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Practical Aspects of Kernel Smoothing 
for Binary Regression and Density Estimation 

David F. Signorini 

This thesis explores the practical use of kernel smoothing in three ar- 
eas: binary regression, density estimation and Poisson regression sample size 
calculations. 

Both nonparametric and semiparametric binary regression estimators are 
examined in detail, and extended to two bandwidth cases. The asymptotic 
behaviour of these estimators is presented in a unified way, and the practical 
performance is assessed using a simulation experiment. It is shown that, 
when using the ideal bandwidth, the two bandwidth estimators often lead 
to dramatically improved estimation. These benefits are not reproduced, 
however, when two general bandwidth selection procedures described briefly 
in the literature are applied to the estimators in question. Only in certain 
circumstances does the two bandwidth estimator prove superior to the one 
bandwidth semiparametric estimator, and a simple rule-of-thumb based on 
robust scale estimation is suggested. 

The second part summarises and compares many different approaches to 
improving upon the standard kernel method for density estimation. These 
estimators all have asymptotically ‘better’ behaviour than the standard esti- 
mator, but a small-sample simulation experiment is used to examine which, 
if any, can give important practical benefits. Very simple bandwidth selec- 
tion rules which rely on robust estimates of scale are then constructed for 
the most promising estimators. It is shown that a particular multiplicative 
bias-correcting estimator is in many cases superior to the standard estima- 
tor, both asymptotically and in practice using a data-dependent bandwidth. 

The final part shows how the sample size or power for Poisson regression 
can be calculated, using knowledge about the distribution of covariates. 
This knowledge is encapsulated in the moment generating function, and it is 
demonstrated that, in most circumstances, the use of the empirical moment 
generating function and related functions is superior to kernel smoothed 
estimates. 
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Introduction 

This thesis explores three main areas of application of kernel smoothing; 

binary regression, density estimation and generalised linear model power 

and sample size calculations. 

Part I investigates t,he kernel smoothing approach to binary regression, 

with the emphaqis on calibration (estimating the probability function equally 

well over a range of covariate values) rather than discrimination (classify- 

ing cases into successes or failures). In Chapter 1 the problem is defined, 

previous simple approaches to solution are described, and extensions to es- 

timators with two bandwidths rather than one are derived. A siniulation 

experiment is used to assess the practical performance of the estimators, in 

addition to the theoretical derivation of their asymptotic behaviour. 

Local polynomial approaches to the problem, which have become very 

popular in recent years, are discussed in Chapter 2, and it is shown that 

the estimators of Chapter 1 are a special case of these more complicated 

estimators. Chapter 3 extends these estimators to the two bandwidth case. 

Once again, a simulation experiment is used to compare practically the 

various estimators of this and the previous chapters. 

To separate the problem of estimator choice from that of bandwidth se- 

lection, the simulation experiments which are used to compare the estimators 

were conducted under a “best-case” scenario, whereby the performance was 
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assessed using the optimal bandwidth in each case. Chapter 4 addresses the 

issue of bandwidth selection, to see if the promising results of the previous 

chapters can be realised in practice using a data-dependent bandwidth se- 

lection procedure. Two general approaches which have been suggested in 

the literature but never followed through in detail or compared to each other 

are taken, and the results are used to make some general recommendations 

for the use of these estimators in practice. 

Part I1 considers the use of more complex kernel density estimators for 

use when the target density is not Gaussian. Many different improvements 

to the standard kernel density estimator are described in Chapter 5, and 

once again a simulation experiment is used to compare their practical per- 

formance. Chapter 6 applies a siniple approach to bandwidt,h selectiori to 

the more promising of these higher order estimators and draws some more 

general conclusions about whether the methodological development of ker- 

nel density estimation should concentrate on either improved estimators or 

improved bandwidth selection procedures for existing methods. 

Finally, Part I11 explores a method of calculating sample size or power 

for Poisson regression models. Chapter 7 outlines the procedure and demon- 

strates its reliance upon the moment generating function of the distribution 

of covariates, and Chapter 8 briefly discusses how this function can he esti- 

mated using kernel smoothing methods. 

A reduced version containing the main ideas of Chapter 7 has been pre- 

viously published in Biometrika, 1991, with Signorini as the sole author. 

The majority of the simulation results of Chapter 5 were part of a joint 

publication of Signorini and Jones in The Journal of the Ainerican Statis- 

tical Association, 1997, which considers both the theoretical and practical 

merits of most of the estimators discussed. 

2 



Part I 

Binary Regression 
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Chapter 1 

Nonparametric Binary 

Regression 

1.1 Introduction 

The problem of binary regression, modelling the relationship between a di- 

chotomous response and a set of covariates, is a widely used statistical tech- 

nique, especially in the areas of medical statistics, biostatistics and epidemi- 

ology (see Collett [l] or Cox and Snell [2] for numerous examples). One of 

the most common methods of analysis used in practice is logistic regression, 

a special case of the generalized linear model (McCullagh and Nelder [3]). 

This, and other related methods such as probit analysis, are fully parametric 

and assume a linear relationship between some function of the response, in 

this case the inverse logit function, and the covariates: 

where p is the probability of success for an individual with covariate vec- 

tor X ,  and p is the vector of parameters which must be estimated. The 

logit function may be replaced by any monotonic function which maps [0,1] 
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to the real line, such as the inverse of the Gaussian distribution function 

(probit analysis) or [log(- log(1 - p ) ] ,  the complementary log-log transfor- 

mation. Whichever function is chosen, however, the method still requires 

an assumption that the linear relationship does indeed hold and, as so often 

in statistical modelling, if it does not, then the model can give misleading 

results. 

Furthermore, when using these parametric models, it is often desirable 

to examine such linearity assumptions. Consider for example multiple linear 

regression. To check linearity for each covariate, we can produce a scatter- 

plot of each variable against the response. What is the analogous plot for 

multiple logistic regression? Figure 1.1 shows a typical such example, using 

data taken from Fan, Heckman and Wand [4]. The response is coded as 1 for 

survival and 0 for death, and the covariate is a transformation of the area of 

third degree burns for 435 patients admitted to the University of California 

General Hospital Burns Centre. The actual survival values are exactly 0 or 

1, but the points on the plot have been jittered vertically to show repeated 

values. Is a logistic regression model appropriate for this dataset? The 

problem is obvious. It is virtually impossible to fit by eye a definitive curve 

to this data. In the linear case, when faced with two continuous variables, it 

is reasonably easy to spot departures from the model, but here the fact that 

each response is either 0 or 1 compromises that ability. Copas [5]  pointed 

this out and went on to propose a nonparametric smoothing estimate of the 

probability of survival as an objective way of calculating a fitted value for 

the conditional probability of survival given the covariate for this kind of 

data. 

This section builds upon the work of Copas, and others, to examine 

various kernel-based methods of smoothing such data. In this chapter, we 

5 



I I 

4 6 8 

log(burn area+l) 

Figure 1.1: Survival versus Log(Burn Area + 1) 

consider fully nonparametric methods of binary niodelling, based upon ker- 

nel density estimates and their ratios. Asymptotic biases and variances and 

integrated mean square errors are derived and compared for the estima- 

tors, and their practical small-sample performance is assessed by means of 

a simulation experiment. In the next chapter, we look at semiparametric 

methods, where a kernel weighted quasi-likelihood is used in place of the 

fully parametric likelihood. These semiparametric estimators are compared 

to the fully nonparametric methods once again both theoretically and with 

a practical simulation experiment. 

We begin by defining the notation to be used. 

We are interested in studying the relationship between a binary variable 

Y and a (for the moment) single covariate X .  We wish to estimate the 
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conditional probability 

X ( z ) = P r o h ( Y  = 1 / X  = z) 

If we assume that the population consists of two sub-populations, the 

'successes' for which Y = 1 and the 'failures' for which Y = 0, then denote 

the probability density function in the covariate space for the successes by 

f (z) ,  for the failures by g(x) and for the whole population by h(z) .  If the 

proportion of successes in the population is ?TI, and ?TZ = 1 - TI then 

Thus for any z we have 

This equation forms the basis for the nonparametric approach to the prob- 

lem. Parallels can be drawn between equation (1.1) and discriminant anal- 

ysis, where it is the ratio f/g rather that 1/11 which is important for classi- 

fication purposes, as initially described by Fix and Hodges 16, 7, 81. There 

is a vast literature on the subject of nonparametric discrimination, much 

of which is reviewed by Ripley [9]. This work, however is focused on re- 

gression rather than classification, and so we shall measure performance hy 

the accuracy of the estimation of X(z) for all values of x, in contrast to the 

discriminatiori problem, where the aim is to minimise the costs of inisclas- 

sification. 

To perform the estimation, assume we have a sample S of size s of 

response-covariate pairs (Yt, X c ) ;  z = 1, .  . . , s. Assume that the saniple.has 

been arranged so that the first m pairs are successes (K = 1) and the last 

n = s - m pairs are failures (K = 0). Write X i , .  . . , X ,  as Wi, . . . , W, and 

X,+1,. . . , X ,  as Z1,. . . , Z,. Note that W, = Y,X, and Z, = (l-Ym+t)Xm+t. 
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Thus we have {Wi}, a random sample from f, {Zt} a random sample from 

g and { X , }  a random sample from the mixt,ure density h. 

1.2 Nonparametric Estimators 

It is immediately obvious that we can write equation (1.1) as 

and if we replace RI and 1r2 with the empirical estimates m / s  and n/s ,  then 

we have three densities to estimate: f twice and 9 once. The standard kernel 

density estimate o f f  based on the sample Wl,  . . . , W, is 

where a is called the bandwidth and determines how much smoothing takes 

place, and K ( u )  is a symmetric probability density function, quite often 

taken to be a polynomial in U with domain [-1,1]. Intuitively, a kernel 

function is centred at  each data point Wi and the density estimate is taken 

to be the weighted sum of these functions. 

Hence replacing each term in equation (1.2) with a suitable estimate we 

get 

Notice that we allow the estimates o f f  in the numerator and the denomi- 

nator to have different bandwidths. 

In practice, the use of three independent bandwidths is unnecessary and 

we concentrate rather on special c a e s  of the above estimators. Two sets of 

constraints on a, b and c give ‘sensible’ estimators. 

The first and simplest c a e  is to set a = b = c, in which c a e  equation 
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(1.3) can be written as 

This form of the estimator, which is in fact the standard Nadaraya-Watson 

kernel regression estimate [lo, 111, was first suggested by Copas 151. 

It is well known that when estimating a density f ,  the bandwidth a 

should decrease as either the sample size s and some measure of 'rough- 

ness', such as R(f")  = J f"(z)*dz, increase. Thus, we would expect Copas' 

estimator to have somewhat sub-optimal performance, especially for situa- 

tions in which f and g (or m and n)  differ, depending as it does on the same 

bandwidth for estimating both f and g. 

This line of reasoning leads naturally to the second form of the estimator, 

with a = b. and 

(1.5) 

As the following work will show, this estimator appears to be the most 

appropriate of the nonparametric models. 

Finally, setting b = c also gives two bandwidths, one for estimating f 

and one for estimating h. Unfortunately, using a different bandwidth for the 

estimation o f f  in the nnnierator and the denominator leads to ill-defined 

estimates of probability, as we now show. 

The estimators defined by (1.4) and (1.5) are both constrained to lie 

in the interval [0,1] by the fact that fa(zj appears in both the numerator 

and the denominator. This does not apply to the final case, with alarming 

results. Intuitively, if a # b then one estimate o f f  will be smoother than 

the other, resulting in regions where f a / f b  is greater than 1. 

Consider a very simple case, using finite domain kernels, bandwidth a 

to estimate f and bandwidth b to estimate h. Suppose we have a point zo 
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arid a single data value X, ,  such that zo - X ,  = d > 0. This situation is 

illustrated in Figure 1.2, where two kernels of differing widths are centred 

at X, and p l  and p~ denote two possible locations for 20. Firstly let 20 = pl  

and a > b, then a > d > b. Now the contribution of the point X ,  to fa(zo) 

will be (ma)- 'K(d /a) ,  and the contribution to fb(Z0) will he zero. Thus if 

X ,  is the only data point within a distance b of zo, then gb(Z0) is also zero 

and ;\(zo) will he infinite. 

.. .. .. . 

Figure 1.2: The problem of allowing differing bandwidths for the estimation 

o f f  in the numerator and denominator 

Alternatively, let 2 0  = pz  and b > a,  then b > a > d. In this case the 

contribution of X j  to fa(zo) will he ( m a ) - ' K ( d / a ) ,  and the contribution to 

fb (z0 )  will he ( m b ) - ' K ( d / b ) .  Again, if g b ( Z 0 )  = 0, then i (z0) = &. 

Thus, in the case where zo = X ,  and d = 0, X ( q )  = b /u  > 1. It is trivialto 

extend these examples to Gaussian kernels to show that they can also give 

rise to estimates of X greater than one 

bK d a 

This phenomenon is illustrated for a trivial data set in Figure 1.3. These 
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a > b  a c b  

c 

Figure 1.3: Plots of for caSe b = c 

problems apply to any situation in which a # b, and so, for these reasons, 

we shall consider only the first two estimators in further analysis. 

Without wishing to raise the practical issue of selecting the bandwidths 

at this point, it is worthwhile pointing out, given that we have shown that 

binary regression can be considered as a problem of estimating the densi- 

ties from two populations, whether it is sensible to treat them separately. 

That is, use standard kernel density estimation methods to estimate f and 

g independently, and then plug these estimates into equation (1.5). This is 

appealing both from an intuitive standpoint, and from the pragmatic ob- 

servation that simple kernel density estimation is a well-researched topic, 

with many sophisticated methods of bandwidth selection which could' be 

used. This estimator is essentially that defined in equation (1.5), but using 

a bandwidth selection procedure which attempts to optimise the estimation 

o f f  and g separately rather than the estimation of A. 
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Although the single bandwidth estimator (1.4) was first suggested for 

use by Copas [5] in 1983, there has been little development of the topic, at 

least in the fully nonparametric regression sense. Rodriguez-Campos and 

Cao-Abad [12] construct pointwise bootstrap confidence intervals for the 

estimator, as well as extending the method to the situation of more than 

two response categories. Kappenman 113) uses a cross-validated, likelihood- 

based method to select the bandwidth and also extends the method to the 

bivariate case by using product kernels in the obvious way. Much more work 

has been carried out in the area of semiparametric binary regression and this 

topic is the subject of the next chapter. 

1.3 Asymptotic Behaviour 

The point w ~ s  made in the introduction that we are considering binary 

regression, and that what matters in terms of accuracy, is the ability to 

estimate X(x) for a large range of x. Thus, we shall measure the accuracy 

of estimation in terms of mean squared error (MSE) at a point, and mean 

integrated squared error (MISE) globally. We shall analyse the various esti- 

mators from an asymptotic viewpoint, using standard results from the kernel 

density estimation literature (e.g. Wand & Jones [14]). 

Let m, n + 00 in such a way that m/n  + p. So, if m N Binomial(s, “1) 

a n d n = s - m , t h e n s +  00, rn/s=n1+Op(s-?) ,  n/s=?r2+Op(S-?) and 

m/n  = p + Op(s-%) .  The bandwidths a, b, and c (denoted generically by d )  

are actually functions of s which tend to zero as s + 00 but slowly enough 

that sd 7’ 00. Colloquially, this is to ensure that although d is decreasing 

towards zero, the number of data points s is increasing at such a rate that 

the expected number of data values in the interval [z - d,z + d] tends to 

infinity. For simplicity, we assume common support for f and g on which 

1 1 

1 
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neither is zero and perform all integrations over this support (we take it 

that we know X is 0, 1 or undefined but of no interest elsewhere). As usual 

in this kind of investigation, we assume both f and g have two continuous 

derivatives and that K is chosen such that quantities involving it exist and 

are finite. 

Noting that the Copas estimator is merely a special case of equation 

(1.5), we begin by examining the MSE of iG,Jz). In the following, for the 

purpose of clarity, we suppress the argument. of t,he various functions of z 

i.e. f(z) is denoted simply by f. Also, since the main problem is to estimate 

the various densities, asymptotically the errors in the estimation of 7rl and 

1r2 are ignored, as the empirical estimates of these quantities, m / s  and n / s  

have errors which are asymptotically of a higher order, O(s-’/ ’), to those of 

the density estimates. Thus in all that follows, ?I and ?2 may be replaced 

by their true values 7r1 and 1r2 respectively, and vice versa. 

From equation (1.5) we have that 

- Tl f  (1 +(.fa - f)/f) 
- 

h (I + (Aa ,c  - h,) /h)  ’ 

Using tile fact that asymptotically the discrepancies (.fa - f )  and 

are small, we can expand this to 

- h)  

+terms of smaller order. 
h 

Now, expanding ha,c into its components, we can express X as 

1 
11 

= x + - [(l - A)7r,(.fa - f) - Aa2(jrc - g,] 
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The standard results about the asymptotic behaviour of density esti- 

mates, namely that 

and 

(e.g. Wand and Jones, 1141, Section 2.5) where U: = J t2K(t)dt  and R ( K )  = 

JK'( t )dt ,  can now be applied. From equation (1.6) and taking a N c, we 

have 

Furthermore, the asymptotic variance is given by 

However, as stated above, we can replace xi  and ~2 with m/s  and n / s  

respectively to get 

var{;\a,C} = +o( (sa ) - ' ) .  (1.8) 
sh a 

Note that the covariance term between fa and ijc vanishes due to the inde- 

pendence of the samples from the 'successes' and the 'failures'. 

We can see immediately that this estimator follows the same pattern as 

all smoothing estimators, with an asymptotic trade-off between bias, with 

order O(a2), and variance, with order O((sa)- ') .  Small bandwidths give 
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low bias hut high variance, and large bandwidths give low variance but 

large bias. 

For Copas’ estimator, with a = c the above expressions simplify to 

2 f’Ig - fg” 
E{Ka} X + a 2?i1RZuK 2 ( hZ ) +o(a2) (1.9) 

and 
X ( l  - A )  + o((sa)- ’ ) .  (1.10) 

h 
var{ia} = ( s ~ ) - ’ R ( K )  

Noting that (1.9) may he written as 

E{&} 5 X +a2ug -A” + (1 h 
(1.11) 

we can see that these expressions correspond exactly to the well known 

results about the asymptotic behaviour of the Nadaraya-Watson regression 

estimator, as given for example, by Fan [IS]. 

Given the trade-off between bias and variance of these estimators, it is 

reasonable to assess performance by using at  a point the mean squared error 

(MSE), and globally the integrated MSE, since 

To consider sonie very simple cases, define 

Let the distribution of the successes follow a standard Gaussian, X Y = ~  - 
N(0 ,  l), and let Xy=o - N ( p ,  1) and ?i1 = ?i2 = 0.5. This model is linear 

on the logistic scale, since 
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Then f(z) = +h(z),g(z) = $(z - p )  and equation (1.12) becomes 

+- [m + #(z - p)14 C 

For the case where p = 1,a = c = 1 and n = 200, Figure 1.4 plots the 

asymptotic bias and variance for this model 

I 1 
4 

Figure 1.4: Asymptotic bias (solid line) and variance (dotted line) for Gaus- 

sian linear shift model 

Clearly, for this model although the absolute bias is maximal at  around 

-1 and +2, the variance is increasing exponentially in the tails of the density 

h. Globally, this means that we immediately run into problems when trying 

to integrate the MSE given by (1.12). To ensure that the integrals remain 

finite, we must calculate a weighted MISE, and to do this we use the weight 

function h(z)'. Thus, we work in terms of 

W M I S E ( ~ )  = J P ( ~ ) E { ~ ( ~ )  - ~ ( ~ ) } 2 d Z .  

16 



This has the appealing property that it weights the discrepancy between the 

estimate and the true X according to the overall density of the covariate X. 

Using (1.7) and (1.8), this gives 

X ( l  - X)'h +c-' X z ( l  - X)h (1.13) 
S J 1 

which reduces in the a = c case to 

Clearly, since equation (1.14) is merely a constrained version of equation 

(1.13), we have the inequality 

inf WMISE(i,,,) 5 inf WMISE(i,) 
lL.C 

with equality if the unconstrained minimum lies on the line a = c. Intu- 

itively, this would imply that f and y must be quite similar, and this is 

demonstrated in the sirnulation experiment to follow. This also recalls the 

remarks made earlier about treating the problem as one of two independent 

density estimation cases. It is clear now that this is really just a bandwidth 

selection issue for the estimator Xa,c ; this must give a smaller WMISE than 

the others, so the real question of interest is by how much ? 

The complex natnre of the expressions derived for the WMISE makes 

theoretical comparison of the estimators tricky, and so we rely mainly upon 

simulation for our conclusions. For the example used above to demonstrate 

the bias-variance trade off, we have that 
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These integrals have no closed form solution and must he calculated nu- 

merically. For this particular example, however, we can simplify matters by 

noting that a and care exchangeable parameters, and so the global minimum 

must have a = c. This reduces equation (1.15) to 

where 

Simple calculus can be used to show that this implies that the optimal 

bandwidth is thus of the order s-lI5, namely 

a result which again parallels the asymptotic behaviour of the component 

density estimates. Note that I1 and I2 are essentially functions of the differ- 

ence in means, p .  If we take s = 200 and calculate the asymptotic WMISE- 

optimal bandwidth for various values of p using numerical integration to 

evaluate Il and 12, we get the non-monotic relationship between aopt arid p 

shown in Figure 1.5. 

When there is very little separation between the two densities, a large 

bandwidth is optimal. This declines as the mean difference increases, then 

increases again. A plausible intuitive explanation for this may be that as the 

mean separation increases, the overlap between the distributions decreasesl 

and estiination of the densities in the tails becomes more important, requir- 

ing a smaller bandwidth with consequently lower bias. As the distributions 

move further apart, however, and there is almost no overlap, a larger and 
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I 

1 2 3 4 5 

Mean Dillereme 

Figure 1.5: AWMISE-Optimal bandwidth as a function of mean separation 

for the Gaussian linear shift model 

larger optimal bandwidth can he used to reduce the variance without in- 

creasing the bias. 

To consider a case for which the WMISE-optimal bandwidths are not 

equal, let the distribution of the successes follow a standard Gaussian, as 

before, Xy=1 - N ( 0 ,  l),  and "1 = "2 = 0.5, hut now let Xy=o - N(0,a')). 

Define $,, as the density of a Gaussian random variable with mean 0 and 

variance a2. Thus $,,(z) = (1/u) $(. /U),  and the model is now quadratic 

on the logistic scale, with 

Tedious calculation shows that the WMISE in this case is 
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In this situation the bandwidths are not exchangeable and the WMISE- 

optimal values will not satisfy a = c, although they will still have the same 

asymptotic order, namely O(S-’/’). Figure 1.6 shows a contour plot of 

the WMISE for various values of a and c for the case where U’ = 0.25 

and s = 200. In this case the asymptotic WMISE-optimal bandwidths are 

approximately a = 1.25 and c = 0.6, confirming our intuition that a smaller 

bandwidth is required to estimate the density with the smaller variance. 

0 5  t o  >I 2 0  

Fm,eandn* ,a, 

Figure 1.6: Asymptotic WMISE as a function of two bandwidths for the 

Gaussian variance change model 

1.4 Practical Performance 

The intractability of the expressions for the asymptotic WMISE of the esti- 

mators does not allow easy comparison. This is further complicated by the 

knowledge that the three estimators (Aa ,  Aa,c and Asep below) are identical 
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hut, for the constraints upon the bandwidt,h. Thus, we call hi: certain that 

the two bandwidth solution will minimise the WMISE, but from a practi- 

cal point of view we would wish to know whether the gain over a single 

bandwidth or separable bandwidths problem is worth the added difficulty 

of estimating two bandwidths. 

1.4.1 Methods 

To pursue this problem, a simulation experiment was performed to assess the 

small sample performance of the three estimators in practice. For a variety 

of differing models, the relative performances of the estimators discussed in 

the previous section were evaluated and compared. The three nonparametric 

estimators considered were therefore : 

X,(z) - only one bandwidth. 

&(z) - two bandwidths 

Estimating J and g independently as two separate densities - X s e p .  

Twenty four models were simulated; in each case J was taken to be a 

standard Gaussian density, mean zero, variance one: and G, the random 

variable with density g, and ?rl were as shown in Table 1.1, where MW(k) 

refer to the Gaussian mixture distributions used by Marron and Wand [16], 

which provide a wide range of non-symmetric and inultimodal distributions. 

These densities are studied more extensively in Chapter 6. 

These distributions give rise to a wide variety of probability functions, 

as shown in Figure 1.7. Note that the first nine models are linear in z on 

the logistic scale, whilst the next three are quadratic. 
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I Model 

1 Linear Shift 1 

2 

3 

4 

5 

1 Different Proportions 6 

7 

8 

9 
I 

Different Variance 10 

11 

12 

Cauchy 13 

14 

15 

16 

I Marron-Wand 17 

18 

19 

20 

21 

22 

23 

24 

G 

N(0.5,l)  

N(0.75,l) 

N ( L 1 )  

N(1.25,l) 

N(1.5, l )  

N ( L 1 )  

N ( L 1 )  

N O ,  1) 

N O ,  1) 

N(0.5,  (0.2)’) 

N ( 0 . 5 ,  (0.5)‘) 

N ( 0 . 5 ,  (0.8)’) 

Cauchy(O.6) 

Cauchy(0.8) 

Cauchy(l.0) 

Cauchv(l.2) 

__ 
Tl 

0.5 

0.5 

0.5 

0.5 

0.5 

0.2 

0.4 

0.6 

0.8 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

- 

- 

- 

- 

- 

- 

Table 1.1: Distributions used for g in simulation experiment 
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Figure 1.7: Plots of X for the simulated models 

For each model, samples of size 200 were drawn from the joint distribu- 

tion of X and Y. As the true X(z) and h(z )  were known in each case for 

any estimator method and choice of bandwidths, the weighted ISE (,WISE) 

could be calculated. This was approximated by a weighted sun1 of squared 

errors over a grid of 401 points on the range [-4,4]: 

2 401 

3=1 

WISE zz h2(z , )  [i(z,) - X(z3)] . (1.17) 

To separate the question of method comparison from that of bandwidth s e  

lection, equatiom (1.17) was used to find the WISE-optimal bandwidth(s) 

for each of the first two estimators, by using a grid search procedure. This 

ensured a 'best-case' scenario where each estimator was allowed to produce 

its minimum WISE for comparison. Practically, bandwidth selection proce- 

dures are unlikely to produce such an optimal bandwidth, but this design 
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provides an objective assessment of the methods themselves. In a similar 

fashion, for the third model, involving two independent density estimation 

problems, the true f(z) and g(z) were used to determine ISE-optimal hand- 

widths which were then used to calculate i. Each model was used to pro- 

duce 100 data sets and a quartic kernel (g(1 -z’))”l(/zl < 1)) was used 

throughout. 

At the extremes of the chosen interval, near -4 and 4, and also for small 

bandwidths, it was sometimes the case that the estimates would be unde- 

fined. That is, because of the use of a finite domain kernel, the estimate of h 

is zero in some region. For the purposes of the simulation, the estimate of X 

in these regions was set to the true value and so they made no contribution 

to the WISE. 

1.4.2 Results 

For each of 100 simulated datasets from each of 10 densities, the WISE was 

calculated for the three different estimators. What can he done to summarise 

this data? As discussed above, the two bandwidth version of the estimator, 

namely A,,,, will always achieve the minimum WISE and it is the increase in 

WISE for the other two estimators in which we are interested. Moreover, the 

actual values of WISE(ia,c) were skewed to the right, with some models for 

some datasets proving very difficult to estimate accurately, resulting in large 

errors. Thus, the relative increase in WISE, as a percentage of WISE(ia,c) 

was used. This measure was found in all cases to he skewed to the right and 

so the median was chosen rather than the mean as a fair overall summary. 

Tables 1.2 and 1.3 show the median increase in WISE, as a percentage 

of the twc-bandwidth fully optimal value, caused by using either A, or Xsep. 
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Model 

Linear Shift 

1 : p = 0.5 

2 : p = 0.75 

3 : p = 1  

4 : I” = 1.25 

5 : p = 1.5 

Different Proportions 

6 : XI = 0.2 

7 : XI 0.4 

8 : = 0.6 

9 : X I  10.8 

Different Variance 

10 : U = 0.2 

11 : U = 0.5 

12 : U = 0.8 

Percentage Increase 

38.36 

14.23 

8.09 

2.66 

2.52 

19.13 

8.20 

5.10 

9.03 

40.65 

41.81 

34.79 

75.32 

19.57 

13.75 

16.95 

10.51 

20.40 

13.11 

11.48 

14.42 

24.44 

21.11 

61.11 

Wilcoxon Test 

W-Statistic 

-5.72 

-3.58 

-3.20 

-5.76 

-6.58 

-1.24 

-3.51 

-2.69 

-0.57 

7.69 

5.48 

-1.87 

p-value 

0.00000 

0.00035 

0.00139 

0.00000 

0.00000 

0.21388 

0.00044 

0.00713 

0.57166 

0.00000 

0.00000 

0.06166 

Table 1.2: Median percentage increase in optimal WISE for single and sepa- 

rate bandwidth methods over two bandwidth method, and Wilcoxon signed 

rank test of single versus separate methods for Models 1 to 12 

25 



Model 

Asep  

21.07 

28.08 

14.42 

15.84 

13.93 

445.14 

17.06 

9.05 

8.29 

6.38 

19.81 

7.32 

Cauchy 

13 : ,!I = 0.6 

14 : p = 0.8 

1 5 :  p = 1  

16 : p = 1.2 

W-Statis) 

-2.42 

-3.22 

-2.40 

-4.20 

-0.51 

-8.68 

5.75 

8.52 

-1.76 

3.56 

-4.28 

-1.40 

Marron-Wand 

17 : MW( 2 ) 

18 : MW( 3 ) 

19 : MW( 4 )  

20 : MW( 5 ) 

21 : MW( 6 ) 

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 )  

Percentage Increase /I Wilcoxon Test 

12.17 

13.47 

7.73 

3.54 

10.90 

14.37 

41.37 

83.06 

5.53 

13.03 

12.29 

5.20 

p-value 

0.01572 

0.00127 

0.01647 

0.00003 

0.61205 

0.00000 

0.00000 

0.00000 

0.07921 

0.00038 

0.00002 

0.16118 

Table 1.3: Median percentage increase in optimal WISE for single and sepa- 

rate bandwidth methods over two bandwidth method, and Wilcoxon signed 

rank test of single versus separate methods for Models 13 to 24 
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1.4.3 Discussion 

The most obvious and important conclusion to be drawn from these results 

is that, with the exception of a few models, the single bandwidth estimator 

A, out-performs the naive approach of treating the problem as two sepa- 

rate density estimations. More rigorously, a Wilcoxon Rank Sum test was 

performed to compare the WISE values for A, and X s e p .  Note that it is 

unnecessary to test the optimal WISE values from Aa,c against the other 

two estimators, as we can be certain that they are smaller; what is impor- 

tant is whether they are so reduced that we would consider that the added 

complication of two bandwidths to estimate makes their use worthwhile in 

a practical sense. 

The cases in which separate estimation is beneficial are when the dis- 

tribution of g is very different from that of f, namely when g is Gaussian 

with small variance, or has a high kurtosis, as in densities 4 and 5 of the 

Marron-Wand models. This implies that they require substantially different 

bandwidths and so the single bandwidth method will fail. As intuitively 

expected, A, is best when the two densities are similar. For the models 

with differing variances, very large increases in WISE over that for were 

observed. 

The size of the differences between the optimal WISES in each case how- 

ever, suggest that, provided a suitable method can be found for automat- 

ically selecting two bandwidths simultaneously, neither of the two other 

alternatives should be applied. 

