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Glossary

{G(t; a, b)}: a gamma process with independent increments whereG(t; a, b) ∼ Γ(ta, b)

for each t. We also define {G(t; b)} def= {G(t; 1, b)} and {G(t)} def= {G(t; 1)}, 95
{Pt}: the price process of some financial asset, 11
{Tt}: the time over which market prices evolve – see Activity time, 11
{Xt}: the process of log increments (continuously compounded returns) of {Pt}, 11
{τt}: the process of unit increments of {Tt}, 11

Activity time: the increasing stochastic process {Tt} which can be interpreted as the
time over which market prices evolve, as opposed to standard deterministic clock-
time t, 11

Average relative measure (ARM): a measure of model fit taken as the average over
the parameters of the model of each measure of fit (MAD score, bias, standard
deviation) divided by the true parameter value, 73

Bridge sampling: sampling from a stochastic process by ‘filling in the gaps’ using
the conditional distribution given the next and last points, 94

Difference of Gammas (DG) model: a model of log stock prices taken as the differ-
ence to two independent gamma processes, 102

Efficient markets hypothesis (EMH): the assertion that current market prices re-
flect all available information, so that past information cannot be used to predict
future stock price returns, 13

Empirical characteristic function (ECF) estimation: estimation of a model from
data via the minimisation the distance between the theoretical and empirical char-
acteristic functions, 77

Kolmogorov distance: for two random variablesX and Y , the quantity supz |P (X ≤
z)− P (Y ≤ z)|, 54

Long range dependence (LRD): when the sum of the ultimately non-negative auto-
covariances of a process diverges, 8

Mean absolute deviation (MAD): a measure of model fit taken as the average devi-
ation of estimated parameter values from their true value, 66
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Mean-correcting martingale: when a martingale is obtained from a stock price model
for historical data by constraint of the mean parameter, 108

Product-density maximum likelihood estimation (PMLE): estimation of a model
from data, irrespective of its correlation structure, via the maximisation of the prod-
uct of marginal densities as performed in classical maximum likelihood estimation,
60

Root mean square error (RMSE): The square root of the average squared error be-
tween actual prices and model determined prices, 104

Self similarity: for a process Yt, when Yct
D
= cHYt, 8

Short range dependence (SRD): when the sum of the autocovariances of a process
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Skew-correcting martingale: when a martingale is obtained from a stock price model
for historical data by constraint of the skew parameter, 109

Subordinator model: a model driven by time-changed Brownian motion, 10

Variance Gamma (VG) distribution: The unconditional distribution that results from
a normal with conditional variance given by a gamma random variable, 16



Abstract

This thesis mainly builds on the Variance Gamma (VG) model for financial assets over

time of Madan & Seneta (1990) and Madan, Carr & Chang (1998), although the model

based on the t distribution championed in Heyde & Leonenko (2005) is also given attention.

The primary contribution of the thesis is the development of VG models, and the ex-

tension of t models, which accommodate a dependence structure in asset price returns. In

particular it has become increasingly clear that while returns (log price increments) of his-

torical financial asset time series appear as a reasonable approximation of independent and

identically distributed data, squared and absolute returns do not. In fact squared and ab-

solute returns show evidence of being long range dependent through time, with autocorre-

lation functions that are still significant after 50 to 100 lags. Given this evidence against the

assumption of independent returns, it is important that models for financial assets be able to

accommodate a dependence structure.

The VG and t are both subordinator models, whereby log stock prices Pt are driven by

Brownian motion B(t) evaluated at a random time-change, the so-called ‘activity time’ Tt,

for t ≥ 0. That is, we assume

log(Pt) = log(P0) + µt+ θTt + σB(Tt)

for µ, θ ∈ R and σ > 0, where µ and σ correspond to the drift and diffusion coefficients

of Brownian motion respectively. Here {Tt} has the attractive interpretation of information
x
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flow or trading activity – the more frenzied trading becomes, or the more information re-

leased to the market on a given day, the faster ‘time’ flows. The VG, which is a pure jump

process, is obtained when the unit increments of {Tt}, τt = Tt − Tt−1, have the gamma

distribution, while the t model, based on a generalisation of the classical Student’s t distrib-

ution, is obtained for τt with the inverse gamma distribution. The process {Tt} is assumed

to be strictly stationary, but with dependent as opposed to independent increments. It is the

dependence structure of the {Tt} process that determines the dependence structure of the

log price increments process, so it is via {Tt} that we construct models with dependence

structure.

This thesis is set out as follows: in Chapter 1 we provide evidence in support of the

general subordinator model and against the classical assumption of independent and iden-

tically normally distributed asset price returns. In particular we argue that the geometrical

Brownian motion model of asset prices is an oversimplification, and that a realistic model

for returns should allow for skewness, excess kurtosis, heteroscedasticity, and little auto-

correlation in returns but a dependence structure in squared returns. We go on to introduce

the VG and t models, as well as the Generalised Hyperbolic model, of which the VG and t

are special cases and in a sense dual to each other, and discuss the relative merits of these

models as well as their historical development.

Chapter 2 deals with the activity time process {Tt}. In Section 2.1 we construct a dis-

crete time process {Tt} whereby the discrete increments process {τt} has marginal gamma

distribution of arbitrary parameter; is allowed an arbitrary convex autocorrelation function;

and whereby, for a certain choice of autocorrelation function, the log price increments of

{Pt} are VG distributed and long range dependent, and an appropriately normed {Tt} con-

verges weakly to the self similar continuous time Rosenblatt process. These results are one

of the main contributions of this thesis, and have appeared as Finlay & Seneta (2006) and

Finlay & Seneta (2007). Section 2.2 deals with the t distribution case and extends a result
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of Heyde & Leonenko (2005). In particular, a discrete time process {Tt} is constructed

whereby the discrete increments process {τt} has marginal inverse gamma distribution with

integer parameter; is allowed an arbitrary convex autocorrelation function; and whereby,

for a certain choice of autocorrelation function, the log price increments of {Pt} over unit

time are t distributed and long range dependent, and an appropriately normed {Tt} con-

verges weakly to a process which is the negative of the above Rosenblatt process. Heyde &

Leonenko (2005) constructed the case for the increments process {τt} with inverse gamma

distribution, integer parameter and a specific autocorrelation function, and we extend their

result to allow for arbitrary convex autocorrelation function. In the later sections of Chap-

ter 2 we also numerically investigate some properties of our constructed asymptotically self

similar {Tt} processes, and review some alternative methods for constructing dependent

activity time processes.

Chapter 3 studies the simulation of long range dependent VG and t models for finan-

cial assets, and tests various estimation techniques on the simulated data. In Section 3.1

we detail a method for simulating long range dependent VG and t data and propose four

methods for recovering the (in our case known) model parameter values of the simulated

data: the method of moments, a minimum χ2 method, product-density maximum likelihood

estimation (sometimes called ‘pseudolikelihood’), and empirical characteristic function es-

timation. Section 3.2 and Section 3.3 detail the results of our simulation study. We find

that product-density maximum likelihood is the most successful estimation method of the

four considered. In Section 3.3 we also review early work by Madan & Seneta (1987b) and

Madan & Seneta (1989), based on a Chebyshev polynomial expansion of the likelihood of a

transformed VG variable, and compare the fit thus obtained to those considered earlier. Sec-

tion 3.4 considers whether it is possible to choose between the VG and t models based on a

χ2 goodness of fit test on data simulated from each, and concludes that it is not. Section 3.5

fits the VG and t to some actual financial data sets, finding in some cases that the VG pro-

vides a superior fit and in other cases that the two models more or less fit equally. For three
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of the data sets considered we find evidence of negative skewness, while for a fourth positive

skewness is found. Skewness, a topic of some current interest for historical financial data, is

allowed for in our model through presence of the parameter θ. Finally, Section 3.6 reviews

other approaches to simulation, estimation and model fit that have appeared in the literature.

The bulk of the contents of Chapter 3 have appeared as Finlay & Seneta (2008a).

While Chapters 1 to 3 concern models for and the analysis of historical data, in Chap-

ter 4 we leave the real-world setting of historical data and move to the risk-neutral world

of option pricing. In this case we consider a VG model which allows for the long range

dependence of squared returns, as well as a simpler model based on the work of Madan,

Carr & Chang (1998) which does not allow for dependence, but which introduces one extra

degree of freedom over the classical independent increments VG. Section 4.2 details current

methods for pricing options in the VG framework, while Sections 4.3 and 4.4 detail option

pricing under our two new models. Here we use data from and base our approach to model

fit on Schoutens (2003), while to actually compute option prices in accordance with our

models we rely on the results of Carr & Madan (1999). We find that the current approach

to VG option pricing has a number of drawbacks, and that in terms of fit to market data, our

two suggestions improve on other comparable models. This work has appeared as Finlay &

Seneta (2008b).

Finally, Chapter 5 summarises our results.
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CHAPTER 1

Motivation, definitions and the model

The paradigm model for asset price movements, geometric Brownian motion, has af-

forded the financial world numerous insights into how markets function, as well as spawn-

ing a multi-billion dollar global derivatives industry. The model is relatively simple, giving

the price of an asset at time t ≥ 0 as

Pt = P0e
µt+σB(t)

for µ ∈ R and σ > 0 with {B(t)} standard Brownian motion. Log price increments (con-

tinuously compounded returns) are then given as

Xt = log(Pt)− log(Pt−1) = µ+ σ(B(t)−B(t− 1))

which in particular implies that returns are independent and identically distributed (iid) nor-

mal random variables. This is opposed to typical asset price data which display the following

characteristics (see for example Heyde & Liu (2001) and the references therein):

(1) a leptokurtic distribution (kurtosis greater than three) – higher peaks above the

mean, and thicker tails, than a normal distribution;

(2) a heteroscedastic time series (time-dependent conditional variance), unlike the geo-

metric Brownian motion model;

(3) little or no autocorrelation present in returns, at least past one or two lags, but

a long range dependence structure in squared and absolute returns, violating the

independence assumption;
1
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(4) occasionally skewed distributions, as opposed to the symmetry of a normal distri-

bution.

We outline some of the evidence against geometric Brownian motion below, and introduce

the Variance Gamma (VG) and t models, which seek to circumvent these problems, in the

sections that follow. Our primary focus is on the VG; we consider the t due to its dualism

with the VG, and as it can be viewed as a direct competitor to the VG for the modelling of

financial assets.

1.1. Evidence against geometric Brownian motion

1.1.1. Kurtosis. The log increments of geometric Brownian motion are normally dis-

tributed, and as such have a kurtosis of 3, where kurtosis is given by E(Xt−EXt)
4/(E(Xt−

EXt)
2)2, the fourth central moment divided by the square of the second central moment. Ac-

tual log price increments however display much greater kurtosis, due both to heavier tails

and greater peakedness over the mean, which respectively increase the fourth moment and

reduce the second moment relative to those of the normal. In effect, actual log price incre-

ments are more prone to either small, or alternatively very large, movements, and less prone

to moderate movements than they should be if prices followed geometric Brownian motion.

For example the estimated kurtosis of daily returns (log price increments) of the Standard

& Poor’s 500 Index (S&P 500) and Microsoft’s share price (Microsoft) between 1 January

1996 and 31 December 2005 are respectively 5.95 and 8.32, roughly twice the theoretical

value given the normality assumption. This excess tail weight and higher peakedness about

the mean can be seen in Figures 1.1 and 1.2, which display histograms of the two series men-

tioned, as well as theoretical normal densities scaled to have the same means and variances

as the series. Note that due to the weak law of large numbers, the proportion of observations
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falling into a given interval converges to the probability of landing in that interval, so that

construction of histograms is valid even if the data has a dependence structure.

Alternatively, if the log returns of these two financial time series followed the normal

distribution, we would expect to find 7 out of 2500 observations outside of three standard

deviations about the mean, whereas we have 32 and 30 for the S&P 500 and Microsoft

respectively; and we would expect to find roughly 1700 out of 2500 observations within one

standard deviation of the mean, whereas we have roughly 1900 for each of the two series.

1.1.2. Volatility and intermittency. The geometric Brownian motion asset price model

implies that log increments of the asset price are independently normally distributed with

constant variance, so that the standard deviation (alternatively volatility) of a sample of re-

turns should show no pattern, and tend to fluctuate about some mean value. In contrast,

actual data often displays varying volatility, that is, heteroscedasticity, with periods of low

variation in asset returns followed by periods of higher variation. In Figure 1.3 we plot the

annualised rolling standard deviation of returns over the previous 30 days for the S&P 500

Index and Microsoft data sets.

It can be seen that there does appear to be some pattern to the volatility, with intermittent

peaks and troughs appearing in a way not predicted by geometric Brownian motion, but

allowed for in the models that we shall consider. Note that the models we shall consider

are strictly stationary, with constant variance of asset returns but fluctuating conditional

variance of returns.

1.1.3. Dependence. If an asset price follows geometric Brownian motion, log incre-

ments should be iid normal. In contrast we find that asset returns display a long range

dependence structure, with significant autocorrelation occurring in the squared and absolute

returns series. This would tend to indicate that geometric Brownian motion oversimplifies
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FIGURE 1.1. Histogram of S&P 500 index returns with fitted normal model.
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FIGURE 1.2. Histogram of Microsoft Corporation’s share price returns with
fitted normal model.
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FIGURE 1.3. 30 day rolling annualised volatility (in per cent).

the nature of asset price dynamics with respect to dependence through time, in that the

independent increments assumption is incorrect.

Figure 1.4 shows the autocorrelation function (acf) values of log increments of the S&P

500 index, Microsoft, and a simulated sample of 2500 standard normal random variables.

As can be seen, while acfs of the log increments themselves die out relatively quickly for

the two financial series, the acfs of their squares and absolute values are significant out to a

number of lags, indicating a strong, long range dependence structure. This is in contrast to

the standard normal sample where all acf series die out quickly.
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FIGURE 1.4. ACF of returns, absolute returns and squared returns for the
S&P 500 index, Microsoft, and a simulated standard normal series.
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This claim of long range dependence in the squared and absolute returns series is further

supported by spectral analysis. Figure 1.5 shows the periodogram of the S&P 500 returns

series and the squared and absolute returns series. As can be seen, the estimated spectral

density of the original series resembles that of a white noise process, with many random

fluctuations but no pattern. Conversely, the periodograms of the squared and absolute series

show a very different picture. Here the estimated spectral densities have clear spikes around

ω = 0 and decay as ω gets large, which constitute criteria for long range dependent time

series.

1.2. Self similarity and long range dependence

In the preceding section we talked about long range dependence (LRD) without defining

it, which we now remedy. LRD is said to hold, for a stationary process on the integers with

ultimately non-negative autocovariances {γk}, k ≥ 1, if

∞∑
k=1

γk =∞,

that is, if the sum of the autocovariances of the process diverges. As the name suggests, if

a process is long range dependent then events that occurred long ago still have an impact

on future values of the process. Analogously, we define short range dependence (SRD) as

holding if the acf decays sufficiently fast so as to be summable.

This definition of LRD only makes sense if the process under consideration has finite

variance. This is sufficient for our purposes, although we note that Heyde & Yang (1997)

provide an alternative definition, based on the concept of Allen Variance, which accom-

modates processes of infinite variance and which coincides with the above definition for

processes of finite variance.
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A related concept to that of LRD is self similarity. Notions of self similarity can be

found in many fields, but for our purposes we shall say that a process {Yt} in continuous

time with Y0 = 0 is H self similar if there is some H , 1
2
< H < 1, such that

Yct
D
= cHYt,

where ‘D=’ denotes equality in distribution. Then putting σ2 = Var(Y1) assuming finite

variance, and taking t > s, we have

σ2t2H = Var(Yt)

= Var(Yt − Ys + Ys)

= Var(Yt−s) + Var(Ys) + 2Cov(Ys, Yt − Ys)

= σ2(t− s)2H + σ2s2H + 2Cov(Ys, Yt − Ys)

which follows since the increments of {Yt} are assumed stationary and Y0 = 0. Then for

t > s,

Cov(Ys, Yt) = Cov(Ys, Ys + Yt − Ys)

= σ2s2H + Cov(Ys, Yt − Ys)

=
1

2
σ2(t2H + s2H − (t− s)2H).

Now, for yt = Yt − Yt−1 we have

Cov(yt, yt+k) = Cov(Yt − Yt−1, Yt+k − Yt+k−1)

= Cov(Yt, Yt+k)− Cov(Yt, Yt+k−1)− Cov(Yt−1, Yt+k) + Cov(Yt−1, Yt+k−1)

=
1

2
σ2((k + 1)2H + (k − 1)2H − 2k2H).
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Hence we obtain that ρk, the autocorrelation function of the unit increments process {yt}, is

given by,

ρk =
1

2
((k + 1)2H + (k − 1)2H − 2k2H)(1.1)

= H(2H − 1)k2H−2 +
∞∑
i=2

(
2H

2i

)
k2H−2i

≥ H(2H − 1)k2H−2.(1.2)

From (1.1) it follows that ρk increases with H , with H close to 1
2

giving correlation close to

zero, and H close to 1 giving correlation close to unity. Hence the level of H determines the

strength of dependence between increments. Equation (1.2) further implies that for H > 1
2
,

(1.3)
∞∑
k=1

ρk ≥ H(2H − 1)
∞∑
k=1

k2H−2 =∞

indicating long range dependence. That is, if a process {Yt} is self similar with 1
2
< H < 1,

then the process of unit increments {yt} is LRD (see Beran (1994) for an overview of self

similarity and LRD).

1.3. The subordinator model

We now introduce the subordinator model, our alternative to geometric Brownian mo-

tion. Let Pt be the price of a risky asset at time t and assume {Pt} in continuous time follows

subordinated geometric Brownian motion. Specifically,

(1.4) Pt = P0e
µt+θTt+σB(Tt)

where µ, θ and σ > 0 are constants, and {B(t)} is standard Brownian motion independent of

{Tt}, which is a positive non-decreasing random process with stationary but not necessarily

independent increments, denoted over unit time by τt = Tt−Tt−1. Without loss of generality

we take Eτt = 1, since any scaling can be absorbed into θ and σ as required, assuming

Eτt < ∞. In the context of this model, the ‘activity time’ process {Tt} can be interpreted

as the time over which market prices evolve, and is often associated with trading volume
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or the flow of new price-sensitive information. That is, the more share trades that occur, or

the more information released to the market on a given day, the faster ‘time’ progresses. In

fact {Tt} plays a crucial role in our model, determining both the distribution of the log price

increments and their correlation structure.

The log increments of {Pt} (continuously compounded returns) are then given by

Xt = log (Pt)− log (Pt−1)

= µ+ θτt + σ(B(Tt)−B(Tt−1))(1.5)

D
= µ+ θτt + στ

1/2
t B(1).(1.6)

From (1.6) it follows that EXt = µ+ θ and (Seneta (2004)),

E(Xt − EXt)
2 = σ2 + θ2M2(1.7)

E(Xt − EXt)
3 = 3θσ2M2 + θ3M3(1.8)

E(Xt − EXt)
4 = 3σ4(1 +M2) + 6σ2θ2(M2 +M3) + θ4M4(1.9)

where Mi = E(τt − 1)i, i = 2, 3, 4 and Eτt = 1, assuming these moments exist. Therefore,

the coefficients of skewness and kurtosis are

(1.10) β =
3θσ2M2 + θ3M3

(σ2 + θ2M2)3/2

and

(1.11) κ =
3σ4(M2 + 1) + 6σ2θ2(M2 +M3) + θ4M4

(σ2 + θ2M2)2

respectively. From (1.6) one can immediately see that in the case θ = 0 a symmetric model

results, whereas from (1.10) for example, for θ 6= 0 the model implies skewed returns.

The two specific models that we shall be concerned with (the VG and t) were first con-

sidered as symmetric models, taking Pt as

(1.12) Pt = P0e
µt+σB(Tt).
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Later these models were extended to allow for skewness by introducing the θ parameter.

Although we shall in general be concerned with models that allow for skewness via θ, we

occasionally restrict discussion to the symmetric θ = 0 case given by (1.12); we consider the

θ = 0 case either to discuss the historical development of the models, or in some instances

to simplify the mathematics.

The idea of subordination was developed by Bochner (1955), and later taken up by many

authors as a flexible method for modelling financial time series data. See for example Hurst,

Platen & Rachev (1997) for an overview of a number of popular subordinator models. The

flexibility of the subordinator model owes to the fact that most important properties of the

{Xt} process, including its moments and degree of autocorrelation, are determined by the

{τt} process. Hence, via the specification of the distribution of Tt, one can accommodate a

wide variety of models within the same subordinator model framework.

In fact

Cov(Xt, Xt+k) = Cov(θτt + στ
1/2
t B1(1), θτt+k + στ

1/2
t+kB2(1))

= θ2(E(τtτt+k)− EτtEτt+k)

= θ2Cov(τt, τt+k)(1.13)

for B1 and B2 independent Brownian motions, so that at θ = 0

(1.14) Cov(Xt, Xt+k) = 0.

For µ = θ = 0 we also have

Cov(|Xt|, |Xt+k|) = Cov(|στ 1/2
t B1(1)|, |στ 1/2

t+kB2(1)|)

= σ2E(|B1(1)|)E(|B2(1)|)Cov(τ
1/2
t , τ

1/2
t+k)

=
2

π
σ2Cov(τ

1/2
t , τ

1/2
t+k)
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while, in regards to {X2
t } in the general µ, θ 6= 0 case, we have that

Cov(X2
t , X

2
t+k) = Cov((µ+ θτt + στ

1/2
t B1(1))2, (µ+ θτt+k + στ

1/2
t+kB2(1))2)

= (σ4 + 4θ2µ2 + 4θµσ2)Cov(τt, τt+k) + θ4Cov(τ 2
t , τ

2
t+k)

+ (θ2σ2 + 2θ3µ)(Cov(τ 2
t , τt+k) + Cov(τt, τ

2
t+k))(1.15)

which for θ = 0 reduces to

(1.16) Cov(X2
t , X

2
t+k) = σ4Cov(τt, τt+k).

For {τt} with dependence structure, {Xt} also displays conditional heteroscedasticity, that

is, time dependent conditional variance. Let Ft = σ({B(u), u ≤ Tt}, {Tu, u ≤ t}) which

can be thought of as information available up to time t. Then

Var(Xt|Ft−1) = E(X2
t |Ft−1)− (E(Xt|Ft−1))2

= θ2 E(τ 2
t |Ft−1) + (σ2 + 2µθ)E(τt|Ft−1)

− (2µθ E(τt|Ft−1) + θ2 (E(τt|Ft−1))2)

= θ2 Var(τt|Ft−1) + σ2 E(τt|Ft−1).

Under the restricted model of θ = 0, the above expression reduces to Var(Xt|Ft−1) =

σ2 E(τt|Ft−1) (Heyde & Liu (2001)).

The remarkable results (1.14) and (1.16) in the symmetric case θ = 0 can already be

found in Heyde & Liu (2001), and the main point to note is that for small θ, {Xt} will

appear to have an autocorrelation function of zero, while the acf of {X2
t } will mimic that of

{τt}. In particular if {τt} has a dependence structure then so has {X2
t }.

1.3.1. The efficient markets hypothesis and the subordinator model. Returning to

(1.5), it is readily seen that E(B(Tt)|{B(Tu), u ≤ t−1}, {Tu, u ≤ t−1}) = B(Tt−1), which

may be interpreted (c.f., Campbell, Lo & MacKinlay (1997, pp. 23–24)) as the efficient mar-

kets hypothesis holding for the symmetric version of the model, since {B(Tu), u = 1, 2, . . .}

is a martingale and, hence, {Xt} is a martingale difference sequence (Heyde & Liu (2001)
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expressed this in a related, continuous time way). Here we take the efficient markets hypoth-

esis as amounting to the assertion that current market prices reflect all available information,

so that, in particular, past information about the stock price process cannot be used to predict

future stock price returns. The striking property that Cov(Xt, Xt+k) = 0 in the case θ = 0

may consequently be regarded as a manifestation of the efficient markets hypothesis, and as

such is supportive of our model.

For the general θ 6= 0 model we do not have Cov(Xt, Xt+k) = 0, but we see from (1.13)

and (1.7) that, for k ≥ 1,

(1.17) |Corr(Xt, Xt+k)| =
θ2|Cov(τt, τt+k)|
θ2Var(τt) + σ2

≤ θ2 |Corr(τt, τt+k)|
σ2

Var(τt) ≤ θ2 Var(τt)
σ2

.

From estimation procedures applied to the asymmetric VG and t distributional models for

returns to be discussed shortly, for four sets of observations {Xt}, each of approximate

length N = 2500, evaluation of the right-hand side of this equation resulted in a bound of

about 0.02. Inasmuch as white noise would produce about 1 in 20 sample autocorrelations

outside the range ±2/
√
N = ±0.04, it seems unlikely that data actually described by our

general model would have a sample acf distinguishable from that of white noise. Hence,

for all practical applications, the efficient markets hypothesis criteria Cov(Xt, Xt+k) = 0 as

given above would also appear to hold, and could not be rejected, in the asymmetric case

also.

It could be argued that the efficient markets hypothesis in any case would imply the sta-

tistical independence of returns, which would imply that Cov(Xr
t , X

r
t+k) = 0, r = 1, 2, . . ..

However, there is evidence that for r = 2 this is not the case, with actual data showing

Cov(X2
t , X

2
t+k) > 0 even at relatively long lag lengths k (see for example Ding, Granger

& Engle (1993) or Taylor (1986)). It may also be argued that real-world markets are not

entirely efficient, in support of our general model.
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For completeness we note that there is a body of work, based on data analysis for sym-

metric models continuing from that of Heyde & Liu (2001), which suggests that E(X4
t ) may

be infinite. This corresponds to Var(τt) being infinite, in which case the above argument,

based on (1.17), would not be applicable.

1.3.2. Volatility and the interpretation of {τt}. In the probabilistic guise of (1.6),

when θ = 0 and {τt}, t = 1, 2, . . . are independent and identically distributed, we note that

our model reduces to the familiar random volatility model (see for example Taylor (1994)).

Thus in our model it is natural to interpret στ 1/2
t as the volatility at time t and, hence, the

stationary process {στ 1/2
t } as describing a stationary random process of stochastically de-

pendent volatilities. This can be seen from an equivalent standpoint by noting that the con-

ditional distribution of the right-hand side of (1.6), given V ≡ τt and θ = 0 isN(µ, σ2V ). In

the general model (1.5) for θ 6= 0 then, where the conditional distribution of the right-hand

side is

N(µ+ θV, σ2V ),

we may think of the size and direction of the fluctuation in random mean as being driven

by volatility. We recognise the (marginal) distribution described by the above expression as

being that of the normal mixed distributions (terminology due to Barndorff-Nielsen, Kent &

Sørensen (1982)).

In the case θ = 0, as we have seen, the autocorrelations Corr(Xt, Xt+k) are all zero.

One of the motivations for investigating this model was to reflect the fact that asset returns,

while displaying a sample acf plot characteristic of white noise, no longer do so in sample

acf plots of squared returns and absolute values of returns. This, however, should be the

case if the process {Xt} is indeed a sequence of independent, identically distributed random

variables. Hence a plausible model for {Xt} should have the capability of reflecting this

long term dependence in {X2
t } as well as the weak autocorrelation structure of the values
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{Xt} themselves. Indeed, inasmuch as the values X2
t are themselves measures of volatility,

such a model would impart a desirable dependence structure on the evolution of volatilities.

1.4. The VG and the t models

We now specialise our general model for {Xt} by focusing on two distributions for

τt, the gamma (Γ) and the inverse or reciprocal gamma (RΓ). These respectively are the

distributions which result in Xt increments with the VG and t distribution. Note that taking

Tt ≡ t (τt ≡ 1) of course results in the classical log normal distribution for Pt and so a

normal distribution for Xt.

1.4.1. The VG distribution. We say that τt ∼ Γ(α, λ) for α, λ > 0 has a marginal

gamma distribution if its probability density function (pdf) is of the form

(1.18) fΓ(x;α, λ) =
λα

Γ(α)
xα−1e−λx, x > 0.

We choose λ = α so that E(τt) = 1 and

(1.19) Var(τt) =
1

α
.

This choice of a gamma distribution for τt, coupled with the model (1.6), results in Xt

having the marginal (skew) Variance Gamma distribution (Madan, Carr & Chang (1998))

with pdf

(1.20) fVG(x) =

√
2

π

λαe
(x−µ)θ

σ2

σΓ(α)
(
|x− µ|√
θ2 + 2λσ2

)α−
1
2Kα− 1

2
(
|x− µ|

√
θ2 + 2λσ2

σ2
)

for x ∈ R and characteristic function (cf)

(1.21) φVG(u) = eiµu(1− iθu/λ+
1

2
σ2u2/λ)−α

for λ = α. Denote the distribution defined by (1.20) and (1.21) by VG(µ, θ, σ2, α, λ). The

symmetric VG distribution and model, which results from taking θ = 0, was introduced

in the financial context by Madan & Seneta (1990). See Section 1.7 for a discussion of
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the historical development of the VG and t models. The VG, a pure jump process, was

called VG since the log increments Xt have conditional variance given by a gamma random

variable – from (1.6) for θ = 0, Xt|V
D
= N(µ, σ2V ) where V has the gamma distribution.

