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Abstract

This thesis investigates ion energy distributions (IEDs) during plasma immersion

ion implantation (PIII). PIII is a surface modification technique where an object is

placed in a plasma and pulse biased with large negative voltages. The energy dis-

tribution of implanted ions is important in determining the extent of surface modi-

fications. IED measurements were made during PIII using a pulse biased retarding

field energy analyser (RFEA) in a capacitive RF plasma. Experimental results were

compared with those obtained from a two dimensional numerical simulation to help

explain the origins of features in the IEDs. Time resolved IED measurements were

made during PIII of metal and insulator materials and investigated the effects of the

use of a metal mesh over the surface and the effects of insulator surface charging.

When the pulse was applied to the RFEA, the ion flux rapidly increased above the

pulse-off value and then slowly decreased during the pulse. The ion density during

the pulse decreased below values measured when no pulse was applied to the RFEA.

This indicates that the depletion of ions by the pulsed RFEA is greater than the

generation of ions in the plasma. IEDs measured during pulse biasing showed a peak

close to the maximum sheath potential energy and a spread of ions with energies

between zero and the maximum ion energy. Simulations showed that the peak is

produced by ions from the sheath edge directly above the RFEA inlet and that the

spread of ions is produced by ions which collide in the sheath and/or arrive at the

RFEA with trajectories not perpendicular to the RFEA front surface. The RFEA

discriminates ions based only on the component of their velocity perpendicular to

the RFEA front surface.

To minimise the effects of surface charging during PIII of an insulator, a metal

mesh can be placed over the insulator and pulse biased together with the object.
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Measurements were made with metal mesh cylinders fixed to the metal RFEA front

surface. The use of a mesh gave a larger ion flux compared to the use of no mesh.

The larger ion flux is attributed to the larger plasma-sheath surface area around the

mesh. The measured IEDs showed a low, medium and high energy peak. Simulation

results show that the high energy peak is produced by ions from the sheath above

the mesh top. The low energy peak is produced by ions trapped by the space charge

potential hump which forms inside the mesh. The medium energy peak is produced

by ions from the sheath above the mesh corners. Simulations showed that the IED

is dependent on measurement position under the mesh.

To investigate the effects of insulator surface charging during PIII, IED measure-

ments were made through an orifice cut into a Mylar insulator on the RFEA front

surface. With no mesh, during the pulse, an increasing number of lower energy ions

were measured. Simulation results show that this is due to the increase in the cur-

vature of the sheath over the orifice region as the insulator potential increases due

to surface charging. The surface charging observed at the insulator would reduce

the average energy of ions implanted into the insulator during the pulse. Compared

to the case with no mesh, the use of a mesh increases the total ion flux and the ion

flux during the early stages of the pulse but does not eliminate surface charging.

During the pulse, compared to the no mesh case, a larger number of lower energy

ions are measured. Simulation results show that this is caused by the potential in

the mesh region which affects the trajectories of ions from the sheaths above the

mesh top and corners and results in more ions being measured with trajectories less

than ninety degrees to the RFEA front surface.
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Chapter 1

Introduction

1.1 Overview

In materials processing, plasmas are widely used in the deposition of thin films and

for the modification of surfaces. Plasma immersion ion implantation (PIII) is a

surface modification technique which was first introduced in the nineteen eighties

[27] and is increasingly being used in the treatment of metals, semiconductors and

insulators.

In PIII, surfaces are modified by ion bombardment which is achieved by placing

the object in a plasma and pulse biasing it with large negative voltages. PIII treated

surfaces show improved properties such as increased hardness in metals [11] and

improved wetting and adhesive properties in polymers [65, 50]. For an insulator,

a common treatment method involves pulse biasing a conductive mesh around the

object to reduce the effects of surface charging [41].

In PIII, the ion energy distribution (IED) is an important parameter in deter-

mining the extent of surface modifications including the concentration profile of

implanted ions. To date, there have only been a limited number of experimental

measurements of time resolved IEDs during PIII. One of the reasons for this is the

difficulty in obtaining measurements at the high voltages (up to -100 kV) and over

the short time scales (pulse lengths of tens of microseconds) used in PIII. Experimen-

tal measurements of the IED during mesh assisted PIII are particularly important

as ion collisions inside the mesh region will affect the IED.

1



The aim of this project is to develop a greater understanding of the factors af-

fecting the IED during mesh assisted PIII. In this project, a compact multi grid

retarding field energy analyser has been designed and constructed. The time re-

solved ion energy measurements made under a conducting mesh for both metal and

insulator materials are, to the author’s knowledge, the first measurements of their

type reported. The effects of mesh height and pulse amplitude were investigated

and compared with a two dimensional numerical simulation.

1.2 Thesis Outline

This thesis consists of eight chapters. In chapter 2, an introduction to the basic

plasma physics used in this thesis is given. In chapter 3, the plasma immersion

ion implantation (PIII) method is introduced along with a review of simulation and

experimental measurements of ion dose and energy during PIII. The ion energy mea-

surements in this thesis were made using a retarding field energy analyser and in

chapter 4, a description of the design and testing of this analyser is given. In chapter

5, the effects of pulse amplitude on ion flux and energy during PIII are investigated

experimentally and compared with results obtained using a two dimensional numer-

ical simulation. In chapter 6, the effects of a metal mesh on ion flux and energy at

a conductive substrate are investigated experimentally and using computer simula-

tion. When immersed in a plasma, the potential of an insulator surface will increase

and in chapter 7, the effects of a Mylar insulator around the RFEA inlet, both with

and without a mesh present, are investigated experimentally and using computer

simulation. In chapter 8, a summary of the main findings of this thesis and their

implications for PIII are discussed.
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Chapter 2

Physics of Processing Plasmas

2.1 Introduction

In this chapter, a general introduction to the plasma physics used in this thesis is

given. The theory presented is drawn largely from the work of Lieberman and Licht-

enberg [81]. In section 2.2, some of the important terms used to describe plasmas

such as the Debye length, mean free path and plasma frequency are discussed. In

section 2.3, the concept of the plasma sheath is introduced. The plasmas used in this

thesis were generated using a capacitive parallel plate radio frequency (RF) system

and in section 2.4, an introduction to this type of plasma is given. In section 2.5, a

discussion is presented about the factors determining the IED in a RF plasma.

2.2 Plasma Parameters

A plasma is a partially ionised gas made up of an approximately equal number of

positively (ni) and negatively (ne) charged species and a different number of neutral

gas molecules (ng) [20]. There are a wide variety of plasmas which differ in their

charged particle density (n0) and electron temperature (Te). Plasmas can range

from low temperature, low density plasmas found in interstellar regions and nebulae

(Te ≈ 1 eV and n0 ≈ 1 to 103 cm−3) to high temperature, high density plasmas

found in fusion experiments (Te ≈ 104 eV and n0 ≈ 1015 cm−3) [121].

Low pressure plasma discharges have important applications in materials depo-
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sition and surface modification [81] and are the subject of this thesis. These plasmas

are electrically driven with densities of around 108 to 1013 cm−3 and have electron

temperatures of between 1 to 10 eV. The degree of ionisation is approximately 10−4

so that most species are neutrals. These systems are usually not in thermal equi-

librium with the electron temperature (Te) much greater than the ion temperature

(Ti). The operating pressures for these plasmas are between 1 mTorr to 1 Torr (0.13

to 133 Pa).

2.2.1 Debye Length

An important length scale in plasma physics is given by the electron Debye length

(λDe). The Debye length is defined by considering the potential around a negatively

charged conductive sheet introduced into a neutral plasma where ni = ne = n0.

Plasma electrons are repelled from near the sheet. Due to their larger mass and

slower velocity, ions are assumed to remain stationary so that ni = n0 near the

sheet. Using Poisson’s equation in one dimension, the potential (φ) is given by

d2φ

dx2
= − e

ε0

(ni − ne) (2.1)

Assuming a Boltzmann distribution, the electron density is given by

ne = n0e
φ
Te (2.2)

Using equation (2.2) and ni = n0, equation (2.1) becomes

d2φ

dx2
=

n0e

ε0

(
e

φ
Te − 1

)
(2.3)

Assuming that the sheet is placed at x = 0 and has a potential φ0 and that φ = 0

at x = ±∞, the solution to (2.3) is given by

φ(x) = φ0e
−

“
x

λDe

”
(2.4)
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Figure 2.1: The collision cross section (σ) is defined for a flux (Γ) of particles incident
upon a slab, of width dx, of stationary molecules with particle density ng.

where the Debye length λDe is defined by

λDe =

(
ε0Te

en0

) 1
2

(2.5)

The Debye length describes how rapidly a potential perturbation is shielded by a

plasma. Over a distance of λDe, a perturbation will be reduced to 1/e of its original

value.

2.2.2 Collision Processes

Collisions between particles in a plasma are important in determining particle energy

and motion. Collisions are elastic where there is only a transfer of kinetic energy or

inelastic where internal energies are affected.

The collision cross section (σ) is defined by considering a flux (Γ) of particles

incident upon a slab, of width dx, of stationary particles with particle density ng as

shown in figure 2.1.

5



The incoming particle flux is given by

Γ = nv̄ (2.6)

where n is the particle density and v̄ is the particle velocity. The number of particles

which interact with the stationary molecules is given by

dn = σnngdx (2.7)

where σ is defined to be the cross sectional area for the interaction. If the collision is

elastic and between two identical hard spheres of radius a1 and a2, the two spheres

will only collide if their centres come within a distance a12 = a1+a2 of each other. In

this situation, the collisional cross section is defined to be πa2
12. For most collisions,

σ is dependent on the incoming particle velocity. However, for pressures in the

mTorr range the hard sphere cross section provides a reasonable approximation of

the collisional cross section. The change in flux (dΓ) over the distance dx can be

expressed by multiplying both sides of equation (2.7) by v̄

dΓ = −σΓngdx (2.8)

Assuming the incoming flux at x = 0 is given by Γ0, equation (2.8) can be integrated

to give

Γ = Γ0e
−σngx ≡ Γ0e

−x/λ (2.9)

where

λ =
1

ngσ
(2.10)

is defined to be the mean free path. The mean free path defines the distance over

which the incoming flux is reduced to 1/e of its original value and is a useful estimate

of the distance particles will travel before undergoing a collision.
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Figure 2.2: Undriven oscillations in a one dimensional slab of plasma of length l.
The initial displacement of the electron cloud is shown in (a). The displaced electron
cloud will cause a displacement of the ion cloud as shown in (b).

2.2.3 Plasma Oscillations

The frequency of oscillations of the electron and ion densities is important in de-

termining the behaviour of capacitive discharges and the structure of IEDs. The

plasma frequency (ωp) is determined by considering the undriven displacement of

an electron and ion cloud with respect to each other in a slab of plasma of length

l. The plasma is assumed to contain an equal density of ions and cold electrons

(Te = 0) so that ni = ne = n0.

If the electron cloud is displaced slightly by a distance ξe(t), a surface charge

density ρs = en0ξe will be uncovered as shown in figure 2.2(a). The uncovered

surface charge will cause the ion cloud to shift slightly by a distance ξi(t), leading to

a surface charge density ρs = en0(ξe − ξi) as shown in figure 2.2(b). From Gauss’s

Law, the opposite surface charges in figure 2.2(b) will generate an electric field

Ē =
en0 (ξe − ξi)

ε0

(2.11)

The force equation for the electrons will be

me
d2ξe

dt2
= −eĒ (2.12)
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and similarly, the force equation for the ions will be

mi
d2ξi

dt2
= eĒ (2.13)

The relative displacement between the electrons and ions can be expressed as

ξr = ξe − ξi (2.14)

Differentiating both sides of (2.14) twice with respect to time and substituting in

equations (2.12) and (2.13) gives

d2ξr

dt2
= −

(
mi + me

memi

)
eĒ (2.15)

which can be written as

d2ξr

dt2
= −

(
eĒ

mr

)
(2.16)

where

mr =
memi

mi + me

(2.17)

is the reduced mass. Substituting (2.11) into (2.16) gives

d2ξr

dt2
= −ω2

pξr (2.18)

where

ω2
p =

e2n0

mrε0

=

(
e2n0

ε0me

+
e2n0

ε0mi

)
=
(
ω2

pe + ω2
pi

)
(2.19)

with ωp the plasma frequency and ωpe and ωpi the electron and ion plasma frequencies

respectively. As mi >> me, from (2.19), ωp ≈ ωpe.
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2.3 Sheaths

A charged sheath forms between a plasma and any surface in contact with it. The

sheath region is important as the energy gained by ions crossing the sheath deter-

mines their IED at the surface and the degree of surface modification which can

occur.

In low pressure discharges, the higher temperature of electrons together with

their smaller mass results in electrons having a greater thermal velocity than ions.

Electrons are lost more rapidly from the plasma and a thin positive sheath region

where ni > ne forms around the plasma. The plasma gains a positive potential

known as the plasma potential (Vp) which acts to confine electrons and accelerate

ions across the sheath, balancing the electron and ion flux out of the plasma.

2.3.1 Bohm Sheath Criterion

Due to positive space charge in the sheath, ions require a certain minimum energy

to cross the sheath region. This is known as the Bohm sheath criterion and is

defined by considering the form of the potential across a sheath of potential −V0

and thickness s as shown in figure 2.3. Assuming that the potential (φ) is zero at

the plasma sheath edge (x = 0), the ion energy at x is given by

1

2
Mu2(x) =

1

2
Mu2

s − eφ(x) (2.20)

where M is the ion mass, u(x) is the ion velocity and us is the velocity at which

ions enter the sheath. Assuming no ions are created in the sheath, the ion density

in the sheath (ni(x)) is determined using the continuity of ion flux

ni(x)u(x) = nisus (2.21)

9



P
ot

en
tia

l (
V

)

Position (m)
s0

0

-V
0

Plasma Sheath Wall

x

φ

Figure 2.3: Definitions of potential and position for the plasma sheath calculations
in section 2.3. The potential at the plasma sheath edge at x = 0 is zero and the
potential at the wall at x = s is −V0.

where nis is the ion density at the sheath edge. Substitution of (2.21) into (2.20)

gives an expression for the ion density

ni(x) = nis

(
1− 2eφ(x)

Mu2
s

)− 1
2

(2.22)

Assuming a Boltzmann distribution, the electron density is given by

ne(x) = nese
φ
Te (2.23)

where nes is the electron density at the sheath edge. Substituting (2.22) and (2.23)

into Poisson’s equation gives a relationship between the potential and the electron

and ion densities in the sheath

d2φ

dx2
=

ens

ε0

[
e

φ
Te −

(
1− 2eφ

Mu2
s

)− 1
2

]
(2.24)
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where ns = nes = nis at the sheath edge. Multiplying both sides of (2.24) by dφ/dx

and integrating with respect to x gives

∫ φ

0

dφ

dx

d

dx

(
dφ

dx

)
dx =

ens

ε0

∫ φ

0

dφ

dx

[
e

φ
Te −

(
1− φ

εs

)− 1
2

]
dx (2.25)

where eεs = (1/2)Mu2
s is the initial ion energy. Setting φ = 0 and dφ/dx = 0 at

x = 0, equation (2.25) integrates to

1

2

(
dφ

dx

)2

=
ens

ε0

[
Tee

φ
Te − Te + 2εs

(
1− φ

εs

) 1
2

− 2εs

]
(2.26)

For a real solution to exist, the right hand side of (2.26) must be greater than zero.

By expressing eφ/Te and (1− φ/εs)
1
2 as Taylor series expanded to second order, it

can be shown that the right hand side of equation (2.26) must satisfy

φ2

2Te

− φ2

4εs

≥ 0 (2.27)

Substituting for εs, equation (2.27) can be expressed as

us ≥
(

eTe

M

) 1
2

= uB (2.28)

where uB is known as the Bohm velocity. For a stable sheath to exist, ions must

enter the sheath with a velocity greater than the Bohm velocity.

2.3.2 Presheath

Ions are accelerated to the Bohm velocity across a region called the presheath which

has a weak electric field. The potential drop (φp) across the presheath accelerates

ions to the Bohm velocity and can be described by

1

2
Mu2

B = eφp (2.29)

11



Substituting equation (2.28) into (2.29) gives

φp =
Te

2
(2.30)

Within the presheath, the electron and ion densities are equal but less than the

densities in the bulk plasma. The presheath densities (ns) can be determined by

substituting (2.30) into (2.23) to give

ns = n0e
−φp

Te ≈ 0.61n0 (2.31)

where n0 is the bulk plasma density.

2.3.3 Floating Potential

The potential of an insulator in a plasma will increase until the incoming fluxes of

electrons and ions to its surface are equal. The potential to which the insulator

charges is known as the floating potential (φf ). This has important implications in

the PIII of insulators where the insulator will eventually charge up to the floating

potential during pulse biasing. The floating potential is determined by assuming

that the ion and electron flux to the surface are equal when the surface is at the

floating potential. The ion flux across the presheath is given by

Γi = nsuB (2.32)

From kinetic theory, for electrons in thermal equilibrium at temperature Te, the

electron flux to a planar surface is given by

Γe =
1

4
nsv̄ee

φf
Te (2.33)

where v̄e is the mean electron speed given by

v̄e =

(
8eTe

πm

) 1
2

(2.34)
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where m is the electron mass. Equating equations (2.32) and (2.33) and with the

substitution of (2.28) and (2.34) for uB and v̄e respectively gives

ns

(
eTe

M

) 1
2

=
1

4
ns

(
8eTe

πm

) 1
2

e
φf
Te (2.35)

Solving for the floating potential gives

φf = −TeIn

(
M

2πm

) 1
2

(2.36)

2.3.4 High Voltage Sheaths

For many applications, a large potential exists across the sheath due to a large

negative voltage applied to a surface to accelerate ions into it. In these cases,

the sheath potential is much larger than Te and from equation (2.23), ne can be

approximated to zero in the sheath. For this situation, simple equations describing

the sheath characteristics can be derived.

Matrix Sheath

The simplest sheath has a uniform ion density (ni) and zero electron density and is

known as the matrix sheath. In plasma immersion ion implantation (PIII), the ma-

trix sheath describes the sheath conditions directly after the pulse has been applied.

From Gauss’s Law in one dimension

dE

dx
=

eni

ε0

(2.37)

Integration of (2.37) gives the electric field

E =
eni

ε0

x (2.38)
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where E = 0 at the plasma sheath boundary at x = 0 in figure 2.3. The sheath

potential is found by integrating (2.38) with respect to x

φ (x) = −eni

2ε0

x2 (2.39)

where φ = 0 at x = 0. The matrix sheath thickness (s) is determined by setting

φ = −V0 at x = s

s =

(
2ε0V0

eni

) 1
2

(2.40)

Child Law Sheath

In the steady state, the decrease in ion density as ions accelerate across the sheath

must be accounted for. Assuming that ions start at the sheath edge with zero

velocity, from equation (2.20), the ion energy can be expressed by

1

2
Mu2(x) = −eφ(x) (2.41)

Assuming a constant flux across the sheath, the current density (J0) is given by

J0 = eni(x)u(x) (2.42)

The ion density can be expressed by substitution of (2.41) into (2.42)

ni(x) =

(
J0

e

)(
−2eφ

M

)− 1
2

(2.43)

The sheath potential can be described by substituting equation (2.43) into Poisson’s

equation

d2φ

dx2
=

(
−J0

ε0

)(
−2eφ

M

)− 1
2

(2.44)
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Assuming dφ/dx = 0 at φ = 0 and φ = 0 at x = 0, equation (2.44) can be integrated

twice with respect to x to give

−φ
3
4 =

3

2

(
J0

ε0

) 1
2
(

2e

M

)− 1
4

x (2.45)

If the wall potential at x = s is given by φ = −V0, using equation (2.45) the ion

current density is

J0 =
4

9
ε0

(
2e

M

) 1
2 V

3
2

0

s2
(2.46)

Equation (2.46) is known as the Child law for a space charge limited current in a

plane diode. If J0 is given by

J0 = eniuB (2.47)

then using equation (2.46), the sheath thickness (s) can be expressed as:

s =

√
2

3
λDe

(
2V0

Te

) 3
4

(2.48)

Substituting equation (2.46) into (2.45), the sheath potential is given by

φ = −V0

(x

s

) 4
3

(2.49)

To correctly determine the ion density, ions cannot be assumed to start at the sheath

edge with zero velocity as was assumed in equation (2.41). Using equation (2.20)

with us=uB and equations (2.42) and (2.49), the ion density is equal to

ni(x) =

(
J0

e

)(
u2

B +

(
2eV0

M

)(x

s

) 4
3

)− 1
2

(2.50)

A graph of sheath potential and ion density as a function of sheath thickness (x/s)

is shown in figure 2.4. In PIII, after the application of a pulse bias to the target

object, on the timescale of the inverse plasma electron frequency (ω−1
pe ), a matrix
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Figure 2.4: Sheath potential (φ) and ion density (ni) as a function of sheath thickness
(x/s) for a Child Law sheath determined using equations (2.49) and (2.50). The
plasma-sheath edge is at x/s= 0 and the surface being implanted is at x/s= 1.

sheath forms around the object and on the timescale of the inverse plasma ion

frequency (ω−1
pi ), the sheath edge expands outward to eventually reach the Child

law sheath thickness.

2.4 Capacitive Discharges

In materials processing, one of the most common plasma sources is radio frequency

(RF) discharges. One of the advantages of RF discharges are that insulating materi-

als can be placed on electrodes for deposition or modification. In a DC discharge, an

insulator placed on the cathode will act as a capacitor and will charge up positively

as it is bombarded by ions. As the insulator surface potential increases, the energy

of ions arriving at the surface will decrease which will affect thin film deposition

and/or surface modification. In a RF discharge, the positive charge accumulated

during one half cycle will be neutralised by electron bombardment during the second

half of the cycle reducing the effects of surface charging. RF discharges are also more

efficient than DC discharges in sustaining a plasma [20]. This is due to the transfer

of energy to plasma electrons from collisions with the oscillating sheath edge and
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Figure 2.5: Schematic of a typical capacitive radio frequency (RF) discharge driven
by parallel plate electrodes.

due to increased electron confinement in the plasma which both increase ionisation

in the plasma.

RF discharges can be classified by the means by which power is transferred to

the plasma. One of the most commonly used RF systems are capacitively driven

discharges where power is transferred to the plasma using electrodes in a vacuum

chamber. Other RF plasma sources include high density helicon, helical resonator

and other inductive systems which couple RF power to the plasma across dielectric

windows. One of the main advantages of these other RF systems is the ability to

independently control ion flux and ion energy through separate plasma source and

target electrode power supplies. The main advantages of capacitive RF systems

are their simplicity of design and the uniformity of the plasma produced between

their electrodes. The plasma studied in this thesis was capacitively driven. In this

section, an introduction to a simplified homogeneous model [47] is given to describe

some of the important physics of the capacitive discharge.

A typical capacitive RF plasma system is shown in figure 2.5. A RF voltage is

applied across two parallel electrodes in a vacuum chamber and a plasma is generated

between the electrodes using gases fed into the system. The plasma electrons respond

to the instantaneous electric field while the ions are slower moving and only respond

to the time averaged electric field. The oscillation of the electron cloud results in the
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Figure 2.6: A schematic of the plasma and sheaths in the homogeneous capacitive
RF discharge model.

formation of sheath regions around the plasma edges. These sheath regions contain

a net positive charge which acts to confine electrons and accelerate ions out of the

plasma.

2.4.1 Homogeneous Model for Capacitive Discharges

The homogeneous capacitive RF discharge model [47] is shown in figure 2.6. A

neutral gas is injected between two electrodes of equal cross sectional area A sep-

arated by a distance l. A sinusoidal current, Irf = Re
(
Īrfe

jωt
)

flows between the

two electrodes. This current generates a plasma with a voltage V (t) across it, ion

density ni(x, t), electron density ne(x, t) and electron temperature Te(x, t). Within

the bulk plasma, the ion and electron densities are approximately equal while in

the sheath region ne < ni. The instantaneous sheath thickness s(t) and the time

averaged sheath thickness s̄ are much less than l.

The homogeneous model makes the following assumptions:

1. Due to their larger mass, ions only respond to the time averaged potentials.

2. Due to their smaller mass, electrons respond to the instantaneous potentials
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and carry the RF discharge current. This assumption is valid provided

ωpe >> ω

(
1 +

υ2
m

ω2

) 1
2

where υm is the electron collision rate with neutral molecules.

3. The electron density is zero within the sheath.

4. There is no transverse variation in properties along the electrodes as l <<
√

A.

5. The ion density is uniform and constant everywhere in the plasma and sheath.

ni(x, t) = n = constant.

In more complicated models such as those developed by Lieberman [78, 79], a

non-uniform ion and electron density is assumed in the sheath which lead to more

realistic calculations. However, the homogeneous model is still qualitatively correct

and reveals much of the underlying physics.

2.4.2 Bulk Plasma Properties

The bulk plasma has capacitive, resistive and inductive properties. The admittance

(Y ) of the bulk plasma can be derived by considering the application of an electric

field to a uniform plasma in a background gas. The applied electric field is given by

Ex(t) = Ẽx cos ωt = Re
[
Ẽxe

jωt
]

(2.51)

Assuming that ions do not respond to the instantaneous electric field due to their

larger mass, only the electron motion will be considered. The force equation for

electrons of mass me in the absence of magnetic fields is

me
dux

dt
= −eEx −meυmux (2.52)

where ux is the electron velocity and υm is the electron collision rate with neutrals.