To explore this further, consider Model 2. In this case A is linear.on 

a logistic scale, and both f arid y are Gaussian with variance 1, yet the 

median increase in WISE of the single bandwidth method over the two 

bandwidth method is approximately 14% for A, and 20% for ,Isep. To show 
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how the bandwidths vary between the single and the double bandwidth 

methods, we order the simulation results by their relative increase in WISE 

and select the centre portion, from the lower quartile to the upper quartile. 

For these 50 data sets, Figure 1.8 plots the WISEoptimal bandwidths for 

the two bandwidth method and connects them to the corresponding values 

for the single bandwidth method, which obviously all lie along the line a = c. 

The increases in WISE caused by using A, in place of Aa,c ranged in these 

datasets from 3.4% to 45%. Clearly, even in this very easy to estimate case, 

the minima of the WISE-surface in the two dimensional bandwidth space 

do not always lie in the region of the line a = c. 

1.0 1 5  2.0 2.5 

First Bandwidth 

Figure 1.8: Relationship between the WISE-optimal bandwidths of the 

and A, for datasets from Model 1 which show a relative increase in WISE 

of between 3.4 and 45% 
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This phenonienon of large differences between the bandwidths is repli- 

cated when the ISE-optimal bandwidths used by Asep are compared to those 

used by &. In this case, the separate estimation seems to produce band- 

widths which are often too small when compared to the WISE-optimal ones. 

For the example above, the WISE-optimal bandwidth for estimating f is on 

average 0.2 larger that the ISE-optimal value (range of differences -0.6 to 

2 . 5 ) ,  and for estimating g the WISE-optimal value is on average 0.35 larger 

(range of differences -0.7 to 3.4.) 

1.5 Conclusions 

This chapter has described the general nonparametric binary kernel regres- 

sion estimator for a single covariate: exteriding the standard Nadaraya- 

Watson estimate to the two bandwidth case. Both asymptotic and sim- 

ulation results have shown that in cases where the density of the failures 

and the density of the successes differ substantially in terms of variability, 

then the use of two bandwidths is essential. Moreover, even when there 

are less obvious differences, there are substantial gains to be made in the 

WISE by using the two bandwidth estimator, providing that a reasonable 

bandwidth selection procedure can be devised for this scenario. This topic 

will be pursued in a later chapter. 

Another interesting result is the fact t,hat treating the problem as two 

separate density estimations is not useful in terms of optirnising the WISE of 

the conditional expectation of the response given the covariate. This can be 

explained intuitively by noting that the estimates which minimise the lSEs 

for f and y independently may not optiniise A.  Intuitively we can argue that 

as f / ( f  +g)  is the focus of interest, we have a situation where biases in the 

estimation of f can cancel out biases in the estimation of g, allowing us to 
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use estimators with lower variance and higher bias, which of course implies 

larger bandwidths. 

This is shown in Figure 1.9 which shows the data relating burn area to 

survival from section 1.1. The solid line was calculated using isep where the 

bandwidths were selected by using the Sheather-Jones plug-in bandwidth 

selection procedure (171 on survivors and non-survivors independently. This 

resulted in values of a = 0.417 and b = 0.309, showing that the non-survivors 

have a slightly smaller variability. However, the estimate of X obtained shows 

significant under-smoothing. The dotted line is the result of using i,,,, with 

a and c taken to be double the values calculated above. This estimate is 

much smoother and more biologically plausible. 

I 6 8 

iop,tuurn area. I ,  

Figure 1.9: Fitted probability functions for the burn data showing under- 

smoothing of separate bandwidth estimation method (solid line) versus full 

two bandwidth method (dotted line). 
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One interesting point to note about the A,,, estimate in this case, how- 

ever, is that although the curve is relatively smooth, there are significant 

fluctuations for values of log(Burn area + 1) between 4 and 6, where there 

is significant clustering of the covariate values. This is probably a result of 

the X'h'lh term in the asymptotic bias (l.ll),  as when the design density h 

shows this clustering, then this term will be large. This relationship between 

the design density and the asymptotic bias provides one of the motivations 

for the methods explored in the next chapter. 
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Chapter 2 

Semiparametric Binary 

Regression 

2.1 Introduction 

In the previous chapter we were concerned only with nonparametric mod- 

elling of the binary regression function, motivated explicitly by situations 

where the standard logistic regression model, with its assumption of lin- 

earity, is not appropriate. Fully nonparametric methods allow tlie data to 

dictate the shape of tlie resulting estimator, independent of any assumptions 

about the link between the probability function and the covariate. 

Consider the simple case of lincar regression with a single covariate. In 

the presence of non-linearity, we could attempt to model by fitting polyno- 

mial ternis in the covariate X .  As the regression function Y = m(z)  became 

less linear, however. we would require polynomial terms of high degree to 

ensure an  adequate fit. 

An alternative would be to locally fit a low-degree polynomial. To calcu- 

late this estimate at a point zo, we weight the points in the neighbourhood 

32 



of zo using a suitable kernel function, determine the weighted least squares 

fit using a low-degree polynomial, and use the fitted value of the local poly- 

nomial at the point zo as the fitted value f i ( z0) .  Formally, the estimate of 

the regression function f i ( z0)  is the value of PO in the solution of the order 

p local polynomial fit given by the minimisation of 

where K and X, ,  i = 1,.  . . , R, are the regression data, h is the bandwidth 

and p is the order of the local polynomial. 

This method is explored by Fan [I51 where a kernel weighted local linear 

( p  = 1) regression is used, and expanded upon at length by Fan and Gijbels 

[MI. It can be shown that the method may be expressed explicitly as a 

weighted average smooth of the data, and various asymptotic properties of 

the estimate can be derived. 

This idea of locally linear smoothing can also be extended to generalised 

linear models. Fan, Heckman and Wand [4] show that, by considering a 

kernel weighted quasi-likelihood (which for the Gaussian case with identity 

link is equivalent to the least squares formulation given above), local poly- 

nomials can be incorporated into the model specification. In a similar vein 

to the definition above, the inverse link function is expressed a.? a low-degree 

polynomial in X ,  substituted into the quasi-likelihood function, weighted by 

the kernel function and maximised to give the point estimate. 

To apply this to binary data, let p(z)  be the true probability function 

and take V ( p )  = p(1 - p )  and link ~ ( z )  = logit[ p ( z )  1, giving the quasi- 

likelihood 
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To calculate the probability of siiccess at  z we must maximise with respect 

to /3 = (Po,  P I , .  . . , /3p)T the weighted quasi-likelihood 

Unfortunately there is no explicit closed-form solution to these equations, 

except when p = 0, and so a numerical optimisation procedure must be 

applied at  each value of z for which an estimate of X is required. This implies 

that the computational burden of this method is considerably greater than 

the nonparametric methods, requiring as i t  does an iterative solution at 

each point. An efficient algorithm for this procedure is developed below in 

Section 2.3. 

The model defined by equation (2.2) has two appealing qualities. Firstly, 

if we let h + m, then the kernel function gives equal weight to all data 

points, independent of z, and the problem reduces to a standard logistic 

regression model with a polynoniial of order p in the covariate X. 

Secondly, if we set p = 0, equivalent to fitting a locally constant model, 

then equation (2.2) becomes 

but this is maximised when 

Thus, the fitted value in the case p = 0 is 

which is exactly the nonparametric estimate of Copas from the previous 

chapter. The locally linear logistic model which we concentrate on in this 
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chapter, thus represents a 'half-way house' between fully parametric logistic 

regression and unconstrained fully nonparametric kernel smoothing. 

The problem of coping with non-linearities in the relationship between a 

covariate and the conditional expectation of the response has been consid- 

ered before, and many of the suggested solutions are reviewed by Schimek 

[19]. The literature deals almost exclusively with the general multivariate 

case and attempts are made to unify the models through a generalised lin- 

ear model approach. The intention of the current work is to be much less 

ambitious, and to concentrate on the nnivariate case in an attempt to gain 

insights into the problems of the semiparametric approach, such as band- 

width selection, which are often glossed over in the more comprehensive 

treatments. 

Bonneu et al. [ZO] compare a form of semiparametric estiniator which 

they call the pseudo-maximum likelihood approach (PMLE) whereby the 

regression function k ( z )  = E(Y1z) is given (for multivariate z) by an un- 

known function T on a linear combination of the z variables, 

m(s) = E(YJz) = ~ ~ ( 6 '  T Z) 

They estimate T by a Nadaraya-Watson smooth with bandwidth cy of the Y, 

on the 'single index' BTz (from which these models take their name) with a 

simple plug-in estimate for a. The parameter vector 6' is then estimated by 

maximising a pseudo-likelihood function. For the binary case this reduces 

to 
n 

Q ~ ( K , ~ , , Q )  = C [Klogit ( ~ ( Q ~ Z ) )  +log (1 - ~(e'z))] 
z= 1 

However. we can sce that any constant factor multiplying the vector Q can be 

absorbed into the bandwidth without changing the estimate. Therefore not 

all components of 0 are identifiable and in practice the contraints 16'1 = 1 or 
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01 = 1 are used. Unfortunately, this implies that for the case of uriivariate z, 

0 and hence Qn are both fixed, and the estimate agairi becomes the simple 

Nadaraya-Watson estimate using an unjustified choice of bandwidth. 

Klein and Spady [21] develop an almost exactly similar estimator, but 

choose to complicate matters further by involving both higher-order ker- 

nel smoothing and consequently a trimming function to ensure asymptotic 

correctness. As we saw in the previous chapter when examining the nonpara- 

metric solution to this problem which estimates each density independently, 

it is by no means certain that the approach of using improved methods for 

part of the problem necessarily improve the whole. 

Other work defines ‘semiparametric’ as meaning that the model is of the 

form 

4.) = E(Y12) = f (p’. + d t ) )  > 

where f is the link function, z is a vector of covariates entering the model 

in a linear fashion, and t a vector of non-linear covariates entering the 

model through the nonparametric smoother g. Estimation of g tends to 

proceed though a penalised version of the (quasi-)likelihood, in an ana- 

logue of classical spline smoothing. Typically, the problem is separated iuto 

two parts; estimating the smoothing function g and them maximising the 

(quasi-)likelihood function for fixed g. These methods have been explored 

by Green [22]> Cheri [23] and Severini & Staniswallis 1241 among others, each 

with slightly different methods of estimating the smoothing function g, but 

all with both a parametric and a nonparametric component, which reduces 

to a fully nonparametric solution when considering the rmivariate case. 
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2.2 Asymptotic Behaviour 

We have already explored the asymptotic properties of the case p = 0 as 

this corresponds exactly to the estimator A, from the previous chapter. The 

asymptotic him and variance for this estimator are given in equations (1.10) 

and (l.ll),  and will not be repeated here. 

Fan, Heckman and Wand [4] extend the calculations to the local linear 

case ( p  = 1) and beyond. They nse the error in the estimation of q rather 

than A,  where 

7 = logit(X) = log[X/(1 - A ) ] ,  

but also explain how the bias and variance in terms of X can he derived. 

They give different expressions for even and odd values of p ,  hut as we will 

soon see, the gains made by considering locally quadratic ( p  = 2) or cubic 

( p  = 3) fitting are small. 

Denoting the local polynomial logistic estimator by  XI,^,^ for polynomials 

of order p ,  the bandwidth by a, and the total number of observations by s, 

for p = 1 we have 

and 

(2.4) 
X ( l  - A )  + o ( ( s a ) - l ) ,  h 

var{iLp,l} = ( s ~ ) - ' R ( K )  

where h ( z )  is the density of the covariate z. Thus the asymptotic variance 

of the estimator is the same as for p = 0. However, the bias expression is 

simpler than equation (l.ll), missing out the term involving A' and h'. The 

second derivative of q can be expanded into terms involving only terms in 

X and its derivatives, to give 
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Similarly, for p = 2, the relevant expressions are 

~ ( i  - A) + o ( ~ ~ ) ,  (2.6) 1 ( I ” )  Q”’[X(l - X)h]’ 
24 + 6X(1 -X)h 

and 
X ( 1  - A )  

var{iLp,2) = ( s ~ ) - ’ R ( L )  h +.((sa)-’), (2.7) 

where L is the fourth-order kernel derived from K according to the formula 

where pk = J u k K ( u ) d u ,  the kth moment of K ,  so that 112 = U:. It is simple 

to check that L is indeed a fourth-order kernel by showing that J u * L ( u ) d ~  = 

0; this and other similar kernel functions are discussed in detail in Chapter 

5. 

For general p ,  similar expressions can be derived. Odd values lead to 

bias in terms of $’+’) alone, whereas even values of p have an additional 

term involving 
Q(P+’)[X(I - X)h]’ 

h 

As noted in the previous chapter, this term can inflnence the estimate of X 

when there is non-uniformity of the design density h,  since then h‘ # 0. For 

this reason, and due to consideration of boundary effects, only odd values 

of p are used in practice by many people, typically p = 1. 

Boundary effects exist for all kernel smoothers when the support of the 

z variable is finite or semi-finite. In this case there will be at  least one 

boundary point beyond which there will be no possible covariate values. 

The simplest case is when x is constrained to be non-negative. Then €or 

any point within a distance h (the bandwidth) of 0, some of the kernel 

function centred at  this point will be in the region of z < 0. This portion 

of the kernel will not contribute to the final estimate, and the closer the 
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point is to the boundary, the more of the kernel that is ‘lost’ in this fashion. 

This phenomenon has both theoretical and practical implications: most 

smoothers have poorer convergence rates in the boundary region than in 

the interior, and this can be readily seen in practice, such as when trying to 

estimate a highly right-skewed density bounded below by zero. 

Local linear smoothers, however, and their extension to GLM’s have the 

appealing property that if p is odd, then the asymptotic rate of convergence 

of the estimator in the boundary region is unchanged. The constants U$ 

and R ( K )  are replaced by definite integrals hounded by the support of z, 

hut otherwise equations ( 2 . 3 )  and (2.4) apply. This is not the case when p 

is even; then the asymptotic rate of convergence is slower in the boundary 

region than the interior, which implies that Copas’ estimator, corresponding 

to p = 0 is, at least asymptotically, inferior for problems where the range of 

z is bounded. 

Returning to the examples from Section 1.3, the simple Gaussian linear 

shift niodel will have asymptotic bias of .(a2), as in this case ? ‘ I ( ” )  = 0. 

For the model where the density of failures is Gaussian hut with variance 

U’ # 1, the model is quadratic on the logistic scale, and 

?”(”) = ($ ~ 1) 

It is then easy to demonstrate that in this case 

and 

Thus for the case p = 0 the asymptotic bias involves x2 explicitly, whereas 

the p = 1 case involves only terms in X(z). 
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The relative bias, that is the bias for the p = 0 case divided by that of 

the p = 1 case, can easily be shown to be 

1 - 2 ( 1  + 0 - 2 )  

Thus, for the centre of the distribution of data points, the bias of the p = 0 

estimator will actually be less than that of the p = 1 case, but as z moves 

further away from zero, the absolute size of bias will eventually become larger 

than that of p = 1, with the exact point at which this happens depending 

upon the value of c?. 

2.3 Computational Issues 

For the estimate of X(z), we require the value of 40 from the maximising 

parameter vector (bo,bl) for equation (2.2) when p = 1. Taking the first 

partial derivatives with respect to 00 and PI gives 

where 
exp(P" + P ~ ( x  - z)) 

1 + exp(bo + PI (x, - z)) ' 
iLt(z) = 

Simultaneously equating equations (2.8) and (2.9) to zero will obviously 

require iterative solution, as the parameters of interest 40  and 41 enter in 

a non-linear fahion, and it is this fact that is crucial to the computational 

burden. 

Practically, by far the most important featnre is to use a kernel function 

with bounded support. Use of a Gaussian kernel, although ensuring that 

the final estimate is infinitely differentiable, implies that every data point 
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contributes to the estimate at  a particular point. Obviously some points 

many bandwidths away will have exceedingly small weights, but the use of 

a bounded kernel means that at  each estimation point only a subset of data 

points must be considered. 

If an algorithm based upon a quartic kernel is used, this allows evaluation 

at  each point using only a subset of the total data. Using the example from 

the previous section of a Gaussian linear shift niodel with a difference of 1 

between the mean values of the two densities, for a bandwidth of h = 1, 

and n = 200, on average the maximum number of data values contributing 

to the estimate at  a single point was approximately 120 (60%), and quite 

often considerably less. When implemented as a C++ program called from 

Splus runriing on a SPARCstatiori 20, the average time to estimate the 

regression function on a grid of 400 points was 4301ns. This is more than 

10 tinies slower than the single bandwidth fully nonparametric estimator 

A,, which averaged 38ms for the same dataset. Although we are talking in 

terms of milliseconds rather than seconds, this has important implications 

for bandwidth selection procedures such as cross-validation and simulation 

experiments which are both situations in which estimates are calculated for 

many different bandwidths. 

When estimating the regression function on a grid of points, one of the 

main areas of user control is in the selection of starting values for 00 and 01 
in the iterative algorithm. The example above used a default of 00 = = 

0, equivalent to a fitted probability of 0.5, for each estimation point, but 

the algorithm can be substantially accelerated by using the estimate from 

the previous gridpoint as the starting value. As the regression function 

X is sniooth and continuous, the speed of convergence should be greater. 

Indeed, in the example used above, applying this technique reduced the 
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average evaluation time to 125ms, a saving of 70%, and only 3-4 times slower 

than estimating A,. Thus, although at first glance these semiparametric 

estimators would seem to be far more computationally expensive, simply 

by choosing a fixed-width kernel and reusing the parameter estimates as 

starting values, we can greatly reduce the differences in evaluation time. 

2.4 Simulation Experiment 

As in the previous chapter, the asymptotic comparison of these estimators 

with the fully nonparametric ones is both intractable and not entirely rele- 

vant to the practical small-sample case, and we again proceed by simulation. 

Furthermore, although the locally linear logistic model is computationally 

feasible, it is still of interest to compare it with the simpler and faster local 

linear estimator, i.e. apply the usual local linear smoother directly to the bi- 

nary data, avoiding the need to use the logit transformation. This approach 

can be considered as an extension of the local constant nonparametric esti- 

mator of Copas. 

Unlike both the locally linear logistic and the nonparametric methods, 

however, the local linear method is not constrained to lie between 0 and 1. 

This problem often occurs close to the minimum and maxiniuin z values, 

and Figure 2.1 shows a typical case. 

Here, at the lower end of the x-scale, there are a group of failures (Y = 0) 

between -1.1 and -1. This clump of points lies in the tail of the distribution 

of failures and it is clear t,hat it produces the ‘dip’ in the estimate of A. The 

trend in this estimate is still iiicreasiiig as z decreases, however, and ‘the 

resulting rapid rise in between -1.3 and -1.1 is continued until the estimate 

of probability is greater than 1. This can result in large contributions to the 

overall WISE from a relatively small interval of estimation. 
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Figure 2.1: Failings of using the local linear smoother directly with binary 

data 

To make matters worse, below X ( , ) ,  the estimate continues to increase. 

Traditionally, and with very good reason, regression estimates are only cal- 

culated within the range of the data, i.e. in [ X ( , ) , X ( , ) ] ,  where X ( i )  are the 

order statistics of the z values. All of the methods previously discussed, 

with the exception of the local linear approach, are constrained to lie be- 

tween 0 and l for the whole of the interval [ X ( , )  - h,X(,)  + h].  To prevent 

these boundary effects from swamping the overall WISE and distorting our 

results, all the squared errors for the semiparametric models were calculated 

on the interval [ma, ( X ( l ) ,  -4) ,min (X(%, ,4 ) ] .  Note that this differs from 

that used to compare the nonparametric estimators, which are always either 

between 0 and 1 or undefined. 

In an effort to avoid this problem of illegal probability estimates, and in 
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Figure 2.1: Failings of using the local linear smoother directly with binary 

data 

To make matters worse, below X ( 1 ) ,  the estimate continues to increase. 

Traditionally, and with very good reason, regression estimates are only cal- 

culated within the range of the data, i.e. in [X(,) ,X(,)],  where x(%) are the 

order statistics of the z values. All of the methods previously discussed, 

with the exception of the local linear approach, are constrained to lie he- 

tween 0 and I for the whole of the interval [ X ( , )  - h, X(n) + h]. To prevent 

these boundary effects from swamping the overall WISE and distorting our 

results, all the squared errors for the semiparametric models were calculated 

on the interval [ m a  (X(ll, -4) ,min (X(nl,4)]. Note that this differs from 

that used to compare the nonparametric estimators, which are always either 

between 0 and 1 or undefined. 

In an effort to avoid this problem of illegal probability estimates, and in 
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addition to the standard local linear estimator, we also considered a version 

which was simply truncated to zero or one when it was outside these bound- 

aries. This is a similar approach to that taken when estimating densities 

using fourth or higher order kernels, where in regions of low density the 

estimate can sometimes be negative, as discussed, for example, by Hall and 

Murison [25]. Applying the local linear method to the linear shift example 

given in Section 2.3 gave an  approximate time of 50ms per evaluation, indi- 

cating a significant computational advantage over the more correct locally 

linear logistic model. 

So, the three semiparametric estimators which were compared to each 

other, and to the nonparametric estimators of the previous chapter were 

Locally linear logistic regression - ALLL; 

Locally linear regression - XL, 

Locally linear regression truncated to [0,1] - AT 

To assess the practical small-sample performance of the semiparametric 

estimators in comparison to the nonparametric estimators, a simulation ex- 

periment was performed in which these estimators were applied to exactly 

the same 24 models shown in Figure 1.7, and using the same datasets from 

the previous experiments. A quartic kernel was used and the selection of the 

WISE-optimal bandwidth h proceeded as before by a grid search over a wide 

range of possible values. For some of the models, notably those involving 

either a linear shift or a difference in proportions (the first nine models), 

it was found that, for all reasonable values of h,  the WISE function was 

decreasing with no apparent minimum. These models are linear on the logit 

scale, and hence can be excellently fitted by a logistic regression model. As 

stated previously, as h + m, the locally linear logistic smoother converges 
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to the logistic model. It was assumed that this was the situation in these 

cases, and to prevent endless searching for the minimum WISE, an arbitrary 

upper limit of h = 10 was taken. 

Each model was simulated 100 times, with a sample size of n = 200. Even 

using the computational techniques discussed in Section 2.3, the simulations 

still required periods of several days rather than hours to perform, implying 

that more extensive experiments would be an onerous undertaking. 

2.5 Practical Performance 

The results of the simulation experiments are presented separately for the 

comparisons between the semiparametric estimators, and between the semi- 

parametric and the nonparametric estimators. Median WISE values are 

compared and a Wilcoxon Signed Rank test used to test for statistically 

significant differences between the various estimators. 

2.5.1 Comparisons between Semiparametric Estimators 

Taking first the locally linear logistic smoother X L L L ,  and comparing this 

with both the unmodified version of the local linear estimate XL and the 

truncated version AT , we get the results shown in Tables 2.1 and 2.2. Median 

WISE values are presented, as is the median percentage increase over the 

locally linear logistic estimator for each of the local linear estimators. The 

p-values reported are for a Wilcoxon test of the difference in WISE values 

between ALLL and the local linear estimators. 

The first observation to be made from these results are the very sriiall 

differences between t,he unconstrained and the truncated forms of the lo- 

cal linear estimator, suggesting that although this may be theoretically a 

problem, it is less troublesonie in practice. As expected, the truncated ver- 
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Model 

-8.61 

-1.73 

-0.04 

3.66 

44.30 

45.35 

15.20 

18.38 

33.71 

9.70 

0.60 

Linear Shift 

1 : p = 0.5 

2 : p = 0.75 

3 : p = l  

4 : p = 1.25 

5 : p = 1.5 

0.00000 

0.00893 

0.60243 

0.61930 

0.00016 

0.00002 

0.53939 

0.07351 

0.03260 

0.00003 

0.77140 

Different Proportions 

6 : TI = 0.2 

7 : TI = 0.4 

8 : XI = 0.6 

9 : XI = 0.8 

Different Variance 

10 : f7 = 0.2 

11 : U = 0.5 

12 : U = 0.8 

XI.LL 

Median WISE 

341 

301 

277 

245 

231 

201 

199 

253 

234 

1291 

826 

620 

dedian U 

303 

283 

298 

234 

300 

261 

229 

276 

251 

1325 

886 

568 

X L  

.ncrea~e (%) p-value I 

-3.28 1 0.00000 

bfedian WISl 

303 

282 

286 

229 

299 

261 

219 

2 74 

248 

1325 

878 

568 

AT 

Increase (%) 

-8.61 

-1.73 

-1.28 

3.21 

44.14 

44.72 

14.70 

18.38 

33.38 

9.70 

0.29 

-3.71 

p-value 

0.00000 

0.00849 

0.49928 

0.50585 

0.00028 

0.00004 

0.60243 

0.10796 

0.04338 

0.00003 

0.83253 

0.00000 

Table 2.1: Comparison of local linear logistic niethod with local linear methods, Models 1 to 12. WISE values are x IO6, arid 

p-value are from a Wilcoxon signed rank test compared to X L L L .  



n n 
Model 

Cauchy 

13 : p = 0.6 

14 : p = 0.8 

15 : p = 1  

16 : p = 1.2 

Marron-Wand 

17 : MW( 2 ) 

18 : MW( 3 ) 

19 : MW( 4 )  

20 : MW( 5 )  

21 : MW( 6 )  

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 )  

X L L L  X L  

Median WISE Median WISE Increase (%) 
- 

416 386 -1.75 

42 1 396 -2.95 

452 485 3.11 

3 73 422 5.15 

595 617 4.73 

292 383 19.99 

3242 3227 -3.28 

2192 2652 18.15 

974 942 -1.76 

957 891 -3.62 

864 822 -0.17 

964 959 -0.81 

p-value 

0.00407 

0.01017 

0.15410 

0.00567 

0.00003 

0.00050 

0.08973 

0.00000 

0.00000 

0.05311 

0.02076 

0.03704 

vledian WISE 

384 

395 

482 

422 

617 

371 

3126 

2585 

926 

891 

822 

946 

[ucrease ('36) 

-1.75 

-2.99 

2.21 

4.33 

4.68 

14.40 

-4.28 

14.07 

-1.79 

-3.63 

-0.17 

-0.82 

p-value 

0.00122 

0.00463 

0.23486 

0.01298 

0.00005 

0.00650 

o.oooon 
0.00000 

0.00000 

0.04707 

0.01775 

0.02765 

Table 2.2: Corriparison of local linear logistic method with local linear methods, Models 13 to 24. WISE values are x106, and 

p-value are from a Wilcoxou signed rank test compared to X L L L .  



sions give slightly smaller WISES, but the niediari percentage decrease is 

never more than 5%. For applications of binary regression which form only 

a component, of a larger procedure, the lack of differentiability caused by 

truncation may be a problem, but for exploratory data analysis and model 

checking the truncated estimate AT may be reasonably used. 

Comparing the local linear logistic estimator ALLL with the local lin- 

ear estimates, we can see that, although the logistic estimator ALLL is not 

always optimal, when it is worse, the median decrease in WISE is always 

less than lo%, and when it is an improvement over the linear methods, the 

improvement can be quite large. 

There appears to be no clear pattern where the locally linear smoothing 

estimators are highly inferior. For models 1 to 4 A,, performs quite ade- 

quately, but for models 5 to 9 XLLL is clearly superior. All these models, 

however, are linear on the logistic scale, and it may be that for the models 

involving different proportions the fact that the iinderlying overall density h 

is skewed rather than symmetric can explain the difference in median WISE 

values. 

Improvements over locally linear logistic smoothing can also be seen for 

models 12, 13 and those involving the Marron-Wand densities 6 through 9 

(models 21 to 24). These last four models are the only ones to give g a clear 

multimodal structure, and this feature may dominate the need for consistent 

probability estimates between 0 and 1, with the result that the local linear 

models alone can achieve good performance, although the logistic estimators 

are not very far behind. 

Interestingly, models 18, 19 and 20, all of which have the general form 

of a relatively sharp trough of probability in an otherwise constant function 

(see Figure 1.7), show somewhat different comparative performances. For 
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models 18 and 20, the local linear logistic estimator is clearly better, with 

a median improvement in the WISE of approximately 20%. For model 19, 

however, there is no clear difference between the estimators. The fact that, 

unlike models 18 and 20, the trough of probability for model 19 does not span 

the entire range from 0 to 1 may account for this peak being unresolvable 

with only 200 data points, as then the estimators will be fitting a constant 

probability. 

2.5.2 Comparisons with Nonparametric Estimators 

To compare non- and semiparametric models, we must first standardise the 

error measure. The optimal WISES were recalculated for both A, and A,,,, 

but on the interval [ m a ~ ( X ( ~ ) : - 4 )  ,min(X(,),4)] only. Note that this 

could imply that the WISEoptirnal bandwidth could change as well as the 

WISE value itself. These values were then compared to the results previously 

obtained for ALLL, with the results shown in Tables 2.3 and 2.4. 

The results here are somewhat clearer than the previous section. When 

compared to the single bandwidth version of the nonparametric estimator 

A,, the locally linear estimator is nearly always superior, and when it is 

not, the losses are relatively small. Obviously XLLL is performing better for 

models 1 to 9, but this is hardly surprising. This is a situation where the 

parametric part of ALLL is correct, so we would expect the semiparametric 

model to outperform the nonparametric one. For the rest of the models, 

the benefits of the locally linear logistic method are smaller but still mostly 

favourable. 

When compared to the two bandwidth version of the nonparametric 

estimator, however, there are clear cases where the locally linear logistic 

estimator is much worse than the two bandwidth version. For models 10. 
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cn 
0 

XLLL Model X a  

Linear Shift 

1 : p = 0.5 

2 : p = 0.75 

3 : p = 1  

4 : / I  = 1.25 

5 : p = 1.5 

341 

301 

277 

245 

231 

Different Proportioi 

6 : ~1 = 0.2 

7 : TI = 0.4 

8 : TI = 0.6 

9 : TI = 0.8 

458 35.35 

531 110.16 

596 103.14 

388 69.62 

462 130.19 

Different Variance 

10 : 0 = 0.2 

11 : U = 0.5 

12 : 0 = 0.8 620 76 1 2.76 

Mediau WISE /I Mediari WISE 1 Increase (%) 

253 I /  557 1 99.66 

826 /I 962 I 4.85 

p-value 

0.0000 1 

0.00000 

0.00000 

0.00001 

0.00000 

0.00001 

0.00000 

0.00000 

0.00000 

0.29830 

0.23216 

0.35056 

Median W 

311 

403 

548 

372 

453 

287 

411 

496 

279 

472 

453 

393 

Increase (% 

-5.70 

64.93 

72.07 

49.95 

121.15 

28.16 

124.95 

73.64 

34.34 

-48.68 

-41.67 

-41.53 

p-vitlur 

0.15213 

0.02576 

0.00013 

0.00015 

0.00000 

0.11334 

0.00001 

0.00000 

0.01877 

0.00000 

0.00095 

0.00790 

Table 2.3: Comparison of local linear logistic method with nonparametric methods, Models 1 to 12. WISE values are x i @ ,  

and p-value are from a Wilcoxori signed rank test compared to XLLL.  