Through out this text we use the term ‘VG’ interchangeably for the VG distribution and the

VG model or stochastic process, and trust that the meaning is made clear by the context.

In the above, Kη(ω) for η ∈ R and ω > 0, given by

(1.22) Kη(ω) =
1

2

∫ ∞
0

zη−1e−
ω
2

(z+ 1
z

)dz,

is a modified Bessel function of the third kind (Erdélyi, Magnus, Oberhettinger, and Tri-

comi, 1954) with index η, and the VG is sometimes also known as the Bessel K-function

distribution (see Johnson, Kotz & Balakrishnan (1994, pp. 50–51)). Note that Kη(ω) is

referred to as a modified Bessel function of the second kind in some texts.

Specialising (1.7), (1.8) and (1.9), the central moments of Xt are then given by

E(Xt − EXt)
2 = σ2 +

θ2

α

E(Xt − EXt)
3 =

3θσ2

α
+

2θ3

α2

E(Xt − EXt)
4 =

3σ4(α + 1)

α
+

6σ2θ2(2 + α)

α2
+

3θ4(α + 2)

α3
.

Before turning to the t, we lastly note that while Brownian motion is of infinite varia-

tion, the VG, which is Brownian motion time-changed by a gamma process, is of bounded

variation (see for example Madan, Carr & Chang (1998)). In fact from Yor (2007) this re-

sult applies more generally, with the gamma process time-changing many ‘erratic’ processes

into processes of bounded variation. In particular, for any process {Y (t)}, t ≥ 0 such that

there exists constants K and c for which

(1.23) E(|Y (u)− Y (v)|) ≤ K|u− v|c
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for all u, v ≥ 0, the process {Y (G(t; a, b))}, where {G(t; a, b)} is an independent incre-

ments gamma process with G(t; a, b) ∼ Γ(ta, b) for any given t, and where {G(t; a, b)}

is independent of {Y (t)}, is of bounded variation. This follows since for any partition

P = {x0, · · · , xnP} of [0, T ],

E

(
nP−1∑
i=0

|Y (G(xi+1; a, b))− Y (G(xi; a, b))|

)

≤ K

nP−1∑
i=0

E(G(xi+1; a, b)−G(xi; a, b))
c(1.24)

=
K

bc

nP−1∑
i=0

Γ((xi+1 − xi)a+ c)

Γ((xi+1 − xi)a)
(1.25)

=
aK

bc

nP−1∑
i=0

Γ((xi+1 − xi)a+ c)(xi+1 − xi)
Γ((xi+1 − xi)a+ 1)

where (1.24) follows from (1.23) by conditioning on {G(t; a, b)}, (1.25) follows since

{G(t; a, b)} has independent gamma increments and EXc = β−cΓ(α + c)/Γ(α) for X ∼

Γ(α, β). Now as the partition P gets finer and xi+1 − xi → 0 for each i,

Γ((xi+1 − xi)a+ c)(xi+1 − xi)
Γ((xi+1 − xi)a+ 1)

∼ Γ(c)(xi+1 − xi)

so that

E

(
nP−1∑
i=0

|Y (G(xi+1; a, b))− Y (G(xi; a, b))|

)
≤ aK

bc
Γ(c)T

which establishes the result.

1.4.2. The t distribution. We say that τt ∼ RΓ(δ, ε) for δ, ε > 0 has a marginal inverse

gamma distribution if its pdf is of the form

(1.26) fRΓ(x; δ, ε) =
εδ

Γ(δ)
x−δ−1e

−ε
x , x > 0.

We choose ε = δ − 1 so that E(τt) = 1, which gives, for δ > 2,

(1.27) Var(τt) =
1

δ − 2
.
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This choice of an inverse gamma distribution for τt, coupled with the model (1.6), results in

Xt having the marginal (skew) t distribution with pdf for x ∈ R,

ft-dist(x) =


Γ(δ+ 1

2
)√

2σ2ε
√
πΓ(δ)

1

(1+( x−µ√
2σ2ε

)2)δ+
1
2

for θ = 0√
2
π

(δ−1)δe
(x−µ)θ

σ2

σΓ(δ)
( θ2

2εσ2+(x−µ)2 )
δ+1/2

2 Kδ+ 1
2
(
|θ|
√

2εσ2+(x−µ)2

σ2 ) for θ 6= 0

(see Sørensen & Bibby (2003)), and cf

φt-dist(u) =
21− δ

2 eiµu

Γ(δ)
(ε(σ2u2 − 2iθu))

δ
2Kδ(

√
2ε(σ2u2 − 2iθu))

for ε = δ − 1. The number of degrees of freedom, ν, is defined by ν = 2δ, this being a

direct generalisation of the concept for the classical t-distribution. In the symmetric case in

which θ = 0, the distribution is the scaled t-distribution and is well known. It is a slight

generalisation of the classical Student’s t-distribution, and is at the heart of the paper of

Heyde & Leonenko (2005). Seneta (2004) Section 6 discussed its parallelism and duality

with the (symmetric) VG distribution. Here Xt|V
D
= N(µ + θV, σ2V ), where V has an

inverse gamma distribution as above (and thus 1/V has a gamma distribution, but not with

unit expectation).

From (1.7), (1.8) and (1.9) and assuming δ > 4, the central moments of Xt in the t

distribution case are given by,

E(Xt − EXt)
2 = σ2 +

θ2

δ − 2

E(Xt − EXt)
3 =

3θσ2

δ − 2
+

4θ3

(δ − 2)(δ − 3)
(1.28)

E(Xt − EXt)
4 = 3σ4 +

3σ2(2θ2 + σ2)

δ − 2
+

24σ2θ2

(δ − 2)(δ − 3)
(1.29)

+
3θ4(δ + 5)

(δ − 2)(δ − 3)(δ − 4)
.

Note that δ ≤ 2 in the t distribution case implies the infinite variance of τt, and indeed of

Xt in the case θ 6= 0.
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1.4.3. Comparison between the VG and t. Both the VG and t distribution have the

normal distribution as a limiting case, but are perhaps illuminated in general by noting that

the symmetric t distribution is a generalisation of the Cauchy distribution (the case θ = 0,

δ = 1
2

in the above), while the symmetric VG distribution is a generalisation of the Laplace

distribution, also sometimes called the double exponential distribution, which results from

putting θ = 0, α = 1 in fVG(x), since K 1
2
(ω) = e−ω(π/(2ω))1/2 for ω > 0 (Barndorff-

Nielsen & Blæsild (1981)).

Notice that putting α = 1 in fΓ(x) makes it the pdf of an exponential distribution, which

in the symmetric case θ = 0 results in a parallelism with the double exponential distribution

of Xt. In the case when the τt’s can be taken as independent as well as exponentially

distributed, the {Tt}, t = 1, 2, · · · process may be understood as the sequence of time

points at which events of a Poisson process occur.

Regarding the question of tailweight, we have that for θ = µ = 0,

PVG(|Xt| > x) ∼ Const.(α, σ))xα−1e−x
√

2α/σ2
(1.30)

Pt(|Xt| > x) ∼ Const.(δ, σ)x−2δ, x→∞.

Thus, statistical techniques which indicate non-existence of higher moments (as in Heyde &

Liu (2001)) may incline the potential user towards the t in preference to the VG for which

all moments exist.

However, Heyde & Kou (2004) demonstrate that in practice as many as 100,000 read-

ings may be necessary to distinguish between exponential (Laplace distribution type) and

power law (t distribution type) tails. Now, as we have seen, the Laplace distribution is a

special case of the symmetric VG distribution. So allowing for a power law modification of

exponential decay as in the symmetric VG makes distinction even more difficult. This result

is supported by Fung & Seneta (2007), which compared the symmetric VG and t distribu-

tions, and found the two models almost impossible to distinguish between on the basis of
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tailweight, by choice of compatible parameters. Note that these results just mentioned are

based in particular on iid simulations.

For the VG at α = 1 where Xt has Laplace distribution the relation (1.30) is exact and

not just asymptotic. For α > 1 the pdf of the VG is smooth and increasingly bell-shaped for

large α. For 1
2
< α ≤ 1 the pdf is cusped at the origin, while for 0 < α ≤ 1

2
it is unbounded

at the origin. Decreasing the value of α from a value > 1 has the effect of increasing

probability near the origin and in the tails, at the expense of probability in the middle range

(Madan & Seneta (1990)). This may be seen clearly by numerical investigation of quantiles

after standardisation as done in Fung & Seneta (2007), which also displays graphics of the

symmetric VG and t distribution for various parameter values. Note that standardisation

there is by standard deviation; standardisation by interquartile range is not appropriate for

this purpose since that controls the amount of probability near the origin.

1.4.4. The GH as a generalisation of the VG and t. Although we shall concentrate

on the VG and t, it is interesting to note that both distributions are in fact special cases

of the Generalised Hyperbolic (GH) distribution (Barndorff-Nielsen & Halgreen (1977)),

owing to the fact that the gamma and inverse gamma are special cases of the Generalised

Inverse Gaussian (GIG) distribution. Here we say that τt ∼ GIG(α, β, γ) has marginal GIG

distribution when its pdf is of the form

fGIG(x) =
(γ/β)α/2

2Kα(
√
βγ)

xα−1e−
1
2

(β
x

+γx), x > 0.

Due to the complexity of the GIG distribution we cannot impose the unit expectation con-

straint for τt explicitly to reduce the number of parameters. In the above the admissible

parameter values are β > 0, γ ≥ 0 for α < 0; β > 0, γ > 0 for α = 0; and β ≥ 0, γ > 0 for

α > 0.
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For τt with the GIG distribution, Xt from (1.6) will have marginal (skew) Generalised

Hyperbolic distribution with pdf

fGH(x) =
( γ
β
)
α
2 (βσ

2+(x−µ)2

γσ2+θ2 )
α
2
− 1

4Kα− 1
2
(
√

(γ + θ2

σ2 )(β + (x−µ)2

σ2 ))e
(x−µ)θ

σ2

√
2πσ2Kα(

√
βγ)

and cf

φGH(u) =
Kα(

√
β(γ − 2iθu+ σ2u2))

Kα(
√
βγ)

(
γ

γ − 2iθu+ σ2u2
)α/2eiµu.

But from Barndorff-Nielsen & Blæsild (1981) for example, as ω ↓ 0 the Bessel function

(1.22) has the asymptotic properties:

Kη(ω) ∼
{
− log(ω) for η = 0
2|η|−1Γ(|η|)ω−|η| for η 6= 0

from which we obtain as β → 0, α > 0 and γ → 0, α < 0 the gamma and inverse

gamma respectively for the distribution of τt, and correspondingly the VG and t from the

Generalised Hyperbolic.

In the symmetric case θ = 0 when γ 6= 0, the hyperbolic family, which includes the VG,

clearly have distribution tails decreasing asymptotically at power-law modified exponential

rate, while when γ = 0 the rate of decay of the tails is slower: power-law (Pareto tails). It

is this particular property of the symmetric scaled t distribution which is thought by some

to make it preferable in practical modelling, and is used to justify the focus on ‘Student’

processes in the partly review paper of Heyde & Leonenko (2005), although the gamma

distribution and symmetric VG distribution are accorded some attention in that paper also.

1.5. Related Models

While researching the VG model we came across a number of other models which are

related or can be considered as generalisations of the VG. We detail two of these below.
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1.5.1. Heston and the VG. A popular model in finance is that of Heston (1993), which

we very briefly touch on in relation to the VG. The Heston model is couched in terms of

stochastic differential equations, and defines Pt, the stock price at time t, by

dPt = µPtdt+
√
vtPtdB

(1)
t(1.31)

dvt = −γ(vt − ϑ)dt+ κ
√
vtdB

(2)
t(1.32)

where dB
(2)
t = ρdB

(1)
t +

√
1− ρ2dB

(3)
t for B(3)

t and B(1)
t independent Brownian motions,

and ρ ∈ [−1, 1]. In this model vt, the variance of Pt, is a mean-reverting stochastic process

with long-term mean ϑ, relaxation rate to this mean γ, and ‘volatility of volatility’ κ.

Drăgulescu & Yakovenko (2002) show that for t � 1
γ

, that is, t much smaller that the

relaxation time of variance, the unconditional distribution of log (Pt/P0) under the Heston

model reduces to the VG (their Equations (47) and (49)). The result comes about by noting

that for small t, variance does not have time to change from its initial value v0. Conditional

on v0 however, (1.31) describes geometric Brownian motion, so that

log (Pt/P0)|vi ∼ N((µ− vi
2

)t,
√
tvi).

That is, the distribution of log (Pt/P0) is conditionally normal with conditional variance of

tvi. The stationary distribution of v0 from (1.32) is the gamma distribution however (see

Feller (1951)), so integrating over v0 to reach the unconditional distribution of log (Pt/P0)

results in the VG.

1.5.2. A correlated difference of gammas (DG) model. A possible variant on the VG

would be to model log stock prices as the difference of two mutually independent but inter-

nally correlated gamma processes, since as well shall see, the standard symmetric VG dis-

tribution results from the difference of two independent and identically distributed gamma

random variables. That is, we model stock prices by

Pt = P0e
µt+G∗1(t;a,b)−G∗2(t;c,d).



24 1. MOTIVATION, DEFINITIONS AND THE MODEL

This is similar to the process considered in Madan, Carr & Chang (1998), as well as the DG

model we will consider in Chapter 4 in relation to option pricing, but in this case we take

{G∗1(t; a, b)} and {G∗2(t; c, d)} such that (G∗(t;α, β)−G∗(t− 1;α, β)) ∼ Γ(α, β) with the

increments process having a dependence structure, as opposed no dependence. As such we

have

Xt = log(Pt)− log(Pt−1)

= µ+ (G∗1(t)−G∗1(t− 1))− (G∗2(t)−G∗2(t− 1))

= µ+ At −Bt

say, for At ∼ Γ(a, b) and Bt ∼ Γ(c, d), with

EXt =
a

b
− c

d

Var(Xt) =
a

b2
+

c

d2
.

and more interestingly,

Cov(Xt, Xt+k) = Cov(At −Bt, At+k −Bt+k)

= Cov(At, At+k) + Cov(Bt, Bt+k)

and

Cov(X2
t , X

2
t+k) = Cov(A2

t , A
2
tk

) + Cov(B2
t , B

2
tk

) + Cov(AtBt, AtkBtk)

+ (4µ2 + 8µ
c

d
)Cov(At, Atk) + (2µ+ 2

c

d
)(Cov(A2

t , Atk) + Cov(At, A
2
tk

))

+ (4µ2 + 8µ
a

b
)Cov(Bt, Btk) + (2µ+ 2

a

b
)(Cov(B2

t , Btk) + Cov(Bt, B
2
tk

)).

The {At} and {Bt} here are merely assumed to be increments of some gamma process,

similar to the marginally gamma distributed {τt} we will be concerned with in Chapter 2,

and so we have many options in choosing the desired correlation structure. Note however

that this correlated DG model implies Cov(Xt, Xt+k) 6= 0 as well as Cov(X2
t , X

2
t+k) 6= 0,

which as we have seen is not supported by financial data. Such a dependence structure may

however be appropriate in other, non-financial applications.
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1.6. Lévy processes

Continuous time models for the evolution of log prices are generally taken to be processes

with stationary independent increments. These properties are fundamental in describing

Lévy processes (Schoutens (2003), p. 44).

The classical instance of a Lévy process is Brownian motion. The original VG process as

described in Madan & Seneta (1990) is another Lévy process. In this sense Lévy processes

form a foundation for our development, although our interest is focussed on processes

with dependent returns (log-price increments over unit time), which are therefore not Lévy

processes.

The distribution of an increment of a Lévy process is infinitely divisible, and for each

infinitely divisible distribution one can construct a Lévy process. Schoutens (2003) details

a number of Lévy process applicable in finance, including the independent increments VG.

While the returns for the processes with which we shall be concerned form a strictly

stationary sequence, and in the VG and t-cases the distribution of returns is in fact infinitely

divisible, as continuous-time processes the log-price processes will not be Lévy processes,

due to the dependence structure introduced.

From Grosswald (1976) (see also Barndorff-Nielsen & Halgreen (1977)) we recall that

the t distribution is infinitely divisible and so consistent with a Lévy process. The Lévy

process in continuous time associated with a t distribution for returns is quite complex and

difficult to work with however. In particular, the probability distributions of increments

over intervals of arbitrary length do not belong to the same simple t family as t-distributed

returns. This is in contrast to the classical VG process, where the distributions of increments

over intervals of arbitrary length all belong to the same VG family.
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1.7. Historical discussion

Before leaving this chapter we briefly review the historical development and predecessor

papers to the VG and t, borrowing quite heavily from Seneta (2007) and Seneta (2009) for

reference material.

The t model for financial assets essentially started with Praetz (1972), who argued for

independent log price increments given by variance-mixing on the normal according to

X|V D
= N(µ, σ2V ) for V with the inverse gamma distribution, which is to say our (symmet-

ric) t subordinator model described above. As discussed, this distribution is a generalisation

of the classical Student’s t-distribution, allowing for fractional degrees of freedom. The

classical distribution itself was popularised by Student (1908), although in fact was known

even before this: Lüroth (1876) and Edgeworth (1883) both derived the t-distribution, in a

Bayesian context, as a posterior distribution for a population mean using a flat prior. See

Zabell (2008) and Seneta (2008) for a discussion of the historical context and predecessor

papers to Student’s result.

For our own direction, the papers of Heyde (1999), Heyde & Liu (2001) and Heyde &

Leonenko (2005) are key motivators – in increasing specialisation, they deal with ‘fractal

activity time’ models, where the {Tt} process from above is chosen such that τt has marginal

inverse gamma distribution so that Xt has the t distribution; {Tt} appropriately normed is

asymptotically self similar (hence a ‘fractal’ model); and {τt} and therefore {X2
t } is LRD.

The motivation for such models was the increasing evidence, already discussed, that while

financial asset returns appear as a reasonable approximation to white noise, squared and

absolute returns do not. As such, it was argued that any model for financial assets should be

able to accommodate little dependence structure in returns, while at the same time allowing

for LRD in squared returns. The use of a self similar activity time process coupled with
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the subordinator model achieves this, is supported in the literature, and imparts desirable

properties of its own (see Chapter 2).

Turning to the history of the VG, similar distributions also appeared very early in the

literature. What we now call the VG was studied as far back as Pearson, Jeffery & Elderton

(1929) and Pearson, Stouffer & David (1932), who defined the ‘Tm(x)’ density function

as (1.20) with µ = θ = 0, σ2 = 2 and λ = 1 instead of λ = α. Here the distribution

was studied in relation to testing for differences between χ2 values in contingency table

data. A special case of the VG distribution was also studied by Kullback (1934), who

considered the distribution of the difference and quotient of two independent Γ(α, 1) random

variables; while from the variance-mixing structure of the distribution of Xt, Teichroew

(1957) obtained the VG pdf (1.20) in the µ = θ = 0 case in terms of a Hankel function.

More recently, McLeish (1982) studied the VG distribution and model, and we review his

work below.

McLeish (1982) described what we now call the (symmetric) VG distribution as a nor-

mal multiplied by the square-root of a gamma random variable, which he was interested in

as a robust alternative to the normal distribution. The mean-corrected pdf and more general

moment generating function (mgf) given by McLeish in his Equations (3) and (5) are equiv-

alent to our (1.20) with µ = θ = 0, λ = 1, σ =
√

2, and our (1.21) with θ = 0, λ = 1

respectively. In addition, below his Equation (5) McLeish also points out that the symmetric

VG arises from the difference of two independent and identically distributed gamma random

variables, a point made also in Madan & Seneta (1990).

McLeish also examines the problem of constructing a VG process with dependence

structure, suggesting two alternatives. In the first case for Xt as in (1.20) with distribution

VG(0, 0, σ2, α, 1
2
), the model

(1.33) Xt+1 =
√
BtXt + et
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is suggested. Here Bt ∼ B(pα, (1 − p)α) has the Beta distribution while the et are again

VG but with distribution VG(0, 0, σ2, (1 − p)α, 1
2
) for 0 < p < 1, all independent. In this

case, by independence we have

Corr(Xt, Xt+k) = Corr(Xt,
√
Bt+k−1Xt+k−1 + et+k−1)

= E
√
Bt+k−1 Corr(Xt, Xt+k−1)

= (E
√
Bt+k−1)k Corr(Xt, Xt)

= ρk

where ρ = E
√
Bt =

Γ(pα+ 1
2

)Γ(α)

Γ(pα)Γ(α+ 1
2

)
. Similarly, for {X2

t } we have

Corr(X2
t , X

2
t+k) = Corr(X2

t , Bt+k−1X
2
t+k−1 + 2

√
Bt+k−1Xt+k−1et+k−1 + e2

t+k−1)

= Corr(X2
t , Bt+k−1X

2
t+k−1)

= EBt+k−1 Corr(X2
t , X

2
t+k−1)

= (EBt+k−1)k Corr(X2
t , X

2
t )

= pk.

Note that here both {Xt} and {X2
t } display non-zero short range dependence, since the acf

decays sufficiently fast so as to be summable, as opposed to actual data which typically

show Corr(X2
t , X

2
t+k) > 0 with {X2

t } long range dependent, but Corr(Xt, Xt+k) = 0.

Before moving on we should check that (1.33) does actually define a stationary sequence

of correlated VG increments. If we denote cf of Xt with VG(0, 0, σ2, α, 1
2
) distribution by

φVG(u;α), then the result will follow if
√
BtXt has the VG(0, 0, σ2, pα, 1

2
) distribution (and

therefore has cf φVG(u; pα)), since

φVG(u; pα)φVG(u; (1− p)α) = φVG(u;α),

a property the VG inherits from the gamma distribution. Now√
BtXt

D
= σ

√
BtGZ
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for Bt, G and Z mutually independent with G ∼ Γ(α, 1
2
) and Z ∼ N(0, 1). Hence (1.33)

defines a stationary sequence if

‘B(pα, (1− p)α)× Γ(α,
1

2
)
D
= Γ(pα,

1

2
)’,

which is a distribution theory result proved for example in Yeo & Milne (1991).

The second suggestion from McLeish (1982) for incorporating a dependence structure

is much closer to our own. In this case Xt is defined as

(1.34) Xt =
√
τtZt

for the {Zt} standard normal and the {τt} gamma distributed, both sequences stationary

and independent of each other, but possibly internally dependent. McLeish gives in his

Equations (21) and (22) the autocovariance functions of {Xt} and {X2
t } as

Cov(Xt, Xt+k) = ψ(k)E√τtτt+k(1.35)

Cov(X2
t , X

2
t+k) = (1 + 2ψ2(k))E(τtτt+k)− EτtEτt+k(1.36)

where ψ(k) is the autocorrelation function of {Zt}. Once again for ψ(k) 6= 0 this model

implies a non-zero correlation for {Xt}, but if one takes ψ(k) = 0 for k 6= 0 then (1.35) and

(1.36) reduce to our (1.14) and (1.16).

We can extend the model (1.34) by continuing to allow the {Zt} to be autocorrelated

and introducing skewness via the model

Xt = θτt +
√
τtZt.

In this case {Xt} will have the properties

Cov(Xt, Xt+k) = θ2Cov(τt, τt+k) + ψ(k)E√τtτt+k

Cov(X2
t , X

2
t+k) = θ2(Cov(τ 2

t , τt+k) + ψ(k)E(τ
1 1

2
t τ

1 1
2

t+k) + Cov(τt, τ
2
t+k))

+ 2θ(E(τ
1 1

2
t τt+k)E(ZtZ

2
t+k) + E(τtτ

1 1
2

t+k)E(Z2
t Zt+k))

+ θ4Cov(τ 2
t , τ

2
t+k) + (1 + 2ψ2(k))E(τtτt+k)− EτtEτt+k.
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Regarding the introduction of dependence into the {τt} sequence, which our Chapter 2

focuses on, McLeish suggests a fairly simple autoregression

(1.37) τt+1 = Btτt + δt

where Bt, τt and δt are independent variables having respectively the B(pα, (1 − p)α),

Γ(α, 1/(2σ2)) and Γ((1− p)α, 1/(2σ2)) distributions. Again this results in Corr(τt, τt+k) =

(EBt)
k = pk and Corr(τ 2

t , τ
2
t+k) = (EB2

t )
k = (p(pα+ 1)/(α+ 1))k which leads to an {Xt}

process for log price increments for which {X2
t } is short range dependent. Again, as with

(1.33), (1.37) also defines a stationary sequence.



CHAPTER 2

Activity time

As we have seen, given the general model (1.6), the properties and distribution of {Xt}

are essentially determined by those of {τt} and therefore {Tt}. In particular, the dependence

structure of {τt} determines that of {X2
t }. While most interest in modelling financial asset

returns has focussed on models which imply independence of returns, and returns from

real data do appear as a reasonable approximation to being independently and identically

distributed by showing no significant autocorrelation, at least past one or two lags, squared

returns often exhibit long range dependence. We presented evidence of this LRD in squared

and absolute returns in Section 1.1.3, and there is growing recognition of this fact in the

literature: see for example Greene & Fielitz (1979), Taylor (1986), Ding, Granger & Engle

(1993), Ding & Granger (1996) and Willinger, Taqqu & Teverovsky (1999).

Now although the non-decreasing process {Tt} cannot be exactly self-similar, as Heyde

& Leonenko (2005) note between their Equations (5.4) and (5.5), there is in fact growing

evidence – see for example Heyde (1999) and Heyde & Liu (2001) – that at least asymptotic

self similarity of {Tt}, to a good degree of approximation, is supported by financial data.

From Section 1.2 a self similar {Tt} process with self similarity parameter H ∈ (1
2
, 1)

implies the LRD of the {τt} increments process, which via (1.15) or (1.16) renders the

stochastic process {X2
t } LRD as desired.

As such, in order to accommodate in our model these features of self similarity and

LRD, this chapter concerns the construction of activity time processes {Tt} with identically

but not independently distributed gamma or inverse gamma unit increments, which display

31
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LRD, and which converge to a self similar limit. The results pertaining to the gamma case

are one of the main contributions of this thesis.

The main guide for our work comes from Heyde (1999) and Heyde & Leonenko (2005):

as mentioned, Heyde (1999) introduces the symmetric subordinator model (1.12) driven by a

fractal (self similar) activity time process, which Heyde & Leonenko (2005) extend to allow

for t distributed asset price returns. That is to say, Heyde & Leonenko (2005) construct a

process {Tt} with inverse gamma distributed increments, which displays LRD, and which

converges to a self similar limit. We follow their method in constructing an analogous

gamma process, and extend their result to allow the gamma and inverse gamma distributed

processes to have a wider range of autocorrelation function and the gamma process to have

distributional parameter which is allowed to be non-integer (that is, the α parameter from

Chapter 1 is allowed to be non-integer).

2.1. The gamma case

First we construct a discrete activity time process {Tt} which has gamma unit incre-

ments, displays LRD, and has asymptotically a (continuous time) self similar limit. Results

pertaining to the integer ν construction for ν = 2α have appeared in Finlay & Seneta (2006),

while the extension to allow for non-integer ν was made in Finlay & Seneta (2007). To ac-

cord with Finlay & Seneta (2007) and to stress dependence on ν, we write τν(t) instead of

τt as earlier for the increments of the {Tt} process.

2.1.1. Construction of the gamma activity time process. For N = {1, 2, 3, · · · } let

{ηi(t), t ∈ N}, i = 1, . . . , [ν], ν ≥ 1 and [·] denoting integer part, be independent and

identically distributed stationary Gaussian processes with zero mean, unit variance, and
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autocorrelation function ρ(s), s ∈ N. Define the stationary process {τ[ν](t)}, t ∈ N by

(2.1) τ[ν](t) = (η2
1(t) + · · ·+ η2

[ν](t))/[ν].

Then we can set Tt =
∑t

i=1 τ[ν](i) so that for each integer t ≥ 1, Tt − Tt−1 = τ[ν](t)
D
=

Γ( [ν]
2
, [ν]

2
) with Eτ[ν](t) = 1, Var(τ[ν](t)) = 2

[ν]
and

Cov(τ[ν](t), τ[ν](t+ s)) =
1

[ν]
Cov(η2

1(t), η2
1(t+ s))(2.2)

=
1

[ν]
(E(η2

1(t)η2
1(t+ s))− 1)(2.3)

=
2

[ν]
ρ2(s).(2.4)

Here we have set T0 = τ[ν](0) = η1(0) = · · · = η[ν](0) = 0. Equation (2.2) fol-

lows from the independence of ηi(t), ηj(t), i 6= j, (2.3) follows since η1(t) has mar-

ginal N(0, 1) distribution, and (2.4) follows since, for (X, Y ) bivariate normal with zero

mean, unit variance and correlation coefficient ρ, and Z1, Z2 ∼ NID(0, 1), we have that

(X, Y )
D
= (Z1, ρZ1 +

√
1− ρ2Z2) so that

(2.5) E(X2Y 2) = E(ρ2Z4
1 + ρ

√
1− ρ2Z2

1Z2 + (1− ρ2)Z2
1Z

2
2) = 2ρ2 + 1.