The second term on the right hand describes the momentum transfer rate due to
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collisions with neutrals. If the electron velocity is given by

ux(t) = Re
[
ũxe

jωt
]

(2.53)

substitution of (2.51) and (2.53) into (2.52) gives an expression for the electron

velocity amplitude

ũx(t) = − e

m

Ẽx

jω + υm

(2.54)

The total current density (JTx) can be written as

JTx = ε0
∂Ex

∂t
+ Jx (2.55)

where the first term on the right hand side is the displacement current and the

second term is the conduction current due to free charges. Substitution of (2.51)

and J0 = −en0ũx for the electron conduction current into (2.55) gives

J̃Tx = jωε0Ẽx − en0ũx (2.56)

Substituting (2.54) into (2.56) and rearranging gives

J̃Tx = jωε0

[
1−

ω2
pe

ω (ω − jυm)

]
Ẽx (2.57)

which can be expressed as

J̃Tx = jωεpẼx (2.58)

where

εp = ε0

[
1−

ω2
pe

ω (ω − jυm)

]
(2.59)
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is an effective plasma dielectric constant. Equation (2.57) can also be written in the

form

J̃Tx = (σp + jωε0) Ẽx (2.60)

where

σp =
ε0ω

2
pe

jω + υm

(2.61)

is the plasma conductivity. Depending on the conditions, equations (2.59) or (2.61)

can be used to describe the plasma as having either the properties of a dielectric or

a conductor.

The admittance (Yp) of a bulk plasma slab of length d = l− 2s̄ can be expressed

as

Yp =
jωεpA

d
(2.62)

Substitution of (2.59) into (2.62) allows the bulk plasma to be expressed in the form

of an equivalent electrical circuit model

Yp = jωC0 +
1

jωLp + Rp

(2.63)

where C0 = ε0A/d is the vacuum capacitance, Lp = 1/ω2
peC0 is the plasma induc-

tance and Rp = υmLp is the plasma resistance. Equation (2.63) represents the bulk

plasma as a capacitor in parallel with the series combination of an inductor and a

resistor. This is illustrated in figure 2.7 along with circuit elements for the sheaths

which will be discussed in section 2.4.3.

The displacement current through C0 is much smaller than the conduction cur-

rent through Lp and Rp. Using (2.63), the current through C0 is given by

IC =

(
ω2
(
1− jυm

ω

)
ω2
(
1− jυm

ω

)
− ω2

pe

)
Irf (2.64)
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Figure 2.7: Equivalent circuit model of a homogeneous RF capacitive discharge.
The bulk plasma is represented as a capacitor (C0) in parallel with the series combi-
nation of an inductor (Lp) and a resistor (Rp). The ion flow across the sheaths are
represented by the two current sources (Īi) and the flow of electrons are represented
by the two diodes. The sheath capacitances are represented by Ca and Cb and the
resistors Ra and Rb represent energy gained by plasma electrons due to stochastic
heating.

where Irf is the total current. The current through Lp and Rp is given by

ILR =

(
−ω2

pe

ω2
(
1− jυm

ω

)
− ω2

pe

)
Irf (2.65)

From assumption (2) in section 2.4.1, ωpe >> ω
(
1 + υ2

m

ω2

) 1
2
, which gives ILR ≈ Irf

and IC ≈ 0.

The dielectric constant of the bulk plasma (εp) is much larger than that of the

sheath region (ε0) and very little of the RF voltage is dropped across the bulk plasma.

From (2.58), the electric field in the bulk plasma is given by

Ẽx(plasma) =
J̃Tx

jωεp

(2.66)

As will be discussed in section 2.4.3, the majority of current in the sheath is dis-
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placement current. As a result, the second term on the right hand side of (2.56) is

approximately zero and

Ẽx(sheath) =
J̃Tx

jωε0

(2.67)

where J̃Tx has been assumed to be constant across the bulk and sheath regions. As

εp >> ε0, the electric field in the bulk plasma will be much smaller than across the

sheath and the majority of the RF voltage is dropped across the sheath regions.

2.4.3 Sheath Properties

In the sheath, the majority of current is displacement current which is caused by time

varying electric fields. The conduction current, which is mostly made up of electrons,

is much smaller in the sheath due to the reduced electron density in this region. The

conduction current due to ion flow is also much less than the displacement current

but is important for the modification of materials at the electrodes.

Displacement Current

The equations describing the displacement current through the sheath can be used

to derive equations for the sheath voltage waveforms. Using Poisson’s equation, the

electric field E = Ēx in sheath a in figure 2.6 is given by

dE

dx
=

en

ε0

(2.68)

where n is the charged particle density in the sheath. Integration of (2.68) gives the

electric field

E(x, t) =
en

ε0

[x− sa(t)] (2.69)

where sa(t) is the plasma-sheath edge and E ≈ 0 at x = sa. If the conduction

current through the sheath is very small then the second term on the right hand

side of (2.55) is approximately zero. The displacement current through the sheath
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is

Iap(t) = ε0A
∂E

∂t
(2.70)

where A is the sheath cross sectional area. Substituting (2.69) into (2.70) gives

Iap(t) = −enA
dsa

dt
(2.71)

If Iap(t) = Irf (t) = I1 cos(ωt), integration of (2.71) gives

sa(t) = s̄− s0 sin(ωt) (2.72)

where s̄ is the DC value of the sheath thickness and

s0 =
I1

enωA
(2.73)

is the sheath oscillation amplitude. Integration of (2.69) gives the voltage across

the sheath

Vap(t) =

∫ sa

0

Edx = −
(

en

ε0

)(
s2

a

2

)
(2.74)

Substitution of (2.72) into (2.74) gives

Vap(t) = −
(

en

2ε0

)(
s̄2 − 2s̄s0 sin ωt +

s2
0

2
− s2

0

2
cos 2ωt

)
(2.75)

The time averaged value for Vap is given by

V̄ap =
1

T

∫ T

0

Vap(t)dt = − en

2ε0

(
s̄2 +

s2
0

2

)
(2.76)

Similarly, for sheath b in figure 2.6, the displacement current through the sheath is

given by

Ibp(t) = −enA
dsb

dt
(2.77)
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and the voltage across the sheath is given by

Vbp(t) =

(
en

ε0

)(
−s2

b

2

)
(2.78)

By continuity of current

Ibp + Iap = 0 (2.79)

Substitution of (2.71) and (2.77) into (2.79) gives

sa + sb = constant = 2s̄ (2.80)

Substitution of (2.72) into (2.80) gives

sb = s̄ + s0 sin ωt (2.81)

The sheath voltage Vbp(t) is given by substituting (2.81) into (2.78)

Vbp(t) = − en

2ε0

(
s̄2 + 2s̄s0 sin ωt +

s2
0

2
− s2

0

2
cos 2ωt

)
(2.82)

The time averaged value for Vbp(t) is given by

V̄bp =
1

T

∫ T

0

Vbp(t)dt = − en

2ε0

(
s̄2 +

s2
0

2

)
(2.83)

The combined voltage across both sheaths Vab = Vap − Vbp is given by

Vbp(t) =

(
2ens̄s0

ε0

)
sin ωt (2.84)

A graph of the sheath voltages Vap(t) and Vpb(t) = −Vbp(t) are given in figure 2.8

along with their time averaged values V̄ap and V̄pb.
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Figure 2.8: Sheath voltages Vap(t) and Vpb(t) = −Vbp(t) and their time averaged
values obtained using the homogeneous capacitive discharge model.

Conduction Current

The conduction current in the sheath is very small due to the reduced electron

density in the sheath. However, the balance between ion and electron conduction

currents in the sheath determines the average sheath thickness s̄. By assumption

(1), there is a steady ion current flow through the sheath given by

Īi = enubA (2.85)

Over one RF period the total current flow to each electrode must sum to zero. In

the homogeneous model the electron density in the sheath is zero so the thickness

of each sheath must collapse to zero at some time in each period to allow electron

transfer to the electrodes. For sheath a, setting sa(t) = 0 in (2.72) gives

s̄ = s0 =

(
I1

enωA

)
(2.86)

Substitution of (2.86) into (2.75) gives

Vpa = −Vap =

(
en

2ε0

)
s2
0 (1− sin ωt)2 (2.87)
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The electron transfer from the plasma to the electrodes occurs when the sheath

voltage collapses to zero and can be represented in the circuit diagram in figure 2.7

as a diode, forward biased into the plasma.

The linear sheath capacitance (Cs) can be obtained by differentiating (2.84) and

substituting in (2.86)

dVab

dt
=

(
2s0I1

ε0A

)
cos ωt (2.88)

Rearrangement of (2.88) gives

Irf = Cs

(
dVab

dt

)
(2.89)

where Cs is the linear sheath capacitance given by

Cs =

(
ε0A

2s0

)
(2.90)

The capacitance Cs is represented in figure 2.7 as the series combination of two non

linear capacitances Ca = ε0A/sa(t) and Cb = ε0A/sb(t). The ion current sources

across both sheaths in figure 2.7 represent ion flow across the sheath. The two

resistors Ra and Rb represent energy gained by electrons through stochastic heating

which occurs when electrons are reflected by the moving high voltage sheaths which

act to confine electrons in the plasma and increase their energy.

2.4.4 Asymmetric Discharges

In most capacitive discharges, the area of the RF powered electrode is smaller than

the area of the grounded electrode which includes the grounded chamber walls. This

asymmetry will cause a DC self bias to develop at the RF electrode.

The magnitude of this bias can be determined by considering the capacitance of

each sheath and the current across it. If the sheath is approximated to be a parallel

plate capacitor, its capacitance (C) can be written as

C =
Q

V
=

ε0A

d
(2.91)

27



where A is the electrode area, Q is the charge on the electrode, V is the voltage

and d is the sheath thickness. As the area of the electrode increases, the sheath

capacitance will increase and the voltage drop across the sheath will decrease. If the

area of the two electrodes a and b in figure 2.6 are given by Aa and Ab respectively,

from (2.91) the current density through sheath a can be expressed with the following

proportionality

Ja1(x) ∝ V̄a

sa(x)
(2.92)

From equation (2.46) for the Child law

Ja1(x) ∝ na(x̄) ∝ V̄
3
2

a

s2
a(x)

(2.93)

The total RF current to electrode a can be expressed as

Ia1 =

∫
Aa

Ja1(x)d2x (2.94)

Substitution of (2.92) and (2.93) into (2.94) gives

Ia1 = V̄
1
4

a

∫
Aa

n
1
2
a (x)d2x (2.95)

Similarly for electrode b

Ib1 = V̄
1
4

b

∫
Ab

n
1
2
b (x)d2x (2.96)

For RF current continuity Ia1 = Ib1 which gives

V̄
1
4

a

V̄
1
4

b

=

∫
Ab

n
1
2
b d2x∫

Aa
n

1
2
a d2x

(2.97)

If the ion density is equal in both sheaths, na = nb, which gives

V̄a

V̄b

=

(
Ab

Aa

)4

(2.98)

28



The effects of asymmetric electrodes are illustrated in figure 2.9 using the sheath

voltage waveforms derived in section 2.4.3. Due to the higher mobility of the plasma

electrons, the plasma potential must remain more positive than the RF electrode and

the grounded walls. In a symmetric system (figure 2.9(a)), the DC bias developed

at the RF electrode and grounded electrode are equal. For a system where the RF

electrode is much smaller than the grounded electrode (figure 2.9(b)), the situation

encountered in this thesis, a self bias forms at the RF electrode. This results in

the potential between the plasma and the grounded electrode being smaller than

the potential between the plasma and the RF electrode (Vp - VRF ). More detailed

experimental studies of sheath voltages in asymmetric discharges can be found in

the literature [66, 108].

The scaling power of four in (2.98) is much larger than seen in experiments where

the power is typically less than 2.5 [81]. Two reasons for this discrepency are that

in real plasmas the ionisation rate in the RF electrode sheath is greater than in the

grounded sheath making na 6= nb as was assumed to obtain (2.98). Ion collisions in

the sheath would also modify equation (2.93) which would reduce the scaling power.

2.5 Ion Energy Distributions

In plasma processing, the energy of ions arriving at a surface is important in de-

termining the structure of deposited films and the degree of surface modification.

In this thesis, ion energy distribution (IED) measurements are made during mesh

assisted plasma immersion ion implantation (PIII). In this section, a discussion of

the factors affecting the IED is given along with an analytical model for determining

the IED.

Energy is gained by ions as they cross the plasma sheath. In RF plasmas, the

energy gained by ions crossing the sheath is determined by the amplitude of the

sheath voltage, the pressure and the relationship between the time taken for an ion

to cross the sheath (τion) and the RF period (τRF ) [59]. The pressure determines the

number of collisions an ion experiences and the relationship between τion and τRF

determines the potential difference experienced by ions crossing the sheath. As will
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Figure 2.9: Plasma potential (Vp), RF electrode potential (VRF ) and mean RF
potential (V̄RF ) for a capacitive discharge with (a) symmetric electrodes and (b)
asymmetric electrodes where the RF electrode is much smaller than the grounded
electrode.

be discussed in chapter 4, IEDs can be measured experimentally using mass spec-

trometer systems or electrostatic energy analysers. IEDs have also been calculated

using analytical models [9, 59], using the numerical integration of the equations of

motion [147, 90], using Monte Carlo methods to account for ion collisions [85, 63]

and using particle in cell methods [45, 153].

Analytical IED models [9, 59] for collisionless RF sheaths are useful in describing

the factors which determine the IED. If the time taken by ions to cross the sheath

(τion) is much less than the RF period (τRF ), the energy of the ions arriving at

the target will vary, depending on the sheath voltage at the time the ion entered
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the sheath. This is known as the low frequency case, where τion << τRF . For the

collisionless low frequency case, the IED will have a width corresponding to the range

of values of the sheath voltage. Peaks will occur at the maximum and minimum

sheath voltage where the sheath potential changes most slowly. If τion >> τRF the

ions will take many RF periods to cross the sheath and will experience the time

averaged value of the sheath potential. This is known as the high frequency case.

The IED produced will be narrower than for the low frequency case and as τion

increases, the separation between the two peaks will decrease.

In the high frequency case, the time taken by an ion to cross a RF sheath can

be estimated using the Child-Langmuir law. From (2.45), the sheath potential (Vs)

can be expressed as

Vs = C1x
4
3 (2.99)

where

C1 =

(
9J0

4ε0

) 2
3
(

M

2e

) 1
3

(2.100)

If the initial ion velocity at the sheath edge is neglected, the velocity of the ion in the

sheath (v(x)) can be determined by equating the ion’s kinetic energy ((1/2)Mv(x)2)

to its electrical potential energy (eVs) to give

v(x) =

(
2eVs(x)

M

) 1
2

(2.101)

The time taken by the ion to cross the sheath is given by

τion =

∫ s̄

0

dx

v(x)
(2.102)

where s̄ is the time averaged sheath thickness given by (2.48). Substitution of (2.99)

and (2.101) into (2.102) gives

τion = 3s̄

(
M

2eV̄s

) 1
2

(2.103)
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where V̄s is the mean sheath voltage. The argon plasmas studied in this thesis were

driven with RF power sources in the high frequency regime with a signal frequency

of 13.56 MHz and sheath voltages between -20 to -420 V while the power supply

used to simulate PIII was operated in the low frequency regime.

2.5.1 Analytical Model

For the high frequency case, an analytical model for the IED in a collisionless RF

sheath has been derived [9]. The assumptions of the model are

1. A constant sheath width.

2. A uniform sheath electric field.

3. A sinusoidal sheath voltage given by Vs(t) = V̄s + Ṽs sin ωt.

4. Ions enter the sheath with zero velocity.

The expression for the IED is given by

f(E) =
dn

dE
=

2nt

ω∆Ei

[
1− 4

∆E2
i

(
E − eV̄s

)2]− 1
2

(2.104)

where nt is the number of ions entering the sheath per unit time and ∆Ei is the

IED width given by

∆Ei =
2eṼs

s̄ω

(
2eV̄s

M

) 1
2

=
3eṼs

π

(
τRF

τion

)
(2.105)

Equation (2.104) is obtained by integrating the equation of motion for ions in the

sheath using the assumption that τion >> τRF . IEDs obtained using the analytical

model for Ṽs values of 20 and 50 V are shown in figure 2.10, for a 13.56 MHz RF

argon plasma with nt = 1000, Te = 3 eV and V̄s = 100 V. Even though the ions

take more than ten RF periods to cross the sheath, two peaks at the maximum

and minimum values of the IED are observed as the sheath potential changes most

slowly near its maximum and minimum values. The energy difference between the

peaks is much smaller than the sinusoidal component of the sheath voltage (Ṽs)
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Figure 2.10: IEDs obtained using the analytical model for Ṽs values of 20 and 50 V
in a 13.56 MHz argon plasma with nt = 1000, Te = 3 eV and V̄s = 100V .

and becomes less as the time taken by the ions to cross the sheath becomes larger.

As Ṽs increases, the IED width increases as the ions experience a greater range of

potentials in the sheath. In experimental IED measurements, ions enter the sheath

with a range of velocities greater than the Bohm velocity and this, along with ion

collisions in the sheath will broaden the IED.

2.6 Summary

In this chapter, an introduction to the plasma and discharge physics relevant to

this thesis has been given. A plasma is a partially ionised gas made up of an

approximately equal number of ions and electrons and a different number of neutrals.

Plasmas have important applications in materials deposition and in the modification

of surfaces.

The Debye length, mean free path and plasma frequency are important param-

eters used to describe a plasma. The Debye length is dependent on the charged

particle density and electron temperature and describes how effectively a plasma
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shields a potential perturbation. Collisional processes determine the energy of par-

ticles in a plasma and the average distance between collisions for a particle in a

plasma is described by its mean free path. In an applied electric field, the charged

particles in a plasma will oscillate. The natural frequency of these oscillations is de-

termined by the electron and ion plasma frequencies and these provide an important

timescale for describing effects in a plasma.

Due to the higher mobility of electrons, a positively charged sheath region forms

around the outside of a plasma at its boundaries with electrodes and the vacuum

vessel. For high voltages such as those imposed by PIII electrodes, this sheath can

be described using the Child law. The energy gained by ions crossing the sheath

determines their IED.

In materials processing there are a number of different methods of generating

plasmas. In this project, a capacitive RF discharge where a plasma is generated by

applying an electric field across two parallel plate electrodes was used. The majority

of the voltage is dropped across the sheath regions where the displacement current is

much larger than the conduction current. In asymmetric systems where the area of

the grounded electrode is much larger than the area of the RF electrode, a significant

DC bias develops at the RF electrode.

In RF plasmas the IED is determined by the sheath voltage, pressure and re-

lationship between the time taken for the ion to cross the sheath (τion)and the RF

period (τRF ). If τion is much less than τRF , the potential experienced by the ion

will depend on the time at which the ion entered the sheath. This will produce

a wide bimodal IED. If τion is much greater than τRF , the ion will experience the

time averaged sheath voltage. This will produce a narrower IED centred around the

mean sheath voltage.
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Chapter 3

Plasma Immersion Ion

Implantation (PIII)

3.1 Introduction

In this chapter, an introduction to plasma immersion ion implantation (PIII) and

ion energy measurements during PIII is given. In section 3.2, the PIII method

is introduced and in section 3.3, examples of its use in the surface treatment of

metals, semiconductors and insulators are discussed. In section 3.4, an analytical

model developed by Lieberman [80] is presented to illustrate some of the important

features of the transient sheath during PIII. In section 3.5, a review of ion dose and

energy measurements during PIII using both simulation and experiment is given.

3.2 Plasma Immersion Ion Implantation

Since its introduction in the nineteen eighties [27], plasma immersion ion implan-

tation (PIII) has become a widely used technique for the surface modification of

metals, semiconductors and insulators. The basic PIII process is shown in figure

3.1(a). A negative voltage pulse with an amplitude of up to -150 kV and a period

of between one to several hundred microseconds is applied to an object immersed

in a plasma [148]. Plasma ions are accelerated across the sheath and are implanted

into the object.

35



(a) Basic PIII setup (b) Mesh assisted PIII

Figure 3.1: (a) In the basic PIII process, a large negative voltage pulse is applied to
a target object immersed in a plasma. (b) When the target object is an insulator,
a conductive mesh can be used to minimise surface charging effects.

Compared to conventional beamline ion implantation, PIII has several advan-

tages. In beamline ion implantation, a thin beam of ions is extracted from a plasma

source, focused and accelerated onto the object whose surface is to be modified.

The beam and/or object are then moved to expose the area requiring treatment. In

PIII, the entire object is immersed in the plasma and all exposed surfaces undergo

treatment at the same time. This allows objects with complex shapes, such as drill

bits [138], to be treated quickly without the need for object manipulation. Immer-

sion in a plasma also allows charge build up during implantation to be neutralised

during the pulse-off periods. During pulse-off periods, PIII can also be combined

with deposition processes.

While PIII provides a quick and simple surface treatment method it has some

limitations. PIII is not mass selective and all plasma ions are accelerated into the

target object. Due to ion collisions in the sheath and the finite rise and fall time

of the pulse, the implantation energy of ions into the object will be inhomogeneous.

The minimum feature size to be treated must also be of the order of the sheath

width to allow the plasma sheath to mold over the surface.
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3.3 Applications of PIII

PIII has been used in the treatment of metals, semiconductors and insulators [104].

The PIII treatment of metals such as stainless steel, chromium and alloys has been

shown to improve resistance to wear and corrosion [26, 142, 86]. The depth of surface

modifications is usually less than 100 nm but can be increased by heating, such as

in the implantation of nitrogen into stainless steel at temperatures of around 400 ◦C

[11, 77].

PIII has been used in the treatment of semiconductors such as silicon to modify

optical, electrical and magnetic properties [114, 136, 104]. This process can produce

layers of nanometre thickness with very different properties to the bulk material such

as in the implantation of nitrogen into aluminium which produces semiconductor

aluminium nitride surfaces [89]. The ability of PIII to produce shallow layers with

different properties has also been used in the fabrication of p-n junction diodes by

incorporating ions of atoms such as boron or arsenic into silicon [58, 73].

PIII has been used to improve the mechanical [33], wetability [43, 65], adhesive

[50] and gas barrier [102] properties of polymer films. This has important applica-

tions in areas such as food packaging and in biomedicine where improved hydrophilic

properties can improve the lifetime of attached proteins [100]. Unlike metals, where

charge build up can be conducted away, the PIII treatment of insulators results in

positive charge accumulation on the surface during the pulse-on period. This in-

creases the potential on the insulator surface and reduces the energy of implanted

ions. The deposition of a thin sacrificial metal layer on the polymer surface has been

used to overcome this problem [101]. The pulse bias is applied to the metal layer

and plasma ions are implanted through the layer into the polymer. Another method

of overcoming this problem is by placing a conductive mesh around the sample, as

shown in figure 3.1(b)[93], and pulse biasing both the mesh and substrate with the

same pulse. The negatively biased mesh returns secondary electrons released from

the insulator surface due to ion bombardment, helping to minimise surface charging.

This method has been used to improve the PIII treatment of materials including

polystyrene [67], quartz [44], polyurethane [24] and silicon carbide [42].
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PIII can be combined with thin film deposition in a process known as plasma

immersion ion implantation and deposition (PIIID). Deposition occurs during pulse-

off periods and implantation occurs during pulse-on periods. PIIID allows a graded

transition layer to be formed between the thin film and substrate and this improves

film adhesion. Examples of PIIID can be found in the production of metal and

metal sulfide coatings [50, 145] and diamond like carbon (DLC) films [130, 144, 72].

The hardness and chemical inertness of DLC films gives them many applications in

the coating of parts for industrial and medical use.

PIII can also be combined with cathodic arc deposition of metal ions in a process

known as metal plasma immersion ion implantation (MePIIID) [3]. A metal plasma

is generated when an arc discharge is created between two electrodes in a vacuum.

The arc produces a plasma from the cathode material and also releases neutral liquid

macroparticles. The macroparticles can be removed using a curved magnetic filter

which directs plasma ions to the substrate and does not alter the trajectories of

neutrals. Metal film deposition occurs during times when a high voltage pulse is

not being applied to the substrate and implantation occurs during pulse-on periods.

The implantation of metals such as titanium, tantalum, molybdenum and tungsten

using MePIIID hardens metals [18, 157]. A variety of thin films have also been

formed including titanium nitrides and oxides with potential medical applications

[52, 137], tantalum oxides [156] and chromium films [16]. MePIIID has also been

used for the treatment of polymers such as copper implantation into polyethylene

[159]. Through the control of parameters such as pulse amplitude and frequency,

MePIIID allows thin films with tailored properties such as low stress and increased

hardness to be grown [4].

While PIII is usually carried out with pulse amplitudes in the kilovolt range,

there are also applications with pulse amplitudes below -1000 V. PIII and PIIID in

this voltage range improves surface properties without generating significant defects

in the surface layers. Shallow junction doping of silicon with boron and phosphorous

has been carried out with pulse amplitudes between -700 and -800 V [106]. DLC

films have also been deposited using pulse amplitudes between -50 and -300 V in

acetylene plasmas [131, 75]. The DLC films produced showed increased hardness

38



and compressive stress compared to films made using RF biasing of the substrate.