Model 

Cauchy 

13 : p = 0.6 

14 : p = 0.8 

15 : / I  = 1 

16 : p = 1.2 

Median WISE 

476 

550 

529 

539 

672 

335 

3136 

3074 

1036 

783 

818 

917 

Marron- Wand 

17 : MW( 2 )  

18 : MW( 3 ) 

19 : MW( 4 )  

20 : MW( 5 )  

21 : MW( 6 )  

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 ) 

Increase (%) 

22.23 

33.37 

26.69 

28.28 

15.04 

4.24 

-2.05 

16.36 

-0.75 

-2.70 

-2.70 

-5.92 

A L L L  

p-value 

0.00003 

0.00014 

0.00003 

0.00003 

0.00006 

0.27347 

0.08342 

0.01894 

0.55772 

0.33482 

0.44631 

0.12814 

Median WISE Median WISE 

384 

415 

479 

484 

477 

269 

2101 

1373 

937 

693 

601 

804 

416 

421 

452 

373 

595 

292 

3242 

2192 

974 

957 

864 

964 

A" 

Increase (%) 

2.26 

5.82 

10.49 

17.07 

-4.73 

-6.89 

-32.81 

-27.66 

-10.29 

-20.97 

-19.46 

-12.09 

p-value 

0.94381 

0.75306 

0.12728 

0.00458 

0.95750 

0.02486 

0.00000 

0.00001 

0.00911 

0.00004 

0.00001 

0.00010 

Table 2.4: Comparison of local linear logistic method with nonparametric methods, Models 13 to 24. WISE values are x106, 

and p-value arc from a Wilcoxon signed rank test coniparcd to ALLL. 



11 and 12, which are quadratic on the logistic scale, the nonparametric 

estimator is approximately 50% worse for each model. Similarly for the 

less monotonic models in which g is taken from the Marron-Wand suite of 

densities, the two bandwidth method can improve significantly upon the 

single bandwidth semiparametric one. 

2.6 Conclusions 

We have shown in this chapter that semiparametric methods are serious 

contenders for general binary regression problems. The gains in  terms of 

coherent probabilities and weighted integrated squared errors from using 

the logistic formulation rather than the simple linear version of the smoother 

more than outweigh the losses in terms of slower computation. 

Moreover, the single bandwidth locally linear logistic estimator is at 

least as good as the fully nonparametric single bandwidth estimator, and 

with improved asyniptotic bias and boundary effects. Indeed, the estimator 

is only bettered by the two bandwidth version in certain cases, once again 

where the densities of successes and failures differ markedly. For these cases 

it is possible to modify the locally linear logistic estimator to also incorporate 

two bandwidths and this is done in the next chapter. 

The fact, however, that a single bandwidth procedure can do as well as 

a more complicated two bandwidth procedure in most circumstances, has 

important practical consequences. It is obviously easier to select a single 

bandwidth than a pair of bandwidths. For the admittedly sub-optimal ex- 

ample of cross-validation, we would be evaluating the optimising function on 

a grid rather than a sequence of points and obvionsly squaring the number 

of evaluations required. 

When considering the WISE-optimal bandwidths, the locally linear Irr 
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gistic method achieves iinifornily larger bandwidths over all models. This 

can be attributed to thc fact that the smoothing is effectively taking place 

in the logit-transformed space rather than the z-space directly. Bandwidth 

selection for these models is discussed in Chapter 4, but Fan, Heckman and 

Wand [4] derive a crude plug-in estimate of bandwidth, which for the burn 

data we have previously used, gives an estimated bandwidth for A L L L  of 

1.242. This can be contrasted with the estimates of individual bandwidths 

from the last chapter of 0.417 for successes and 0.309 for failures. 

We have demonstrated both that in the nonparametric case that two 

bandwidths are better than one, but that if we are constrained to only 

one bandwidth, then the semiparametric locally linear logistic estimator is 

best. For completeness, we now extend the locally linear logistic model 

to two bandwidths, before finally attempting to find practical bandwidth 

estimators which come close to achieving these optimal performances. 
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Chapter 3 

Two Bandwidth 

Semiparametric Binary 

Regression 

3.1 Introduction 

Consider the basic quasi-likelihood equation for the single bandwidth locally 

linear logistic model, a kernel-weighted form of equation (2.1), 

n 

Q(.) = (K In [A [X  - 4 1  + (1 ~ K )  141 -A[-& - .I)]) f & ( X ,  - ~ 1 ,  
,=l 

where logit[p(t)] is a polynomial of order p in z .  

This can be thought of as having two components; one for the successes 

(K = 1) and one for the failures (K = 0). As was demonstrated for the 

nonparametric case, for situations where the distributions of successes and 

failures have substantially different shapes, a two bandwidth procedure can 

often improve estimation. To apply this philosophy to the above estimator, 

we replace the general weighted quasi-likelihood with a single kernel and 
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bandwidth h by a pair of kernels with bandwidths a and c. 

n 

Q(z) {K In [p([Z - z])]} Ka(Xz - z) + 
, = I  

n 

{(I - Y,)  In[l - d[Z - %I)] } & ( X ,  - z). (3.1) 
*=l 

To see the connection with the nonparametric estimator, if we set p = 0, so 

that p ( [ X ,  - z]) = p = (1  + then equation (3.1) is nlaximised when 

and hence the solution satisfies 

n n 

(1 - f i )  &(Xi - z)X = fi  K c ( X j  - 2 ) ( 1  - y,) 
i= 1 i= l  

But the term on the left-hand side is simply (1 - p)mja, and the term on 

the right-hand side is fingc, and so we have 

Thus, once again the p = 0 case corresponds to the nonparametric case, this 

time with two bandwidths. 

Alternatively, if we were to use the other form of the quasi-likelihood for 

binomial models, namely 

and weight each term on the right hand side with a kernel of differing band- 

widths, then setting p = 0 would result in the solution being Xo,br a two 

bandwidth estimator we have previously rejected as it is not bounded be- 

tween 0 and l 

In terms of the WISE performance of this, our most complicated esti- 

mator, it is clear that for the p = 1 case that we are in exactly the same 
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situation as for the nonparametric case (p = 0). The two bandwidth locally 

linear logistic estimator, which we shall denote by X L L L , ~ ,  will always give 

a smaller optimal WISE than the identical but restricted single bandwidth 

version, so the question of interest is concerned with the absolute size of this 

improvement. 

3.2 Practical Performance 

The two-bandwidth locally linear logistic estimator was implemented and 

the practical performance assessed in the context of the previously described 

simulated datasets. 

3.2.1 Computational Issues 

For the two bandwidth case with p = 1, the estimation of f i (z)  is very similar 

to the single bandwidth case, X L L L .  The evaluation of the first and second 

derivatives which are required for the iterative solution at each estimation 

point is merely decomposed into separate ‘success’ and ‘failure’ parts and 

combined to produce the iterative adjustments. Thus the computational 

complexity is not substantially increased and evaluation times are similar. 

Essentially, equations (2.8) and (2.9) become respectively, 

where the data is ordered so that the first m points are the successes and 

the next n points the failures. Similar expressions can be derived for the 

second derivative terms. 
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3.2.2 Simulation Experiment 

Using exactly the same models and siniulated datasets as before, the mini- 

mum WISE for the two bandwidth estimator X L L L ; ~  was determined using 

a quasi-Newton minimisation algorithm starting from the single bandwidth. 

The previous approach of using a grid search was computationally infeasible 

for this estimator. 

As for the single bandwidth case, an arbitrary limit of h = 10 was used 

to bound the bandwidths for the models which were linear on the logistic 

scale, thus all WISE functions were optimised over the square [0, 101 x [0, 101. 

Furthermore, to return to the performance criterion used in Chapter 1, 

the WISE was calculated on the range [-4,4], and not restricted to the 

range of the data, as this latter restriction was only introduced to deal with 

the estimators which were not constrained to lie between 0 and 1. 

3.2.3 Results 

A summary of the WISE-optimal estimates for both X L L L  and X L L L , ~  is 

shown in Tables 3.1 and 3.2. 

The reduction in WISE for the two-bandwidth version of the locally 

linear logistic estimator is dramatic. The largest gains seem to be made in 

the first nine simulated models, all of which are truly linear on the logistic 

scale. The smallest gains are achieved in the highly skewed and multimodal 

failure densities of models 17 to 24, but even in these cases the median 

reduction in WISE is between 7.5% and 27.5%. 

Closer examination of these remarkable gains in the accuracy of esti- 

mation, however. shows an interesting practical phenomenon. To see this, 

consider Figure 3.1 which shows the WISE-optimal single and double band- 

width estimators XLLL and XLLL.~ for a dataset from Model 1. This dataset 
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Model 

66 

Linear Shift 

1 : p = 0.5 

2 : p = 0.75 

3 : p = l  

4 : p = 1.25 

5 : p = 1 . 5  

Different Proportions 

6 : RI = 0.2 

7 : RI = 0.4 

8 : RI = 0.6 

9 : RI = 0.8 

69.00 

Different Variance 

10 : ff = 0.2 

11 : U = 0.5 

12 : 0 = 0.8 269 

--ii 

51.97 

X L L L  

341 

301 

277 

245 

231 __ 

201 

199 

253 

234 
~ 

1291 

834 

620 

55.11 
68 II 

55 

37 

384 3 445 

64.66 

68.73 

60.85 

76.83 

77.51 

69.92 

80.27 

47.76 

41.35 

Table 3.1: Median optimal WISE values and median percentage improve- 

ment for comparison of single and two bandwidth local linear logistic meth- 

ods, Models 1 to 12. WISE values are x106. 
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Model 

Cauchy 

13 : fi  = 0.6 

14 : / I  = 0.8 

15 : p = l  

16 : 11 = 1.2 

Marron-Wand 

17 : MW( 2 ) 

18 : MW( 3 ) 

19 : MW( 4 ) 

20 : MW( 5 )  

21 : MW( 6 ) 

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 ) 

Median WISE 

X L L L  

416 

42 1 

452 

3 73 

609 

293 

3249 

2214 

986 

974 

868 

976 

X L L L , Z  

221 

235 

223 

234 

355 

157 

2662 

1598 

765 

697 

644 

797 

Median Percs 

Improvem 

41.22 

27.61 

29.09 

32.02 

25.82 

27.45 

16.52 

22.75 

8.10 

17.40 

12.58 

7.66 

Table 3.2: Median optimal WISE values and median percentage improve- 

ment for comparison of single and two bandwidth local linear logistic meth- 

ods, Models 13 to 24. WISE values are x IO6. 
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-2 0 2 4 

Figure 3.1: Comparison of single and two bandwidth WISE-optimal esti- 

mates with the true probability curve for a simulated dataset from Model 1 

was selected from those where the relative reduction in WISE was around 

the upper quartile of the observed range. The single bandwidth estimator 

has a minimum achievable WISE of 1302 x at a = 1.8, whereas the 

two bandwidth version can reduce this by over three-quarters to 296 x 

at the bandwidths a = 5 . 4 , ~  = 4.1. The plot suggests, however, that this 

is achieved by shifting the mean level of the estimate rather than any fine- 

tuning of the shape of the estimate itself. Indeed, the average value of X L L L  

over the whole range of 5 is 0.548, whereas X L L L , ~  has an average of 0.478. 

The WISE-surface, plotted in Figure 3.2 as a function of the two band- 

widths, shows that the minimum WISE values lie along a valley which is 

parallel but not coincident with the line of equality a = c, where a > c. 

Returning to the dataset, we note that in this case there were 109 suc- 

cesses and only 91 failures. Thus the empirical estimate of TI, the propor- 
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2 3 4 5 6 7 

Firs! Bandwidth 

Figure 3.2: WISE contour plot for a simulated dataset from Model 1. WISE 

ValUeS are 

tion of successes, is 109/200 = 0.545, very close to the mean of the single 

bandwidth estimate. As asymptotically-optimal bandwidths are functions 

of sample size, this partly explains the fact that the WISEoptimal solution 

occurs when a > c. So it would seem that the two bandwidth estimator is 

achieving an improvement in the WISE not by estimating the densities of 

failures and successes more accurately, but by correcting the errors in the 

estimation of AI itself. 

To explore this phenomenon further, for each simulated dataset, the 

absolute value of the difference between the observed number of successes 

and the expected number (100 for all except models 6 to 9) was calculated. 

The correlation between this measure of the contribution of the sampling 

variability in XI to the accuracy of the probability estimates and the absolute 
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improvement in WISE allowed by using two bandwidths instead of one was 

then calculated. These correlations are presented in Table 3.3. 

Clearly, for most models the improvements achieved for the two band- 

width version of the locally linear logistic estimator over the single hand- 

width version have a significant component which is due to the estimation 

of T I .  It is only for Models 10, 11, 18, 19 and 20 that the gain seems to be 

due entirely to the capability to adapt to the densities f and g separately, 

as in this case the variance associated with g is substantially less than 1. 

Asymptotically, it would appear that the O(n-’/’) errors in the estima- 

tion of T I ,  which up to now we have assumed to be dominated by the errors 

in the estimation o f f  and y, are actually having a significant influence on 

the error of the estimate. 

Even for the models where the correlation is small, however, the apparent 

gains in WISE are at times counter-intuitive. Figure 3.3 shows an example 

from Model 11, where the density y is from a Gaussian distribution with 

mean 0.5 and standard deviation 0.5. 

In this case the single bandwidth WISE-optimal solution is given by 

h = 0.8375, with a WISE of 4029 x This can be reduced by nearly 

50% by the two bandwidth estimator X L L L , ~  with a = 1.68 and c = 0.524 

which gives a WISE of 2079 x Notice that the two bandwidth solution 

achieves this reduction by adjusting to the different variabilities of f and 

g, rather than a simple calibration, as in this dataset there are only 102 

successes and 98 failures. This improves the estimation of X(z) in the main 

peak, but at the expense of the anomalous minor peak at z = 2. As the 

ISE is weighted by h ( ~ ) ~ ,  however, the increase in error from the single 

bandwidth case is more than cancelled out by the improvement in the range 

z E [0,1], where the overall density h is maximal. Thus the ‘improvement’ 
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Model 

Linear Shift 

1 : p = 0.5 

2 : p = 0.75 

3 : p = l  

4 : p = 1.25 

5 : p = 1.5 

Different Proportions 

6 : TI = 0.2 

7 : 7ri = 0.4 

8 : 711 = 0.6 

9 : TI = 0.8 

Different Variance 

10 : U = 0.2 

11 : U = 0.5 

12 : U = 0.8 

Correlation 

0.911 

0.821 

0.747 

0.631 

0.549 

0.733 

0.650 

0.663 

0.833 

0.045 

0.073 

0.621 

Model 

Cauchy 

13 : p = 0.6 

14 : p = 0.8 

15 : p = l  

16 : p = 1.2 

Marron-Wand 

17 : MW( 2 )  

18 : MW( 3 ) 

19 : MW( 4 ) 

20 : MW( 5 )  

21 : MW( 6 ) 

22 : MW( 7 ) 

23 : MW( 8 ) 

24 : MW( 9 ) 

Correlation 

0.561 

0.574 

0.384 

0.423 

0.562 

-0.050 

-0.149 

0.002 

0.463 

0.372 

0.689 

0.411 

Table 3.3: Pearson correlation coefficients between absolute imbalance in ob- 

served successes and absolute decrease in optimal WISE for two bandwidths 

over one 
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Figure 3.3: Comparison of single and two bandwidth WISEoptimal esti- 

mates with the true probability curve for a simulated dataset from Model 11 

in WISE does seem to be at  the expense of a subjectively large error in 

predicted probability of success at  x = 2, where the true probability is 0.9, 

but the fitted value from X L L L ; ~  is less than 0.4. 

3.3 Conclusions 

We have extended the locally linear logistic estimator of the previous chapter 

to a two bandwidth version. The particular form of the two bandwidth 

weighted quasi-likelihood chosen was derived by analogy with the p = 0 

case where Aa,c is bonnded but Aa,b is not. 

At first glance, the simulation results suggested that very dramatic gains 

could be realised in almost all circumstances by using two bandwidths. 

Closer inspection, however, revealed that the improvements are driven not 
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by better estimation of the component densities f arid g, but by improved 

estimation of the proportion of successes TI. This has important practical 

consequences as, in almost all real practical situations, ?rl will be unknown. 

The maximum likelihood estimate = m / s  was, however, only improved 

upon in the simulation experiment because the true probability function 

X(z) (and hence T I )  was known and we sought a WISEoptimal solution. 

Thus, although the extension of the locally linear logistic estimator to 

two bandwidths is useful for completeness, the true practical improvements 

achieved are likely to be considerably less than that observed in the simula- 

tion experiment, and will probably not justify the increased complexity of 

this estimator. 
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Chapter 4 

Bandwidth Selection for 

Binary Regression 

4.1 Introduction 

Previous chapters have explored the properties of a variety of single and 

double bandwidth estimators for the binary regression problem. In the sim- 

ulation experiments, by using the WISE-optimal bandwidth in every case, 

the problem of choosing an estimator was separated from that of choosing a 

bandwidth. It is clear that in certain circumstances niore complex methods 

such as the two bandwidth nonparametric estimator or the locally linear lo- 

gistic estimator may lead to improved estimation, hut can these benefits be 

realised in practice with a data-dependent bandwidth selection procedure 7 

This chapter extends and evaluates two contrasting approaches to the 

problem of bandwidth selection in binary regression: cross-validation and 

plug-in methods. The methods are applied to both the single and double 

bandwidth versions of the nonparametric and semiparametric kernel binary 

regression estimators, and the results compared in terms of WISE to that 
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best-possible cme achieved from the simulation experiments of the previous 

two chapters. 

4.2 Methods of Bandwidth Selection: Background 

The majority of authors who have considered binary regression problems 

do not seem to have examined the problem of data-dependent bandwidth 

selection in any great detail, and indeed there are only two major sugges- 

tions of how to proceed, neither of which has undergone extensive practical 

evaluation. 

4.2.1 Cross-validation 

Kappenrrian [13], who extends Copas' original estimator &,(z) to two or 

more dimensions, takes as his starting point the log-likelihood of the data 

n 

L ( a ; X )  = (5 log[;\,(Xj)] + (1 - 3) log[l - i a ( X j ) ] )  . (4.1) 
j=1 

However, it is clear that this will be maximised when the estimator i , , ( X j )  

is equal t,o 1 for those X J  where Yj = 1, and is equal to 0 for those where 

YJ = 0. This can only be achieved if the bandwidth a tends to zero, and 

both f and fi are each a sum of Dirac delta friuctions located at  the successes 

for f and at all data points for h. To avoid this, Kappenman suggests using 

the leave-one-out estimator 

Modifying equation (4.1), we then have the likelihood cross-validation (LCV) 

function to be maximised over a, 
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It is clear that this LCV method can be extended t,o the two bandwidth 

nonparametric estimator ia,c(z), and to both the single and double band- 

width semiparanietric estimators ALL,(%) and ALLL,~(z). In each case the 

bandwidths are chosen so as to maximise the leave-one out likelihood 

n 
L ( q ; X )  = (y3l0g[i(-J)(x3)] + (1 - y3)logjl - i'-3'(x3)]), (4.4) 

3=1 

where i is the appropriate estimator, and q is a vector of either one or two 

bandwidths. 

The idea of likelihood cross-validation is discussed in the context of den- 

sity estimation by Silverman [26], where it is demonstrated heuristically that 

likelihood cross-validation is equivalent to minimising the Kullback-Leibler 

information loss function J f(z) log[f(z)/f(z)]dz. 

In density estimation, the more usual form of the technique is least- 

squares cross-validation [27, 281 which begins with the aim of estimating the 

mean integrated squared error (MISE) 

This equation can be expanded into three integral terms, involving only the 

unknown density f, only the estimate fa(.), and a cross term involving 

both, respectively. This final term is estimated by cross-validation, and the 

whole expression minimised over the bandwidth a. 

Although we have used a similar criterion throughout this work as a 

measure of estimator performance, to ensure the existence of the integral 

we have used a weighting function which is the square of the (unknown) 

combined density h. This implies that the expansion of the MISE function 

into terms involving only known or only estimated quantities does not apply, 

in that h must also be estimated. This precludes the use of a cross-validation 
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method based upon the weighted MISE, and as we shall see presently, also 

complicates matters for the plug-in estimator. 

4.2.2 Plug-in Methods 

In the initial development of the semiparametric approach, Fan, Heckman 

and Wand [4] describe a siniple plug-in bandwidth selector based upon the 

asymptotic expression for the mean integrated squared error (MISE). Rather 

than use the error in the estimation of X L L L ( Z )  directly, however, they use 

the WISE of the estimate of the linear functional q, where 

In this case, the asymptotic expressions for bias and variance are given by 

These values can then be substituted into the weighted MISE equation, 

expressed as a function of the bandwidth a. as 

MWISE(a) = 1 (E [ ~ L L L  - 71 (.I2 + var [GLLL]  (z)) w ( z ) h ( x )  dx, (4.8) 

where w ( z )  is a “weighting function”. The authors never actually specify 

what this weight function should be, other than to say that both w ( x )  and 

h ( x )  are included for “stability purposes”. In all of our previous work we 

have taken this weighting function on the ISE to be h(z ) ,  giving the standard 

weighting by h(x)’, and we shall continue to do so here. 

Substituting equations (4.6) and (4.7) into equation (4.8), we get an 

expression for the WMISE in terms of a. 

MWISE(a) = 4 / [ $ ( z ) h ( x ) ] ’ d ~  + 
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Differentiating this with respect to a and equating to zero to find the mini- 

mum gives the WMISE-optimal bandwidth as 

where 

Now in equation (4.9) only the terms in these two integrals are unknown and 

have to be estimated from the data. Fan et al. suggest using a parametric 

pilot estimator for 7 and A,  and substitute this into the above equations to 

estimate UOPT. The recommendation is to use a polynomial estimator of 

order p + 3, which in this cme would be a conventional logistic regression 

using a quartic polynomial in z. 

Note, however, that there is mother unknown quantity in the above 

equations in addition to A, namely the density of all the data points h(x). 

If, as is implied in the original publications w (and hence h )  is known, then 

both 11 and 1 2  can be calculated directly from the parametric pilot estimate. 

However, as a direct consequence of the choice of weighting function, we must 

also estimate h. This is a practical aspect of this bandwidth selector which 

is not discussed in the original work, but as we shall see, the use of pilot 

estimates of h and related quatities can be used to give satisfactory results. 

As we have previously calculated expressions for the asymptotic bias and 

variance for the estimators Xa(x), i a , c ( z ) ,  ~ L L L ( Z ) ,  we can easily adapt the 

above procedure to give a plug-in bandwidth selection rule for each of them. 

The case of X L L , , ~ ( Z )  is, however, more complicated, and, iis we shall see, 

this approach is not practically feasible. 
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4.3 Practical Issues 

4.3.1 Cross-validation 

Cross-validation is an  intuitively appealing idea, but has certain practical 

limitations. Consider a single observation (K,  Xt) for which X ,  is a distance 

(along the covariate axis) at  least R away from amy other point. Suppose 

we use equation (4.4) with a fixed-width kernel and the simplest caSe of the 

single-bandwidth nonparametric estimator ;\,(z). Then, if the bandwidth 

a is less than R, the leave-one-out estimate of the probability of success at 

this point cannot be calculated due to a lack of data and th? LCV function 

is undefined. 

Silverrnari [26] pointed this out in the context of density estimation, 

where in the absence of data the density estimate is zero and hence the 

log-likelihood undefined. He also noted that although the immediate prob- 

lem can be solved by the use of ‘infinite width’ Gaussian kernels, this is a 

solution which apparently gives undue influence to the tails of the kernel, 

and intuitively seems to encourage over-smoothing of the data. 

In fact, for binary regression the bounds upon the bandwidth are more 

complex than this. If we expand the logarithm ternis in equa,tion (4.3) in 

terms involving the underlying densities we get 

+ mlog(rn/s) + nlog(n/s). 

Clearly, any point which results in an estimate of either j, g, or h which is 

zero is going to result in an undefined LCV function. Now, as f is estimated 

entirely from the subset of successes, and y from the failures, the single 

bandwidth a must be large enough to prevent the leave-one-out estimate of 
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either of these densities at any data point being zero. Thus the bandwidth 

is bounded below by the the mazimum of thc minimum distance between 

successes and the minimum distance between failures. Similarly, for the 

two bandwidth estimators, the bandwidths for a and c are bounded below 

separately by the minimum distance between successes and the minimum 

distance between failures. 

There are two further drawbacks of the use of cross-validation in this 

situation. Firstly, as there is no closed-form expression for the bandwidth, 

we must implement a search algorithm to find the global maximum of the 

LCV function, which must be capable of coping with the aforementioned 

boundaries on the search space. Secondly, it would appear that calculation 

of the contribution of each point X j  to equation (4.4) requires a separate 

evaluation of the binary regression estimator for the amended dataset, with 

the obvious potential for time-consmning computational demands. 

This second difficulty can be surmounted, however, by the use of simple 

forniulae for the evaluation of leave-one-out estimators. It is well known that 

the leave-one-out density estimator fA-’)(Xj) is related to the standard KDE 

by the fact that 

(4.10) 

Thus individual terms f;-’)(XJ) can be quickly calculated by evaluating 

fa(z) on a grid of points, interpolating to get fa(Xj) and then subtracting 

the constant *. This only involves a single full evaluation of the density 

estimate and so is obviously much more efficient than the naive approach. 

For the single bandwidth nonparametric estimator ia (z) ,  we siinply cal- 

culate the two density estimates f, and ha, then use the above algorithm to 

calculate $ - I ) ( X I )  for all data points and f i - ’ ) ( X J )  for all the successes. 

For failures, fL-’)(XI) = fa(XI). Thus the calculation of $-”(z) is achiev- 
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able with approximately the same computational effort as for the standard 

binary regression estimator. A similar approach is taken for the two band- 

width nonparametric estimator. 

For the semiparametric case, things are equally simple. Equations (2.8) 

and (2.9) and the corresponding expressions for the second partial deriva- 

tives are modified so that the contribution when both X, and z are equal to 

X ,  is zero. Note that this only involves amendments to the expressions for 

E2 and as the other terms involve the expression ( X ,  - z). Thus the 
d8o air, 
algorithms for the calculation of both i i i J J ( z )  and XLLL,*(z) " (-3) are very sim- 

ilar in computational terms to the standard estimates. It should be noted, 

however, that despite the ease with which the LCV function can be calcu- 

lated for a particular bandwidth, there is still the need for a search over the 

bandwidth space to determine the actual bandwidth. 

In the original exposition of this approach to binary regression bandwidth 

selection, Kappenman [13], extends the procedure to the c a e  of bivariate 

regression with two covariates. As an example, he uses a dataset from the 

area of fish-curing, where whitefish steaks are treated with sodium chloride 

and high temperatures before packaging. The response variable is whether 

or not the steaks are toxic, and the covariates are thus sodium chloride con- 

centration and temperature. Figure 4.1 shows the dataset, with the toxic 

steaks represented by filled circles, and the non-toxic steaks by open circles. 

It is immediately obvious that the chloride concentration during the brin- 

ing process is the major determinant of the toxicity, with the temperature 

playing a questionable role. Despite this feature of the data, Kappenman 

uses a Gaussian bivariate product kernel to calculate bivariate estimates of 

f the density of toxic steaks, and h the overall density. The calculated LCV 

bandwidths, translated into the more usual standard deviation units of the 
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Figure 4.1: Chloride concentration vs. temperature for whitefish steak data. 

Filled circles represent toxic outcomes. 

Gaussian density, are 0.0597 for chloride and 9.71 for temperature. We can 

further transform these kernels using the theory of canonical kernels (see 

Wand and Jones [14], p28-31) to give equivalent bandwidths of 0.157 and 

25.5 for a bivariate product quartic kernel. 

Thus we can see that the estimate for this dataset is driven almost en- 

tirely by the chloride variable and is alrriost independent of temperature. 

The combination of a relatively large bandwidth and no clear discrimina- 

tion between toxic and non-toxic steaks on the vertical axis implies that the 

influence of temperature on the outcome is very limited. Note also that in 

terms of the chloride concentration, the spread of values for the non-toxic 

steaks is considerably greater than that for the the toxic one, suggesting 

that this may be a situation where the two bandwidth estimators may be 
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usefully applied. With this in mind, we shall return to this example later in 

this chapter, but shall only consider the relationship between chloride and 

toxicity, ignoring the temperature variable. 

4.3.2 Plug-in Methods 

As we noted above, by specifying the unknown density h ( z )  as the weighting 

function, we introduce an additional unknown quantity into the estimation 

of the optimal bandwidth in  addition to the probability function A. Thus, 

in addition to the parametric pilot estimation of A, we must also perform 

some density estimation. 

For the simplest estimator &(z), the WMISE can by written as 

4 
WMISE(a) = 

+ 1 A(z)[1 - A ( z ) ] h ( ~ )  dz. (4.11) 
sa 

Now let C(z) be the cubic polynoniial logistic regression estimator (cubic 

since in this case p = 0 ) ,  then the second integral term in equation (4.11) is 

the expectation over X of X ( l  - A )  and so can be estimated by 

- l S  
I ,  = - @(X) [1 -$(X)I 

1=1 

The first integral is not so simple to estimate, as it involves both h(z)  and 

h’(z). To estimate these, we replace h ( z )  by a pilot estimate k(z) where 

the density is estimated using a bandwidth selected by the Sheather-Jones 

method [17]. As p(z)  is a polynomial model, the first and second derivatives 

can be easily calculated using the estimated coefficients. Similarly, h’(z) 

could be estimated directly using an appropriate kernel estimator, but for 

computational simplicity, we have used the numerical derivative of the es- 

timate of h(z) .  It should be remembered that these are pilot estimators to 
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derive a bandwidth for la(z), and so absolute accuracy is not of paramount 

importance. 

Thus to estimate the first integral, a grid of points is calculated, at each 

point zg the integrand is estimated by 

and the estimate f 1  is calculated numerically by summation of these terms. 

Finally, we have the plug-in bandwidth estiniator 

(4.13) 

which, as in the case of simple kernel density estimation, gives a bandwidth 

which is directly proportional to .s-'I5. 

Although the asymptotic calculations are tedious, since this method gives 

a closcd forni expression for the data-dependent bandwidth, it is substan- 

tially faster than cross-validation, which requires a search over plausible 

values of a. The computational effort involved in estiniatirig the polyne 

niial logistic regression function, the density h(z )  and their derivatives is 

small by comparison to the optimisatiou algorithms necessary to derive the 

LCV bandwidths. I n  addition, the values of t,he plug-in bandwidth are not 

bounded below by an arbitrary value as a consequence of the algorithm, a 

very important practical consideration. 

A similar approach can be taken to construct a plug-in bandwidth se- 

lector for X L L L ( Z ) ,  which gives a slightly different solution to that given by 

Fan et.al., as we are using a different WMISE function, working im terms 

of X directly rather than a transformation. Note that in this case the pilot 

parametric estimator +(z) is a logistic polynomial model of degree 4 as for 

this estimator p = 1. 
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The asymptotic variance of X L L L ( ~ )  is identical to that of X,(z), and so 

the estimated integral I 2  is the same for both bandwidth estimators. The 

asymptotic bias is different, however, and from equation (2.3) we can see 

that the integrand term for the estimate of 11 should be 

{ [logit($) 1”(zg) $(zg) [ I -  $(zS)l U 1’. (4.14) 

Note that this is simpler to calculate than for X,(z), as there is only a single 

estimate of the density h(z ) ,  and logit($) is a polynomial of degree 4 in 

z, allowing the second derivative to be calculated directly from the model 

coefficients. With this modified estimtate of 11, the expression for the plug-in 

bandwidth is identical to equation (4.13), and we proceed as before. 

In some situations, the fitting of a high-degree logistic polynomial esti- 

mator niay result in a numerically unstable model and an estimator p(z)  

which is 0 or 1 nearly everywhere. This precludes estimation of the esti- 

mated optimal bandwidth, and suggests that the data can be well fitted by 

a lower degree polynomial. When this occurred, a polynomial of degree p + 2  

was nsed instead. 