Assumption 2.1. Put Z(s) = ρ2(s)− ρ2(s+ 1) and assume that Z(s− 1)− Z(s) ≥ 0 for

s ∈ N, which is equivalent to ρ2(s) being convex on the integers. We also require Z(s) ≥ 0.

Theorem 2.1. Under Assumption 2.1 there exists a process {τν(t)}, t ∈ N, with ν > 0 (not

necessarily integer) and marginal Γ(ν
2
, ν

2
) distribution such that Cov(τν(t), τν(t + s)) =

2
ν
ρ2(s) for s ∈ N, parallel to (2.4).

Putting Tt =
∑t

i=1 τν(i) and choosing ρ(s) such that {τν(t)} is LRD results in a discrete

LRD VG process with non-integer ν parameter. We now prove Theorem 2.1, with the main

steps set out in Lemmas 2.1, 2.2 and 2.3.

First we construct two τν’s such that they have covariance of the form given by (2.4).

Fix n ∈ N and set ι = ν−[ν]
2

and Y n
i,∗
D
= Y n

i,◦
D
= Γ(ι 1

n
, 1

2
), i = 1, · · · , n, all independent and
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independent of the η’s. Then set

(2.6) V n
∗ :=

n∑
i=1

Y n
i,∗
D
= Γ(ι,

1

2
) and V n

◦ :=
k∑
i=1

Y n
i,∗ +

n−k∑
i=1

Y n
i,◦
D
= Γ(ι,

1

2
)

so there is an overlap of k of the Y n
i,∗’s between V n

∗ and V n
◦ . Now set τnν (t) = (η2

1(t) + · · ·+

η2
[ν](t) +V n

∗ )/ν and τnν (t+s) = (η2
1(t+s) + · · ·+η2

[ν](t+s) +V n
◦ )/ν, both Γ(ν

2
, ν

2
) random

variables.

Lemma 2.1. For any fixed t ∈ N and fixed single temporal lag s ∈ N, τnν (t) and τnν (t+s) as

defined above with k = [nρ2(s)] result in Cov(τnν (t), τnν (t+ s))→ 2
ν
ρ2(s) as n→∞, with

error bounded by 4ι
nν2 independent of t and s. (In this case we do not need Assumption 2.1.)

Proof. From (2.6), Cov(V n
∗ , V

n
◦ ) = Var(Y n

1,∗ + · · ·+ Y n
k,∗) = 4ι k

n
so that

Cov(τnν (t), τnν (t+ s)) =
1

ν2
Cov(

[ν]∑
i=1

η2
i (t),

[ν]∑
i=1

η2
i (t+ s)) +

1

ν2
Cov(V n

∗ , V
n
◦ )

=
2

ν
ρ2(s) +

4ι

ν2
(
[nρ2(s)]− nρ2(s)

n
).

�

The above shows how we construct a process {τν} with the desired correlation structure

at lag s. Constructing a stationary process {τν} that has the correct correlation at all lags is

more involved. We now give a procedure to this end.

Again fix n ∈ N, set ι = ν−[ν]
2
, Y n

i,j
D
= Γ(ι 1

n
, 1

2
), i = 1, · · · , [nρ2(1)] for j = 0 and

i = 1, · · · , n− [nρ2(1)] for j = 1, 2, · · · with all Y n
i,j’s mutually independent. Then set

(2.7) V n
t =

[nρ2(t)]∑
i=1

Y n
i,0 +

t∑
j=1

(

[nρ2(t−j)]−[nρ2(t−j+1)]∑
i=1

Y n
i,j)

D
= Γ(ι,

1

2
)
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for t = 1, 2, · · · (assuming Z(s) ≥ 0, setting V n
0 = 0 and noting that ρ2(0) = 1), and

τnν (t) = (η2
1(t) + · · ·+ η2

[ν](t) + V n
t )/ν

D
= Γ(

ν

2
,
ν

2
),

T nt =
t∑
i=1

τnν (i).(2.8)

Lemma 2.2. Under Assumption 2.1, for any time t ∈ N and temporal lag s ∈ N, and τnν (t)

and τnν (t+ s) as defined above, Cov(τnν (t), τnν (t+ s))→ 2
ν
ρ2(s) as n→∞.

Proof. Consider any V n
t and V n

t+s for t, s ∈ N. Then for any j such that 1 ≤ j ≤ t, V n
t

contains the first [nρ2(t − j)] − [nρ2(t − j + 1)] of the Y n
i,j’s, while V n

t+s contains the first

[nρ2(t+ s− j)]− [nρ2(t+ s− j + 1)] of the same Y n
i,j’s. But s > 0 so by Assumption 2.1,

[nρ2(t + s − j)] − [nρ2(t + s − j + 1)] ≤ [nρ2(t − j)] − [nρ2(t − j + 1)] for large n, so

the overlap of Y n
i,j’s between V n

t and V n
t+s is simply [nρ2(t+ s− j)]− [nρ2(t+ s− j + 1)].

For j > t, V n
t contains none of the Y n

i,j’s, while for j = 0, V n
t contains the first [nρ2(t)] of

the Y n
i,0’s, while V n

t+s contains the first [nρ2(t + s)] of the Y n
i,0’s. Hence the total number of

overlapping Y n
i,j’s between V n

t and V n
t+s is

t∑
j=1

([nρ2(t+ s− j)]− [nρ2(t+ s− j + 1)]) + [nρ2(t+ s)] = [nρ2(s)].

But from Lemma 2.1 this delivers the correct correlation. �

Lemma 2.3. Under Assumption 2.1, {V n
t } for t ∈ N as defined by (2.7) converges weakly

to a well defined stochastic process {Vt} as n→∞.
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Proof. Fix p ∈ N and let a1, · · · , ap ∈ R. To ease notation set f(t) = [nρ2(t)] and g(t) =

[nρ2(t− 1)]− [nρ2(t)]. Then starting from (2.7), one can show that
∑p

t=1 atV
n
t is given by

f(p)∑
i=1

(

p∑
t=1

at)Y
n
i,0 +

p−1∑
j=1

f(j)∑
i=f(j+1)+1

(

j∑
t=1

at)Y
n
i,0(2.9)

+

p∑
k=1

g(k)∑
i=1

(

p∑
t=p−k+1

at)Y
n
i,p−k+1

+

p−1∑
k=1

p−k∑
j=1

g(j)∑
i=g(j+1)+1

(

k+j−1∑
t=k

at)Y
n
i,k.

Now each Y n
i,j is iid Γ(ι 1

n
, 1

2
) distributed so the characteristic function of (V n

1 , · · · , V n
p ) is

given by

φnp (a1, · · · , ap) =(1− 2i(

p∑
t=1

at))
−ι f(p)

n

p−1∏
j=1

(1− 2i(

j∑
t=1

at))
−ι g(j+1)

n

×
p∏

k=1

(1− 2i(

p∑
t=p−k+1

at))
−ι g(k)

n

×
p−1∏
k=1

p−k∏
j=1

(1− 2i(

k+j−1∑
t=k

at))
−ι g(j)−g(j+1)

n .

As n → ∞ we have f(t)
n
→ ρ2(t) and g(t)

n
→ ρ2(t − 1) − ρ2(t) = Z(t − 1) so that

φnp (a1, · · · , ap) converges to a function φp(a1, · · · , ap) given by

φp(a1, · · · , ap) =(1− 2i(

p∑
t=1

at))
−ιρ2(p)

p−1∏
j=1

(1− 2i(

j∑
t=1

at))
−ιZ(j)(2.10)

×
p∏

k=1

(1− 2i(

p∑
t=p−k+1

at))
−ιZ(k−1)

×
p−1∏
k=1

p−k∏
j=1

(1− 2i(

k+j−1∑
t=k

at))
−ι(Z(j−1)−Z(j)).

Hence φnp (a1, · · · , ap) converges pointwise to φp(a1, · · · , ap) and φp(a1, · · · , ap) is con-

tinuous about the origin, which from Billingsley (1968) Theorem 7.6 (see also the sec-

ond paragraph on p. 30) implies weak convergence. One can also verify that Vt has the
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gamma distribution Γ(ι, 1
2
) for t = 1, 2, · · · by considering φt(a1, · · · , at) and choosing

a1 = · · · = at−1 = 0. �

If we choose ρ(s) = (1 + ω|s|α)(H−1)/α for ω > 0, 0 < α ≤ 2 and 1
2
< H < 1, i.e. an

autocorrelation function from the so-called Cauchy family detailed in Gneiting (2000), our

construction will lead to a LRD VG model.

Now working with the limit processes {Tt} = {T∞t }, {τt} = {τ∞t } and {Vt} = {V ∞t },

from (2.8) we can take our activity time process {Tt} as the sum of two independent parts:

(2.11) Tt =
1

ν

[ν]∑
j=1

t∑
i=1

η2
j (i) +

1

ν

t∑
i=1

Vi = At +Bt say.

We now show that Var(Ak) and Var(Bk) are both O(k2H), and that ζk(t) = 1
kH

(A[kt] −

EA[kt]) for t ∈ [0, 1] converges weakly as k →∞ to a self similar process with parameterH .

We also give a proof in Theorem 2.4 below that 1
kH

(Bk−EBk) converges in probability to 0,

which is enough to demonstrate that our discrete time {Tt} process (2.11) has asymptotically

a self similar limit.

2.1.2. Convergence to a self similar limit. First from Taqqu (1975), Theorem and

Proposition 6.1, we take Theorem 2.2:

Theorem 2.2. For Yi a stationary Gaussian sequence with EYi = 0 and Var(Yi) = 1, such

that ρY (τ) ∼ τH−1L(τ) as τ →∞ with 1
2
< H < 1 and L slowly varying,

Zk(t) =
1

kH

[kt]∑
i=1

(Y 2
i − 1)

converges weakly as k →∞ to a process R(t) which has properties,

(1) R(t) has strictly stationary increments.

(2) R(t) is H self similar.

(3) ER(t) = 0 and E|R(t)|γ <∞ for γ ≤ 1
H

.
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(4) R(t) is separable and almost surely continuous.

Further, the characteristic function of R(t) admits the representation

(2.12) φ(u) = exp{1

2

∞∑
k=2

(2iu)k

(k + 1)!
Sk}

for Sk =
∫ 1

0
· · ·
∫ 1

0
dx1···dxk

(|x1−x2||x2−x3|···|xk−1−xk||xk−x1|)1−H , which is valid for small values of |u|.

Theorem 2.3. When ρ(s) is given by a member of the Cauchy family, Var(Ak) and Var(Bk)

are both O(k2H) and the standardised process ζk(t) = 1
kH

(A[kt] − EA[kt]) for t ∈ [0, 1]

converges weakly as k →∞ to a self similar process with parameter H .

Proof. We have that Var(Ak) = [ν]
ν2 Var(

∑k
i=1 η

2
1(i)) and from (2.5),

Var(
k∑
i=1

η2
1(i)) =

k∑
s=1

k∑
s∗=1

Cov(η2
1(s), η2

1(s∗)) = 2
k∑
s=1

k∑
s∗=1

ρ2(s− s∗).

Similarly, Var(Bk) = 1
ν2 Var(

∑k
i=1 Vi) with

Var(
k∑
i=1

Vi) =
k∑
s=1

k∑
s∗=1

Cov(Vs, Vs∗) = 4ι
k∑
s=1

k∑
s∗=1

ρ2(s− s∗).

Now

k∑
s=1

k∑
s∗=1

ρ2(s− s∗) =
k∑
s=1

k∑
s∗=1

(1 + ω|s− s∗|α)2(H−1)/α

∼
∫ k

0

∫ k

0

dsds∗

(1 + ω|s− s∗|α)(2−2H)/α

= k2H

∫ 1

0

∫ 1

0

dudv

( 1
kα

+ ω|u− v|α)(2−2H)/α
(2.13)

→ k2H c(H) as k →∞(2.14)
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where (2.13) follows by taking u = s
k
, v = s∗

k
, and

c(H) = ω(2H−2)/α

∫ 1

0

∫ 1

0

dydx

|x− y|2−2H

= 2ω(2H−2)/α

∫ 1

0

∫ x

0

dydx

(x− y)2−2H

=
2ω(2H−2)/α

2H − 1

∫ 1

0

x2H−1dx

=
ω(2H−2)/α

(2H − 1)(H)
<∞ for

1

2
< H < 1.

Hence Var(Ak) and Var(Bk) are both O(k2H).

A direct result of Theorem 2.2 is then that

1

kH

[kt]∑
s=1

(η2
1(s)− 1)⇒ R(t) as k →∞

forR(t) the so-called (H self similar with strictly stationary increments) Rosenblatt process,

where H ∈ (1
2
, 1). Here ‘⇒’ denotes the weak convergence of one stochastic process to

another, which implies the convergence of finite dimensional distributions. Consequently

we have that as k →∞,

ζk(t) =
1

kH
(A[kt] − EA[kt])

=
1

ν

[ν]∑
j=1

(
1

kH

[kt]∑
i=1

(η2
j (i)− 1))⇒ 1

ν

[ν]∑
j=1

Rj(t)(2.15)

for each Rj(t) an independent copy of the Rosenblatt process. �

Theorem 2.4. When ρ(s) is given by a member of the Cauchy family, the sequence ζk =

1
kH

∑k
i=1(Vi − EVi) = ν

kH
(Bk − EBk) for k = 1, 2, · · · and 1

2
< H < 1 converges in

distribution, and therefore probability, to 0 as k →∞.

Proof. We give the proof taking ρ(s) as any member of the Cauchy family which satisfies

Assumption 2.1, in order to use (2.10) from Lemma 2.3.
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First consider the cf φ∗p(a1, · · · , ap) of (V1−EV1, · · · , Vp−EVp). By replacing each Y n
i,j

in (2.9) with Y n
i,j − EY n

i,j = Y n
i,j − 2ι

n
, one can show that φ∗p(a1, · · · , ap) is given by (2.10),

but with each expression of the form (1− 2ix)−ιy replaced by (1− 2ix)−ιye−2ixιy. Now for

a ∈ R, the cf of ζk is given by

ϕk(a) = E

{
exp

(
ia

kH

k∑
j=1

(Vj − 2ι)

)}
= φ∗k(

a

kH
, · · · , a

kH
).

From (2.10), ϕk(a) is a product comprising the four factors

(1− 2iak1−H)−ιρ
2(k) × e−2iak1−H ιρ2(k)(2.16)

k−1∏
j=1

((1− 2ijak−H)−ιZ(j) × e−2ijak−H ιZ(j))(2.17)

k∏
j=1

((1− 2ijak−H)−ιZ(j−1) × e−2ijak−H ιZ(j−1))(2.18)

k−1∏
m=1

k−m∏
j=1

((1− 2ijak−H)−ι(Z(j−1)−Z(j)) × e−2ijak−H ι(Z(j−1)−Z(j))).(2.19)

We shall use Markov’s inequality to show that the random variables whose cfs are given by

(2.16), (2.17) and (2.18) converge in probability to 0 as k → ∞, and show directly that the

moment generating function of the random variable with cf given by (2.19) converges to 1

as k →∞, thus establishing the result.

First note that for a non-negative random variable Yk say, Markov’s inequality states that

for any fixed ε > 0,

P (Yk > ε) ≤ EYk
ε

so that if EYk → 0 then Yk
P→ 0 and therefore (Yk − EYk)

P→ 0, where ‘ P→’ denotes

convergence in probability. Note also that each of (2.16), (2.17) and (2.18) represent the cf

of a sum (mean-corrected) of independent and non-negative gamma random variables, so

that if we show that the mean of each such sum (before mean correction) converges to 0 we

are done.
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Now (2.16) before mean-correction is the cf of a Γ(ιρ2(k), 1
2k1−H ) random variable

with mean of 2k1−Hιρ2(k). For ρ(s) = (1 + ω|s|α)(H−1)/α, ρ2(k) = O(k2H−2) so that

2k1−Hιρ2(k) = O(kH−1) → 0 as k → ∞. Similarly the mean of the sum of gamma

random variables with cf (2.17) is given by 2k−Hι
∑k−1

j=1 jZ(j). Here we have

0 ≤ k−H
k−1∑
j=1

jZ(j) = k−H((
k−1∑
j=1

ρ2(j))− (k − 1)ρ2(k))

but both k−H(k − 1)ρ2(k) and k−H
∑k−1

j=1 ρ
2(j) are O(kH−1) → 0 as k → ∞ so that

2k−Hι
∑k−1

j=1 jZ(j)→ 0. A similar result holds for (2.18).

Finally consider (2.19). In this case the mean is O(k1−H) → ∞ and so we cannot

use Markov’s inequality. Instead change the order of multiplication to write the mgf of the

negative of the random variable with cf (2.19) as

(2.20) Mk(a) = exp

(
ι
k−1∑
j=1

(Z(j − 1)− Z(j))(k − j)(2jak−H − log(1 + 2jak−H))

)
.

Working with the mgf instead of the cf simplifies matters, since Mk(a) is well defined for

all a ≥ 0, and from Mukherjea, Rao & Suen (2006), Theorem 2, pointwise convergence

of Mk(a) in some fixed interval (b, d), 0 < b < d < ∞, as k → ∞, to the mgf M(a) of

some random variable implies weak convergence to the associated limit distribution. Thus

if Mk(a) converges to 1, the mgf of 0, we are done. Now x ≥ x − log(1 + x) ≥ 0 and

x2 ≥ x− log(1 + x) ≥ 0 for x ≥ 0, so that

0 ≤
k−1∑
j=1

(Z(j − 1)− Z(j))(k − j)(2jak−H − log(1 + 2jak−H))

≤
[kH ]−1∑
j=1

(Z(j − 1)− Z(j))(k − j)(2jak−H)2

+
k−1∑

j=[kH ]

(Z(j − 1)− Z(j))(k − j)2jak−H

≤ c1k
−2H

[kH ]−1∑
j=1

j2H−2(k − j) + c2k
−H

k−1∑
j=[kH ]

j2H−3(k − j)(2.21)
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for c1, c2 constants, since Z(j− 1)−Z(j) = O(j2H−4) by repeated application of the mean

value theorem, using Assumption 1 and the explicit form of ρ2(s). But

k−2H

∫ kH

1

j2H−2(k − j)dj =
k1−3H+2H2 − k1−2H

2H − 1
− k2H(H−1) − k−2H

2H

converges to 0 as k →∞ since each exponent of k is negative for 1
2
< H < 1, and

k−H
∫ k

kH
j2H−3(k − j)dj =

kH−1 − k1−3H+2H2

2H − 2
− kH−1 − k2H(H−1)

2H − 1

converges to 0 as k →∞ so that (2.21) converges to 0 and (2.20) converges to 1. �

2.1.3. Relaxing the assumptions on Z(s). Recall that for Z(s) = ρ2(s) − ρ2(s + 1)

we require Z(s) ≥ 0 and Z(s) decreasing with s ∈ N according to Assumption 2.1. It is

clear that all members of the Cauchy family satisfy the first property, but the same is not true

of the second. For example α = ω = 2 satisfies the second property for any 1
2
< H < 1,

whereas α = 2, ω = 1 for 0.648 < H < 1 does not. In the latter case the acf value

for {Vt} at lag 1 will be 1 − ρ2(1) + ρ2(2) instead of the larger ρ2(1), but acf values at

larger lags will be unaffected (at lags greater than 1, the requirement on Z(s) is satisfied if

1 − α + ω|s|α(3 − 2H) ≥ 0, which for any given ω > 0, 0 < α ≤ 2 and 1
2
< H < 1 will

be the case for sufficiently large values of s). Therefore we briefly discuss how our results

are affected when the second property (monotonicity) fails to hold for the first few lags.

As touched on above, if Z(s) does not decrease with s for the first m lags say, then

Lemma 2.2 will fail for the first m lags, and the first m acf values will be lower than those

given by ρ2(·) (acf values at lags greater than m will be unaffected). The main result of

Section 2.1 was to show the convergence of our add-on processes {V n
t } to {Vt}, and to fur-

ther show convergence of {Vt} (appropriately normed) to zero, and both these convergence

results are unaffected by relaxing the assumption that Z(s) decreases with s.

In Lemma 2.3 we undertook to partition
∑p

t=1 atV
n
t into groups of iid Y n

i,j’s with the

same coefficients (some sum of at’s) in order to compute the characteristic function of {V n
t },
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and therefore prove weak convergence to {Vt}. Now for each t, and ignoring rounding issues

associated with taking the integer part, V n
t from (2.7) is given by

(2.22) V n
t =

[nρ2(t)]∑
i=1

Y n
i,0 +

t∑
j=1

(

nZ(t−j)∑
i=1

Y n
i,j)

so that the first nZ(t − j) of the Y n
i,j’s for j = 1, · · · , t are included in V n

t . That is, the

relative sizes of Z(0), Z(1), · · · determine which of the Y n
i,j’s are included in V n

t for each t.

This is important in collecting the Y n
i,j’s into groups with the same coefficients, and therefore

computing the characteristic function of {V n
t }.

To aid understanding we write expressions for atV
∗,n
t for t = 1, 2, 3, 4, p below, where

we set V ∗,nt = V n
t −

∑[nρ2(t)]
i=1 Y n

i,0. We subtract the Y n
i,0 terms to simplify the expressions –

we do not need to consider these terms since they are unaffected by relaxing the assumption

that Z(s) decreases with s (for the Cauchy family we always have that ρ2(s) > ρ2(s+ 1)).

a1V
∗,n

1 = a1

nZ(0)∑
i=1

Y n
i,1(2.23)

a2V
∗,n

2 = a2

nZ(1)∑
i=1

Y n
i,1 + a2

nZ(0)∑
i=1

Y n
i,2

a3V
∗,n

3 = a3

nZ(2)∑
i=1

Y n
i,1 + a3

nZ(1)∑
i=1

Y n
i,2 + a3

nZ(0)∑
i=1

Y n
i,3

a4V
∗,n

4 = a4

nZ(3)∑
i=1

Y n
i,1 + a4

nZ(2)∑
i=1

Y n
i,2 + a4

nZ(1)∑
i=1

Y n
i,3 + a4

nZ(0)∑
i=1

Y n
i,4

...
...

apV
∗,n
p = ap

nZ(p−1)∑
i=1

Y n
i,1 + ap

nZ(p−2)∑
i=1

Y n
i,2 + ap

nZ(p−3)∑
i=1

Y n
i,3 + · · ·+ ap

nZ(0)∑
i=1

Y n
i,p.

Hence for Z(s)
0 = max(Z(0), Z(1), · · · , Z(s)) with Z(s)

1 the next biggest through to Z(s)
s =

min(Z(0), Z(1), · · · , Z(s)), Z(p−1)
p−1 of the Y n

i,1’s will have coefficient
∑p

t=1 at, Z
(p−1)
p−2 −

Z
(p−1)
p−1 of the Y n

i,1’s will have as coefficient all bar one of the at’s, and Z(p−1)
0 −Z(p−1)

1 of the

Y n
i,1’s will have as coefficient one of the at’s. Similar results hold for the Y n

i,2’s, Y n
i,3’s, · · · .
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Next we re-arrange (2.23) in terms of the Y n
i,j’s:

p∑
t=1

atV
∗,n
t =

nZ
(p−1)
p−1∑
i=1

(

p∑
t=1

a
(1)
t )Y n

i,1 +

nZ
(p−1)
p−2∑

i=nZ
(p−1)
p−1 +1

(

p−1∑
t=1

a
(1)
t )Y n

i,1 + · · ·+
nZ

(p−1)
0∑

i=nZ
(p−1)
1 +1

a
(1)
1 Y n

i,1

(2.24)

+

nZ
(p−2)
p−2∑
i=1

(

p∑
t=2

a
(2)
t )Y n

i,2 +

nZ
(p−2)
p−3∑

i=nZ
(p−2)
p−2 +1

(

p−1∑
t=2

a
(2)
t )Y n

i,2 + · · ·+
nZ

(p−2)
0∑

i=nZ
(p−2)
1 +1

a
(2)
2 Y n

i,2

+

nZ
(p−3)
p−3∑
i=1

(

p∑
t=3

a
(3)
t )Y n

i,3 +

nZ
(p−3)
p−4∑

i=nZ
(p−3)
p−3 +1

(

p−1∑
t=3

a
(3)
t )Y n

i,3 + · · ·+
nZ

(p−3)
0∑

i=nZ
(p−3)
1 +1

a
(3)
3 Y n

i,3

...
...

+

nZ
(1)
1∑

i=1

(

p∑
t=p−1

a
(p−1)
t )Y n

i,p−1 +

nZ
(1)
0∑

i=nZ
(1)
1 +1

a
(p−1)
p−1 Y n

i,p−1

+

nZ
(0)
0∑

i=1

a(p)
p Y n

i,p.

Here we define a(s)
s to be the first member of the re-ordered set {as, · · · , ap}, where the

{as, · · · , ap} are ordered according to the decreasing size of the {Z(0), · · · , Z(p − s)},

with a(s)
s+1 the second member of the re-ordered set and so on. So for example if Z(2) is

the largest of {Z(0), · · · , Z(p − 3)}, followed by Z(4), then the decreasing size ordering

of {Z(0), · · · , Z(p− 3)} begins {Z(2), Z(4), · · · } and the ordering of {a3, · · · , ap} begins

{a5, a7, · · · }, so that a(2)
2 = a5 and a(2)

3 = a7.

If Assumption 2.1 holds, then Z(s)
j = Z(j) for each s, but if it does not hold then the

order of the largest few Z
(s)
j ’s may change. With this in mind, using (2.24) we can modify
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(2.9) as follows, where again f(t) = [nρ2(t)]:

p∑
t=1

atV
n
t =

f(p)∑
i=1

(

p∑
t=1

at)Y
n
i,0 +

p−1∑
j=1

f(j)∑
i=f(j+1)+1

(

j∑
t=1

at)Y
n
i,0

+

p∑
k=1

nZ
(k−1)
k−1∑
i=1

(

p∑
t=p−k+1

a
(p−k+1)
t )Y n

i,p−k+1

+

p−1∑
k=1

p−k∑
j=1

nZ
(p−k)
j−1∑

i=nZ
(p−k)
j +1

(

k+j−1∑
t=k

a
(k)
t )Y n

i,k.

From here it is a simple matter to derive a new expression for the cf of (V n
1 , · · · , V n

p ) as

n→∞ analogous to (2.10),

φ∗p(a1, · · · , ap) =(1− 2i(

p∑
t=1

at))
−ιρ2(p)

p−1∏
j=1

(1− 2i(

j∑
t=1

at))
−ιZ(j)(2.25)

×
p∏

k=1

(1− 2i(

p∑
t=p−k+1

a
(p−k+1)
t ))−ιZ

(k−1)
k−1

×
p−1∏
k=1

p−k∏
j=1

(1− 2i(

k+j−1∑
t=k

a
(k)
t ))−ι(Z

(p−k)
j−1 −Z(p−k)

j ).

Weak convergence of {V n
t } to a process {Vt} with cf (2.25) follows from Billingsley (1968)

Theorem 7.6. Again if Assumption 2.1 holds then Z(s)
j = Z(j) and a(s)

j = aj for each s,

and (2.25) reduces to (2.10).

Next consider Theorem 2.4 in light of our new cf. In Theorem 2.4 we take at = a
kH

for each t, so that the distinction between a(s)
j and aj is no longer relevant – only results

that may be effected by the distinction between Z(j) and Z(s)
j need checking. Theorem 2.4

showed that the random variables with cfs (2.16), (2.17), (2.18) and (2.19) all converge to

zero. Working from our new cf (2.25) instead of (2.10), note that the analogues of (2.16)

and (2.17) do not change so we need not consider them.

Next, the proof that the random variable with cf (2.18) converged to zero relied on

asymptotic properties of Z(j), that is, the proof relied on the behavior of Z(j) as j gets
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large. But as stated above, the requirement that Z(s) decrease with s is satisfied if 1 −

α + ω|s|α(3 − 2H) ≥ 0, which for any given ω > 0, 0 < α ≤ 2 and 1
2
< H < 1 will

be the case for sufficiently large values of s. Hence our arguments still hold, since for any

ω > 0, 0 < α ≤ 2 and 1
2
< H < 1 only a finite number, m say, of Z(j) will be effected by

relaxing the assumption that Z(s) decrease with s, and Z(s)
j will equal Z(j) for j > m.