The effects of pulse frequency have been studied during -100 V pulse bias sputtering

of copper onto silicon dioxide [6]. Increasing the pulse frequency from 20 Hz to

10 kHz while keeping the duty cycle constant reduced the time for surface charge

accumulation and increased the average energy of the ion flux. The use of pulse

biasing provides greater control of the average ion energy which is an important

factor in determining film properties. Mesh assisted PIII with pulse amplitudes

between -200 and -400 V has also been performed on polyurethane [24]. The use

of a conductive grid was shown to reduce surface charging effects and to improve

surface roughness and adhesive properties.

3.4 Collisionless Transient Sheath PIII Model

In this section, an analytical model developed by Lieberman [80] for a planar, col-

lisionless, transient sheath is introduced to illustrate the nature of the ion dose and

energy distribution during PIII.

As shown in figure 3.2, when a negative voltage pulse (−V0) is applied to an object

immersed in a plasma, on the timescale of the inverse electron plasma frequency

(ω−1
pe ), electrons near the object are repelled away. This leaves a uniform density

ion matrix sheath with thickness s0 given by equation (2.40). On the timescale of

the inverse ion plasma frequency (ω−1
pi ), the matrix sheath ions are accelerated into

the surface which drives the plasma-sheath edge further back to expose more ions to

be extracted. On a timescale much greater than the inverse ion plasma frequency,

the sheath width approaches the steady state Child law sheath thickness given by

equation (2.48). The time evolution of the sheath determines the current density

and energy distribution of the implanted ions.

The assumptions of the model are:

1. The ion flow is collisionless.

2. Electrons have zero mass and respond instantly to the applied potentials. This

is valid as the timescale of interest is much greater than ω−1
pe .
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Figure 3.2: Ion (ni) and electron (ne) densities after the application of a negative
voltage pulse (−V0). (a) On the timescale of the inverse plasma electron frequency
(ω−1

pe ), an ion matrix sheath forms. (b) On a timescale much greater than the inverse

ion plasma frequency (ω−1
pi ), a Child Law sheath forms.

3. The applied voltage (−V0) is much greater than Te so that λDe << s0.

4. After the ion matrix sheath formation, a Child law sheath forms. The current

for this sheath is supplied by the uncovering of ions at the moving sheath edge.

5. Ions cross the sheath instantly so that the implantation current equals the

charge uncovered by the expanding sheath.

6. Ions are singly charged.

3.4.1 Sheath Edge Motion

The Child law current density (jc) for a potential V0 across a sheath of thickness s

is given by equation (2.46)

jc =
4

9
ε0

(
2e

M

) 1
2 V

3
2

0

s2
(3.1)

where ε0 is the permittivity of free space, M is the ion mass and e is the ion charge.

The amount of charge crossing the moving sheath edge is equated to the Child law
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current density

en0

(
ds

dt
+ uB

)
= jc (3.2)

where uB is the Bohm velocity given by equation (2.28) and ds/dt is the sheath

edge velocity. Substitution of (3.1) into (3.2) gives an expression for the sheath

edge velocity

ds

dt
=

2

9

(
s2
0u0

s2

)
− uB (3.3)

where s0 is the matrix sheath thickness given by equation (2.40) and u0 is the ion

velocity given by

u0 =

(
2eV0

M

) 1
2

(3.4)

Rearrangement of equation (3.3) gives

∫
dt =

∫
9s2

2s2
0u0 − 9s2uB

ds (3.5)

Using the substitution s = Asec θ and the identity

tanh−1
( s

A

)
=

1

2
log

(
A + s

A− s

)
(3.6)

integration of (3.5) gives

tanh−1

(
s

sc

)
− s

sc

=
uBt

sc

+ tanh−1

(
s0

sc

)
− s0

sc

(3.7)

where sc is the steady state Child law sheath thickness given by

sc = s0

[
2

9

(
u0

uB

)] 1
2

(3.8)
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Given that sc >> s0 and assuming sc >> s, from (3.7) the following expression for

the sheath position is obtained

s3

s3
0

=

(
2

3

)
ωpit + 1 (3.9)

where ωpi = u0/s0 is the ion plasma frequency. Substitution of (3.8) into (3.9) gives

an expression for the timescale over which the Child law sheath forms

tc ≈

(√
2

9

)(
1

ωpi

)(
2V0

Te

) 3
4

(3.10)

An estimate for the time required for the formation of the Child law sheath can

be made for the systems studied in this thesis. For argon ions with the following

assumed values of n0 = 1 x 1015 m−3, Te = 3 eV and V0 = −400 V the value of tc is

0.1 µs.

3.4.2 Matrix Sheath Implantation

The implantation current density during the matrix sheath period can be determined

by considering the ion acceleration across the sheath. From Gauss’s law, the electric

field across a one dimensional matrix sheath can be expressed as

E =
en0x

ε0

=
M

e

(
d2x

dt2

)
(3.11)

where x is the ion’s position. Rearrangement of (3.11) gives

d2x

dt2
= ω2

pi (x− s) (3.12)

The sheath edge position can be approximated by

s = s0 + t

(
ds

dt

)
t=0

(3.13)
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Substitution of (3.3) with s = s0 into (3.13) gives

s = s0 + t

(
2

9
u0 − uB

)
(3.14)

Integration of (3.14) gives

x− s0 = (x0 − s0) cosh(ωpit)−
2

9
s0sinh(ωpit) +

2

9
u0t (3.15)

where x = x0 and dx/dt = 0 at t = 0. An expression for the ion flight time (t)

across the sheath is obtained by setting x = 0 in (3.15)

s0 = (s0 − x0) cosh(ωpit) +
2

9
s0sinh(ωpit)−

2

9
u0t (3.16)

During the time interval between t and t + dt, ions between x0 and x0 + dx0 are

implanted. Rearrangement and differentiation of (3.16) gives

dx0

dt
=

ωpi(s0 − x0)sinh(ωpit) + 2
9
u0(cosh(ωpit)− 1)

cosh(ωpit)
(3.17)

Substitution of (3.16) into (3.17) allows the current density j = en0 (dx0/dt) for

ions in the matrix sheath (0 ≤ x0 ≤ s0) to be calculated

J =
sinh(T )

cosh2(T )
+

2

9

(1 + T sinh(T )− cosh(T ))

cosh2(T )
(3.18)

where J = j/(en0u0) is the normalised current density and T = ωpit is the nor-

malised time. The time taken for the matrix sheath to form can be determined by

setting x0 = s0 in (3.16). This gives a value of T of approximately 2.7 for the time

at which ions start to arrive from the matrix sheath edge. A graph of the normalised

implantation current density during the matrix sheath and Child law sheath time

periods is shown in figure 3.3 for a -500 V pulse with argon ions with a density of

1x1015 m−3.
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Figure 3.3: Normalised implantation current density (J) versus normalised time (T )
during the matrix and Child law sheath time periods obtained using equations (3.18)
and (3.27) for a pulse amplitude of -500 V with argon ions with a density of 1x1015

m−3.

3.4.3 Child Law Sheath Implantation

The implantation current density of ions with initial positions beyond the matrix

sheath edge can be calculated by considering the time required for ions to cross the

sheath. The time taken (ts) for the sheath edge initially at s0 to reach x0 can be

determined by substitution of s = x0 into equation (3.9)

ωpits =
3

2

(
x0

s0

)3

− 3

2
(3.19)

The time taken for an ion to cross a Child law sheath of thickness s can be determined

by considering the sheath potential given by equation (2.49)

φ = −V0

(x

s

) 4
3

(3.20)
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The electric field (E) is given by

E = −dφ

dx
=

4V0

3

(
x

1
3

s
4
3

)
(3.21)

For an ion with charge q and mass M , the acceleration will be

d2x

dt2
=

qE

M
=

4qV0

3M

(
x

1
3

s
4
3

)
(3.22)

Integration of (3.22) with the assumption that at t = 0, x = 0 and dx/dt = 0 gives

the ion flight time

t = 3s

(
M

2qV0

) 1
2

(3.23)

which for s = x0 can be expressed as

t′ =

(
3x0

s0ωpi

)
(3.24)

An ion at x0 will reach the target at t = ts + t′ which can be written using equations

(3.19) and (3.24) as

T = ωpit =
3

2

(
x3

0

s3
0

)
− 3

2
+

3x0

s0

(3.25)

Differentiation of (3.25) gives

dx0

dt
=

u0

(9/2) (x0/s0)
2 + 3

(3.26)

The normalised current density J = j/(en0u0) is given by

J =
1

(9/2) (x0/s0)
2 + 3

(3.27)

From equation (3.25), for x0/s0 = 1, T = 3 and as T → ∞, x0 → sc >> s0 and

J approaches the steady state value of en0uB. A graph of equation (3.27) is shown

in figure 3.3 for a -500 V pulse with argon ions with a density of 1x1015 m−3. The
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discontinuity at T = 3 is due to the assumptions made about the formation of the

Child law sheath and the sheath electric field.

While this model provides only qualitative agreement with more detailed ana-

lytical and numerical models, it illustrates the large current of ions received by the

pulsed object from the matrix sheath and the rapid decrease in this current towards

the steady state value of the Child law sheath.

3.5 Ion Dose and Energy Studies in PIII

In PIII and PIIID, the energy distribution of ions arriving at the pulsed object is

important in determining the extent of surface modifications and thin film prop-

erties, such as in the case of diamond like carbon films [76]. Direct experimental

measurements of the IED at the pulsed object during PIII are difficult due to the

large voltages involved and the microsecond timescale over which the measurements

must be performed. While there have been a number of analytical studies and nu-

merical simulations of factors affecting ion dose and energy during PIII, there have

been very few direct experimental measurements of the IED. In this section, some

of the key results of these simulation and experimental studies will be reviewed.

3.5.1 Analytical Models of PIII

Analytical models have provided useful information on the evolution of plasma

parameters during PIII. One dimensional analytical models, such as presented in

section 3.4, have been developed to describe the implantation current and energy

distribution for planar [80], cylindrical and spherical geometries [118].

For the one dimensional planar, collisionless case with instantaneous pulse rise

and fall time, the IED is made up of three groups of ions. Ions which are uncovered

by the formation of the matrix sheath will impact the object with an energy between

zero and qV0 where V0 is the pulse amplitude. The energy of these ions will depend

on the potential at their starting position in the matrix sheath. As the sheath edge

extends outward to its final steady state Child law value, any ion which crosses the

sheath edge will be accelerated into the object with the full sheath potential energy
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qV0. Finally, when the pulse switches off, any ions in the sheath will impact the

object with an energy dependent on the potential at the position at which they were

located in the sheath when the pulse switched off.

One dimensional analytical models have also been developed for pulses with finite

rise and fall times [129] and for pulse biased plasmas [92] which more accurately

model real experiments. The IED is dependent on the ratio between the pulse

rise/fall time and the time period at which the pulse voltage is at its maximum.

As the pulse rise/fall time increases, the fraction of ions with energy less than the

maximum sheath potential increases.

One dimensional analytical models for PIII have also been developed for highly

collisional sheaths [139] and for multiple charge state ions [111]. As the gas pressure

increases, the number of lower velocity ions increases due to ion collisions in the

sheath. For multiply charged ions, ion energy increases with increased charge state

and this increases implantation depth. Sheath expansion for increased charge state

ions is also faster due to their greater charge.

3.5.2 Numerical Simulations of PIII of Conductors

Numerical simulations using particle in cell (PIC) methods have been applied to

study the effects of pulse, plasma and target parameters on ion dose and energy in

PIII. Pulse parameters such as pulse rise and fall time have been shown to have a

significant effect on IEDs. Ions which enter the sheath during the pulse rise or fall

times will experience less than the full accelerating potential, causing a spread in

the IED [134, 2, 84, 95]. To minimise the number of ions which implant during the

pulse rise time, the rise time must be less than the ion transit time across the matrix

sheath. To minimise the number of ions which implant during the pulse fall time,

the fall time must be less than the maximum sheath collapse rate of s/uB, where s

is the sheath thickness and uB is the Bohm velocity, to prevent ions from diffusing

across the sheath as the pulse collapses. The ion transit time across the sheath is also

dependent on the ion mass [60]. For lighter ions, which have a greater acceleration,

the sheath expansion rate is faster and more ions are implanted during the pulse rise
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time leading to a broader IED. For heavier ions, fewer ions are implanted during the

pulse rise time. The use of a positive pulse before a negative pulse in pulse generated

plasmas for PIII has also been studied [96]. The positive pulse is used to ignite the

glow discharge and was found to produce plasmas more conformal to trench shaped

objects.

The effects of plasma parameters such as pressure and plasma uniformity have

also been studied using simulation [152, 51, 83, 2]. Non-uniformities in the plasma

due to the chamber and electrode design affect sheath expansion and this affects

the ion flux and angles at which ions strike the pulsed object. Ion collisions in the

sheath also cause a significant broadening to the IED [83]. Both simulation and

experimental results show that as pressure increases, the total flux to the pulsed

object increases due to charge exchange collisions in the sheath producing fast neu-

trals which strike the object’s surface and release secondary electrons. As pulse

amplitude and sheath thickness increase, the release of secondary electrons becomes

larger. These secondary electrons are accelerated back across the sheath and into

the plasma where they can cause increased ionisation through collisions with neutral

species. Increasing plasma density increases the total dose and reduces the sheath

width which reduces ion collisions and the number of low energy ions. However, it

also leads to increasingly nonuniform sheath expansion and uneven dose distribution

across the sample [152]. A similar effect occurs with the use of longer pulse widths

which lead to uneven sheath expansion if the sheath width has not yet reached the

Child law equilibrium sheath thickness.

While objects with dimensions of the order of the matrix sheath thickness have a

more conformal sheath [152], many PIII applications involve the treatment of com-

plex shaped objects such as trenches, cylinders or spheres. The non uniform sheath

shape around these objects will affect the ion dose and energy distribution. During

PIII treatment of trenches, the side walls receive very little ion implantation once

the sheath has expanded out of the trench [69, 103, 123, 110, 15]. To maximise the

energy of these ions, short pulse rise times are required so that ions arriving during

the early stages of sheath expansion have more energy. Once the matrix sheath has

developed, the majority of ions implant into the trench tops or trench base with
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the full pulse voltage energy but increased trench depth will reduce implantation

into the base due to ion deflection to the sidewalls. These simulations support ex-

perimental measurements of ion dose into trenches and cylinders which show little

implantation into side walls [38, 39, 87]. The IEDs at the trench top and bottom

show peaks near the maximum ion energy [110]. For the side walls, the IEDs have a

broad structure with fewer maximum energy ions. Most ions which strike the sides

do so when the sheath is expanding out of the trench and have less than the full

pulse voltage energy.

Trench corners also receive uneven treatment due to the convergence of electric

field lines to convex corners at trench tops and divergence of electric field lines away

from concave corners in trench bottoms. This effect has been seen in other structures

such as cone tips [71] and causes an increased implantation at convex corners and

reduced implantation at concave corners.

3.5.3 Numerical Simulations of PIII of Insulators

During PIII treatment of an insulator, the implantation of positive ions and the

emission of secondary electrons due to ion bombardment reduces the insulator sur-

face potential. Simulations and experimental studies have shown that this will affect

ion implantation and sheath development. Simulations have shown the increase in

insulator surface potential during pulsing and that the majority of the implantation

dose is received during the first few microseconds of the pulse when the surface po-

tential is lowest [41, 133]. From both experiment and simulation it has been shown

a thinner and/or higher dielectric constant sample will have a larger ion dose and

greater treatment depth. This can be understood by approximating the sample to

be a parallel plate capacitor of thickness d with a capacitance C given by

C =
εrε0A

d
=

Q

V
(3.28)

where Q is the sample charge, A is the sample surface area, εr is the dielectric

constant and V the potential across the sample. As εr increases and/or d decreases,

the potential across the sample decreases and the potential across the sheath will
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increase, causing ions to implant with more energy. As the sheath potential and

sheath thickness increase, the plasma-sheath surface area will increase causing the

ion flux to become larger.

Surface charging has been shown experimentally and with simulation to distort

sheath expansion [132]. During PIII, at the interface between an insulator and

conductor, the thinner sheath above the insulator causes increased ion bombardment

of the conductor and the insulator edges near the conductor. Increasing ion density

in the plasma will increase the total dose but will also increase surface charging,

causing an increased spread of the IED [82] and a greater change to the surface

potential [41].

3.5.4 Numerical Simulations of Mesh Assisted PIII

The placement of a metal mesh around an insulator during PIII has been shown to

reduce surface charging. The pulse bias is applied to both the mesh and the insulator

base and the mesh reflects secondary electrons emitted by ion implantation back to

the insulator. In both simulations and experiments this has been shown to reduce the

increase in surface potential and increase treatment depth [44, 24, 132]. Simulations

have shown that the implantation of ions is affected by space charge build up inside

the mesh and by the shape of the expanding sheath around the mesh [24, 109]. The

hemispherical sheath shape which forms around a cylindrical mesh during pulsing

causes ion lensing with a focal point which shifts as the sheath evolves. In the case

where there is no plasma inside the mesh, a positive space charge builds up which

alters ion trajectories and broadens the IED until the charge dissipates during the

pulse-off period.

3.5.5 Experimental PIII Ion Energy Measurements

The IED during PIII has been determined in simulation studies for trenches [96,

103, 110, 69] and at planar surfaces investigating the effects of pressure, insulators,

mesh and ion mass [23, 83, 152, 84, 134, 82, 60, 2, 109]. However, there have only

been limited experimental measurements of IEDs during PIII.
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Figure 3.4: A Faraday cup for ion energy measurements uses a negatively biased
grid to repel electrons and an ion collector plate with a variable bias to measure ion
current as a function of ion energy using a device such as an electrometer (E).
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Figure 3.5: A parallel plate ion energy analyser uses electrically biased plate deflec-
tors to control the energy of the ions that are measured at the collector disc which
is biased negatively to repel plasma electrons.
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IED measurements during PIII have been made using Faraday cups and also

with a parallel plate energy analyser. As shown in figure 3.4, a Faraday cup is a

metal cylinder which houses a metal ion collector disc and an electron repeller grid

[54]. The electron repeller grid is biased negatively to repel plasma electrons while

the bias on the ion collector plate can be varied to control which energy ions reach

the collector. Faraday cups have been used to determine IEDs at a hemispherical

target with pulse amplitudes up to -20 kV [88] and at a flat plate with voltages

up to -10 kV [61]. The hemispherical target results show a decrease in ion flux

after several microseconds due to the stopping of sheath expansion after the sheath

reaches the Child law thickness.

A parallel plate energy analyser is a cylinder housing parallel deflecting plates and

a metal collector disc as shown in figure 3.5. A bias voltage applied to the parallel

plates deflects ions based on the time spent between the plates which is dependent

on the ion’s velocity. The parallel plate voltage can be varied to discriminate which

energy ions are able to reach the ion collector. This type of analyser has been used

to measure IEDs in a system where the target object is held at 0 V and the chamber

is positively biased to accelerate ions into the target [55].

Mass spectrometer systems have also been used to study IEDs in pulsed plasma

doping systems [46]. Commercial mass spectrometers can be fitted with electrical

signal gating to perform time resolved ion energy measurements during PIII. Studies

in BF3 plasmas with pulse amplitudes of -500 and -1000 V have shown that as

pressure increases from 100 up to 250 mTorr, the IED widens due to increased

collisions in the sheath.

IEDs have also been determined from depth profiles of implanted ions during PIII

[7, 140, 112]. The depth profile can be obtained using methods such as secondary

ion mass spectrometry (SIMS), Auger electron spectroscopy (AES) or elastic recoil

detection analysis (ERDA). The IED can be determined by fitting depth profile data

to theoretical plots using computer software packages such as TRIM (the transport

of ions in matter) [160].

To date, there have not been any reported experimental measurements of IEDs

during mesh assisted PIII. Simulations of mesh assisted PIII have shown important
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effects which will affect ion dose and energy such as space charge build up inside the

mesh and ion focusing due to the sheath shape around the mesh [109]. While Faraday

cups and parallel plate energy analysers can measure IEDs, as will be discussed in

section 4.2, measurements made with these probes can have significant errors due

to secondary electron emissions. Mass spectrometer systems can also measure IEDs

but their large size and cost make installation in many plasma systems difficult. In

this thesis, a retarding field energy analyser (RFEA) was used for IED measurements

during PIII. As will be discussed in chapter 4, through the use of multiple grids the

RFEA minimises the effects of secondary electron emission and its compact size

allows it to be easily installed in most plasma systems.

3.6 Summary

Plasma immersion ion implantation (PIII) is a materials modification technique

where an object is placed in a plasma and pulse biased with a negative voltage. PIII

is increasingly being used in the treatment of metals, semiconductors and insulators.

For the treatment of insulators, a metal mesh can be placed around the object being

treated and pulse biased together with the object to minimise the effects of surface

charging. After the application of the pulse, on the timescale of the inverse plasma

electron frequency, an ion matrix sheath forms and ions in the matrix sheath are

implanted into the pulsed object with energies dependent on their starting position.

On longer timescales of the order of the inverse plasma ion frequency, the sheath

thickness extends outward toward a steady state Child law sheath thickness with

ions implanting with the full pulse potential energy. A number of analytical and

numerical models have been developed to study ion dose and energy during PIII.

These studies have shown that factors which affect the development of the sheath

such as the ion density, pulse rise and fall time and target shape and material will

have a significant effect on the implanted ion dose and energy. There have only been

a limited number of experimental measurements of ion dose and energy at the pulse

biased object during PIII using Faraday cups, parallel plate energy analysers and

mass spectrometer systems. A retarding field energy analyser (RFEA) allows some
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of the disadvantages of these methods to be overcome and is used in this thesis for

ion energy measurements during PIII.
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Chapter 4

The Retarding Field Energy

Analyser

4.1 Introduction

The energy of ions arriving at a pulse biased object during PIII are important in

determining the extent of surface modifications. The large size of mass spectrome-

ters and the problems associated with the control of secondary electron emission in

Faraday cups can be overcome using a retarding field energy analyser (RFEA). The

subject of this chapter is the design and testing of a retarding field energy analyser

(RFEA) for time resolved ion energy measurements during PIII. In section 4.2, the

theory of how a RFEA works is discussed. In section 4.3, a review of the use of mass

spectrometers and RFEAs for time resolved ion energy measurements is given. In

sections 4.4 and 4.5, the design and construction of the RFEA used in this thesis is

discussed. In section 4.6, initial results obtained using the RFEA in a DC biased

mode are presented.

4.2 Theory

The energy of ions arriving at a surface are important in determining the extent

of surface modifications. While Langmuir probes can be used to determine the

electron temperature, electron density and electron energy distribution they have
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limited usefulness in measuring IEDs. A basic Langmuir probe consists of a metal

wire, inserted into the plasma, with a variable voltage applied to it [99]. A sheath

forms around the wire and while the bias voltage on the wire is below the floating

potential (φf ), the wire draws mostly ion current. As the bias voltage approaches

φf , the probe draws more and more electron current and for bias voltages above

φf , an electron saturation current is approached and the ion current drops to zero.

The variations in ion and/or electron current can be used to derive information on

the electron or ion energy distributions. Due to their smaller mass, the electron

saturation current is much larger than the ion current and can swamp out small

changes in ion current, making it difficult to obtain any information on the ion

energy.

To effectively measure ion energies, the electron flux must be removed. This

can be done using a Faraday cup as discussed in section 3.5.5. As shown in figure

3.4, plasma enters the cup through an inlet orifice and electrons are repelled by a

negatively biased grid. Ion current is measured at the metal collector disc which

has a variable bias voltage applied to it. Information on the IED can be obtained

by varying the collector bias voltage which discriminates which energy ions are able

to reach the collector [54].

In a Faraday cup, ions which are repelled from the collector can collide with

the electron repeller grid, releasing secondary electrons which will cause errors in

the measurement of ion current. The problem of secondary electron emission can

be reduced by using a retarding field energy analyser (RFEA) which uses multiple

grids as shown in figure 4.1. The first grid (F) is held at the potential of the probe

body to prevent electric fields in the RFEA from perturbing the plasma. The second

grid (R) is biased negatively to repel plasma electrons. The third grid (D) is biased

with a voltage which is stepped upwards to discriminate which energy ions can pass

through to the negatively biased collector (C). The suppressor grid (S) is biased more

negatively than the collector to return secondary electrons released by ion impacts

with the collector. The suppressor also prevents secondary electrons released by ion

impacts with other grids from reaching the collector.

