to both 

limitations of space and the necessity to expand the topic of this 

Thesis to properly discuss their results, they will not be 

presented. 
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6.2.1 Apparatus and Procedure 

The apparatus consisted of essentially the same equipment as 

was used for the previously referred to open and closed-vessel 

clay tests of Rowe, Balaam, Redman and Swane, but now the pile was 

tested under a lateral load, as shown in Fig. 6.1. The model 

piles, of solid aluminium rod with lengths from 75 to 290 mm with 

5, 8 and 10 mm, diameters, were tested without any head restraint, 

and the force applied at an eccentricity of between 10 and 17 mm. 

The clay had a Liquid Limit of 46% and Plastic Limit of 35% 

and was remixed to a moisture content of between 55 and 60% prior 

to filling the vessel to prepare the clay bed for each test. For 

the range of vertical consolidation pressures employed (from 100 

to 250 kPa) , the void ratio ranged from 0.95 to 0.83 in oedometer 

tests carried out on samples from the vessels and samples prepared 

in pre-consolidation tubes at 100 kPa vertical stress and trimmed 

to oedometer size. 

to be 0.235 and the 

The value of 
2 

the 

The Compression Index, 

Recompression Index, C 

C was typically found 
I 

took a value of 0.080. 
R 

Coefficient of Consolidation was measured as 

40.0 mm /minute for the vertical stress range 100 to 200 kPa. 

Values of the Young's modulus and undrained shear strength of 

this clay from QU triaxial tests have been reported (see authors 

named above), and range from 2.0 MPa to 15.5 MPa and 25 to 60 kPa 

respec tively. These two properties depend upon the vertical 

stress used to consolidate the clay beds and this varied from 100 

to 200 kPa for the quoted values. The range of values of Young's 

modulus is highly dependant on the level of loading of the clay at 

which the value is determined. Typically, the value at 50% of the 

ultimate deviator stress in the undrained triaxial tests carried 

out here was up to 10 times smaller than the initial value. 
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After placing circular filter paper drains in the base of 

the vessel the pre-mixed clay slurry was poured into the vessel, 

with an immersion vibrator used on each 150mm deep layer to remove 

entrapped air. The top drains were then placed and a rubber 

membrane on the top ensured the consolidating pressurised air did 

not mix with the clay. The slurry was placed with a domed top and 

approximately 20kPa of consolidating pressure applied. After one 

or two days the measured volume of expelled water indicated the 

membrane would have reached an excessive amount of deflection, and 

the top was removed and more clay slurry placed over the partially 

consolidated surface. The pressure was then reapplied to a value 

of about a half of the final desired pressure and consolidation 

was allowed to proceed to completion, as determined by less than 

1% of the total volume of expelled water being expelled during 

one day. 

The top was removed and the pile jacked in carefully, 

manually winding a constant rate of penetration loading machine. 

Figure 6.2 presents a typical plot of penetration load against 

time for a pile of length 200mm and diameter 10mm. The filter and 

membrane were replaced, taking care to eliminate trapped air by 

forcing it out to the edges. The loading equipment was lowered 

along guide rods and the pile head connected to the loading 

linkages to provide the desired eccentricity. The whole vessel 

was then firmly bolted together and the free standing portion of 

the exposed loading plunger locked from moving. This 

prevented accidental loading and effectively stopped the 

force of the internal air pressure acting over the area 

plunger from being transmitted to the pile head. 

A very small settling air pressure of the order of 
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kilopascals was applied, in order to press the membrane onto the 

clay surface and expel any free water, and then the full 

consolidation pressure was applied. The complete procedure, from 

first filling the vessel to end of consolidation with a pile 

installed, took two to three weeks. Following consolidation, a 

proving ring and deflection transducer were rigidly attached to 

the exposed end of the now-locked loading plunger. At this stage 

the load was zeroed, according to a previously established reading 

taken with the base of the proving ring unconnected, in free air. 

The system of loading was designed to exert a pre-load on the 

loading machine in order to eliminate a zone of slackness in the 

machine when passing through zero load, and to allow static dead 

loading. Essentially the maximum downward load was fixed by the 

hanger weight, and the amount of load transferred through the 

proving ring was controlled by the movement of the loading 

machine, which always worked with a tension load. 

Having achieved the aforesaid zero reading, the loading 

plunger was unlocked and the test commenced. The deflection and 

generated load were recorded digitally throughout the test and 

saved for later inspection. The time of each reading was also 

stored to enable consolidation effects to be assessed. However, 

the rapidity of the consolidation necessitated a data recording 

program that was limited to one channel in order to obtain 

sufficient data about the rate of deflection of the pile. This 

program was used to monitor the "dead load" series of tests, which 

will now be presented. 
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6.2.2 Dead Load Tests 

The first response considered is that of constant lateral 

load (dead loading) of the pile, giving information about the 

undrained and drained behaviour of a laterally loaded pile, as 

well as an indication of the creep. 

The simplest problem that can be analysed is that of dead 

loading, but it is actually a very difficult test to perform in 

the laboratory. The small size of the model pile makes its 

response susceptible to even the slightest interference from 

friction in the loading mechanism. Further, the small magnitude 

of the response requires careful observation techniques and 

specialised equipment is needed in order to apply the load quickly 

and smoothly since: 

a) The immediate undrained response is virtually dynamic and 

thus is subject to a large degree of uncertainty. 

b) The progressive deflection with time during consolidation, 

is more accurately known but still takes place rapidly. 

c) Behaviour after consolidation is markedly affected by the 

presence of creep and, in turn, the creep can be modified by 

the "hangup" of load from friction in the loading mechanism. 

A stick-slip response occurs when the stiffness of the 

friction assembly gradually attracts load until a limit is reached 

and slips the full load onto the pile. Deflection of the soil 

then sheds load back to the loading mechanism until the slipping 

load is reached. Linear ball races were used in the bushing that 

carried the loading rod to minimise friction, and the tension

inducing hanger system ensured true alignment of the proving ring 

and loading rod to eliminate sideways thrust on the bushing. 
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The curves of Fig. 6.3 show the deflection response as a 

function of the logarithm of time for four model piles subjected 

to a constant lateral load while under a constant vertical 

overburden pressure, and the response of one pile tested without 

overburden pressure. The loads were applied using the hanger 

system without the loading machine engaged, i.e. the loading 

machine was used to set up the test, then manually wound downwards 

to leave the hanger alone acting. 

The deflection of the pile was data logged using a program 

that sampled all the test outputs every two seconds. This method 

of reading was able to measure the creep behaviour, but was too 

slow to give the actual consolidation response. Eviden tin the 

results is the "stick-slip" behaviour previously described. The 

creep deflection response is seen to be a significant proportion 

of the total response change to load with time, and presents a 

linear increase as a function of the logarithm of time. 

Poulos and Davis (1980) have presented results obtained by 

Druery and Ferguson in 1969, for the time dependant deflection of 

a pile in Kaolin. It appears that their measured response 

consists mainly of creep and the manual reading of the deflection 

values has not given the actual consolidation response. The extra 

deflection above that expected for consolidation of an elastic 

two-phase material, was consistently reflected in their ratio of 

immediate to final deflection, with typical values of 0.56 instead 

of a quoted theoretical ratio equal to 0.73. 

The results of the tests carried out with and without 

overburden pressure are presented in Table 6.1 and the average 

value of the ratio of inital deflection, u to final deflection, 
o 

u is 0.82. If it is accepted that the theoretical deflection 
100 

influence factors are not dependant upon the value of Poisson's 
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ratio, it is possible to use the relationship E = 3E'/ 2(1 + V') 

to derive the expression 

or 

(u 
100 

u )/ u = (1 - 2V ' )/3 
o 100 

u /u = 2(1 + V ' )/3. 
o 100 

u 

6.1 

This expression can be used to estimate the value of the 

drained Poisson's ratio, V' as 0.23, which is slightly lower than 

would be expected for soft normally consolidated clay. 

A theoretical solution for the degree of lateral displacement 

U = (u - u )/(u - u ), with time, t has been presented by Carter 
t 0 100 0 

and Booker (1981) for a pile in a continuum-soil model and their 

results are reproduced here in Fig. 6.4, together with those from 

two model pile tests. The theoretical and experimental degrees of 

consolidation are seen to be almost equal at any time. 