For the two bandwidth estimator %,,(z), the expression for the WISE 

involves five integral terms involving X(z), h(z) ,  f”(z) and g”(z). The 

first of these can be estimated using a parametric polynomial fit, and the 

others using standard kernel density estimation procedures and a Sheather- 

Jones estimate of the bandwidth. This results in an estimate of the WISE 

which is a polynomial with terms in a4,  a2c2, c 2 ,  a-1 and c-I. Although 

this is not strictly a closed-form expression for the estimates of the WISE- 

optimal bandwidths, standard numerical optimisation routines can be used 

to calculate these data-dependent estimates of the optimal bandwidths. 

For X L L L , ~ ( ~ ) ,  the situation is more difficult. The bias of this estimator 
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can be shown to be of the form 

4, 
3 2 2  x terms in a , a  c and c ( 

4 1 
2 h2[a2A + c y 1  - A)] 

When this bias is squared and integrated to give the WISE, the form of 

the inverse quadratic term in a* and c2 implies that the resulting expres- 

sion cannot be simplified to take the bandwidth terms outside the integral. 

Thus, rather than having to fit a parametric estimate, calculate numeri- 

cally a number of integrals, and use the resulting constants as coefficients 

in a polynomial equation involving a and c, for this estimator we are faced 

with an estimate of WISE as a function of the bandwidths which must be 

nunierically calculated for every value of a and c. 

In addition, the variance of this estimator can be shown to be 

2 1 [a- 'K(u/a){ l  - A(u)}  + c-'K(u/c)A(u)] du 
A ( 1  - A )  

sh 

Now, although the integral of this part of the WISE can be expressed as a 

polynomial in a and c with coefficients which must only be calculated once, 

the order of this polynomial depends upon the particular kernel function be- 

ing used. Note also that this only applies if polynomial kernels are used; for 

the Gaussian kernel we are faced with an integral involving both exponential 

and inverse polynomial terms in a and c. 

These difficulties, together with the unwieldy expression for the WISE in 

this two bandwidth case, are in  direct opposition to the 'quick and simple' 

philosophy of plug-in bandwidth rules. Given the problems encountered in 

the previous chapter, where when using the optimal bandwidths this esti- 

mator tended to lower the WISE by altering the estimate of rather than 

changing the shape of itself, we have chosen not to pursue this particular 

plug-in rule for this estimator. We are still able to get some clues, how- 

ever, as to the practicability or otherwise of this estimator from the LCV 
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approach results, 

4.4 Simulation Experiment 

To compare the two competing bandwidth selection approaches, and to as- 

sess whether the potential improvements that may he achieved hy using two 

bandwidths instead of one can be realised, an extensive simulation experi- 

ment was performed. Where possible, for each of the four estimators ia (z) ,  

ia ,c(z) ,  ~ L L L ( ~ )  and ~ L L L , ~ ( Z ) ,  the cross-validated and plug-in bandwidths 

were calculated for each of the 100 datascts from the 24 test probability 

functions used in the previous chapters. 

The data-dependent bandwidths were then used to calculate the WISE 

for each dataset, and this was compared with the previously derived best 

possible opt.imal values for that estimator, and also across estimators, with 

the aim of drawing some general conclusions which would he useful in the 

practical application of these estimators. 

4.4.1 Cross-Validation 

The previously discussed problem of a minimum bomid on the bandwidths 

allowable for likelihood cross-validation (LCV) implied that calculation of 

the LCV function for the models involving Cauchy densities (models 13 to 

16) was almost impossible. The lower bound on the bandwidth was fre- 

quently considerably larger that 10. The only practical alternative in these 

cases was to adopt a procedure of deleting the 'outliers', and then calculat- 

ing the LCV bandwidth. This, however, would have implied that we were 

simulating from a truncated Cauchy distribution and could have led to an 

unfairly optimistic assessment of this bandwidth selection procedure, as it is 

clear that it is infeasible (at least with finite width kernels) for distributions 
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with heavy tails. For this reason, these four models were omitted from the 

simulation experiment, but only for these particular bandwidth selectors. 

For each dataset, the LCV bandwidth estimator for each of the four 

binary regression estimators i a ( z ) ,  ia ,c (z ) ,  ;\LLL(Z) and ~ L L L , ~ ( z )  was cal- 

culated. The WISE of the resulting estimator was then compared to both 

the previously derived optimal value, representing the best possible perfor- 

mance of that estimator for that dataset, and also to the WISE of the other 

estimators. 

For the nonparametric bandwidth estimators Tables 4.1 and 4.2 show 

the median WISE values, the median percentage increase over the optimal 

values, and the p-value for the Wilcoxon signed rank test of the difference 

in WISE values for the nonparametric estimators i a ( z )  and iaiC(z)_ 

The first point to be noted from these results is that, with the exception 

of Models 10, 11, 19, 20 and 22, the two bandwidth approach of i a ,c (z )  is 

never significantly better than the far simpler single bandwidth estimator. 

Indeed, the combination of the single bandwidth estimator and likelihood 

cross-validation gives WISE values that are on average only 10.45% larger 

than the ideal optimal values for all of the models except 10, 19 and 20. 

The poor performance of the estimator for Models 10, 19 and 20 com- 

pared to the optimal values can be explained by the fact that for over 80% of 

the simulated datasets for these models, the WISE-optimal bandwidth was 

less than the previously described lower bound on the bandwidth. Indeed, 

the data-dependent bandwidths for Model 20 are hopelessly inadequate, as 

can be seen from the fact that the median percentage increase over the 

optimal WISE is measured in terms of a 600 to 1000% increase! 

Thus, the two bandwidth nonparametric estimator only improves upon 

the single bandwidth case in the cases where the densities f and g are very 
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m 

Model 

Linear  Shif t  

1 : p = 0.5 

2 : p = 0.75 

3 : p = l  

4 : / I  = 1.25 

5 : / I  = 1.5 

Different Propor t ions  

6 : T I  = 0.2 

7 : TL = 0.4 

8 : TL = 0.6 

9 : TI 0.8 

Different Variance 

10 : f7 = 0.2 

11 : c7 = 0.5 

12 : U = 0.8 

Median WISE Increase (%) over optimal + 
698 

799 

841 

591 

703 1 

22.20 

16.32 

16.94 

19.56 

33.49 

503 

700 

769 

470 

26.19 

21.21 

28.18 

21.80 

3720 89.44 

16.24 

10.02 

Median WISE 

831 

874 

916 

629 

844 

539 

799 

904 

486 

1084 

994 

1017 

Increase (%) over opti 

144.20 

88.25 

49.09 

47.07 

45.78 

76.88 

48.39 

67.22 

56.84 

89.90 

64.33 

117.84 

Wilcoxon Tes 

p-value 

0.00010 

0.00024 

0.00473 

0.00070 

0.16850 

0.08040 

0.02357 

0.00002 

0.76091 

0.00000 

0.00119 

0.05268 

Table 4.1: Comparison of LCV bandwidth selcctiori WISE values for nonparametric binary regression estimators, Models 1 

to 12. WISE valiics are x106, and p-values are from a Wilcoxon signed rank test. 



m 
N 

Median WISE 

Model 

Increase (%) over optirnal 

Cauchy 

13 : p = 0.6 

14 : p = 0.8 

15 : p = 1  

16 : p = 1.2 

Marron-Wand 

17 : MW( 2 )  

18 : MW( 3 ) 

19 : MW( 4 )  

20 : MW( 5 ) 

21 : MW( 6 ) 

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 ) 

1174 

488 

8583 

22551 

1563 

1236 

1117 

1398 

45.23 

30.41 

162.94 

641.96 

19.44 

17.34 

21.66 

38.00 

Median WISE 1 Increase (%) over optimal 

1131 

642 

7530 

16174 

1506 

1177 

1189 

71.53 

82.70 

207.04 

1002.87 

54.23 

30.48 

93.51 

1405 1 60.06 

p-value 

0.68621 1 
0.03642 

0.00000 

0.00000 

0.74004 

0.00210 

0.84597 

0.86756 

Table 4.2: Comparison of LCV bandwidth selection WISE values for nonparametric binary regression estimators, Models 17 

to 24. WISE values are x106, and p-values are from a Wilcoxon signed rank test 



different in terms of spread, and in other situations the added complexity 

actually seems to penalise estimation. 

Similar tables of the results for the srmiparanietric estimators ; \LLL(Z)  

and ~ L L L , ~ ( z )  are given in Tables 4.3 and 4.4. 

A very similar pattern to that seen with the nonparametric estimators 

is evident here. The two bandwidth version with LCV bandwidth selection 

only improves upon the single bandwidth approach for Models 10, 11, 19 

and 20, and in other situations offers no significant advantage. 

What is also clear is the hugely divergent performance of these two es- 

timators compared to the optimal results when the bandwidth was selected 

to minimise the WISE. For the first 9 models, which are linear on the lo- 

gistic scale, the median WISE values for the single bandwidth estimator 

are never more than about 12% greater than the best possible, although 

the performance in the non-linear cmes is less good. For the two band- 

width estimator, however, the WISE values are on average nearly an order 

of magnitude greater than the optimal. We have already seen, however, 

in the previous chapter that this dramatic optimal improvenient in WISE 

was achieved in the main not by better estimatioii of the true probability 

function, but by adjusting when the proportion of successes was different 

from the theoretical value. Obviously cross-validation cannot achieve this, 

and the more realistic values we see here allow us a fairer assessment of the 

value of the more complex two bandwidth semiparametric estimator. 

When comparisons are made between the non- and semiparametric esti- 

mators, it is clear that for likelihood cross-validation the locally linear logis- 

tic method is recommended for all models except those for which the density 

of failures is much more (or less) concentrated than that of the successes. 

For these cases (Models 10, 11, 19 and ZO), it is interesting to note that 
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X L L L  X L L L . ~  Wilcoxon Te Model 

Linear Shift 

1 : p = 0.5 

2 : p = 0.75 

3 : p = l  

4 : p = 1.25 

5 : p = 1.5 

Different Proportic 

6 : ?il = 0.2 

7 : ?ii = 0.4 

8 : ?il = 0.6 

9 : ?il = 0.8 

Different Variance 

10 : U = 0.2 

11 : U = 0.5 

12 : U = 0.8 

bfedian WIZ 

397 

383 

396 

293 

294 

295 

294 

334 

284 

2931 

1544 

843 

Increase (%) over optimal 

8.67 

6.15 

8.95 

3.67 

11.76 

5.00 

4.71 

12.45 

7.99 

112.79 

67.45 

23.53 

bfedian WISE 

452 

379 

363 

296 

320 

284 

280 

307 

282 

1406 

1258 

7G6 

[ncrease (%) over optimal 

336.86 

238.10 

313.20 

250.37 

340.35 

505.03 

542.39 

313.39 

508.80 

132.75 

115.07 

185.18 

p-value 

0.54851 

0.47770 

0.49709 

0.98491 

0.53259 

0.71423 

0.34879 

0.39097 

0.37411 

0.00000 

0.00000 

0.76091 

Table 4.3: Coniparisoii of LCV bandwidth sclectioii WISE values for semiparametric binary regression estimators, Models 1 

to 12. WISE values are x106, and p-values are from a Wilcoxon signed rank tcst. 



Model 

?auchy 

13 : p = 0.6 

14 : p = 0.8 

1 5 :  p = 1  

16 : p = 1.2 

Marron-Wand 

17 : MW( 2 ) 

18 : MW( 3 ) 

19 : MW( 4 ) 

20 : MW( 5 )  

21 : MW( 6 ) 

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 ) 

Median WISE 

826 

498 

13066 

28888 

1576 

1352 

1254 

1785 

X L L L  

increase (%) over optimal 

23.63 

57.46 

284.69 

1212.29 

52.73 

17.12 

27.91 

75.43 

Median WISE 

797 

471 

12286 

19389 

1645 

1299 

1316 

1694 

XLLL.2 

Increme (%) ovt 

110.22 

123.97 

331.00 

1142.85 

91.64 

63.68 

74.95 

83.34 

Wilcoxon Test 

p-value 

0.12305 

0.41219 

0.00000 

0.00000 

0.35950 

0.15410 

0.06660 

0.10646 

Table 4.4: Comparison of LCV bandwidth selection WISE values for serniparametric binary regression estimators, Models 17 

to 24. WISE values are x106, and p-values are from a Wilcoxon signed rank test. 



although a two handwidth estimator must be used, it is the nonparametric 

one which s e e m  to perform best. 

4.4.2 Plug-in Methods 

The plug-in bandwidth selection procedure gives either a closed-form ex- 

pression for the bandwidth or a simple polynomial equation to be solved 

numerically, and so there are no constraints upon the bandwidths as there 

were for likelihood cross-validation. Thus, estimates of performance for the 

four models where g is the density of a Cauchy distribution (Models 13 to 

16) can be calculated. 

Tables 4.5 and 4.6 give the median WISE values, the median percentage 

increase over the optimal values, and the p-value for the Wilcoxon signed 

rank test of the difference in WISE values for the nonparametric estimators 

i a ( z )  and 

Again, the two bandwidth estimator only improves upon the single band- 

width case for the models where the spread of the distribution of failures 

is substantially reduced compared to the successes. Models 10, 11, 19, 20 

and 22 all show significant improvements with ia,c. If the densities are more 

siniilar however, once again the use of the two bandwidth estimator can ac- 

tually make things worse, with a significant increase in the WISE observed 

for nearly all of these models. 

The results for the single bandwidth locally linear logistic estimator ~ L L L  

are shown in Table 4.7. 

In this case, as opposed to the the LCV approach, the differences between 

the non- and semiparametric estimators are not so marked. For most modeis 

;\L,,L appears to be slightly better, or at  least not substantially worse than 

ia. For the usual suspects (Models 10, 11, 19 and 20) the two bandwidth 

86 



m 
-4 

A, 

ncrease (%) over optimal 

Model Aa,c 

Median WISE Increase (%) over optimal 

Linear Shift 

1 : p = 0 . 5  

2 : p = 0.75 

3 : p = 1  

4 : p = 1.25 

5 : p = 1.5 

Different Proportions 

6 : ~1 = 0.2 

7 : 7r1 = 0.4 

8 : TI = 0.6 

9 : 7rl = 0.8 

8.22 

8.11 

6.50 

10.21 

7.88 

9.79 

5.65 

6.98 

5.24 

6.08 

7.68 

7.69 

Different Variance 

10 : U = 0.2 

11 : U = 0.5 

12 : U = 0.8 

755 

821 

906 

578 

646 

48 1 

723 

739 

433 

898 

916 

1054 

Median WE 

575 

655 

756 

514 

569 

436 

564 

654 

391 

1696 

1079 

873 

118.92 

60.17 

41.66 

28.46 

25.12 

56.37 

35.42 

35.98 

40.11 

53.30 

53.69 

140.24 

Wilcoxori Test 

p-value 

0.00000 

0.00000 

0.00000 

0.00000 

0.00000 

0.00065 

0.00000 

0.00000 

0.00111 

0.00000 

0.00088 

0.00000 

Table 4.5: Comparison of plug-in bandwidth selection WISE vahcs for nonparametric binary regression estilnators, Mod& 

1 to 12. WISE values are ~ 1 0 ' .  arid p-values are from a Wilcoxon signed rank test. 



m 
m 

I 64.16 

74.08 

52.22 

44.63 

Model 

Cauchy 

13 : p = 0.6 

14 : p = 0.8 

1 5 :  p = l  

16 : p = 1.2 

Marron-Wand 

17 : MW( 2 ) 

18 : MW( 3 ) 

19 : MW( 4 ) 

20 : MW( 5 ) 

21 : M W ( ~ )  

22 : MW( 7 )  

23 : MW( 8 ) 

24 : MW( 9 ) 

Median WISE 

570 

66 1 

669 

601 

806 

485 

8469 

6216 

1295 

1030 

997 

1126 

A, 

iicrcasc (%) over optinial 

7.40 

8.50 

9.37 

7.62 

10.83 

12.10 

160.55 

83.66 

7.47 

7.40 

9.56 

14.78 

Aa,c 

Mcdiari WISE 1 Increase (%) over optimal 

706 

938 

810 

825 

1015 

794 

2861 

1772 

1323 

928 

1061 

1227 

38.52 

185.35 

19.07 

18.62 

39.03 

17.86 

49.80 

23.79 

Wilcoxon T, 

p-value 

0.00000 

0.00000 

0.00000 

0.00000 

0.00407 

0.00000 

0.00000 

0.00000 

0.11893 

0.00001 

0.02693 

0.46500 

Table 4.6: Comparison of plug-in baiidwidt,h sclcction WISE values for nonparametric binary regression estimators, Mod& 

17 to 24. WISE values are x106, and p-values are from a Wilcoxon signed raiik test. 



W 
13 

Model 

Linear Shift 

1 : j l = 0 . 5  

2 : p = 0.75 

3 : p = l  

4 : jl = 1.25 

5 : p = 1.5 

Different Proportions 

6 : T I  = 0.2 

7 : RI = 0.4 

8 : T I  = 0.6 

9 : TI = 0.8 

Different Variance 

10 : U = 0.2 

11 : U = 0.5 

12 : U = 0.8 

Median WISl 

639 

585 

556 

438 

392 

470 

483 

518 

390 

1498 

1162 

1005 

Increase (%) Over optimal 

82.91 

72.90 

53.86 

46.45 

54.38 

67.22 

71.61 

60.67 

37.83 

11.22 

13.31 

20.05 

Model 

Cauchy 

13 : jl = 0.6 

14 : p = 0.8 

15 : p = l  

16 : p = 1.2 

Marron-Wand 

17 : MW( 2 )  

18 : MW( 3 )  

19 : MW( 4 ) 

20 : MW( 5 )  

21 : MW( 6 ) 

22 : MW( 7 )  

23 : MW( 8 )  

24 : MW( 9 ) 

Median WISE 

527 

667 

661 

561 

772 

523 

7208 

4706 

1183 

1203 

1067 

1197 

[ncrease (76) over optimal 

14.65 

19.92 

9.07 

20.47 

9.54 

17.39 

123.11 

95.90 

10.43 

5.06 

9.13 

8.75 

Table 4.7: Evaluation of plug-in bandwidth selection WISE values for singlc bandwidth serniparametric binary regressiori 

estimators, Models 1 to 24. WISE values are x lo6. 



nonparametric estimator i,,, is clearly the best option 

4.4.3 LCV Method versus Plug-in Method 

For the nonparametric estimators, in nearly every single case the plug-in 

approach gives substaIitially lower WISE values than cross-validation. This 

behaviour has been observed regularly in many other areas of kernel smooth- 

ing (see, for example Park and Marron [29]), and it is hardly surprising that 

it can be replicated in the area of binary regression. 

Two reasons for the poor performance of cross-validation are the con- 

straint of the lower bound upon the bandwidths due simply to the derivation 

of the algorithm, and the fact that cross-validatory procedures generally ex- 

hibit large variation. This second failing can be seen in Figure 4.2, where the 

data-dependent bandwidths from Model 5 selected by LCV and the plug-in 

methods for the simplest estimator ia are compared with the optimal val- 

ues. Clearly, in this case the LCV procedure produces bandwidths with a 

much greater variability than the plug-in procedure, even in this model in 

which both successes and failures have the same standard deviation with 

a large distance of 1.5 standard deviations between the means of the two 

populations. In addition, the tendency of cross-validation methods to over- 

smooth the data can also be seen, with the plug-in bandwidths being much 

less biased. 

Interestingly, this failure does not apply to the semiparametric case, 

at  least for Models 1 to 9. Here, when using ~ L L L ,  the LCV bandwidth 

procedure seems to give much better estimation than the plug-in method. 

Examination of the bandwidths for these models, however, gives an explana- 

tion. These models are all linear on the logistic scale, so the bandwidth a for 

J L L L  should tend towards very large values since as a + 00, the estimator 
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Figure 4.2: Density estimates of data-dependent bandwidths for Model 5, 

showing relative variance of the two approaches. 

becomes a parametric logistic regression. The median optimal bandwidths 

for these models range from 5.4 up to 10 (which is a purely arbitrary limit 

which was imposed upon the experiment). For the LCV method, the data- 

dependent bandwidths also shows this behaviour, with the median valiies 

varying over the models from 4.6 up to 10. For the plug-in approach, how- 

ever, the median bandwidths are only in thc range 1.4 to 1.6, suggesting 

that they are considerably under-smoothing the data. This finding can be 

intuitively rationalised by noting that these models are a particular case 

where ‘over-smoothing’ of the estimates actually improves the situation. 

It should also be noted, however, that thcse nine models are the cases 

where estimation is very easy for any of the estimators, and that the improve- 

ment offered by using LCV over the plug-in method is really only between 
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‘very good’ and ‘excellent’ estimation 

4.5 Conclusions 

In this chapter we have finally assessed the practical performance of the 

various binary regression estimators previously derived and described. Two 

contrasting approaches to bandwidth selection have been compared, and the 

very real practical difficulties involved in implementing what are often very 

‘broad-brush’ descriptions in the literature have been demonstrated. 

The general recommendations from the simulation experiment would 

seem to he that the locally linear logistic single bandwidth estimator is su- 

perior, except for the cases in which the variances of the two densities are 

very different, in which case the two bandwidth nonparanietric estimator 

is preferable. In all cases except when the true model is linear on the lo- 

gistic scale, the plug-in bandwidth selection rule is considerably closer to 

the optimal than likelihood cross-validation, with the added advantage of 

computational simplicity. 

This last point emphasises that the use of the term ‘semiparametric’ to 

describe is different from the normal usage of this term in density esti- 

mation. In the latter, seniiparanietric estimators tend to have performance 

very similar to fully parametric estimators when the parametric model zs 

correct, hut are robust, to departures from this model. In our situation, even 

when the model is of the correct parametric form, in practice the estimator 

does not achieve large enough data-dependent bandwidths to approximate 

logistic regression. 

The use of two bandwidths rather than one can be seen as a very lim- 

ited form of adaptive smoothing, where the bandwidth is allowed to vary 

continuously with location. It is clear that two bandwidth estimators are 
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necessary in certain situations, where they can dramatically improve the ac- 

curacy of the estimation. It does seem, however, that these cases are those 

where there is a substaiitial difference in the variance of the two groups, as 

the use of the two bandwidth estimators actually made things worse in sit- 

uations like Model 12, where the variances were 1 and 0.64 for the successes 

and failures respectively. 

The four simulated models where the two bandwidth approach was an 

improvement are exactly those where the ratio of variances between successes 

and failures is 2 or more, so a simple practical rule-of-thumb may he to use 

;\LLL, when the ratio of sample variances is less than 2, to use A,,, otherwise, 

and in each case to use the appropriate plug-in bandwidth selector. 

In practice, this procedure will have problems when confronted by heavy 

tailed distribution like those of Models 13 to 16, as the sample variance is 

not robust to outliers. For this reason, it may be appropriate to replace the 

sample variance by the more robust ‘super scale’ estimator &. from Chapter 

6. When applied to our battery of test models, and bearing in mind the final 

paragraph of Section 4.4.3, this approach should give adequate performance 

for the simpler models and at  the same time avoid the very poor estimation 

of the single bandwidth approach to the differing variance case. 

For each of the simulated datasets this ratio of variance estimates was 

calculated. For most models less than 10% of datasets resulted in a variance 

ratio of 2 or more. For Models 10, 19 and 20, however, the ratio was always 

(with a single exception) greater than the threshold and so ia,c(z) was used 

to calculate the estimate. Models 11 and 18 resulted in the use of the two 

bandwidth estimator in 57% and 75% of cases respect,ively, giving intermedi- 

ate performance. Table 4.8 gives the median WISE values which result from 

applying this procedure to the test data, and the dramatic improvements 
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Model 

Linear Shift 

1 : p = 0 . 5  

2 : p = 0.75 

3 : p = l  

4 : p = 1.25 

5 : /I = 1.5 

Different Proportion 

6 : "1 0.2 

7 : T I  = 0.4 

8 : "1 = 0.6 

9 : ~1 = 0.8 

Different Variance 

10 : U = 0.2 

11 : U = 0.5 

12 : U = 0.8 

Cauchy 

13 : p = 0.6 

14 : p = 0.8 

15 : /1=1 

16 : /I = 1.2 

Marron-Wand 

17 : MW( 2 )  

18 : MW( 3 ) 

19 : MW( 4 ) 

20 : MW( 5 ) 

21 : MW( 6 ) 

22 : MW( 7 )  

23 : MW( 8 )  

1015 24 : MW( 9 ) 

1018 

I 
Median WISE 1 

543 

73 1 

667 

561 

789 

782 

2861 

1772 

1183 

1203 

1067 

1211 

Table 4.8: WISE values resulting from empirical variance ratio rule. WISE 

values are x lof i .  

over using ALLL(Z) for Models 10, 19 and 20 are obvious. 

Even with this practical rule, however, we are in the slightly unsatisfac- 

tory position of recommending different estimators and different bandwidth 

selectors in different situations, as there are situations where the use of cross- 

validation seems superior. It seems clear that more research is needed into, 

the question of automatic bandwidth selection for estimators of these types 

to make them of practical use. 

In a very recent paper Fan, Farmen and Gijbels [30] reconsider the 
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asymptotic hehaviour of local polyriomial maximum likelihood estimation, 

with a specific example of logistic regression. By considering higher order 

polynomials (essentially of order p + 2),  they derive novel expressions for 

the bias and variance of the estimator, which they use to construct a data- 

dependent bandwidth selector using broadly similar ideas to the original 

plug-in approach. As they are using the likelihood, however, their estimator 

must avoid fitted values which are either exactly 0 or 1, and they do allude 

to this problem of a lower bound on the automatic handwidth. In addition, 

using similar computational equipment to that used here, their estimate of 

the bandwidth “takes approximately 20 minutes to compute”. It remains 

to he seen, therefore if this single bandwidth estimator and its associated 

bandwidth selection procedure is really an improvement upon what has gone 

before. 

Finally, if we return to the fish-curing data of Kappenman which was 

discussed earlier, we can try to apply the practical advice to the relationship 

between chloride Concentration and toxicity. As a first step, the variance of 

the chloride concentrations in the toxic steaks was estimated (using e&) 
to be 0.0062, and in the non-toxic steaks it was 0.0728, giving a ratio of 

approximately 12. Thus, according to our rule of thumb, we should consider 

using ia,,.(z) in preference to iLLL(z).  

If we then attempt to use the plug-in estimator for ia,Jz), we find that 

the cubic polyno~nial logistic regression has numerical problems and we must 

instead fit a quadratic model. This gives estimated bandwidths of a = 0.066 

and c = 0.162, suggesting that we were wise to use two bandwidths. Figure 

4.3 shows the resulting binary regression estimate, with the two bandwidth 

estimate of X(z) indicated by the dashed line. Does the dip in the probability 

of toxicity at  a chloride concentration of 1.9 make sense? It is difficult to 
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Figure 4.3: Binary regression estimates of the probability of toxicity for 

fish-curing data for three different conibinations of estimator and bandwidth 

selector. 

come up with a plausible biological explanation immediately, and referring 

back to Figure 4.1, we can see that this may be due to the single non-toxic 

steak with the srnallest chloride concentration. 

If we instead calculate the plug-in bandwidth for the single bandwidth 

estimate ir,,,~(z), we again cannot fit either a qnartic or cubic polynomial, 

hut must rely on the quadratic fit. This results in a bandwidth of a = 0.19, 

and the resulting estimate of X is shown by t,he solid line in Figure 4.3. This 

is a much more scientifically reasonable estimate. For comparison, the LCV 

bandwidth for this estimator was calculated to be 0.40; and this estimate is 

plotted as the dotted line in Figure 4.3. It would seem that of the two, the 

LCV estimator is slightly oversmoothed in relation to the plug-in estimator, 
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which avoids the anomalous dip at 1.9, but is still predicting definite toxicity 

below 1.8 and definite non-toxicity above 2.25. 

Given the apparent superiority of the single bandwidth estimator in this 

example, even with a variance ratio of 5 ,  should we amend our rule-of- 

thumb? Probably not, as in this case the problem seems to be more related 

to a single outlying and highly-influential point than to a general failing 

of the model. It should also be noted that there were only 20 ‘successes’ 

(toxic steaks) in this dataset, with the obvious implications this has for the 

variability of the ratio of the two variances. 

Thus it would seem that the general principles of our approach are jus- 

tified, and that both non- and semiparametric binary regression estimators 

can usefully describe pertinent features of real data. For the particular esti- 

mators recommended, ~ L , [ , L  and i,,,, the plug-in bandwidth selection rules 

are relatively simple and quick to calculate, giving a very practical solution 

to problems of this kind. 
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Part I1 

Density Estimation 
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Chapter 5 

Improved Kernel Density 

Estimation 

5.1 Introduction 

Kernel density estimation has become a widely-used and well accepted sta- 

tistical technique. The properties of the standard kernel density estimate 

are well investigated and understood. Many authors have, however, tried to 

irriprove upon the simple and intuitive standard estimate. These improve- 

ments are often driven by consideration of the asymptotic behavionr as the 

niimber of data points available becomes very large. These ‘higher-order’ 

kernel density estimators (KDE) are nearly always compared only with the 

standard estimator and rarely with each other. The aim of this chapter is to 

investigate the small-sample behaviour of a wide variety of these ‘improved’ 

KDEs, over a range of distribntional shapes, by means of an extensive sim- 

ulation experiment. 

A condensed report of the results of this experiment formed a major part 

of Jones and Signorini [31], which presented the asymptotic behaviour of the 
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higher-order estimates in a unified framework and compared most of these 

estimators both theoretically and in a variety of practical circumstances. 

5.2 Background 

We begin by describing the standard kernel density estimate and its asymp- 

totic behaviour. Given a sample X I  . . . X ,  from an unknown density f(z), 

the standard KDE is defined by 

where K2 is a second-order kernel (a symmetric probability density fun<:- 

tion centred at  zero) and h is the bandwidth, determining the amount of 

smoothing performed. 

The simple and intuitive nature of the estimator defined in equation 

(5.1) can be seen by noting that it can be considered in two distinct ways. 

Firstly, we can imagine a single kernel function centred at the point z, with 

the contribution of each point X ,  being determined by the height of the 

kernel function at X , .  For each different value of z at which an estimate of 

the density is required, the same process can be carried out. Alternatively 

(and t,his is the more obvious given the mathematical formulation), we can 

consider a set of n kernel functions, each centred at a data point X i .  The 

estimate at  a point z is then the (appropriately scaled) sum of each of the 

kernel functions at  that point. 

The large-sample asymptotic behaviour of f h ( z )  is well known (see, for 

example, Silverman [26] or Wand and Jones [14]). The asymptotic bias and 

variance as n + 00, h + 0 and nh + 00 can be expressed simply as 
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and 

where U; is the variance of the particular kernel function used and R ( K )  = 

J K ( U ) Z d U .  

We can thus immediately see the trade-off between bias and variance as 

the bandwidth changes. A smaller value of h, and hence less smoothing, 

will lead to a less biased estimate but with larger variance. Conversely, 

a large degree of smoothing, with correspondingly large values of h, will 

give estimates with smaller asymptotic variance but a large degree of bias. 

Typically. the myniptotic mean integrated squared error (MISE) is used as 

a criterion for estimation which combines these two conflicting meaures of 

estimator accuracy. 

The majority of suggested improvements to the standard KDE f h ( z ) ,  

have involved attempts to reduce the MISE (or simply the mean squared er- 

ror) through reducing the order of the asymptotic bias from O(hz)  to O(h4) 

or less. There are a great many ways of achieving this, so for reasons of 

practicality and conciseness we have chosen one or two of the more proniis- 

ing estimators within each general class of bias-reducing ideas. In addition, 

we also consider a single example of the so-called ‘semiparametric’ density 

estimation methods, which combine a fully parametric estimate with a non- 

parametric adjustment, with the aim of being efficient when the parametric 

models is correct? and robust when it is not. 