In a RFEA, ion current is recorded at the collector as the discriminator voltage
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(a) RFEA Schematic
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Figure 4.1: (a) A retarding field energy analyser (RFEA) uses a series of biased
grids and a metal collector to measure ion energy and flux. (b) The first grid (F) is
held at the probe body potential. The second grid (R) is biased negatively to repel
electrons. The third grid (D) has a variable voltage applied to discriminate which
ions can pass through to the collector (C). The fourth grid (S) is biased negatively
to minimise the effects of secondary electron emission.

is stepped upwards. The RFEA discriminates ions based on the component of their

velocity perpendicular to the grid faces and the IED can be calculated from the ion

current versus discriminator voltage graph [70, 54]. For a single species, the ion

current (Ic) at a collector with area A is given by

Ic = Aτe

∫ 0

−∞
f(v⊥)v⊥dv⊥ (4.1)

where τ is the overall transmission coefficient of the RFEA grids, v⊥ is the component

of the ion velocity perpendicular to the grid face and f(v⊥) is the velocity distribution

function. The velocity (v⊥) of an ion with mass M , accelerated by a potential φ can

be expressed by equating the kinetic energy of the ion to the electrostatic potential

energy (eφ) to give

v⊥ =

√
2eφ

M
(4.2)

At a discriminator potential φ, the ion current at the collector will be

Ic = Aτe

∫ −
q
| 2eφ

M |

−∞
f(v⊥)v⊥dv⊥ (4.3)
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Rearrangement and differentiation of (4.2) with respect to v⊥ gives

dφ

dv⊥
=

Mv⊥
e

(4.4)

Using (4.4), differentiation of (4.3) with respect to φ gives

dIc

dφ
=

dIc

dv⊥

(
e

Mv⊥

)
=

(
e2Aτ

Mv⊥

)
d

dv⊥

∫ −
q
| 2eφ

M |

−∞
f(v⊥)v⊥dv⊥ =

e2Aτ

M
f(v⊥) (4.5)

Equation (4.5) shows that the ion velocity distribution is proportional to the first

derivative of the collector current versus discriminator voltage. Using the experimen-

tally determined IED, information on the average ion density 〈n〉, mean ion velocity

〈v⊥〉 and mean random energy 〈E⊥〉 associated with ion motion perpendicular to

the grid face can be obtained [70]. The average ion density is given by

〈n〉 =

∫ ∞

−∞
f(v⊥)dv⊥ (4.6)

Substitution of the derivative of (4.2), with respect to φ, into (4.6) gives

〈n〉 =
( e

2M

) 1
2

∫ ∞

0

f (v⊥)

φ
1
2

dφ (4.7)

To determine 〈v⊥〉 and 〈E⊥〉, the following parameters must be obtained with sub-

stitution of (4.2) and the derivative of (4.2) with respect to φ

〈nv⊥〉 =

∫ ∞

−∞
v⊥f(v⊥)dv⊥ =

( e

M

)∫ ∞

0

f(v⊥)dφ (4.8)

〈
Mv2

⊥n

2

〉
=

∫ ∞

−∞

Mv2
⊥

2
f(v⊥)dv⊥ = e

( e

2M

) 1
2

∫ ∞

0

φ
1
2 f(v⊥)dφ (4.9)

The mean velocity is given by

〈v⊥〉 =
〈nv⊥〉
〈n〉

(4.10)
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and the mean kinetic energy is given by

〈
Mv2

⊥
2

〉
=
〈Mv2

⊥n/2〉
〈n〉

(4.11)

The mean random energy associated with the velocity component perpendicular to

the grid face is given by

〈E⊥〉 =

〈
Mv2

⊥
2

〉
−
(

M

2

)
〈v⊥〉2 (4.12)

While the RFEA provides a simple and effective means of measuring the IED, its

design has some limitations. Ion losses to grids will reduce the total ion current and

require the use of sensitive current measurement devices at the collector. Compared

to a Langmuir probe, the RFEA is larger in size. When mounted as part of the

substrate or electrode this is not a problem but when used in the bulk plasma the

RFEA will perturb the plasma. If differential pumping is not used, to minimise

ion collisions inside the analyser, the total distance from the probe front to the

discriminator grid must be significantly less than an ion mean free path. Finally,

in high density plasmas, the build up of space charge between grids can affect the

potential profile inside the analyser. These issues and their effect on the design of

the RFEA used in this thesis will be discussed in section 4.5.

4.3 RFEAs and Mass Spectrometers

IEDs can be measured using mass spectrometers and RFEAs. Since the 1960s [125],

different designs of RFEA have been used to measure IEDs in a variety of plasma

discharges under different conditions. In this section, a review of the application of

RFEAs and mass spectrometers to ion dose and energy measurements is given.

4.3.1 Mass Spectrometers

IEDs can be measured with mass spectrometer systems fitted with electrostatic

energy analysers. A simplified schematic of a mass spectrometer system is shown
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Figure 4.2: A schematic of the main parts of a mass spectrometer system for ion
energy measurements.

in figure 4.2. Plasma enters the differentially pumped system through an orifice in

the electrode. Electrostatic lenses are used to focus ions into the energy analyser

and to reject electrons. A variable potential applied to the electrostatic energy

analyser discriminates which energy ions are able to pass through to the mass filter.

The mass filter discriminates ions based on the ratio of their charge to mass using

electric and/or magnetic fields and determines which ions are able to be measured at

the collector [49]. Mass spectrometers have been used to measure IEDs in a variety

of different plasma systems. At grounded electrodes in capacitive and inductive RF

plasmas, the effects on the IED of pressure [127], RF frequency [120], ion mass [8]

and parameters affecting plasma potential [66, 25] have been studied using mass

spectrometer systems. By floating the spectrometer, IED measurements have been

made at RF powered electrodes in capacitive and inductive plasmas investigating the

effects of RF power and voltage, pressure and ion mass/charge [97, 158, 48, 94, 1].

While mass spectrometers allow mass and charge selective study of IEDs, they

have some disadvantages. Their large size makes them difficult to mount at differ-

ent locations in a chamber. The paths taken by ions in the spectrometer can be of

the order of tens of centimetres in length and the spectrometer must be differen-

tially pumped to reduce the number of ion collisions. Compared to RFEAs, mass
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spectrometers are more complicated in their design and this increases their cost.

4.3.2 Retarding Field Energy Analysers

Unlike mass spectrometers, RFEAs cannot distinguish between ions of different

charge or easily distinguish between ions of different mass. In the low frequency

case, discussed in section 2.5, where the time taken by ions to cross the sheath is

much less than the RF period, the splitting of the bimodal peaks in the IED can be

used to distinguish ions of different mass [37]. However, in the high frequency case,

where ions take many RF periods to cross the sheath, the splitting of the bimodal

IED peaks becomes too small to identify different mass ions. The main advantage

of RFEAs are their compact size and simplicity. This reduces their perturbation

of the plasma and allows them to be easily positioned at different locations in the

vacuum chamber. Different variations of RFEA have been used to study IEDs and

ion flux in a variety of plasma systems.

RFEAs with electrically grounded bodies have been used in numerous plasma

studies. As pressure is increased, RFEA measurements of IEDs in capacitive and

inductive RF plasmas show increasing numbers of low energy ions [56, 14, 135, 119].

IED measurements in capacitive RF plasmas show an increase in ion density and in

the number of high energy ions with increasing RF power and decreased ionisation in

the sheath with increasing RF frequency [14]. In pulsed plasmas, grounded RFEAs

have been used to study the effects of pulse frequency and duty cycle on the IED

[155]. While most RFEAs are constructed with metal bodies, RFEAs in a ceramic

material [5] and a micron scale RFEA with silicon (Si) grids and silicon dioxide

(SiO2) spacers [10] have been constructed. For the micron size RFEA, 750 nm holes

were etched into a Si/SiO2/Si/SiO2/Si multilayer structure , with a nickel metal top

surface, to allow ions to travel through to the silicon collector. The silicon grids

were 400 nm thick and the two silicon dioxide layers were one and two µm thick.

The compact size of RFEAs has allowed free standing RFEAs to be used for ion

energy measurements in the bulk plasma. Ion energy measurements have been made

in helicon RF plasmas [21, 22] and in the boundary layers of tokamak [107, 143] and
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heliac fusion plasmas [116]. By rotating the RFEA, computer tomography has also

been used to construct three dimensional IEDs [57].

RFEAs have been used in numerous studies of ion flux and energy at DC and

RF biased substrates. The energy of ions arriving at DC biased substrates has

been studied using RFEAs and related to physical [35] and optical/electrical [105]

properties of deposited films. At RF biased substrates, both the plasma potential

and substrate potential are oscillating and the energy of an ion arriving at the

substrate will depend on the phase at which the ion enters the sheath and the time

taken to cross the sheath. If the time taken to cross the sheath is less than the RF

period, bimodal peak IEDs will be produced. A number of studies of IEDs at RF

biased substrates have been performed using RFEAs, including investigations of the

effects of ion mass [37], RF frequency [91] and RF power and pressure [36].

The angle at which ions arrive at the substrate is also important in determining

the extent of surface modifications and thin film structure. Using hemispherical grids

and a hemispherical collector made up of an array of separate collector discs, RFEAs

have been used to measure ion angular distributions (IADs) and IEDs. As pressure

increases, ions undergo more collisions in the sheath and the collided, low energy

ions have larger incident angles to the substrate [151, 85, 149]. The distortion of the

sheath shape around trench corners and bumps on the substrate causes increased

deflection of ions and a reduced numbers of high energy ions [150, 64].

Time resolved ion energy measurements have been performed using both mass

spectrometers and RFEAs. These measurements are more difficult due to the addi-

tional electronics required to study ion energies and flux at different times. Using

electronic signal gating, mass spectrometers have been used to study IEDs in pulsed

plasma systems during the pulse-on and off periods at grounded substrates in argon

[68, 141, 154], boron trifluoride [113, 68] and carbon tetrafluoride [126] plasmas.

Time resolved ion energy measurements using RFEAs have been carried out in

pulsed argon plasmas [32], and in pulsed helicon plasmas [13].

A number of studies have investigated factors affecting the energy resolution of

RFEAs including grid voltages and inlet orifice design [12, 85], space charge build

up [161, 98], grid hole lens effects [125, 53] and grid alignment [19]. The outcomes
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of these studies will be discussed with regards to the RFEA used in this thesis in

section 4.5.

4.4 RFEA Construction

For this thesis, an ion energy analyser was required which was capable of performing

time resolved ion energy measurements at a pulse biased substrate during PIII. A

commercial mass spectrometer was not used due to the large cost in purchasing

such a system and the difficulty in mounting it in an existing chamber without

significantly perturbing the plasma. It was instead decided to construct a RFEA.

The requirements of the RFEA were:

1. A compact size to allow easy mounting in the vacuum chamber.

2. An outer body that could be pulse biased.

3. An ability to make current measurements on a microsecond time scale.

4. A distance from the first grid to the discriminator grid of less than the mean

free path to minimise ion collisions inside the RFEA.

A front and top view of the RFEA which was constructed is shown in figures

4.3 and 4.4. The design of the RFEA was based on a free standing, electrically

grounded RFEA in use at the Australian National University [28]. The RFEA was

constructed by the Physics Workshop at The University of Sydney. The main body

is a stainless steel cylinder with a diameter of 52 mm and height of 36 mm. The

RFEA is connected to a stainless steel pipe with a diameter of a 1/4 inch (6.35 mm)

which provides a feed through for electrical connections and allows the analyser

to be moved to different positions in the vacuum chamber. The 1/4 inch pipe is

stepped up to a 3/8 inch (9.525 mm) pipe at the RFEA to allow greater separation

between electrical wires entering the RFEA. A vacuum seal is made using Torr Seal

at the RFEA end of the 3/8 inch pipe. Both the 1/4 inch and 3/8 inch pipes were

electrically grounded through the chamber walls and were insulated from the main

body of the RFEA using teflon spacers.
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Figure 4.3: Assembled front view of the RFEA used in this thesis.

Figure 4.4: Assembled top view of the RFEA used in this thesis.

To allow easy access for servicing, the front and back lids of the RFEA could

be removed. The front lid of the analyser was made from stainless steel with a

thickness of 0.2 mm and a 4 mm diameter inlet orifice at its centre. The front lid

was made as thin as possible to minimise ion losses to the inlet orifice sidewalls,

caused by distortion of electric fields in the sheath near the orifice [12, 85]. To

prevent electric fields in the analyser from distorting the sheath, the orifice was

covered with a conductive nickel mesh with a thickness of approximately 5 µm. The

mesh was sixty percent transparent with square holes with side lengths of 39 µm. To

minimise electric field distortion of the sheath, the grid hole sizes must be smaller

than the Debye length given by equation (2.5). For the plasmas studied in this

thesis, with an estimated ion density of 1x1015 m−3 and an electron temperature of

3 eV, the Debye length is 407 µm. This is much larger than the grid hole size and
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Figure 4.5: Exploded isometric drawing of the internal components of the RFEA.
The teflon spacer and metal mesh grid components are repeated three times in the
actual RFEA.

as a result the potentials on the grid wires will not be significantly shielded by the

plasma.

An exploded isometric drawing of the internal components of the RFEA are

shown in figure 4.5. For clarity, the screws and connecting pipe have been omitted.

The connecting pipe is joined to the grounded inner body of the RFEA which is

insulated from the outer body with a teflon tube. A grounded inner body was used

to provide shielding of the collector from electric fields generated by pulsing the

probe body.

Inside the grounded inner body, a teflon disc with a cross cut into it was used to

support the metal grids, teflon spacers and collector. The RFEA grids were made

from the same material used for the mesh covering the inlet orifice. The RFEA

used four grids as shown in figure 4.1(a). Each grid had a diameter of 6 mm with

a 4 mm wide tab to allow attachment of electrical wires. A teflon spacer with a

thickness of 0.8 mm, diameter of 10 mm and a centre hole with a diameter of 4 mm

was placed between each grid for insulation. Conductive glue was used to fix the
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grid covering the inlet orifice to the front lid. To prevent movement, the tabs on

the other grids were fixed with a small dab of glue to the teflon spacer in front of

them. Ion current was measured at the copper collector which had a diameter of

10 mm and a 5 mm wide tab. The entire grid, spacer and collector stack was held

in place with a teflon support rod which pushed down on the back of the collector.

The tabs of the repeller, discriminator, suppressor and collector were positioned in

the different arms of the cross cut into the teflon disc. Due to their fragile nature,

electrical connections to the grids were made by fixing fine multistrand copper wire

to the grid tabs using conductive glue. Connection to the collector was made by

soldering copper wire to the collector tab. The overall distance from the top surface

of the front lid to the collector was approximately 3.5 mm. The energy resolution of

the analyser is determined by the spacing between the grids and the size of the grid

holes. The choice of these parameters for the RFEA in this thesis will be discussed

in section 4.5.

4.4.1 RFEA Electrical Circuit

A schematic of the electrical connections to the RFEA are shown in figure 4.1(a).

Variable DC power supplies were connected to each grid and the collector. Insulated

copper wire was used for electrical connections between grids and power supplies.

For the collector, a coaxial cable was used between the biasing power supply and

the vacuum seal in the connecting pipe, after which insulated copper wire was used.

Inside the RFEA, loose fitting teflon cylinder segments were put around the copper

wires for insulation to reduce slow outgasing from the wires. At the collector, the

ion current was measured as a voltage across a resistor (R). For the DC biased

measurements in section 4.6, a 1 MΩ resistor was used and the voltage across the

resistor was measured using a Keithley 617 electrometer.

A schematic of the circuit used for time resolved measurements is given in figure

A.1 in appendix A. For time resolved measurements, the time constant (τ = RC) of

the resistance (R) and coaxial cable capacitance (C) is larger than the microsecond

timescale over which measurements need to be performed. The coaxial cable capac-
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itance is estimated by assuming the cable is cylindrical with an inner conductor of

radius a and an outer conductor of radius b separated by a material with dielectric

constant εr. Using Gauss’s law to determine the electric field between the conduc-

tors, the potential between the conductors can be determined and substituted into

C = Q/V to give

C =
2πεrε0L

In
(

b
a

) (4.13)

where L is the cable length. The 0.5 m length coaxial cable used in the RFEA had

an inner conductor with radius of approximately 0.25 mm and outer conductor of

radius of approximately 1 mm with a teflon dielectric. Using equation (4.13), the

cable capacitance is approximately 28 pF and for a 1 MΩ resistor the time constant

is 28 µs which is much greater than the microsecond time resolution required for

measurements. To overcome this problem, the resistor value was reduced to 1 kΩ

and the three stage amplifier circuit shown in figure A.1 in appendix A was used to

measure the ion current.

4.5 RFEA Design Considerations

The energy resolution of a RFEA is limited by ion collisions in the probe, aperture

diameters, electrostatic lens effects at grid holes and space charge build up between

grids. In this section, these effects will be discussed in relation to the RFEA used

in this thesis.

4.5.1 Ion Collisions

Ion collisions inside the RFEA alter the energy of ions, causing errors in the IED

measurements. Due to the low ionisation level of the plasmas studied in this the-

sis, the majority of collisions ions undergo will be with neutral gas molecules. To

minimise the effects of ion collisions on IED measurements, the distance from the

RFEA front to the discriminator grid must be much less than a mean free path.

Ions which collide with gas molecules after the discriminator will still be measured
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at the collector with the correct energy.

From kinetic theory, the mean free path (λ) for collisions between rigid gas

molecules with a diameter a is given by

λ =
1√

2πna2
(4.14)

where n is the neutral gas density. At a given pressure (p) in Pa and temperature

(T ) in Kelvins, the neutral gas density is given by

n =
p

kBT
(4.15)

where kB is the Boltzmann constant. Using equation (4.14) and (4.15), for argon

atoms with a diameter of 196 pm [124] at a temperature of 300 K and pressure of

5 mTorr (0.67 Pa), the mean free path for hard sphere collisions is 3.6 cm. Over

this distance, the number of ions which do not collide will be 1/e times the total

incoming flux.

Charge exchange collisions occur when a fast ion collides with a neutral atom

and captures an electron to produce a fast neutral atom and a slow ion. For charge

exchange collisions, the collision cross section increases as the energy of the incoming

ion decreases and is of the order of 5x10−19 m2 for argon ions in argon [29]. At a

pressure of 5 mTorr, using equation (2.10) this gives a mean free path of approxi-

mately 12 mm. In the RFEA used in this work, the distance from the RFEA front

to the discriminator is approximately 1.8 mm which is much less than the mean free

path based on the argon atom diameter or charge exchange at 5 mTorr.

4.5.2 Aperture Diameters

The finite diameter of grid apertures in the RFEA results in ion losses which affect

the acceptance angle of the analyser. This effect is illustrated in figure 4.6, which

shows two apertures with diameters A and B covered by metal mesh and separated

by a distance D. Even if both ion 1 and 2 have enough energy to pass through

grid G2, ion 2 will not be measured due to the finite size of the apertures. Both
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Figure 4.6: The trajectories of two ions (1 and 2) through apertures of diameters
A and B covered by metal mesh in the RFEA. The loss of ions to aperture walls
affects the RFEA acceptance angle. To minimise the loss of ions, the distance
between apertures (D) must be kept much less than the aperture diameters.

experimental measurements [74] and theoretical calculations [31] have shown that

to minimise this effect, the separation distance between grids must be kept much

less than the aperture diameters.

4.5.3 Grid Hole Lens Effects

The grid holes of the meshes used in the RFEA act as electrostatic lenses and the

trajectories of incoming ions will diverge, limiting the analyser energy resolution.

The effects of electrostatic lensing on RFEA measurements has been addressed in a

number of studies [125, 53, 117].

The paraxial equation for charged particles can be used to estimate the focal

length of a circular aperture [128]. The focal length (f) of a circular aperture, for

charged particles with energy eV0 travelling parallel and close to the axis through

the aperture is given by

f =
4V0

E2 − E1

(4.16)

where E1 and E2 are the electric fields on either side of the aperture. A positive
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focal length indicates a converging lens action and a negative focal length indicates

a diverging lens action. Using equation (4.16), the holes of the front (F) and dis-

criminator (D) grids act as converging lenses and the holes of the repeller (R) and

suppressor (S) grids act as diverging lenses.

Equation (4.16) shows that as the energy of the ion (eV0) becomes smaller, the

lensing action of the grid holes becomes stronger. At both the front and repeller

grids, the ions are moving with relatively high velocity and the lensing actions are

weak with focal lengths greater than the grid separation distance. At the discrim-

inator where ions are decelerated, the divergent action of the grid holes becomes

stronger, spreading the ion beam which passes through the grid hole. As the grids

in the RFEA were not aligned, the spreading of the ion trajectories after the dis-

criminator should not cause significant errors in IED measurements.

The variation in potential across grid holes also cause errors in ion energy mea-

surements. While the potential at the grid wires will equal the applied potential,

the electric fields on either side of the grid will cause a potential gradient across

the grid hole. At the discriminator, this results in ions with energy less than the

wire potential passing through the hole centre, causing measurement errors. The

potential variation across the grid hole can be minimised by decreasing the grid hole

size and/or reducing the electric field between grids by increasing grid separation.

However, as the grid hole size decreases, ion flux to the collector will also decrease

due to ion losses at the grid wires.

For an effective RFEA, a balance must be obtained between bringing the grids

as close as possible to reduce ion collisions and keeping the grids far enough apart

to minimise lens effects and potential variation across the grid holes. The spacing

between grids and grid hole size for the RFEA in this thesis were chosen as a

compromise between these competing factors.

4.5.4 Space Charge Effects

The build up of space charge between grids in the analyser alters the potential profile

and affects ion energy measurements. This is a significant problem in high density
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plasmas [98] and space charge dominated beams [161, 30].

An estimate of the space charge potential (φ) between two grids in one dimension

is determined using Poisson’s equation

d2φ

dx2
= −en0

ε0

(4.17)

where n0 is the bulk plasma density. Assuming potentials V1 and V2 on two grids

separated by a distance d, equation (4.17) is solved to give

φ(x) =

(
−en0

2ε0

)
x2 +

(
V2 − V1

d
+

en0d

2ε0

)
x + V1 (4.18)

Inside the RFEA, the region of most significant space charge build up occurs between

the repeller and discriminator grids where ions rejected by the discriminator can

accumulate. A graph of the potential between the repeller (R) and discriminator

(D) grids obtained using equation (4.18) is shown in figure 4.7. The repeller voltage

is -80 V, the discriminator voltage is 0V and the grid separation is 0.8 mm. The ion

density was taken to be twice the expected bulk ion density of 1x1015 m−3. This

density was then attenuated by the transparency of the front and repeller grids to

account for ions lost to these grids. The graph shows that the space charge build

up has very little effect on the potential profile.

4.6 RFEA Testing

4.6.1 Experimental Setup

Initial tests of the RFEA were performed with the probe body DC biased. A

schematic of the experimental setup used is shown in figure 4.8. Measurements

were performed at a pressure of 5 mTorr in a capacitive 13.56 MHz radio frequency

(RF) argon plasma with a RF power of 100 W. The RF electrode was disc shaped

with a diameter of 13 cm. The RF power supply was an ENI Power Systems OEM-6

with an ENI Power Systems Matchwork matching box. The vacuum chamber was

a stainless steel cylinder with a diameter of 44 cm and length of 46 cm.
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Figure 4.7: A graph of the space charge potential between the repeller (R) and
discriminator (D) grids obtained using equation (4.18) with an ion density of 2x1015

m−3 attenuated by the transparency of the front and repeller grids.

The outer body of the RFEA was biased using a variable voltage DC power

supply. The ion current to the RFEA collector was recorded as a voltage across a 1

MΩ resistor using a Keithley 617 electrometer. The RFEA grids and collector were

biased using variable DC power supplies and a graph of the grid bias voltages used

is shown in figure 4.9. The probe body (F) was biased at voltages between -30 and

30 V. The repeller voltage was set to -80 V to repel plasma electrons. Assuming

an electron temperature of 3 eV, the majority of electrons should be repelled by a

voltage of -80 V. The discriminator (D) potential was varied between -60 and 100 V.

The suppressor (S) was set to -100 V to minimise the effects of secondary electron

emission on ion current measurements at the collector (C) which was set to -80 V

to attract ions.

A computer program written in LabView was used to record the voltage across

the 1 MΩ resistor and to control the discriminator grid voltage. The computer

graphing program Origin was used for analysis of the ion current versus discriminator

grid voltage data.
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Figure 4.8: Schematic of the experimental setup used for ion energy measurements
with a DC biased RFEA.

4.6.2 Grounded RFEA Results and Discussion

In the first experiments, ion energy measurements were made with the probe body

electrically grounded. A graph of the collector current versus discriminator voltage

and the IED obtained from this data using equation (4.5), are shown in figure 4.10.

For discriminator voltages above the maximum ion energy, the collector current

goes to a negative value due to an electrical leakage current between the collector

and earth. This leakage current is dependent on the collector bias voltage which is

kept constant for all measurements. From the IED graph, the maximum ion energy

measured was 24 eV. The IED has a peak at 20 eV and a range of ions measured

with energies between zero and the maximum ion energy.

For the grounded RFEA, the maximum ion energy value of 24 eV represents the

time averaged local plasma potential (Vp) in the region of the plasma surrounding

the RFEA. Using equation (2.103), the time taken by an ion to cross the sheath

when the RFEA body is grounded is much longer than the RF period and ions

will only experience the time averaged plasma potential. The IED peak close to

the maximum ion energy indicates that the majority of ions gain close to the full
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Figure 4.9: Grid voltages for the DC biased tests of the RFEA with an estimate of
the plasma potential (Vp) and two different discriminator grid (D) voltages shown.
The voltage on the RFEA body (F) was varied between -30 and 30 V.

sheath potential. These ions would experience very few collisions in the sheath and

would arrive with trajectories close to perpendicular to the RFEA front surface.