2 
The assumed value of c of 40 mm /min was consistent with 

data 
v 

from the oedometer tests and, with 

pile radius, r of 5 mm, gives a time to 

a T 
50 

value of 0.25 

50% consolidation of 

and 

the 
o 

order of 9 seconds. This small value corroborates the finding 

that consolidation occurs very quickly for the size of model piles 

used here. Thus, using continuum theory, it is possible to 

account for the effects of consolidation with respect to time. 

The results using the standard program are presented in Figs 6.5, 

6.6 and 6.7, where the load-deflection curves and the deflection-

time curves are shown. 

Figure 6.5b clearly shows the two-second separation between 

data points and also illustrates some delay that arose between the 

load being applied to the plunger and the pile commencing to 

exhibit the classic consolidation curve shape. This delay could 
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have been due to "hangup" of load in the bushing and linkage 

mechanism or from the pile having an initial gap to close before 

loading of the soil properly commenced. The "hangup" explanation 

is reinforced by the response evident at the end of the time

deflection curve and the gapping possibility is supported by an 

early flat portion to the load-deflection curve of Fig. 6.5a. 

The procedure for locating the end of primary consolidation 

is shown in Fig. 6.5b, where two straight lines are drawn, one 

tangent to the curve at the point of inflection and one through 

the creep portion of the curve, with the intercept taken as the 

estimate of the end of primary consolidation. In this way, the 

effects due to creep are, to some degree, removed and a consistent 

set of deflection values result. 

After the consolidation test, the load was cycled in three 

stages and then taken to the extremes defined by the limits of 

travel of the loading linkages. Another consolidation test was 

then performed. The cycling had caused several changes to the 

response, including an increased deflection, a delayed end of 

consolidation and a slightly better defined shape to the curve. 

Despite the previous loading, the general characteristics of the 

consolidation behaviour remain unchanged. This implies that a 

two-phase elastic soil model is still an appropriate model, 

provided some account is taken of the changes made to the geometry 

of the soil-pile interface, i.e. gap formation, and the changes to 

soil propertiers, i.e. degradation. 

Figure 6.7 presents another consolidation response, now after 

cycling the load between -100 and 200 N until no observable change 

in response occurred, i.e. shakedown. The consolidation load was 

then applied relatively slowly by manual winding of the loading 
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machine until the hanger load alone acted. As before, the time to 

50% consolidation increased and the curve became better defined. 

It was felt that the pre-loading had removed some of the capacity 

of the clay to creep and made the pile and soil contact region 

more intimate, i.e. any gaps were well defined and the soil-pile 

contact was well established. 

In an attempt to better define the initial part of the 

primary consolidation curve a program designed to monitor quickly 

just the deflection was required. This program monitored the 

deflection before load was applied, to sense small changes in 

deflection and then start reading as fast as possible (about 8 

readings/second) the deflection and time. Examples of the 

resulting curves are given in Fig. 6.8 for two pile tests. Curves 

a) and b) are for the same pile test, with curve b) depicting the 

response of the second load increment applied one week after the 

first. The ratio of the immediate total deflections for the first 

and second load increments is 0.613 while the ratio of the 

respective total loads is 0.620, thus exhibiting a very linear 

response to loading. However, it is evident that at the higher 

load level the creep rate has increased. This increase in the 

rate of creep is also seen in the response for the higher load of 

360 N in Fig. 6.7b. 

Figure 6.8c shows in more detail the type of consolidation 

response measured, with the initial zero reading not included on 

the figure. 

swinging of 

dependency 

The curve is seen to initially waver slightly due to 

the hanger and later to oscillate, showing the 

of the deflection transducer reading upon the 

temperature fluctuations as the air conditioning system turned on 

and off. 
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6.2.3 Load-deflection Response 

While previous investigators have presentd information on the 

laterally loaded static response, and the so-called cyclic 

response of piles, very little data has been presented on the 

overall deflection response to general loading. It is a very 

difficult task to perform tests that have a direct correlation to 

real situations, since the stiffness of the supported structure 

and variability of imposed load forms cannot be simply obtained. 

However, a necessary first step is to investigate more complex 

load forms than initial static (dead) loading, and static loading 

after cycling of the load is one such load form. 

It would be hoped that the characteristics associated with 

cyclic loading, such as increased bending moments and deflections, 

could be explained by recourse to the history of the loading that 

preceded the after-cycling static load test. The methods of 

analysis developed here will be able to provide the means 

which to follow more complex load paths, but attention in 

with 

this 

section is restricted to the initial response of the pile to load. 

Once the initial, largely linear response has been modelled, the 

observed cyclic and after-cycling responses could be investigated 

using the parameters found to fit the initial response. 

Figures 6.6a and 6.7a present the load-deflection responses 

that preceded the two dead-load tests depicted in Figs 6.6b and 

6.7b. To obtain the results in Fig. 6.6a, a symmetric cyclic load 

was first applied and the resulting hysteretic load-deflection 

loops can be clearly seen in the inset. Following the initial 

train of cycles was a non-symmetric train, then a reload and 

unload to zero and finally a large cycle of load reaching the 
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limits of travel of the loading system. From the early portion of 

the curve an estimate of the initial pile stiffness can be made, 

and for a range of tests will later be compared to theory. 

The flat section (i) to the load-deflection loop can be 

interpreted as a combination of a pile-soil gap and the looseness 

of the fit of the pins connecting the linkages, that is necessary 

to reduce friction. If the flat section ("gap" length) were 

solely due to pin clearances then it would be expected to maintain 

the same width, regardless of the stage of loading. The "gap" 

length can be seen to be larger at a later stage of loading (ii) 

and thus it was concluded that a gap existed in some degree over a 

reasonably large proportion of the pile length. The slight 

mismatch in load between the two gapped responses corresponding to 

the two directions of travel, is a measure of the friction in the 

loading linkages and the amount of soil resistance available, 

(say) on the sides of the pile, in the gap. 

Regardless of the gap being a physical space between the pile 

and soil or being the result of the soils inability to sustain a 

load increase, the gap phenomenon is present in all cyclic test 

results and increases in magnitude with increased load level, 

while decreasing with increased overburden stress. 

It can be seen that to some degree, the initial stiffness of 

the measured response can be recovered during reversals of load 

direction, which is consistent with failed regions of soil 

returning to a stiffer, elastic state. Also, a measurable amount 

of consolidation remains in the dead load test (iii), even after 

the extremes of loading as evidenced in Fig. 6.6b. The dead 

loading stage at the end of the test did not commence at the 

original zero-load deflection, although the load was zero at the 

start of dead-load application. This indicates a permanent 

453 



deflection of 2.5mm was associated with the last leg of the final 

load cycle and further, more than 32 N would be required in order 

to recover the original zero-load deflection position. Thus, any 

pile that appears not to have moved, does not necessarily have 

zero load applied to it. 

Figure 6.7a presents results for a longer pile, with a larger 

diameter and at a higher overburden pressure; thus higher loads 

and greater deflections are generated. The load in this test was 

cycled non-symmetrically until the deflection response stabilised, 

and then the dead-load test was commenced. Once again, the soil

pile response depicted in Fig. 6.7b is a classic consolidation 

curve. Resuming the load test saw the original stiffness almost 

restored for some 50 N of load increase before the non-linear 

effects again appeared. This may well be associated with the pile 

and soil, at the end of the dead-load test, being in intimate 

contact, with some potential for plastic-deflection exhausted at 

the current load. 

All load-deflection responses presented here have some degree 

of uncertainty associated with their classification as being 

either undrained or drained. With the time to 50% consolidation 

for low load levels being of the order of 5 to 10 seconds, it must 

realistically be argued that a fully undrained test is unlikely. 

Attendant to this is the certainty that creep will be responsible 

for a large proportion of the measured deflections. 

These tests were thus most useful, for the present purpose, 

in providing estimates of the initial load-deflection relation

ship, that would be least affected by consolidation and creep of 

the soil. Figure 6.9 presents the results of a number of tests in 

the form of a flexibility measure as a function of pile length-to-
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diameter ratio. Since the majority of the piles might be classed 

as flexible (i.e. longer than the critical length which depends 

upon the soil Young's modulus), this form does not allow for 

simple presentation of the theoretical responses. Instead, it was 

found convenient to separately analyse each case, using the MBEM 

analysis, with its own value of length, diameter, load 

eccentricity, e and overburden pressure. 