5.3 Higher-Order Kernel Density Estimators 

As stated abovei all but one of the estimators considered fall into the class 

of fourth-order methods, eliminating the first term of equation (5.2) in var- 
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ious ways and reducing the asymptotic bias from O(h2)  to O(h3) .  The 

asymptotic variance remains of order O((nh) - ' ) .  There are a surprisingly 

large number of ways of achieving this reduction, and indeed some of the 

estimators considered are simply special cases of a general bias-reduction 

method. Similarly, many of the ideas for bias reduction can easily be ex- 

tended to reduce the bias further, to order O(h6)  and beyond. For reasons 

of practicality, and the belief that it is the step from order O(hz)  to O(h4) 

which can give the largest gain over the standard KDE, we have limited the 

comparisons only to estimates with fourth-order asymptotic behaviour. 

In this section we describe the various estimators which are examined 

and in the next we briefly discuss their asymptotic behaviour. 

5.3.1 Fourth-order Kernel Estimators 

The simplest method of eliminating the h2 term from equation (5.2) is to 

use a kernel which has U& = 0. Let & ( z )  denote such a function, and define 

this estimator by 

Note, however, that the use of a symmetric function for which J u2K4(u)du = 

0 precludes the use of probability density functions, and indeed implies that 

the function must actually he negative for some of its range. For regions of 

low probability, this can imply that the estimate of the density f4(z) can 

actually be less than zero. Hall and Murison [25] discuss this prohleni and 

explore several possible adjristnients to achieve a non-negative estimate, hut 

in the context of asymptotic behaviour rather than practical application. 

There are a seemingly endless number of ways in which to construct 

fourth-order kernel functions. Jones and Foster [32] describe a general ap- 

proach, which is to use two KDEs with different kernel functions K(u) and 
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ious ways and reducing the asyniptotic bias from O(h') to O(h4).  The 

asymptotic variance remains of order O((nh)- ') .  There are a surprisingly 

large number of ways of achieving this reduction, and indeed some of the 

estimators considered are simply special cases of a general bias-reduction 

method. Similarly, many of the ideas for bias reduction can easily be ex- 

tended to reduce the bias further, to order O(h6) and beyond. For reasons 

of practicality, and the belief that it is the step from order O(h') to O(h4) 

which can give the largest gain over the standard KDE, we have limited the 

comparisons only to estimates with fourth-order asymptotic behaviour. 

In this section we describe the various estiniators which are examined 

and in the next we briefly discuss their asymptotic behaviour. 

5.3.1 Fourth-order Kernel Estimators 

The simplest method of eliminating the h2 term from equation (5.2) is to 

use a kernel which has U; = 0. Let K ~ ( z )  denote such a function, and define 

this estimator by 

(5.4) 

Note, however, that the use of a symmetric function for which J u'Kq(u)du = 

0 precludes the use of probability density functions, and indeed implies that 

the function must actually be negative for some of its range. For regions of 

low probability, this can imply that the estimate of the density i l (z)  can 

actually be less than zero. Hall and Murison [25] discuss this problem and 

explore several possible adjustments to achieve a non-negative estiniate, but 

in the context of asymptotic behaviour rather than practical application. 

There are a seemingly endless number of ways in which to construct 

fourth-order kernel functions. Jones and Foster [32] describe a general ap- 

proach, which is to use two KDEs with different kernel functions K(v) and 
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L ( u )  to give a pair of simultaneous equations of the form of equation ( 5 . 2 ) ,  

but with differing kernel-dependent constants multiplying the h2 f" ( z )  term. 

These equations can then be solved to give a new kernel function which is 

a linear combination of the two kernel functions with asymptotic bias of 

order h4. Two specific examples of this technique are studied, in each case 

beginning with a basic kernel function K(u) .  Firstly, let the second kernel 

function be simply L(u)  = u2K(u) ,  which results in the polynoniial fourth 

order kernel, 

(5.5) 

where S k  = J v k K ( v ) d v ,  the kth moment of the kernel. Secondly, let tlic 

second kernel function be the co~molution of the original kernel with itself, 

to give 

K4c(u) = 2K(u) - ( K  * K ) ( u ) ,  ( 5 . 6 )  

where * denotes convolution, such that ( K  * K ) ( u )  = J K ( u  - v)K(v)dv .  

Each of these two cases produces a kernel function such that J u2K(u)du = 

0, but at the expense of having values of u for which K ( u )  < 0. Figure 5.1 

shows both of these fourth-order kernels, and the corresponding second-order 

kernel for the case when the original kernel is the quartic function. 

The portions of the curves for which K4p(u) and Kdc(u) are less than 

zero can be clearly seen. In addition, it should be noted that although both 

fourth-order kernels have support [-1,1], the convolution kernel is narrower, 

suggesting that larger bandwidths will be required for equivalent amounts 

of smoothing. If the convolution kernel is 'stretched' however so that the 

peak is approximately the same width as for the polynomial kernel, wecan 

see that the two functions would be very similar indeed. We shall see in the 

simulation experiment that the practical differences between these different 

types of fourth-order kernel are very small, and can be compared to the 
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Figure 5.1: Fourth-Order Kernel Functions 

differences between different kernel functions for the standard KDE. We 

thus define the two fourth-order estimators f44p(z) and fqc(z) of the form 

given in equation (5 .4) ,  with K4 taken to be K4p and K ~ c  respectively. 

5.3.2 Multiplicative Bias-Correcting Estimators 

The fourth-order kernel method may be considered as an additive bias- 

correction method, as the procedure essentially works by adding together 

two independent estimates o f f  with equivalent h' bias terms. An alternative 

approach is to take a standard KDE o f f  and an appropriate estimate of 1, 

and multiply them together to create a new estimate o f f .  The estimate of 

1 is chosen to have an h' bias term which again cancels out that of f h ( z ) ,  

leaving only bias terms of order h4. 

Probably the simplest way of doing this, described in Jones and Foster 
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[32], is to take the estimator 

(5.7) 

where 
n 

.fh(z) = (nh)-’ x ( K  * K )  [VI , 
i = l  

an estimator o f f  using the convolution of the kernel function with itself. It 

is clear in the final part of equation (5.7) that this estimator has two mul- 

tiplicative components, one estimating f ,  the other estimating the constant 

value 1. 

Another way of achieving this multiplicative bias correction was proposed 

by Jones, Linton and Neilsen [33]. This is rather similar to the previous 

estimator, hut now the estimate of f in the denominator is moved ‘inside’ 

the second kernel density estimate in the numerator. Formally, we have 

Once again, the second term is an estimate of 1 and is very much correlated 

with the first term. The asymptotic bias terms in h2 cancel out and we are 

left with bias of order h’.. Unfortunately this estimator is not a true density, 

since it does not integrate to one. Jones et al. suggest, however, that a 

numerical renormalisation of the final estimate can produce significant hen- 

efits in estimation, so we also consider the empirically renormalised version 

of this estimator, denoted by f,”,,(z). 

Examination of equation (5.8) shows that it is possible to modify this 

estimator to have two distinct bandwidths, h and b, one for the initial pilot 

estimate, and one for the final estimate. Thus 
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Provided that b is proportional to h,  and that they do not differ in their rate 

of convergence to zero, the h2 terms in the asymptotic expansion still cancel 

out and the higher-order behaviour is retained. This estimator can also be 

empirically rescaled to have unit integral, and given the dominance of the 

resealed version in the single bandwidth case, we work exclusively with the 

renormalised two bandwidth estimator f,”,,,,. 

5.3.3 Transformation Estimators 

A standard statistical technique when faced with data which are in some way 

‘difficult’ to handle is to transform them. For kernel density estimation, this 

idea was introduced by Ruppert and Cline [34], who used an estimated form 

of the probability integral transform to transform the data to a uniform 

distribution on [0,1]. This distribution is very easy to estimate well using 

kernel density estimation, as asymptotically f ‘  and all higher derivatives are 

zero. The resulting estimate is then back-transformed to the original scale, 

to give another estimator with order h4 asymptotic bias. 

Formally, recall that the probability integral transform theory states 

that if X has curriulative distribution functiou (CDF) F ( z ) ,  then the trans- 

formed variable Y = F ( X )  has a uniform distribution on [0,1]. Obviously 

when faced with an unknown distribution, F is also unknown and so must 

be estimated. Thus the Ruppert-Cline estimator proceeds in three stages; 

estimating the smoothed CDF of the data and using this to transform to 

an estimated uniform distribution on [O, 11, calculating a smoothed KDE 

in this transformed space, and finally back-transforming the estimator to 

the original scale. Note that this immediately implies two bandwidths may 

be appropriate, as the CDF is estimated on the scale of the original data, 

whereas the density estimate in the transfornied space operates in the range 
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from 0 to 1, and these two scales are likely to be quite different. Thus the 

full two-bandwidth estimator (with bandwidths h and b) can be written as 

where the estimate of the CDF is given by 

i h ( y ) = - c L ( q ) '  1 "  

r = l  

and 

the integral of the kernel function. 

The interpretation of this estimator also as a multiplicative b i a  cor- 

rection can be seen from the decomposition of equation (5.10) into a term 

estimating f and one estimating the density of a uniform distribution, which 

is, of course, 1. 

Practically, a boundary-corrected version of the density estimator in the 

transformed space is used, as the proportion of the range [0,1] which falls 

within a distance b of the boundaries is relatively large. We follow Rup- 

pert and Cline in  using the reflection method to cope with this feature. 

These authors also suggest that. rather than using two bandwidths, a single 

bandwidth scaling factor can be used, with h and b being proportional to 

the inter-quartile ranges (IQR) of the data and the transformed data re- 

spectively. We denote by f ~ c ( z )  this single bandwidth version of f~c;l(z) 

with 

Alternatively, we can also use a locally varying baudwidth in the trans- 

formed space, with b(z) = hfh(:"), to give the simplified single-bandwidth 
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transformation estimator 

This estimator, however, does not integrate to 1 and so we also consider the 

practical performance of the numerically normalised version (using the same 

method as in the previous section), denoted by f&,(z). 

5.3.4 Variable Bandwidth Estimators 

The concept of using a large amount of smoothing in the tails of a density 

and a small amount around the peaks is intuitively appealing, leading to 

modifications of the standard KDE with some form of adaptive bandwidth. 

The concept of thus allowing the bandwidth h in f h ( z )  to vary, such that 

was first introduced by Victor [35] and Breiman et al. [36]. It was Abramson 

[37], however, who showed that by taking h ( X , )  proportional to f - ' / * ( X z ) ,  

the asymptotic hias is of order h4. This must he estimated, and so we 

have another two-stage estimator, using an initial pilot density estimate 

with bandwidth b to estimate the locally niodifird bandwidth h ( X , )  = 

h [fb(Xz)]-1/2. Thus we have the full two-bandwidth version of the vari- 

able KDE 

Silverman [26] simplified this estimator by taking the second handwidth 

h to simply be proportional to the pilot bandwidth bl scaled by the geometric 

mean g so that 
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and hence we have the single bandwidth version of the variable KDE 

which happily does integrate to 1. 

As a final variation, we can use the local rescaling ideas of the estimator 

f~c-v(x), so that 

giving the locally rescaled variable KDE with a single bandwidth 

5.3.5 Variable Location Estimator 

As an alternative to locally adjusting the width of the kernel functions, 

Samiuddin and el-Sayyad [38] demonstrate that shifting the location of each 

kernel by an amount proportional to f ' l  f is another way of achieving or- 

der h' bias. Once again, the size of the location shift must be estimated, 

requiring a pilot step, and giving the variable location estimator 

This estimator is effectively moving the data points in the direction of pos- 

itive slope, which in practice means towards the estimated peaks of the 

density. Although by separating the pilot and final estimation step this es- 

timator can also be considered in a two bandwidth way, we have restricted 

ourselves to the simplest single bandwidth case. 
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5.3.6 Semiparametric Estimator 

Finally, we consider a single estimator from a conipletely different approach 

to the problem of density estimation. Semiparametric density estimation 

seeks to construct an estimator which combines the strengths of a parametric 

fit to the data when the density is of the correct form with nonparametric 

robustness to departures from this model. Hjort and Glad [39] suggest the 

semiparametric estimator 

where f(z;  8) is an estimated fit of the parametric family of distributions 

f(q6') to the data. Note the similarity here with the multiplicative bias- 

correcting estimator ~ J J L N ( Z ) ;  where the pilot nonparametric estimator fh(z) 

has been replaced with the parametric fit f(z;d). 

This estimator is the only one of the improved methods which has bias 

of order h2 rather than h', but i f f  is actually a member of the parametric 

family, then the h2 bias term vanishes. Thus when the true density is close 

to the parametric target this estimator behaves like an efficient parametric 

estimator, yet when the density is not close to the t,wget, the nonparametric 

part dominates. For the purposes of the sirnulation, a Gaussian distribution 

was used as the target distribution, with the mean and variance estimated by 

maximum likelihood. One of the strengths of this method, however, is that 

when ext,ernal information about the likely shape of the unknown density is 

available (for exaniple that it is skewed, or heavy-tailed) the target density 

for the parametric fit can be altered. 

The standard form of fsp(z) does not integrate to 1. This was noted by 

Hjort and Glad, but then dismissed by suggesting that the MISE was unaf- 

fected. For practical purposes, however, we also consider the renormalised 
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version of this estimator f.Fp(z), with the correction achieved in the usual 

way. 

5.3.7 Summary 

We have by no means exhausted the list of higher order kernel density es- 

timators. We have, however, tried to cover all of the main approaches that 

have been suggested to improve upon the standard KDE. It is not unrea- 

sonable to argue that the differences between variations of the same method 

are likely to be smaller than the between-method differences. As many of 

these estimators take the two-stage approach of pilot estimation followed by 

the final estimate, entire new families can he created by substituting one of 

these improved estimators for the standard KDE fh(z) in the pilot estima- 

tion step. Jones, Signorini and Hjort [40] give a practical example of how 

this can be done. Furthermore, recent developments in the area of kernel 

density estimation seem to have concentrated more on semiparametric ap- 

proaches, either directly as in f s p ( z )  abovr, and in Hjort and Jones (411, or 

by fitting local polynomials to the log density, as in Loader [42]. Thus the 

methods we have considered are mainly those which are entirely uonpara- 

metric, with effectively no assumptions made about the shape of the true 

density. 

We shall now briefly examine the asymptotic behaviour of these esti- 

mators. Note, however, that all of these estiniators are ‘better’ than the 

standard KDE, in the sense that their asyniptotic behaviour is improved. 

This is of very little comfort to the practical user of these methods, how- 

ever, who wishes to know which, if any, of the iniproved methods should be 

applied to real data sets with perhaps a few hundred data points. Section 

5.5  explores this important question via a simulation experiment. 
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5.4 Asymptotic Behaviour 

With the exception of thc: semipararnetric estimator f sp ( z ) ,  all of the esti- 

mators considered have asyniptotic bias of order h4 and asymptotic variance 

of order (nh)-'.  Jones and Signorini 1311 show that the expressions for the 

bias and variance can all be expressed in the form 

1 4 

j = 1  

1 
4! Eli(.) - f (s)]  = -h4u4(K) f""(z)  + a jg j ( z )  , (5.17) 

(5.18) 

where K is some form of fourth order kernel, ud(K) denotes the fourth 

moment of K, the aj are constant terms specific to each particular method 

and the g3(z) are functions of the true density such that 

The simplest expressions for the asymptotic bias are those for the fourth- 

order kernel estimators f4c(z )  and fqp(z)> where al = a2 = a3 = aq = 0, 

K = K ~ c  or K d p ,  and the bias depends on f(z) only through its fourth 

derivative. For the other estimators the coefficients u j  are non-zero, constant 

for some estiniators and functions of the kernel K for others, and the more 

complicated functions of the true density f are included. Details can be 

found in Jones and Signorini, but they are not repeated here, partly because 

the focus of this work is on the practical performance, and part.ly because the 

complex dependency upon f and its derivatives make theoretical comparison 

difficult unless the form o f f  is specified. Moreover, it may be argued that 

the concentration upon the asymptotic behaviour is one of the reasons why 

there are so many different improved KDEs and no clear recommendations 

. 
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for small-sample applications, and so we proceed more or less directly to the 

simulation experiment. 

For the semiparametric estimator, the asymptotic variance is simply the 

same as that for f,(z) and the bias is given by 

where fo(a) is the parametric density of the form f(z; 0) which is ‘closest’ 

in terms of the Kullback-Leibler distance metric to the true density f(z). 

Thus the asymptotic bias is similar to that of the standard KDE, hut when 

the parametric model can achieve a good fit to the data, the multiplier of h2 

will be small, giving rcduced bias, and o(h’) bias if fo(z) is actually equal 

to f(z) and the parametric model is true. 

5.5 Simulation Experiment 

We have described seven different approaches to improving upon the stan- 

dard KDE, giving 13 possible singlebandwidth estimators and 3 two-bandwidth 

variations. Their practical performance was assessed using sirrmlated data 

of size n = 100 and 71 = 500 from the first ten densities of Marron aiid 

Wand [16], shown in Figure 5.2. These densities, which ran be called re- 

spectively, ‘Gaussian’, ’Skewed unimodal’, ‘Strongly skewed’, ‘Kurtotic uni- 

modal’, ‘Outlier’! ‘Bimodal’, ‘Separated bimodal’, ‘Skewed bimodal’, ‘%I- 

modal’ and ‘Claw’, are all mixtures of Gaussian distributions, and provide 

a wide ranging spectrum of densities on which to test the estimators. 

Global accuracy of an estimator was measured by the integrated squar’ed 

error (ISE), defined by 

(5.19) 
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Density 1 

Density 6 

Density 2 Density 3 Density 4 

Density 7 

.3 -2 ., 0 I 2 

Density 9 

Density 5 

Density 10 

Figure 5.2: The Ten Test Densities 

By choosing the bandwidth(s) h (and if necessary b)  to minimise this quan- 

tity for each simulated dataset, a ‘best-case’ scenario was created. This 

dccoupling of the choice of estimator from the choice of bandwidth is ex- 

actly the same approach as was taken for the binary regression simulation 

experiments of Part I. 

Each density estimate was calculated on a grid of 301 points on the fixed 

range [ - 3 , 3 ] ,  and the ISE numerically approximated by 

Whenever possible, linear binning algorithms of the type described by Fan 

and Marron [43] were used for computational efficiency. The number of grid 

points chosen was designed to minimise the potential errors due both to 

numerical integration over the grid and from the binning algorithms, hut 

not to such an  extent that the time required to complete the estimation 
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became prohibit,ive. For similar reasons of efficiency, a biweight kernel was 

used, of the form 
15 
16 

K ( u )  = -(1 - u2)2 I(jul < l),  

which has a finite domain implying that only points within a distance defined 

by the bandwidth contribute to the estimate at a point z. For all types of 

kernel smoothing differences in performance caused by using different kernels 

are very small. 

For each of the ten test distributions, 1000 samples of size 100 and 500 

were generated. A grid-search algorithm was used to find the bandwidth(s) 

which minimised the ISE for each particular estimator, ensuring that global 

and not local minima were found. Examples of cases where the ISE function 

has multiple local minima are given later. 

Within each test distribution, the mean and standard error of the mini- 

mum ISE for each of the estimates were calculated over all simulations and 

compared. Each of the estimators was also compared to the second-order 

case f,,(z) in terms of the percentage reduction in ISE achieved by using the 

more complex estimator, that is 

where f*(z) is one of the improved estimators. This quantity was sum- 

marised by using the median percentage reduction for each estimator over 

the 1000 simulated datasets, as the distribution of relative reductions was 

often skewed. 

5.6 Results 

The main results are presented in Tables 5.1 to 5.10, which show the mean 

ISE (with standard errors) and median reduction in ISE over the standard 
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KDE for 1000 simulated datasets from each model. 

Before comparing the estimators with each other, we shall discuss the 

merits of the variations within each particular class of estimators on a case- 

by-case basis and in relation to the standard KDE. Results are discussed 

initially in terms of the n = 100 case, and differences in conclusions when 

n = 500 are noted. 

5.6.1 Fourth-order Kernel Estimators 

There is clearly very little difference between the two particular fourth-order 

kernels which were chosen. The mean ISE for the polynomial kernel K4p 

is always less than that of the convolution kernel K ~ c ,  but the difference is 

at most approximately 1%. This fits well with the finding that the choice 

of kernel in the standard KDE situation has a very limited effect upon the 

final estimate. 

Despite its asymptotic attractions, these estimators are only significantly 

better than the standard method in the n = 100 case for Densities 1, 2, 5 

and 7. There are only marginal changes for Models 4, 6 and 8, and actually 

significant increases in the ISE for Models 3, 9 and 10. For n = 500, a 

similar pattern emerges, but in this case the fourth-order estimators are 

never worse than the standard KDE, and the proportional reduction in the 

ISE compared to f h ( z )  is larger. This disappointing practical performance 

of these estimators was previously noted by Marron and Wand [IS]. 

The cases in which this method seems to work are those models which 

have very clear modes, with a failure to extract the fine detail of the more 

multimodal densities of Models 8, 9 and 10. When compared to the standard 

KDE, this estimator does seems to emphasise peaks, but because of the na- 

ture of the kernel, there is also a lowering of the troughs. This can be seen in 
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Model I 

10 

10 

f h  

25.1 

24.3 

f 4 P  

f 4 c  

fSP 

f& 

Mean ISE 

462 

358 

362 

358 

319 

219 

168 

365 

383 

252 

343 

347 

268 

317 

312 

226 

220 

n=100 

SE I ISE Reduction (%; 

12 I 

71.7 

21.5 

17.8 

51.1 

10 25.7 ii 
54.3 

7 53.5 

Meau ISE 

154 

104 

105 

105 

93 

58 

44 

115 

116 

60 

107 

117 

58 

89 

90 

47 

46 

n=500 - 
SE 

3 

3 

3 

3 

2 

2 

1 

3 

2 

2 

3 

2 

2 

2 

3 

1 

1 

- 

- 

- 

- 

- 

- 

- 

ISE Reduction (%) 

35.7 

35.0 

35.9 

42.3 

67.4 

77.7 

26.3 

29.2 

65.6 

29.5 

25.5 

67.1 

40.8 

46.7 

72.9 

72.2 

Table 5.1: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator fh(Z).for 

Density 1. ISE values are x105. 
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Model 2 

f h  

f 4 P  

f 4 c  

fJF 

f J L N  

f J R N  

f R C  

f,",,,, 

fRC-V 

f k - v  

fRCJ  

f v  

fv-v 

fv.2 

f " L  

fSP 

ffP 

755 

642 

645 

628 

551 

477 

398 

595 

629 

531 

538 

556 

539 

520 

569 

605 

604 

n=100 
- 

SE 

17 

15 

15 

15 

14 

13 

12 

15 

14 

14 

14 

14 

13 

14 

14 

14 

14 

- 

- 

- 

- 

- 

- 

- 

ISE Reduction (%) 

18.3 

17.8 

20.3 

31.3 

43.1 

51.7 

24.1 

21.3 

36.6 

32.6 

29.8 

31.4 

34.3 

28.7 

23.2 

23.2 

Mean ISE 

234 

176 

177 

174 

157 

135 

122 

176 

182 

149 

163 

172 

151 

143 

158 

176 

177 

n=500 
- 

SE 

5 

4 

4 

4 

4 

4 

3 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

- 

- 

- 

- 

- 

- 

- 

[SE Reduction (%) 

27.5 

26.9 

28.3 

36.9 

48.7 

51.7 

27.8 

25.6 

43.2 

31.5 

30.9 

38.5 

40.8 

36.4 

26.7 

27.0 

Table 5.2: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator f h ( z )  for 

Density 2. ISE values are x lo5. 
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Model 3 

[SE Reduction (%) 

-5.1 

-5.3 

-3.2 

-2.4 

-3.9 

3.4 

fh 

Mean ISE 

1345 

1340 

1340 

1337 

1317 

1319 

1217 

fs, 

f?P 

19.4 

-6.3 

-8.4 

25.2 

15.3 

-9.5 

21.4 

-2.2 

Mean ISE 

4227 

1047 

1405 

1399 

981 

1071 

1437 

1031 

1306 

4471 

4478 

4415 

4369 

4470 

3984 

3588 

4506 

4597 

3297 

3689 

4626 

3425 

4342 

4253 

4266 

n=100 /I n=500 
- 

SE 

53 

51 

51 

50 

61 

61 

54 

61 

60 

60 

57 

58 

57 

56 

53 

55 

55 

- 

- 

- 

- 

- 

- 

- 

- 

SE 

15 

14 

14 

14 

16 

16 

15 

16 

17 

17 

15 

15 

17 

15 

15 

15 

15 

- 

- 

- 

- 

- 

- 

- 

ISE Reduction (%) 

2.0 

2.0 

2.7 

2.6 

3.4 

7.7 

24.2 

-3.8 

-3.2 

29.1 

22.5 

-6.5 

24.9 

4.0 

0.1 

0.2 

Table 5.3: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator fh (z )  for 

Density 3. ISE values axe x105. 
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Model 4 

23.0 

3.7 

f h  

870 

1056 

f4P 

f4c 

f J F  

f J L N  

f,",, 

f L , 2  

fRC 

fRC-" 

fiL" 

f" 

f">2 

f"L 

fRC,2  

fv-v 

fSP 

f!P 

Mean ISE 

4152 

4168 

4170 

4035 

3855 

3882 

3652 

3299 

4003 

4042 

2814 

3035 

3999 

2698 

3929 

4125 

4125 

n=100 / I  n=500 
- 

SE 

59 

55 

55 

55 

56 

55 

53 

54 

57 

55 

55 

55 

54 

54 

55 

59 

59 

- 

- 

- 

- 

- 

__ 

- 

[SE Reduction (%) Mean ISE + 
7.0 

5.7 

10.4 

1007 

994 

978 

3.0 

35.3 

29.5 

4.0 

39.3 

5.8 

1041 

748 

770 

985 

644 

1035 

- 

SE 

16 

13 

13 

13 

13 

13 

13 

13 

14 

13 

13 

13 

13 

12 

13 

16 

15 

- 

- 

- 

- 

- 

- 

- 

ISE Reduction (%) 

11.5 

11.2 

13.7 

15.1 

16.2 

17.2 

.~ 

29.6 

11.7 

13.0 

39.3 

37.3 

17.7 

48.9 

14.3 

0.8 

0.9 

Table 5.4: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator .fh(z) for 

Density 4. ISE values are x IO5. 
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Model 5 

f h  

f 4 P  

f 4 c  

f J F  

f J L N  

fJRLN 

fJRLN.2 

fRC 

f R W  

fk-" 
f R C . 2  

f" 
f w v  

f,, 
f V L  

fSP 

f?P 

n=100 

Mean ISE 

4908 

4039 

4063 

3967 

3410 

2701 

2168 

3770 

3847 

3355 

3634 

3271 

3118 

3138 

3514 

4775 

4776 

- 
SE 

110 

94 

95 

94 

80 

71 

61 

95 

91 

84 

93 

87 

76 

86 

89 

102 

102 

- 

- 

- 

- 

- 

- 

- 

27 

27 

ISE Reduction (%) 

29.8 

29.2 

19.3 

18.8 

27 

21 

18 

17 

26 

24 

22 

26 

21 

17 

21 

25 

30 

30 

21.1 

32.7 

48.0 

59.0 

30.3 

39.2 

55.0 

60.0 

26.9 

28.4 

41.7 

28.2 

36.1 

54.9 

45.9 

38.8 

4.9 

4.7 

25.6 

23.3 

35.0 

28.1 

35.4 

37.9 

40.5 

31.2 

2.8 

2.7 

Mean ISE 

1542 

1125 

1133 

1120 

965 

737 

660 

1133 

1116 

93 1 

1108 

982 

710 

846 

999 

1464 

1466 

n=500 

&Kiz 
32 I , 

I 

Table 5.5: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator f h ( z )  for 

Density 5. ISE values are x105. 
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Model 6 

3.4 

3.1 

f* 
190 

191 

fSP 

f& 

2.5 

9.7 

11.2 

15.0 

Mean ISE 

191 

177 

171 

165 

717 

0.1 

3.3 

5.4 

3.3 

704 

707 

199 

190 

178 

193 

712 

664 

658 

608 

-0.8 

2.3 

4.3 

9.3 

746 

710 

700 

668 

197 

182 

185 

181 

742 

724 

683 

672 

702 

704 

n=100 II - 
SE 

13 

14 

14 

14 

14 

15 

14 

16 

15 

16 

13 

16 

16 

14 

14 

15 

15 

- 

- 

- 

- 

- 

- 

- 

I1 

[SE Reduction (%) 1 1  Mean ISE 

I1 

n=500 - 
SE 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

- 

- 

- 

- 

- 

- 

- 

~~ 

ISE Reduction (%) 

17.1 

16.3 

16.4 

23.4 

26.4 

27.7 

13.2 

17.1 

22.0 

14.9 

13.9 

20.7 

18.1 

21.6 

5.4 

5.2 

Table 5.6: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator fh(2) for 

Density 6. ISE values are x lo5. 
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Model 7 

:SE Reduction (%) 

12.9 

12.5 

13.7 

20.9 

35.0 

42.3 

j h  
f 4 P  

f 4 c  

Mean ISE 

313 

244 

246 

245 

220 

169 

152 

fJF 

f J L N  

f!LN 

ffLN.2 

f R c  

f2C-V 

fRC-V 

fRC,2  

6.8 

9.4 

26.2 

11.1 

8.5 

22.2 

13.7 

21.6 

2.4 

2.9 

aean ISE 

280 

257 

182 

258 

271 

183 

239 

219 

303 

302 

1053 
~ 

930 

934 

929 

841 

711 

641 

1009 

952 

804 

939 

966 

831 

925 

846 

1021 

1018 

n=100 II n=500 - 
SE 

19 

18 

18 

18 

16 

16 

15 

20 

16 

17 

18 

19 

17 

19 

17 

19 

19 

- 

- 

- 

- 

- 

- 

- 

- 
SE 

5 

4 

4 

5 

4 

4 

3 

4 

4 

4 

4 

4 

4 

4 

4 

5 

5 

- 

__ 

- 

- 

- 

- 

- 

[SE Reduction (%) 

23.0 

22.4 

23.0 

31.4 

48.8 

54.8 

11.8 

18.1 

44.7 

17.2 

12.0 

44.0 

23.0 

32.9 

3.2 

3.9 

Table 5.7: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator f,,(z) for 

Density 7. ISE values are x lo5. 
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Model 8 1 1  n=100 

iSP 

f.FP 

MeanISE SE 

fJF 966 

~ J L N  930 16 

950 17 -1.2 

951 17 -1.3 

RC-1’ 966 

RC-I/ 961 16 

fRRc,2 873 15 

ISE Reduction (%) 

-2.5 

-2.7 

-1.9 

0.8 

1.8 

9.0 

-2.9 

-3.5 

-2.4 

2.7 

-2.2 

-3.3 

4.2 

1.0 

Mean ISE 

299 

281 

282 

279 

270 

269 

257 

275 

283 

281 

263 

272 

291 

259 

273 

298 

298 

n=500 - 
SE 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

- 

- 

- 

- 

- 

- 

- 

[SE Reduction (%) 

7.8 

7.5 

8.8 

12.1 

12.2 

15.3 

10.3 

6.2 

7.5 

11.8 

12.5 

4.3 

14.7 

10.8 

0.1 

0.0 

Table 5.8: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator fh((z).for 

Density 8. ISE values are x105. 
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Model 9 

-0.9 

-1.1 

f h  

280 

280 

f'w 

f*C 

-1.2 

4.5 

5.6 

11.9 

fJ, 

f J L N  

f?LN 

f?LN,, 

fRC 

f2C-v 

f R C J  

fV 

fv,2 

f"L 

fSP 

f?P 

fRC-V 

fv-v 

280 

269 

268 

248 

Mean ISE 

-3.4 

-0.6 

1.0 

1.9 

864 

284 

275 

273 

265 

876 

879 

-1.4 

3.1 

3.8 

879 

827 

813 

744 

906 

873 

861 

816 

271 

256 

269 

903 

885 

834 

838 

852 

854 0.5 

n=100 I1 

281 

n=500 
- 

SE 

13 

14 

14 

14 

13 

13 

13 

15 

14 

14 

13 

15 

14 

14 

13 

15 

15 

- 

- 

- 

- 

- 

- 

- 

[SE Reduction (%) Mean ISE + 

-3.4 11 279 

0.6 1) 280 

__ 
SE 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

- 

- 

- 

- 

- 

- 

- 

ISE Reduction (%) 

2.9 

2.8 

3.2 

6.2 

6.8 

11.7 

1.8 

4.5 

5.6 

4.9 

3.2 

6.3 

9.3 

6.3 

0.7 

0.8 

Table 5.9: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator f h ( z )  for 

Density 9. ISE values are x lo5. 
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Model 10 

-3.8 

-2.4 

-4.3 

2.6 

f h  

1019 

1018 

1012 

1008 

f 4  P 

f4c 

fJ, 

f J L N  

fFLN 

fFLN,2 

f R C  

fRC-" 

f k - v  

fRRc,2 

f" 
fv-v 

f",2 

f " L  

-0.1 

36 36 I -0.2 

fSP 

f.!P 

1108 

1108 

Mean ISE 

3652 

3790 

3801 

3779 

3684 

3754 

3569 

3834 

3755 

3833 

3513 

3708 

3813 

3531 

3697 

3666 

3667 

n=100 I/ n=500 
- 

SE 

36 

37 

37 

37 

37 

36 

36 

39 

37 

36 

36 

39 

35 

38 

37 

- 

- 

- 

- 

- 

- 

I1 

ISE Reduction (%) /I Mean ISE 

I j  1110 

-0.3 

-2.0 

987 

- 

SE 

11 

11 

11 

11 

11 

11 

11 

11 

10 

11 

11 

11 

11 

11 

11 

11 

11 

- 

- 

- 

- 

- 

- 

- 

ISE Reduction (%) 

8.1 

7.6 

8.6 

10.4 

10.6 

11.1 

9.1 

8.8 

9.1 

9.5 

12.8 

8.6 

13.9 

8.9 

0.2 

0.3 

Table 5.10: Mean minimum achievable ISE and median percentage reduction 

in minimum achievable ISE compared to the standard estimator fh (Z)  for 

Density 10. ISE values are x105. 
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.... ..... .. Second-order Kernel 
Foulfh+rder Kernel ..... 