The spread of ions measured with energies extending down to 0 eV is attributed to

ion collisions in the sheath and RFEA. From section 4.5.1, for argon at a pressure

of 5 mTorr, the mean free path is 3.5 cm for hard sphere collisions and is 1.2 cm

for charge exchange collisions. While these distances are larger than the sum of the

sheath thickness and RFEA length, a number of ions will still undergo collisions in

this region.

4.6.3 DC Biased RFEA Results and Discussion

The RFEA was DC biased with voltages between -30 and 30 V in an argon RF

plasma at a pressure of 5 mTorr. A graph of the ion current versus discriminator

voltage for the different bias voltages is shown in figure 4.11. The local plasma

potential, which is given by the discriminator voltage at which the collector current

first reaches its minimum value, decreases as the DC bias becomes more negative
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Figure 4.10: Ion current versus discriminator voltage graph and the IED obtained
from this data using equation (4.5). Measurements were made with a grounded probe
in an argon RF plasma at a pressure of 5 mTorr. The IED shows the majority of
ions have an energy close to 20 eV and that the plasma potential is 24 eV.

and increases as the DC bias becomes more positive. Using equations (4.7) and

(4.8), the average ion density and average ion flux for the different bias voltages

were calculated and are shown in figure 4.12. As the bias voltage becomes more

negative the ion density decreases below the value obtained when the RFEA was

grounded and for positive biasing the ion density is greater than obtained with a

grounded RFEA. Negative biasing of the RFEA results in very little change to the

ion flux compared with the value measured with a grounded RFEA while positive

biasing results in a small increase in ion flux.

The plasma potential is determined by the number of ions and electrons in the

plasma. As the DC bias applied to the RFEA body becomes more negative, the

sheath thickness around the RFEA increases which increases the plasma-sheath sur-

face area. This results in more ions being drawn out of the plasma which lowers the

plasma ion density and local plasma potential as seen in figures 4.11 and 4.12. Neg-

ative biasing also confines more electrons in the plasma which would also lower the
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Figure 4.11: Ion current versus discriminator voltage graphs as a function of DC bias
voltage applied to the RFEA. The local plasma potential (Vp) is measured as the
point at which the ion current graph first reaches its minimum value. Measurements
were made in an argon RF plasma at a pressure of 5 mTorr.
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Figure 4.12: Average ion densities and ion fluxes as a function of DC bias applied
to the RFEA in an argon plasma at a pressure 5 mTorr.
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local plasma potential. Positive biasing of the RFEA reduces the sheath thickness

around the RFEA which reduces the plasma-sheath surface area. This reduces the

number of ions drawn out of the plasma and increases the ion density and plasma

potential. Positive biasing also reduces the potential barrier confining electrons in

the plasma which allows more electrons to escape to the RFEA surface and increases

the local plasma potential. This increase in the local plasma potential acts to re-

store the potential barrier confining electrons in the plasma and balance the flux of

electrons and ions to the RFEA surface. Negative biasing of the RFEA does not

produce as large a change to the plasma potential or ion density as positive biasing.

This may be due to most electrons which escape the plasma having an energy too

large to be affected by the negative bias voltages tested in this work. For a 3 eV

electron temperature, there would be a large number of electrons with energies less

than 30 eV and biasing the probe positively allows many of these electrons to escape

which would have a significant effect on the plasma potential.

The ion flux shows little change during negative DC biasing of the RFEA. Nega-

tive biasing would increase the plasma-sheath surface area and ion flux to the RFEA.

However, it appears that this is balanced out by the reduction in ion density due to

the increased depletion rate of ions from the plasma. The small increase in ion flux

during positive DC biasing of the RFEA is attributed to the increased ion density

produced by positive biasing of the RFEA.

A graph of the IEDs obtained for negative and positive DC biasing of the RFEA

are shown in figures 4.13 and 4.14 respectively. During negative DC biasing, the

maximum ion energy measured increases by slightly less than the applied bias volt-

age. This is explained by the increase in the sheath potential during negative bias-

ing of the RFEA. For positive biasing, the maximum ion energy measured decreases

slightly with increasing bias voltage. This is explained by the increase in the plasma

potential with positive DC biasing of the RFEA. For all IEDs, peaks are measured

close to the maximum ion energy which indicates that the majority of ions gain

close to the maximum sheath potential. As discussed in section 4.6.2, the spread

of ions with energies between zero and the maximum ion energy is attributed to

ion collisions in the sheath and RFEA and due to the measurement of ions with
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trajectories not perpendicular to the RFEA front surface. The small peaks close to

0 eV for bias voltages of 20 and 30 V indicate an increasing number of low energy

ions as the DC bias voltage increases.

A graph of the effects of bias voltage on the mean random ion energy associ-

ated with motion perpendicular to the RFEA front surface is shown in figure 4.15.

The mean random ion energy was obtained using equation (4.12). For negative

DC biasing, the mean random energy increases as the bias voltage becomes more

negative. For positive DC biasing, the mean random energy remains relatively un-

changed with increasing bias voltage. The increase in the random energy as the

bias voltage becomes more negative is explained by the increase in sheath thickness

and the increased chance of ion collisions. During collisions, energy associated with

the velocity component perpendicular to the RFEA front can be transformed to

energy associated with velocity in random directions, increasing the mean random

ion energy. During positive biasing, the sheath potential and sheath width decrease

only slightly and the mean random ion energy remains relatively unchanged.

The experimentally measured ion densities were lower than typical materials

processing plasma densities of the order of 1x1015 m−3. Using equation (2.48), for a

20 V sheath with an electron temperature of 3 eV, a decrease in the ion density from

1x1015 m−3 to 5x1013 m−3 would increase the sheath thickness from approximately

1.3 to 6.0 mm. From section 4.5.1, for argon ions with a density of 5x1013 m−3 at

5 mTorr the sheath thickness will still be much less than the mean free path. This

is seen in the IED results which show the majority of ions reaching the RFEA with

close to the maximum sheath potential energy. The ion densities measured by the

RFEA may be lower than expected due to ion losses in the RFEA and also due to

the finite acceptance angle of the RFEA inlet aperture. Assuming that the RFEA

inlet is approximately 3.5 mm deep and 4 mm wide the acceptance angle is 97.6

degrees.
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Figure 4.13: IEDs for different negative DC bias voltages (Vb) applied to the RFEA.
Measurements were made in an argon RF plasma at a pressure of 5 mTorr.
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Figure 4.14: IEDs for different positive DC bias voltages (Vb) applied to the RFEA.
Measurements were made in an argon RF plasma at a pressure of 5 mTorr.
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Figure 4.15: Mean random ion energies as a function of DC bias applied to the
RFEA in an argon plasma at a pressure of 5 mTorr. Negative biasing increases
the sheath width and the chance of ion collisions which increase the mean random
energy of the ions.

4.7 Summary

The energy of ions arriving at a surface in a plasma are important in determining

the extent of surface modifications and the properties of deposited thin films. Their

ability to minimise the effects of secondary electron emission and their compact size

give retarding field energy analysers (RFEAs) an advantage over Faraday cups and

mass spectrometers for IED measurements. RFEAs use a series of electrically biased

metal grids to repel plasma electrons and measure the energy of ions based on the

component of their velocity perpendicular to the grid face. The IED can be obtained

from the first derivative of the ion current versus the discriminating grid voltage.

For this thesis, a RFEA was constructed with an outer body which could be pulse

biased. The design of the RFEA considered the effects of ion collisions inside the

analyser, aperture diameters, electrostatic lens effects at grid holes and space charge

build up which determine the requirements for grid separation and grid hole size.

When the RFEA was DC biased with negative voltages, the plasma potential and

ion density decreased below values measured with the RFEA body grounded. This
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is attributed to an increased depletion of ions from the plasma. Negative biasing

increased the maximum energy of ions reaching the RFEA. For positive biasing, the

plasma potential and ion density increased. Positive biasing of the RFEA results

in a reduction in the maximum ion energy measured. The majority of ions are

measured with energies close to the maximum sheath potential which indicates that

most ions experience few collisions in the sheath and arrive with trajectories close

to perpendicular to the RFEA front surface.
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Chapter 5

Time Resolved Ion Energy

Measurements During PIII

5.1 Introduction

This chapter describes results of time resolved ion energy measurements using a

pulse biased RFEA in a capacitive RF argon plasma. This is the first application

of a RFEA to time resolved ion energy measurements in PIII. In section 5.2, the

experimental method used is discussed and in section 5.3, measurement results are

presented. To further investigate experimental results, a two dimensional numerical

simulation of ion trajectories in the sheath region near the front surface of the RFEA

was performed. In section 5.4, the simulation method is discussed and in section

5.5, the results of these simulations are compared with experimental results.

5.2 Experimental Method

The experimental setup used is shown in figure 5.1. The vacuum chamber, RF power

source and matching box were the same as used in section 4.6. The outer body of

the RFEA was pulse biased using a GBS Electronik RUP 3-3a pulsed power supply.

The pulse rise time was 70 ns and the pulse fall time was 80 ns.

To allow time resolved ion energy measurements, the RFEA collector current

was measured as a voltage across a 1 kΩ resistor using the three stage amplifier
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Figure 5.1: Experimental setup used for ion energy measurements using a pulse
biased RFEA in a capacitive RF argon plasma at a pressure of 5 mTorr.

circuit shown in figure A.1 of appendix A. The circuit output was displayed on a

Tektronix TDS2024 oscilloscope and recorded using a LabView computer program.

Ion current measurements were averaged over 128 pulses to minimise the effects of

electrical noise. The oscilloscope was triggered using the square wave signal input

to the high voltage pulser which was supplied by a Datapulse 100A pulse generator.

The grid voltages used during -300 V pulsing of the RFEA are shown in figure

5.2. The probe body and front grid (F) were held at -300 V during the pulse-on

period and at 0 V during the pulse-off period. The bias voltages on the RFEA grids

were fixed during pulsing of the probe body. To allow ions to reach the collector,

all grid voltages, with the exception of the discriminator, were kept more negative

than the pulse amplitude. The repeller (R) was set to -320 V (20 V below the pulse

amplitude) to repel plasma electrons during the pulse-off period. The discriminator

was swept upwards from -340 V (40 V below the pulse amplitude) to 100 V (a range

of 440 V) to control which energy ions were able to reach the collector (C) which

was set to -320 V (20 V below the pulse amplitude) to attract ions. The suppressor

(S) was set to -340 V (40 V below the pulse amplitude) to minimise the effects of
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Figure 5.2: Grid voltages used during -300 V pulsing of the RFEA. The plasma
potential (φp) is assumed to be 20 V. The front grid (F) was held at -300 V when
the pulse was applied and at 0 V when the pulse was off. Ion current measurements
were made at the collector (C) as the discriminator (D) was stepped upwards to 100
V.

secondary electron emission on ion current measurements.

The collector current was recorded using the oscilloscope for each discriminator

grid voltage as the discriminator was stepped upwards to 100 V. The oscilloscope

data was converted to ion current versus discriminator voltage data using a computer

program written in GNU Octave and was graphed using the computer program

Origin.

The time response of the RFEA circuit was determined by applying a square

wave signal to the circuit and measuring the time constant of the output. The time

constant measured was 9 µs. The time response of the circuit was also limited by

currents induced when the pulse was switched on or off. Figure 5.3(a) shows the

collector current measured when a -300 V pulse, with a width of 200 µs and period

of 800 µs, was applied to the RFEA with no RF plasma present at a pressure of

5 mTorr. The grid voltages were φR = −320 V, φD = 100 V, φS = −340 V and

φC = −320 V to repel plasma electrons and ions generated by pulsing of the RFEA

body. Figure 5.3(b) shows an enlarged view of the collector current after the pulse

was switched on. When the pulse switches on, a current is induced in the collector

and the circuit takes approximately 25 µs to return to zero current. A similar time
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Figure 5.3: (a) RFEA collector current and pulse voltage for -300 V pulsing of the
RFEA body with no RF plasma present and (b) an enlarged view of when the pulse
is switched on. A current is induced in the collector when the pulse is switched on
and off. The RFEA grid voltages were φR = −320 V, φD = 100 V, φS = −340 V
and φC = −320 V.
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is taken for the circuit to recover when the pulse is switched off. These induced

currents created difficulties in interpreting the first 25 µs of data after the pulse

switched on or off and data from these time periods was not used.

5.3 Experimental Results and Discussion

5.3.1 Ion Flux and Density

Ion energy measurements were made with -300 V pulses applied to the RFEA in a

150 W capacitive RF argon plasma at a pressure of 5 mTorr. The pulse width was

200 µs and the pulse period was 800 µs. Figure 5.4(a) shows the ion current and

pulse voltage when a -300 V pulse was applied to the RFEA. An enlarged view of

the ion current just after the pulse was switched off is shown in figure 5.4(b). The

discriminator voltage (φD) was set to -340 V, allowing all ions to reach the collector.

The negative current spike when the pulse was switched on and the positive current

spike when the pulse was switched off are due to currents induced in the collector

by the switching on or off of the pulse voltage. During the pulse-on period, the ion

current rapidly increases during the first 20 µs before decreasing towards a steady

state value. After the pulse switches off, the ion current drops rapidly over 30 µs

before rising back to the steady state pulse-off value over a time of approximately

300 µs. The shape of the ion current graph is qualitatively similar to measurements

made using a Faraday cup in an argon plasma with -2 kV pulses with pulse widths

of 20 µs [61].

The mean ion densities and mean ion fluxes, obtained using equations (4.7) and

(4.8), for different times during the pulse-on and pulse-off period are shown in figures

5.5(a) and 5.5(b). During the pulse-on period, the ion flux is larger than during the

pulse-off period and during the pulse the flux decreases toward a steady state value.

During the pulse-on period, the ion density is initially similar to the value at the

end of the pulse-off period but during the pulse decreases to a value less than the

pulse-off ion density. During the pulse-off period, the ion density increases to a

steady state value over the first 300 µs after the pulse switched off.
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Figure 5.4: (a) Ion current and pulse voltage during -300 V pulsing of the RFEA
in a plasma at 5 mTorr and (b) an enlarged view of the pulse-off ion current. The
RFEA discriminator voltage was -340 V, allowing all ions to reach the collector. An
increased ion flux at the start of the pulse is attributed to matrix sheath ions. After
the pulse switches off, the decrease in ion flux below the background plasma value is
attributed to measurement of ions from the region previously occupied by the -300
V sheath.

87



0 20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
x 1017

 <n>

<
n>

 (
m

-3
)

Time (µs)

x 1013

 <
nv

>
 (

m
-2
s-1

)

 <nv>

(a) Pulse-On

200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
x 1017

<
n>

 (
m

-3
)

Time (µs)

 <n>

x 1013

<
nv

>
 (

m
-2
s-1

)

 <nv>

(b) Pulse-Off

Figure 5.5: Mean ion densities and mean ion fluxes during (a) pulse-on and (b)
pulse-off periods as a function of time after application of a -300 V pulse to the
RFEA in an argon plasma at a pressure of 5 mTorr. The pulse was switched on at
t=0 µs and had a pulse width of 200 µs and period of 800 µs. At the start of the
pulse, the larger flux values are attributed to measurement of ions from the matrix
sheath. After the pulse switches off, reduced density and flux values are explained
by measurement of ions from the region previously occupied by the sheath.
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The larger ion flux measured during the pulse-on period is explained by the larger

plasma-sheath surface area around the RFEA when the pulse is applied which draws

in more ions from the plasma. The decrease in ion flux during the pulse-on period

is attributed to the depletion of ions from the plasma by the pulse biased RFEA

and occurs on a timescale much greater than required for the arrival of ions from

the matrix sheath. An estimate of the time taken for the arrival of all ions from

the matrix sheath and the time required for formation of a Child law sheath can

be made using the Lieberman model discussed in section 3.4. The time taken for

all matrix sheath ions to arrive can be estimated by substituting the matrix sheath

thickness (s0) for x0 in equation (3.16) which describes the ion flight time. For

argon ions with a density of 1x1013 m−3, this gives a time of 1.9 µs for all matrix

sheath ions to arrive. The time taken for the formation of the Child law sheath can

be obtained by substitution of the equations for the matrix sheath thickness (2.40)

and Child law sheath thickness (2.48) into equation (3.25) which describes the time

taken for an ion to cross the sheath. For a -300 V pulse with argon ions at a density

of 1x1013 m−3, the time taken for Child law sheath formation is 19.2 µs. These

times are much shorter than the time taken to approach a steady state ion current

in the results in this work. The decrease in ion current during the pulse-on period

indicates that the depletion rate of ions is greater than the generation rate of ions

in the plasma during pulsing of the RFEA.

The ion density results during the pulse-on period support the idea that during

pulsing, the depletion of ions is greater than the generation of ions in the plasma.

During the pulse, after the first 20 to 30 µs, the ion density decreases below the

value measured during the pulse-off period. This indicates that during pulsing, the

larger plasma-sheath surface area around the RFEA allows it to collect a substantial

ion current, lowering the plasma density. Secondary electrons accelerated into the

plasma from the RFEA surface due to ion bombardment will cause ionisation which

would increase the ion density. However, the increase in secondary electron energy

produced by the larger sheath potential gives only a small increase in the electron

ionisation cross section of argon [115]. It appears that for the measurements made in

this work that the small increase in ionisation is overshadowed by the large depletion
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of ions produced by pulse biasing of the RFEA.

During the pulse-off period, the measured ion flux is smaller than during the

pulse-on period. This is explained by the relatively smaller plasma-sheath surface

area around the RFEA which collects fewer ions. The depletion rate of ions is thus

much lower during the pulse-off period, allowing the plasma density to rise towards

its prepulse value. As shown in figure 5.4(b), after the pulse is switched off, the ion

current drops below the value before the pulse was switched on before rising back

to the steady state pulse-off value over a time of approximately 300 µs. This is

explained by a combination of the measurement of ions from the region previously

occupied by the pulse-on sheath and the reduced density of the plasma at the end

of the pulse. The density of ions measured from the pulse-on sheath region will be

less than from the bulk plasma. The time taken for the sheath thickness to collapse

back to the pulse-off value is determined by the Bohm velocity (uB) with a minimum

time of (sON − sOFF)/uB where sON and sOFF are the Child law sheath thicknesses

when the pulse is on and off respectively [84]. For a -300 V sheath collapsing to a

sheath with a potential of 20 V and an ion density of 1x1013 m−3, the minimum time

required is 33.1 µs. This is faster than the several hundred microseconds required for

the ion current to return to close to the value before the pulse switched on observed

in figure 5.4(b). The slow rise in ion current after the first 30 µs after the pulse

switched off is attributed to the plasma requiring a longer time to recover from the

ion depletion which occurred during pulsing of the RFEA.

5.3.2 Ion Energy

A graph of the IEDs obtained at different times during the pulse-on period are

shown in figure 5.6. The maximum ion energy measured was 327 eV. For all of the

IEDs, a peak is measured close to 314 eV and there is a spread of ions measured

with energies between zero and the maximum ion energy.

The maximum ion energy measured of 327 eV represents ions which gained the

energy of the full pulse potential plus the time averaged plasma potential. Using

equation (2.103), the time taken for an ion to cross the sheath is over ten RF periods
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Figure 5.6: IEDs obtained at different times during application of a -300 V pulse
to the RFEA in an argon plasma at 5 mTorr. The pulse width was 200 µs and the
pulse period was 800 µs. The majority of ions have energies close to the maximum
sheath potential of 327 V.

and ions will only experience the time averaged plasma potential. The high energy

peak close to 314 eV indicates that a large number of ions gain close to the full sheath

potential energy. These ions would experience very few collisions and would arrive

at the RFEA with trajectories close to perpendicular to the RFEA front surface.

The spread of ion energies is attributed to ion collisions in the sheath and the

measurement of ions with trajectories not perpendicular to the RFEA front surface.

The RFEA discriminates ions based on the component of their velocity perpendic-

ular to the RFEA front surface and ions arriving at an angle not equal to ninety

degrees to the surface will be measured as having lower energy. At 5 mTorr, us-

ing equation (4.14), the mean free path for hard sphere collisions of argon ions is

3.5 cm. Using equation (2.48), for a -300 V Child law sheath with an ion density

of 1x10−13 m−3 and an electron temperature of 3 eV the sheath thickness will be

10.2 cm. This is much larger than the hard sphere collision mean free path and
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would produce IEDs with very few ions with close to the maximum sheath potential

energy. The IED results in figure 5.6 show the majority of ions gain close to the

full sheath potential energy and indicate that the ion densities determined using

the IEDs are lower than the actual ion density. As discussed in section 4.6.3, this

may be caused by ion losses in the RFEA and due to the finite acceptance angle

of the RFEA inlet orifice. For an ion density of 1x10−14 m−3, the Child law sheath

thickness for a -300 V sheath with an electron temperature of 3 eV is 3.2 cm which

is less than the hard sphere collision mean free path and would produce IEDs with

the majority of ions with close to the maximum sheath potential energy. The area

under the IEDs decreases during the pulse-on period due to the decrease in the ion

flux to the RFEA. This flux decreases during the pulse-on period due to depletion

of ions from the plasma by the pulsed RFEA body.

The mean random energies for different times during the pulse-on and pulse-off

periods are shown in figures 5.7(a) and 5.7(b). The mean ion energy is significantly

larger during the pulse-on period than in the pulse-off period. The larger mean

ion energy during the pulse is explained by the larger sheath potential and sheath

thickness during this period. The larger sheath potential will give the ions a larger

velocity and the larger sheath thickness during the pulse-on period increases the

chance of ion collisions in the sheath which will increase the randomly directed

velocity components of the ions. During the pulse-off period the sheath thickness

and sheath potential are smaller which reduces the velocity of ions reaching the

RFEA and the number of collisions which they undergo in the sheath. This results

in a much smaller mean random ion energy.

5.3.3 Effects of Pulse Amplitude

The effects of pulse amplitude were investigated by pulse biasing the RFEA in an

argon plasma at a pressure of 5 mTorr with pulse amplitudes of -100, -200, -300 and

-400 V. The pulse width was 200 µs and the pulse period was 800 µs. The mean ion

densities and mean ion fluxes obtained 30 and 200 µs after the pulse switched on

and 584 µs after the pulse switched off are shown in figures 5.8(a) and 5.8(b) as a
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Figure 5.7: Mean random ion energies in the direction perpendicular to the RFEA
front surface, during the (a) pulse-on and (b) pulse-off periods as a function of time
after application of a -300 V pulse to the RFEA in an argon plasma at a pressure of
5 mTorr. The pulse width was 200 µs and the pulse period was 800 µs. The higher
random energy during the pulse-on period is a result of ion collisions in the sheath.

function of pulse amplitude. During the pulse-on period, the ion flux is larger than

during the pulse-off period and increases with increasing pulse amplitude. Both the

ion flux and ion density at the start of the pulse-on period are larger than at the

end of the pulse-on period. The ion density during the pulse-on period increases

with increasing pulse amplitude but at the end of the pulse-on period remains lower

than during the pulse-off period.

The larger ion flux during the pulse-on period compared to the pulse-off period is

attributed to the larger plasma-sheath surface area around the RFEA during pulsing

which draws in more ions from the plasma. As the pulse amplitude increases, the

plasma-sheath surface area will also increase which will increase the measured ion

flux. For all pulse amplitudes, the reduction in the ion flux at the end of the pulse-

on period compared to the flux in the early stages of the pulse is attributed to the

depletion of ions from the plasma by the pulse biased RFEA.

During the pulse-on period, the ion density increases with increasing pulse am-

plitude. For measurements made in the early stages of the pulse this is attributed

to measurement of a larger number of ions from the matrix sheath. At the end

of the pulse-on period the slight increase in ion density with increasing pulse am-

plitude is explained by increased ionisation in the plasma. With increasing pulse
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Figure 5.8: (a) Mean ion densities and (b) mean ion fluxes as a function of pulse
amplitude applied to the RFEA in a RF argon plasma at a pressure of 5 mTorr.
The pulse width was 200 µs and the pulse period was 800 µs. Results were obtained
30 and 200 µs after the pulse switched on and 584 µs after the pulse switched off.
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amplitude there will be an increasing flux of secondary electrons accelerated back

into the plasma due to ion impacts on the RFEA. These electrons can ionise neutral

argon atoms and increase the ion density. With increasing pulse amplitude, more

such electrons will enter the plasma and there will be a greater chance of ionisation.

The ion density during the pulse-off period remains larger than at the end of the

pulse-on period. This indicates that the depletion rate of ions by the pulsed RFEA

is greater than the generation rate of ions in the plasma for all biases tested. With

increasing pulse amplitude, the ion density during the pulse-off period decreases.

This indicates that the plasma has not fully recovered from the depletion of ions

during the pulse-on period which would become larger as the pulse amplitude in-

creases. This idea is supported by the observation that the ion densities measured

during the pulse-off period were lower than those measured with a grounded RFEA

in section 4.6.3.

A graph of the IEDs obtained for different pulse amplitudes, 30 and 200 µs after

the pulse was switched on are shown in figure 5.9. With increasing pulse amplitude,

the maximum ion energy measured increases. For all of the pulse amplitudes tested,

the IEDs show a peak near the maximum ion energy and there are a number of ions

measured with energies between zero and the maximum ion energy. For the IEDs

obtained 30 µs after the pulse was switched on, as the pulse amplitude increases,

the number of ions measured at all energies increases.