Finally, consider the proof that the random variable with cf (2.19) converged to zero.

Analogous to (2.20), we can write the mgf of the negative of the corresponding random

variable when we relax the assumption on Z(s) as

exp

(
ι
k−1∑
j=1

(2jak−H − log(1 + 2jak−H))

k−j∑
l=1

(Z
(k−l)
j−1 − Z

(k−l)
j )

)

Therefore, similarly to (2.21), using the fact that there exists some fixed m such that Z(s)
j =

Z(j) for j > m,

0 ≤
k−1∑
j=1

(2jak−H − log(1 + 2jak−H))

k−j∑
l=1

(Z
(k−l)
j−1 − Z

(k−l)
j )

≤
m∑
j=1

(2jak−H)2

k−j∑
l=1

(Z
(k−l)
j−1 − Z

(k−l)
j )

+

[kH ]−1∑
j=m+1

(Z(j − 1)− Z(j))(k − j)(2jak−H)2

+
k−1∑

j=[kH ]

(Z(j − 1)− Z(j))(k − j)2jak−H

≤ c0

m∑
j=1

j2k−2H(k − j) + c1k
−2H

[kH ]−1∑
j=m+1

j2H−2(k − j) + c2k
−H

k−1∑
j=[kH ]

j2H−3(k − j).

Now
∑m

j=1 j
2k−2H(k − j) < m3k1−2H → 0 as k → ∞ so that once again the random

variable with cf corresponding to (2.19) converges to zero.
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Hence the activity time process generated from a member of the Cauchy family that does

not satisfy Assumption 2.1 will still be LRD and have self similar limit, but the first few acf

values will be lower than in the integer ν case.

2.1.4. Conclusion. We have constructed correlated {τν(t)} increments processes with

marginal gamma distribution, such that {Tt}, appropriately normed, is asymptoticallyH self

similar, being weakly convergent to the sum of [ν] independent Rosenblatt processes. This in

turn leads to correlated {Xt} log price increments processes with marginal VG distribution,

in which both {τν(t)} and {X2
t } are long range dependent. This self similarity is a desirable

property to endow {Tt} with, since as previously discussed, there is growing evidence that

historical financial data is LRD and driven by a self similar activity time process.

2.2. The inverse gamma case

In this section we construct a discrete activity time process {Tt} which has inverse

gamma increments, displays LRD, and has asymptotically a (continuous time) self simi-

lar limit. The results extend those of Heyde & Leonenko (2005), which dealt only with the

integer ν case for ν = 2δ and ρ(s) = (1 + s2)(H−1)/2.

2.2.1. Construction of the inverse gamma activity time process. To accord with

Heyde & Leonenko (2005) and enable the direct application of results contained in Leo-

nenko (1999), we make a re-parameterisation: consider again the {τν(t)} process con-

structed in Section 2.1, restrict ν to integer values, and set χ2
ν(t) = ν

2
τν(t). Then the density

of χ2
ν(t), which for each t is a scaled χ2

ν random variable, is of the form

(2.26) p ν
2
(x) =

x
ν
2
−1e−x

Γ(ν
2
)
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and from the Hille-Hardy formula (Erdélyi, Magnus, Oberhettinger and Tricomi (1953)),

the bivariate density of (χ2
ν(t), χ

2
ν(s)) is given by (Leonenko (1999))

(2.27) p ν
2
(x, y; γ) = p ν

2
(x)p ν

2
(y)[1 +

∞∑
j=1

γjej(x)ej(y)]

where

(2.28) ek(x) = L
ν
2
−1

k (x){
k!Γ(ν

2
)

Γ(ν
2

+ k)
}1/2

and

Lβk(x) =
1

k!
x−βex

dk

dxk
{xβ+ke−x}

are generalised Laguerre polynomials of index β (Leonenko (1999)). If we define e0(x) ≡ 1

we have (from Leonenko (1999) Section 2.1.10 for example) that {ek(x)}∞k=0 form a com-

plete orthogonal system of functions in the Hilbert space L2((0,∞), p ν
2
(x)dx) where p ν

2
(x)

is as in (2.26). That is, for G ∈ L2((0,∞), p ν
2
(x)dx), we have that

(2.29) G(x) =
∞∑
k=0

Ckek(x), Ck =

∫ ∞
0

G(x)ek(x)p ν
2
(x)dx,

(2.30)
∫ ∞

0

ek(x)em(x)p ν
2
(x)dx = δkm,

(2.31)
∞∑
k=0

C2
k =

∫ ∞
0

G2(x)p ν
2
(x)dx <∞

where δkm is the Kronecker-delta function.

If we now choose G(x) = (ν
2
− 1) 1

x
then we have, for ν > 4 so that (2.31) holds, that

G(χ2
ν(t)) is stationary with RΓ(ν

2
, ν

2
− 1) marginals. Further, using (2.29) we can expand

G(χ2
ν(t)) as

G(χ2
ν(t)) =

∞∑
k=0

Ckek(χ
2
ν(t)), Ck =

∫ ∞
0

ν/2− 1

x
ek(x)p ν

2
(x)dx

where for example e0(x) = 1, C0 = 1 and

(2.32) e1(x) =

√
2

ν
(
ν

2
− x), C1 =

√
2

ν
.
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And since, for k ≥ 1 or m ≥ 1,

Cov(ek(χ
2
ν(t)), em(χ2

ν(t+ τ))) =

∫ ∞
0

∫ ∞
0

ek(u) em(v)p ν
2
(u, v; ρ2(τ))dudv

− E(ek(χ
2
ν(t))) E(em(χ2

ν(t+ τ)))

=

∫ ∞
0

∫ ∞
0

ek(u) em(v)p ν
2
(u)p ν

2
(v)[1 +

∞∑
j=1

ρ2j(τ)ej(u)ej(v)]dudv

− E(ek(χ
2
ν(t))) E(em(χ2

ν(t+ τ)))

=
∞∑
j=1

(ρ2j(τ)

∫ ∞
0

ek(u)ej(u)p ν
2
(u))du

∫ ∞
0

em(v)ej(v)p ν
2
(v))dv)

= δmk ρ
2k(τ),(2.33)

while for m = k = 0, ek(x) = em(x) = 1 so that Cov(ek(χ
2
ν(t)), em(χ2

ν(t + τ))) = 0, we

have that

(2.34) Cov(G(χ2
ν(t)), G(χ2

ν(t+ τ))) =
∞∑
k=1

C2
kρ

2k(τ).

Also, since Var(G(χ2
ν(t))) = 2

ν−4
for ν > 4, we have that the autocorrelation function of

G(χ2
ν(t)) is given by

ρG(τ) =
ν − 4

2

∞∑
k=1

C2
kρ

2k(τ).

Of course we may choose as ρ(t) any consistent Gaussian autocorrelation function, and so

we have a fair degree of flexibility in choosing the autocorrelation function of G(χ2
ν(t)).

Analogous with the gamma case, we take Tt =
∑t

s=1 G(χ2
ν(s)) so that τ ∗ν (t) = Tt− Tt−1 =

G(χ2
ν(t)) ∼ RΓ(ν

2
, ν

2
− 1).

Further, expanding Tt−t as Tt−t =
∑∞

k=0

∑t
s=1Ckek(χ

2
ν(s))−t =

∑∞
k=1

∑t
s=1 Ckek(χ

2
ν(s))

leads to

Tt − t =
t∑

s=1

C1e1(χ2
ν(s)) +

∞∑
k=2

t∑
s=1

Ckek(χ
2
ν(s)) =

t∑
s=1

C1e1(χ2
ν(s)) +Rt
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for Rt =
∑∞

k=2

∑t
s=1Ckek(χ

2
ν(s)). Hence, for ρ(s) = (1 + ω|s|α)(H−1)/α, for ω > 0, 0 <

α ≤ 2 and 1
2
< H < 1, we have

Var(Tt − t) = Var(
t∑

s=1

C1e1(χ2
ν(s))) + Var(Rt)(2.35)

=
t∑

s=1

t∑
s∗=1

C2
1 ρ

2(|s− s∗|) + Var(Rt)(2.36)

∼ C2
1c(H)t2H + Var(Rt).(2.37)

Here (2.35) and (2.36) follow from the orthogonality property given by Equation (2.33), and

(2.37) follows from (2.14) for c(H) = ω(2H−2)/α

(2H−1)(H)
.

Now consider Rt =
∑∞

k=2

∑t
s=1Ckek(χ

2
ν(s)),

Var(Rt) =
∞∑
k=2

t∑
s=1

t∑
s∗=1

C2
k ρ

2k(|s− s∗|)

=
∞∑
k=2

C2
k

t∑
s=1

t∑
s∗=1

(1 + ω|s− s∗|α)2k(H−1)/α

=
∞∑
k=2

C2
k(t+ 2

t−1∑
s=1

(t− s)(1 + ω|s|α)2k(H−1)/α)

so that

1

t2H
Var(Rt) =

∞∑
k=2

C2
k(t1−2H + 2t−2H

t−1∑
s=1

(t− s)(1 + ω|s|α)2k(H−1)/α).

But
∑∞

k=0C
2
k <∞ from (2.31) so if t1−2H + 2t−2H

∑t−1
s=1(t− s)(1 + ω|s|α)2k(H−1)/α → 0

as t → ∞ then 1
t2H

Var(Rt) → 0. In fact we need only consider the k = 2 case, since

(1 + ω|s|α)2k(H−1)/α < (1 + ω|s|α)4(H−1)/α for k > 2. Now t1−2H → 0 for 1
2
< H < 1,

and for 1
2
< H < 1, H 6= 3

4
,

t−2H

t−1∑
s=1

(t− s)(1 + ω|s|α)4(H−1)/α < ω4(H−1)/αt1−2H

t∑
s=1

s4(H−1)(2.38)

∼ t1−2H

∫ t

1

s4(H−1)ds(2.39)

=
t2H−2 − t1−2H

4H − 3
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which→ 0 as t → ∞. Here (2.38) follows since (1 + ω|s|α)4(H−1)/α < ω4(H−1)/αs4(H−1)

for 1
2
< H < 1, and t− s < t. For H = 3

4
, line (2.39) becomes

t−
1
2

∫ t

1

ds

s
= t−

1
2 log(t)

which also goes to zero as t gets large. Hence 1
t2H

Var(Rt) → 0 as t → ∞ for 1
2
< H < 1

and so, in terms of asymptotic behavior, the k = 1 term is dominant in the expansion

T[nt] − [nt] =
∑[nt]

s=1G(χ2
ν(s)) − [nt] =

∑[nt]
s=1

∑∞
k=1 Ckek(χ

2
ν(s)). This follows from the

results above since

Var(
1

nH
(

[nt]∑
s=1

G(χ2
ν(s))− [nt])− C1

nH

[nt]∑
s=1

e1(χ2
ν(s)))

=
t2−2α

(nt)2−2α
Var(R[nt])→ 0 as n→∞ ∀ t > 0.(2.40)

Now E( 1
nH

(
∑[nt]

s=1G(χ2
ν(s)) − [nt])) = E( C1

nH

∑[nt]
s=1 e1(χ2

ν(s))) = 0, the second equal-

ity following from the orthogonality property of {ek(x)}∞k=0 given by (2.30), since e0(x) =

1. Hence Chebyshev’s inequality implies that for each t, 1
nH

(
∑[nt]

s=1G(χ2
ν(s)) − [nt]) and

C1

nH

∑[nt]
s=1 e1(χ2

ν(s)) converge in probability, and therefore in distribution, to the same ran-

dom variable, if such a limiting random variable exists. Now from (2.32) we have that

e1(x) =
√

2
ν
(ν

2
− x) and C1 =

√
2
ν
, and so

C1

nH

[nt]∑
s=1

e1(χ2
ν(s)) = −1

ν

2

nH

[nt]∑
s=1

(χ2
ν(s)−

ν

2
)

= − 1

nH

[nt]∑
s=1

(τν(s)− 1)⇒ −1

ν

[ν]∑
j=1

Rj(t)(2.41)

for Rj(t) independent copies of the H self similar Rosenblatt process. Here (2.41) follows

from Equation (2.15). Equations (2.40) and (2.41) now imply that as n→∞,

1

nH
(

[nt]∑
s=1

G(χ2
ν(s))− [nt])

D→ −1

ν

[ν]∑
i=1

Ri(t)

where convergence is in the sense of finite dimensional distributions.
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2.2.2. Conclusion. As with the gamma case, we have constructed {τ ∗ν (t)} so as to make

{Tt}, appropriately normed, asymptotically H self similar.

More generally, we have succeeded in constructing some correlated {τ ∗ν (t)} increments

processes with marginal inverse gamma distribution, which in turn lead to correlated {Xt}

log price increments processes with marginal t distribution. Indeed, as earlier we have

constructed as a special case a process {Tt} whereby an appropriately normed {Tt − t} is

asymptotically self similar. Thus we have a model that incorporates t-distributed log price

marginal increments, and in which both {τ ∗ν (t)} and {X2
t } are long range dependent.

2.3. Asymmetry and sign reversal in the asymptotic {Tt} process

We now draw some parallels between the development of the inverse gamma process

described above and the gamma process from Section 2.1. In both cases the ultimate process

of interest in determining the limit distribution was

1

nH
(T[nt] − [nt]) =

1

nH

[nt]∑
s=1

(G(ψν(s))− 1)

as n → ∞, where in the inverse gamma case G(x) = GRΓ(x) = (ν
2
− 1)/x, and in the

gamma case G(x) = GΓ(x) = 2
ν
x, where 2ψν(t) ∼ χ2

ν for each t. As we have seen,

the modified Laguerre expansion of GRΓ(x) has first two terms 1 and 1 − 2
ν
x, followed by

additional terms, whereas the modified Laguerre expansion of GΓ(x) can be thought of as

consisting of two summands, 1 and 2
ν
x− 1 only. Thus

GRΓ(ψν(t))− 1 = 1− 2

ν
ψν(t) +Rt

where Rt consists of higher order terms, which as shown become asymptotically negligible,

while

GΓ(ψν(t))− 1 =
2

ν
ψν(t)− 1.
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Hence we see once again that the weak limit as n → ∞ in the inverse gamma case is the

negative of the limit in the gamma case, which can now be understood to arise from the form

of the modified Laguerre expansions of GRΓ(x) and GΓ(x).

So for ξΓ
k (t)

def
= 1

kH
(T[kt] − [kt]) for τν(t) with the gamma distribution and −ξRΓ

k (t)
def
=

−1
kH

(T[kt] − [kt]) for τ ∗ν (t) with the inverse gamma distribution, both ξΓ
k (t) and −ξRΓ

k (t) will

have the same self similar asymptotic distribution, with self similarity parameter H , since

both ξΓ
k (t) and−ξRΓ

k (t) converge weakly as k →∞ to the average of [ν] independent Rosen-

blatt processes. There are two somewhat surprising aspects to this result: the asymmetry of

the limiting distribution of the difference in activity time Tt and clock time t, which can be

seen from the cf of the Rosenblatt process (2.12) by noting that φ(−u) 6= φ(u); and the sign

reversal of the limiting distribution in the inverse gamma and gamma cases discussed above.

We briefly illustrate empirically these features. This is done by taking ρ(s) = (1+s2)(H−1)/2

and simulating for various H values, 5000 chains of {τ5(t)} and {τ ∗5 (t)} of length 1000 and

4000, summing these chains to form T1000 and T4000, then comparing the 1
kH

(Tk − k) from

gamma distributed τ5(t) with the −1
kH

(Tk − k) from inverse gamma distributed τ ∗5 (t) via a

boxplot, which is shown in Figure 2.1.

Here the first box corresponds to H = 0.65, the second to H = 0.75, and the third to

H = 0.85. In each box, the first boxplot corresponds to the negative of the inverse gamma

case of length 1000, the second to the gamma case of length 1000, while the third and fourth

are similar but with length 4000.

The main point to note is that the asymptotic distributional equivalence can be observed

empirically, with the length 4000 pairs more alike than the length 1000 pairs, but that the

rate of convergence seems to slow as H gets larger. This empirical observation is consistent

with the theoretical result given in Theorem 3.1 of Leonenko & Anh (2001), which gives

an upper bound for the Kolmogorov distance between a process similar to our gamma and
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FIGURE 2.1. Boxplots of 1
kH

(Tk−k) and −1
kH

(Tk−k) for gamma and inverse
gamma distributed increments.

inverse gamma distributed {Tt}, and the Rosenblatt process as t→∞. Leonenko & Anh’s

result shows that the upper bound on the rate of convergence to the Rosenblatt process falls

as H falls (or in the notation of their paper, falls as α gets larger), in agreement with our

empirical result.

In addition to the rate of convergence, the skewness of the common asymptotic dis-

tribution of the difference between market time and clock time (Tt and t) is also evident

empirically through the boxplots.

2.4. Other possible activity time processes

In Sections 2.1 and 2.2 above we described processes with an acf given essentially by a

generalisation of ρ(s) = (1 + s2)(H−1)/2. Related work on the theory of LRD processes is
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contained in Anh, Knopova & Leonenko (2004), in which a (possibly negative and therefore

non-activity time) process {ξ(t), t ∈ R} is considered which displays cyclical LRD, with

acf of the form

(2.42) Cov(ξ(t), ξ(t+ s)) =
cos(κs)

(1 + s2)α/2
.

From the same paper we see that the spectral density associated with the acf above for κ = 0

is given by

(2.43) f(λ) =
2(1−α)/2

√
πΓ(α/2)

|λ|(α−1)/2K(α−1)/2(|λ|).

Equation (2.42) for κ = 0 is essentially the cf of the symmetric VG and the pdf of the

symmetric t distribution; while (2.43) is essentially the pdf of the symmetric VG and the

cf of the symmetric t. This is a reflection of the duality between the symmetric VG and t

distributions mentioned by Seneta (2004).

Before moving on we briefly describe two other processes that do result in LRD activity

time constructions. The aim is only to introduce other possible approaches to constructing

an activity time process, with proofs and greater detail available in the papers mentioned.

From Sly (2006) (see also Taqqu (1979)): for η1(t) as in Section 2.1, set Φ(·) the distri-

bution function of a standard normal, and F the distribution function of a gamma or inverse

gamma random variable for example. Then for each t, Φ(η1(t)) has the uniform distribution

and

τt = F−1(Φ(η1(t)))

has the distribution of F . Assume that τ1 has finite variance, which holds for example for

any gamma random variable and any inverse gamma random variable with δ > 2 from

(1.26), and set Tt =
∑t

j=1 τj as before. Now F−1(Φ(x)) is monotone increasing so that

C = E(F−1(Φ(η1(t)))η1(t)) > 0, which implies, from Taqqu (1979) for example, that

(2.44)
1

nH
(Tnt − nt)

D→ CBH(t)

as n→∞ where BH(t) is fractional Brownian motion.
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For inverse gamma distributed τt with 1 < δ ≤ 2, that is, τt with finite expectation but

infinite variance, if 1
2
< H < 1 with δH > 1 then (2.44) again holds, while if 1

2
< H < 1

with δH < 1 then

1

n1/δ
(Tnt − nt)

D→ C∗R∗(t)

where C∗ is a constant and R∗(t) is a Lévy-stable process with parameter α (see Sly (2006),

Section 4.3).

The second example of a LRD model comes from Taqqu & Levy (1986) (see also Liu

(2000)): set W (t) =
∑∞

k=0 WkI(Sk−1 < t ≤ Sk) = WN(t) where Sk = S0 +
∑k

j=1 Uj

is a renewal sequence with positive integer-valued inter-arrival times Uj , and N(t) is the

associated counting process. W (t) therefore takes the random value Wk for the duration of

the kth inter-arrival time. Also assume that the {Uk} are iid with P (U1 ≥ u) ∼ u−ah(u) for

1 < a < 2 and h(·) slowly varying with EU1 = µ; that the {Wk} are iid with EW1 = 0

and EW 2
1 < ∞; and that the {Uk} and {Wk} are independent. So that {Sk} is stationary

choose P (S0 = u) = µ−1P (Ui ≥ u + 1), u = 0, 1, . . . so that by Karamata’s theorem

P (S0 ≥ u) =
∑∞

k=u P (S0 = k) ∼ µ−1(a − 1)−1u−(a−1)h(u), which implies ES0 =∑∞
u=1 P (S0 ≥ u) =∞. Then

Cov(W (t),W (t+ s)) = EW 2
k

∞∑
k=0

P (Sk−1 < t < t+ s ≤ Sk) = EW 2
kP (S0 ≥ s)

so that
∑∞

s=0 Cov(W (t),W (t+ s)) =∞, giving LRD.

In fact, similar to above,

ζTL
k (t) =

∑[kt]
i=1 W (i)

k1/aL(k)

for L(·) slowly varying and t ∈ [0, 1], converges in finite dimensional distribution as k →∞

to a self similar Lévy-stable process with parameter a. Using the notation from Section 2.1,

one could set τt = W (t) + 1 and Tt =
∑t

j=1 τj , taking Wk, k = 1, 2, · · · to be mean-

corrected iid gamma or inverse gamma random variables for example.
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Interestingly, a restriction parallel to that imposed on Z(s) from Section 2.1 must be

imposed on the Taqqu & Levy construction. In this case we require P (S0 = u) = P (S0 ≥

u) − P (S0 ≥ u + 1) to be positive and decreasing with u. If the latter does not hold then

the distribution of the Ui will admit negative probabilities. Hence as earlier, there is no

distribution of Ui which gives P (S0 ≥ s) = (1 + ω|s|a)(H−1)/a where a = 2, ω = 1 for

0.648 < H < 1.



CHAPTER 3

Simulation, estimation and fit to data

This chapter explicitly details simulation of LRD VG and t models, and assesses a num-

ber of estimation techniques (the method of moments, product-density maximum likelihood,

non-standard minimum χ2, and characteristic function based estimation) to recover the (in

our case known) model parameter values of the simulated data. The motivation for compar-

ing estimation techniques is the apparent poor performance of the method of moments on

real data (Tjetjep & Seneta (2006)), and the apparent inappropriateness of product-density

maximum likelihood estimation given non-independence.

In the event we find that product-density maximum likelihood estimation performs best,

followed by minimum χ2 estimation. Thus although it assumes independence of returns,

product-density maximum likelihood outperforms procedures such as the method of mo-

ments which do not assume independence. We also find that classical χ2 goodness of fit

tests can be carried out as if the data were independent.

In addition to simulated data, we also fit VG and t models to historical financial data

and assess goodness of fit. In this case we find that for three data sets, the VG and t give

reasonably similar fits, while for one, Microsoft, the VG fit is clearly superior. The bulk of

the contents of this chapter has been published as Finlay & Seneta (2008a).

58
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3.1. Simulation and estimation techniques

To simulate LRD VG and t log price increments at integer points in time, we follow

the procedure laid out in Chapter 2 above. In both cases the acf of the underlying Gaussian

processes in continuous time is ρ(s) = (1 + s2)−
γ
2 , 0 < γ < 1

2
, and we restrict ourselves to

the integer ν case.

The VG procedure is as follows, where we take ν = 2α integer valued:

(1) Generate an n × n symmetric positive definite matrix Σ where the (i, j) th entry is

Σij = (1 + (i− j)2)−
γ
2 for some γ with 0 < γ < 1

2
.

(2) Calculate Σ
1
2 , the ‘square-root’ of Σ (Σ

1
2 = ED

1
2E−1 where D is the diagonal

matrix of the eigenvalues of Σ and the columns of E consist of the corresponding

orthonormal eigenvectors of Σ).

(3) Generate ν column n-vectors of N(0, I) independent normal random variables,

and left multiply each of these by Σ
1
2 . Call the ν vectors η1, · · · ,ην . Each ηi is

now an n-vector of correlated normals, with correlation matrix given by Σ.

(4) Calculate the column vector τVG where τVG,j = (η2
1,j + · · · + η2

ν,j)/ν for j =

1, . . . , n. Here τVG,j is the j th element of τVG and ηi,j is the j th element of ηi.

Then each element of τVG has a marginal Γ(α, α) distribution, for α = ν
2
, and the

correlation matrix of τVG is given by ρij = (1 + (i− j)2)−γ .

(5) Calculate the column vector XVG where XVG,j = µ + θτVG,j + σ
√
τVG,jZj . Here

XVG,j is the j th element of XVG, and Zj ∼ N(0, 1) is independent of τVG,j and

Zi, i 6= j. XVG is then an n-vector of long range dependent VG increments,

where the LRD comes from the asymptotically self similar {Tt− t} process, where

Tk =
∑k

j=1 τj , and which has self similarity parameter given by H = 1− γ.
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To simulate t increments, replace τVG in point (4) above by τ t-dist, where

τt-dist,j =
ν − 2

η2
1,j + · · ·+ η2

ν,j

.

Then each element of τ t-dist has the RΓ(δ, δ− 1) distribution for δ = ν
2
. The autocorrelation

function is considerably more complicated, but again leads to a LRD X t-dist with marginal

t distribution and asymptotic self similar {Tt − t}. Note however that unlike the VG, the t

construction requires ν > 4 (δ > 2). This bound ensures Var(τt) < ∞, a condition needed

to prove asymptotic self similarity.

Next to create some actual data series we choose n = 2500 along with various γ and ν

to simulate τVG and τ t-dist, and µ, θ and σ to simulateXVG andX t-dist.

To then re-estimate the known parameter values σ, α or δ, θ and µ of the marginal distri-

bution we employ four techniques: the method of moments (MOM), a minimum χ2 method,

product-density maximum likelihood estimation (PMLE), as well as empirical characteristic

function estimation (ECF) which shall be dealt with separately in Section 3.3.

Here and through out this chapter we take PMLE to mean the maximisation of the prod-

uct of marginal densities, as opposed to the maximisation of the full joint density of all

2500 readings (of course if the data are independent the two coincide). That is, we max-

imise
∑n

t=1 log fVG(Xt) or
∑n

t=1 log ft-dist(Xt) as a function of the parameters. Estimation

via the product of marginal (or bivariate) densities has also been considered by other au-

thors, and is sometimes referred to as pseudolikelihood in the literature (see for example

Cox & Reid (2004) who detail certain cases where pseudolikelihood results in consistent es-

timators, considering in particular some normal models where the full likelihood is difficult

to work with). In our case maximising the full joint likelihood would likely produce better

results than PMLE, but does not appear feasible. However, in an attempt to incorporate de-

pendence structure into our estimation technique in a somewhat parallel fashion, we use the

ECF technique described in Section 3.3.
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Estimation via MOM is performed as in Tjetjep & Seneta (2006). Specifically, note that

for µ or θ = 0 we can solve the MOM equations directly, whereas for µ, θ 6= 0 we cannot.

To circumvent this we minimise, for each simulation run,

(3.1) fMOM(σ, {α or δ}, θ, µ) =
4∑
i=1

(
Oi − Ei
Oi

)2

where Oi is the ith sample central moment as calculated from the data, and Ei is the ith

theoretical central moment given the parameter set, as detailed in Section 1.3. Note that we

divide byOi and notEi as this aids numerical stability. If the moments of the data are consis-

tent with the model, then there will exist a set of parameters such that fMOM(σ̂, {α̂ or δ̂}, θ̂, µ̂) =

0. If the moments of the data are not consistent with the model, then we choose the set of

parameters that minimises (3.1). The method is motivated by the Generalised Method of

Moments (GMM) of Hansen (1982), and is intended as a simple way to solve the moment

equations exactly if possible, or choose a set of compromise parameters which deliver mo-

ments close to those of the data if not. In fact of the models fitted via MOM in Section 3.2.2

for µ, θ 6= 0, 99.3% of fitted VG models returned fMOM(σ̂, α̂, θ̂, µ̂) = 0, whereas only

79.2% of fitted t models did the same. As touched on earlier, MOM fitting for the t requires

us to impose δ̂ > 4 when we numerically minimise (3.1) – this is to ensure that we have

four finite moments to identify the four parameters with – and as such is likely to produce a

bad fit when the true δ value is less than 4.

The minimum χ2 approach we use is non-standard. Our minimum χ2 procedure, for a

single realisation of n = 2500 increments, involves numerically minimising a statistic of the

form

(3.2) χ2
data(σ, {α or δ}, θ, µ) =

100∑
i=1

(O∗i − E∗i )2

E∗i

where for i = 1, . . . , 100, O∗i is the total number of observations in the data set divided by

100 (so in our case O∗i = 25), and E∗i is the expected number of observations falling within

the ith 1% sample quantile band (that is, the area under the marginal pdf between order
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statistic 2500 ∗ (i − 1)/100 and order statistic 2500 ∗ i/100, given the chosen parameters).

The minimum χ2 method is again motivated by the GMM, and results in a good fit between

the estimated marginal pdf and the empirical pdf, at least as measured by the value of the χ2

goodness of fit statistic. In contrast, method of moments fitting merely ensures that the first

four moments of the fitted model agree with the data, and as such provides no guarantee of a

holistic fit. Further, our minimum χ2 procedure only requires that the proportion of readings

falling into an (albeit data-determined) interval converges to the probability of landing in that

interval, and so can sensibly be used even when data are not independent. In contrast, the

PMLE procedure we employ maximises the product of marginal likelihoods, and so may

not be appropriate given dependent data. Hence minimum χ2 estimation was expected to

have advantages over both the MOM and PMLE.