I , I , 
-3 -2 -1 0 1 2 3 

Figure 5.3: Example of fourth-order kernel estimator for Model 2.  The 

ISEs are 246 x for the f h ( z )  and fdqp(z)  estimators 

respectively. The true density is shown hy the solid line. 

and 163 x 

Figure 5.3, which is an example taken from the skewed iinimodal Density 2 ,  

showing both the ISE-optimal estimates for f,,(z) and ]qp(z). The enhance- 

ment of the peak by the fourth-order estimator without a corresponding loss 

of smoothness in the left hand tail can clearly be seen. Also apparent is the 

negativity of the estimate in the right hand tail, a feature which can be 

particularly undesirable when the density estimation is a component of a 

more complex statistical procedure such as discriminant analysis. 

5.6.2 Multiplicative Bias-Correcting Estimators 

The performance of the simple multiplicative bias-correcting estimator ~ J F ( Z )  

is almost identical to that of the fourth-order kernel methods. This connec- 

tion between the methods can be argued heuristically by noting that taking 
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the logarithm of ~ J J F ( Z )  gives 

210g[f~ih(z)l - log[fh(z)l, 

where fh(%) and jh(z) are estimated using K ( u )  and ( K  * K ) ( u )  respec- 

tively. Comparison with equation (5.6) suggests a possible link between the 

methods. In common with the fourth-order kernel estimators, this method 

gives higher peaks and smoother tails, although unlike f44p(z) and f 4 ~ ( ~ ) ,  

the estimator is always positive. 

For the other multiplicative estimators of Jones, Linton and Nielsen, the 

single bandwidth cases are identical to the results published in the original 

report [33]. The empirical renormalisation to have unit integral is nearly 

always beneficial, with ffLN(z) giving large improvements over ~ J L N ( Z )  

for Densities 1, 2, 5 and 7. Renormalisation is only worse for the case of 

n = 100 and Densities 3, 8 and 10, and even then the increase in error 

caused by adjusting the estimate is marginal. 

When compared to the standard KDE, ffL,,(z) and ~ , , L N ( Z )  are clearly 

the best performing estimators so far. Only for the strongly skewed (3) and 

claw (10) densities in the n = 100 case is f,”,,(z) worse than the basic 

estimator, and quite often the median relative improvement in ISE is over 

30%. 

To examine qualitatively how this estimator achieves such good estima- 

tion consider Figure 5.4, which shows an example for a dataset from Density 

2 where the relative improvement in ISE is about 43%, close to the median 

value. Although ffL,(z) works by tightening peaks, it also seems to alter 

their location when compared to j h ( Z ) .  In Figure 5.4 we can see that the 

latter estimate is shifted to the right of the true peak, hut is approximately 

the right height. The optimal estimate using ffLN(z), however, is able to 

centre the peak appropriately, 
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Figure 5.4: Example of f:L,,(z) kernel estimator for Model 2. The ISEs are 

269 x for the f h ( z )  and f:LN(z) estimators respectively. 

The true density is shown by the solid line 

and 153x 

The reasons for the failure of this estimator for the strongly skewed den- 

sity of Model 3 are unclear. Both densities 4 and 5 are similar, but produce 

opposite results, although one could argue that density 3 has a less sharply 

defined peak. The minimum ISE in this case is obtained with a relatively 

small bandwidth, which balances the height of the main mode against spu- 

rious modes caused by undersmoothing the tail. Although f f L N ( z )  can 

improve the main peak, it does not seem to reduce these spurious modes, 

and in some cases can even enhance them, as shown in Figure 5.5, which is 

an example from density 3 where the more sophisticated estimator offers no 

improvement. The problem of the ‘peak-enhancement’ property operating 

both on the true mode and the spurious ones simultaneously can be seen, 

with the improvement in the main peak with i,”,,(z) being counterbal- 
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Figure 5.5: Example of fFLN(z)  kernel estimator for Model 3. The ISEs 

are 5785 x IO@ and 6831 x IO@ for the f h ( z )  and f f L N ( z )  estimators 

respectively. The true density is shown by the solid line. 

anced by the raising of the false mode at -2. Despite these problems, this 

renormalised estimator is exceedingly promising. 

For the twebandwidth case the results are simpler, as f : L N , 2 ( ~ )  is uni- 

formly superior to both the single bandwidth multiplicative estimators and 

the standard KDE, although the benefits over f f L N ( z )  are modest except 

in the easiest models. 

5.6.3 Transformation Estimators 

For local bandwidth variation forms of the transformation estimators, once 

again renormalisation to give proper densities is beneficial, with f,&-,.(z) 

proving to be superior, or at least nearly as good as, f ~ c - ~ / ( z )  in all cases. 

Indeed fiC-"(z) turns out to be superior to the original Ruppert-Cline 
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Figure 5.6: Example of f ~ ~ ( z )  kernel estimator for Model 3, using the data 

from Figure 5.5.  The true density is shown hy the solid line. 

estimator f ~ c ( z )  in all situations except for Densities 3 and 4, at both 

sample sizes. 

Comparing fzc-v(z) to f h ( z ) ,  we can see that with the exception ofthe 

highly skewed Density 3, the former gives great improvement in ISE for the 

unimodal densities (of which Density 7 can almost be considered as the peaks 

are almost disjoint) and marginal improvement for the mnltimodal densities. 

Model 3 is exactly the situation in which the simple transformation estimator 

f ~ c ( z )  works. This is hardly surprising, as this is where we would expect 

transformation of the data to improve matters. Figure 5.6 shows the ISE- 

optimal estimate using f ~ c ( z )  for exactly the same dataset as Figure 5.5. 

It is clear that this estimator can enhance the leftmost mode, but can still 

retain a greater degree of smoothness in the right tail of the density. 

The advantages of using two bandwidths over one are unclear, as ~RC-~(Z) 
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Figure 5.7 ISE function for two bandwidth transformation estimator for a 

dataset from the strongly skewed density 

is only a slight improvement upon .f~c(z). Note that the latter is merely a 

constrained version of the former, so that two bandwidths will always im- 

prove estimation, and the question becomes by how much. When compared 

to the better performing locally rescaled estimator f&-v(z)? the two band- 

width estimator is actually poorer in terms of median ISE for the easy to 

estimate Models 1, 2, 5 and 7. 

In addition to this disappointing conclusion regarding the two bandwidth 

estimator, there are also practical difficulties in finding the ISEoptimal 

bandwidths. If we examine the ISE as a bivariate function of the band- 

widths for a typical dataset from Density 3, as shown in Figure 5.7, we can 

see that there is an L-shaped valley with local minima in both the horizontal 

and vertical arms. Although this density is an extreme example, this is a 
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typical feature for all models considered. The dotted line shows the possible 

values for the single bandwidth case, which always intersect with the ver- 

tical arm. It would appear from these observations that the estimator can 

operate in two different ways; with a small initial bandwidth and a smooth 

estimate of the uniform density, or conversely, with a smooth estimate iui- 

tially and the estimate of the transformed data providing the detail. For the 

unimodal densities the first case nearly always gives the overall minimum, 

with the result that f ~ c ( z )  performs well, whereas the multimodal densities 

can produce minima corresponding to the second case. 

Thus of all the transformation estimators, it would appear that fj&(z) 

is, if not always best, at least not too far away from being so. 

5.6.4 Variable Bandwidth and Location Estimators 

In the previous section the locally modified bandwidth estimator seemed 

to decrease the ISE relative to the basic transformation estimator, and a 

similar pattern emerges for the variable kernel methods. Here, &(z) is only 

better than fv-v(z) for Densities 3, 4 and possibly 10. In the first two 

of these cases, however, the improvement is relatively large, in contrast to 

the more modest differences in favour of f " -~(z)  for the easier densities. 

Furthermore, the performance of &(z) is between 15% and 35% better that 

the standard KDE for all of the first five unimodal models, leading us to 

prefer this original variable kernel to the more complicated locally rescaled 

version. Qualitatively, this estimator operates in a very similar way to the 

Ruppert-Cline transformation estimator f ~ c ( z ) ,  although the mean ISE is 

almost always better. 

The variable location estimator, which has received very little attention 

to date, performs more than adequately in comparison to f h ( z ) .  Its be- 
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haviour is similar to that of f ~ - ~ ( z ) ,  and so again suffers from an inability 

to cope well with the sharp peak and heavy tails of Densities 3 and 4. 

The two bandwidth variable kernel estimator f , z ( z )  is better that the 

single bandwidth version, but not dramatically so, mirroring the uuiiispiring 

results for the transformation estimators. Typically, when moving from one 

bandwidth to two, the median ISE reduction only increases by at  most IO%, 

again suggesting that the extra work involved in finding two data-dependent 

bandwidths may not be worthwhile. 

5.6.5 Semiparametric Estimator 

For the only order h2 bias estimators we consider, the effect of renormali- 

sation seems be reduced, with little or no difference between the two forms. 

Interestingly, however, these estimators are better, or a least as good, for all 

models considered, even the previously intractable strongly skewed model. 

Examination of the actual ISE-optimal estimates in these cases shows that 

the estimator is behaving almost exactly like the standard KDE. This is 

in line with the motivation behind the development of this method; better 

estimation when (in this case) the Gaussian model is approximately correct, 

and order h2 nonparametric behaviour elsewhere. Thus for Density 3 the 

parametric estimates for the Gaussian target will give a mean around -2.8, 

with an estimated standard deviation of approximately 1. This implies that 

for points Xi which are above about -2, the values of f(XL; 8) from Equation 

(5.16) will be in the right tail of this Gaussian distribution, and thus will be 

approximately equal. This forces the estimator to behave like f h ( z )  in this 

region, and so this estimator does not suffer from the enhancement of false 

peaks which reduces the effectiveness of many of the order h4 estimators. 
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5.6.6 Comparisons between Estimators 

Is it possible to derive general conclusions about the relative merits of the 

various estimators from the extensive results reported above? It is clear 

that it is possible to improve upon the standard KDE for estimating many 

different shapes of density. Indeed, it is only for small datasets of size 

n = 100 that none of the estimators are able to resolve the fine structure of 

Models 8, 9 and 10. 

It would seem that the renormalised estimator of Jones, Linton and 

Nielsen [33] is amongst the best of the proposed single bandwidth estimators, 

except for Models 3 and 4, which each exhibit a strong peak with large 

‘shoulders’ (as opposed to Model 5 which decays rapidly to zero away from 

the peak). In these cases it would appear that either the transformation 

or variable kernel methods should be used in preference. Given that both 

ff,.,,(z) and &(z) involve the use of a pilot estimator of f ( X , )  it may 

be possible to combine these estimators in the manner pursued by Jones, 

Signorini and Hjort [40] to give an estimator with order h4 asymptotic bias 

and good performance in all situations. 

To give a numerical summary of the relative merits of the general ap- 

proaches, the most promising of each family and the standard KDE were 

selected, and for each dataset the minimum ISEs were ranked. Table 5.11 

shows the mean ranking over 1000 datasets for each model and sample size. 

These results confirm our previous conclusions; fFLN(z) is on average 

the best estimator in most circumstances, and even for Models 3 and 4 it is 

nearly always second best to fv(z).  Table 5.11 also shows how difficult it is 

to estimate Densities 8, 9 and 10 with only 100 data points, as there is very 

little to choose between the average rankings of all the estimators. 

The performance of the two bandwidth estimators, at least in comparison 
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Density 

n=100 

MW( 1 ) 

MW( 2 ) 

MW( 3 ) 

MW( 4 ) 

MW( 5 ) 

MW( 6 ) 

MW( 7 ) 

MW( 8 ) 

MW( 9 ) 

MW( 10 ) 

n=500 

MW( 1 ) 

MW( 2 ) 

MW( 3 ) 

MW( 4 ) 

MW( 5 ) 

MW( 6 ) 

MW( 7 ) 

MW( 8 ) 

MW( 9 ) 

MW( 10 ) 

Table 5.11: Mean ranking of the minimum ISE within each model and sam- 

ple size for the five 'best' representatives of each approach and the standard 

KDE. 
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Mean Rank of Minimum ISE 

ti? t*, f?L, fk-" t" f.?, 

5.2 4.0 1.9 2.5 4.3 3.0 

4.9 3.9 2.1 2.9 3.2 4.0 

3.3 4.2 3.9 4.8 1.4 3.4 

4.5 4.3 3.1 3.8 1.1 4.1 

5.4 3.9 1.7 2.6 2.3 5.1 

3.9 3.4 2.4 3.4 4.1 3.8 

5.0 3.6 1.6 2.4 4.1 4.4 

3.3 3.7 3.0 3.8 3.6 3.6 

3.5 3.6 2.6 3.6 4.1 3.5 

2.8 4.0 3.6 4.5 3.1 3.0 

5.5 4.1 2.1 2.1 4.8 2.4 

5.1 3.5 1.9 2.7 3.7 4.1 

4.0 3.7 3.4 4.7 1.2 4.0 

5.5 4.0 2.5 3.3 1.0 4.7 

5.6 3.5 1.4 2.6 3.2 4.8 

4.9 3.1 2.0 2.6 3.8 4.6 

5.2 3.4 1.4 1.8 4.4 4.8 

4.4 3.2 2.5 3.7 2.6 4.5 

4.0 3.6 2.8 3.2 3.6 3.8 

5.3 3.5 2.3 3.0 1.8 5.1 - 



to the improved single bandwidth estimators, was disappointing. Although 

they did seem to consistently produce lower optimal ISE values, the gains 

were modest. Given that the problem of choosing two data-dependent band- 

widths is much more complicated that choosing one, and the fact that for 

binary regression the gains in the optimal setting were not carried through to 

practice, it is difficult to see any merit in pursuing the development of these 

particular estimators when nearly as good single bandwidth alternatives are 

available. 

5.7 Conclusions 

In this chapter we have described and investigated a great many suggested 

improvements to the standard kernel density estimator. The focus has been 

on small-sample performance rather than asymptotic behaviour, and the 

major conclusions were derived from an extensive simulation experiment. 

It would seem that, except in a few special cases, the multiplicative 

bias-correcting estimator f & N ( z )  is generally the best of the estimators 

considered. For densities which are strongly skewed or have very heavy 

tails, however, the variable kernel method f"(z) may be more appropriate. 

A suggested way of combining these estimators is also given. 

The use of two bandwidths, although novel, did not radically improve 

estimation. The very real complications that two bandwidths entail suggest 

that, at least in practical terms, these estimators should not be favoured 

over the best of the single bandwidth cases. 

As in the study of binary regression, it is worth noting that these find- 

ings are based upon using the bandwidth which minimises the chosen error 

function in every case. In practice, a data-dependent bandwidth must be 

chosen, and it is by no means certain that the encouraging 'best-case' perfor- 
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mance of f f L N ( z )  will be reproduced. With this in mind, the next chapter 

explores a very simple bandwidth selection rule, both for f h ( z )  and the most 

promising of these improved estimators. 
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Chapter 6 

An Evaluation of Some 

Rule-of-Thumb Bandwidth 

Selectors for Density 

Estimation 

6.1 Introduction 

The selection of an appropriate bandwidth for density estimation is not a 

trivial task, and there is a vast and still expanding literature on the subject. 

Comprehensive recent reviews of this area are given by Wand and Jones 

[14], and by Jones, Marron and Sheather [44]. The practical performance of 

the most popular are assessed by Sheather [45], and Park and Turlach [46]. 

Many bandwidth selection methods that have been suggested all stem 

from the standard expression for the asymptotic MISE of the second order 
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KDE for some unknown density f, namely 

1 A M I S E ( , f )  = -h 1 4  (uK) 2 2  R( f” )  + -R(K),  
4 nh 

where R(g)  = Jg2,  and U$ is the variance of the kernel i.e. Ju2K(u)du. 

Minimising equation (6.1) over h gives the asymptotically MISEoptimal 

(6.2) 

Now both U; and R ( K )  are known, as is n. Therefore the only unknown 

quantity in equation ( 6 . 2 )  is R( f”). Secalled ‘plug-in’ bandwidth estimators 

rely upon various methods of estimating this functional. This adds another 

level of complexity to the problem, in that this estimate of R(f”)  will often 

itself require a pilot bandwidth g to be chosen, which itself depends on 

functions of higher derivatives and so on ad infinitum. Many of the proposed 

methods deal with the number of iterations of this process beyond which the 

gains in estimation are negligible. For good examples of this kind of iterative 

bandwidth selection see Sheather and Jones 1171, and Park and Marron 1471. 

A simple alt,emative to these computat,ionally expensive methods, often 

called ‘quick and dirty’ (&AD) methods, is to substitute for f in equation 

(6.2) a normal density wit.h standard deviation U .  This gives 

and hence equation (6.2) becomes 

This reduces the problem to that of finding a reasonable estimate of the 

scale U ,  for which there are many alternatives. Note that it is always pos- 

sible to replace the Gaussian reference density we have used here by any 
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other distribution in cases where information about the likely shape of the 

unknown density is available. 

In this chapter we sunimarise the properties of some simple QAD band- 

width estimators (differing only in their methods of estimating u j  for the 

second-order KDE case, then extend the method to provide simple band- 

width estimators for the most promising fourth-order density estimator from 

the previous chapter. Simulation experiments complementing those previ- 

ously carried out are used to determine whether the theoretical and idealised 

advantages of these higher order estimators can be achieved in practice. 

In all that follows, we shall use a quartic kernel, so U; = 1/7 and 

R ( K )  = 5/7, and equation (6.3) can be written simply as 

(6.4) 

6.2 Scale Estimation 

The obvious choice for an estimator of c7 for use in equation (6.4) is simply 

the sample standard deviation, denoted by 

Silverman [26] considers both this estimate and the alternative based upon 

the normalised sample inter-quartile range (ITRj, 

where is the inverse of the cuniulative distribution function for the 

Gaussian distribution with mean 0 and variance 1. Silverman suggested 

that a useful rule-of-thumb (ROT) estimate of scale was to take 90% of the 
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minimum of these two measurements, defined as 

The arbitrary figure of 0.9 is taken because of an observed tendency of the 

simple minimum of these two estimates to oversmooth the density. 

Janssen et a1.[48] construct another scale estimator based upon the min- 

imum value of first differences 

where X [ k ]  is the kth order statistic of the data and q is an integer governing 

the span of the differences. By dividing the minimum over j of these values 

by its expected value p1, a reasonable estimate of the scale, denoted by C?D~ 

is calculated, given by 

where pl is a function of /3 and n defined by 

Notice that the choice of q is itself a smoothing problem, but although 

Janssen et al. gloss over this fact, they do provide some simulation evidence 

that a choice of q equal to the largest integer value not larger than /3 n where 

0 = 0.2 works well, and that the final estimate of the bandwidth is robust 

to variations in this rather arbitrary value of f l .  

However, by considering non-Gaussian target densities, any of which can 

be approximated arbitrarily closely by a mixture of Gaussian densities, it 

can be shown that what is really needed is an estimate of the scale of the 

dominant component and its relevant weight. 
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To see this, let f be of the form 

m 

f b )  = Wk &rk (. - P k )  
k = l  

where &(z - p )  is the density of an N ( p , 0 2 )  distribution. Without loss 

of generality, assume that the dominant component o f f  is the first one i.e. 

k = 1. In this case ‘dominant’ is taken to mean that the modal value o f f  

is at 3: = p1. Then & ~ 1  estimates 01, but is biased by a factor involving 

WI.  In a similar vein to equation (6.5), third differences of smoothed order 

statistics are calculated and are used to estimate the curvature of the density 

and through this w 1 .  Finally, the bias-corrected estimate of scale is defined 

bY 
. 4 J S .  

U D 3 = w 1  OD1. 

This estimator can, however, fail in two distinct ways. Firstly, the 

smoothed third difference is essentially a function of the third derivative 

of the inverse distribution function F - ’ ,  and so is related to the curva- 

ture of the density f”. 111 fact, it can be shown that, asymptotically, the 

smoothed third difference is essentially dominated by a term involving -f”. 

At the dominant peak the curvature should be negative and the third dif- 

ference positive. However, it is not uiiusual for the estimate to be negative, 

implying a positive curvature and in this case (designated a type A error), 

the estimate of w1 is infeasible. Alternatively, even when the third difference 

is positive, the estimate of ?u1 can be greater than 1 (designated a type B 

error). In either case, in the absence of a sensible estimate of w l ,  i ? ~ 3  is 

replaced by &DI. 

Following Section 6 of Janssen et al., the final scale estimate (referred 

to in the original paper as the ‘super scale’ estimator) is defined to be the 

minimum of U D ~  and the sample standard deviation s, which, as stated in 
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the paper, addresses the problem when the underlying density f has several 

tall peaks close together. Thus 

This gives us four different estimates of scale to substitute for U in equa- 

tion (6.4). The performance of these estimates was assessed by nieans of a 

simulation experiment, using the same ten test densities from the previous 

chapter. 

6.3 Fourth Order Bias Kernel Density Estimation 

The original motivation for this study of some simple bandwidth selection 

rules was to find out if some of the apparent gains in accuracy observed 

by higher-order kernel density estimation could be translated into improved 

practical performance. The methods of the previous chapter decoupled the 

problem of bandwidth selection from the choice of fourth-order estimator 

by selecting the ISE-optimal bandwidth in each case. This is obviously 

not possible in reality, as the true density f remains unknown. The key 

question is whether the impressive performance of the two versions of the 

multplicative bias-correction estimator of Jones, Linton and Nielsen [33], 

~ J L ,  and f f L N ,  is maintained when a data-driven bandwidth is used. 

Furthermore, given that the minimum achievable ISE for the higher- 

order estimators is snialler than that of the standard KDE, it can be argued 

that rather than a single optimum, there is a range of bandwidths which will 

all achieve smaller ISEs than the simple case. This can be thought of as a 

type of robustness to the estimation of the bandwidth for these higher-order 

estimators. 

For the fourth-order estimator f~,, and considering equations (5.17) 
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and (5.18), we can express the asymptotic MISE in a form similar to equation 

( G . l ) ,  namely 

1 2  1 
A M I S E ( ~ J L N )  = (z) (d)’R(Bf)h8 + z R ( L ) ,  (6.6) 

where Bf  is the bias term involving f for this estimator and L(v) = &c(u), 

the fourth-order convolution kernel as defined in equation (5.6). Equation 

(6.6) can be applied to any higher order estimator from the previous chap- 

ter, with differing values for Bf  and L depending upon which particular 

estimator is used. Details of the various kernel functions L and bias terms 

Bf  are unified and summarised in Jones and Signorini [31]. 

Minimising equation (6.6) over h gives 

Now, for L based upon the quartic kernel, tedious algebra leads to the results 

R(L)  = 1.00663 and U: = 6/49. Finally, we have that 

B, = f [$I”, 
so if we replace f by a Gaussian reference distribution with variance U’, it 

can be shown that 
2 -9 

J?; 
R(B,) = - U 

Thus QAD bandwidth estimators for ~ J L N  can be based on the simple for- 

mula 
I 

hb,, = 2.53243 K 1 I 9  6. (6.8) 

This can be compared with equation (6.4) which can be rewritten as 

hopT = 2.77794 K’J5 6. (6.?) 

Similar expressions can be calculated for other fourth-order estimators, 

but we shall focus solely on the most promising of these in the simulation 

experiment. 
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6.4 Simulation Experiment 

For each of the ten test densities used in the previous chapter and shown in 

Figure 5.2, the same 1000 datasets of size n = 100 and 1000 datasets of size 

n = 500 were used to test the measures of scale. 

For each dataset, the four measures of scale, +OT, CDI, C?DS and 6ss 

were calculated. These were used in equations (6.4) and (6.8) to calculate 

QAD bandwidths for the standard kernel density estimator f and both the 

standard and rescaled multiplicative bias-correcting estimates of Jones, Lin- 

ton and Neilsen, ~ J I J L N  and fTLN.  The achieved ISE using these bandwidths 

for each estimator could then be compared to the optimal ISE values de- 

rived from the work of the previous chapter. Janssen et al. 1481 studied the 

performance of their scale estimators only in the simple second order case, 

but came to the conclusion that the super scale estimator c?ss was superior 

in nearly all circumstances. The aim of this study was to confirm these re- 

sults and extend and evaluate the bandwidth selection rules using improved 

estimators. 

In the discussion of the papers by Sheather [45] and Park and Turlach 

1461, which evaluate several cross-validatory and plug-in bandwidth estima- 

tors, Terre11 proposes the use of a simple rule-of-thumb estimator applied 

with a simple fourth order kernel. This is shown by Sheather in his rejoinder 

to compare unfavourably with the Sheather-Jones plug-in bandwidth esti- 

mator [17], but this is hardly surprising given the poor performance when 

compared with f ,  of the simple fourth order KDE demonstrated in Chapter 

5. We would hope that the more promising ~ J J L N  estimators would be more 

competitive. Before considering the performance of the density estimators 

themselves, however, it is useful to consider the performance of the various 

scale estimators. 
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6.4.1 Estimates of Scale 

It was alluded to above that it is not always possible to calculate 6~3. The 

weight of the dominant component is constrained to be between 0 and 1. 

The estimate, however, can be outside these limits, and in these c a e s  we 

must revert to the simpler scale estimate Col .  To see how often this is a 

problem, consider Table 6.1, which shows, for the number of times from the 

1000 simulated datasets for n = 100 where either U D ~  could be estimated 

successfully, where w l  < 0 (a type A error), or where wl > 1 (a type B 

error). The results do not qualitatively change for the n = 500 case. 

The most obvious conclusioIi to be drawn from this table is that the 

actual calculation of 6 D 3  is frequently not possible. For the case of a simple 

Gaussian density, Density 1, in over 70% of cases the estimate of curvature 

Density 6D3 Successful rype A Error 

716 

685 

375 

104 

720 

550 

283 

583 

544 

818 

Type B Error 

113 

108 

101 

71 

103 

127 

118 

104 

92 

66 

Table 6.1: Observed number of cases from 1000 simulated datasets that U D ~  

could not be estimated 
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at the estimated location of the peak was positive. Similarly, for Density 2 

the problem discussed by Janssen et al. of a combination of several large 

peaks close together also produces a positive estimate of curvature in the 

majority of simulated datasets. Note that in these cases, however, the sam- 

ple standard deviation should provide an adequate estimate of 0, as there 

is really only a single strong mode. 

Density 4, however, is clearly a situation in which the sample standard 

deviation could lead to oversmoothing and inability to resolve the central 

peak accurately, & ~ 3  is estimable in over 80% of cases. Looking at  the 

definition of this density 

we see that the highest peak or ‘dominant’ component has 201 = 1/3 and 

01 = 1/10. Taking only those 825 cases where 6 ~ 3  was successfully calcu- 

lated, Figures 6.1 and 6.2 respectively show kernel density estimates of the 

calculated values of wl and ul. The true values of the estimated quantity 

are shown by the dotted vertical lines. 

Thus we can see that although this method is giving good estimates of 

wl, the final estimate of scale is still averaging about double what we would 

like it to be ideally. This is still, however a considerable improvement upon 

the sample standard deviation, which in this case had a mean of 0.82, and 

a minimum of 0.52. 

In general, for Densities 3,4 and 5 ,  all of which have a high, narrow peak, 

the difference-based scale measures always result in smaller estimates of u1 

than the sample standard deviation. A similar situation exists for Density 

7, with two separated peaks. The sample standard deviation gives estimates 

of U ,  based on the whole sample, not just the points around a single peak. 
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Estlmale of wl 

Figure 6.1: Estimated values for wl from Density 4, n = 100. 

0 1  0 2  03 0 4  

Estlmale 01 Scale 

Figure 6.2: Estimated values for r ~ ,  from Density 4, n = 100. 
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For the other multimodal densities (6, 8, 9 and IO), however, in approxi- 

mately GO% of cases (for both n = 100 and n = 500) the sample standard 

deviation was smaller than U . D ~ ,  suggesting that even 500 data points are 

insufficient to resolve the small peaks in these cases. 

To assess the actual performance of the most complex, and thus hope- 

fully most practically useful scale estimator &s, the true values of u1 were 

derived from the formulae for each of the densities, where the dominant 

component was the one with the maximum value of wi/cri. For all five mul- 

timodal densities, this leads to some confusion, in that there is no single 

dominant component. Only for Density 7 does this lead to different val- 

ues of U .  Table 6.2 shows various percentiles of the values of &ss from the 

simulated datasets, together with the ‘true’ value. 

Clearly, there is little difference for the results in Table 6.2 between the 

n = 100 and n = 500 case. Both the median and the spread of estimated 

values remain more or less the same when the sample size increases. 

For the first five (unimodal) densities, the scale estimates are what could 

be termed ‘reasonable’, in that they are quite close to the ideal value. For the 

last five models however, which of course are mnltimodal, &s gives inflated 

estimates of scale, often failing to recognise the dominant, component with 

small variance. This suggests, therefore, that a bandwidth which is too large 

to resolve the multiple modes present will be used in these cases. However, 

it is important to note that the same difficulties will also be encountered by 

other more complex estimators. 

Although the performance of the scale estimators is of interest, the real 

question is whether the use of them in a QAD bandwidth selection procedure 

can improve the overall accuracy of the density estimation, which is what 

we now examine. 