With increasing pulse amplitude, the sheath potential increases which will in-

crease the energy of ions measured by the RFEA. For all pulse amplitudes, the peak

produced close to the maximum ion energy indicates that the majority of ions are

gaining close to the maximum sheath potential energy. These ions experience very

few collisions in the sheath and arrive at the RFEA with trajectories close to per-

pendicular to the RFEA front surface. As discussed in section 5.3.2, the spread of

ions measured with energies between zero and the maximum ion energy is attributed

to ion collisions in the sheath and ions with trajectories not perpendicular to the

RFEA front surface. For all pulse amplitudes, the area under the IEDs is larger

for the IEDs obtained 30 µs after the pulse was switched on compared to the IEDs

obtained at the end of the pulse-on period. This is caused by the larger ion flux at
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Figure 5.9: IEDs obtained during application of (a) -100 V, (b) -200 V, (c) -300
V and (d) -400 V pulses to the RFEA in an argon plasma at 5 mTorr. The pulse
width was 200 µs and the pulse period was 800 µs. The IEDs were obtained 30 µs
and 200 µs after the pulse switched on. For all pulse amplitudes, the majority of
ions have energies close to the maximum sheath potential.

the start of the pulse-on period. This flux decreases during the pulse-on period due

to depletion of ions from the plasma by the pulsed RFEA body.

A graph of the mean ion energies associated with motion perpendicular to the

RFEA front surface, for different times during pulse-on and pulse-off, are shown in

figure 5.10 as a function of pulse amplitude. During the pulse-on time, the mean ion

energy increases with increasing pulse amplitude and during the pulse-off time it is

smaller and remains relatively constant. The increase in the mean ion energy with

pulse amplitude during the pulse is attributed to the increase in sheath potential

and sheath thickness. The increase in sheath potential increases the velocity of ions
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Figure 5.10: Mean ion energies associated with motion perpendicular to the RFEA
front surface as a function of pulse amplitude taken 30 and 200 µs after the pulse
switched on and 584 µs after the pulse switched off. The pulse width was 200 µs and
the pulse period was 800 µs. As pulse amplitude increases, ions experience more
collisions in the sheath which increases their mean random energy.

in the direction perpendicular to the RFEA front surface. The increase in sheath

thickness increases the number of collisions ions undergo in the sheath which will

increase their random velocity. During the pulse-off time, the RFEA body is at 0

V for all pulse amplitudes and the incoming ions have a much smaller velocity than

during the pulse-on time. For the -400 V pulse, the mean ion energy decreases. This

is attributed to the measurement of ions from the curved regions of the sheath above

the RFEA corners which will start to have trajectories which allow them to reach

the RFEA collector. Ions with non normal trajectories to the front of the RFEA

will be measured by the analyser with less than the full sheath potential energy and

this would lower the mean energy measured.

5.4 Simulation Method

A two dimensional, planar computer simulation of ion trajectories in the sheath

region was performed to better understand experimental results. The sheath thick-
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Figure 5.11: Setup of the xz plane used for the simulation of ion trajectories through
the sheath region above the RFEA front surface.

ness and potential were approximated by the one dimensional Child law model using

equations (2.48) and (2.49). The potential along the plasma-sheath edge was set

to 0 V. Ions were launched into the sheath at uniform distances along the sheath

edge and ions which reached the RFEA collector were used to construct the IED.

Unlike more complicated particle in cell (PIC) simulations, ions were flown through

the simulation individually and the position of ions was not used to determine the

sheath potential after each time step.

The numerical simulations were performed using GNU Octave and were designed

to study effects in the steady state Child law sheath. The sheath region was sim-

ulated as an xz plane with x in the plane of the front surface of the RFEA and z,

the height above the front surface of the RFEA as shown in figure 5.11. The simu-

lated region was centred on the inlet orifice of the RFEA and was 63 mm wide with

potentials determined at 1 mm intervals. To simplify the simulation, the curvature

and reduced thickness of the sheath above the RFEA corners was not taken into

account.

5.4.1 Ion Motion

Ions were started at 0.05 mm intervals along the sheath edge in a 28 mm wide

region centred above the RFEA inlet orifice. One thousand ions were launched from
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each start point on the sheath. Each ion started at the Bohm velocity (uB) with

a trajectory perpendicular to the sheath edge. Ions were released individually into

the sheath and their position and velocity determined at 0.01 µs intervals using the

electric field (E) at each position. At each point in the potential array (φ(x, z)), the

electric field in the x and z directions was determined using the potential gradient

around the point

Ex(x, z) =
− (φ(x + ∆x, z)− φ(x−∆x, z))

2∆x
(5.1)

Ez(x, z) =
− (φ(x, z + ∆z)− φ(x, z −∆z))

2∆z
(5.2)

where ∆x and ∆z are the 1 mm spacings in the x and z directions. For points

on the simulation edges where potentials in the ±∆x or ±∆z direction were not

all available, the electric field at (x, z) was determined using the potential gradient

between φ(x, z) and its nearest available neighbouring points.

When the ion position (x, z) was not on a potential array point, the electric

field was determined using a linear interpolation of the electric field at the nearest

neighbouring array points as shown in figure 5.12. The electric field E12 at (x, z1)

was determined by linear interpolation between E1 and E2

E12 − E1

x− x1

=
E2 − E1

x2 − x1

(5.3)

A similar linear interpolation between E3 and E4 was used to determine E34 at

(x, z2). A linear interpolation between E12 and E34 was then used to determine the

electric field at (x, z)

E − E12

z − z1

=
E34 − E12

z2 − z1

(5.4)

For points which lay along the lines x=x1, x=x2, z=z1 or z=z2, the electric field was

determined by a linear interpolation between the two nearest electric field points on

the line.
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Figure 5.12: Linear interpolation method used to determine the electric field at a
point (x,z) not on the potential array.

Using the electric field value, the acceleration (a) of the ion in the x and z

directions was determined by substituting F = qE into F = Ma, where F is the

force, which gives

ax,z =
qEx,z

M
(5.5)

where q is the ion charge and M is the ion mass. The displacement (dsx,z) and

final velocity (vx,z) of the ion after each time step (dt) can be determined using the

following equations of motion

dsx,z = ux,z(dt) +
1

2
ax,z(dt)2 (5.6)

vx,z = ux,z + ax,z(dt) (5.7)

where ux,z is the ion velocity at the start of the time step. During each time step, the

electric field on the ion in the x and z directions was determined based on the ion’s
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position and used to calculate the ion’s displacement and velocity using equations

(5.6) and (5.7). These values were then used to detemine the position and velocity of

the ion for the next time step. This process was repeated until the ion experienced

a collision with a neutral molecule or the RFEA or moved outside the simulation

boundaries.

5.4.2 Collisions

A Monte Carlo approach was used to model collisions between ions and neutral

molecules using the velocity independent mean free path (λ) given by equation

(4.14). In a real plasma, the collision cross section of an ion, defined in equation

(2.7), is dependent on the velocity of the ion. In figure 5.13, a comparison of collision

cross section data as a function of ion energy is shown for argon ions in argon gas.

The collision cross section data was determined using the computer program SRIM

[160] for argon ions at a pressure of 5 mTorr, using experimentally determined

values [29] and using equation (4.14) for argon ions. Over the ion energy range

between 0 and 500 eV studied in this thesis, the velocity dependent and velocity

independent collision cross sections are of the same order of magnitude. To simplify

the simulations and reduce calculation time, the velocity independent collision cross

section was used.

The probability (f(x)) that an ion will travel a distance x before experiencing a

collision is given by equation (2.10)

f(x) =

(
Γ

Γ0

)
=

(
1

λ

)
e−

x
λ (5.8)

where the integral of f(x) from 0 to +∞ is equal to unity. The value f(x)dx gives

the probability that an ion will travel a distance between x and x + dx without a

collision. For a distance x, the distribution function F (x) gives the fraction of ions

which experience a collision between 0 and x. F (x) has values between zero and one

and is given by the integral of f(x)

F (x) =

∫ x

0

f(x)dx = 1− e−
x
λ (5.9)
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Figure 5.13: Comparison of collision cross section data as a function of ion energy
for argon ions in argon gas at a pressure of 5 mTorr. The collision cross section was
determined using the computer program SRIM [160], using experimental values [29]
and using equation (4.14).

Rearrangement in terms of x gives

x = −λ ln(1− F ) (5.10)

In the simulations, the value of F was supplied by a random number generator in

GNU Octave with a uniform distribution between zero and one. At the start of each

ion’s flight, equation (5.10) was used to determine the distance an ion was allowed to

travel before a collision. If the ion had not reached the simulation boundaries before

this distance, it was considered to have undergone a collision and the magnitude and

direction of its velocity were recalculated and equation (5.10) was used to determine

a new distance the ion could travel before a collision.

The magnitude and direction of the velocity of an ion after a collision with a

neutral atom was determined by switching to a new reference frame. As shown in

figure 5.14(a), the new axes are defined by the line joining the centres of the ion

(m1) and neutral atom (m2) and a line perpendicular to this line through the point
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Figure 5.14: (a) The (a, b) axes are defined by the line joining the centres of the
two masses and a line perpendicular to this line which passes through the point
of contact between the two masses. (b) The angle (φ) between the two coordinate
systems is used to calculate the magnitude and direction of the velocity of an ion
(m1) after a collision with a neutral atom (m2).

where the two masses come into contact. In this reference frame, during a collision,

the only velocities which need to be considered are along the line joining the two

centres. The point on the neutral atom at which the ion makes contact will define

the angle φ of the (a, b) axes relative to the laboratory axes (x, z). Assuming that

the radii of the ion and neutral atom are both r, φ is defined by

φ = sin−1

(
P

2r

)
(5.11)

where P is a random number taken from a uniform distribution from −2r to 2r. In

(a, b) coordinates, the initial velocity of the ion is given by

u1b = u1sin(θ − φ) (5.12)

u1a = u1cos(θ − φ) (5.13)

The neutral argon atom is assumed to be initially stationary. For an elastic collision

between the ion and neutral atom, the following equations can be defined using
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conservation of momentum and kinetic energy

m1u1a + 0 = m1v1a + m2v2a (5.14)

m1u1b + 0 = m1v1b + 0 (5.15)

1

2
m1u

2
1 + 0 =

1

2
m1v

2
1 +

1

2
m2v

2
2 (5.16)

where

u1 =
√

u2
1a + u2

1b , v1 =
√

v2
1a + v2

1b , v2 = v2a (5.17)

Assuming m1 ≈ m2, it can be shown, using equations (5.14) to (5.17) that

v1a = 0 and v1b = u1b (5.18)

or

v1a = u1a and v1b = u1b (5.19)

If v1a = u1a then the neutral atom will not move after the collision and so solution

(5.19) is not used. After the collision, the velocity of the ion is determined by

converting solution (5.18) back into (x, z) coordinates

v1x = u1b cos φ and v1z = u1b sin φ (5.20)

5.4.3 RFEA Acceptance Angle

An estimate of the effect of the RFEA acceptance angle on ion energy measurements

was made by only measuring ions which reached the RFEA collector as shown in

figure 5.15. The inlet diameter was set to 4 mm and the inlet depth was estimated

to be 3.5 mm. The inside of the RFEA was approximated to be electric field free and
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Figure 5.15: An estimate of the acceptance angle of the RFEA was made by only
recording ions with trajectories which would have reached the collector.

only ions arriving at the RFEA front surface with trajectories which would reach

the collector were recorded.

5.5 Simulation Results and Discussion

In figure 5.16, IEDs are shown from the simulation of a -300 V pulse applied to

the RFEA with argon ions at a pressure of 5 mTorr. The IEDs were constructed

using all ions which entered the RFEA inlet and using only ions which reached the

collector. A total of 5.61x105 ions were used and the height of the peak in the IED

at 300 eV was 55690. The majority of ions had an energy of 300 eV and there is also

a number of ions with energies between zero and the maximum ion energy of 311

eV. The ions with energies of 300 eV originated from the sheath directly above the

RFEA inlet orifice. Ions with energies less than 300 eV experienced collisions in the

sheath. Ions which collide with neutral atoms will reduce the component of their

velocity perpendicular to the RFEA front surface, causing a spread in the measured

energy distribution. Ions which collide more than once lose more of their velocity in

the direction perpendicular to the RFEA front surface and have trajectories which

do not allow them to reach the RFEA collector. This causes the difference between

the collector only IED and the IED determined using all ions which enter the RFEA

inlet. The maximum energy of ions was larger than the maximum sheath potential

of 301.5 eV due to the pulse amplitude plus the energy associated with the Bohm

velocity at which ions enter the sheath. This is due to the finite time step size used

which can result in errors in the velocities of ions. Smaller time steps can reduce
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Figure 5.16: IEDs obtained from the simulation of a -300 V pulse applied to the
RFEA at a pressure of 5 mTorr with argon ions. IEDs were constructed using all
ions which entered the RFEA inlet and using only ions which reached the collector.
The majority of ions have an energy of 300 eV and the height of the 300 eV peak is
shown on the graph.

this error but significantly increase the time required to complete the simulations.

Comparison of experimental results in an argon plasma at 5 mTorr at the end of

the -300 V pulse in figure 5.6 with simulation results in figure 5.16 show similarities

in general trends. Both experimental and simulation IEDs show the majority of ions

have energies close to the maximum sheath potential with a smaller number of ions

with energies between zero and the maximum sheath potential energy. The results

show that many ions undergo collisions in the sheath which reduce the component

of their velocity perpendicular to the RFEA front surface. The large height of the

300 eV peak in the simulations, compared to the experimental IED results in figure

5.6, is caused by a number of factors. In the simulations, all ions enter the sheath

at the Bohm velocity. In a real plasma, the ions entering the sheath will have a

range of velocities equal to and above the Bohm velocity and this would spread

the energy of ions reaching the collector and reduce the height of the peak in the
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(a) A=-100 V
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(b) A=-200 V

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r 

of
 Io

ns

Ion Energy (eV)

 All Ions
 Collector Only Ions 

404 eV Peak 
Height:  50776

(c) A=-400 V

Figure 5.17: IEDs obtained from the simulation of (a) -100 V, (b) -200 V and (c)
-400 V pulses applied to the RFEA at a pressure of 5 mTorr with argon ions. IEDs
were constructed using all ions which entered the RFEA inlet and using only ions
which reached the collector. For each pulse amplitude, a peak is observed close to
the pulse amplitude energy. The actual heights of these peaks are shown in each
graph.

IED. The large height of the 300 eV peak in the simulation results compared to

the experimental IEDs may also be due to the larger ion density of 1x1015 m−3

assumed in the simulations which would give a narrower sheath thickness and less

ion collisions in the sheath than the measured ion densities which were of the order

of 1x1013 m−3. The use of a velocity independent collision cross section may also

have resulted in less low energy ions being measured in the simulations.

IEDs obtained from simulations of pulse amplitudes of -100 V, -200 V and -400

V are shown in figure 5.17. For all of the IEDs, a peak is observed close to the

maximum sheath potential and there are a number of ions measured with energies

between zero and the maximum sheath potential energy. The position of the IED
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peak close to the maximum sheath potential energy indicates that most ions arrive

from the sheath directly above the RFEA inlet and experience very few collisions

in the sheath. The spread of ion energies between zero and the maximum sheath

potential energy is produced by ions which collide in the sheath. Most ions which

collide are still able to reach the RFEA collector but some ions experience a number

of collisions which significantly alters their trajectories and results in their loss to

the side walls of the RFEA. As for the -300 V results, the maximum ion energies are

slightly larger than the maximum possible energy gained from the sheath potential

plus the energy associated with the Bohm velocity due to the finite time step size

used.

The experimental IED results at the end of the pulse-on period in figure 5.9 show

similarities in general trends with the simulation results in figure 5.17. Both the sim-

ulation and experimental results show that at all pulse amplitudes, the majority of

ions gain close to the maximum sheath potential energy and that a number of ions

experience collisions in the sheath. The similarity in the shapes of the experimental

and simulated IEDs verify that towards the end of the pulse, the sheath potential

approaches the Child law sheath potential assumed in the simulation model. The

experimental and simulated IEDs show a similar shape to IEDs obtained by other

authors in capacitive argon RF plasmas at similar pressures where ion collisions

in the sheath caused a spread in ion energy values measured [56, 85]. In the ex-

perimental results, the ion flux increased with pulse amplitude due to the increase

in the plasma-sheath surface area and due to increased ionisation in the plasma.

This effect cannot be observed in the simulations due to the assumption of a planar

plasma-sheath edge and the equal number of ions used in each simulation.

5.6 Summary

In this chapter, the first time resolved measurements made using a pulse biased

RFEA during PIII were presented. During pulsing, the measured ion flux is larger

than during the pulse-off period but the ion density is lower. This is explained by

the expanded plasma-sheath surface area around the RFEA during pulsing which
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results in the depletion of ions being greater than the generation of ions in the

plasma. After the pulse switches off, the ion density and flux drop below the values

measured before the pulse switched on. This is attributed to measurement of ions

from the region previously occupied by the pulse-on sheath. During the pulse-

off period, the ion density remains less than measured during DC biasing of the

RFEA which indicates that the plasma has not fully recovered from the depletion of

ions which occurred during pulsing of the RFEA. With increasing pulse amplitude,

the ion flux increases due to an increased plasma-sheath surface area. The ion

density also increases slightly with increasing pulse amplitude and this is attributed

to increased ionisation in the plasma.

With increasing pulse amplitude, the mean random energy of ions increased.

This is explained by the increased sheath potential and increased chance of ion

collisions in the sheath. IEDs showed a high energy peak close to the maximum

sheath potential and a spread of ions with energies between zero and the maximum

ion energy measured. The ion densities determined using the IEDs were lower than

expected which may be caused by ion losses in the RFEA and due to the finite

acceptance angle of the RFEA inlet orifice. Simulation results showed that the high

energy peak is produced by ions from the sheath above the RFEA inlet and that the

spread of ions with lower energies is produced by ions which collide in the sheath

and/or arrive at the RFEA with trajectories not perpendicular to the RFEA front

surface.
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Chapter 6

Ion Energy Measurements During

Mesh Assisted PIII

6.1 Introduction

For the PIII treatment of insulators, a conductive mesh can be placed around the

object and pulse biased with the aim of minimising the effects of surface charging.

In this chapter, a RFEA is used for the first time to investigate the effects of a metal

mesh on the ion dose and energy during PIII of a metal surface. The experimental

results are compared with those obtained from a two dimensional (r,z) numerical

simulation. In section 6.2, the experimental setup used is discussed. Simulations

were performed by calculating the trajectories of ions through the sheath and mesh

regions and in section 6.3, the simulation method used is presented. In section 6.4,

the effects of covering sections of mesh, pulse amplitude, mesh height and measure-

ment position are investigated both experimentally and with simulation.

6.2 Experimental Method

The experimental setup used was the same as for the studies of pulse amplitude

shown in figure 5.1. Measurements were made in a capacitive 13.56 MHz radio

frequency (RF) argon plasma at a pressure of 5 mTorr. Stainless steel mesh cylinders

with diameters of 36 mm and heights of either 1, 2 or 3 cm were attached to the
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Figure 6.1: Cutaway diagram of the RFEA with a cylindrical mesh attached. The
mesh diameter was 36 mm and the mesh height was either 1, 2 or 3 cm. The grids
and spacers inside the RFEA are not drawn to scale.

front of the RFEA as shown in figure 6.1. The mesh thickness was 0.72± 0.02 mm

with 1 mm square holes with a transparency of sixty nine percent. The RFEA inlet

orifice was located at the centre of the mesh cylinder base. Both the RFEA and

mesh were pulse biased with amplitudes ranging from -100 to -400 V.

Ion energy measurements were made using the same method described in sec-

tion 5.2. Ion current was recorded at the collector using an oscilloscope for each

discriminator grid voltage as the discriminator was stepped upwards from below the

pulse amplitude to 100 V. Using this data, ion current versus discriminator voltage

graphs were constructed for different times during the pulse-on period.

6.3 Simulation Method

A two dimensional, numerical simulation in cylindrical coordinates (r,z) was used

to study the trajectories of ions in the sheath and mesh regions. The simulations

were performed using GNU Octave.
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Figure 6.2: Sheath thicknesses used in the simulations. Above the planar regions of
the mesh the sheath thickness was set to the one dimensional Child law value (s1).
Above the mesh corners a reduced sheath thickness (s2) was used.

6.3.1 Sheath Edge

As shown in figure 6.2, above the planar sections of the mesh, the sheath thickness

(s1) was set to the one dimensional, planar Child law value given by equation (2.48).

Around the mesh corners, the sheath thickness is less than the one dimensional

Child law value [122, 146]. To approximate the reduced sheath thickness above

the mesh corner, the sheath thickness along the bisector of the mesh corner (s2)

was set to seventy percent of the one dimensional Child law value based on the

analytical solution of Donolato [34]. A linear interpolation between s2 and s1 was

made between the mesh corner bisector and a point a distance w1 into the planar

sheath region. The distance w1 was set to maintain a smooth sheath shape around

the mesh corner and for the -100 V sheath was 3 mm, for the -200 and -300 V

sheaths was 4 mm and for the -400 V sheath was 5 mm.

6.3.2 Potential Array

The potential in the sheath and mesh regions was determined by using the relaxation

method to solve Poisson’s equation, taking into account the decrease in ion density

as the ions accelerate. The potential along the plasma-sheath edge was set to 0
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V. Due to the cylindrical symmetry of the RFEA, the potential was solved in two

dimensional (r, z) coordinates. The kinetic energy of an ion in the sheath is given

by

1

2
Mu2(r, z) = −eφ(r, z) + eφs (6.1)

where u(r, z) is the ion velocity and eφs is the initial energy associated with the ion

entering the sheath at the Bohm velocity (uB) and is given by

eφs =
1

2
Mu2

B (6.2)

The ion flux is given by

en(r, z)u(r, z) = J0 (6.3)

The ion density is obtained by substitution of (6.1) into (6.3)

n(r, z) =

(
J0

e

)(
2e

M

)− 1
2

(φs − φ)−
1
2 (6.4)

Due to the large negative voltages applied to the RFEA during pulsing, the electron

density in the mesh and sheath is assumed to be zero. Substitution of (6.4) into

Poisson’s equation in cylindrical coordinates gives

∂2φ

∂r2
+

(
1

r

)(
∂φ

∂r

)
+

(
∂2φ

∂z2

)
= −

(
J0

ε0

)(
2e

M

)− 1
2

(φs − φ)−
1
2 (6.5)

Equation (6.5) can be expressed as a finite difference equation and solved numerically

for potential (φ(r, z)). A more detailed description of the method used is given in

appendix B. The equation for the potential array is solved using the relaxation

method and the potential at (r, z) is dependent on the potentials of the points to

the left and right (±∆r) and above and below (±∆z). For each iteration, the

potential at every point is solved using the equations in appendix B and the process

repeated until the largest difference in potential between iterations, at each array
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Figure 6.3: Simulation results for the relative potential (actual potential minus
potential on mesh) versus vertical distance (z) along the centre line (r = 0) through
a 2 cm high mesh for different potentials on the mesh. Inside the mesh a potential
hump is produced by a space charge build up.

point, is less than 1x10−7 percent.

A graph of the relative potential (actual potential minus potential on the mesh),

along the r=0 centre line in figure 6.2, for a 2 cm high mesh is shown in figure 6.3

for different potentials applied to the mesh. A space charge potential forms inside

the mesh and is greatest for an applied potential of -100 V when the ions are moving

at their slowest.

6.3.3 Ion Motion and Collisions

The motion of ions through the sheath and mesh regions was determined using the

same method described in section 5.4.1. Ions were started at 0.05 mm intervals

along the sheath edge, at the Bohm velocity, with trajectories perpendicular to the

sheath edge. Ions were launched individually into the sheath and their position and

velocity determined at 0.02 µs intervals using the electric field at each point. One

thousand ions were launched from each start site on the sheath edge.

To account for the sixty nine percent transparency of the mesh, when an ion

passed through the mesh it was given a random number from a uniform distribution

from zero to one. Ions with a number greater than 0.69 were considered to have
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collided with the mesh wires and were removed from the simulation.

Ion collisions were modelled using the same method described in section 5.4.2.

The collisions were modelled as hard sphere collisions with neutral gas molecules

using a Monte Carlo approach and velocity independent collision cross section.

The acceptance angle of the RFEA was accounted for by only measuring ions with

trajectories which would have reached the RFEA collector, as shown in figure 5.15.

For ions which reached the RFEA collector, the simulated IEDs were constructed

using the component of velocity perpendicular to the RFEA front surface.