The, commonly quoted, limiting cases of a soil with an 

undrained Young's modulus, E 
u 

and 250 were used, assuming a 

to shear strength, c ratio of 500 
u 

realistically conservative value of 

the ratio of c to vertical overburden stress, 0' of 0.3. The 
u vc 

agreement is encouraging, but does reflect the difficulties 

encountered with the small size of model pile used. Considering 

the likelihood that both consolidation and creep have also been 

measured, the test results suggest the higher E Ic ratio would be 
u u 

more appropriate for undrained response. Nevertheless, the 

experimental results do conform with the trend of the theoretical 

results in having an increased flexibility coefficient with 

increasing length-to-diameter ratio and a decreasing coefficient 

with increasing overburden pressure. 
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6.2.4 Summary of Closed-vessel Tests 

The tests covered a range of laterally loaded pile responses, 

including dead-loading with undrained response, drained response 

and the isolation of creep, and gave some indication of pile 

response to cycles of load. Using the closed-vessel technique it 

proved difficult to obtain sufficient good quality repeat tests 

because of equipment malfunctions and the problem of setting up 

the loading linkage system inside the pressurised top. The small 

size of the pile, chosen to enhance the modelling of a large 

extent of soil, added to the problems, since the slightest preload 

of the pile during setup could result in the pile already having a 

gap formed before starting the test. The reapplication of the 

overburden pressures was not sufficient to close the gap, 

especially for the lower two pressures. 

The above, taken with the uncertainty with which undrained, 

or drained, conditions were felt to have been achieved, led to the 

major conclusion that larger size model piles, and thus larger 

times for consolidation, would be required in order to obtain more 

accurate measures of pile response. The responses that were 

obtained were consistent with a two-phase (solid and fluid) soil 

model and proved to be capable of being realistically modelled 

using an elastic continuum based soil model. 
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6.3 Open-vessel Clay Tests 

The linear-elastic behaviour of the pile-soil system is much 

simplified by the use of the effective length concept. The test 

program using the open-vessel technique culminated in an attempt 

to illustrate the existence of a critical length, by considering 

the linear and non-linear response of piles with different lengths 

in the same soil. In Chapter Four the existence of a linear-

elastic critical length was investigated, and in Chapter Five the 

critical length was shown to allow a parametric study of non-

linear pile response. Here, some experimental evidence for the 

existence and utility of the critical length is presented. 

The apparatus used for the tests of Swane (1983) was modified 

slightly and used to test a series of piles in a large open

vessel containing overconsolidated Kaolin clay. The procedure for 

preparing the beds of clay for the open-vessel test reported here, 

was the same as that for the closed-vessel tests. The final 

consolidation pressure used was 200 kPa and was applied in stages, 

topping up the clay to maintain the surface at the top of the 

vessel at the end of the final stage. After two months the 

pressure was removed, with the drainage tubes held under water in 

measuring cylinders situated below the base of the vessel. This 

procedure ensured the attainment of as fully-saturated a bed of 

clay as was possible. After a further three weeks, the top of the 

vessel was removed and a number of layers of rubber membrane and 

plastic were used to limit water loss from the surface. 

Each pile was installed by preboring a 17 mm diameter 

and then jacking the 20 mm diameter pile by hand, 
o 

observations taken at 90 apart to ensure the verticality of 
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pile. Moisture content 

penetration, down to the 

samples were taken at 

final depth required for 

every 

each 

50 mm 

pile. 

Typical values, in order down one of the 300 mm deep holes, were 

37.7, 38.8, 39.1, 38.8, 39.6 and 37.3%, while the extreme values 

of all holes were 37.3 and 40.0%. 

The vessel had a diameter of 590 mm and a height of 480 mm 

and allowed the same strain-gauged pile to be tested five times 

using the centre and the four "compass points" 140 mm distant from 

the centre. When another test of the 300 mm pile was required, it 

was located at the same radial position but intermediate between 

two of the "compass points", Le. NE. 

6.3.1 Tests with Different Pile Lengths 

Five different pile lengths of 100, 150, 200, 250 and 300 mm 

with the cross-section properties given in Fig. 6.11, were chosen 

to be tested, using the same lateral loading condition in the same 

clay bed. Due to a problem with the installation of the longest 

pile, this test had to be repeated, making six tests in total. 

This particular bed of clay was the fourth of a series which had 

concentrated upon cycles of load, and prior to this last open

vessel test the strain-gauged pile had been overloaded when buried 

to a depth of 400 mm. 

The overload made one strain gauge inoperable and introduced 

a permanent curvature to the pile above a distance of 

approximately 250 mm from the base. The problem that arose during 

installation was that this curvature produced a non-uniform radial 

displacement pattern in the soil when the last 100 mm of the pile 

was installed. This left a small gap and a region of indistinct 

contact between the pile and soil, which was reflected in a lower 

than expected stiffness that recovered with increasing deflection. 

458 



A repeat test of the 300 mm long pile was made, attempting to 

maintain the pile vertical according to the embedded length, not 

the outstanding length. An improvement was evident but it was 

still not as stiff as the 250 mm long pile, suggesting the 

permanent curvature was still affecting the response. 

6.3.2 Test Results and Theoretical Predictions 

The actual pile tests took two days, with three tests each 

day, and at least two hours elapsed between pile installation and 

pile loading commencing. The assumed distributions of Young's 

modulus E, initial interface stress p and ultimate interface 
u 0 

traction p with depth are presented in Fig. 6.10. The initial 
y 

response of the piles to loading, see Figs 6.11 and 6.12, together 

with the distribution of bending moments in the pile at low loads, 

see Fig. 6.13, and the results of unconsolidated, quick undrained 

triaxial tests on clay samples cored from the clay bed, see 

Fig. 6.14, were used to determine the parameters. 

Overconsolidated clay has often been treated as possessing a 

uniform Young's modulus with depth, but the results from these 

tests suggest a linear variation with depth was more appropriate. 

Both a linear distribution (case 1) and a uniform modulus (case 2) 

were investigated, in order to assess the importance of the choice 

of distribution on the fit of the continuum-based model. For both 

distributions of modulus the initial stress and ultimate interface 

stresses were considered to have zones of reduced efficiency that 

were modelled by a linear correction to the "deep" values, giving 

zero at the surface,increasing to the "deep" values at a depth of 

5 pile diameters. The deep values were based upon the undrained 

shear strength from the triaxial tests, see Fig. 6.14, which gave 
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an average for tests from vertically and horizontally oriented 

samples of c = 20 kPa with a variation of + 2.5 kPa. 
u 

The initial stress was approximated by the expression 

p = 

o 
2 c 

u 
6.2 

which was based upon an upper limit from the work of Carter, 

Randolph and Wroth (1980), where values of p of about 4c are 
o u 

suggested for driven open-ended tube piles, and the relatively 

small volume of soil displaced by the pile. From various 

empirical and theoretical solutions for deep pile segment ultimate 

interaction loads, notably Randolph and Houlsby (1984), the 

increase of total stress on the passive face ap and decrease on 
p 

the active face ap were chosen to be 
a 

ap = -ap = sc 6.3 
p a u 

which represents a pile-soil interface that is almost completely 

rough. Evidence, in the form of small triangular regions of clay, 

in plan view, adhering to the back of piles pulled from the soil 

after testing, suggests a rough interface is most likely to be the 

real situation. 

The ultimate interface traction in Fig. 6.10b results from a 

passive stress of 7c (= 2c + sc) and an active stress that, to 
u u u 

avoid being tensile, is given the value of zero. In this way the 

resultant ultimate traction on the pile p and the passive stress 
y 

on the soil P 
P 

are the same, but the analysis still takes account 

of the active and passive faces of the pile and soil separately. 

For case 1 and case 2 the empirical ratio, 

E Ic = 375 6.4 
u u 

has been chosen, in line with commonly quoted values of between 
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250 and 500 as used in section 6.2.3. A modulus distribution that 

was proportional with depth was tried but gave responses for the 

shortest pile that were much too flexible. Obviously any fit 

between experiment and theory can be improved, 

ability of the model to provide reasonable 

departing from uncomplicated, and commonly 

distributions that is demonstrated. 