150 



10% __ 

0.736 

0.489 

0.198 

0.152 

0.081 

0.821 

0.545 

0.666 

0.773 

0.720 

0.881 

0.594 

0.210 

0.149 

0.093 

0.848 

0.588 

0.738 

0.906 

0.816 

Quantiles of i+ss 

25% - 

0.865 

0.613 

0.251 

0.175 

0.097 

1.070 

0.658 

0.930 

1.060 

0.789 

0.942 

0.661 

0.235 

0.158 

0.103 

0.965 

0.638 

0.899 

1.120 

0.843 

50% __ 

0.948 

0.693 

0.344 

0.213 

0.110 

1.166 

0.876 

1.055 

1.232 

0.843 

0.977 

0.703 

0.277 

0.170 

0.110 

1.156 

0.701 

1.068 

1.254 

0.863 

75% __ 

1.012 

0.767 

0.432 

0.269 

0.121 

1.218 

1.069 

1.108 

1.288 

0.888 

1.007 

0.734 

0.345 

0.184 

0.115 

1.201 

0.797 

1.100 

1.280 

0.885 

90% __ 

1.065 

0.818 

0.515 

0.328 

0.132 

1.260 

1.203 

1.152 

1.330 

0.934 

1.030 

0.763 

0.408 

0.199 

0.119 

1.225 

0.922 

1.120 

1.299 

0.903 

True Value 

1.000 

0.556 

0.059 

0.100 

0.100 

0.667 

0.500 

0.333 or 1 

0.600 

0.100 

1 

0.556 

0.059 

0.100 

0.100 

0.667 

0.500 

0.333 or 1 

0.600 

0.100 

Table 6 . 2  Quantiles of the ‘Super Scale’ estimator 6 s ~ .  
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6.4.2 Density Estimates 

Using equations (6.4) and (6.8) with the four estimates of scale &ROT, &D,, 

6 ~ 3  and Css, we can now easily calculate QAD bandwidths for both standard 

second-order kernel density estimates, and for ~ J L N  and f f L N .  We use the 

rescaled version of this estimator because of its apparent better performance 

in the simulations of the previous chapter, but do not amend the formula 

for hhPT. This is because, when using a Gaussian reference distribution, 

the additional O(h4) term introduced by the rescaling is exactly the same 

as the original term and thus the resulting value of Bf is zero. To avoid 

expanding these expressions to terms involving h6, therefore, we have used 

the formula given by equation (6.8). 

- 

Thus we have twelve bandwidth estimators, denoted by h for f and by h* 

for ~ , J L N  or f yLN,  and subscripted by either ROT, D1, D3 or SS depending 

on which particular measure of scale was applied. 

For both samples sizes, n = 100 and n = 500, the 1000 simulated datasets 

were used to calculate the actual ISE achieved by each QAD bandwidth 

selection procedure. These were compared with the minimum achievable 

ISEoptimal value from the previous chapter. 

Finally, wc! also considered what several authors have suggested is one 

of the most generally applicable of the more 'hi-tech' estimators, that of 

Sheather and Jones (171. This is a plug-in bandwidth selection procedure 

which starts from equation (6.2), but estimates R(f") directly rather than 

substituting a riornial density for f. This implies that it is only applicable 

to the standard case, arid not to the more complicated fourth order KDEs. 

It does, however, allow us to compare the combination of a simple KDE and 

a complex bandwidth selector ( ~ s J )  to the combination of a complex KDE 

and a simple bandwidth selector (e.g. k:s). 
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The mean and standard error of the estimated ISEs over 1000 simulated 

datasets are presented in Tables 6.3, 6.4, 6.5 and 6.6. 

Some of these estimators have previously been compared in the standard 

KDE case. Janssen et al. 148) consider &ROT, 6~1, i& and USS, and show 

that h ~ o ~  performs approximately as well as hss for all densities except 

3, 4 and 7, where the latter estimator is clearly better. Jones, Marron and 

Sheather (441 assess a large number of sophisticated bandwidth selectors, 

but include both h , q ~ ~  and ~ S J  in one comparison, suggesting that ~ S J  is 

amongst the best of these methods, although  ROT is nearly as good for 

definitely bimodal densities such as Models 6, 8 and 9. Jones et al. then go 

on to compare the same scale estimators as Janssen et al., coming to similar 

conclusions. They do not, however, directly compare F i . 7 ~  with h s ~ ,  which 

we do here. 

When considering the results of the simulations, the first point to note is 

that in every single case except the pure Gaussian density the renormalised 

estimator j&,, leads to a smaller mean ISE than the unrenornialised version 

for the same model and bandwidth selector. This confirms that the previ- 

ous result on the idealised superiority of the renormalisation can in fact be 

carried through to practice. 

Recall that from Chapter 5, on the basis of mininium achievable ISEs, 

fyLN was the best estimator for Models 1; 2, 4, 5, 7, 8 and 9, although for 

the last two the benefit was marginal. Ignoring for the moment differences in 

performance between the estimates of scale, if we just consider the minimum 

over all four scale estimators, for 7~ = 100 we have that f,”,, is superior for 

Models 1, 2, 5 and 7. The only difference for n = 500 is that i,”,, is superior 

for Model 4 also. These results parallel the ISE-optimal results, and we can 

thus conclude that the choice of bandwidth selector is less important than 
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Estimator 

581 (13) 

568 (14) 

625 (16) 

617 (16) 

632 (16) 

f J L N  

G O T  

hbl 

hb3 

hSS 

Optimal 

ff,, N 

G O T  

hL1 

h x 3  

hSS 

Optimal 

475 (12) 

425 (11) 

486 (14) 

490 (14) 

319 (8) 

481 (13) 

405 (12) 

473 (15) 

486 (15) 

219 (7) 

Estimated Mean 

918 (19) 

927 (20) 

1016 (24) 

1011 (24) 

755 (17) 

1019 (23) 

745 (18) 

727 (17) 

824 (23) 

821 (23) 

551 (14) 

741 (19) 

697 (18) 

806 (24) 

806 (24) 

477 (13) 

11894 (76) 

7158 (79) 

6159 (84) 

6159 (84) 

4227 (53) 

6002 (67) 

15085 (84) 

9027 (99) 

7526 (108) 

7526 (108) 

4369 (61) 

13947 (78) 

8662 (95) 

7353 (104) 

7353 (104) 

4470 (61) 

10417 (126) 

8481 (123) 

5281 (85) 

5281 (85) 

4152 (59) 

5323 (86) 

12194 (137) 

LO004 (134) 

5640 (96) 

5640 (96) 

3855 (56) 

L2044 (135) 

9852 (132) 

5627 (95) 

5627 (95) 

3882 (55) 

5826 (117) 

5946 (123) 

6341 (136) 

6341 (136) 

4908 (110) 

6357 (134) 

4515 (102) 

4388 (98) 

4836 (120) 

4836 (120) 

3410 (80) 

4506 (111) 

4067 (101) 

4624 (128) 

4624 (128) 

2701 (71) 

Table 6.3: Estimated mean and standard error of ISE over 1000 simulations 

for QAD and Sheather-Jones bandwidth estimators, compared to minimum 

achievable ISE. Models 1 to 5. n=100. 
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Estimator 

MW(6) 

819 (12) 

1080 (10) 

1017 (13) 

895 (13) 

717 (13) 

836 (14) 

913 (13) 

1444 (11) 

1279 (15) 

1042 (14) 

664 (14) 

883 (15) 

1397 (13) 

1249 (17) 

1018 (16) 

658 (15) 

Estimated Mean (SE) ISE 

MW(7) 

4226 (16) 

2501 (30) 

1798 (30) 

1798 (30) 

1053 (19) 

1188 (20) 

5861 (11) 

3004 (38) 

1876 (37) 

1876 (37) 

841 (16) 

4755 (14) 

2076 (36) 

1375 (30) 

1375 (30) 

711 (16) 

- 

MW(8) 

1149 (13) 

1396 (13) 

1326 (15) 

1220 (15) 

934 (15) 

1119 (16) 

1400 (14) 

1730 (14) 

1598 (18) 

1464 (17) 

930 (16) 

1383 (16) 

1692 (15) 

1578 (19) 

1455 (18) 

924 (16) 

MW(9) 

1073 (12) 

1402 (10) 

1302 (13) 

1146 (13) 

864 (13) 

1031 (14) 

1205 (12) 

1856 (12) 

1633 (18) 

1331 (14) 

827 (13) 

1153 (15) 

1790 (15) 

1596 (19) 

1296 (16) 

813 (13) 

MW(10) 

5251 (16) 

5404 (14) 

5415 (16) 

5332 (16) 

3652 (36) 

5374 (18) 

5408 (15) 

5512 (13) 

5517 (15) 

5444 (16) 

3684 (37) 

5410 (17) 

5478 (15) 

5489 (17) 

5435 (18) 

3754 (36) 

Table 6.4: Estimated mean and standard error of ISE over 1000 simulations 

for QAD and Sheather-Jones bandwidth estimators, compared to minimum 

achievable ISE. Models 6 to 10, n=100. 
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Estimator 

179 (4) 

174 (4) 

180 (4) 

178 (4) 

154 (3) 

183 (4) 

123 (3) 

111 (3) 

116 (3)  

117 (3) 

93 (2) 

121 (3) 

102 (3) 

108 (3) 

110 (3) 

58 (2) 

Estimated Mean 

264 (5) 8911 (32) 

265 (5) 3944 (29) 

275 (5) 2538 (38) 

275 (5) 2538 (38) 

234 (5) 1345 (15) 

276 (5) 2093 (22) 

186 (4) 13146 (39) 

186 (4) 6276 (41) 

194 (4) 3877 (59) 

194 (4) 3877 (59) 

157 (4) 1317 (16) 

178 (4) 12143 (36) 

171 (4) 5929 (40) 

181 (4) 3699 (56) 

181 (4) 3699 (56) 

135 (4) 1319 (16) 

;E) ISE 

5272 (56) 1730 (33) 

3358 (44) 1764 (35) 

1297 (17) 1804 (36) 

1297 (17) 1804 (36) 

1193 (16) 1542 (32) 

1362 (20) 1787 (35) 

Table 6.5: Estimated mean and standard error of ISE over 1000 simulations 

for QAD and Sheather-Jones bandwidth estimators, compared to minimum 

achievable ISE. Models 1 to 5, n=500. 
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Estimator 1) 

f 
L O T  

h D l  

b 3  

hss 

Optimal 

h S J  

f m v  

hK0, 

b l  

hb3 

h;S 

Optimal 

f,”,, 

iLkOT 

hb, 
hha 
h;S 

Optimal 

Estimated Mean (SE) ISE 

MW(6) 

275 (4) 

447 (4) 

348 (6) 

295 (5) 

223 (4) 

250 (4) 

339 (4) 

837 (5) 

528 (10) 

382 (6) 

177 (4) 

308 (5) 

778 (6) 

492 (10) 

352 (6) 

171 (4) 

MW(7) 

1757 (7) 

964 (9) 

413 (8) 

413 (8) 

313 (5) 

339 (5) 

3311 (5) 

1506 (12) 

373 (10) 

373 (10) 

220 (4) 

2146 (6) 

744 (9) 

233 (6) 

233 (6) 

169 (4) 

MW(8) 

449 (5) 

650 (5) 

562 (7) 

485 (6) 

299 (5) 

345 (5) 

742 (5) 

1149 (7) 

932 (13) 

790 (10) 

270 ( 5 )  

717 (6) 

1111 (7) 

906 (13) 

768 (10) 

269 (5) 

MW(9) 

447 (4) 

716 (4) 

616 (7) 

487 (5) 

284 (4) 

333 (4) 

620 (4) 

1211 (5) 

982 (13) 

697 (7) 

269 (4) 

578 (5) 

1132 (6) 

927 (13) 

653 (7) 

268 (4) 

MW(10) 

4831 (4) 

4746 (4) 

4752 (4) 

4777 (4) 

1110 (11) 

1362 (12) 

4817 (4) 

5012 (4) 

4994 (4) 

4943 (5) 

996 (11) 

4808 (5) 

4986 (4) 

4969 (5) 

4929 (5) 

994 (11) 

Table 6.6: Estimated mean and standard error of ISE over 1000 simulations 

for &AD and Sheather-Jones bandwidth estimators, compared to minimum 

achievable ISE. Models 6 to 10, n=500. 
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the choice of estimator. 

When looking in detail at the various scale estimators, the picture is less 

clear. For Densities 1, 2 and 5 ,  when ffL, is superior, it would seem that 

is best. Note however that these three models are those where it was 

impossible to calculate 6 ~ 3  in approximately 70% of cases, suggesting that 

most of the poorer performance of h*,, in these models was due to values 

of s being used, although the ISEs achieved were still an improvement over 

the standard KDEs. For the separated bimodal Density 7 and the strongly 

skewed Density 3, however, which are exactly the situations that 6ss was 

designed to cope with, the use of 6 s ~  gave clear benefits for all estimators. 

For the multiniodal densities 6, 8, 9 and 10, it is interesting to note that 

the original suggestion of h ~ o ~  gives such good performance, even when 

compared to a ‘state-of-the-art’ method h s ~ .  It also seems that for Model 

10 in most cases the choice of estimator or bandwidth selector is irrelevant; 

500 sample points are not enough to resolve the very fine structure apparent 

in this density. The clear exception to this rule is ~ S J ,  in the TI = 500 

case, however, with greatly improved performance over all other methods 

considered. 

Comparing the actual ISE values obtained to their ISE-optimal mini- 

muni value can also provide some insights. In the cases where f7LN works 

(Densities 1, 2, 5 and 7) the ISEs achieved are close to and often less than 

the best that can be attained with a second order KDE, especially for the 

larger sample size. 

Can we draw some useful practical conclusions from these simulation 

results? Given the extensive empirical evidence that ~ L S J  is amongst the 

best of the complex bandwidth selectors, the matching performance of h . 7 ~  

across nearly all models (except Density 7) suggests that the latter would be 
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a very good place to start. If the density however is close to normal (Models 

1 and 2) or has very heavy tails (Models 4 and 5) then real practical gains 

can be made by using and hss. In both cases, the value of the scale 

estimator uss is clear. 

6.5 Conclusions 

In this chapter we have studied in detail several proposed scale estimators. 

These form the basis for some very simple bandwidth selection procedures for 

standard kernel density estimation, and these methods have previously been 

studied. It is relatively simple to extend these methods to provide analogous 

procedures for use with the higher order kernel density estimators. 

An extensive simulation experiment has shown that the superiority of 

these higher-order KDEs when used with an ideal bandwidth can be trans- 

lated into improved practical performance with very simple bandwidth se- 

lection, at least for unimodal densities. 

The most interesting result of this chapter, however, is the fact that 

in practice thc gain is greater by using a more complex estimator than by 

using a more complex bandwidth selector. This has obvious implications 

for future research in the area of density estimation, and for smoothing in 

general. 
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Part I11 

Poisson Regression 
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Chapter 7 

Power and Sample Size for 

Poisson Regression 

7.1 Introduction 

Logistic regression modelling is a well-established statistical tcchnique for 

analysing relationships between binary outcomes (e.g. alive/dead, yes/no) 

and a set of (possibly multivariate) covariates. The technique is particularly 

prevalent in the areas of biometrics, epidemiology and medical statistics. 

Unfortunately, all too often in practice, data which can be collected as 

counts, e.g. number of migraine attacks per month, number of moths of a 

particular species collected per hour, are summarised into either presence 

or absence, and then analysed accordingly, typically with logistic regression. 

This obviously entails a loss of information, since all counts greater than 

zero are pooled. For such outcomes [49, 501 however, Poisson regression can 

be used to give results which are superior in terms of power and sample 

size. The following work allows us in some sense to quantify this loss of 

information. 
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In this chapter we discuss the calculation of power and sample size for 

both logistic and Poisson regression models, using asymptotic techniques 

based upon the Fisher information matrix, and demonstrate that substantial 

savings in sample size, or conversely, gains in power, can be extracted from 

the uncondensed data. Some of the theoretical development in this chapter 

was published in 1991 [51]. 

7.2 Asymptotic Theory 

Suppose we have N individuals, each observed for a, possibly constant, 'ex- 

posure time' t,, (z = 1,.  . . , N ) .  Let Y,  be the Poisson distributed response, 

and zz the corresponding covariate pvector. The natural parameterisation 

for a standard Poisson regression model defines the rate of events A, of the 

zth individual as 

A, = exp(Po + PTz,), 

where 0 = (,&,. . . , Op)T .  Thus, assuming time-homogeneity, the expected 

value of Y,  will be 

E(y , )  = tJ,. 

Now, considw both z, and t ,  as realisations of random variables X and 

T, with probability density functions f,y(z) and f ~ ( t )  respectively. If we 

asiime that the exposure time t ,  is independent of z, for each individual, 

then the likelihood function of a sample from the joint distribution of Y, T 

and X will be 

" 
WOco, P) = fx(z,)fdtz)(tlAz)y~ exp(-W/y,! .  (7.1) 

,=I  

Consider the maximum likelihood estimators of and p in equation 

(7.1). As N increases, standard asymptotic theory [3] can be used to show 
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that these converge in distribution to a multivariate normal distribution, 

mean  PO,^^)^ = P and variance-covariance matrix I - ' ,  where I is the 

Fisher information matrix with elements 

where Ibkl denotes the element of I in row 3 and column k .  So, from equation 

(7.1) we have 

n 

l o g W 0 , P )  = (YAP0 + P T 4  -&exp(Po + P T 4  + % t c , Y * ) } ,  
,=I  

where F ( z ,  t ,  y) is independent of Po,. . . , P p .  Thus, when differentiated twice 

with respect to P ,  only the second term contributes, and we have, 

Ikk] = N E[TXjXk exp(Po + f l T X ) ]  ( j ,  k = 0,.  . . , p ) ,  

where X,, j = 1,. . . , p  are the elements of X and we define XO = I 

But, by the independence of T and X, 

where f i ~  is the mean exposure time. 

This development is very similar to that of Whittemore [52] who used 

this technique to estimate power and sample size for logistic regression. 

Unfortunately those results rely upon an approximation which is only valid 

when the underlying success probability is small. This approximation is 

unnecessary here. 

Define the moment generating function (MGF) of the covariates X by 

m ( s )  = E [exp(sTX)]. Define the first and second partial derivatives of this 

function as 
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Let mo = moo = m, (the 'zeroth' derivatives), and similarly m , o  = mot = 

m,. Now form the ( p  + 1) by ( p  + 1) matrix M(s) = (mtJ), z, = 0,.  . . , p  

Thus, we can now express equation (7.2) as 

Ibk] = N PT exp(P0) M ( P ) b k ] .  

Hence the maximum likelihood estimate y' of 

00, multivariate normal with mean p' and covariance matrix 

is asymptotically, as N --t 

( N  P T ) - ~  exp(-Po) M-'(P) .  (7.3) 

So, assuming that the parameter of interest (for example the contrast he- 

tween two treatment effects) is 01, suppose we wish to test the null hy- 

pothesis HO : 0 = / j ~  = (0 , /3~, .  . . ,&,) against the alternative hypothesis 

H I  : p = PA = (j, &, . . . , &,) for 6 > 0. Set the significance level to he (I 

and the power to be at least 1 - y. Assuming N is large enough to apply the 

asymptotic results derived above, the asymptotic variance of the maximum 

likelihood estimator is then given by the second diagonal term of I-', 

giving the Wald statistic &/$ll. 
Begin therefore from the requirement that 

Pr[RejectHo I Hltrue] 1 1 - 7, 

and define Z6 such that P T [ X  < Za] = 1 - 6, where X follows a standard 

Gaussian distribution. Then we require 

'1 < 2, I Hltrue 5 y 1 " [ JF - 
vard01) 

where varN(b1) is the asymptotic variance of under the null hypothesis. 

Similarly, let varA(j1) be the variance under the alternative hypothesis, then 

some basic algebraic manipulation gives 
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which implies that 

5 Z'-, = -2,. 
2, J v w N  - B 
&li% 

But equation (7.3) can be used to calculate the variances of the ML estimate 

fil under both null and alternative hypotheses, and thus it can he shown 

that to achieve the required power, we need 

NprePo  2 [z,v'/2(fl~) + z,v'/2(flA)]2 /y2 (7.5) 

where V(D) = {M-'(/3)}[,,1, the second diagonal term of M-' evaluated at 

0. This can he easily generalised to the case where Ho involves a non-zero 

value of 01. 
Alternatively, given a value of N p T e o a ,  the power of the test is calculated 

by a simple rearrangement of (7.4) to give 

where is the cumulative distribution function of the standard Gaussian. 

Similarly, it can be shown that for a two-sided hypothesis test, the power 

of the test becomes 

If we asume however, without loss of generality, that > 0, then the 

third term in the above equation may be considered negligible for NprePo 

sufficiently large. Thus, the power of a two-sided test may he approximated 

by that for a one-tailed test at half the size 

So, as always in sample size calculations, by specifying the null and 

alternative hypotheses (which determine the expected difference between 
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groups), the required significance and power and, crucially, the distribu- 

tion of the covariates X, we can readily calculate the minimum sample size 

required to reject the null when it is in fact false. 

7.3 Over-dispersion 

A common problem encountered when assessing the fit of a Poisson model to 

data is the phenomenon of over-dispersion [53, 541. This can arise in several 

ways, as discussed by McCullagh and Nelder [3] (pp.199-200). It may be 

simply parameterised through the relationship between the mean and the 

variance such that 

var(K) = 2 E(Y,),  

with U' > 1. In this case the maxinium likelihood parameter estimates 

are identical, but the variance-covariance matrix becomes 021-'. Thus the 

calculated sample size should be increased by a factor of U', which must be 

estimated prior to the study. 

More complicated scenarios, in which the mechanism of over-dispersion 

can be modelled in some way, such as by using a gamma-distributed random 

effect or by more explicit means, are beyond the scope of this work, and 

there is some evidence to suggest that they are. in cases where the over- 

dispersion is not great, unnecessary; see Yanez and Wilson [54] for details. 

Moreover, the various approximations and assumptions necessary to the 

implenientation of prospective sample size calculations render any resulting 

figure indicative only and very detailed modelling techniques which modify 

these fignres only slightly are, in the view of this author, unnecessary. 
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7.4 The Univariate Case 

For a single covariate, p = 1, M is a 2 x 2 matrix and the second diagonal 

term of M-' becomes 

This is especially useful in testing the simple hypothesis HN : 01 = 0 

against H A  : PI = j > 0, since then m(0) = l,m'(O) = E(X) and m"(0) = 

E(X2). Thus equation (7.5) becomes 

NpTePo 2 [Z,(var(X)-'/2) + Z,V'/2(p)]2/p2. (7.8) 

Certain intuitively obvious factors related to the covariate can be seen 

at  work in this equation. The greater the expected size of the effect (as 

measured by j), the smaller the required sample size, although the simple 

inverse quadratic relationship is modified by the presence of V1/2(fi) in the 

numerator. Similarly, the greater the variability of the covariate X, again 

the smaller the sample size required. 

Take the simplest case, that of comparing two homogenous groups of size 

n1 and n2, which can be parameterised by defining a Bernoulli covariate X 

such that P[X = 11 = T ,  naturally estimated by nl/(n1 + 712). 

Let exp(j)  be the rate ratio for the presence versus the absence of the 

study factor. Thus, for X = 0, the control group, the rate of events is equal 

to XO = exp(oD), and for x = 1 it is equal to XI = exp(j)Xo = exp(P0 + j). 
Simple calculations allow us to derive the MGF of this distribution, which 

is (1 - T )  + xet, and hence show that 

Substituting this into equation (7.8) and performing some algebraic manip- 
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dation gives the inequality 

Similar calculations can be used to show that in this case equation (7.6) 

becomes 
z, - &/- 

Power = 1 - a 

For a fixed significance level a: = 0.05, constant exposure time p~ = 1 

and baseline event rate eo0 = 1, Figure 7.1 shows how the power achieved 

varies with f i  for several values of N and n. Clearly the power is greatest 

(for fixed N )  when the groups are of equal size, as this corresponds to the 

maximum possible variance of X .  

Moment generating functions are easily calculated for marly other com- 

mon distributions, both discrete and continuous. Table 7.1 shows the func- 

0.0 0.2 0.4 0.6 0.8 1 .o 1.2 

Effect Size 

Figure 7.1: Power functions for a Bernoulli covariate, N = 50,100 and 200 
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tion V ( p )  for several of these. The final column shows the value for a stan- 

dardised covariate; that is one with the mean value subtracted and divided 

by the standard deviation. This allows direct comparison between differing 

covariate distributions. The second last column tabulates the value of V ( b )  

for the untransformed variables. 

Let R denote the ratio of X under Ha to X under H N ;  that is R(z)  = 

exp(&). Thus for standardised distributions having mean zero and variance 

one, exp(P) is the rate ratio for a value of X one standard deviation above 

the mean. For such standardised covariates, equation (7.6) gives 

Power = 1 - @ 

This power function is plotted for the various distributions given in Table 7.1 

in Figure 7.2. Note that to achieve 50% power, 2, = 0 and from (7.8) we 

have that the minimum sample size required is dependent on the covariate 

0.20 0.25 0.30 0.35 0.40 0.45 

Effect Size 

Figure 7.2: Comparison of V ( t )  for standardised covariate disributions 
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e 
-J 
0 

Distribution 

Bernoulli 

Poisson 

Exponential 

Gaussian 

Uniform [a, b] 

I Standardised V ( t )  

~ 

exp (A + f i t  - z t  1 - Xe 

( t  < 1) (1 - t)3et 

exp(-t2/Z) 
fitt3 sinh(&t) 
sinh2(fit)-3t2 

Table 7.1: Values of V ( 0 )  for raw and standardised covariate distributions 



distribution only through its variance, thus 

The range of power and effect size has been focused upon the region most 

likely to apply in practice i.e. high power and moderate effect size, and it can 

clearly he seen that non-normality of the covariate can have an effect upon 

the power of a study. However, the differences evident in estimated power 

are never greater than 10%. In any practical situation, necessary simplifying 

assumptions will have been made to allow such calculations to take place, 

and the margin for error introduced by these assumptions imply that such 

estimates should not be considered definitive. The careful consideration of 

covariate distributions is a topic which is pursued in the next chapter. 

7.5 Simulation Experiment 

To test the validity of this asymptotic method, a simulation experiment was 

used to generate covariates and outcomes in a variety of situations, and 

empirical estimates of the power were compared to the calculated values. 

Beginning once again with the Bernoulli covariate, mean n, i.e. two 

homogenous groups, for a given sample size N ,  baseline rate eoo, and rate 

ratio R = eo, the group sizes n1 and n2 were generated by sampling from 

an appropriate binomial distihution. Given n1 and n2, and using the hc- 

mogeneity of the groups, two Poisson distributed values were drawn from 

distributions with means nl eo0 and Rn2eoo respectively. These sums are 

sufficient statistics and allow the Wald test statistic to he calculated. This 

process was repeated 10000 times and the empirical power was calculated 

by counting the proportion of samples for which this Wald statistic was 

greater than the critical value of @-‘(0.95), corresponding to a significance 
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Rate Ratio Nominal Power 

1.2 70 

80 

90 

1.4 70 

80 

90 

1.6 70 

80 

90 

level of 5%. Table 7.2 shows the estimated power for several rate ratios 

and sample sizes which give rise to the nominal power values in the sec- 

ond column. There appears to be a clear trend towards mildly conservative 

under-estimation of the true power of the test at all rate ratios and study 

factor prevalences. 

This experiment was repeated with other covariate distributions, as 

shown in Table 7.3. The four distributions considered are the exponen- 

tial with parameter 1, the standard Gaussian, the uniform distribution on 

[-a, A], and the Poisson with parameter 1. 

Both the Gaussian and uniform, i.e. the symmetric distributions show a 

very good degree of agreement with the nominal power, with only one result 

for the uniform case being significantly different (greater than 2 standard 

errors) from that estimated (rate ratio 1.6, power 80%). The Gaussian 

appears to slightly over-estimate power, with a trend to decreasing accuracy 

- 
?r = 0.1 ?r = 0.5 ?r = 0.9 

74 (0.45) 72 (0.45) 72 (0.44) 

82 (0.38) 82 (0.38) 82 (0.38) 

91 (0.29) 91 (0.28) 92 (0.28) 

76 (0.43) 74 (0.44) 74 (0.44) 

84 (0.38) 83 (0.37) 84 (0.37) 

91 (0.28) 92 (0.26) 93 (0.26) 

77 (0.42) 77 (0.42) 74 (0.43) 

85 (0.36) 86 (0.35) 85 (0.35) 

92 (0.28) 93 (0.24) 94 (0.24) 
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Rate Ratio Nominal Power Exponential 

1.2 70 78.2 (0.41) 

80 85.9 (0.35) 

90 91.7 (0.28) 

1.4 

Gaussian Uniform Poisson, X = 1 

69.7 (0.46) 69.6 (0.46) 77.9 (0.41) 

79.8 (0.40) 79.9 (0.40) 85.6 (0.35) 

89.9 (0.30) 90.4 (0.29) 92.7 (0.26) 

1.6 

78.8 (0.41) 

83.2 (0.37) 

89.1 (0.31) 

72.6 (0.45) 

78.7 (0.41) 

83.4 (0.37) 

.. 

80.8 (0.39) 

86.4 (0.34) 

92.4 (0.26) 

78.8 (0.41) 

85.5 (0.35) 

92.2 (0.27) 

Table 7.3: Estimated power (%) for common covariate distributions (with standard errors in parentheses). 



as the effect size increases. 

For the skewed distributions (exponential and Poisson) the method ap- 

pears to be less accurate. The Poisson experiment shows clear under- 

estiniations of the power, although this does decrease at the higher power. 

The exponential is unusual in that for the small treatment effect sizes it is 

conservative with the reverse being true for a large effect. 

Overall, it would seem that this method of calculating power is rea- 

sonably accurate, with the possible exception of a highly skewed covariate 

distribution and a large effect size. This result is less surprising when we 

realise that large effect sizes correspond to small sample sizes with the result 

that the asymptotic results may not hold. Table 7.4 shows the sample sizes 

used in the simulation experiment for the largest rate ratio. These figures 

explain the relatively poor performance of the method for the exponential 

and Poisson distribution, but perhaps the most startling thing about them 

is the very low values of N for which the asymptotic approximation is valid. 

Nominal Power Exponential Gaussian 

70 15 21 

80 18 27 

90 21 37 

Uniform Poisson, X = 1 

22 17 

28 21 

39 26 
~ ~~~ 

Table 7.4: Calculated sample sizes for simulation experiment, RR=1.6 

7.6 The Multivariate Case 

Recalling that the original derivation of the inequality in equation (7.5) did 

not specifically refer to a univariate distribution of X, the extension to the 
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multivariate case is simple. 

Consider the special case where X has a multivariate exponential family 

distribution of s dimensions, as defined by Barndorff-Nielsen [55] (p.139), 

with density 

f(z, 6') = W exp {zTB - q ( @ ) } ,  

and moment generating function 

where q(f3) is a bounded analytic function of f3 independent of X. 