3.1.1. Estimation of the correlation structure. To estimate H and hence γ we use

least squares and restrict ourselves to symmetric µ = θ = 0 models and mean–adjusted

data. From (1.1), and assuming that {Tt − t} is exactly self similar, we can estimate H by

minimising

(3.3) f(H) =
300∑
k=1

(ρ̂k −
1

2
((k + 1)2H + (k − 1)2H − 2k2H))2.

Here we use (1.16) in the form

(3.4) ρk
def
= Corr(τt, τt+k) =

Cov(X2
t , X

2
t+k)

σ4Var(τt)

to estimate ρk, since all components occurring on the right-hand side of (3.4) may be esti-

mated from observations on {Xt} over unit time points. For our specific VG and t models,

we do this via the sample covariance of the squared return series for Cov(X2
t , X

2
t+k), and via

the fitted marginal model parameters using Equations (1.19) and (1.27) for σ4 and Var(τt),

where respectively α = ν
2

and δ = ν
2
.

In fact one can also estimate σ4 and Var(τt) without appealing to a marginal model fit.

We can estimate σ2 by E(Xt − EXt)
2 from (1.7) and Var(τt), which we referred to as M2
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in Chapter 1, by E(Xt − EXt)
4/(3σ4) − 1 from (1.9). Expressed differently, the existence

of such a ‘data only’ estimation method for ρk implies that for any subordinator model

whose parameters are fitted via the method of moments, the marginal distribution of τt and

therefore Xt chosen (VG, t, GH, or some other distribution) has no impact on the estimate

of ρk, and therefore H , produced – that is, for method of moments fitted models, estimates

of the correlation structure are independent of any marginal distribution assumptions.

We in fact estimate ρk using both the marginal model dependent and marginal model in-

dependent methods described above, and find that both methods give broadly similar results.

It is important to note however that we only have self similarity of an asymptotic normed

{Tt− t}, and so the autocorrelation function of {τt} given by the right-hand side of (1.1) as

ρk = 1
2
((k + 1)2H + (k − 1)2H − 2k2H) will not be exact.

Although we do not pursue the technique here, we note that one can also use minimum

contrast methods for estimating H . In this case H is estimated by minimising a certain

distance between the spectral density and periodogram (see Leonenko & Sakhno (2006)

and Anh, Leonenko & Sakhno (2007)). Under certain assumptions, such an estimator is

consistent and asymptotically normal.

3.2. Estimation results for the simulated data

Recall from (1.14) that θ = 0 implies the increments {Xt} are uncorrelated, irrespective

of the autocorrelation structure of the increments {τt}. If θ = 0 and the increments {τt} are

also uncorrelated, then from (1.16) the increments {X2
t } are uncorrelated. If the {τt} are iid,

then the {Xt} are iid. For our autocorrelated {τt} we require 1
2
< H < 1. As H ↓ 1

2
, from

(1.1) the autocorrelation at lag k, ρk, approaches zero, so the {τt} and {Xt} might closely

resemble iid behavior, irrespective of the value of θ.
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3.2.1. Estimation results for µ = θ = 0. Beginning with the µ = θ = 0 case, we simu-

late 1000 runs of n = 2500 VG increments for all combinations of σ = 0.01, α = {2, 2.5, 3}

and H = {iid, 0.75, 0.85, 0.95}. By H = iid we mean that we simulate independent incre-

ments {τt}, that is, we choose Σ to be the identity matrix in Section 3.1, so that each ηi

is an n-vector of uncorrelated normals. Although H plays no role in this case we can still

‘estimate’ it via (3.4) and (3.3), and expect the estimate to be close to 1
2
. Similarly, we

simulate 1000 runs of n = 2500 t distributed increments for all combinations of σ = 0.01,

δ = {2.5, 3, 3.5} and H = {iid, 0.75, 0.85, 0.95}. We then jointly estimate the model pa-

rameters using the three methods described in Section 3.1. Here the sets of α and δ were

chosen to resemble those found in estimation of financial data (see Section 3.5), to ensure

that 2α and 2δ ∈ N, and to accommodate the fact that we need δ > 2 in order to construct

our increments.

For expository purposes we first look at 4 individual simulation runs (each of length

n = 2500) in some detail; they are the first simulated VG increments of each of the σ =

0.01, α = 2.5 and H = {iid, 0.75, 0.85, 0.95} runs. Table 3.1 provides some descriptive

statistics of each of these.

Sample Sample Sample Sample
H Mean Std. Deviation Skewness Kurtosis
iid 8.1e-5 1.0e-2 0.14 4.50
0.75 -2.2e-5 9.9e-3 -0.01 4.12
0.85 7.9e-5 9.7e-3 -0.13 4.44
0.95 1.5e-4 8.0e-3 0.12 4.40

TABLE 3.1. Descriptive statistics of VG simulation runs.

Here the theoretical mean and standard deviation of each run are given by µ + θ and√
σ2 + θ2

α
which evaluate to 0 and 0.01 respectively, from (1.10) the theoretical skewness is

given by

β =
2θ3 + 3θσ2α

α1/2(θ2 + ασ2)3/2
= 0,
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while from (1.11) the theoretical kurtosis is given by

κ =
3θ4(α + 2) + 6σ2θ2α(2 + α) + 3σ4α2(α + 1)

α(θ2 + ασ2)2
= 4.2.

Table 3.2 shows the results of parameter estimation.

MOM estimates PMLE estimates Min χ2 estimates
H σ̂ α̂ Ĥ σ̂ α̂ Ĥ σ̂ α̂ Ĥ
iid 1.0e-2 1.99 0.50 1.0e-2 2.56 0.50 1.0e-2 2.62 0.50

0.75 9.9e-3 2.67 0.78 1.0e-2 2.34 0.78 1.0e-2 2.37 0.78
0.85 9.7e-3 2.09 0.87 9.7e-3 2.27 0.88 9.7e-3 2.21 0.88
0.95 8.0e-3 2.12 0.86 8.0e-3 2.42 0.87 7.9e-3 2.41 0.87
TABLE 3.2. Parameter estimation results of VG simulation runs.

Even from this limited sample one can see that the method of moments generally gives

less precise estimates of the true α parameter value in the presence of substantial dependence

than the other two methods, and that the ‘Brownian motion driven parameter’ σ appears

easier to estimate than the other parameters. The fact that Ĥ is estimated to be larger when

H = 0.85 than when H = 0.95 looks a little strange, but could be due to sampling error

from just one simulation run.

Analogously, some descriptive statistics of the first simulated t increments for each of

the σ = 0.01, δ = 2.5 and H = {iid, 0.75, 0.85, 0.95} runs are given in Table 3.3 below.

Sample Sample Sample Sample
H Mean Std. Deviation Skewness Kurtosis
iid -1.6e-4 1.0e-2 0.05 6.40
0.75 1.3e-4 9.8e-3 -0.04 4.83
0.85 -6.8e-5 6.3e-3 -0.12 4.73
0.95 1.2e-4 1.1e-2 0.34 5.94

TABLE 3.3. Descriptive statistics of t simulation runs.

Here the theoretical mean and standard deviation of each run are given by µ + θ and√
σ2 + θ2

δ−2
which evaluate to 0 and 0.01 respectively, since θ = 0 the model is symmetric,

although from (1.10) the theoretical skewness for δ > 3 is given in general by

β =
4θ3 + 3θσ2(δ − 3)

(δ − 2)(δ − 3)(σ2 + θ2/(δ − 2))3/2
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and since δ = 2.5 the theoretical kurtosis is infinite, although in general from (1.11), the

kurtosis is for δ > 4 given by

3θ4(δ + 5) + 24σ2θ2(δ − 4) + 3σ2(2θ2 + σ2)(δ − 3)(δ − 4)

(δ − 2)(δ − 3)(δ − 4)(σ2 + θ2/(δ − 2))2

+
3σ4(δ − 2)(δ − 3)(δ − 4)

(δ − 2)(δ − 3)(δ − 4)(σ2 + θ2/(δ − 2))2
.

Table 3.4 shows the results of parameter estimation.

MOM estimates PMLE estimates Min χ2 estimates
H σ̂ δ̂ Ĥ σ̂ δ̂ Ĥ σ̂ δ̂ Ĥ
iid 1.0e-2 2.88 0.50 1.0e-2 2.41 0.50 1.0e-2 2.25 0.50

0.75 9.8e-3 3.63 0.80 9.8e-3 3.18 0.72 9.8e-3 2.96 0.71
0.85 6.3e-3 3.72 0.77 6.3e-3 5.14 0.76 6.3e-3 5.84 0.78
0.95 1.1e-2 3.01 0.91 1.1e-2 3.01 0.83 1.1e-2 3.12 0.84
TABLE 3.4. Parameter estimation results of t simulation runs.

Over the entire 1000 simulation runs, comparison between estimation methods is made

on the basis of mean absolute deviation (MAD) of estimated parameter values from the true

values, a standard measure in financial mathematics. So for example the MAD score for the

σ parameter would be given by MAD(σ̂) = 1
1000

∑1000
i=1 |σ̂i−σ|, where σ is the true value of

the parameter, and σ̂i is the estimated parameter value from the ith simulation run.

To separately examine the accuracy (how close our estimators are to the true parameter

value) and precision (the spread of estimates produced) of our estimators, we also report the

bias of each estimation method as well as the standard deviation of the estimates produced.

Again for σ the true parameter and σ̂i the estimated parameter value from the ith simulation

run, the bias is given by Bias(σ̂) = σ̄−σ for σ̄ = 1
1000

∑1000
i=1 σ̂i the average of the estimates;

and the standard deviation is given by SD(σ̂) =
√∑1000

i=1 (σ̂i − σ̄)2/1000. Note also that the

root mean square error (RMSE), another measure of overall accuracy analogous to the MAD

and defined as RMSE(σ̂) =
√

1
1000

∑1000
i=1 (σ̂i − σ)2, is given by

√
(SD(σ̂))2 + (Bias(σ̂))2.
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Tables 3.5, 3.6 and 3.7 gives the MAD scores, bias and standard deviation of estimates

produced for the VG model, while Tables 3.8, 3.9 and 3.10 gives similar information for the

t model. In each case, subscripts in the top row give the true α or δ value.

H σ2 σ2.5 σ3 α2 α2.5 α3

MOM iid 1.6e-4 1.4e-4 1.4e-4 0.37 0.52 0.66
0.75 6.7e-4 5.4e-4 5.5e-4 0.47 0.64 0.78
0.85 1.0e-3 1.0e-3 8.8e-4 0.72 0.97 1.24
0.95 2.0e-3 1.8e-3 1.6e-3 3.29 4.34 4.71

PMLE iid 1.6e-4 1.4e-4 1.4e-4 0.21 0.31 0.42
0.75 6.7e-4 5.4e-4 5.5e-4 0.27 0.40 0.55
0.85 1.0e-3 1.0e-3 8.8e-4 0.49 0.70 0.94
0.95 2.0e-3 1.8e-3 1.7e-3 2.82 3.86 4.16

Min χ2 iid 1.6e-4 1.5e-4 1.4e-4 0.23 0.33 0.47
0.75 6.7e-4 5.5e-4 5.5e-4 0.27 0.42 0.59
0.85 1.0e-3 1.0e-3 8.9e-4 0.49 0.70 0.95
0.95 2.0e-3 1.8e-3 1.6e-3 2.79 4.03 4.23

TABLE 3.5. MAD statistics for VG models with µ = θ = 0.

H σ2 σ2.5 σ3 α2 α2.5 α3

MOM iid -4.4e-6 -3.2e-6 -1.1e-5 0.12 0.18 0.24
0.75 -2.6e-5 -3.5e-5 1.7e-5 0.28 0.40 0.43
0.85 -2.6e-5 -8.7e-5 -3.6e-5 0.62 0.83 1.03
0.95 -2.6e-4 -2.2e-4 -3.8e-4 3.26 4.30 4.66

PMLE iid -3.8e-6 -2.1e-6 -9.8e-6 0.04 0.05 0.09
0.75 -2.3e-5 -3.3e-5 1.7e-5 0.13 0.21 0.29
0.85 -2.1e-5 -8.4e-5 -3.5e-5 0.42 0.60 0.78
0.95 -2.4e-4 -2.0e-4 -3.4e-4 2.80 3.84 4.14

Min χ2 iid -5.7e-6 -3.3e-6 -1.2e-5 0.04 0.06 0.10
0.75 -2.1e-5 -3.0e-5 1.5e-5 0.13 0.20 0.31
0.85 -1.9e-5 -8.2e-5 -3.5e-5 0.41 0.59 0.78
0.95 -2.3e-4 -2.0e-4 -3.4e-4 2.77 4.00 4.21

TABLE 3.6. Bias for VG models with µ = θ = 0.

A few things are immediately obvious: estimation generally becomes more inaccurate

as α or δ get larger, and as H and therefore correlation gets larger. In addition, regarding

the MAD of the α and δ coefficient estimates, the MOM method always performs worse

than PMLE or minimum χ2 estimation. The PMLE and minimum χ2 methods are closer,
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H σ2 σ2.5 σ3 α2 α2.5 α3

MOM iid 2.0e-4 1.8e-4 1.7e-4 0.47 0.67 0.83
0.75 8.5e-4 6.8e-4 6.9e-4 0.58 0.81 1.01
0.85 1.3e-3 1.2e-3 1.1e-3 0.81 1.14 1.51
0.95 2.5e-3 2.2e-3 2.0e-3 4.98 5.82 6.39

PMLE iid 2.0e-4 1.8e-4 1.7e-4 0.27 0.40 0.55
0.75 8.5e-4 6.8e-4 6.9e-4 0.35 0.53 0.72
0.85 1.3e-3 1.2e-3 1.1e-3 0.58 0.89 1.15
0.95 2.5e-3 2.2e-3 2.0e-3 3.67 4.47 4.57

Min χ2 iid 2.1e-4 1.9e-4 1.8e-4 0.30 0.45 0.62
0.75 8.5e-4 6.9e-4 6.9e-4 0.35 0.56 0.78
0.85 1.3e-3 1.3e-3 1.1e-3 0.63 0.96 1.26
0.95 2.5e-3 2.2e-3 2.0e-3 3.70 5.02 4.91

TABLE 3.7. Standard deviation for VG models with µ = θ = 0.

H σ2.5 σ3 σ3.5 δ2.5 δ3 δ3.5

MOM iid 2.1e-4 1.8e-4 1.6e-4 0.47 0.49 0.61
0.75 6.4e-4 5.5e-4 5.2e-4 0.52 0.56 0.72
0.85 1.2e-3 1.0e-3 9.0e-4 0.72 0.87 0.96
0.95 2.2e-3 1.9e-3 1.8e-3 3.43 3.95 5.19

PMLE iid 2.0e-4 1.7e-4 1.6e-4 0.20 0.30 0.40
0.75 6.5e-4 5.6e-4 5.2e-4 0.27 0.36 0.48
0.85 1.2e-3 1.0e-3 9.0e-4 0.48 0.64 0.75
0.95 2.2e-3 1.9e-3 1.8e-3 3.03 3.59 4.63

Min χ2 iid 2.2e-4 1.9e-4 1.7e-4 0.24 0.36 0.48
0.75 6.6e-4 5.6e-4 5.3e-4 0.31 0.41 0.55
0.85 1.2e-3 1.0e-3 9.1e-4 0.54 0.70 0.88
0.95 2.2e-3 1.9e-3 1.8e-3 3.23 3.85 4.85

TABLE 3.8. MAD statistics for t models with µ = θ = 0.

but PMLE does generally outperform. As remarked on earlier, the accuracy and precision

of the σ estimates are similar for all methods.

In Tables 3.11, 3.12 and 3.13 are the MAD scores, bias and standard deviation of the H

estimates for the µ = θ = 0 models achieved by minimising (3.3). The minimum χ2 method

is used to estimate the marginal distribution parameters α or δ; using maximum likelihood

to estimate the marginal distribution parameters results in virtually the same values as those

shown.
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H σ2.5 σ3 σ3.5 δ2.5 δ3 δ3.5

MOM iid 1.3e-6 3.1e-6 -5.4e-6 0.41 0.34 0.36
0.75 -5.8e-5 4.0e-5 -4.8e-5 0.47 0.43 0.53
0.85 -8.3e-5 -1.2e-4 -4.4e-5 0.69 0.78 0.79
0.95 -4.8e-4 -2.7e-4 -2.2e-4 3.42 3.93 5.17

PMLE iid 7.2e-6 1.0e-6 -2.4e-6 0.04 0.07 0.09
0.75 -5.4e-5 4.4e-5 -4.6e-5 0.14 0.14 0.26
0.85 -8.1e-5 -1.3e-4 -4.5e-5 0.38 0.52 0.60
0.95 -5.0e-4 -2.8e-4 -2.3e-4 3.01 3.58 4.61

Min χ2 iid 6.8e-6 -2.1e-6 -3.9e-6 0.05 0.09 0.11
0.75 -5.4e-5 4.6e-5 -4.4e-5 0.15 0.16 0.28
0.85 -9.9e-5 -1.3e-4 -5.0e-5 0.43 0.57 0.69
0.95 -5.1e-4 -2.9e-4 -2.4e-4 3.21 3.84 4.82

TABLE 3.9. Bias for t models with µ = θ = 0.

H σ2.5 σ3 σ3.5 δ2.5 δ3 δ3.5

MOM iid 2.8e-4 2.5e-4 2.0e-4 0.40 0.53 0.70
0.75 8.1e-4 6.9e-4 6.5e-4 0.45 0.59 0.80
0.85 1.4e-3 1.3e-3 1.1e-3 0.74 0.88 1.13
0.95 2.7e-3 2.3e-3 2.2e-3 5.79 6.01 6.79

PMLE iid 2.5e-4 2.2e-4 2.0e-4 0.26 0.38 0.53
0.75 8.2e-4 6.9e-4 6.5e-4 0.34 0.46 0.62
0.85 1.4e-3 1.3e-3 1.1e-3 0.64 0.76 0.98
0.95 2.7e-3 2.3e-3 2.2e-3 3.40 3.72 4.65

Min χ2 iid 2.7e-4 2.4e-4 2.2e-4 0.31 0.45 0.63
0.75 8.3e-4 7.0e-4 6.5e-4 0.39 0.55 0.76
0.85 1.4e-3 1.3e-3 1.1e-3 0.68 0.91 1.20
0.95 2.7e-3 2.3e-3 2.2e-3 3.68 4.11 5.00

TABLE 3.10. Standard deviation for t models with µ = θ = 0.

VG models t models
True H\α or δ 2 2.5 3 2.5 3 3.5

iid 0.03 0.03 0.03 0.01 0.02 0.02
0.75 0.04 0.04 0.04 0.07 0.05 0.04
0.85 0.05 0.05 0.05 0.12 0.09 0.07
0.95 0.11 0.11 0.10 0.13 0.12 0.12

TABLE 3.11. MAD of Ĥ estimates using the minimum χ2 method.

If we use rather the marginal distribution free method of estimating H as detailed in the

second paragraph of Section 3.1.1 (i.e., estimation via moments – the ‘MOM’ method), we
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VG models t models
True H\α or δ 2 2.5 3 2.5 3 3.5

iid 0.03 0.03 0.03 0.01 0.02 0.02
0.75 0.02 0.02 0.03 −0.07 −0.04 −0.01
0.85 −0.04 −0.04 −0.04 −0.12 −0.08 −0.07
0.95 −0.11 −0.11 −0.10 −0.13 −0.12 −0.11

TABLE 3.12. Bias of Ĥ estimates using the minimum χ2 method.

VG models t models
True H\α or δ 2 2.5 3 2.5 3 3.5

iid 0.04 0.04 0.05 0.02 0.03 0.04
0.75 0.04 0.04 0.04 0.06 0.05 0.04
0.85 0.04 0.05 0.05 0.07 0.05 0.05
0.95 0.05 0.05 0.05 0.06 0.06 0.05

TABLE 3.13. Standard deviation of Ĥ estimates using the minimum χ2 method.

arrive at Tables 3.14, 3.15 and 3.16. Here the Ĥ estimates produced are quite similar, if

generally a little better, than those from Tables 3.11, 3.12 and 3.13.

VG models t models
True H\α or δ 2 2.5 3 2.5 3 3.5

iid 0.03 0.03 0.03 0.02 0.02 0.02
0.75 0.04 0.04 0.04 0.05 0.04 0.03
0.85 0.05 0.05 0.05 0.09 0.07 0.07
0.95 0.10 0.10 0.10 0.13 0.12 0.11

TABLE 3.14. MAD of Ĥ estimates using the moment method.

VG models t models
True H\α or δ 2 2.5 3 2.5 3 3.5

iid 0.03 0.03 0.03 0.02 0.02 0.02
0.75 0.02 0.03 0.03 −0.03 −0.02 0.00
0.85 −0.04 −0.04 −0.04 −0.09 −0.07 −0.06
0.95 −0.10 −0.10 −0.10 −0.13 −0.12 −0.11

TABLE 3.15. Bias of Ĥ estimates using the moment method.

As mentioned earlier, our data are only asymptotically self similar. As such, we would

not necessarily expect the estimated H values to be very close to the ‘true’ values. They

do however generally conform to expectations, with the bias generally quite small, although
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VG models t models
True H\α or δ 2 2.5 3 2.5 3 3.5

iid 0.04 0.04 0.05 0.03 0.03 0.04
0.75 0.04 0.04 0.05 0.05 0.04 0.04
0.85 0.04 0.05 0.05 0.05 0.05 0.05
0.95 0.05 0.06 0.06 0.05 0.05 0.06

TABLE 3.16. Standard deviation of Ĥ estimates using the moment method.

increasing in magnitude with H , and the standard deviation of estimates also small. It is

apparent that the bias of the t estimates is generally more negative than for the VG estimates,

but this may be due to the simulation procedure: to show that the t increments are self similar

requires two asymptotic arguments, as opposed to one for the VG.

3.2.2. Estimation results for µ, θ 6= 0. One explanation for the superior performance

of PMLE in Section 3.2.1 may be that although our simulated increments were dependent,

they were not strongly so. Indeed from (1.14), for θ = 0 the increments are uncorrelated. As

such, the product of the univariate densities that we are maximising in the PMLE procedure

may be a good approximation to the true multivariate density, at least in regards to parame-

ter estimation. To test this conjecture we simulate some further, more strongly correlated,

increments.

First we simulate increments where σ = 0.01, θ = −5 × 10−4, µ = 10−3 and H =

{iid, 0.75, 0.85, 0.95}, with α = 2.5 for the VG and δ = 2.5 for the t, where the θ and µ

parameters were again chosen to resemble financial data.

Once again we look at the first simulated set of VG increments from each of the 1000

runs in some detail. Table 3.17 gives the descriptive statistics (here the theoretical mean,

standard deviation, skewness and kurtosis are given by 5 × 10−4, 0.01, −0.06 and 4.2 re-

spectively), while Table 3.18 gives the results of parameter estimation.
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Sample Sample Sample Sample
H Mean Std. Deviation Skewness Kurtosis
iid 5.8e-4 1.0e-2 0.08 4.45
0.75 5.9e-4 9.5e-3 0.14 4.38
0.85 4.5e-4 9.0e-3 -0.06 4.36
0.95 5.5e-4 9.4e-3 -0.04 3.94

TABLE 3.17. Descriptive statistics of VG simulation runs.

H σ̂ α̂ θ̂ µ̂
MOM iid 1.0e-2 2.07 5.3e-4 5.2e-5

0.75 9.5e-3 2.19 1.0e-3 -4.1e-4
0.85 9.0e-3 2.20 -3.9e-4 8.4e-4
0.95 9.4e-3 3.19 -3.8e-4 9.3e-4

PMLE iid 1.0e-2 2.50 -7.0e-4 1.3e-3
0.75 9.5e-3 1.98 1.3e-5 5.8e-4
0.85 9.0e-3 2.03 -5.7e-4 1.0e-3
0.95 9.4e-3 2.79 -6.9e-4 1.2e-3

Min χ2 iid 1.0e-2 2.60 -9.4e-4 1.5e-3
0.75 9.5e-3 2.06 -8.5e-5 6.5e-4
0.85 9.0e-3 2.02 -5.5e-4 9.9e-4
0.95 9.4e-3 2.74 -7.5e-4 1.3e-3

TABLE 3.18. Parameter estimation results of VG simulation runs.

As before, the method of moments generally gives less accurate estimates than the other

two estimation methods.

Analogously, descriptive statistics of the first simulated set of t increments from each of

the 1000 runs are given in Table 3.19 (here the theoretical mean and standard deviation are

given by 5 × 10−4 and 0.01, while the skewness and kurtosis are both infinite). Table 3.20

gives the results of parameter estimation.

Sample Sample Sample Sample
H Mean Std. Deviation Skewness Kurtosis
iid 4.2e-4 9.6e-3 -0.13 4.70
0.75 6.1e-4 1.0e-2 -0.06 6.49
0.85 6.3e-4 1.1e-2 0.25 5.37
0.95 5.2e-4 8.1e-3 0.04 3.23

TABLE 3.19. Descriptive statistics of t simulation runs.
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H σ̂ α̂ θ̂ µ̂
MOM iid 9.5e-3 4.01 -8.4e-4 1.3e-3

0.75 1.1e-2 4.00 -3.4e-4 1.0e-3
0.85 1.2e-2 4.01 9.2e-4 -2.3e-4
0.95 8.1e-3 15.19 1.5e-3 -9.5e-4

PMLE iid 9.6e-3 3.35 -4.3e-4 8.5e-4
0.75 1.0e-2 2.66 4.4e-4 1.7e-4
0.85 1.2e-2 2.55 8.2e-4 -1.8e-4
0.95 8.1e-3 17.12 1.3e-3 -7.8e-4

Min χ2 iid 9.5e-3 3.35 -3.0e-4 7.6e-4
0.75 1.0e-2 2.67 6.5e-4 -1.1e-5
0.85 1.2e-2 2.42 9.1e-4 -2.6e-4
0.95 8.1e-3 20.99 5.0e-4 5.1e-5

TABLE 3.20. Parameter estimation results of t simulation runs.

For ease of comparison between models over the entire 1000 simulation runs, and given

the extra parameters introduced, we include one extra statistic – the average relative measure

(ARM). For each model this is given by the average of the absolute value of the MAD score,

bias or standard deviation of each parameter divided by the absolute value of the true value

of the parameter. So for example, the ARM statistic for MAD scores for VG fitted models

is given by

1

4

(∣∣∣∣MAD(σ̂)

σ

∣∣∣∣+

∣∣∣∣MAD(α̂)

α

∣∣∣∣+

∣∣∣∣∣MAD(θ̂)

θ

∣∣∣∣∣+

∣∣∣∣MAD(µ̂)

µ

∣∣∣∣
)

(replacing α with δ for t models, and MAD(·) with Bias(·) or SD(·) for the ARM applied to

the bias or standard deviation). For the MAD, bias and standard deviation, the ARM number

is intended as a simple measure of overall distance from zero, and therefore goodness of fit.

The results of the simulation runs are presented in Tables 3.21 to 3.26 below. Note

that for the t, δ = 2.5 implies infinite skewness and kurtosis (equations (1.28) and (1.29)),

whereas to use the MOM we must assume that these are finite, as 4 moments are needed

in order to identify the 4 model parameters. As such, we must impose δ̂ > 4 as a con-

straint when we numerically minimise (3.1) and determine our MOM parameter estimates.

Estimating a model that assumes δ̂ > 4 when in fact δ = 2.5 of course results in a bad fit.
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H σ α θ µ ARM
MOM iid 1.5e-4 0.53 6.2e-4 6.1e-4 0.52

0.75 5.7e-4 0.69 7.0e-4 6.7e-4 0.60
0.85 9.7e-4 0.97 7.0e-4 6.6e-4 0.64
0.95 1.8e-3 4.66 1.3e-3 1.3e-3 1.48

PMLE iid 2.5e-4 0.31 5.2e-4 4.9e-4 0.42
0.75 6.8e-4 0.43 6.4e-4 6.0e-4 0.53
0.85 1.1e-3 0.67 6.6e-4 6.2e-4 0.58
0.95 1.8e-3 3.54 1.1e-3 1.1e-3 1.24

Min χ2 iid 1.7e-4 0.41 6.5e-4 6.3e-4 0.53
0.75 5.7e-4 0.45 5.5e-4 5.1e-4 0.46
0.85 9.7e-4 0.68 6.0e-4 5.5e-4 0.53
0.95 1.8e-3 3.61 1.1e-3 1.1e-3 1.23

TABLE 3.21. MAD statistics for VG models with θ small.