6.4 Results and Discussion

6.4.1 Effects of Covering Mesh Sections

A 2 cm high mesh was attached to the RFEA and pulse biased at -300 V with a

square wave with a pulse-on time of 200 µs and period of 800 µs. Figure 6.4 shows

the IEDs obtained 190 µs after the start of the pulse when different sections of the

mesh were covered. The location of the covered mesh sections are as shown in figure

6.1. A high energy peak at 310 eV is observed for all IEDs except for the top covered

mesh. The position of the high energy peak close to the maximum ion energy of

330 eV indicates many ions experienced very few collisions and gained close to the

maximum sheath potential of the pulse amplitude plus the time averaged plasma

potential. The plasma potential oscillates on a timescale much faster than the time

taken by an ion to cross the sheath [59] so that ions will only experience the time

averaged plasma potential. The number of ions in the high energy peak is only

slightly affected by covering the mesh sides or corners. A medium energy peak is

observed at 175 eV. This peak decreases in size when the mesh sides are covered

and disappeared when a 1 cm section around the mesh corners was covered. A

low energy peak close to zero energy, observed when the mesh sides were covered is

believed to be low energy ions trapped by the covered side walls and the potential

hump observed inside the mesh in figure 6.3. When the mesh cylinder top is covered

almost no ions are measured.
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Figure 6.5: Simulation results showing the components of the IED obtained for a
-300 V pulse applied to a 2 cm high cylindrical mesh and the RFEA at a pressure
of 5 mTorr. The height of the high energy peak at 309 eV was 24956.
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The mean ion flux for the uncovered mesh IED was (13±1) x 1017 m−2s−1 which

was larger than the no mesh IED value of (2.8±0.3) x 1017 m−2s−1, in figure 5.5(a),

for the same pulse conditions. This is explained by the larger plasma-sheath surface

area around the mesh which results in a larger number of ions collected. The IEDs

obtained with a mesh on the RFEA have a different shape with a significant number

of ions with less than the maximum sheath potential energy.

Figure 6.5 shows the simulation results for the origins of the components of the

IED obtained for a -300 V pulse applied to a 2 cm high cylindrical mesh and the

RFEA at a pressure of 5 mTorr. The high energy peak at 309 eV has a height

of 24956 and is due to uncollided ions originating from the sheath above the mesh

top. The large height of this peak compared to the rest of the IED is due to the

assumption that all ions enter the sheath at the Bohm velocity. In a real plasma,

ions enter the sheath with a range of velocities greater than the Bohm velocity and

this would spread the high energy peak and reduce its height. The peak position is

slightly larger than 300 eV due to the finite time step size used in the simulations

which results in small errors in the ion velocity. Smaller time steps can reduce this

error but significantly increase the time required for each simulation. The majority

of ions from the sheath sections above the mesh corners which reach the RFEA

collector do not collide and form a medium energy peak at 200 eV due to their

off normal incidence. While these ions have both a r and z component to their

velocities, the RFEA only discriminates ions based on the z component of their

velocity. Ions from the top and corner sheath sections with energies less than these

peaks have undergone collisions in the sheath and/or mesh regions. The low energy

peak at 20 eV is due to ions which collided inside the mesh on the probe side of the

20 V potential hump shown in figure 6.3. Ions from the side sections of the mesh do

not contribute significantly to the IED. These results help explain the origins of the

high, medium and low energy peaks in figure 6.4. The high energy peak is caused by

ions originating from the sheath edge directly above the RFEA inlet, the medium

energy peak are ions from above the mesh corners and the low energy peak is due

to ions trapped by the potential hump formed inside the mesh. The collision of ions

inside the mesh and sheath regions causes a spread in ion energies from zero to the
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maximum sheath potential.

6.4.2 Effects of Pulse Amplitude

The effects of pulse amplitude on the IED were investigated using a 2 cm high

mesh and pulses with a pulse-on time of 200 µs and a period of 800 µs. The IEDs

obtained 190 µs after the pulse switched on are shown in figure 6.6. For each IED,

a high energy peak was observed close to the maximum ion energy which indicates

that the majority of ions gained close to the maximum sheath potential of the pulse

amplitude plus the time averaged plasma potential. For the -200, -300 and -400

V IEDs, medium energy peaks occurred at 98, 175 and 298 eV respectively. Low

energy peaks are also observed close to 0 eV for both the -100 and -200 V IEDs. The

low energy peaks are believed to be due to ions which have collided and are trapped

by the potential hump inside the mesh seen in figure 6.3. The relative height of this

potential hump is more significant for the -100 and -200 V pulses and affects their

IEDs more than for the -300 and -400 V IEDs.

Figure 6.7 shows the simulation results for the effects of pulse amplitude on the

IED for a 2 cm high cylindrical mesh at a pressure of 5 mTorr. For each amplitude,

high energy peaks are seen close to the pulse amplitude energy. These represent

uncollided ions from the sheath above the top section of mesh. Additional medium

energy peaks are observed at 77, 134, 197 and 264 eV for the -100, -200, -300 and

-400 V IEDs respectively. These represent uncollided ions which originated from

the sheath sections above the mesh corners. While these ions have both a r and

z component to their velocities the analyser only discriminates the ions based on

the z component of their velocities. The low energy peaks formed between 0 and

65 eV represent ions which collided on the probe side of the potential hump inside

the mesh region. These results help explain the IED structure seen in figure 6.6.

The high energy peaks are caused by ions from directly above the analyser inlet, the

medium energy peaks are caused by ions from above the mesh corners and the low

energy peaks are caused by ions trapped by the potential hump inside the mesh.

The broad structure of the -100 V IED in figure 6.6 is due to the large height of the
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potential hump inside the mesh region for the -100 V pulse.

A graph of the mean ion densities and mean ion fluxes for the IEDs in figure 6.6

are shown in figure 6.8 as a function of pulse amplitude. As the pulse amplitude

increases, the mean ion flux increases. This is attributed to the increase in the

plasma-sheath surface area around the mesh. The mean ion densities are larger than

those measured with no mesh, shown in figure 5.8(a). This may be due to a larger

flux of secondary electrons emitted back into the plasma when a mesh is used which

could increase ionisation and ion density. As the pulse amplitude increases, the

flux of ions to the mesh and RFEA would increase which would increase secondary

electron emission and ionisation. The ion density is largest for the -200 V pulse and

decreases for the -300 V and -400 V pulses. This may be due to the depletion of ions

by the larger plasma-sheath surface area at these amplitudes being greater than the

generation rate of ions in the plasma.

6.4.3 Effects of Mesh Height

The effects of mesh height were investigated for a -300 V pulse with a period of

800 µs and a pulse-on time of 200 µs. The IEDs obtained for cylindrical meshes

of various heights 190 µs after the pulse switched on are shown in figure 6.9. A

high energy peak is measured at 312 eV for all mesh heights and is close to the

maximum ion energy measured. The decrease in height of this peak with increasing

mesh height is attributed to the greater distance travelled by ions through the mesh

region which increases their chance of experiencing a collision which will reduce

their velocity in the z direction perpendicular to the RFEA front surface. For the

2 and 3 cm high meshes, medium energy peaks are also observed at approximately

175 and 250 eV respectively. These peaks are not seen in the IEDs for the 1 cm

high mesh and no mesh results. As the mesh height increases, the number of ions

in the medium energy peak increases and this is attributed to an increase in the

plasma-sheath surface area around the mesh with increasing mesh height.

Figure 6.10 shows the simulation results for the effects of mesh height on the IEDs

obtained for a -300 V pulse at a pressure of 5 mTorr. For all mesh heights, a high
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Figure 6.6: IEDs obtained 190 µs after the pulse switched on for different pulse
amplitudes applied to the RFEA and a 2 cm high mesh in an argon plasma. The
pulse period was 800 µs and the pulse-on time was 200 µs.
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Figure 6.7: Simulation results showing the effects of pulse amplitude on the IEDs
obtained using a 2 cm high cylindrical mesh at a pressure of 5 mTorr. The heights
of the high energy peaks are shown next to each peak.
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Figure 6.8: Mean ion densities and mean ion fluxes, as a function of pulse amplitude,
for the IEDs in figure 6.6 using a 2 cm high cylindrical mesh. Measurements were
made 190 µs after the application of a pulse with a period of 800 µs and pulse-on
time of 200 µs.

energy peak is seen close to 305 eV which is caused by uncollided ions originating

from the sheath section directly above the probe inlet aperture. When a mesh is

present, the height of this peak decreases due to ion losses to the mesh. The peak

height also decreases with increasing mesh height due to increased ion collisions in

the mesh. For the 2 and 3 cm high mesh IEDs, medium energy peaks are observed

at 197 and 260 eV respectively. These peaks are due to uncollided ions which

originated from the sheath regions above the mesh corners. As the mesh height

increases, the z component of the velocity of the ions reaching the collector from the

sheath above the mesh corners becomes larger, shifting the medium energy peak to

a higher energy. For the 1 cm mesh, ions from the sheath above the mesh corners are

beyond the acceptance angle of the collector and are not measured. This is similar

to the experimental results in figure 6.9 which show no medium energy peak for the

1 cm mesh and no mesh IEDs.

A graph of the mean ion density and mean ion flux, as a function of mesh

height, for the IED results in figure 6.9 are shown in figure 6.11. As the mesh height

increases, the mean ion flux increases. This is attributed to the increase in the

121



0 50 100 150 200 250 300 350

0

5

10

15

20

IE
D

 (
kg

m
-2
(J

s)
-1
)

Ion Energy (eV)

 No mesh
 1 cm
 2 cm
 3 cm

x 109

Figure 6.9: IEDs obtained 190 µs after the pulse switched on for various mesh
heights with a -300 V pulse with a period of 800 µs and a pulse-on time of 200
µs. As the mesh height increases, the number of ions in the medium energy peak
increases and the position of the medium peak shifts upward in energy due to the
increase in the z component of velocity of these ions measured by the RFEA.
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Figure 6.10: Simulation results showing the effects of mesh height on the IEDs
obtained for a -300 V pulse at a pressure of 5 mTorr. The heights of the high energy
peaks for each mesh height are shown in the legend.
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Figure 6.11: Mean ion densities and mean ion fluxes for the IEDs shown in figure 6.9
as a function of mesh height. Measurements were made 190 µs after the application
of a -300 V pulse with a period of 800 µs and pulse-on time of 200 µs.

surface area of the plasma-sheath boundary. The increase in ion flux would result

in an increased emission of secondary electrons which would increase ionisation and

ion density. The slight decrease in ion flux between the no mesh and one centimetre

high mesh results may be caused by the loss of ions to the mesh wires outweighing

the increase in ion flux caused by the larger plasma-sheath surface area for this

case. The measured ion densities are much lower than the density of 1x1015 m−3

used in the simulations. As discussed in chapter 5, this lower density may be due

to the finite acceptance angle of the RFEA and due to ion losses inside the energy

analyser. In the simulations, a lower ion density would result in a larger sheath

thickness which would result in more ion collisions which would reduce the height

of the high energy peak and result in a larger number of lower energy ions being

measured.

6.4.4 Effects of Measurement Position

Simulations were used to study the IED at different positions on the RFEA front

surface with a 2 cm high cylindrical mesh attached to the RFEA. The RFEA and

mesh were biased at -300 V at a pressure of 5 mTorr. The different positions at
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edge (r=13.5 to 17.5 mm) positions on the RFEA front surface under a 2 cm high
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Figure 6.13: Simulation results showing the IEDs measured at the centre, middle
and edge positions on the RFEA front surface in figure 6.12. The pulse amplitude
was -300 V and the pressure was 5 mTorr. The high energy peak heights of the
centre and middle position IEDs are also shown.
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which the IEDs were measured are shown in figure 6.12. The IEDs shown in figure

6.13 were obtained using the energy associated with the z component of velocity of

all ions which struck the centre (r=-2 to 2 mm), middle (r=7 to 11 mm) and edge

(r=14 to 18 mm) sections. The centre position IED is very similar to the simulated

IED in figure 6.5 which took into account ion losses to the side walls inside the

RFEA. Medium energy peaks are measured at the edge, middle and centre position

IEDs at 80, 125 and 200 eV respectively due to ions from the sheath edge above

the mesh corners. The position of the medium energy peak is dependent on the z

component of velocity of the ions and shifts to lower energies for positions closer to

the mesh edge. Both the centre and middle position IEDs have high energy peaks

close to 309 eV due to ions from the sheath above the mesh top. This peak is not

observed in the edge position IED as above the mesh corner the sheath edge is not

parallel to the mesh surface and no ions arrive with trajectories perpendicular to

the RFEA front surface. For all IEDs, a low energy peak between 0 to 50 eV is

measured due to ions which are trapped by the space charge potential hump formed

inside the mesh region. The sharp peaks observed within the low energy peak are

due to ions from the mesh sides. The short and sharp nature of these peaks are due

to the finite spacing between the launch sites of ions at the sheath edge. A finer

spacing between launch sites would help to smooth over these peaks but would also

increase the time required for each simulation.

6.5 Summary

In this chapter, a RFEA was used for the first time to investigate the effects of a mesh

during PIII of a metal surface. Both experiment and simulation results showed that

the majority of ions originate from sheath sections above the mesh top and corners.

The IEDs obtained at the base of the centre of a cylindrical mesh during PIII had

a low, medium and high energy peak. Simulation shows that the high energy peak

is caused by ions from the sheath directly above the RFEA inlet. The low energy

peak is caused by ions which collide on the RFEA side of the potential hump formed

inside the mesh. The medium energy peak is caused by ions from the sheath sections
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above the mesh corners. As the mesh height increases, simulation results show that

the z component of the velocity of the medium energy peak ions increases, which

shifts the medium energy peak to a higher energy. As pulse amplitude and/or mesh

height increases, the mean ion flux increases. This is attributed to the increase in

the surface area of the plasma-sheath boundary.

Simulation results showed that the IED is dependent on position on the RFEA

front surface. The high energy peak, caused by ions from the sheath above the mesh

top, is not present in IEDs near the mesh cylinder. This is due to the curvature of the

sheath edge around the mesh corner. The medium energy peak, produced by ions

from the sheath above the mesh corner, shifts to lower energies for IEDs at positions

closer to the mesh cylinder. This is caused by the decrease in the z component of

velocity of ions measured from the sheath corners at positions closer to the mesh

cylinder. Compared to the case with no mesh, the use of a mesh increases the ion

flux to the surface and significantly modifies the IED shape.
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Chapter 7

Ion Energy Measurements During

PIII of an Insulator

7.1 Introduction

When an insulator is placed in a plasma and negatively biased with a conductive

electrode it will accumulate a positive charge and its surface potential will increase.

This affects the energy distribution of incoming ions and the extent of surface modi-

fications. In this chapter, a RFEA is used for the first time to investigate the effects

of insulator surface charging during PIII with and without a metal mesh present.

IED measurements were made through an orifice cut into the centre of a piece of

Mylar fixed to the RFEA front surface. A two dimensional numerical simulation

was used to interpret these results. In section 7.2, the accumulation of charge on

an insulator during PIII and its effects on the sheath shape, ion flux and energy are

discussed. In section 7.3, the experimental setup used is given and in section 7.4

the simulation method used is discussed. In section 7.5, the results of experimental

ion energy measurements made at the orifice cut into the insulator both with and

without a mesh are presented and compared with simulation results.
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7.2 Insulator Charging During PIII

PIII is increasingly being used in the treatment of insulator materials to improve

surface properties such as wetability and adhesiveness. In PIII, when an electrically

conductive object is pulse biased, the surface potential will equal the applied pulse

amplitude. For an insulator, during negative biasing, the implantation of positive

ions and the release of secondary electrons will result in surface charging. The charg-

ing of the insulator will continue until the insulator reaches the floating potential,

given by equation (2.36), where the flux of ions and electrons to the surface is equal.

The surface potential (V (t)) of an insulator is given by [44]

V (t) = V0 −∆V (t) (7.1)

where V0 is the metal substrate potential and ∆V (t) is the potential drop across the

insulator. If the insulator is approximated as a parallel plate capacitor of thickness

d and cross sectional area A, the potential drop across the insulator is given by

∆V (t) =
Q(t)

C
=

Q(t)d

ε0εrA
(7.2)

where C is the sample capacitance, Q(t) is the surface charge and εr is the insulator

dielectric constant. The surface charge is given by

Q(t) =

∫ t

0

ji(t) (1 + γ) dt (7.3)

where γ is the secondary electron emission coefficient and ji(t) is the ion current

density. The ion current density is equal to the Child law ion current density, given

by equation (2.46), plus a displacement current term due to the electric field across

the sheath. The displacement current (jd) across the sheath is given by

jd = ε0
∂E

∂t
(7.4)

where E is the electric field. If the sheath is considered to be a parallel plate

capacitor with cross sectional area A, using Gauss’s law, the electric field across the
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sheath is given by

E =
Q

ε0A
(7.5)

where Q is the charge on the capacitor plates. For a sheath of thickness s(t), with

a potential V0 across it, the capacitance (C) is given by

C =
ε0A

s(t)
=

Q

V0

(7.6)

Substitution of (7.5) and (7.6) into (7.4) gives

jd(t) = − V0ε0

s2(t)

(
ds

dt

)
(7.7)

Substitution of the expression for the sheath position given by equation (3.9) into

(7.7) gives the displacement current

jd(t) = −1

9
u0eni

(
2

3
ωpit + 1

)− 4
3

(7.8)

where ni is the ion density, u0 is the ion velocity given by equation (3.4) and ωpi is the

ion plasma frequency given by equation (2.19). The total ion current density (ji(t))

is given by the Child law current density in equation (2.46) plus the displacement

current in equation (7.8) which gives

ji(t) =
4

9
ε0

(
2e

M

) 1
2

V
3
2

0

(
1

s2(t)
+

s2
0

2s4(t)

)
(7.9)

where s0 is the matrix sheath thickness given by (2.40) and M is the ion mass.

The surface potential obtained using equations (7.1) to (7.9) for a Mylar disc,

of thickness 70 µm, covering the RFEA front surface biased at -300 V is shown in

figure 7.1 for several different secondary electron emission coefficient (γ) values. The

potentials are shown only until the insulator reached the floating potential of -14

V or until a time of 200 µs. The floating potential was determined using equation

(2.36) for argon ions and an electron temperature of 3 eV. The Mylar disc diameter
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Figure 7.1: The insulator surface potential obtained using equations (7.1) to (7.9)
for a 70 µm thick Mylar disc covering the RFEA front surface biased at -300 V for
several different secondary electron emission coefficients (γ). The disc diameter was
36 mm with a circular section with a diameter of 4 mm removed from the centre.

was 36 mm with a circular section with a diameter of 4 mm removed from the

centre to allow ions to enter the RFEA. The Mylar dielectric constant was taken to

be 3.1 [40] and the ion density to be 1x1013 m−3. The secondary electron emission

coefficient of γ=4 was based on data for electron bombardment of Mylar [17]. For

smaller secondary electron emission coefficients, the number of electrons released

from each ion bombardment is reduced and the rate of increase in the insulator

potential decreases.

To date, there have been limited experimental studies of the effects of surface

charging on the IED during PIII of insulators. Experimental studies have shown the

use of metal grids over the insulator can improve the depth of treatment [44] and that

the thickness and dielectric properties of the insulator also affect the ion implantation

depth [41]. Simulation studies at DC biased [62] and RF biased substrates [63] have

shown that near an insulator/conductor interface the ion trajectories and energy

distributions are significantly affected by sheath distortion. Due to charging of the

insulator, the sheath thickness above the insulator is reduced which focuses more

ions to the conductor and increases the spread of the IED.

In this chapter, the effects of the surface charging of an insulator during PIII are
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investigated experimentally and using computer simulation. Direct measurement

of the IED at the insulator surface is not possible and IED measurements were

made through a metal mesh covered orifice in the centre of a Mylar insulator. To

distinguish between the effects of the metal orifice and the effects of insulator surface

charging on the IED, a two dimensional numerical simulation of ion trajectories

in the plasma sheath and mesh regions was performed. The effects of placing a

metal mesh cylinder over the Mylar were investigated and compared with simulation

results.

7.3 Experimental Method

Ion energy and flux measurements during PIII were made by pulse biasing the RFEA

with a Mylar sheet fixed to the front of the analyser. The experimental setup used

was the same as shown in figure 5.1. Measurements were made in an argon capacitive

13.56 MHz RF plasma at a pressure of 5 mTorr. The Mylar sheet was cut to the

same shape as the metal front of the RFEA, shown in figure 4.5, and was fixed to

the RFEA front using the four M3 screws which attached the front lid to the main

body of the RFEA. A four millimetre diameter hole was cut out of the centre of the

Mylar above the RFEA inlet orifice to allow ions to enter the analyser. The Mylar

thickness was 70 ± 1 µm.

Measurements were made using a -300 V pulse both with and without a 2 cm

high cylindrical mesh attached to the RFEA front. The mesh dimensions were the

same as described in section 6.2. The pulse width was 200 µs and the pulse period

was 800 µs.

7.4 Simulation Method

As the IED cannot be measured directly at the insulator surface using the RFEA,

a two dimensional numerical simulation in cylindrical (r,z) coordinates was used to

interpret experimental results and study the effects of insulator surface charging.

The simulations were performed using GNU Octave. Using the same method dis-
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cussed in section 6.3, the potentials in the mesh and sheath regions were determined

by using the relaxation method to solve Poisson’s equation, taking in to account

the decrease in ion density as the ions accelerate. The effects of secondary electron

emission were not included in the simulation.

For each simulation, the potential on the mesh and the RFEA inlet was set to

the pulse amplitude of -300 V. The potential along the plasma-sheath edge was set

to 0 V. To simulate the effects of surface charging, the insulator potential was set to

a value between -300 V and the floating potential of -14 V. The floating potential

was determined using equation (2.36) for argon ions and an electron temperature of

3 eV.

7.4.1 Sheath Edge and Ion Motion

For the simulations of an insulator with a mesh, the location of the sheath edge was

determined using the method discussed in section 6.3.1. For the insulator with no

mesh simulations, the location of the sheath edge, which was fixed at 0 V, was de-

termined using a linear interpolation between the one dimensional Child law sheath

thickness (h1) above the RFEA inlet orifice and the Child law sheath thickness

above the insulator (h2) as shown in figure 7.2. The sheath thickness above the inlet

orifice is determined by the potential of the metal front grid of the RFEA which

remains at -300 V. The sheath thickness above the insulator is determined by the

insulator potential which is dependent on the effects of surface charging. The linear

interpolation between h1 and h2 was extended a distance w1 above the insulator

with w1 set to 1 mm.

For the simulations of an insulator with no mesh, the potential array was solved

from r=0 mm to r=36 mm. To impose boundary conditions on the potential array,

the potential along the z-axis at r=36 mm was set to the one dimensional Child

law sheath potential above the insulator and the potential array was assumed to be

symmetrical about r=0 mm. The potential values in the sheath must be less than

the potential at the plasma sheath edge. To ensure all values of potential in the

sheath were less than the potential at the plasma sheath edge, the sheath thickness
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Figure 7.2: In the simulations with no mesh cylinder, the position of the sheath
edge was determined by taking a linear interpolation between the sheath thickness
above the RFEA inlet orifice (h1) and the sheath thickness above the insulator (h2).
The linear interpolation between h1 and h2 was extended a distance w1 over the
insulator.

h1 was reduced in height until the relaxation method solution gave all potential

values less than zero.

For the simulations, ions were started at 0.05 mm intervals along the sheath

edge as described in section 5.4.1. One thousand ions were launched from each start

point at the Bohm velocity with trajectories perpendicular to the sheath edge. Ions

were released individually into the potential array and their position determined at

0.002 µs intervals using the electric field at each position. Collisions between ions

and neutral gas molecules were modelled using the Monte Carlo approach described

in section 5.4.2. Ions with trajectories which reached the RFEA collector were used

to construct the simulated IEDs.

7.5 Results and Discussion

7.5.1 Insulator With No Mesh

A piece of Mylar was attached to the RFEA front surface and ion energy mea-

surements were made with the RFEA pulse biased in an argon plasma with a RF

power of 150 W and a pressure of 5 mTorr. The pulse amplitude was -300 V with a

pulse-on time of 200 µs and a pulse period of 800 µs. A graph of the IEDs obtained

at different times during the pulse-on period are shown in figure 7.3 along with an
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IED obtained with no Mylar present, 30 µs after the pulse switched on. With no

insulator, a high energy peak is observed at 313 eV along with ions with a range of

energies between zero and the maximum ion energy of 325 eV. With an insulator,

in the early stages of the pulse, a high energy peak is also observed at 313 eV but

during the pulse this peak height decreases and a medium energy peak between 100

and 300 eV increases in height.

For the IED with an insulator present, the maximum energy measured was 325

eV which represents ions which gained the maximum sheath potential of the pulse

amplitude plus the time averaged plasma potential. A high energy peak is observed

at 313 eV which indicates a large number of ions gain close to the maximum energy.

These ions experience very few collisions and arrive at the RFEA with trajectories

close to perpendicular to the RFEA front surface.

The spread of ion energies measured between zero and the maximum ion energy

has several possible causes. After the pulse is switched on, the formation of a matrix

sheath results in the measurement of ions with a range of energies between zero and

the full sheath potential depending on the ion’s initial position in the sheath. This

would be most significant for the earliest measurements taken after the pulse was

switched on. At later times during the pulse, the spread of ion energies is caused

by the measurement of ions which collide in the sheath and by the measurement of

ions with trajectories not perpendicular to the RFEA front surface. As discussed

in section 4.5.1, ion collisions may be hard sphere momentum transfer collisions or

charge exchange collisions which at a pressure of 5 mTorr have mean free paths of

approximately 36 and 12 mm respectively. The RFEA discriminates ions based on

the component of their velocity perpendicular to the RFEA front surface and ions

arriving at the RFEA front surface at an angle not equal to ninety degrees will be

measured as having a lower energy.