As in Section 7.2, let M be the ( p  + 1) x ( p  + 1) partitioned matrix 

where m(') denotes the pvector of first partial derivatives of m, and m(') 

denotes the p x p matrix of second partial derivatives. Then, since 

nA')(t) = m(t) q( ' ) (o+  t ) ,  

d 2 ) ( t )  = m(t)  [ $ ) ( o  + t )  q ( l ) ( e  + tlT + q(2) (o  + t i]  , 

and using standard resulk for the inverse of partitioned matrices (e.g Mar- 

dia, Kent and Bibby [56] ,  p.459) we can show that 

and hence that 

u(ic) = exp { q ( o )  - rl(8 + P)I {s(*)(o + o)};~' I (7.10) 

where {q(z)((B+fl))Ll l  is the first diagonal term of q(') -* (o  + 0). This 

development follows almost exactly that of Theorem 1 in Whittemore [52] ,  

and equation (7.10) is the natural multivariate analogue of (7.7). 
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To illustrate this derivation, consider the case of the multivariate nor- 

mal distribution with mean p and positive definite covariance E. For this 

distribution, the MGF is 

m(t) = exp ( F p  + tTzt/2) 

and so we have q(8) = OTE8/2 where the vector of parameters 8 is equal to 

C- lp .  Thus in this case q(') = C and 

V ( P )  = exp ( - P p  - P ~ C P P )  

However, it can be easily be shown ( Mardia et a1.[56], p.182) that = 

[var(X,)(l - P : . ~ , . . ~ ) ]  where p 1 . ~ . . . ~  is the multiple correlation coefficient 

relating XI to Xz . . . X,, (see Kleinbaum, Kupper and Muller pp.146-149 

-1 

PI 1. 
Thus, for multivariate normal covariates, we have 

1 
exp(-PTp - Z P ~ E P ) ,  (1 - P1.2...s)-' 

var(X1) V ( P )  = 

and hence for standardised covariates 

1 
7@) = (1 - ~ l . z . . . ~ ) - ~ e x p ( - - Z ~ ~ ~ ~ ) ,  

where R is now the correlation matrix. This result demonstrates that the 

asymptotic variance of is minimized when XI is independent of Xz . . . X,, 

a result which parallels classical multiple regression theory. 

To extend this example, consider the case where XI is Bernoulli, parame- 

ter ?r, independent of X2.. . X,, and (Xz . . . X,) - M N ( p ,  E). One practical 

application of this is a randomized controlled clinical trial, where subjects are 

assigned at  random to the treatment (XI = 1) or control (XI = 0) groups. 

Them if B = (e l , .  . . where 81 = logit(n) and 8 = ( O z ,  . . . , O s )  = E-Ip, 

q ( ~ )  = log(1 + e']) + e  'T CB - 
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Hence using the independence between X I  and X z ,  . . . X,,  and defining p = 

( P I , .  . . P,)T and p = ( 0 2 , .  . . @3)T we have that 

Thus to test I f 0  : p = (O,h,. . . ,ps )  against If, : p =  PI,^,. . . , b3), 
the sample size can be calculated from the univariate Bernoulli case, adjust- 

ing for the Gaussian covariates by multiplying by a factor of exp(-pTp - 

$$‘Cy). For standardised confounding covariates, the first term of this 

expression will vanish, and C is replaced by the correlation matrix R. By 

definition this will he positive semi-definite, and hence the adjusting factor 

will always be less than or equal to 1. In other words, adjusting for known 

factors which influence the outcome will always decrease the required sample 

size or increase the power. 

7.7 Examples 

In this section we consider two cases where Poisson regression may he used 

to analyse medical data. A search of the MEDLINE [58] database of med- 

ical abstracts from January 1992 to June 1996 on the terms ‘Poisson’ and 

‘regression’ resulted in a total of 176 articles, although these do not always 

apply the technique. This can be contrasted with a search on the terms 

‘logistic’ and ‘regression’ which results in 4753 articles. Those articles which 

do apply Poisson regression can be crudely categorised in one of two ways; 

clinical studies and epidemiological surveys. 

In the first case, the unit of analysis is normally an individual patient, 

arid the primary outcome measure is the number of events e.g. epileptic 

seizures or migraines in a particular time interval. In the second the unit of 

analysis is typically a group of patients with similar exposure patterns, or a 
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geographical area, with the response variable being the number of cases of 

a relatively rare condition such as leukaemia, suicide, etc. 

7.7.1 A Randomised Trial 

To take an example of a clinical trial where the primary outcome is a count, 

McMahon et al. [59] describe the pilot phase of the Asymptomatic Cardiac 

Ischemia Pilot (ACIP) Study. To quote from their paper 

The purpose of ACIP is to compare treatments designed to snp- 

press episodes of transient myocardial ischemia (reduced blood 

flow to heart muscle) ... 

These transient events may be modelled in the first instance by a Poisson 

process, leading to an comparison of treatment groups using Poisson regres- 

sion. Screening data consisting of the number of transient ischemic attacks 

(TIAs) in a 48 hour period was available on 325 patients. This resulted in 

an estimate of the baseline event rate as R = 1.41 episodes per patient. The 

results of Section 7.4 can be applied to calculate the required number of 

patients per group for comparing a new therapy to the existing standard for 

a variety of potential rate reductions and power. 

Suppose we consider a relative rate reduction of 20% (from 1.41 to 1.13 

episodes per patient) as the minimum clinically significant improvement nec- 

essary to change clinical practice, then this corresponds to = log(O.8). Us- 

ing equation (7.9), and assuming equal sized groups (a = 0.5) we calculate 

that we require 155 patients for 50% power, 369 patients for 80% power and 

518 patients for 90% power. 

One of the stated primary outcomes of the ACIP trial was to be the num- 

ber of patients with zero episodes i.e. a binary response. Using the Poisson 

distribution to calculate the probability of zero events, we can calculate the 
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required sample size to detect a change in proportions from 0.323 = e-'." 

to 0.244 = e - l . I 3  using logistic regression. The methods of Whitteinore [52] 

only apply when the response probability is small, so we shall use the stan- 

dard formula for comparing two proportions, as given in Fleiss [60]. This 

gives required patient numbers of 550 for 50% power, 1070 for 80% power 

and 1414 patients for 90% power. Clearly the loss of information incurred 

by ignoring the number of episodes and merely recording their presence or 

absence is substantial. 

In their analysis McMahon et al. detect over-dispersion resulting from 

large patient variability. They proceed to model the pilot data using a 

gamma-Poisson mixture model, which practically implies a generalised lin- 

ear model with negative binomial response. For our illustrative purposes, 

however, it suffices to use the estimate of the overdispersion given by the 

ratio of the sample variance to the sample mean, which for this case was 

+* = 6.5/1.4 = 4.6. Thus, simply inflating each of the calculated sample 

sizes from the above paragraph by this factor, gives a total of 719; 1713 and 

2405 patients for 50%, 80% and 90% power respectively. 

These figures are not directly comparable to those quoted in the original 

paper, where the study design was to use a screening process to only enroll 

patients with one or more attacks in the initial period. However, Figure 3 

of the paper does estimate the power to detect differences in mean number 

of episodes for a rate reduction of 50%. 

Our method, taking into account the aforementioned over-dispersion, 

calculates that we require 73 patients for 50% power, 194 patients for 80% 

power and 280 patients for 90% power, whereas the corresponding estimates 

for ACIP with only patients with at least one episode admitted are approxi- 

mately 56, 120 and 144 respectively. This reduction in patient numbers can 
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be explained by the fact that admitting only those patients with more than 

one episode during the screening phase will both reduce the over-dispersion 

and increase the baseline rat,e eo''. Crudely, the niean number of events in 

the zerotruncated population will be 1.41/(1 - = 1.87, so if we de- 

crease the calculated sample sizes by a factor 1.41/1.87 = 0.76, we get 55 

patients for 50% power, 147 patients for 80% power and 211 patients for 90% 

power, results which are surprisingly close to the much more sophisticated 

method. 

7.7.2 An Epidemiological Survey 

Schwartz [61] describes a study into the association between airborne par- 

ticles and/or ozone concentrations and hospital adniissions with respiratory 

disease for patients aged 65 and over. From the American city of Birming- 

ham, Alabama, daily counts of the total number of hospital admissions for 

both pneumonia and chronic obstructive pulmonary disease (COPD) were 

recorded and correlated with daily measurements of ozone concentration in 

parts per billion (ppb) and the concentration of airborne particles with a 

diameter of less than 10 pm denoted by PMlo. The study ran for four years 

from January 1, 1986 to December 31, 1989, giving n = 1461 sample points 

for use in a Poisson regression model. Confounding factors also considered 

were daily temperature, humidity, and seasonal variations. 

What level of association does this study have a reasonable chance of 

detecting? 

Quantiles of the distribution of PMlo are given in the paper, and we can 

use them to approximate the daily distribution of this factor by a Gaussian 

random variable with mean 45 and standard deviation 22. Over the period 

of the study, the number of patients admitted to hospital with pneumonia 
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averaged approximately 5.9 per day. 

If we thus assume that in the Poisson model we fix a single covariate 

which is a standardised transform of PMlo, then we can use the previous 

work to calculate the power of this study to detect various effect sizes. Fig- 

ure 7.3 shows the power as a function of the rate ratio corresponding to a 

10 unit increase in PMlo. 

The dotted line shows that to detect an effect which produces a 5% 

increase in pneumonia admission rates for each 10 unit rise in PMio, the 

study has a power of 69%. If the study had been stopped after three years 

(N = 1096) then this would have dropped to 47%. Conversely, extending 

the study by another year would have increased the power to 83% for this 

particular combination of effect size and significance level. 

1.00 1.02 1.04 1.06 1.08 1.10 

Rate Ratio for a 10 unit increase in PM(10) 

Figure 7.3: Power function for the Alabama air quality study 
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7.8 Comparison with Alternative Methods 

The method of moment generating functions is not the first way of calculat- 

ing power proposed for generalised linear models. For the likelihood ratio 

test to compare hierarchical models, the distribution of the test statistic 

under the null hypothesis has long been known [G2]. The distribution un- 

der alternative hypotheses, however, has naturally been more difficult to 

determine. 

Self and Mauritsen [G3] calculated an ayniptotic approximation to the 

power of a general score test for the parameters of interest. Their method 

is based upon approximating the distribution of the score statistic T, by 

a non-central chi-square. Unfortunately this method entails some tricky 

calculations and is consequently difficult to implement. 

In a later paper, however, Self, Mauritsen and Ohara [64] work with the 

likelihood ratio test statistic, again approximating the distribution with a 

non-central x'. In this formulation of the problem, however, the calculations 

are much more practical. 

The heart of their argument is to expand the standard log-likelihood 

ratio test statistic 

D = 2 [la - I N ]  

where ln denotes the maximum of the log-likelihood under the model defined 

by the alternative hypothesis, and I N  is the same quantity, but under the 

model defined by the null hypothesis, e.g. = 0. 

The expansion proceeds by writing D as three separate parts. Each part 

is considered separately, expanded as a Taylor series, and the expectation 

taken up to terms of order n-'. The statistic D is distributed asymptotically 

as a x2, hut this is non-central under the alternative hypothesis. Equating 
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expectations (i.e. the method of moments) is used to estimate the non- 

centrality parameter. The degrees of freedom of the distribution is equal to 

the number of parameters in the hypothesis being tested. 

Specialising their argument to the Poisson regression case, and using the 

previous notation, assume that we wish to test Ho : = (/&,O,P,, . . . ,&) 

against H1 : p' = (A, p,b,. . . , &), that is, a univariate hypothesis. Define 

qi = Xi&, and qr = Xi&, where &, is the maximum likelihood estimator 

of p' under H I ,  and & is the maximum likelhood estimator of p' under H I  

subject to the constraint that f i l  = 0. Thus qf is the maximum likelihood 

estimator which would result is we assumed HO to be true when in fact H1 

was true. 

Then, from [64], the non-centrality parameter can be calculated as 

= 1 - D ( M )  + A  

and 

(7.11) I n 

A = 2E [exp(vJ(qz - vt)  - exp(vt) + exp($)l , L, 
with the expectation taken under the alternative hypothesis. 

However, it can be shown that for the case of Poisson regression with a 

canonical link pt = exp(q,) = exp(,& + X'O) and a univariate hypothesis 

that M is always equal to 1, thus simplifying the non-centrality parameter 

to A, and the degrpes of freedom to  1. 

Note that in this section the individual exposure times t, have been 

assumed equal and supressed for notational clarity. The extension to non- 

equal exposure times is straightforward. 
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Given A and the other parameters, we may then express the power of 

the test as 

Power = 1 - Q l  (x , /A) ,  (7.12) 

where Q(slc) is the cumulative distribution function of a non-central xz 
variable with 1 degree of freedom and non-centrality parameter c, and xa is 

the (1 - a ) th  percentile of a central x2 distribution with 1 degree of freedom. 

When there is only a single covariate X ,  equation (7.11) reduces to 

I " 
[-P(P~ + x,&P~ + XP - PO') - exp(P0 + x , P )  + ~XP(P:)] , 

(7.13) 

where 

This result can be seen by noting that assuming Ho to be true implies that 

the covariate has no effect and that we are dealing with a homogenous Pois- 

son process observed for time N ~ T .  Thus the maximum likelihood estimator 

of 00 is the natural logarithm of the sample mean. However, the expected 

value of this quantity under the nlternatioe hypothesis is given by the above 

quantity. 

To link this with the previous work we can evaluate the expectations in  

equation (7.13) to get 

A = 2Neo0 {BMk(D) - Mx($)log[Mrr($)]}. 

where once again M x ( t )  denotes the MGF of the covariate distribution. 

Furthermore, if C is distributed as a non-central xz with U degrees of 

freedom,and non-centrality parameter A,  then Sankaran [65] showed that it 

is reasonable to use the approximation that 
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and so in this case, we can approximate equation (7.12) by 

Power = 1 - Q (2" - (1 + 
= 1 - Q Z,, - J1 + 2Ne00 [BML(p)  - Mx(6) l og (M~(&]  ( 

This can be compared with equation (7.6), where there are obvious similar- 

ities. 

For a simple practical comparison of the two methods, once again taking 

the case of a Bernoulli covariate with parameter T ,  we can see that 

and so 

Using equation (7.12), for x = 0 . 5 , ~  = 0.05, and NpTeBn = 100 we can 

then plot the calculated power and compare it with that calculated by the 

method outlined in Section 7.4. Figure 7.4 shows the two estimated curves 

over the complete range of power. 

We can clearly see that the curves differ, indicating that the calculated 

power with depend upon the niethod used. However, it is important to note 

that the two methods are calculating the power for two &&rent tests.  The 

MGF method applies to the Wald test of the maximum likelihood, whereas 

Self's method begins from the deviance statistic. That these tests differ is 

well-known, and has been explored theoretically by Chandra and Joshi [66], 

and Chandra and Mukerjee [67]. They conclude that although both tests 

have the same asymptotic limiting distribution, and hence the same Pitman 

efficiency, Wald's test is less locally powerful. This contradicts the relative 
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MGF Method 
Self Method 

m 
0 

.I' 
,.:" 
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/.... '  

W Empirical Power - MGF 
A Empirical Power -Self .N 

.... A . ... . 

positions of the two curves, which imply that Wald's test is more powerful 

in this case. 

To examine whether this discrepancy carries through to practical perfor- 

mance, empirical power values from a simulation study very similar to that 

carried out in Section 7.5 were plotted upon the graph. As can be clearly 

seen, Self's method perfornis very well for the deviance test, and the MGF 

method is slightly conservative for the Wald test. The order of the two tests 

is unchanged however, suggesting that perhaps the small sample behaviour 

of these two tests does not follow the theoretical pattern. 
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7.9 Conclusions 

This chapter has introduced a simple and practical way to calculate sample 

sizes and/or power for Poisson regression models. The dependence of power 

upon the distribution of covariate(s) is explicitly demonstrated. Simulation 

experiments suggest that the method is slightly conservative in nature and 

that the asymptotic approximations are applicable even when the sample 

size is as small as 30. 

Comparisons with another recent method of power calculation for gener- 

alised linear models highlights differences between the formulae, but simu- 

lations suggest that this is more because they apply to different asymptotic 

tests rather than any inherent inaccuracy and in the two group comparison 

case it appears that the Wald test is superior to the likelihood ratio test. 
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Chapter 8 

Estimating the Moment 

Generating Function 

8.1 Introduction 

In the previous chapter methods for calculating the power and sample size 

for Poisson and logistic regression were examined. They are based on expres- 

sions for Fisher's information matrix which involve the moment generating 

function of the distribution of the covariates. One immediately obvious 

drawback of these methods isl of course, that this distribution is often uri- 

known. 

In this chapter we address the problem of estimating the moment gener- 

ating function (MGF) and various associated functionals non-parametrically, 

from a univariate sample X I , .  . . , X , .  Comparisons of unsmoothed or em- 

pirical estimates are compared with kernel smoothed estimates in terms of 

the MSE of estimation. 

There is a small amount of previous work in this area, centering around 

consideration of the empirical moment generating function (EMGF), defined 
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n 

7jlo(s) = I%-’ Cexp(sX, ) .  (8.1) 
,=I 

In a series of papers Maiboroda [68, 69, 701 derives central limit theo- 

rems and other asymptotic properties of &o(s), including confidence bands. 

Epps, Singleton and Pulley [71] use similar properties to construct a test for 

differing distributions based upon the EMGF. 

The most relevant work in this case, however, was done by Gbur and 

Collins [72]. They compared the EMGF to parametric models fitted by 

both maximum likelihood and the method of moments. By means of both 

asymptotic calculation and simulation they demonstrate, perhaps not sur- 

prisingly, that if the assumed model is correct the the parametric model is 

best otherwise 

“The empirical MGF is the better estimator in some cases.” 

Even with such equivocal results, however, our interest is in the function 

V ( s )  derived from the specially constructed matrix M of ‘zeroth’, first and 

second derivatives of the MGF and thus ‘good’ estimation of rn,y(.q) may 

not necessarily correspond to ‘good’ estimation of V ( s ) .  

8.2 The Univariate Case 

Let X be a continuous random variable. Consider equation (8.1). The 

empirical MGF can be written as 

where 6 ( z )  is the Dirac delta function. Thus we may consider the EMGF 

as being derived from a density estimate consisting of a series of probability 

spikes at the data values, corresponding to a bandwidth h = 0. 
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This leads naturally to the smoothed MGF, replacing the point density 

by a kernel density estimate fk (Z) ,  to get the following (assuming that wc 

use a kernel with domain [-1,1]; the extension to Gaussian kernels is trivial) 

where r n ~ ( u )  is the MGF of the probability distribution defined by the 

kernel. 

This result is a consequence of the fact that moment generating functions 

are really Laplace transforms in disguise (see Grimmet and Welsh [73], p.114) 

and that one interpretation of kernel smoothers is as a convolution of the 

kernel and the empirical density function. 

Trivially, h o ( s )  is unbiased, as the Xi's are i.i.d., so that 

E [ f i ~ ( s ) ]  = nE [n-'eSx] = rnx(s ) ,  

implying that the empirical estimate has MSE equal to the variance. Cal- 

culation of this variance gives 

That this quantity is always positive can be confirmed by an application of 

the Cauchy-Schwarz inequality 

E(UV)* 5 E ( U 2 ) E ( V z ) ,  

with U = esX and V = 1. 

Returning to  equation (8.3), we can see that this implies that the kernel 

smoothed estimate of the MGF always has a positive asymptotic bias, since 
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for symmetric kernels 

where p r  is the pth central moment of the kernel. The fact that only 

even central moments contribute determines that the summation term is 

necessarily positive. The smoothed estimate will only be unbiased if kernels 

of infinite order are used [74] to allow pf = 0 for all p ,  a result which 

parallels the classical bias arguments of kernel density estimation. 

Considering the variance of h h ( s ) ,  we have 

resulting in the MSE of the smoothed estimate as 

Thus, kernel smoothing will U~WQYS increase the MSE of the estimated 

MGF, introducing positive bias and increasing the variance. 

8.3 Derivatives of the MGF 

As before, define the empirical estimate of the kth derivative of the MGF 

bv 
” 

.ijlk’(s) = C x,“ exp(sXi), (8.7) 
1= 1 

and the smoothed estimates as 
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Once again we see that all empirical derivative estimates are unbiased. 

Our particular interest focuses however upon the first and second derivatives 

only. n o m  equation (8.8) smoothed estimates can be written in terms of 

the empirical estimates as follows: 

suggesting that in these cases the asymptotic bias may not always be posi- 

tive. 

Two useful general results concerning the variance and covariances (and 

hence the MSE) of the empirical estimates arc that 

and 

1 
n cov m p ( s ) , f i y ( S ) ]  = - [ m l u P + g ' ( z s ) - m ~ ) ( s ) m ~ ) ( s ) ] ,  1" p , q = O , l ,  . . . ,  

(8.10) 

both of which are easily proved from the definitions of equation (8.7). 

Using these results and equation (8.8), we can calculate the variance for 

both smoothed estimates and attempt to compare them with that of the 

empirical estimates. 

Beginning with the first derivative, we have 



By using similar arguments to those of the previous section, we can see that 

the first term is always greater than or equal to the variance of the empirical 

estimate, and that the second term is always positive. This focuses attention 

upon the third term. 

Note that this final term, which is not obviously always positive, would 

have be of a sufficent negative value to cancel out both the increase over 

the variance of the h = 0 case from the first term and the always positive 

second term. Thus to demonstrate that smoothing is worthwhile in this 

case we would have to show that the whole of equation (8.11) is smaller 

than var [7jlk(s)]. 

We can achieve some insight into this problem by using the results of 

Silverman and Young [75], who develop a theory for the asymptotic MSE 

of smoothed estimates of linear functionals. They work in the context of 

empirical and smoothed bootstraps, hut we can adapt their methodology to 

apply in our circumstances, for the case of a single covariate. 

Let X be a univariate random variable, K be a symmetric kernel with 

variance 1 (e.g. the Gaussian kernel), and A ( F )  a linear functional of some 

univariate distribution function F with density f .  Since A is linear, there 

exists a function a ( t )  such that 

Also, denote the empirical estimate of F by Fo, and the smoothed estimate 

by Fh. That is 

" 5 - xi 
Fh(") = .-lc.(+ 

2 = 1  

where L(v) is the cumulative distribution function of K .  Then the empirical 
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and smoothed estimates of A ( F )  will be, respectively, 

n 

A o ( F )  = A(fi0) = n-’ a(Xi) 

Ah(F)  = A ( f i h )  = /a(t)fh(t)dt. 

i= 1 

Restating Theorem 1 of Silverman and Young, we have 

Theorem 1 Suppose u(X) and a”(X) are negatively correlated. Then 

MSE { &m} 5 MSE {Am}, 

JOT a suitably chosen h. 

Noting that in our case A ( F )  is also a function of s, we can see that if 

we take a R ( t )  =es t ,  then a l ( t )  = s2est,  A h ( F )  = &(s) and 

cov { u ( X ) , a ” ( X ) }  = s2 [mx(2s)  - mx(s)*] 

- - s2va px] 2 0, 

confirming the result of Section 8.2 that smoothing can never improve the 

MSE of the estimate of m,y(s). 

Similar expansions with appropriate definitions of a,(t)  can he used to 

investigate the usefulness of otherwise of smoothing for estimates of the first 

and second derivatives of m,y(s). If we take a,(t) = test, then A h ( F )  = 

7ji;L(s) and ay(t)  = (2s + s2 t )es t .  In this cme 

cov { ~ ( x ) , ~ ” ( x ) J  = cov {s2xeSx + 2 s e s x , ~ e s x }  

= s2var [Xesx] + 2s cov [X&, esx] . (8.12) 

Note that we need only consider the case s > 0, since in the context of a risk 

ratio this corresponds to an increase in Poisson mean with an  increase in 

the covariate, and this can always be achieved through a judicious coding of 
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the variables. Now for U > -1 both esu and ues" are monotonic increasing 

for all values of s and hence for distributions of X which only take non- 

negative values, such as the Gamma, Exponential or Poisson distributions, 

the second covariance term in equation (8.12) will be positive and smoothing 

will be unnecessary. For non-positive distributions, it would have to be the 

case that most of the probability density fell below -1 for this term to be 

negative, suggesting that only in quite extreme cases is there an opportunity 

for smoothing to improve matters. 

A similar argument can be applied to the smoothed estimate of the 

second derivative to give the condition that smoothing will only reduce the 

MSE when 

s'var [ ~ ' e s X ]  + 4s cov [xP, x Z ~ S X ]  + 2 cov [P, ~ ' e s ~ ]  < 0, 

for some value of s > 0. Once again we can argue that esu, ueSU and u2eSu 

are monotonic increasing (and hence positively correlated) for U > 0, and so 

in the majority of positive distributions and those symmetric distributions 

centred about zero, smoothing should be unnecessary. 

8.4 Estimating V ( s )  

Although we have explored the use of smoothing in the estimation of the 

MGF and its derivatives, we have yet to consider the crucial function of the 

previous chapter, namely 

(8.13) 

If we substitute either empirical or smoothed estimates into this expression, 

can we evaluate the mean or the variance? Parallels may be drawn with 

results from the binary regression estimators of Part I, where ISEoptimal 

195 



estimation of the two density components did not automatically translate 

into better estimation of the probability function. 

We begin be expanding V ( s )  about V ( s ) .  In all that follows, the de- 

pendence upon both X and s have been suppressed. Using the fact that 

the differences between the estimators and the true functions are ‘small’ 

asymptotically, we have 

2(m’ - m’) 
m‘ 

m” - ,“ 

nil’ 

(fi - m) 
m 

fifi” E mm” (1 + + 
Subst,itut.ing these values into the formula for V ( s )  derived from equation 

(8.13) and performing the usual manipulations gives 

V ( s )  Zm’V(s)* 
V ( s )  Y V ( s )  + (m - m) ~ [l ~ V(s)m”] + (fi’ - m’) 

m m 

- (,“ - m”)V(s)Z. (8.14) 

Thus we can immediately see that V,(s), the empirical estimate of V ( s )  

corresponding to the case h = 0, is asymptotically unbiased. This suggests 

that any improvement which smoothing the estimates of the MGF and its 

derivatives in this case would have to be involve a dramatic reduction in the 

variance at the expense of a small increase in the bias. 

To summarise our results so far, the empirical estimates of the MGF 

and its derivatives are, in most circumstances, superior in terms of MSE to 

kernel smoothed estimates. Furthermore, the empirical estimate of V ( s )  is 

asymptotically unbiased. Although we could go on to examine the asymp- 

totic variance of V ( s )  using the above expansion, it quickly becomes clear 

that the numerous functions of V ( s ) ,  mx(s) and its derivatives lead to in- 

tractable expressions which can only be considered by specifying particular 
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distributions of X .  

With this in mind it would seem reasonable to recommend that, when 

using this method to calculate a nonparametric estimate of the function 

V ( s )  to calculate sample size or power for Poisson regression, the use of the 

asymptotically unbiased empirical estimate gives both a computationally 

simple solution and adequate MSE performance. 

8.5 Categorical Covariates 

Although we have concentrated almost solely on continuous covariates in 

this chapter, much of the preceding results can be applied to categorical 

data as well. 

Consider the case of a single Bernoulli covariate X ,  with parameter T .  

The empirical MGF will be 

X , e S + ( n - C X , )  = p e 3 + ( 1 - p j ) ,  +o(s) = n- 'Cexp(sx i , )  = n-' 

where p is the observed proportion of successes(Xt = 1). Interestingly, in 

this case, since p is also the MLE of T, the parametric and non-parametric 

estimates coincide. These calculations can be extended to the multinomial 

distribution with the same intuitive results. 

I [G Z=l 

" " 
Z=l 

Thus, for categorical covariates, the EMGF is identical to the function 

obtained by substituting the observed proportions (the maximum likelihood 

estimates) into the theoretical MGF. 
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8.6 Conclusions 

In this chapter we have explored the practical application of the methods 

described in Chapter 7. Estimation of the function V ( s )  can be easily accom- 

plished by using the empirical moment generating function and its deriva- 

tives, and although there are situations where kernel smoothing may be 

advantageous, these are unlikely to occur in practical situations. 
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Conclusions 

The three components of this thesis are linked both by the use of kernel 

smoothing methods and the focus on practical issues. In Part I the sim- 

ple binary regression estimate first described by Copas was extended to a 

two bandwidth case, which incorporated both the original formulation and 

the concept of treating the problem as two separate density estimations as 

special cases. Asymptotic analysis and an extensive simulation experiment 

showed that this latter approach of decomposing the problem did not work, 

and that, especially for cases where the variabilities of successes and fail- 

ures were quite different, the use of two bandwidths can lead to dramatic 

improvements in estimation. 

The use of the much-promoted local polynomial semipararnetric models 

was then explored, and the results compared to the fully nonparametric bi- 

nary regression estimators (which were shown to be a special case of these 

more general estimators). Although these more complex methods impose a 

much greater computational burden, the single bandwidth locally linear lo- 

gistic estimator is as good as the two bandwidth nonparametric one, except 

in the most extreme ofcases. This highlights the use in the simulation exper- 

iments of the ‘best possible’ bandwidth in every case, to decouple the choice 

of estimator from the choice of bandwidth. Given that a data-dependent 

bandwidth must eventually be chosen, it is easier to choose one bandwidth 
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rather than two. 

Chapter 3 completes the list of potential binary regression estimators by 

extending the locally linear logistic approach to the two bandwidth case. 

Although in this case the improvements achieved in the estimation as mea- 

sured by the chosen error function are dramatic, closer inspection reveals 

that this may be due more to the correction of the crude prevalence rates 

rather than getting closer to the true probability function, suggesting that 

these gains are unlikely to be reproducible with a data-dependent bandwidth 

choice, a fact confirmed by later simulation results. 

In the final chapter of Part I two different approaches to bandwidth 

selection for the binary regression estimators were extended to the new esti- 

mators and compared. It was demonstrated that, although a cross-validation 

method can do better than a simpler plug-in rule for some very easy to es- 

timate situations, the combination of the locally linear logistic single band- 

width estimator and a plug-in bandwidth selection rule performs very well 

except for cases where the variabilities of successes and failures differed 

markedly. In these cases a nonparametric two bandwidth estimator should 

he used, and a simple rule of thumb for practical application was proposed. 

In Part 11, attention moved to density estimation, and in particular an 

attempt was made to assess and compare the more promising of the large 

number of ‘improvements’ upon the standard kernel density estimator which 

have been proposed. All these estimators are, in the asymptotic sense, ‘bet- 

ter’ than the basic estimator, so the focus was on small-sample performance, 

and a simulation experiment using the optimal bandwidth in each case was 

again performed. The results suggest that, at least for sample sizes of 500 or 

less, theoretical enhancements of the standard KDE are not always carried 

forward into practice. 
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The most promising of the improved estimators, however, was the mul- 

tiplicative bias correction of Jones, Linton and Nielsen, and a simple rule- 

of-thumb bandwidth selector based upon a sophisticated scale estimate for 

the standard KDE case was extended to provide a simple data-dependent 

bandwidth selector for the new methods. The fact that the ‘best case’ im- 

provements observed in the previous simulations can be carried through to 

practice even when using a very simple bandwidth selector is reassuring. 

Furthermore, the results would seem to support the more general conclu- 

sion that the gains made by considering more sophisticated estimators are 

greater than those achieved by more sophisticated bandwidth selection al- 

gorithms for the simple estimators. 

Finally, Part 111 considers the calculation of sample size and/or power for 

Poisson regression, and how this can be achieved using knowledge about the 

distribution of the covariates, expressed through their moment generating 

function (MGF). The estimation of this function and its derivatives can be 

achieved using kernel smoothing, but it was shown that, in most situations, 

the kernel smoothed estimate with a bandwidth tending to zero, i.e. the 

empirical MGF, was most appropriate. 

To summarise, the use of kernel smoothing has been considered in three 

practical problems. The use of two bandwidths in binary regression is a 

novel approach with clear benefits for certain cases. The work on bandwidth 

selection is the first comparison between any of the suggested approaches 

to this crucial problem, and the rule-of-thumb derived for practical use can 

be easily applied. The comparison of a large number of higher-order kernel 

density estimators is an important unification and a practical attempt to 

weed out the less promising approaches, and the extension of the simple rule- 

of-thumb bandwidth selectors to the most promising improved estimator is 
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also new. Finally, the use of an estimated MGF rather than an educated 

guess to calculate the sample size or power for a Poisson regression model 

extends the usefulness of this previously published methodology. 
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