H σ α θ µ ARM
MOM iid -1.7e-5 0.20 -3.2e-5 3.6e-5 0.05

0.75 -4.1e-5 0.44 -3.0e-5 3.1e-5 0.07
0.85 -1.3e-4 0.80 1.3e-6 1.2e-5 0.09
0.95 -2.4e-4 4.63 -7.1e-5 6.9e-5 0.52

PMLE iid 9.5e-5 0.05 -2.8e-5 -5.2e-5 0.03
0.75 8.0e-5 0.25 -7.2e-5 -1.1e-4 0.09
0.85 -3.4e-5 0.55 -6.1e-5 -1.1e-4 0.11
0.95 -2.0e-4 3.52 -1.2e-4 -7.2e-5 0.44

Min χ2 iid -3.4e-5 0.14 -1.6e-4 1.7e-4 0.14
0.75 -4.0e-5 0.25 1.8e-5 -1.5e-5 0.04
0.85 -1.3e-4 0.54 1.8e-5 -5.4e-6 0.07
0.95 -2.5e-4 3.58 -6.4e-5 6.3e-5 0.41

TABLE 3.22. Bias of estimates from VG models with θ small.

In fact the results for the small θ simulations are substantially similar to those for the

θ = 0 case. That is, the MOM is almost always the worst method, and in most cases PMLE

does better than minimum χ2 fitting. Note however that the MAD scores and standard

deviation for the θ parameter are generally of the same order of magnitude as the parameter

itself, as opposed to all other parameters for which the MAD scores and standard deviation

are generally 1 to 2 orders of magnitude smaller. This indicates that estimation of the θ

parameter in practice, especially if it is quite small, is likely to be very imprecise.
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H σ α θ µ ARM
MOM iid 1.8e-4 0.67 7.8e-4 7.6e-4 0.65

0.75 7.2e-4 0.88 8.7e-4 8.4e-4 0.75
0.85 1.2e-3 1.66 8.9e-4 8.5e-4 0.85
0.95 2.2e-3 10.51 2.7e-3 2.7e-3 3.11

PMLE iid 1.0e-3 0.40 1.2e-3 1.3e-3 0.99
0.75 1.2e-3 0.58 1.6e-3 1.7e-3 1.34
0.85 1.5e-3 1.02 1.7e-3 1.7e-3 1.40
0.95 2.3e-3 4.07 2.2e-3 2.3e-3 2.13

Min χ2 iid 3.7e-4 1.38 2.8e-3 2.8e-3 2.22
0.75 7.2e-4 0.63 6.9e-4 6.5e-4 0.59
0.85 1.2e-3 0.88 7.7e-4 7.2e-4 0.69
0.95 2.2e-3 4.29 2.2e-3 2.2e-3 2.10

TABLE 3.23. Standard deviation of estimates from VG models with θ small.

H σ δ θ µ ARM
MOM iid 4.7e-4 1.53 1.4e-3 1.4e-3 1.24

0.75 7.7e-4 1.54 1.4e-3 1.4e-3 1.22
0.85 1.2e-3 1.62 1.3e-3 1.2e-3 1.16
0.95 2.3e-3 3.51 1.2e-3 1.1e-3 1.27

PMLE iid 1.9e-4 0.20 3.7e-4 3.3e-4 0.29
0.75 6.6e-4 0.26 3.7e-4 3.3e-4 0.31
0.85 1.1e-3 0.47 4.2e-4 3.7e-4 0.38
0.95 2.2e-3 2.95 7.4e-4 6.7e-4 0.89

Min χ2 iid 2.1e-4 0.23 4.0e-4 3.5e-4 0.32
0.75 6.6e-4 0.32 4.2e-4 3.6e-4 0.35
0.85 1.2e-3 0.54 4.6e-4 4.0e-4 0.41
0.95 2.2e-3 3.26 8.3e-4 7.6e-4 0.99

TABLE 3.24. MAD statistics for t models with θ small.

In regards to the PMLE beating minimum χ2 fitting, this may be due to the θ and µ

parameters chosen being quite small, and as such not increasing the degree of autocorre-

lation between increments significantly. Accordingly, we simulate one further realisation

with substantially stronger autocorrelation, choosing parameters σ = 0.01, θ = −5× 10−2,

µ = 10−3 and H = 0.95, with α = 2.5 for the VG and δ = 2.5 for the t. Results of the

simulation are given in Tables 3.27 to 3.29.

In this case the minimum χ2 method does give a more accurate and precise estimate of α

or δ (but not the other parameters) than the PMLE, and indeed is more accurate and precise
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H σ δ θ µ ARM
MOM iid 9.5e-5 1.53 -8.2e-4 8.2e-4 0.77

0.75 1.0e-5 1.54 -7.3e-4 7.3e-4 0.70
0.85 -5.3e-6 1.62 -6.5e-4 6.5e-4 0.65
0.95 -3.7e-4 3.51 -3.8e-4 3.8e-4 0.64

PMLE iid -1.3e-5 0.04 -1.1e-5 1.4e-5 0.01
0.75 -8.5e-5 0.14 -9.7e-8 7.8e-6 0.02
0.85 -1.0e-4 0.40 -2.9e-5 3.1e-5 0.06
0.95 -3.7e-4 2.93 -4.8e-5 4.8e-5 0.34

Min χ2 iid -2.6e-5 0.05 -1.2e-5 1.6e-5 0.02
0.75 -1.1e-4 0.19 -1.2e-5 1.9e-5 0.03
0.85 -1.2e-4 0.46 -4.4e-5 4.5e-5 0.08
0.95 -3.9e-4 3.24 -5.4e-5 5.2e-5 0.37

TABLE 3.25. Bias of estimates from t models with θ small.

H σ δ θ µ ARM
MOM iid 8.8e-4 0.13 2.2e-3 2.1e-3 1.66

0.75 1.0e-3 0.16 2.0e-3 1.9e-3 1.51
0.85 1.6e-3 0.65 1.9e-3 1.9e-3 1.52
0.95 2.9e-3 3.55 1.7e-3 1.6e-3 1.69

PMLE iid 2.4e-4 0.26 4.7e-4 4.2e-4 0.37
0.75 8.2e-4 0.32 4.8e-4 4.3e-4 0.40
0.85 1.4e-3 0.53 5.2e-4 4.6e-4 0.46
0.95 2.7e-3 3.30 9.7e-4 9.0e-4 1.11

Min χ2 iid 2.6e-4 0.30 5.1e-4 4.5e-4 0.41
0.75 8.3e-4 0.40 5.3e-4 4.7e-4 0.44
0.85 1.4e-3 0.64 5.7e-4 5.1e-4 0.51
0.95 2.7e-3 4.03 1.1e-3 1.1e-3 1.31

TABLE 3.26. Standard deviation of estimates from t models with θ small.

Model σ α or δ θ µ ARM
MOM VG 9.4e-3 6.22 2.8e-2 2.0e-2 5.89
PMLE VG 5.3e-3 4.78 2.3e-2 1.2e-2 3.73
Min χ2 VG 1.6e-2 2.03 4.4e-2 4.3e-2 11.59
MOM t 2.9e-2 4.10 3.7e-2 2.4e-2 7.39
PMLE t 3.7e-3 3.28 2.1e-2 7.4e-3 2.38
Min χ2 t 2.9e-2 2.13 3.5e-2 2.9e-2 8.32
TABLE 3.27. MAD statistics for models with θ large.

than when it was applied to less correlated increments. This latter increase in accuracy is
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Model σ α or δ θ µ ARM
MOM VG -6.8e-3 6.17 -1.3e-2 1.3e-2 4.02
PMLE VG -3.8e-3 4.77 -9.1e-3 8.9e-3 2.84
Min χ2 VG 1.4e-2 1.56 4.0e-2 -3.6e-2 9.77
MOM t 2.0e-2 4.10 5.1e-3 2.6e-3 1.57
PMLE t 3.8e-4 3.24 9.5e-4 -3.5e-4 0.43
Min χ2 t 2.8e-2 0.80 1.9e-2 -2.1e-2 6.24

TABLE 3.28. Bias of estimates from models with θ large.

Model σ α or δ θ µ ARM
MOM VG 7.0e-3 7.11 3.9e-2 2.5e-2 7.38
PMLE VG 4.5e-3 4.69 3.1e-2 1.5e-2 4.46
Min χ2 VG 1.7e-2 3.54 3.4e-2 4.5e-2 12.17
MOM t 4.7e-2 4.62 5.6e-2 4.0e-2 11.84
PMLE t 4.7e-3 4.46 2.7e-2 1.0e-2 3.26
Min χ2 t 2.9e-2 3.96 4.2e-2 3.0e-2 8.96

TABLE 3.29. Standard deviation of estimates from models with θ large.

likely due to the larger θ value, which gives τt more prominence in the realised Xt read-

ings (c.f., Equation (1.6)). Once again the MOM performed worst in estimating the α or δ

parameter.

The parameters chosen in this last case are probably not particularly realistic values

of actual stock price processes however. This leads us to the conclusion that, unless one

has particularly skewed and/or correlated data, and is particularly interested in the α or δ

parameter, PMLE estimation is probably the best of these three methods to use. This is

somewhat surprising given that in the non-independence case PMLE has theoretical draw-

backs compared with the other two methods so far considered. Given that MLE is the su-

perior estimation method for iid data, it would appear that, at least for the cases considered,

the dependence structure introduced did not render the true multivariate density sufficiently

different from the product of marginal densities to cause either of the other methods to per-

form better than PMLE. Note however that one would expect full multivariate maximum

likelihood estimation to outperform PMLE, as such estimation would take into account the

dependence of squared returns.
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3.3. The ECF method

In addition to the three methods described above, we also estimate using the empirical

characteristic function technique. The ECF technique has the advantage of utilising the

joint distribution of {Xt}, which depends on the H parameter and should aid in estimation,

and is based on the joint characteristic function of readings, which unlike the joint pdf, we

know in the case of the VG. Estimation via the ECF is performed similarly to Yu (2004)

for the VG only. Note that the asymptotic results regarding ECF estimation in Yu (2004) –

that ECF estimates are consistent and asymptotically normal – apply only to iid processes

and processes following a form of weak dependence (SRD). In particular, the results do not

necessarily carry over to LRD case, which is the case we are concerned with (see Yu (2004),

Section 3.1 for the list of assumptions needed to ensure a consistent and asymptotically

normal estimator). To perform ECF estimation we numerically minimise

(3.5)
∫

Rp
|φVG(ω)− φECF(ω)|2e−

∑p
j=1 |ωj |dpω

where ω = (ω1, · · · , ωp)′, e−
∑p
j=1 |ωj | is an exponential weighting function,

(3.6) φVG(ω) = eiω
′µ|I − 1

α
(Σ

1
2 diag(iθω − σ2

2
ω2)Σ

1
2 )|−α

is the joint cf of {X1, · · · , Xp} with µ a p-vector of µ’s and Σ
1
2 a p× p matrix, and

φECF(ω) =
1

n− p+ 1

n−p∑
k=0

ei
∑p
j=1 ωjXk+j

is the joint p-dimensional ECF of the readings X1, · · · , Xn. In fact ECF estimation belongs

to the class of GMM estimators as it minimises a distance between sample and population

moments, as given respectively by the ECF and cf evaluated at different ω values. To actu-

ally perform ECF estimation we choose p = 6 and numerically minimise (3.5) as a function

of σ, α, θ, µ and H . To calculate (3.5) for a given set of parameters we integrate numerically

using a 15,625 point quadrature for the µ = θ = 0 case and a 46,656 point quadrature for the

µ, θ 6= 0 case. Larger p values capture more of the joint structure of {Xt}, at the expense

of slower computation, and the choice p = 6 was made with this trade-off in mind.
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3.3.1. Estimation results for the ECF method. Estimation results for the symmetric

VG model using the same 1000 runs of σ = 0.01, H = {iid, 0.75, 0.85, 0.95} and α = 2.5

data as in Section 3.2.1, fitted via the ECF method, are given in Tables 3.30 to 3.32 below. In

this case, in addition to detailing results for the Ĥ estimates produced via the ECF procedure,

we give for comparison results for Ĥ as estimated via the least squares procedure detailed

in Section 3.1.1 (these are given in the HLS column of the tables). Tables 3.30 to 3.32 can

be compared with Tables 3.5 to 3.7 in Section 3.2.1.

Results for the skew VG model using the same 1000 runs of σ = 0.01, θ = −5× 10−4,

µ = 10−3, H = {iid, 0.75, 0.85, 0.95} and α = 2.5 data as in Section 3.2.2 are given

in Tables 3.33 to 3.35, which can be compared with Tables 3.21 to 3.23 in Section 3.2.2.

We provide no HLS column as estimation of H via a procedure similar to that detailed in

Section 3.1.1, although possible for the skew case, is quite involved.

H σ α H HLS
iid 1.4e-4 2.48 0.10 0.03
0.75 5.4e-4 2.68 0.18 0.06
0.85 1.0e-3 2.21 0.24 0.10
0.95 1.8e-3 2.39 0.32 0.21

TABLE 3.30. MAD statistics for symmetric VG models fitted via ECF.

H σ α H HLS
iid -2.2e-6 0.85 0.10 0.03
0.75 -3.4e-5 0.75 -0.11 -0.01
0.85 -8.6e-5 0.32 -0.21 -0.09
0.95 -2.0e-4 0.42 -0.31 -0.21

TABLE 3.31. Bias for symmetric VG models fitted via ECF.

H σ α H HLS
iid 1.8e-4 4.65 0.15 0.05
0.75 6.8e-4 4.96 0.16 0.08
0.85 1.3e-3 4.25 0.16 0.08
0.95 2.2e-3 4.10 0.18 0.09

TABLE 3.32. Standard deviation for symmetric VG models fitted via ECF.
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H σ α θ µ H ARM
iid 3.9e-4 5.55 1.3e-3 1.3e-3 0.21 1.65
0.75 8.3e-4 3.97 1.2e-3 1.2e-3 0.18 1.36
0.85 1.1e-3 3.42 1.1e-3 1.1e-3 0.20 1.25
0.95 1.9e-3 5.24 1.1e-3 1.1e-3 0.24 1.43

TABLE 3.33. MAD statistics for skew VG models fitted via ECF.

H σ α θ µ H ARM
iid -2.6e-4 3.86 5.4e-4 -5.4e-4 0.21 0.90
0.75 -3.1e-4 2.23 4.8e-4 -4.8e-4 -0.01 0.59
0.85 -2.9e-4 1.85 5.4e-4 -5.2e-4 -0.12 0.62
0.95 -3.9e-4 3.72 5.1e-4 -5.1e-4 -0.21 0.81

TABLE 3.34. Bias for skew VG models fitted via ECF.

H σ α θ µ H ARM
iid 1.5e-3 12.35 2.3e-3 2.3e-3 0.20 3.09
0.75 1.7e-3 9.24 2.0e-3 2.0e-3 0.20 2.52
0.85 1.7e-3 7.76 1.8e-3 1.8e-3 0.20 2.22
0.95 2.5e-3 9.42 1.7e-3 1.6e-3 0.20 2.23

TABLE 3.35. Standard deviation for skew VG models fitted via ECF.

Contrary to expectations, the results indicate that in these two cases ECF estimation

performs worse than the simpler methods considered previously, particularly with regards

to the α and H parameters. Focusing first on the symmetric models, while the MSE, bias

and standard deviation of the σ estimates produced via ECF estimation are of roughly equal

magnitude to those from estimates produced by the three methods considered earlier, results

regarding estimation of α are generally worse (except for the H = 0.95 case), and results

regarding estimation of H are uniformly worse. Estimation results for the skew models are

similar: the MAD, bias and standard deviation of σ estimates produced by the ECF method

are of roughly equal magnitude to those from estimates produced by the three methods

considered earlier; results regarding the α parameter are much worse than earlier, except for

the H = 0.95 case where the MAD, bias and standard deviation are of a similar magnitude;

and results regarding estimation of θ and µ are also typically worse than earlier.
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As noted above, ECF estimation does perform relatively better in the H = 0.95 case,

which corresponds to the strongest correlation case and therefore would benefit most from

a procedure like the ECF which incorporates the correlation structure, but even here the

estimates produced are quite inaccurate and imprecise. As mentioned earlier, in order to

keep calculations tractable we use only a 6-dimensional cf in estimation, which may limit

the degree of the joint structure captured. The extra complexity, data manipulation and

numerical integration involved in working with the joint cf also introduces more margin for

rounding error, and is more removed from the data than the previous methods.

Given the poor performance of ECF estimation recorded here we shall not proceed with

it past this section, although we will derive the joint cf φVG(ω) given by (3.6).

Similar to Section 3.1, let τVG be a p-vector of correlated random variables with mar-

ginal Γ(α, α) distribution. If Z is a vector of uncorrelated standard normals, then XVG =

µ + θτVG + σ
√
τVG ⊗ Z describes our observed log price increments. Here

√
τVG is the

element-wise square-root of τVG, and ‘⊗’ gives element-wise multiplication. The charac-

teristic function of XVG is then given by

(3.7) φVG(ω) = E(eiω
′XVG) = eiω

′µE(e(iθω−σ
2

2
ω2)′τVG)

where ω2 is the element-wise square of ω, and the right-hand side of (3.7) follows by

conditioning on τVG, since Z ∼ N(0, I). Now τVG = (η2
1 + · · · + η2

ν)/ν where for

i = 1, . . . , ν, ηi = Σ
1
2 Zi, each Zi is an independent vector of independent standard normals,

and η2
i is the element-wise square of ηi. As such, for w′ = (w1, · · · , wp),

w′τVG =
ν∑
i=1

(w1η
2
i,1 + · · ·+ wpη

2
i,p)/ν =

ν∑
i=1

(Z′iΣ
1
2WΣ

1
2 Zi)/ν

where W = diag(w). Therefore (see for example Chapter 12 of Hogg & Craig (1978))

E(ew
′τVG) = (E(eZ

′
1(Σ

1
2WΣ

1
2 )Z1/ν))ν = |I − 1

α
(Σ

1
2WΣ

1
2 )|−α
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for α = ν
2
, so that

φVG(ω) = eiω
′µ|I − 1

α
(Σ

1
2 diag(iθω − σ2

2
ω2)Σ

1
2 )|−α.

Finally, recall that Σij = (1 + (i − j)2)−
γ
2 for H = 1 − γ from Section 3.1, so it is via Σ

that H enters into φVG(ω).

3.3.2. Other characteristic function-based approaches. Before moving on we note

that Madan & Seneta (1987a) also consider the problem of estimation of parameters on sim-

ulated data via an ECF procedure, although only in the symmetric, iid increments case. They

report mixed results, with two of the five parametric classes considered being essentially in-

estimable (the normal compound Poisson and Brownian compound Poisson distributions),

two being well estimated (the normal and stable distributions), and one, the VG, being in

one case estimable and in one case not.

Related work is contained in Madan & Seneta (1987b) and Madan & Seneta (1989),

where instead of ECF estimation on the original {Xt} increments, PMLE is suggested on a

transformed variable Yt, given by Yt = cos(uXt) or Yt = uXt(mod 2π) for u a parameter

to be chosen. Madan & Seneta (1987b) show that for Xt symmetric, the density of Yt in the

Yt = cos(uXt) transform case is given by

(3.8) g(y) = π−1(1− y2)−1/2

∞∑
n=0

2nφ(nu)qn(y), y ∈ (−1, 1),

where φ(·) is the (real) characteristic function of Xt, q0(y) = 1 and qn(y) = Tn(y)/2n−1,

n ≥ 1, for Tn(y) the Chebyshev polynomial of the first kind of degree n (see Szegö (1959)).

Thus one can express the density of the transformed variable Yt = cos(uXt) as a series

involving evaluations of the characteristic function of Xt multiplied by Chebyshev polyno-

mials. This method therefore allows for near-PMLE to be performed on symmetric distrib-

utions for which the cf is available but the pdf is not, which is carried out by truncating (3.8)

for some n, n = 30 for example. Regarding the transform Yt = uXt(mod 2π), Madan &
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Seneta (1989) show that the density of Yt in this case is given by

(3.9) g(y) =
1

2π
+ π−1

∞∑
n=1

(<{φ(nu)} cos(nux) + ={φ(nu)} sin(nux))

which is valid for Xt with a not necessarily symmetric distribution. Here <{z} gives the

real part of the complex number z, while ={z} gives the imaginary part.

We perform this Madan & Seneta (‘MS’) estimation using the Yt = cos(uXt) transform

on the 1000 runs of symmetric VG simulated data (that is, simulated data with σ = 0.01,

H = {iid, 0.75, 0.85, 0.95} and α = 2.5) as in Section 3.2.1 and 3.3.1, using a truncation of

n = 30 in (3.8). We also perform MS estimation using the Yt = uXt(mod 2π) transform

on the 1000 runs of skew VG simulated data (with σ = 0.01, θ = −5 × 10−4, µ = 10−3,

H = {iid, 0.75, 0.85, 0.95} and α = 2.5) as in Section 3.2.2 and 3.3.1, this time using a

truncation of n = 100 in (3.9). In both cases we choose u = 50, which corresponds to the

original papers’ recommendation to take u = 0.5 for standardised data with unit variance.

Both sets of results are given in Tables 3.36 to 3.38 below.

θ = 0 case θ 6= 0 case
H σ = 0.01 α = 2.5 σ = 0.01 α = 2.5 θ = −5× 10−4 µ = 10−3 ARM
iid 2.3e-4 0.52 2.3e-4 0.53 8.0e-4 7.7e-4 0.65
0.75 6.9e-4 0.69 7.2e-4 0.77 9.0e-4 8.7e-4 0.76
0.85 1.2e-3 1.27 1.1e-3 1.24 1.1e-3 1.0e-3 0.96
0.95 1.9e-3 5.48 1.9e-3 5.46 2.1e-3 2.1e-3 2.16

TABLE 3.36. MAD statistics for symmetric and skew VG models fitted via
the Madan & Seneta ECF procedure.

θ = 0 case θ 6= 0 case
H σ = 0.01 α = 2.5 σ = 0.01 α = 2.5 θ = −5× 10−4 µ = 10−3 ARM
iid -1.0e-6 0.16 -2.3e-5 0.15 -2.0e-5 1.9e-5 0.03
0.75 -4.4e-5 0.44 -9.6e-5 0.52 1.1e-5 -2.1e-5 0.07
0.85 -1.1e-4 1.11 -1.9e-4 1.05 -3.1e-5 3.8e-5 0.14
0.95 -2.5e-4 5.45 -3.3e-4 5.43 -1.5e-4 1.5e-4 0.67

TABLE 3.37. Bias for symmetric and skew VG models fitted via the Madan
& Seneta ECF procedure.
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θ = 0 case θ 6= 0 case
H σ = 0.01 α = 2.5 σ = 0.01 α = 2.5 θ = −5× 10−4 µ = 10−3 ARM
iid 2.9e-4 0.73 2.9e-4 0.72 1.0e-3 9.8e-4 0.83
0.75 8.7e-4 1.03 8.9e-4 1.25 1.2e-3 1.2e-3 1.07
0.85 1.4e-3 2.12 1.4e-3 2.14 2.4e-3 2.4e-3 2.07
0.95 2.3e-3 6.17 2.4e-3 6.48 3.9e-3 3.9e-3 3.61

TABLE 3.38. Standard deviation for symmetric and skew VG models fitted
via the Madan & Seneta ECF procedure.

Tables 3.36 to 3.38 can be compared with Tables 3.30 to 3.32 and 3.33 to 3.35, which

give statistics for the symmetric and skew VG models fitted via the ECF procedure, as well

as Tables 3.5 to 3.7 and 3.21 to 3.23, which respectively display statistics for the symmetric

and skew VG models, fitted via the MOM, PMLE and minimum χ2 procedures. For both the

symmetric and skew fits using the MS procedure, the MAD scores achieved are comparable,

although slightly worse than, the MAD scores achieved by the MOM in Sections 3.2.1 and

3.2.2, and in all but the H = 0.95 case the MS procedure does better than the ECF method

from Section 3.3.1. The MS procedure is however beaten by the PMLE and minimum χ2

estimation methods, as may be expected – the procedure gives a way to perform near-PMLE

estimation when one does not know the likelihood function, as was the case with the VG at

the time of publication of the two papers mentioned. For the VG, the MS procedure has now

been somewhat superseded since the density function in now available and actual PMLE can

be performed. The procedure may still be of value in cases where the characteristic function

is known but the density is not, such as with the stable laws for example.

3.4. Rejection of models

In practice we would like to be able to choose, based on a χ2 goodness of fit statistic,

between competing models for a given set of data. To assess the feasibility of this, for each

group of 1000 simulation runs, each of length 2500, generated from the σ = 0.01, θ =

−5 × 10−4, µ = 10−3, H = {iid, 0.75, 0.85, 0.95} and α = 2.5 for the VG or δ = 2.5 for
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the t models, we fit both VG and t models to the same data and compare results. The χ2

statistic we base our comparison on has the same functional form as (3.2), but here we use a

single set of fixed bins for all data sets (we take the first bin as (−∞,−0.025], the next 10 as

1.55× 10−3 units wide and lying between −0.025 and −0.0095, the next 39 as 5.13× 10−4

units wide and lying between −0.0095 and 0.0105, the next 10 as 1.55 × 10−3 units wide

and lying between 0.0105 and 0.0260, and the last bin as (0.0260,∞)).

For example, for the 1000 simulation runs generated using a VG model with σ, θ and

µ as above, α = 2.5 and H = 0.75 say, we fit the VG model to each simulation, calculate

and record the 1000 values of the χ2 goodness of fit statistic, and from these empirically

determine the average and the 95% quantile value of the distribution of this χ2 statistic. We

then fit a t model to the same 1000 simulated runs, calculate and record the 1000 values

of the χ2 goodness of fit statistic, and determine what proportion of these χ2 values (fitting

an inappropriate t model to VG simulated data) exceed the recorded ‘correct model’ 95%

quantile. This gives the column with entries (55.7, 73.1, 9.4%) in Table 3.39. Then we

obtain 1000 simulation runs generated using a t model with σ, θ and µ as above, δ = 2.5

and H = 0.75 say, obtain the empirical 95% quantile, use the same simulated 1000 t-runs

to fit the VG, and determine what proportion of inappropriately fitted VG models exceed

the empirical ‘t generated’ 95% quantile. This gives the column with entries (56.1, 74.9,

11.5%) in Table 3.39. The procedure for PMLE fitted models is similar, with the χ2 statistic

associated with each fit obtained using the PMLE estimated parameters in (3.2).

Under a null hypothesis that the observations are iid, the χ2 statistic would asymptoti-

cally have a χ2
n distribution, where n is the degrees of freedom. Here we expect the degrees

of freedom of the χ2 statistic to be 61−5 = 56 since in each case 4 parameters are estimated,

and the χ2 calculation is based on 61 bins. Since the expected value of a χ2
n distributed ran-

dom variable is n, the average of our 1000 calculated values under the null hypothesis would

reflect the degrees of freedom.



86 3. SIMULATION, ESTIMATION AND FIT TO DATA

H iid iid 0.75 0.75 0.85 0.85 0.95 0.95
Correct Model VG t VG t VG t VG t

Min χ2 Average χ2 (CM) 56.4 56.2 55.7 56.1 56.2 56.1 56.0 57.1
95th percentile (CM) 75.9 74.1 73.1 74.9 74.5 74.4 73.6 75.1
Percent rejected (IM) 7.9% 12.7% 9.4% 11.5% 9.5% 11.8% 7.0% 8.2%

PMLE Average χ2 (CM) 55.9 56.5 55.8 56.4 57.2 56.2 55.9 56.3
95th percentile (CM) 76.7 74.5 75.4 75.6 75.6 73.9 74.2 74.5
Percent rejected (IM) 8.1% 15.7% 7.9% 13.9% 8.8% 12.8% 6.9% 8.1%

TABLE 3.39. Average χ2 values and 95th percentiles for correct models
(CM), and per cent of incorrect models (IM) rejected, fitted via minimum
χ2 and PMLE.

Although in fact the underlying data are not independent for each case of H consid-

ered, nor are the parameters estimated in the conventional way, we see from the averages in

Table 3.39 that it is nevertheless reasonable to use in every case the χ2
56, or perhaps more

conservatively the χ2
57, 95% quantile value as cut-off to measure the proportion of incorrect

models rejected. This is done in Table 3.40, since χ2
56(0.95) = 74.5, and χ2

57(0.95) = 75.6.

The percentages rejected are similar to those in Table 3.39.

In fact the use of conventional χ2 quantile values is a conservative choice – Gleser &

Moore (1983) show that the null distribution of the χ2 statistic is stochastically larger in

the positively correlated case as compared to the iid case. In particular, Gleser & Moore

show that under quite general conditions, the vector with ith entry (O∗i − E∗i )/
√
E∗i , i =

1, · · · , 61, for O∗ and E∗i defined as in (3.2), has a limiting N(0, S) distribution in the

positively correlated case and limiting N(0, SIID) distribution in the iid case, with S − SIID

positive semi-definite. Hence positive dependence is confounded with lack of fit, and the

χ2 goodness of fit test will too often reject the null hypothesis if the underlying data are

dependent.