A graph of the mean ion densities and mean ion fluxes for the IEDs in figure 7.3

are shown in figure 7.4 as a function of time after the pulse was switched on. Both

the mean ion density and mean ion flux increase during the pulse-on period. This is

attributed to the increase in the curvature of the plasma-sheath edge over the RFEA

inlet/insulator interface region as the insulator potential increases. As the insulator
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potential increases, the sheath thickness above the insulator decreases which causes

the sheath edge to curve over the RFEA inlet/insulator interface region. This directs

more ions into the RFEA inlet orifice which increases the ion flux and the measured

ion density as the insulator potential increases. For the ion densities measured at

the start of the pulse which were of the order of 1x1013 m−3, the Child law sheath

thickness is approximately 10.2 cm for an electron temperature of 3 eV and pulse

amplitude of -300 V. This is larger than the mean free paths for hard sphere and

charge exchange collisions at 5 mTorr which are approximately 36 mm and 12 mm

respectively. In figure 7.3, the IEDs obtained in the early stages of the pulse show

that the majority of ions experience very few collisions in the sheath. This result

indicates that the ion densities measured using the IEDs may be lower than the

actual plasma density. As discussed in chapter 5, this may be due to ion losses in

the RFEA or due to the finite acceptance angle of the RFEA inlet orifice.

To assess the expected effects of surface charging during pulsing, simulations

were carried out with different potentials on an insulator around the RFEA inlet

orifice. The RFEA potential was -300 V and the pressure was 5 mTorr. In figure 7.5,

the calculated potentials in the sheath are shown for the case where the potential on

the insulator was set to -50 V and the potential on the RFEA inlet mesh was -300

V. Figure 7.6 shows the simulation results for the effects on the IED of different

potentials on the insulator. The maximum insulator potential tested was -14 V

which is the floating potential for an argon plasma with an electron temperature of

3 eV. The simulation IEDs show similar trends to the experimental IEDs. A high

energy peak is observed at 301 eV which is close to the maximum energy measured of

305 eV. This peak is due to ions originating from the sheath edge directly above the

RFEA inlet. The maximum ion energy is larger than the maximum sheath potential

of the pulse amplitude plus the energy associated with ions entering the sheath at

the Bohm velocity due to the finite time step size used in the simulations. Smaller

time steps can reduce this error but significantly increase the time required for each

simulation. As the potential on the insulator becomes more positive, the height of

the high energy peak decreases and more ions with energies between 150 and 300 eV

are measured. This is caused by the increase in insulator potential which increases
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the curvature of the sheath over the metal RFEA inlet/insulator interface region as

shown in figure 7.5. The increase in sheath curvature in this region focuses more

ions which previously travelled to the insulator toward the RFEA inlet at angles less

than ninety degrees to the RFEA front surface. The increase in the sheath curvature

also causes more ions from the plasma-sheath edge directly above the RFEA inlet

to arrive at the RFEA with trajectories which are not perpendicular to the RFEA

front surface. Ions which arrive at the RFEA with trajectories not perpendicular

to the RFEA front surface will be measured as having lower energy as the RFEA

discriminates ions based only on the z component of their velocity. The increase

in sheath curvature is seen in the IEDs as a decrease in the number of ions in the

high energy peak and an increase in the number of lower energy ions measured as

the insulator potential increases which is a similar trend to the experimental IEDs

in figure 7.3 and to simulation results obtained by others [62, 63].

Comparison of the experimental and simulated IEDs in figures 7.3 and 7.6 allow

some estimates of the insulator surface potential to be made. After the pulse has

been on for 100 µs the increase in the number of ions between 175 and 300 eV in the
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an insulator fixed around the RFEA inlet. The RFEA front surface potential was
-300 V. As the insulator potential increases, the spread of the IED to lower energies
increases due to the increase in the curvature of the sheath over the metal-insulator
region.

experimental IED most closely matches simulated IEDs with insulator potentials of

-150 or -100 V. After a pulse-on time of 140 µs, the experimental IEDs most closely

match the simulation results obtained with insulator potentials of -50 and -14 V

indicating that the insulator is close to the floating potential. From these results it

appears that the Mylar is approaching the floating potential after approximately 100

to 150 µs. Using the insulator potential graphs in figure 7.1, these results indicate

that the Mylar secondary electron emission cofficient (γ) may be somewhere close

to two. Further simulations at different insulator potentials would be necessary to

more accurately determine the insulator potential during pulsing.

7.5.2 Effects of Measurement Position with Insulator and

No Mesh

As the IED cannot be measured directly at the insulator surface using the RFEA,

simulations were used to study the IED at different positions on the insulator. To
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simulate the effects of insulator surface charging, simulations were performed with

the insulator potential set at different values. As shown in figure 7.7, the IEDs

were determined using ions which struck the RFEA metal mesh inlet (r=-2 to 2

mm), the insulator surface next to the RFEA inlet (r=2.5 to 6.5 mm) and a section

of insulator further away from the RFEA inlet (r=6.5 to 10.5 mm). Simulations

were carried out at a pressure of 5 mTorr and with a potential of -300 V applied

to the RFEA. The IEDs were constructed using the energy associated with the z

component of velocity of ions which struck the surface. Graphs of the IEDs obtained

at the three different locations are shown in figures 7.8, 7.9 and 7.10.

The IEDs obtained using ions which impacted on the RFEA metal inlet are very

similar to those shown in figure 7.6 which were measured 3.5 mm below the inlet at

the RFEA collector. A high energy peak is measured at 301 eV. As the insulator

potential increases, the height of this peak decreases and more ions with energies

between 25 and 300 eV are measured. This is due to increase in the curvature of

the sheath over the metal-insulator interface region which results in more ions being

directed to the RFEA inlet at angles less than ninety degrees to the RFEA front

surface as the insulator potential increases.

For ions arriving at the insulator surface, the maximum ion energy is determined

by the insulator potential. For the IEDs at the insulator surface, high energy peaks

are measured close to the energy associated with the insulator potential along with

a number of ions with energies between zero and the maximum sheath potential

energy. The spread of ions with energies between zero and the maximum ion energy

is caused by ion collisions in the sheath and the measurement of ions with trajectories

not perpendicular to the RFEA front surface. Compared to the insulator further

away from the RFEA inlet, at the insulator next to the RFEA inlet the height of

the high energy peak is lower and as the insulator potential increases, more ions are

measured with energies within 50 eV of the high energy peak. This is caused by

the curvature of the sheath over the metal-insulator interface region which increases

as the insulator potential becomes larger. This results in more ions being directed

toward the RFEA metal inlet and in a larger number of ions arriving at the insulator

next to the inlet at angles less than ninety degrees to the RFEA front surface. At
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Figure 7.10: Simulated IEDs and corresponding peak heights measured at the insu-
lator (r=6.5 to 10.5 mm) as a function of potential on the surface of the insulator.
The majority of ions are measured with energies close to the insulator potential.
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the insulator section further away from the RFEA inlet, as the insulator potential

increases, the sheath edge remains parallel to the insulator surface and the majority

of ions arrive with energies close to the insulator potential.

7.5.3 Insulator With Mesh

Ion energy measurements were made with a piece of Mylar and a 2 cm high cylin-

drical mesh fixed to the RFEA front surface in the same manner as shown in figure

6.1. Measurements were made with the RFEA pulse biased in an argon RF plasma

with a RF power of 100 W and a pressure of 5 mTorr. The pulse amplitude was

-300 V with a pulse-on time of 200 µs and a pulse period of 800 µs. A graph of

the IEDs obtained at different times during the pulse-on period are shown in figure

7.11 along with an IED obtained with only the 2 cm high mesh cylinder and no

Mylar present, 30 µs after the pulse switched on. For the IED with a mesh and

no Mylar, a high energy peak is observed at 312 eV along with a medium energy

peak at approximately 186 eV and a low energy peak near 25 eV. With a mesh and

Mylar, in the early stages of the pulse, a high energy peak is observed at 314 eV

along with a large low energy peak at 75 eV. During the pulse, the high energy peak

height decreases and the low energy peak appears to move upward in energy to 150

eV and decrease in height.

As shown in figure 6.4, for the IED with the mesh cylinder and no Mylar, the

high energy peak at 312 eV is formed by ions originating from the sheath above the

mesh top. The wide medium energy peak at approximately 186 eV is formed by

ions originating from the sheath above the mesh corners and the low energy peak

near 25 eV is formed by ions which are trapped on the RFEA side of the space

charge potential hump which forms inside the mesh region. Compared to the case

with no Mylar, for the IED with the mesh cylinder and Mylar present, obtained

30 µs after the pulse switched on, the high energy peak at 314 eV is smaller, there

is no medium energy peak and there is a much larger lower energy peak at 75 eV.

These differences indicate that insulator surface charging has a significant effect on

the IEDs measured by the RFEA.
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For the IEDs with an insulator and mesh cylinder, the maximum ion energy

measured was 324 eV which represents ions which gained the maximum sheath

potential of the pulse amplitude plus the time averaged plasma potential. The

small high energy peak observed at 314 eV indicates that very few ions arrive at

the RFEA collector with close to the full sheath potential energy and that many

ions are colliding and/or reaching the RFEA with trajectories not perpendicular

to the RFEA front surface. The change in the shape of the IED during the pulse

indicates that the surface charging of the insulator is having a significant effect on

the trajectories of ions which are being measured by the RFEA.

Figure 7.12 shows the mean ion densities and ion fluxes for the IEDs in figure

7.11 as a function of time after application of the pulse. Compared to the case with

no mesh, the total ion flux during the pulse is larger. The ion flux at the start of

the pulse is also larger than the case with no mesh. This is attributed to the larger

plasma-sheath surface area produced by the mesh which draws in more plasma ions.

The decrease in the ion flux and density measured by the RFEA during the pulse

are explained by the change in the potential inside the mesh region as the insulator

surface potential increases. This results in less ions from the sheaths above the mesh

top, sides and corners reaching the RFEA collector which decreases both the ion

flux and density measured by the RFEA.

To investigate the effects of insulator surface charging, simulations were per-

formed with different potentials on the insulator attached to the front of the RFEA

with a 2 cm high cylindrical mesh attached. The IEDs obtained at different insula-

tor potentials are shown in figure 7.13 and in figure 7.14 an enlarged view of figure

7.13 is given showing the origins of the ions in the simulations. The potential of the

RFEA and 2cm high mesh was -300 V. The simulation IEDs show similar trends to

those observed in the experimental IEDs. A high energy peak is observed at 302 eV

which decreases in height as the insulator potential increases. As shown in figure

7.14, these ions originate from the sheath above the mesh top. As the potential of

the insulator increases, more of these ions arrive at the RFEA collector with tra-

jectories not perpendicular to the RFEA front surface and are measured as having

lower energy. While the heights of the simulation peaks may not be correct due to
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the RFEA inlet orifice with a 2 cm high cylindrical mesh attached to the RFEA
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the assumption that all ions enter the sheath at the Bohm velocity, the decrease in

the high energy peak height with increasing insulator potential matches the experi-

mental results in figure 7.11. The broad IED which results with increasing insulator

potential also explains the wide medium energy peak which forms in the experimen-

tal results 200 µs after the pulse switched on. The isolated peaks, between 150 and

300 eV, in the -14 V and -50 V insulator bias IEDs in figure 7.14 are caused by

the finite spacing between the ion starting positions on the sheath edge. A smaller

spacing between starting locations would produce a smoother IED but also increase

the time required for each simulation.

In figure 7.13, a medium energy peak is observed for insulator potentials of -250

V and -200 V at approximately 180 eV and 160 eV respectively. As shown in figure

7.14, this peak is caused by ions originating from the sheath above the mesh corners.

For these ions, as the potential of the insulator increases, the component of velocity

perpendicular to the RFEA front surface decreases as does the number of these ions

reaching the RFEA collector. This decrease in peak height explains the decrease in
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Figure 7.14: An enlarged view of the origins of the ions in the simulation results
in figure 7.13. As the insulator potential increases, ions from the sheath above the
mesh top are spread to lower energies and ions originating from the sheath above
the mesh corners no longer reach the RFEA collector.

height of the medium energy peak in the experimental results in figure 7.11.

In figure 7.14, a low energy peak is observed for insulator potentials of -250 V,

-200 V and -150 V at approximately 43 eV, 72 eV and 104 eV respectively. This

peak is caused by a combination of ions originating from the sheaths above the

mesh sides, corners and top which collide inside the sheath and/or mesh but still

have trajectories which allow them to reach the RFEA collector. As the insulator

potential increases, the position of the low energy peak also increases which explains

the upward shift of the medium energy peak in the experimental results in figure

7.11.

Comparison of the experimental and simulation results in figures 7.11 and 7.14

allow some estimates of the insulator surface potential to be made. After the pulse

has been on for 50 µs, the upward shift in energy of the medium energy peak toward

125 eV most closely matches the trends observed for the low and medium energy
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peaks in the simulated IEDs if the insulator potential is assumed to be -200 or -

150 V. After a pulse-on time of 100 µs, the broad spread of the medium energy

peak at 150 eV most closely matches the simulation results with insulator potentials

of -50 and -14 V, indicating that the insulator is now much closer to the floating

potential as a result of surface charging. Further simulations at different insulator

potentials would be necessary to more accurately determine the insulator potential

during pulsing.

7.5.4 Effects of Measurement Position with Insulator and

Mesh

As it is not possible to measure the IED at the insulator surface, simulations were

used to study the IED at different positions on the insulator. As shown in figure

7.15, IEDs were determined using the z component of velocity of ions which struck

the insulator next to the RFEA metal mesh inlet (r=2.5 to 6.5 mm), in the middle

section of the RFEA front surface (r=7 to 11 mm) and next to the metal mesh

cylinder edge (r=13.5 to 17.5 mm). Simulations were performed at a pressure of 5

mTorr and with a potential of -300 V applied to the RFEA and 2 cm high mesh

cylinder. Graphs of the IEDs obtained are shown in figures 7.16, 7.17 and 7.18.

The maximum energy of ions arriving at the insulator is determined by the

insulator potential. The IEDs obtained at the insulator next to the RFEA inlet and

in the middle of the RFEA front surface have high energy peaks close to the energy

associated with the insulator potential and a number of ions with energies between

zero and the maximum sheath potential energy. The ions in the high energy peak

originate from the sheath edge above the mesh top. The spread of ions measured

with energies between zero and the maximum sheath potential energy are produced

by ions which have undergone collisions and/or have arrived at the insulator with

trajectories not perpendicular to the RFEA front surface. At the insulator next to

the RFEA metal inlet, a larger number of ions with less than the energy associated

with the insulator potential are measured. This is caused by the lower potential of

the RFEA metal inlet which distorts ion trajectories and results in the measurement
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Figure 7.16: Simulated IEDs measured at the insulator next to the RFEA metal
mesh inlet (r=2.5 to 6.5 mm) as a function of potential on the surface of the insu-
lator. Ions originating from the sheath above the mesh corner are measured with
energies less than the insulator potential.
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Figure 7.17: Simulated IEDs measured at the insulator in the middle of the RFEA
front surface (r=7 to 11 mm) as a function of potential on the surface of the insulator.
The maximum energy of ions is determined by the insulator potential.
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Figure 7.18: Simulated IEDs measured at the insulator next to the metal mesh
cylinder (r=13.5 to 17.5 mm) as a function of potential on the surface of the insu-
lator. The curvature of the sheath around the mesh corner results in less ions being
measured with energy close to the insulator potential.
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of a larger number of ions from the sheath edge above the mesh corners. These ions

arrive at the insulator with trajectories not normal to the surface and are measured

with energies less than associated with the insulator potential.

At the insulator next to the mesh cylinder, less ions are measured and no peak

is observed close to the energy associated with the insulator potential. This is due

to the curvature of the sheath around the mesh corner which results in less ions

from the sheath above the mesh top reaching the insulator. Ions which reach the

insulator surface arrive at angles not perpendicular to the surface and are measured

with a spread of energies from zero up to the insulator potential.

7.6 Summary

In this chapter, the effects of the surface charging of a Mylar insulator during PIII

were investigated with and without a metal mesh cylinder present. Qualitative

agreement was found between experimental and simulation results. With no mesh,

the number of lower energy ions measured by the RFEA through the orifice in the

Mylar increased during the pulse-on time. Simulation results suggest that this is

caused by the increase in the curvature of the sheath over the orifice region as

the insulator potential increases as a result of surface charging. With increasing

insulator potential, ions which previously travelled to the insulator are directed

towards the RFEA collector with trajectories less than ninety degrees to the RFEA

front surface. Simulations of IEDs at the insulator surface away from the orifice,

show that the insulator potential determines the maximum energy of ions in the

energy distribution.

Compared to the case with no mesh, the use of a mesh increased the ion flux

during the early stages of the pulse but did not eliminate surface charging. During

the pulse-on time, compared to the no mesh case, a larger number of lower energy

ions were measured. Simulation results suggest that this is caused by the potential

in the mesh region which affects the trajectories of ions from the sheath edges

above the mesh top and corners and results in more ions being measured with

trajectories not perpendicular to the RFEA front surface. Simulations suggested
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that the IED at the insulator surface is dependent on position under the mesh and

the insulator potential. The maximum energy of ions measured at the insulator

surface is determined by the insulator potential. A high energy peak, produced

by ions from the sheath edge above the mesh cylinder is not observed in IEDs at

positions close to the mesh cylinder. This is due to the curvature of the sheath

around the mesh corner. At positions on the insulator near the centre of the base

of the mesh, peaks in the IED are observed close to the energy associated with the

insulator potential. The use of a mesh during PIII of an insulator increases the total

ion flux to the surface and significantly affects the IED structure.
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Chapter 8

Conclusion

This chapter summarises the important findings of this thesis in relation to PIII.

At a metal surface during PIII, experimental and simulation results showed that

the majority of ions gained close to the maximum sheath potential energy. The

remaining ions were measured with energies between zero and the full sheath poten-

tial energy. In the early stages of the pulse, the presence of ions with less than the

full energy is attributed to matrix sheath ions which fall through a fraction of the

full sheath potential difference. In the later stages of the pulse, simulation results

show that the presence of these ions is due to ion collisions in the sheath and the

measurement of ions with trajectories not perpendicular to the RFEA front sur-

face. The RFEA discriminates ions based only on the component of their velocity

perpendicular to the RFEA front surface (the z component). A decreasing ion den-

sity was measured during the pulse which indicated that the depletion of ions was

greater than the generation of ions in the plasma. These results were in contrast to

measurements made by others at larger pulse amplitudes which showed an increase

in ion density during pulsing [61]. The results of the work in this thesis show that

longer pulse-on periods result in more mono-energetic ion implantation but that the

ion flux and density will decrease during these longer pulses.

Experimental and simulation results for the IED at an orifice cut into an insulator

on the RFEA front surface showed that the insulator potential increases during the

PIII pulse. Simulation results for IEDs at the insulator surface away from the

orifice had a peak close to the energy associated with the insulator potential. The
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ions which produced this peak were from the sheath directly above the region on the

insulator where the IED was measured. To maximise the energy of ions bombarding

the insulator during PIII, the results of this work show that short pulse lengths must

be used to minimise surface charging.

Experimental measurements during PIII with a metal mesh over a metal surface

showed that the mesh increased ion flux to the surface. Both experimental and

simulation results showed that the IEDs were comprised of a high, medium and low

energy peak. Simulations showed that the high energy peak was due to ions from the

sheath above the mesh top and the low energy peak was due to ions which collided in

the sheath and/or mesh and were able to overcome the space charge potential hump

inside the mesh. The medium energy peak was produced by ions from the sheath

above the mesh corners which had both a r and z component to their velocity. Both

experiment and simulation showed that by increasing the mesh height, the medium

energy peak increased in energy. The results of this work showed that larger mesh

heights increase the flux of ions to the surface but result in more ions arriving at

the surface at angles not perpendicular to the surface and/or with less than the full

sheath potential energy.

Simulation results showed that the IED was dependent on position on the RFEA

front surface. The high energy peak, produced by ions from the sheath edge above

the mesh top, was not observed in IEDs at positions near the mesh cylinder. This

was caused by the curvature of the sheath around the mesh corners. This effect could

be minimised by keeping the sample being treated well away from the mesh sides

so that the sheath edge remains parallel to the sample surface. The medium energy

peak, produced by ions from the sheath above the mesh corners, shifted downward

in energy for IEDs at positions closer to the mesh cylinder. The variation in the

energy distribution with position would produce a non-uniform treatment profile of

the surface.

Experimental measurements made through an orifice cut into an insulator showed

that insulator surface charging still occurs during PIII when a mesh is fixed over

the insulator. The use of the mesh increased the ion flux to the surface. Simulation

results of IEDs at the insulator surface showed that the maximum energy of ions
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was determined by the insulator surface potential. At positions on the insulator

away from the mesh edges, a peak in the IED was observed close to the energy of

the insulator surface potential. These ions originated from the sheath edge above

the mesh top. In the IEDs at positions close to the mesh edge, the high energy peak

is not observed. This is due to the curvature of the sheath around the mesh corners.

As for the case with a mesh and no insulator, the placement of the sample well away

from the mesh edge would reduce this effect. The results of this work show that to

maximise the energy of implanted ions during mesh assisted PIII of an insulator,

short pulse lengths must be used to minimise surface charging.
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Appendix A

RFEA Circuit Diagram

A diagram of the three stage amplifier circuit used for time resolved ion current

measurements is shown in figure A.1. The circuit was designed and built by Mr Phil

Denniss at The School of Physics at The University of Sydney.

Ion current from the collector is converted to a voltage signal across a 1 kΩ

resisitor (R23) which is then amplified by an OP27 amplifier. Diodes were placed in

front of the OP27 to provide protection from current spikes caused by arcing in the

RFEA. A LF412 two stage amplifier was used to provide the second and third stages

of amplification. The offset of the signal was controlled using a LM611 reference

control amplifier. The RFEA collector and circuit board plane of the first three

amplifier stages were biased at the collector voltage. A HCPL7800 high voltage

isolation amplifier was used to pass the voltage signal from the high voltage side of

the circuit board to the grounded side of the circuit board. An AMP03 differential

amplifier took the difference between the two outputs of the HCPL7800 which gave

the collector ion current as a voltage signal amplified by 8x106 VA−1.
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Figure A.1: A diagram of the amplifier circuit used for time resolved ion current
measurements with the RFEA.
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Appendix B

Simulation of Mesh and Sheath

Potentials

In the simulations of ion trajectories, the potentials in the sheath and mesh were

determined by solving Poisson’s equation, taking into account the decrease in ion

density as ions accelerate. The potential in the mesh and sheath regions can be

expressed as a finite difference equation. From section 6.3.2, the potential in the

mesh and sheath regions is given by equation (6.5)

∂2φ

∂r2
+

(
1

r

)(
∂φ

∂r

)
+

(
∂2φ

∂z2

)
= K (φs − φ)−

1
2 (B.1)

where

K = −
(

J0

ε0

)(
2e

M

)− 1
2

(B.2)

Equation (B.1) can be expressed as a finite difference equation

φ(r + ∆r, z)− 2φ(r, z) + φ(r −∆r, z)

∆r2
+

(
1

r

)
φ(r + ∆r, z)− φ(r, z)

∆r
+

φ(r, z + ∆z)− 2φ(r, z) + φ(r, z −∆z)

∆z2
= K(φs − φ(r, z))−

1
2 (B.3)
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which can be rearranged to give

Aφ(r, z) + B + C(φs − φ(r, z))−
1
2 = 0 (B.4)

where

A = −2r(∆z2 + ∆r2)−∆r∆z2 (B.5)

B = r∆z2(φ(r + ∆r, z) + φ(r −∆r, z)) + ∆r∆z2φ(r + ∆r, z)

+r∆r2(φ(r, z + ∆z) + φ(r, z −∆z)) (B.6)

C = −r∆r2∆z2K (B.7)

A final rearrangement gives

φ(r, z) + F + G(φs − φ)−
1
2 = 0 (B.8)

where

F =

(
B

A

)
and G =

(
C

A

)

Using the computer program Mathematica, the three solutions to equation (B.8)

are

φ =
1

3
(φs − 2F )− 2

1
3 M

3N
+

1

3
(
2

1
3

)N (B.9)
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1

3
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√
3
)
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3
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− 1
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√
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where

M = −φ2
s − 2φsF − F 2 (B.12)

N =
(
2φ3

s + 6φ2
sF + 6φsF

2 + 2F 3 − 27G2
) 1

3 +(
3
√

3
√
−4φ3

sG
2 − 12φ2

sFG2 − 12φsF 2G2 − 4F 3G2 + 27G4
) 1

3
(B.13)

For each iteration in the program, equations (B.9), (B.10) and (B.11) were used

to determine the value of potential at each point in the array. This process was

repeated until the maximum difference in potential, at each point, between iterations

was less than 1x10−7 percent. Equation (B.9) was found to produce non-converging

solutions while equations (B.10) and (B.11) converged to the same solution. The

potential array was plotted using the converged, real value solution of equation

(B.10).
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