Load-deformation Response 

but here it is the 

comparisons without 

accepted, parameter 

A comparison of the initial load-deflection and load-rotation 

results from the tests, and the theory using a linear modulus 

distribution, is presented in Fig. 6.11, and for the uniform 

modulus distribution in Fig. 6.12. Each set of results is 

presented in two groups. The first group consists of the results 

for the limiting length cases of 100 and 300 mm long piles, with 

the intermediate lengths in the second group. This is to allow 

the limit cases to be easily recognised and because the two tests 

in the first group are not expected to be entirely reliable. The 

small length to diameter ratio case may well have considerable 

influence from the base, and the problem with the longer piles has 

already been discussed. 

The consistent trends in both theory and experiment are that: 

a) the longer the pile, the stiffer the response at high loads. 

b) the three longest piles have very similar response curves. 

c) the two shorter piles present highly non-linear responses 

near their theoretical collapse loads. 

d) the two longer piles behave essentially the same at any time 

during the imposed loading. 

The results for a soil modelled with a linear distribution of 

modulus presented a marginally better agreement with the test 

461 



results than the uniform case. Both distribution cases over

estimated the shortest pile responses and under-estimated the 

longest pile deflection response, and consistently overestimated 

the rotation response. 

The four trends can be explained in terms of pile collapse 

loads being achieved and the existence of a critical length of the 

pile when it is associated with this particular clay bed. The 

linear distribution of modulus predicts a critical length of 

272 mm and the uniform modulus yields a value of 310 mm. Both 

these values are consistent with the load-deformation response of 

the five pile lengths tested here. 

Bending-moment Response 

Figure 6.13 shows experimentally- and both theoretically

derived bending moment distributions for a head shear load of 

10 N, and compares the experimental bending moments generated by 

loads of 20 and 40 N with the linear-modulus-based theoretical 

results. The two stations that recorded bending moments on the 

free-standing section of the pile are in good agreement with the 

values calculated from static equilibrium. The uppermost station 

demonstrates a reduced measured moment, but this was considered to 

be a result of the confinement of the clamp used to transmit 

lateral load to the pile. 

The 100 and 150 mm long piles both show excellent agreement 

between theory and experiment for the 10 N load, with slightly 

better correspondence for the linear modulus case. The 200 and 

250 mm long piles also show a good correspondence between theory 

and experiment, with the worst agreement at a depth of 85 mm where 

the theory predicts only 80% of the actual bending moment. How

ever, in terms of the maximum bending moment from theory and 

462 



experiment, the worst error is less than 10%. The two tests for 

the 300 mm long pile can be seen to provide the least satisfactory 

degree of comparison between experiment and theory; this is not 

surprising considering the problems associated with the lack of 

straightness of the pile beyond 250 mm from its base. The 

presence of gaps probably led to increases of measured bending 

moment above those which might be expected. 

The last two sets of curves of Fig. 6.13, for the two higher 

loads, sees the bending moment distribution curves congregate near 

the surface to define a unique curve that is consistent with the 

theoretical predictions. This unique curve is associated with 

failure stresses in the soil being reached and maintained. By 

observing where the bending moments diverge from this curve it is 

possible to postulate the depth to which the soil has failed. 

There was good agreement between observed and theoretical depths 

of soil failure, but a higher density of gauge stations is 

required to accurately locate this depth. Again, the two tests 

with the longest pile length present the least satisfactory 

agreement, but the agreement for the more-carefully-installed long 

pile becomes significantly better at the higher load. 

Load-Deflection Loops 

The piles were tested by increasing the load to 60 N, 

results of which have already been discussed, and then the 

the 

load 

was reversed and cycled for six times, or until the deflection 

became excessive. The results of this procedure are shown in 

Fig. 6.15, in the form of the entire load versus ground line 

deflection response of the six tests. 

It can be seen that for piles that are shorter than 

critical length, cyclic loading at load levels close to 
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ultimate collapse load can lead to severe performance degradation. 

The flat portions of the curves reflect the passage of the 

pile through a well-defined and extensive gap and the small peaks 

of load prior to entering the gapped zone were associated with a 

tensile failure in the soil behind the pile. Withdrawing of the 

piles from the clay after the tests caused some of the clay to be 

wiped off the surface of the piles, but sufficient clay remained 

adhering to the piles to indicate that tensile failure of the soil 

had occurred along large sections of the shorter pile lengths. 

The extra embedment of the two longer piles (and consequently 

the higher initial lateral stresses acting) is reflected in a 

finite stiffness of the head response associated with movement of 

the piles in the gap. The 200 mm long pile presents an 

intermediate response, in which the initial load cycle shows the 

pile has a finite head stiffness when the pile passes through the 

original (zero-deflection) position, but by the fifth load cycle 

this stiffness has disappeared. 

The analysis of a rigid pile in a soil that can form gaps (in 

Chapter Five, Fig. 5.29c) shows a similar type of response to 

these test results. The gapping, theoretically, causes a reduced 

head stiffness near the zero-deflection position and maximum 

stiffness at the end-points of the load cycle. Further, the 

theoretical results of Chapter Five emphasise the importance of 

the direction in which loading is commenced. In the results from 

the model pile tests, it is obvious that only on the first leg of 

the first cycle of load is the maximum stiffness achieved, and 

that upon unloading to the opposite leg of the cycle a different 

path is taken. This behaviour is also evident in Fig. 5.29c. 
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6.3.3 Summary of Open-vessel Tests 

The open-vessel tests have shown that a continuum model of 

soil behaviour, with allowance for soil failure and soil-pile gap 

formation, is capable of modelling the non-linear response of 

model pile tests. The major features of the pile tests are 

reproduced by the theory and extension of the model to predict the 

response during a few cycles of load seems possible. 

A feature of the theory developed to consider the non-linear 

response of piles to lateral loading, is the importance of the 

pile critical length. It has been shown that non-linear response, 

as well as linear response, is controlled by the existence of a 

pile critical length. Any pile that is longer than its critical 

length will present the same non-linear response to loading until 

the different "short pile" collapse loads are approached. By 

using piles of length longer than critical, the non-linear 

response, especially the cyclic response, does not appear to 

involve excessive deformations. Further, once the "short pile" 

collapse load, defined by using the pile effective length, is 

reached, the pile may be considered as unserviceable. 

Comparison between the three load-deflection curves of 

Fig. 5.29 and the results of these model pile tests, Fig. 6.15, 

suggests that a combination of the plastic flow loops of the non

gapping soil model and the stiffness reduction of the gapping soil 

model, at the zero-deflection position, is required to faithfully 

model the test responses. It must also be said that the 

degradation of response and sudden loss of tensile interface 

traction in the model pile tests, represent types of behaviour 

that are currently beyond the capability of any theory to 

rigourously model. 
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6.4 Field Case 

The field case chosen for study in this section is that of 

Reese, Cox and Koop (1975), where two different diameter piles 

were tested under the same load eccentricity (0.305 m or 1 foot), 

at the same site. In choosing this test, regard was given to the 

need to have high quality data, tests with different pile 

dimensions, and a well-established acceptance of the tests by 

previous researchers. All these features are found in these tests. 

A soil profile at the site of the tests is presented in 

Fig. 6.16, and the adopted distribution of undrained shear 

strength, c with depth is shown. Although the penetrometer and 
u 

unconfined test results indicate a relatively uniform strength at 

depth, a distribution proportional to depth compares favourably 

with the triaxial test results. Since it is the response of the 

upper 2 to 4 metres of soil that was found to control the pile 

response the following linear distibution proved to be most 

appropriate, 

c = 0.080 z MPa where z is measured in metres. 
u 

The prediction of pile response is divided into two phases, namely 

linear and non-linear response. 

Linear Response 

From inspection of the bending moments induced in the larger 

of the two piles at the lowest reported load, a value of critical 

length was chosen to be about With the bending 

stiffness of the pile, E I 
P P 

5.6 m (15 ft). 
2 

of 482.5 MNm and assuming a Young's 

modulus for the soil that is proportional to depth, the use of the 

expression for critical length, equ. 4.8 leads to 
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E = 110 z MPa where z is measured in metres. 
u 

This combination of values produces an E /c ratio of 1375, which 
u u 

is higher than is normally reported for lateral loading of piles 

in clay, but is more consistent with values reported for surface 

foundations. 

The bending moment curves of Fig. 4.13 were used to obtain 

the theoretical solution for comparison with the test results and 

the dimensionless deflection influence factors of Fig. 4.11 are 

used to predict the initial head stiffness of the two piles. 