From both Table 3.39 and 3.40, one of the things that we can say is that it appears very

hard to distinguish between VG and t models, as both are flexible enough to accommodate
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H iid iid 0.75 0.75 0.85 0.85 0.95 0.95
Correct Model VG t VG t VG t VG t

Min χ2 Cutoff: 74.5 9.5% 11.3% 7.7% 12.2% 9.5% 11.7% 6.2% 9.0%
Cutoff: 75.6 8.2% 9.6% 6.4% 10.4% 7.9% 9.7% 4.4% 7.0%

PMLE Cutoff: 74.5 10.4% 15.7% 9.0% 16.6% 10.5% 11.7% 6.9% 8.1%
Cutoff: 75.6 9.5% 13.1% 7.4% 13.9% 8.8% 9.7% 4.5% 6.1%

TABLE 3.40. Per cent of incorrect models rejected, using χ2
56 and χ2

57 cutoffs.

data from the other distribution. This result accords with Fung & Seneta (2007), which com-

pared the symmetric VG and t distributions, and found the two models almost impossible to

distinguish on the basis of tailweight, by choice of compatible parameters. Beyond this, it

appears slightly easier to reject a VG fitted to t data than a t fitted to VG data.

Secondly, it emerges from the above that whatever the value of H in our postulated

model, either a VG or a t-process, and whichever of our estimation methods for parameters

is used, the conventional χ2
56(0.95) cut off value can be used for rejection of the postulated

model when testing at 5% significance level.

3.5. Fitting to financial data

We now fit the VG and t models to some financial data sets and assess the fit. The

aim is not to decide between models by exhaustively fitting every stock in the S&P 500 for

example, but to put the prior discussion into action on a select few series.

The data are end of day prices, between 1 January 1996 and 31 December 2005, on

the S&P 500 index, Microsoft Corporation’s share price, the Australian dollar/US dollar

exchange rate, and the spot price of West Texas Intermediate crude oil. Each data set has

length of around 2500 readings, with the exact figure varying with the number of non-trading

days in the 10-year period, and determined by the particular asset and the exchange on which
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it is traded. Some descriptive statistics are given in Table 3.41, the results for minimum χ2

fitting are given in Table 3.42, while those for the PMLE are in Table 3.43.

In both, ‘χ2’ is the χ2 goodness of fit statistic computed according to bins as in Sec-

tion 3.4.

Sample Sample Sample Sample Sample
Size Mean Std. Deviation Skewness Kurtosis

S&P 500 2518 2.8e-4 1.2e-2 -0.09 5.95
Microsoft 2518 6.1e-4 2.3e-2 -0.12 8.32
AUD/US 2609 -5.3e-6 6.7e-3 0.06 5.24
WTI 2503 4.5e-4 2.5e-2 -0.28 6.35

TABLE 3.41. Descriptive statistics of data.

Model Security σ̂ α̂ or δ̂ θ̂ µ̂ χ2

VG S&P 500 0.011 1.71 -4.6e-4 7.7e-4 69.0
Microsoft 0.022 1.29 1.7e-3 -1.1e-3 58.1
AUD/US 0.007 2.11 -5.5e-4 5.2e-4 52.2
WTI 0.024 2.27 -3.5e-3 3.8e-3 72.6

t S&P 500 0.012 2.13 -3.4e-4 5.8e-4 69.2
Microsoft 0.024 1.78 1.3e-3 -4.8e-4 84.5
AUD/US 0.007 2.83 -4.7e-4 4.3e-4 55.3
WTI 0.024 2.97 -3.5e-3 3.8e-3 71.9

TABLE 3.42. Estimated parameters for data fitted via minimum χ2.

Model Security σ̂ α̂ or δ̂ θ̂ µ̂ χ2

VG S&P 500 0.011 1.63 -6.4e-4 9.2e-4 69.5
Microsoft 0.022 1.21 1.6e-3 -9.5e-4 58.2
AUD/US 0.007 1.99 -4.5e-4 4.5e-4 51.2
WTI 0.025 1.93 -2.7e-3 3.2e-3 73.7

t S&P 500 0.012 2.29 -4.1e-4 6.8e-4 69.3
Microsoft 0.024 1.90 7.9e-4 -1.6e-4 85.8
AUD/US 0.007 2.99 -3.3e-4 3.2e-4 55.2
WTI 0.025 2.70 -2.6e-3 3.1e-3 72.3

TABLE 3.43. Estimated parameters for data fitted via PMLE.

Firstly, on the basis of Section 3.4 we note that the t-model fitted to the Microsoft series

can be rejected at the 5% significance level, since the values of the χ2 goodness of fit statistic

84.5 and 85.8 far exceed χ2
56(0.95) = 74.5. Indeed, the optimal δ estimate for fitting the t
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distribution to Microsoft is less than 2, implying an infinite variance of returns, which would

seem implausible for a stock price process.

The VG model, on the other hand, fits the Microsoft data well.

For the other 3 data sets, neither the VG nor t can be rejected, with the AUD/US data

being fitted very well by both models.

Hurst, Platen & Rachev (1997) used Dow Jones Industrial Average and Nikkei 225 index

data, over the period 4 January 1973 to 30 July 1993, to compare a number of (symmetric)

subordinator models, and on the basis of the maximised log likelihood value concluded that

the t model was best. They also transformed their data to take account of the number of

calendar days between successive readings. This adjustment is typically not made, as the

number of trading days, as opposed to calendar days, has been found to be the more relevant

measure of time for financial asset returns – see for example Fama (1965). Our limited

analysis indicates that the Hurst, Platen & Rachev (1997) conclusion does not always hold.

Even leaving aside the Microsoft case, and using the smallness of the χ2 goodness of fit

statistic as a measure of fit, the VG model for the AUD/US data fits better than the t, and

there is relatively little to choose between the VG and t fits for the S&P 500 and WTI.

Madan, Carr & Chang (1998) and Seneta (2004) also examine the fit of a VG model

using PMLE, this time to the S&P 500 index; our parameter estimates are reasonably similar

to those reported there, given that data spanning different time periods was used.

The S&P 500 line of Table 3.41, and for the VG model in Tables 3.42 and 3.43 can be

compared with Tables 1 and 2 in Tjetjep & Seneta (2006, p. 121), although there the period

of observation was earlier (January 1977 to December 1981, 1261 readings) and half as

long. The shorter period showed smaller sample mean and smaller standard deviation, and

numerically smaller negative skew, although larger kurtosis. These likely reflect a period
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of less volatility. The comparable estimate of α for the shorter period was 1/0.4242 = 2.36,

compared with our present 1.63 (PMLE) and 1.71 (minimum χ2).

We now focus on visual comparison of model fits to the four data sets. Figures 3.1 to

3.4 below are drawn to the same scale for ease of comparison, and show histograms and

minimum χ2 fitted model densities. In each case, the uppermost curve at the origin is the

fitted VG model, while the lower one is the fitted t model. The PMLE fitted curves, which

we omit, are almost identical to the minimum χ2 fitted curves shown.

According to the almost identical values 69.0 and 69.2 of the χ2 goodness of fit statistic,

there is little to choose between the VG and t fits for the S&P 500 data. Figure 3.1 suggests

that this is due to the fact that the VG overestimates peakedness at the mean at the expense

of weight in the mid-range, while the t underestimates peakedness at the mean. The data are

close to symmetric. It is the peakedness at the mean of the data, rather than heavy-tails, that

appears to be responsible for the sample kurtosis of 5.95, compared to the theoretical value

of 3 for the normal distribution.

For Microsoft Corporation on the other hand, which has the largest kurtosis of the four

series considered, the VG fit is clearly superior from a visual examination. In this case the t

places too much weight in the tails at the expense of weight in the center of the distribution,

thereby markedly understating peakedness at the mean, whereas the VG manages to fit the

center of the distribution well. As discussed in Fung & Seneta (2007), the kurtosis coeffi-

cient is strongly affected by the concentration of probability near the origin, as well as in

the tails, and it would appear that given the large kurtosis seen in the Microsoft Corporation

data, the VG achieves a better trade-off between heavy tails and peakedness at the mean

than does the t.

According to the minimised χ2 statistics, the VG gives a slightly better goodness of fit to

the AUD/US exchange rate data and a slightly worse goodness of fit to the WTI series than
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FIGURE 3.1. Histogram of S&P 500 index returns with fitted models.
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FIGURE 3.2. Histogram of Microsoft Corporation’s share price returns with
fitted models.
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FIGURE 3.3. Histogram of the AUD/US exchange rate returns with fitted models.
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FIGURE 3.4. Histogram of WTI returns with fitted models.
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does the t. The AUD/US exchange rate has the smallest kurtosis and standard deviation of

the four series considered, and this is clearly evident in Figure 3.3. Here the t fit about the

origin appears superior from a visual inspection, although as mentioned the VG recorded

the smaller χ2 value overall. The WTI series on the other hand has the largest standard

deviation of the four series considered, although not the largest kurtosis, indicating a less

peaked profile than Microsoft for example. In this case both fits appear equally adequate,

which accords with the almost identical minimum χ2 values recorded by the VG and t in

Tables 3.42 and 3.43.

We also estimateH values, using both the marginal model independent ‘MOM’ method,

and via the marginal model dependent method using univariate parameter estimates from a

µ = θ = 0 model with mean–adjusted data, fitted via minimum χ2 (taking µ = θ = 0 greatly

simplifies the calculations involved, and while it does imply that the log price increments

{Xt} are uncorrelated, data analysis typically bears this out, with {X2
t } showing strong

autocorrelation but {Xt} showing very little). The results are given in Table 3.44, which can

be compared with Tables 3.11 to 3.16 which show H estimates from simulated symmetric

VG and t data.

Securities S&P 500 Microsoft AUS/US WTI
VG 0.90 0.92 0.85 0.75
t 0.69 — 0.77 0.70
‘MOM’ 0.86 0.85 0.81 0.70

TABLE 3.44. Ĥ estimates for financial data.

In this case the VG gives larger estimates than the t, with estimates from the model

independent ‘MOM’ method usually falling somewhere in between. From Equation (3.4),

estimation of H is mainly impacted by the marginal distribution parameters via Var(τt),

and indeed estimates of Var(τt) from the t model are substantially larger than from the VG

model. In the case of Microsoft, the t model implies an infinite Var(τt) since δ̂ < 2, while

for the S&P 500, the t estimate is over 10 times as large as the VG estimate (for the other
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two models the t variance is about 2.5 times larger). These larger Var(τt) estimates from the

t shrink the estimated Corr(τt, τt+k) number towards zero, reducing the fitted H value.

The MOM estimates of Var(τt) on the other hand fall between those of the VG and t.

For the S&P 500, the MOM estimate of Var(τt) is twice the VG estimate, but 8 times smaller

than the t estimate, and the MOMH estimate is correspondingly closer to the VG than the t;

for Microsoft the MOM estimate of Var(τt) is roughly 2.5 times larger than the VG estimate;

for the AUD/US exchange rate, the MOM estimate is roughly 1.5 times larger than the VG

estimate and 1.5 times smaller than the t estimate, with the H estimate of the MOM also

falling between the VG and the t estimates; while for the WTI series the MOM estimate of

Var(τt) is 2.5 times larger than the VG estimate and roughly equal to the t estimate, and here

the H estimate from the MOM correspondingly matches the H estimate from the t model.

3.6. Other approaches to simulation, estimation and model fit

Finally, we review some other approaches to simulation, estimation, and the fitting of

VG models which have appeared in the literature.

3.6.1. Simulation. Avramidis, L’Ecuyer & Tremblay (2003) (see also Avramidis &

L’Ecuyer (2006)) also consider the problem of simulating VG increments, although from

a different viewpoint and for the iid case only. In particular, they propose an algorithm to

sample gamma and VG processes not sequentially, but by continually ‘halving the interval’.

That is, they sample the given process at the last time point of interest, then at the midpoint,

then at the first and third quarter points, and so on, so that for a process of length T , the time

points sampled are in order: T, T/2, T/4, 3T/4, T/8, 3T/8, 5T/8, 7T/8, · · · . This is done

by making use of the conditional distribution given knowledge of the last and next point, and

is analogous to Brownian bridge sampling (Brownian bridge sampling involves sampling a

Brownian motion path in such a ‘halving the interval’ fashion. The name ‘Brownian bridge’
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is used since the conditional distribution of a point on the Brownian motion path, given the

previous and next point, is that of the Brownian bridge).

In particular, for {G(t; a, b)} a gamma process with independent increments and dis-

tribution for each t given by G(t; a, b) ∼ Γ(ta, b), we have that for any time t ≥ 0 and

nonnegative increments ∆t1, ∆t2, the conditional distribution of G(t + ∆t1; a, b) given

G(t; a, b) = γ0 and G(t+ ∆t1 + ∆t2; a, b) = γ2 is (Avramidis & L’Ecuyer (2006))

γ0 + (γ2 − γ0)Y

for Y ∼ B(∆t1α,∆t2α), so that one can sample a gamma process recursively from t = 0 to

T by generating one Γ(Ta, b) random variable and as many beta random variables as needed

to ‘fill in’ the time points required between 0 and T .

As an aside, Yor (2007) also considers the gamma bridge although from a different

perspective, noting that the only known Lévy processes for which one can present an ex-

plicit construction of their bridges in terms of the original Lévy process are Brownian mo-

tion and the gamma process. From Yor (2007), for {G(t; b)} def
= {G(t; 1, b)} a gamma

process, {G(u; b)/G(t; b)}, u ≤ t is independent of G(t; b). Moreover the distribution of

{G(u; b)/G(t; b)}, which for fixed t and a given u is a beta B(u, t − u) random variable,

does not depend on b, so that a gamma bridge starting at 0 and ending at a > 0 may

be obtained from {aG(u)/G(t)}, 0 ≤ u ≤ t, where {G(t)} def
= {G(t; 1)}. The process

{D(t)
u } = {G(u)/G(t)} is often called the Dirichlet process with parameter t – see for

example Cifarelli & Melilli (2000) and Cifarelli & Regazzini (1990).

Returning to Avramidis, L’Ecuyer & Tremblay (2003), to sample the VG process one can

either combine gamma bridge sampling as detailed above with Brownian bridge sampling,

or simply use gamma bridge sampling on its own. The Brownian bridge option first: forB(t)

standard Brownian motion and for any increments ∆t1, ∆t2, the conditional distribution of
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B(t+ ∆t1) given B(t) = b0 and B(t+ ∆t1 + ∆t2) = b2 is given by

N(b0∆t2/(∆t1 + ∆t2) + b2∆t1/(∆t1 + ∆t2), ∆t1∆t2/(∆t1 + ∆t2)).

Combining this with gamma bridge sampling one can recursively sample the VG, which

would be given by Brownian bridge samples conditional on a gamma bridge-sampled vari-

ance. The alternative method is to sample two appropriately chosen independent gamma

processes via gamma bridge sampling, and take the difference, since the VG process is also

given by the difference of two gamma processes (see the discussion around the DG model

in Chapter 4).

These techniques, combined with quasi-Monte Carlo (QMC) methods, are used to im-

prove the speed and efficiency of estimating stochastic integrals involving the gamma or

VG process, which is to say estimating integrals defined against the paths of gamma and

VG processes. The idea is to concentrate the variance of the given integrand on a few coor-

dinates, then combine QMC methods with bridge sampling to efficiently estimate the inte-

gral. The authors find that this combination outperforms ordinary Monte Carlo simulations,

sometimes by orders of magnitude. Efficient estimation of stochastic integrals involving the

gamma and VG processes is the focus of Avramidis, L’Ecuyer & Tremblay (2003), and un-

derpins the pricing of some exotic options and structured credit securities which are modeled

using gamma and VG processes.

3.6.2. Estimation with WinBUGS. WinBUGS is a programme for Bayesian estima-

tion of parameters. Observed iid data is from a specified distribution (in our study the t or

VG) regarded as a conditional distribution in which the parameters are regarded as fixed val-

ues of random variables. The statistician specifies a prior distribution (usually the uniform)

of the parameters, and uses the observed sample values x1, x2, · · ·xN to modify the prior

distribution to a posterior distribution of parameters. WinBUGS uses the Gibbs sampler to

simulate realisations of a Markov chain whose states are parameters, and whose limiting
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distribution is the posterior distribution of parameters. Thus once a realisation of a chain

has been allowed to settle down (the ‘burn-in’ time), the Bayes estimators of parameters are

obtained from averaging the Markov-dependent values of the Markov chain.

For a large size N of the iid sample x1, x2, · · ·xN , the Bayes estimators so obtained

are equivalent to PMLE estimators. As we have N close to 2500, out parameter estimates

using WinBUGS are effectively PMLE estimates. Given we have already dealt extensively

with PMLE estimation there is not much more to be gained from a lengthy discussion of

estimation via WinBUGS, but we nonetheless briefly detail the procedure and empirically

demonstrate the closeness of the PMLE estimated parameters and the WinBUGS estimated

parameters.

The normal mean-variance-mixing representation of the (skew) VG and t distributions

(see for example Tjetjep & Seneta (2006))

X ∼ N(µ+ θW, σ2W )

where W is, respectively, gamma and inverse gamma distributed, makes the input code

straightforward. Thus to fit the t to the N = 2518 returns for the S&P 500 data, we used,

after entering the data, the input code:

for (i in 1:N) {

x[i] ~ dnorm(mu[i], tau[i])

mu[i] <- mu.c + theta/s[i]

tau[i] <- 1/sigma2[i]

sigma2[i] <- sigma*sigma/s[i]

s[i] ~ dgamma(u,d) }

before specifying the prior distributions for the parameters mu.c, theta, sigma, and u, and

making the specification d← u−1.
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We asked WinBUGS to initialise the parameters and generate 3 separate Markov chains.

After 10,000 iterations of which the first 5,000 are treated as burn-in, we had 5,000 stable-

state values from each chain, making 15,000 in all, from which to obtain the Bayes estima-

tors. The table below compares the results obtained by PMLE (from Table 3.43), and by

WinBUGS, from which it is clear that the two are almost identical.

Model Method σ̂ α̂ or δ̂ θ̂ µ̂
VG PMLE 0.011 1.63 -6.4e-4 9.2e-4

WinBUGS 0.011 1.63 -6.6e-4 9.4e-4
t PMLE 0.012 2.29 -4.1e-4 6.8e-4

WinBUGS 0.012 2.32 -4.4e-4 7.0e-4
TABLE 3.45. Estimated parameters for S&P 500 data fitted via WinBUGS
and PMLE.

3.6.3. Model fit. Regarding goodness of fit criteria used by other authors, Tjetjep &

Seneta (2006) employ not a log likelihood or χ2 statistic as we have done, but a statistic of

the form

AD = max
y∈R

FE(y)− FM(y)√
FM(y)(1− FM(y))

where FM(·) is the model distribution function and FE(·) is the empirical distribution func-

tion. This statistic is a normed distance between the model and empirical distribution func-

tions, specifically an ‘Anderson-Darling’ modification, to random norming, of the Kolmogorov-

Smirnov statistic, designed to give greater test sensitivity in the tails (see Anderson & Dar-

ling (1936) or Press, Teukolsky, Vetterling & Flannery (1992)). In the event, of two large

(1000+ readings) and three small (132 readings) data sets considered in Tjetjep & Seneta

(2006), the VG was preferred over the the skewed normal, the ‘NVM Exponential’ and the

‘NM Exponential’ models for both of the large and one of the small data sets, and came

a close second to the NVM Exponential model for the other two small data sets. The t

distribution was not considered.

Regarding our own financial data, the AD statistic for each fit is given in Table 3.46

below. (The statistic was calculated via numerical integration of the appropriate pdf, and
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based on 301 equally spaced bins between −0.15 and 0.15, after discarding any data points

for which FM(y), due to the imprecision of the numerical integration, was outputted as 0

or 1, and after correcting the outputted FM(y) to ensure that it was non-decreasing. Note

that Tjetjep & Seneta (2006) use a smaller band of ±0.04 as opposed to our ±0.15 for

computation of the AD statistic. They are able to do this as their data sets are smaller and

contain fewer outliers, whereas we must widen the band to capture the entire range of data.)

Securities S&P 500 Microsoft AUS/US WTI
PMLE t 0.04 0.04 0.04 0.05
PMLE VG 0.13 0.19 0.09 0.15
Min χ2 t 0.04 0.05 0.04 0.08
Min χ2 VG 0.14 0.23 0.49 0.29

TABLE 3.46. AD statistics for data.

Although the t appears to uniformly outperform the VG, this is not in fact the case.

Table 3.47 below gives empirically determined 95% quantile values for the AD statistic

fitted to the 1000 simulated runs of σ = 0.01, θ = −5 × 10−4, µ = 10−3 and H =

{iid, 0.75, 0.85, 0.95} data, with α = 2.5 for the VG or δ = 2.5 for the t, as in Section 3.4.

So for example, regarding the VG data set withH = 0.75, the 95% quantile value of the AD

statistic for the fit of a (correct) VG model via PMLE was 0.11, whereas the 95% quantile

value of the AD statistic for the fit of an (incorrect) tmodel via PMLE was 0.05. This pattern

is repeated throughout, with the t models fitted to VG data producing lower AD statistics

than the VG models fitted to VG data, and indeed than the t models fitted to t data, and

Table 3.46 must be interpreted in light of this.

H iid iid 0.75 0.75 0.85 0.85 0.95 0.95
Correct Model VG t VG t VG t VG t

Min χ2 95th percentile (CM) 0.11 0.16 0.11 0.17 0.11 0.22 0.11 0.21
95th percentile (IM) 0.06 28.14 0.06 14.23 0.06 15.49 0.08 1.48

PMLE 95th percentile (CM) 0.11 0.12 0.11 0.12 0.11 0.12 0.10 0.11
95th percentile (IM) 0.05 11.55 0.05 5.91 0.05 5.75 0.06 0.98

TABLE 3.47. 95th percentiles of the AD statistic calculated based on correct
models (CM) and incorrect models (IM), fitted via minimum χ2 and PMLE.
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The somewhat unexpected pattern seen in Table 3.47 is likely due to a few overlapping

factors. The AD statistic’s extreme sensitivity to tail behavior, whereby even for VG data,

inappropriate t models which put more weight in the tails score lower AD scores than ap-

propriate VG models, means that even one outlying data point, which our minimum χ2 and

PMLE fitting techniques would not put excessive weight on, can have a disproportionate im-

pact on the computed AD score. In addition to this, computation of the AD statistic involves

numerically integrating some quite complex pdfs involving in particular bessel functions,

and as such is likely to be relatively imprecise, which was demonstrated for instance in

our outputted model distribution functions which, before correction, were not always non-

decreasing, especially in the VG case. We note that the apparent superior performance of

the VG models fitted to t data with H = 0.95, as compared to the VG models fitted to t

data with H less than 0.95, is somewhat illusory – in this case the outputted FM(y) function

was especially badly behaved, and so our ‘data cleaning’ procedures outlined above had an

especially large impact in moderating the computed AD statistics.

In conclusion, the fact that inappropriate t models fitted to VG data scored lower AD

statistics that appropriate VG models fitted to the same VG data would tend to indicate that

in this case the AD statistic is not a good one for choosing between competing fits, as too

much weight is put on outlying data points, resulting in the distorted outcome of models

which are known to be inappropriate being favored over models which are known to be

correct.



CHAPTER 4

Option pricing

In this chapter we consider some adaptations of the VG to a risk-neutral process for

option pricing, as opposed to considering the VG as a model for historical data as in the

preceding chapters. The bulk of the work presented here has been published as Finlay &

Seneta (2008b).

Recall that the VG model for asset prices

(4.1) Pt = P0e
µt+θTt+σB(Tt)

gives a log price increment X as having, conditional on a gamma random variable V say, a

normal distribution, i.e.,

(4.2) X|V ∼ N(µ+ θV, σ2V )

where µ, θ ∈ R and σ > 0 are constants. As such, the realisations of V drive both volatility,

via σ2V , and skewness, via θV . Recall also that the characteristic function of X has the

simple representation, for V ∼ Γ(α, α),

(4.3) φVG(u;µ, θ, σ, α) = eiµu(1− iθu/α +
1

2
σ2u2/α)−α.

There are two stock price process representations that result in VG distributed returns;

the subordinator model representation considered in the preceding chapters, and the differ-

ence of two gamma processes representation.
101
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What we shall call the Difference of Gammas (DG) process results from the exponenti-

ated difference of two independent gamma processes which have independent gamma dis-

tributed increments, one representing log price gains, the other losses. That is, we choose

(4.4) Pt = P0e
µt+G1(t;a,b)−G2(t;c,d)

where for example {G(t;α, β)} is a gamma process with pdf given by fΓ(x; tα, β) from

(1.18) for any given t. For each t the returns or log price increments for Pt as in (4.4) have

characteristic function

(4.5) φDG(u;µ, a, b, c, d) = eiµu(1− iu

b
)−a(1 +

iu

d
)−c.

Comparing (4.3) and (4.5) it is clear that choosing c = a results in a VG distribution with

parameters α = a, θ = a(1
b
− 1

d
) and σ2 = 2a

bd
. Madan, Carr & Chang (1998) consider this

restricted version of (4.4) to develop the theory of the subordinator model (4.1).

We propose two extensions to VG option pricing. The first drops the c = a restric-

tion from the difference of two gammas representation and simply works with the process

described by (4.4) and (4.5). This introduces one extra degree of freedom into the model

while still retaining most of the appealing properties of the VG process, such as its repre-

sentation as the difference of two gamma processes and its simple characteristic function.

The relaxation of this constraint does mean that we can no longer write down a closed-form

expression for the pdf of returns, but this is not a problem for option pricing since we only

need the characteristic function to compute prices.

For our second extension we consider option pricing when one drops the traditional

assumption in the subordinator model (4.1) that the increments of {Tt} are independent,

and instead look at a few models to price options with a strictly stationary returns process.

Although this chapter is only concerned with the risk-neutral world, our motivation here

comes from the real-world setting of historical data, for which it is becoming increasingly
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clear that squared returns may not be serially independent, and may actually be long range

dependent, as discussed in the preceding chapters.

Although we do not pursue the point here, further motivation for considering long range

dependent option pricing models comes from observed prices for long-dated options on

realised variance. The ‘asset’ underlying these options is average realised variance, and

in standard models this average realised variance converges to its expected value, which

implies that out-of-the-money options on realised variance should have negligible value. In

actual fact, such options have considerable value, which implies that the average realised

variance does not converge quickly to a constant. Models with long range dependence

accommodate this empirical observation, as opposed to standard models without long range

dependence which do not (see for example Madan & Eberlein (2007)).

We use the data set of Schoutens (2003) which consists of 77 call option prices written

on the S&P 500 index as at 18 April 2002, and compare the fit of our models to the fits

obtained in Schoutens (2003), which examines and fits a large number of popular option

pricing models. (In fact only 75 of the 77 option prices used in Schoutens (2003) are listed

(they are given on pages 155–166) – the missing two are (1100, 45.9, June 2002) and (1200,

88.2, December 2003), where we have written (Strike, Option Price, Expiry date).) This

data set is freely available and allows for easy comparison with a number of popular pricing

models already in use in Schoutens (2003).

To fit our models, that is, to estimate model parameters, we follow Schoutens (2003) and

minimise the root mean square error (RMSE) of our computed option prices. Here the error

on option price j is the actual (market) price minus the model determined price. We also

adjust for dividends by replacing P0 by e−qΥP0, where Υ specifies the remaining life of the

option and q is the dividend yield – see for example Schoutens (2003), Section 2.6. If the

model perfectly described the asset price process then the RMSE value should be zero, with
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all model prices matching market prices, given the single true set of parameters. As such,

the size of the RMSE value gives an indication of how well each model matches the market,

and provides a basis for comparison between models.

There is somewhat of a dichotomy in option pricing research into (i) specific models

of the stock price process and, (ii) general methods for actually computing option prices

given any one of a number of specific models. We focus on the first of these two branches

and make use of established and very generally applying results to actually compute option

prices in accordance with our various models. We choose to price via the characteristic

function and make use of the formulae given in Carr & Madan (1999) and Lee (2004) as

detailed below.

For C(Υ, k) the price of a European call option with time to maturity Υ and strike price

K, where k = log(K), following Carr & Madan (1999) we define the modified call price as

c(Υ, k) = eγkC(Υ, k)

for some γ such that E(P γ+1
Υ ) <∞. The Fourier transform of c(Υ, k) is then given by

ΨΥ(x) =

∫ ∞
−∞

eixkc(Υ, k)dk

=

∫ ∞
−∞

eixk

∫ ∞
k

eγke−rΥ(ep − ek)qΥ(p)dp dk

=

∫ ∞
−∞

e−rΥqΥ(p)

∫ p

−∞
(ep+γk − e(1+γ)k)eixkdk dp

=

∫ ∞
−∞

e−rΥqΥ(p)

(
e(γ+1+ix)p

γ + ix
− e(γ+1+ix)p

γ + 1 + ix

)
dp

=
e−rΥφΥ(x− (γ + 1)i)

γ2 + γ − x2 + ix(2γ + 1)
(4.6)

where for the specific model under consideration, qΥ(p) is the risk-neutral density of log(PΥ),

the log stock price at time Υ,
∫∞
k
e−rΥ(ep − ek)qΥ(p)dp = e−rΥE(PΥ −K)+ = C(Υ, k),

and φΥ(x) is the characteristic function of the log stock price at time Υ. Since C(Υ, k) is

real, the real part of ΨΥ(x) is even while the imaginary part is odd, so that taking the inverse
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transform of ΨΥ(x) gives

C(Υ, k) =
e−γk

2π

∫ ∞
−∞

e−ixkΨΥ(x)dx =
e−γk

π

∫ ∞
0

<{e−ixkΨΥ(x)}dx.

In fact we use a modified version of the above suggested in Lee (2004) and given by

(4.7) C(Υ, k) = Rγ +
e−γk

π

∫ ∞
0

<{e−ixkΨΥ(x)}dx.

Here the Rγ term results from shifting an integral through or across a pole in the complex

plane, and is given by Rγ = 0 for γ > 0, Rγ = φΥ(−i)/2 for γ = 0, Rγ = φΥ(−i) for

−1 < γ < 0, Rγ = φΥ(−i) − ekφΥ(0)/2 for γ = −1 and Rγ = φΥ(−i) − ekφΥ(0) for

γ < −1 (the choice of γ impacts on the error generated by the numerical approximation of

(4.7), and is discussed extensively in the two papers mentioned). Finally, the option price

(4.7) is computed via numerical integration.

We note that although the characteristic function method of option pricing just de-

scribed is more efficient and convenient, when dealing with the subordinator model under

the restriction µ = r, θ = −1
2
σ2 one can also proceed with a Merton-Black-Scholes type

method for option pricing. Here the original Merton-Black-Scholes option pricing formula,

valid when the stock price process is taken as geometric Brownian motion and derived by

both Black & Scholes (1973) and Merton (1973), is given by P0Φ(d) − Ke−rΥΦ(d′) for

d =
log(

P0
K

)+rΥ+ 1
2
σ2Υ

σ
√

Υ
, d′ =

log(
P0
K

)+rΥ− 1
2
σ2Υ

σ
√

Υ
, and where Φ(·) denotes the cumulative distrib-

ution function of the standard normal. If one replaces d and d′ by d =
log(

P0
K

)+rΥ+ 1
2
σ2TΥ

σ
√
TΥ

and

d′ =
log(

P0
K

)+rΥ− 1
2
σ2TΥ

σ
√
TΥ

, both functions of the random variable TΥ, then one can arrive at the

VG option price by integrating over the density of TΥ.

4.1. Market completeness

Market completeness is important in option pricing and is related to uniqueness of op-

tion prices. A market, or more specifically the market for securities implied by the chosen

stock price process, is typically said to be complete if for every contingent claim or option
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there exists an admissible self-financing predictable strategy that can replicate the claim.

A predictable strategy replicates a claim if it specifies a dynamic portfolio consisting of a

cash account and stock holdings which matches the value of the claim at every time point.

It is self-financing if no money is put in or pulled out along the way. And it is admissible

if the portfolio’s value is bounded below by a constant. A market is incomplete if it is not

complete. Essentially, a market is complete if one can perfectly hedge an option by trading

in the stock, and is incomplete otherwise.

For a given model, the uniqueness of an equivalent martingale measure (that is, the

uniqueness of option prices implied by the model) implies market completeness. The con-

verse is by and large true – when there is not one but a number of equivalent martingale

measures with which one could price options, the market is typically incomplete – but not

always true, with complete markets existing where the equivalent martingale measure is not

unique (see Artzner & Heath (1995) or Jarrow, Jin & Madan (1999)).

Most markets are in fact incomplete. Of all Lévy processes, only Brownian motion and

the Poisson process imply complete markets (Schoutens (2003), p. 46). The classical VG

as well as the processes we consider imply incomplete markets, due essentially to jumps in

the sample paths which make constructing a perfect hedge as discussed above impossible.

Brownian motion is continuous and hence has no jumps, while the Poisson process has

jumps of size one only, which as it turns out also leads to a complete market. See for

example Schoutens (2003) p. 18 and Section 6.2.1 for a discussion of market completeness

in the context of Lévy processes.

The fact that the VG implies incomplete markets means that there is not a unique way of

going from the real to the risk-neutral world. That is, there is not a single unique equivalent

martingale measure with which to price options. We do not attempt a comprehensive study

of how one should choose between martingales but rather calibrate our models to market
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data and compare the performance of different models on the basis of in-sample fit as dis-

cussed below (see for example Fujiwara & Miyahara (2003) for a more general discussion

on the choice of martingale measure in the Lévy process framework).

As an aside, the distinction between complete and incomplete markets is also an impor-

tant one in macroeconomics. Similar to the discussion above, in the macroeconomic nom-

clementure a complete market is said to exist if consumers can insure for every eventuality,

or equivalently, if for every possible state of the world consumers can purchase a security

which pays off in that state. Conversely, a market is said to be incomplete if consumers can-

not insure for every eventuality and must therefore bear risk. See Cochrane (2001) Chapter

3 or Ljungqvist & Sargent (2004) Chapters 8 and 17 for a discussion of market completeness

in the macroeconomic context.

4.2. Established VG option pricing models

When constructing a model for option pricing one typically ensures that the discounted

stock price process {e−rtPt} is a martingale. This is because martingale stock price processes

represent a ‘fair game’ and exclude arbitrage, with the conditional expectation of future val-

ues of the process being equal to the current value. Now for either the difference of gammas

or subordinator model and for r the interest rate, consider the decomposition of the dis-

counted stock price e−rtPt given by

e−rtPt = e−rsPs × As,t

for s ≤ t. To move from a real-world model of a stock price process {Pt} and the associ-

ated historical returns, to a risk-neutral model of {e−rtPt} for option pricing, one typically

imposes parameter restrictions to ensure that {e−rtPt} is a martingale, that is, to ensure that

E(As,t|Fs) = 1 where Fs represents information available up until time s.
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From (4.1), for Fs = σ({B(u), u ≤ Ts}, {Tu, u ≤ s}) and F∗ = σ({B(u), u ≤

Ts}, {Tu, u ≤ s}, Tt) for s < t and {B(t)} independent of {Tt}, we have that irrespec-

tive of the distribution of Tt,

E(e−rtPt|Fs) = P0 E(e(µ−r)t+θ(Tt−Ts+Ts)+σ(B(Tt)−B(Ts)+B(Ts))|Fs)

= Ps e
(µ−r)t−µs E(E(eθ(Tt−Ts)+σ(B(Tt)−B(Ts))|F∗)|Fs)(4.8)

= e−rsPs × e(µ−r)(t−s)E(e(θ+ 1
2
σ2)(Tt−Ts)|Fs).(4.9)

Here (4.8) follows from the ‘tower’ (repeated expectation) property of conditional expecta-

tion, since Fs ⊂ F∗, and (4.9) follows from the moment generating function of a normal

random variable. Now for Tt ∼ Γ(αt, α), that is, Tt with iid gamma increments as in Madan,

Carr & Chang (1998), we have that

(4.10) E(e(θ+ 1
2
σ2)(Tt−Ts)|Fs) = E(e(θ+ 1

2
σ2)Tt−s) = (1−

θ + 1
2
σ2

α
)−α(t−s)

for α > θ + 1
2
σ2 which ensures that (4.10) is finite. Hence taking

(4.11) µ = r + α log(1−
θ + 1

2
σ2

α
)

results in e(µ−r)(t−s)E(e(θ+ 1
2
σ2)(Tt−Ts)|Fs) = 1 so that E(e−rtPt|Fs) = e−stPs as desired.

This is an example of a ‘mean-correcting martingale’ model, whereby a risk-neutral model

is obtained from a real-world model by restricting the mean parameter (see for example

Schoutens (2003), Section 6.2.2 and Madan, Carr & Chang (1998)).

The above approach is a standard method for obtaining a martingale, and results in only

one parameter constraint being imposed. It relies on the computation of the left hand side

of (4.10) however, which in effect is the moment generating function of Tt. Thus if the mgf

fails to exist, as is the case for the t-distribution for example where the increments of Tt are

inverse gamma distributed, or is not tractable, then the method will fail – see Seneta (2004)

for a more general discussion of the mgf and martingales.
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An alternative advocated in Heyde & Leonenko (2005) is to take µ = r and θ = −1
2
σ2

in (4.9) so that the right hand side of (4.9) becomes e−stPs × 1 = e−stPs (note that Heyde

& Leonenko (2005) start with a real-world model with no θ parameter, i.e. (4.1) with θ =

0, and introduce θ, in the form of −1
2
σ2, only when they come to option pricing). This

construction is simple and quite general, as it does not in fact depend on the distribution of

Tt (the distribution of Tt is of course needed however when one comes to actually compute

the price of the option). It is somewhat restrictive however, in that two parameters are

constrained, µ and θ. We shall refer to this construction as a ‘skew-correcting martingale’

as θ, the parameter that determines skewness, is constrained.

4.3. Option pricing under the DG model

Consider the process described by (4.4) and (4.5). The simple representation means that

it is quite easy to calculate various model properties, so for example the nth moment of the

stock price process at time t in the future is given by, for b > n,

(4.12) P n
0 e

nµt(
b

b− n
)at(

d

d+ n
)ct.

Further, one can show that

E(e−rtPt|Fs) = e−rsPs × e(µ−r)(t−s)(
b

b− 1
)a(t−s)(

d

d+ 1
)c(t−s)

so that imposing the restriction

µ = r − a log(
b

b− 1
)− c log(

d

d+ 1
)

for b > 1 renders {e−rtPt} a martingale with four free parameters: a, b, c and d. Given this,

it is an in principle simple matter to price options via (4.7) where in this case, for an option

with time to maturity Υ, φΥ(u) from (4.6) is given by φDG(u; log(P0) + µΥ, aΥ, b, cΥ, d)

for φDG(u;µ, a, b, c, d) as in (4.5).
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Model RMSE a b c d
DG 2.24 4.35 240.86 9.79× 10−6 2.65× 10−7

TABLE 4.1. Fit of DG model to Schoutens (2003) option data.

Table 4.1 gives the minimised RMSE of the fit as well as the estimated parameter values,

where the parameters are based on the time scale of a day, assuming 250 trading days per

year (to convert to the time scale of a year one simply multiplies a and c by 250). The

optimal parameters imply a stable log price gains process (mean and variance of 0.02 and

7.49 × 10−5) and a very volatile log price losses process (mean and variance of 36.98 and

1.40× 108), although from (4.12) the implied moment properties of the stock price process

itself are relatively moderate – over a one year horizon, for P0 normalised to unity, Pt has

a standard deviation of 24 per cent, skewness of −2.3 and kurtosis of 11.4 (the mean is

constrained to ensure we have a martingale).

Turning to goodness of fit, our four parameter model (not counting the constrained mean

parameter) does better as expected than the standard three parameter VG model given by

(4.1) with mean-correction as per (4.11), considered in Schoutens (2003) on page 83, which

recorded an RMSE of 3.56. It also does better than the four parameter CGMY and GH

models considered (RMSEs of 2.76 and 2.88 respectively), although as expected, models

considered in Schoutens (2003) with five or more parameters gave a lower RMSE value.

We note that the RMSE surface in this case was found to be quite flat, with a number of

different parameter values giving essentially the same RMSE of 2.24, to 2 decimal places

at least. The parameters reported above gave an RMSE 0.001 units smaller than the next-

smallest RMSE found. All such parameter values implied a stable gains process and very

volatile losses process however, as well as moment properties of Pt almost identical to those

reported here. One of many checks on our optimisation procedures which we performed for

our pricing model was to calculate the RMSE of the standard VG as reported in Schoutens

(2003) p. 82, where the parameters of C = 1.3574, G = 5.8704 and M = 14.2699
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correspond for our DG model to a = c = C/250, b = M and d = G. Our calculated RMSE

using these parameters was 3.57, as compared to the 3.56 reported. We also optimised in

this setting, starting from a = c = 0.01, b = d = 10 and got back to Schoutens’ parameters

and RMSE.

4.4. Option pricing under a LRD VG model

Return to the subordinator process as described by (4.1). We again take {Tt} to be a

positive non-decreasing random process with stationary, identically distributed gamma unit

increments, but now drop the independence assumption and allow the {τt} increments to be

a strictly stationary process through time.

Specifically, as in Chapter 2 we choose Tt =
∑t

i=1 τα(i) with

τα(t) = (η2
1(t) + · · ·+ η2

2α(t))/2α ∼ Γ(α, α)

for 2α integer valued. Here each {ηi(t), t ≥ 0} is an independent stationary Gaussian

process with zero mean, unit variance, and autocorrelation function given by

(4.13) ρ(s) = (1 + s2)(H−1)/2

but this time with H < 1 instead of 1
2
< H < 1. It follows that Cov(τt, τt+s) = ρ2(s)/α,

where we write τt for τα(t) to simplify notation. Then

Tt
D
=

1

2α

2α∑
i=1

Z′iΣ(t)Zi

for each Zi a length t vector of uncorrelated N(0, I) random variables, Z′i the transpose of

Zi, and Σ(t) the t× t correlation matrix of {η(i), i = 1, · · · , t}. Note that Σ from Chapter 3

is equivalent to Σ(2500); we change notation here to stress dependence on t. For 1
2
≤ H < 1

the correlation structure chosen implies the long range dependence of {τt} and therefore of

{X2
t }. From Chapter 2 we know that for 1

2
< H < 1, {Tt} appropriately normed converges
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to the H self similar Rosenblatt process. We shall refer to the model that results from using

this autocorrelated {Tt} as the LRD VG.

From Hogg & Craig (1978) Section 12.2 for example, the characteristic function of Tt

is then given by

(4.14) E(eiuTt) = |I − iuΣ(t)/α|−α = (
t∏

j=1

(1− iurj(t)/α))−α

where rj(t) is the j th largest eigenvalue of Σ(t). As such, the characteristic function of

log(Pt) for Pt as in (4.1) and Tt as in (4.14) is given by

(4.15) φLRD(u) = P iu
0 e

iµtu(
t∏

j=1

(1 + (
1

2
u2σ2 − iuθ)

rj(t)

α
))−α,

which can be compared with the joint cf of {Xt} for Xt = log(Pt) − log(Pt−1) given in

Section 3.3. Note that the model described by (4.15) has five parameters: µ, θ, σ, α, as well

as H , which via (4.13) determines the strength of correlation between increments, thereby

determining Σ(t) and so each rj(t).

As H ↑ 1 the characteristic function (4.15) reduces to

P iu
0 e

iµtu(1 + (
1

2
u2σ2 − iuθ)

t

α
)−α

since in this case Σ(t) is a matrix of ones so that r1(t) = t and rj(t) = 0, j = 2, · · · , t. This

is the model (4.1) with Tt ∼ Γ(α, α/t) instead of Γ(tα, α). While both the Γ(tα, α) and

Γ(α, α/t) distributions have expectation t, the first has variance t/α while the second has

variance t2/α. Hence as H increases ‘time’ becomes more variable and the log stock price

becomes more fat-tailed (κ = 3(1 + Var(Tt)/t2) where κ is the kurtosis of log(Pt) for the

model (4.1) with θ = 0).

Conversely as H → −∞ we return to the independent increments case with (4.15)

reducing to

P iu
0 e

iµtu(1 + (
1

2
u2σ2 − iuθ)/α)−tα
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since in this case ρ(s)→ 0 for s > 0 from (4.13), so that rj(t)→ 1 for j = 1, · · · , t.

In the real-world context there is growing recognition that historical squared returns data

are not independent, and indeed show evidence of long range dependence through time.

Although we are only concerned with the risk-neutral setting here, we take this real-world

evidence as motivation for new risk-neutral models, and wish to determine, via a goodness

of fit criterion, whether the idea of LRD returns in a VG model is applicable in the risk-

neutral world also.

The purpose of the next few sections is then to detail and discuss methods for pricing

options under the LRD VG, and compare the fit to that obtained from other comparable

models.

4.4.1. Some martingale constructions. Recall that to construct a martingale we must

first compute E(e(θ+ 1
2
σ2)(Tt−Ts)|Fs). For Tt as in (4.14), {τt} is LRD and so definitely not

Markovian. Hence the distribution of (Tt − Ts)|Fs will depend on {Tu, 0 ≤ u ≤ s}, and

this complicates matters. We shall consider three constructions which seek to overcome this

problem in different ways.

4.4.1.1. A skew-correcting martingale: ‘M1’. The simplest solution is to employ a

skew-correcting martingale as described in Section 4.2. In this case we take µ = r and

θ = −1
2
σ2 which renders {e−rtPt} a martingale with three free parameters: σ, α and H .

4.4.1.2. A second skew-correcting martingale: ‘M2’. Another approach is to take the

skew-correcting martingale M1 and include an extra term to drive skewness. The idea here

is to allow for flexibility in determining the skewness of the stock price process, unlike M1

where θ is constrained. In particular, let the stock price Pt be given by

(4.16) Pt = P0e
µt+θTt+σB(Tt)+θ∗T ∗t
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where {Tt} is as in (4.14), and {T ∗t } is an independent gamma process which has indepen-

dent Γ(β, β) distributed unit increments. In this case the characteristic function of log(Pt)

is given by

φM2(u) = P iu
0 e

iµtu(
t∏

j=1

(1 + (
1

2
u2σ2 − iuθ)

rj(t)

α
))−α(1− iθ∗u

β
)−βt.

Taking θ = −1
2
σ2 and µ = r + β log (1− θ∗

β
) for θ∗ < β will render the discounted stock

price process a martingale. In this case the discounted stock price process {e−rtPt} has five

free parameters: σ, α, H , θ∗ and β.

4.4.1.3. A mean-correcting construction: ‘C3’. An attractive alternative to the martin-

gales above would be a mean-correcting martingale, where only µwas constrained. The con-

struction of such a martingale would require the computation of E(e(θ+ 1
2
σ2)(Tt−Ts)|Fs) how-

ever, which is determined by and dependent on the unobservable process {Tu, 0 ≤ u ≤ s},

and so is not possible in practice. Were a mean-correcting martingale construction possible

however it could have advantages over M1 and M2, due to its greater flexibility (regarding

M1) and its more natural accommodation of skewness (regarding M2). As such, to stimulate

a critical comparison of M1 and M2, we construct a mean-correcting process which, while

not a martingale, is close to one, in the sense that our process {Pt} will have the property,

for fixed s the current time and t some time in the future, e−rtPt = e−rsPs × As,t with

E(As,t|Fs) possibly not equal to one but E(E(As,t|Fs)) = E(As,t) = 1. Here we follow

the approach of Drăgulescu & Yakovenko (2002) who, in the context of the Heston (1993)

model for historical returns, ‘integrated out’ the unobservable volatility parameter to focus

on returns. In our case we ‘integrate out’ the dependence on past unobservable realisations

of {Tu, 0 ≤ u ≤ s} by taking the expectation of the conditional expectation.
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Now e−rtPt = e−rsPs × e(µ−r)(t−s)+θ(Tt−Ts)+σ(B(Tt)−B(Ts)) and since the {τt} process is

strictly stationary, we have by conditioning on {Ts, Tt} that

E(eθ(Tt−Ts)+σ(B(Tt)−B(Ts))) = E(e(θ+ 1
2
σ2)(Tt−Ts))

= (
t−s∏
j=1

(1− (θ +
1

2
σ2)rj(t− s)/α))−α

for α > (θ + 1
2
σ2)r1(t− s). Therefore setting the (time-dependent) µ as

µ = r + (α/(t− s))
t−s∑
j=1

log (1− (θ +
1

2
σ2)rj(t− s)/α)

results in

e−rtPt = e−rsPs × As,t

with E(As,t) = 1 as desired. In this case the discounted stock price e−rtPt has four free

parameters: θ, σ, α and H .

In fact the construction of our C3 model is analogous to the construction advocated

in Carr, Geman, Madan & Yor (2003), Section 4.2 for mean-corrected stochastic volatil-

ity Lévy models, and the property E(As,t) = 1 enjoyed by our C3 model is equivalent to

that described in Carr, Geman, Madan & Yor (2003), Section 5 as ensuring a lack of static

arbitrage. (Here static arbitrage is said to hold if there exists a costless trading strategy,

dependent only on the time and contemporaneous stock price, which provides for a pos-

itive profit with positive probability and has no possibility of a loss. This is opposed to

dynamic arbitrage which is defined analogously but for the fact that the trading strategy is

allowed to employ knowledge of all past values of all variables, observable or not.) Carr,

Geman, Madan & Yor (2003) note the practical impossibility of accessing dynamic arbi-

trage opportunities which depend on unobserved processes such as our {Tt} process, and

rather consider a number of models which, similar to our C3 model, are not martingales,

but which like martingales possess a similar ‘fair game’ property and which exclude static

arbitrage. (For further results on static arbitrage see for example Carr & Madan (2005) or
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Davis & Hobson (2007), which consider the conditions necessary for static arbitrage to be

excluded from a set of observed option prices.)

4.4.2. Fit to data. To fit the model we again minimise the RMSE of our computed

option prices, with the results given in Table 4.2. Here the θ parameters for the M1 and M2

models, given in bold-face, are not free but are constrained so that θ = −1
2
σ2. Again we

work on the time scale of a day, assuming 250 trading days per year.

Model RMSE σ θ α θ∗ β H
M1 6.35 0.012 −7.0× 10−5 0.02 – – −1.58
M2 2.27 0.009 −3.8× 10−5 6.39 −5.1× 10−3 3.0× 10−5 −23.50
C3 0.76 0.010 −7.5× 10−4 1.66 – – 0.99

TABLE 4.2. Fit of LRD VG models to Schoutens (2003) option data.

Regarding Table 4.2, it seems clear that the three parameter M1 model imposes too

binding a constraint to produce a good fit to actual data – the relatively large σ and small

|θ| fitted by the M1 model relative to the parameter values fitted by the more flexible C3

model indicates that θ = −1
2
σ2 is not a good assumption, with σ pushed up to accommodate

θ and |θ| pushed down to accommodate σ. Indeed the skew-correcting M1 model does

worse than the standard independent increments VG model considered in Schoutens (2003),

which recorded an RMSE of 3.56, indicating that having a flexible skewness parameter is

more important than allowing for dependence of squared returns.

The five parameter M2 model does achieve a lower RMSE, but is still beaten by the four

parameter DG model considered in Section 4.3. The M2 model allows for dependence of

squared returns as well as flexible skewness, but does so in a somewhat artificial manner. In

particular the M2 model does not incorporate in a flexible manner the so called ‘leverage ef-

fect’, an empirical phenomenon documented in the literature whereby large negative returns

on the stock market and high volatility usually accompany one another. This can be most

easily seen by considering the distribution of returns conditional on Tt and T ∗t . In this case
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we have, for X = log(Pt) − log(Pt−1) a typical log price increment, with V = Tt − Tt−1

and W = T ∗t − T ∗t−1 similar to (4.2), that

X|{V,W} ∼ N(r + β log (1− θ∗

β
)− 1

2
σ2V + θ∗W, σ2V ).

Therefore high volatility in the stock price, which is to say large σ2V values resulting from

large realisations of V , result in a negative contribution to returns of V multiplied by the fixed

coefficient −1
2
σ2. Similarly, large negative returns caused by a negative non-constrained θ∗

parameter and large realisations of W , do not increase the conditional variance. The H

value estimated for the M2 model in fact implies only a very weak dependence structure,

but it has relatively little effect on computed option prices; increasing H to 0.60 increases

the RMSE by only 0.006, while increasing H to 0.80 increases the RMSE by only 0.031.

Similarly, decreasing the α parameter to 1.00 say increases the RMSE by only 0.001 while

decreasing α to 0.10 increases the RMSE by only 0.039. It therefore seems clear that the

M2 model has a quite flat RMSE surface, perhaps due to too many model parameters (θ, θ∗;

α, β) playing similar roles.

The four parameter C3 model by comparison does accommodate the leverage effect in

a flexible way, as well as allowing for flexible skewness and the dependence of squared

returns. From (4.2) for example, X|V ∼ N(µ + θV, σ2V ) so that highly volatile stock

price movements – large σ2V values resulting form large realisations of V – result in large

realised negative returns µ + θV , where the θ parameter, assumed here to be negative, is

not constrained. In fact our four parameter C3 model seems to fit the option data quite

well, doing better than the five parameter BNS models fitted in Schoutens (2003) on page

95, the best of which achieves a RMSE of 1.33 (the BNS IG-OU model). Our model is

however beaten by the seven and eight parameter Lévy SV models given on page 98, which

have RMSE values ranging from 0.36 to 0.50 (for the CGMY-Gamma-OU and VG-CIR

respectively). In the C3 case H is estimated close to but below the upper bound of unity,

implying a strong dependence structure in {Tt} and returns.
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Table 4.2 can also be compared with Tables 3.42 and 3.43 in Section 3.5, where a LRD

VG model was fitted to historical data from the S&P 500 index. There the estimated real-

world parameters σ, θ, α andH were given as 0.011,−6.4×10−4, 1.63 and 0.90 respectively,

which are in fact quite close to those recorded for our C3 model. The estimated parameters

for the M2 model in Table 4.2 are not directly comparable, due to the inclusion of the θ∗T ∗t

term in (4.16). The M1 estimated parameters are comparable, and are reasonably different

from the C3 parameters and the real-world parameters from Section 3.5; the high value of

the M1 model’s RMSE however indicates that M1 is not a good model for fitting option

price data.

The fact that the C3 model does better than other models with higher degrees of freedom

would seem to indicate that allowing for dependence of returns, skewness and the leverage

effect may be important aspects of option pricing.



CHAPTER 5

Conclusion

There is growing recognition that returns data from various financial assets are depen-

dent through time, and not independent as has previously been assumed. It is therefore

important that models for financial assets be able to accommodate this dependence struc-

ture, which typically manifests itself in seemingly uncorrelated returns series coupled with

strongly dependent squared and absolute return series. This thesis is primarily concerned

with extending the VG model to allow for such a dependence structure.

In Chapter 2 we constructed a process {Tt} whereby the increments over unit time {τt}

are long range dependent, which from Chapter 1 results in a VG model for financial assets

in which returns are uncorrelated or lightly correlated, but squared returns display long

range dependence. In particular, we constructed increments {τt} which can have arbitrary

marginal gamma distribution and an arbitrary convex correlation function, and consider as

a special case {τt} with a Cauchy correlation function and for which {Tt}, appropriately

normed, converges to the self similar Rosenblatt process. This result was then extended to

the inverse gamma case and the t model for financial assets where we extended a result of

Heyde & Leonenko (2005) to allow for {τt} with arbitrary Cauchy correlation.

In Chapter 3 we detailed a technique to simulate such dependent VG and t returns data,

and compared four estimation methods to recover the (in our case known) parameter values

which described the distribution of the returns. In this case we found that in most instances

product-density maximum likelihood estimation was the superior method, even when the

assumption of serial independence did not hold. Minimum χ2 estimation was on average

119
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the next best method, followed by the method of moments. ECF estimation was found to

perform poorly.

In fitting to actual financial data, we found that for one heavy-tailed data set (Microsoft),

the t fit was clearly inappropriate, and for another (AUD/US), while the t fit was acceptable,

the VG fit was better. For the other two data sets there was little to choose between the

models.

Inasmuch as all 4 data sets considered were in essence symmetric about the origin, the

conclusions in Fung & Seneta (2007), that the essential difference between the symmetric

VG and t distributions is the differential concentration of probability around the point of

symmetry and in the middle range, was borne out by the S&P 500 and Microsoft data fits.

In Chapter 4 we detailed two new models for option pricing based on the VG process.

The first relaxed a parameter constraint to describe log prices as the difference of two gamma

processes. It retained many of the appealing features of the standard VG model such as its

simplicity and workable characteristic function, and resulted in an improved fit to option

price data.

The second model was that of a long range dependent VG process. In this case we

found that the current approach to pricing options (what we have called the skew-correcting

method) has shortcomings. A second martingale considered, which allowed for the flex-

ible determination of skewness but did not accommodate the leverage effect in a flexible

manner, provided a better although still disappointing fit to data. That a third construction

incorporating both flexible skewness driven by volatility and dependence of squared returns

produced a better fit to data than other comparable models, and even models with higher

degrees of freedom, seems to indicate the importance of accommodating these phenomena

in option pricing models.
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