24 inch pile 

With L of 4.43 m and a critical length to diameter ratio of 
c 

6.9, from the curves of Fig. 4.11 with E /mL = 0 
o c 

2 
uE L /H = 22.7 and uE L /H = 49.5 

c c c c 

which gives 

u/H = (22.7 + .305 x 49.5/4.43)/ 2158.7 

= 0.0121 m/MN (or 0.34 inch at 60 kips) 

6 inch pile 

With L of 1.78 m and a critical length to diameter ratio of 
c 

2.8, from the same curves 

2 
uE L /H = 18.2 and uE L /H = 42.3 

c c c c 

which gives 

u/H = (18.2 + .305 x 42.3/1.78)/ 348.5 

= 0.0730 m/MN (or 0.256 inch at 20 kips) 

Two straight lines on Figs 6.18 and 6.19 correspond to the 

theoretical initial stiffness, and the agreement is found to be 

satisfactory. 
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Non-linear Response 

The choice of undrained shear strength distribution having 

been made, it remains to estimate the initial lateral stress and 

failure stress distributions. Randolph, Carter and Wroth (1979) 

and Carter, Randolph and Wroth (1980) have presented results that 

suggest the initial radial effective stress near the pile face 

after the excess pore pressures due to driving have dissipated is 

of the order of between 4 and 5 times the undrained shear strength 

measured prior to pile driving, see Fig 6.17. Thus, 

p = (0.36 to 0.40) z MPa where z is in metres. 
o 

From empirical data, e.g. Stevens and Audibert (1979), 

theoretical plasticity solutions, e.g. Poulos and Davis (1980) and 

notably Randolph and Houlsby (1984), it may be proposed that the 

increase of total stress on the passive face, ~p and decrease on 
p 

the active face ~p are equal to 5 times the undrained shear 

strength. Thus, 

p 
p 

p 
a 

= p 

= p 

+ 
o 

o 

a 

~p 
p 

~p 
a 

= 

= 

(0.76 to 0.8) z MPa and 

o since tension is not allowed. 

These paramaters (using the upper estimates of p and p) 
o p 

were used in an analysis by the Soil Structure Interaction method, 

presented in Chapter Five. The resulting head response and 

maximum induced bending moments of both piles is presented in Figs 

6.18 and 6.19. The bending moment distributions from the test and 

theory at a number of load levels is drawn in Fig. 6.20 for the 24 

inch pile. 

Before discussing the agreement between theoretical results 

and the test results, the ultimate load capacity of the pile will 
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be considered. A calculated effective collapse load, employing 

the effective length of a pile instead of the actual length (i.e. 

the critical length of a flexible pile), is suggested here to be a 

realistic upper limit to the loads capable of being sustained by a 

flexible pile. Using the curves of Fig. 5.9, with the average 

failure load per unit depth, W, taken over the effective length, 
y 

the effective collapse loads of both piles can be calculated. 

24 inch pile 

With a diameter of 0.641 m and L of 4.43 m the moment ratio 
c 

~ = M /H L is 0.069, which indicates a dimensionless failure load 
Coo c 

1/2 
r = 

2 
(H + 

u 

2 
(M /L ) ) / W L 

u u c Y c 

equal to 0.25 from Fig. 5.9. The value of head shear load is thus 

H = 1.26 MN (or 282 kips). 
u 

6 inch pile 

With a diameter of 0.168 m and L of 1.78 m the moment ratio 
c 

~ = M /H L is 0.171, which indicates a dimensionless failure load 
Coo c 

r = 0.22 
u 

from Fig. 5.9. The value of head shear load is thus 

H = 0.046 MN (or 10.4 kips). 
u 

The 6 inch pile obviously presents unsatisfactory head 

response at the effective collapse load calculated above and it 

might be conjectured that the 24 inch pile would also be 

unserviceable at the calculated effective collapse load. It must 

be emphasised that neither pile would necessarily stop attracting 

load at their respective effective collapse loads, unless the 
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critical and actual pile lengths were equal, but the piles have 

effectively failed. 

The agreement between theoretical and field case results 

gives encouragement to use of the uncomplicated approach to the 

choice of model parameters. The simple assumption of a zone 

within which there is a reduction factor with which to mUltiply 

the values of initial and ultimate traction, here leading to a 

parabolic increase of traction from the surface down to a depth of 

five pile diameters, see also Fig. 6.10b, proves adequate. Such 

devices take account of the proximity of the free soil surface, 

which inhibits the generation of "deep" limiting stress values. 

Figure 6.18 displays good agreement between the results of 

the SSI analysis and the test results, being a conservative 

predicted response and following closely the measured response. 

The results of using the p-y curves actually derived from the pile 

test, and the p-y curves of the proposed criteria of Reese et al., 

have a slightly better agreement, as might be expected, since they 

were fitted to this pile test, but are less conservative than the 

SSI-based results. Figure 6.19 presents the results of the test 

on the six-inch pile, together with the results from the SSI 

analysis and the use of the p-y criteria which were produced for 

the 24-inch pile. Without changing the soil parameters, the SSI 

analysis has provided a superior degree of agreement with the test 

results than the p-y criteria. 

The bending moments generated at four load levels during the 

test on the 24-inch pile are presented in Fig. 6.20, as are the 

comparable bending moments from the SSI analysis Since the p-y 

method is essentially a curve fit of the bending moment 

distribution of the pile test, a comparison of p-y criteria-based 

470 



moment distributions is only a check upon the accuracy of the 

curve fitting and will not be made here. The SSI analysis shows 

promising agreement over the entire range of loads, with the 

increasing depth of the point of maximum bending moment being 

particularly well-modelled. A tendency of both the p-y and SSI 

analyses to overpredict the pile bending moment at the groundline 

suggests some source of error, possibly in the calibration of the 

pile for bending moments or in the loading arrangement, which 

could further improve the already adequate agreement. 

With more refinement of the soil parameters, the degree of 

agreement between theoretical and test results may be improved 

further, but the predictive capability of the elastic continuum

based analysis has been adequately proven. 

6.5 Conclusions 

In this Chapter, the elastic continuum model of soil, used in 

theoretically-sound linear and non-linear analyses, has been shown 

to provide a competent means of assessing, and predicting, model 

pile and full-scale pile test results. The applicability of the 

effective length concept to the results of model pile tests has 

been demonstrated, as well as the existence of a drained and an 

undrained response in model pile tests, that are adequately 

addressed by using an elastic continuum two-phase soil model. 

The critical length has also been shown to be useful in back

analysis of the bending moment distribution of a full-scale pile 

test, in order to obtain soil properties. The presence of gapping 

has been observed in the model tests and, using an analysis that 

incorporates gapping, the slightly increased flexibility of the 

response has led to use of higher values of Young's modulus, which 

are more consistent with surface foundation-based experience. 
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TABLE 6.1 

, 
<lve L d e U o u 1 00 H U Oj U 1 00 
kPa mm mm N 

100 I 10 8 12 0.208 0.244 30.5 0.852 

170 10 10 0.190 0.253 34.0 0.751 

170 10 10 0.473 0.576 49.0 0.821 

170 10 10 0.126 0.250 49.0 to 79.0 0.504 

I 10 8 12 1.750 2.330 o to 32.0 0.75 I • 

150 200 10 17 0.508 0.580 50.0 0.876 

250 75 10 12 0.1030.136 30.0 0.757 

220 10 12 1.440 1.555 99.0 0.926 •• 

Reloading of pile after cycling of load, see Fig. 6.7a . 

Total overburden pressure reduced to zero for test. 

Deflection Results 0/ Laterally loaded Model Pile Consolidation Tests 

Carried out with and without Overburden Pressure 
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The analysis of single laterally loaded piles has been the 

subject of many, and varied approaches. Each approach has arisen 

from perceived ideas of which factors are important in determining 

lateral response and the accessibility of an appropriate solution 

technique. This Thesis has sought to improve the linear elastic-

continuum method of analysis and extend it to encompass non-linear 

response. 

The various approaches to this problem fall naturally into 

two groups: those based upon linear response of the soil; and 

those directly addressing the non-linear nature of the overall 

pile response. Analyses in the first group are included in 

Chapters Three and Four, and Chapter Five directs attention at the 

extensions necessary for non-linear analysis. 

consider the analyses in each chapter 

classification of the model type, namely: 

It is convenient to 

using the same 

a) Winkler-type empirical models. 

b) Boundary element, elastic-continuum models. 

c) Finite element elastic models. 

This classification scheme is used in the review of 

literature presented in Chapter Two, from which the following 

major conclusions are made. 

The limitation of Winkler-based approaches to the particular 

set of conditions under which their parameters were derived, is 

the main drawback of these approaches. Elastic-continuum models 

using boundary element analysis techniques are useful for 

prediction of response based directly upon fundamental soil 

properties, although simplifying assumptions about the effects of 

soil non-homogeneity and limited depth are required to allow a 
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tractable and effective analysis. The finite element method can 

theoretically take into account aspects of the laterally loaded 

pile problem that require assumptions to be made in the boundary 

element method. 

In Chapter Three, several Winkler-based 

while being of limited practical 

analyses are 

developed and, use, 

linear 

boundary 

solutions against which the numerical technique 

element analysis can be checked by employing a 

provide 

of the 

Winkler 

soil influence matrix. 

The boundary element analysis based upon linear response of 

the soil, 

model or 

deflection 

introduced. 

using either a homogeneous elastic-continuum (Mindlin) 

a Winkler model, is presented and the concept of a 

mismatch between nodes of the pile and the soil is 

This mismatch is an integral part of the analysis of 

non-linear response developed in Chapter Five. 

In Section 3.4.2 the finite element model analysis is 

subjected to a comprehensive verification with solutions for the 

response of cantilever beams (to end, distributed and self-weight 

loads), axisymmetric elastic bodies (under pressure loading), 

surface foundations (to axial, torsional and lateral loading) on 

both a homogeneous and non-homogeneous (Gibson) half-space and a 

cylinder subjected to periodic loading. The boundary conditions 

and boundary positions used for the finite element model are 

investigated to determine their effect upon lateral pile response. 

Thus, the finite element model is shown to give accurate results, 

especially for non-homogeneous soil profiles, and can be used 

confidently to predict the lateral response of a pile in an 

elastic medium. 
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By recourse to all three models, a recommended method of 

linear analysis of laterally loaded piles is presented in Section 

3.5. In the analysis, account is taken of the stiff nature of 

response across a pile face, and of the modifications to a 

homogeneous half-space response caused by limited soil depth and a 

non-homogeneous Young's modulus distribution. The approximate 

method of modifying the homogeneous solution, to obtain the 

solution for a non-homogeneous soil, proves capable of predicting, 

quite accurately, the actual non-homogeneous response as 

determined from a finite element analysis. 

In Chapter Four the concept of an effective length for any 

laterally loaded pile is studied and it proves to allow great 

simplification in the presentation of results. The effective 

length is defined to be the actual pile length for relatively 

stiff piles and the critical length of flexible piles. 

By tracing its history, and studying the analytical closed

form solution of the uniform Winkler soil model, an expression for 

the critical length is found in terms of relative pile-soil 

stiffness. The critical length expression is also shown to 

provide adequate values of critical length for piles in a Winkler 

soil with a linearly varying stiffness with depth. 

The boundary element elastic model exhibits behaviour that 

supports the concept of an effective length, but an important 

feature of the results is a dependence upon the effective length 

to diameter ratio of the pile, which is absent in Winkler results. 

The finite element model has the capability to analyse 

foundations with a wide range of length-to-diameter ratios and to 

make allowance for layers of finite depth. These solutions place 

the analysis of laterally loaded piles within a broader class of 
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foundation problems, those capable of solution using elastic-

continuum soil models. The finite element results are mostly 

obtained using the layer building method of Section 3.4.4, which 

ensures a finely discretised geometry, and consequently the 

results are considered to be as accurate as possible. 

The finite element results reinforce the conclusions about 

the suitability of the equation for critical length and further, 

exhibit behaviour in non-pile related analyses that supports the 

existence of a critical length. This is further investigated by 

considering the response of surface strip raft foundations and 

axial pile response. In both cases an expression for a critical 

length is found that is consistent with the calculated reponse. 

The existence of a critical length, and the concept of an 

effective length, are the major findings of Chapter Four, and the 

linear results for pile foundation response to head loads, using 

the recommended boundary element analysis, are presented in non

dimensional forms that employ the effective length. 

The non-linear response of laterally loaded piles is studied 

in Chapter Five, where again the chosen three categories of model 

type are used. 

The Winkler model proves capable of extension to consider 

non-linear response caused by soil-pile gapping, failure of the 

soil to some predetermined depth, and the generation of plastic 

hinges in the pile. An analytic treatment of gaps reveals that a 

simple halving of pile head stiffness is not always necessary to 

account for the effects of gapping. The theoretical solution, 

allowing for the effect of soil failure, is used to confirm the 

accuracy of the numerical solution procedure (using a Winkler

based soil) developed for the soil-structure interaction analysis 
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in this Chapter. The formation of plastic hinges, in both stiff 

and flexible piles, is seen to markedly alter the head response of 

a fixed-head pile in a Winkler soil, more so for the flexible than 

the rigid pile. 

Section 5.4 develops a boundary element model which takes 

account of soil failure, and also allows for the possibility of 

forming a gap, dependent upon the deflection mismatch developed 

between the pile and the soil (plastic deflection). The increment 

of plastic deflection and the total load transmitted by the non

linear interface are mUltiplied together to obtain a measure of 

plastic work. By checking the sign of incremental plastic work, 

it is possible to return failed elements to an elastic state and 

recalculate the incremental response, based upon the need to avoid 

negative plastic work. 

Cyclic loading is not studied directly, but to properly take 

account of unloading of elements during static loading (i.e. due 

to movement of the point of "zero pressure"), the model is 

required to admit the possibility of "cyclic" loading at the 

element level of discretisation. An important practical situation 

where such behaviour is evident is the case of a fixed-head pile, 

and results are presented to illustrate the non-linear response. 

Section 5.4.3 presents the results of a parametric study of 

the effect of soil failure upon head response, using the boundary 

element method with a non-linear soil-pile interface, in the form 

of correction factors to be applied to the linear results for a 

uniform soil presented in Chapter Four. The critical pile length 

is again proposed as having significance, now for non-linear 

response, to allow a large range of flexible pile to soil 

stiffness ratios, head shear to moment ratios and soil Young's 

modulus to undrained shear strength ratios to be treated. 
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The non-linear MBEM analysis results are consistent with a 

direct modelling of interaction over only the linear-elastic 

portion of a pile length and a distributed failure load over the 

failed portion (similar to the analysis of Section 5.3.2) and 

compare very favourably with one previously published study, which 

uses a similar boundary element approach. Agreement is less 

satisfactory with a study employing a more complex boundary 

element approach and is an instance of comparison between two 

dissimilar models, even though both use an elastic-continuum 

modelled soil, possibly giving misleading information, as is 

discussed in Chapter Two. 

Section 5.5 develops a new soil-structure interaction (SSI) 

analysis using the axisymmetric geometry finite element method. 

In the SSI analysis, interaction tractions are modelled over a 

finite arc length of the pile circumference at interface elements, 

thus gapping between the pile and soil (a deflection mismatch) is 

theoretically possible. By assuming a biface model for the inter

face (i.e. a 180 degree arc-length) and an x-directed interaction 

traction, the analysis provides estimates of response when gaps 

develop 

The 

5.3 for 

boundary 

behind a pile or unequal interacation tractions occur. 

SSI analysis reproduces the results predicted by Section 

a non-linear Winkler soil, gives good agreement with 

element and finite element results for a linear-elastic 

soil and also agrees with the predictions of non-linear response 

from the MBEM analysis. The comparison between the MBEM and SSI 

analyses is only made for the case of equal magnitude active and 

passive failure stress, since this is the only case which the 

theory of the MBEM analysis can model. The effect of gapping is 

shown to be less severe for a linear-elastic continuum than a 

Winkler modelled soil, and the bias of the axisymmetric initial 
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stress, that exists before loading of the pile, also has less 

effect on the non-linear response of a continuum model. 

Chapter Six presents the results of experimental work on 

model piles in clay beds and predictions of the test results, as 

well as a study of two full-scale piles tested at the same site. 

The model pile tests, performed with overburden pressure, 

isolate the undrained and drained phases of clay response and give 

measures of initial (linear) pile response. Both these features 

of soil-pile response are adequately modelled by the MBEM analysis 

using a continuum soil model. The occurrence of gapping is 

evident in the test results and is found to be less prevalent at 

higher overburden pressures, as would be expected for the deep 

reponse of a pile which is discussed in Chapter Two. 

In Section 6.3, larger scale model piles, without overburden 

present during the tests, allow the occurrence of gapping to be 

visually verified during tes ling, measurement of rotation and 

strain gauging of the piles to measure bending moments. The 

effects of gapping introduced during jacking of the bent pile are 

found to greatly influence both the load-deflection response and 

the bending moment distribution. The larger scale model tests 

clearly illustrate the existence of a critical length of the pile 

in the clay bed and using the SSI analysis the same behaviour, 

consistent with a critical length, is predicted. 

The final section of Chapter Six considers two full-scale 

pile tests and uses the critical length to find a Young's modulus 

distribution with depth by fitting theoretical linear bending 

moment distributions for a flexible pile to low load level test 

results, i.e. the depth at which the moments are neglible is taken 

to be the critical length. The back-calculated Young's modulus 
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distribution is consistent with the distribution of undrained 

shear strength, from triaxial tests on samples of soil taken from 

various depths, and empirical E/c ratios. The assumed in-situ 
u 

stresses and failure stresses in the clay soil are based upon 

plane strain analyses and rational adjustments for the effect of 

the free soil surface and an inability of the soil to sustain 

tension. 

Pile head loads, for the imposed conditions, that cause soil 

failure along the effective length of the pile (i.e. the pile is 

treated as being as long as the critical length), are calculated 

for both piles tested and sensible ultimate load predictions 

result. These effective ultimate loads are not strictly collapse 

loads but represent loads at which the pile becomes very 

inefficient, since the incremental response is essentially that of 

a pile with load applied at an eccentricity of one critical 

length. 

The chosen parameters for the soil are based upon the 

response of one test and thus, their application to the other pile 

with a much smaller diameter tests the predictive ability of the 

elastic continuum based analysis. The agreement between theory 

and test result for head load-deflection and maximum bending 

moment responses for both piles, amply illustrates the utility of 

the effective length concept when married with the elastic 

continuum soil model. 

This Thesis considers the response of laterally loaded piles, 

with particular emphasis on the predictive ability of the elastic-

continuum based method of analysis. Winkler type analyses are 

included as means with which to verify the more complex analyses 

503 



(that can employ a Winkler soil model) with precise solutions. 

The precision of the Winler solution is not proposed as intimating 

that the solution provides a good model of lateral pile response. 

The more complex MBEM and SSI analyses are then applied to the 

analysis of laterally loaded piles using the elastic continuum 

model for soil response with confidence that the numerical 

techniques are accurate. 

The linear and non-linear response of the improved MBEM and 

the SSI analyses is checked against other published results and 

linear results of the AGFEM analysis which use the direct, as 

opposed to the interaction, approach. A series of solutions, from 

the one method of analysis (profile building), places pile 

response as one limit of the range of foundation responses which 

the linear elastic continuum model encompasses and thus makes the 

method unique, in that one set of soil parameters (in theory) can 

be used for a range of problems. 

The concept of effective length, which requires the existence 

of a critical length for a pile in a particular soil to be proven, 

is shown to simplify presentation of theoretical pile response. 

Further, the effective length concept provides a powerful tool for 

examining the results of model tests and field cases. For non-

linear response the concept also allows much simplification in the 

presentation of results and supports the idea of an effective 

ultimate load for a pile. This effective ultimate load, by 

including a measure of pile-soil stiffness, replaces to some 

extent the concept of long pile and short pile collapse loads, 

which do not directly consider the deformations at which collapse 

occurs. 

Soil-pile separation has previously received little attention 

and here it is addressed using an elastic continuum-based analysis 
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which relies on the finite element method. The solutions suggest 

gapping is not as severe a problem as a Winkler model of soil 

theoretically predicts, but the increased flexibilty does tend to 

permit higher (more realistic) values of Young's modulus to be 

used when fitting test results. 

While some refinements may be required, the MBEM analysis 

and, more precisely, the SSI analysis are capable of modelling 

cyclic loading because of the logical way failed soil elements can 

return to a linear elastic state and the efficient manner by which 

non-linear response is incorporated in both analyses. 

The SSI analysis can be extended to take account of combined 

axial and torsional response as well as lateral response. The bi

face analysis introduced here could be used, or one with a more 

finely discretised circumference. 

Pile group interaction could be investigated using the 

commonly employed approximation of the presence of the pile and 

removal of the soil having neglible influence upon interaction. 

The added dimension would be the inclusion of gapping (laterally) 

and slipping (axially and circumferentially). 

Several advances in the understanding and analysis of 

laterally loaded piles are made in this Thesis by: 

a) recognising the importance which the pile effective length has 

in determining the entire response of laterally loaded piles. 

b) taking into account the possibility of mismatches developing 

between pile and soil. 

c) admitting the possibility of recontacting at gapped element 

interfaces and the impossibility of negative plastic work. 
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Appendix I 

Ultimate Loads Strong Pile in a Failing Soil 

From consideration of static equilibrium of a rigid pile in 

soil that is failing, with a general linear variation of ultimate 

pressure with depth, a solution for the head loads and maximium 

moment can be found. The solution proceeds by assuming some depth 

along the pile at which the soil failure pressure changes sign. 

Only one such depth is considered here, since no more than one 

depth of sign change may occur for a rigid pile. For, if the pile 

is to produce positive plastic work when failing, a restriction 

similar to the Winkler law connecting positive load to positive 

deflection will apply. 

If W is the value of the distributed failure load W at the 
0 y 

surface and n is the increase of W per unit length of pile, then 
y 

equilibrium requires that 
2 2 

+ H = W (2z - L) + n/2 (2z - L ) 
u 0 s s 

2 2 3 3 
+ M = W 12 (L - 2z ) + n/3 (L - 2z ) I.1 

u 0 s s 

with z the depth to failure load sign change. 
s 

The uncertainty of sign is linked to the assumed sign of the 

soil failure traction and produces a point-wise symmetry, about 

the origin of the H versus M space, for the locus of ultimate 
u u 

load points. The values of shear and bending moment can be found 

for any depth of cross-section again from equilibrium. 

shear force 
222 

+ V = W (2z - L - z) + n/2 (2z - L - z ) 

+ V 

z<z 
s 

o s 

2 2 
= W (z - L) + n/2 (z - L ) 

z)z 0 

s 

1.1 

s 

1.2a 

Thus the 



and bending moment 

2 2 
+ M = W 12 [(L - z) - 2(z - z) ] 

z<z 0 s 
s 2 2 

+ n/6 [(L - z) (z + 2L) - 2(z - z) (z + 2z )] 

+ M = 
. z)z 

s 

2 
W 12 (L - z) + n/6 (L -

o 

s s 
2 

z) (z + 2L) 
L2b 

Using the fact that true bending moment maxima occur when the 

shear force is zero, a value of and depth to maximum bending 

moment is found. This maximum need only be considered for the 

depths occurring within the pile length. It can also be shown that 

this depth to maximum bending moment is always less than or equal 

to the depth to ultimate pressure sign change. In many load cases 

the maximum bending moment is the applied moment at the head. 

Special attention must be paid to solving for the maximum 

bending moment when either of W or n are zero. In particular 
o 

if n = 0 

z = 2z - L 1.3a 
max s 

2 
and M = W (z - L) 

max 0 s 

and if n # 0 
2 2 2 1/2 

z = [(W In) + 2(2z - L)(W In) + 2z - L ] - W In 
max 0 S 0 S 0 

or z = O. 1.3b 
max 

and M is obtained from substitution in equation I.2b. 
max 

Noting that if z < L/vf2 and W = 0 the expression to the power of 
s 0 

one half is negative and corresponds to the case of zero ultimate 

head shear or a negative head shear with the maximum bending 

moment being the applied ultimate head moment. 

1.2 

Jjl 

I 
1 



Equations 1.1, 1.2 and 1.3 may be used to determine z by 
s 

assuming the ratio of head shear to moment is known. This is only 

generally true and one important exception is the case of a stiff, 

essentially 

changes sign, 

rigid fixed head pile. If the distribution of 

a point of rotation within the pile is required 

w 
y 

to 

avoid negative plastic work. This rotation would violate the 

fixed head condition. This situation requires a z equal to the 
s 

pile length, or zero, to avoid a sign change in the distribution 

of Wand thus the solution may proceed directly. 
y 

The fixed head condition is an extreme of behaviour occurring 

if the supported structure is very stiff. The other extreme is 

pure shear when the supported structure is very flexible. Between 

these are the cases of load on the head consisting of combined 

moment and shear and the less common case of pure moment. 

It is generally possible, during the application of external 

load to the structure, that the ratio of moment to shear at the 

pile head will vary, as is the case for a fixed head pile. Here 

only the ultimate values of head load are considered and this 

ratio is assumed to exist throughout the loading. Details of the 

behaviour of the supported structure are required to further 

develop this aspect of the effect of pile-structure interaction 

upon load transmitted at a pile head. 

By assigning a value to the ratio H /M 
u u 

obtain a cubic in z to be solved for the 
s 

corresponds to the H /M ratio chosen. 
u u 

This cubic is 

2 3 
a + a z 

o 1 s 
+ a z 

2 s 
+ a z 

3 s 

1.3 

= o 

it is possible to 

value of z that 
s 

1.4a 



with 
-1 -1 

a = -L [3W (2 + ~ ) + nL(3 + 2~ ) ] 
0 0 u u 

a = 12 W 
1 0 

a = 
-1 

6 (~ /L W + n) 
2 u 0 

-1 
a = 4 ~ /L n 

3 u 

and ~ = M /H L. 1.4b 
u u u 

A cubic solver Fortran program, written by Dr. J.M. Rotter at 

The University of Sydney, was modified and used to solve this 

equation for the z required. The equation may reduce to a 
s 

quadratic, or even linear, equation for certain values of ~ , W , 
u 0 

and n. For example if ~ = c = 0 then z = L/2 as would be 
u s 

expected for two stress blocks of equal size and opposite sign. 
-1 

The quantity ~ will become very large when the applied moment 
u 

approaches zero and an alternative formulation is required. 

a = -L(3W (2~ L + L) + nL(3~ L + 2L» 
0 0 u u 

a = 12 W ~ L 
1 o u 

a = 6 (W + n~ L) 
2 0 u 

a = 4 n 1.4c 
3 

The parameters involved in this analysis are W , n and ~ . Of 

these ~ is a function of the loading system 
u 

o 
acting on the 

u 
pile 

and Wand n are constants that characterise the soil. From the 
0 

definition of distributed load at failure W 
y 

the ultimate pressure that can be carried by 

z and d is the frontal width of the pile, 

1.4 

= P d, where 
y 

the soil at any 

P is 
y 

depth 

W = W + n z. 
y 0 



Various values of W and n can be extracted from the 
o 

literature such as 

n = 0 W Ic d = 9 to 11 for clays. 
0 u 

W = 0 nz/K O'd = 3 to 5 for sands. 1.5 
0 p v 

where K is the Rankine passive earth pressure coefficient, 
p 

c is the undrained shear strength and 
u 

0' is the effective vertical stress at 
v 

z the depth considered. 

From using simple approximations and plasticity theory p 
y 

varies from 2 c or 4 c at the surface to 9 c or 11 c at 
u u u u 

depths greater than about three pile diameters depending upon the 

assumed pile shape and roughness. A simplified model for the 

reduced p values near the surface of a uniform strength 
y 

soil profile is often used and is enhanced by allowing a free 

standing portion of pile of e diameters and reducing the buried 

pile length by e diameters. This reduces the ultimate moment 

derived using this analysis so that 

H = H' 
u u 

M = M' - e d H'. 
u u u 

1.6 

Where M' and H' are derived using a pile of length L - ed 
u u 

and n = 0 and for example it can be assumed that W = 9 c d and 

e = 1.5 diameters, (Broms, 1965). The 
u o 

normally used p 
y 

distribution approximations do not consider the special form of p 
y 

assumed in the above method but are more often the extremes of 

n = 0 or W = 0, e.g. Swane (1983). If however, there is some 
o 

reason why the generation of soil resistance to some depth z 
g 

cannot be relied upon then the above form may be used. 

1.5 



It can therefore be seen that a wide variety of problems can 

be approached by using a simple static solution to the failure of 

soil with the simple equation 

W = W + nz. 1.7 
y 0 

Figure 5.9 presents the information concerning the values of 

ultimate head loads for any given head shear to moment ratio, ~ 

for different values of a soil failure load 
u 

distribution 

parameter. Figures 1.1 and 1.2 present more information for only 

one soil strength profile. The ultimate head shear load, depth to 

maximum shear force and its value are presented in Fig. 1.1 as a 

function of ~. The ultimate head moment load, depth to bending 
u 

moment maximum and its value are presented in Fig. 1.2. 

In addition, the values of pile resultants that are generated 

at failure assuming an infinitely strong pile and the value of, 

and depth to, the maximum values can be obtained from the 

equations of this appendix. The maximum bending moment can then be 

compared with the yield or full plastic moment of the pile cross-

section. This gives an indication of the applicability of 

assuming a strong pile failure mode, i.e. no plastic hinge 

formation in the pile is allowed. 

This consideration of pile and soil failure requires attain

ment of complete failure of the pile and/or soil. In practice the 

pile behaviour will give unserviceable response long before 

complete structural failure. This facet of pile behaviour is 

simplified by the concept of an effective length which allows the 

effective collapse load of a flexible pile to be based upon the 

collapse of a strong pile, as considered here, with the critical 

length replacing the actual pile length in all equations. 

1.6 
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Appendix II 

Patch Loading Fourier Series Approximation 

The two forms of tractions studied for modelling of the pile-

soil interface can be synthesised by trigonometric functions over 

the loaded half of the biface element and by zero traction over 

the gapped half. Thus, a need arises for the approximation of a 

trigonometric function over a prescribed arc and depth of the hole 

in the soil in which the pile is located, and a compatible area of 

the pile itself. This approximation is taken from a truncated 

Fourier series of the form 

f(9) = a + a cos 9 
1 

+ a cos 29 + 
2 

a cos 39 
3 

+ 
o 

+ b cos 9 + b cos 29 +b cos 39 + 
123 

11.1 

The Fourier coefficients a and b can be determined from the 
k k 

values of integrals of the function f(9), given by 

21T'a = 
o 

11' a = 
k 

IT'b = 
k 

211' 

J f(9) d9 

o 

211' 

f f(9).cos k9 

0 

211' 

f f(9) .sin k9 

0 

d9 and 

d9. 11.2 

For generality, the loading may be taken to be in the direction 9 
o 

and act over an arc of the circle defined by 9 - c < 9 < 9 + c. 
o o 

11.1 



Thus, in order to model the trigonometric functions given by sin 

ne and cos ne it is necessary to evaluate the integrals given by 

e + C 

2 11' a = S °cos ne de 
0 

e - c 
0 

e + c 

11' a = So cos ne.cos ke de and 
k 

e - c 
0 

e + c 

11' b = fOcos ne.sin ke de. 
k 

11.3 

e - c 
0 

for cos ne and a similar set of integrals for sin ne. 

These integrals have been evaluated and are presented in 

Table ILL The special case of a uniform load, p over the arc 

length is presented, 
o 

although it is obtainable from 

approximation of a Cosine function with n equal to zero. 

the 

From 

this table, the effect of any loaded area may be synthesised and 

in particular the two cases of n = 1 and 2, needed to model the 

two load forms assessed in Chapter Five, can be calculated for 

e = 0 and c = 11' / 2 • 
o 

11.2 



Load Fourier Term Coefficient 

Case 
bk a o ak 

Uni form Poc 2p oc sin kc kO o 
2p oc s j n kc .sin k ° 0 

-- -- .cos --
P=P o ". " kc ". kc 

Cosine Poc sin nc Poc sin(k+n)c.cos(k+n)Oo Poc sin(k+n)c.sin(k+n)Oo -- .cos nO 0 -.,.-( (k+n) c -,,-( (k+n) c p=pocosnO " IIC 

+ sin(k-lI)c.cos(k-II)Oo 
(k-n)c ) 

+ sin(k-n)c.sin(k-II)Oo 
(k-lI)c ) 

Sine Poc sin nc . ° Poc sin(k+n)c.sin(k+n)Oo _Poc sin(k+n)c.cos(k+n)Ooi 
p=posinnO -,,-. ne .Sln n 0 -.,.-( (k+lI) c -".-( (k+n) c 

- sin(k-n)c.sin(k-n)Oo - sin(k-lI)c.cos(k-n)Oo 
(k-n)c ) (k-n) c ) 

TABLE ll.l FOllrier Terms for Trigollometric loadillg of all arc from ° o-c to 8 o+c 
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