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SUMMARY  

 

1.  GABAA receptors are implicated in the pathology of psychiatric disorders such as 

schizophrenia and depression. They are rapidly affected by stress in a sex-dependent 

fashion, suggesting that GABAA receptors may be relevant to understanding the 

association between stress and psychiatric disorders.   Thus, this thesis examined 

how GABAA receptors are affected in both male and female mice exposed to stress 

in adulthood (Chapter 2), early-life (Chapter 3-5) and a combination of both  

early-life and adulthood stress (Chapter 6). 

2. The effects of acute adulthood stress (3 minute warm swim stress) on GABAA 

receptor binding in the brains of male and female mice were examined using 

quantitative receptor autoradiography.  The total number of GABAA receptor 

[
3
H]GABA binding sites was increased following swim stress in specific forebrain 

cortical regions of female mice swum individually or in a group, but decreased in 

male mice when swum in a group only.  These findings confirm and extend previous 

studies, identifying the cortical regions involved in rapid stress-induced changes in 

GABAA receptors.  

3. Post-natal handling models in rodents comparing control (brief handling sessions; 

EH) with no intervention stress conditions (NH), indicate that the NH condition 

results in an anxious adulthood phenotype and this was confirmed in the present 

thesis using the elevated plus-maze behavioural test.  Using this model the effects of 

early-life stress on adulthood GABAA receptors were then examined.   

4. Regional densities of GABAA receptor !1 and !2 subunit proteins were observed in 

the adult brain of male and female mice using immunoperoxidase histochemistry. 

NH males showed a loss of the !2 subunit from the thalamus and the lower layers 
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(IV-VI) of the primary somatosensory cortex, whilst NH females showed a reduction 

of !2 but an increase in !1 protein in the lower layers of the primary somatosensory 

cortex only.  These regionally specific alterations in the !1:!2 subunit ratio suggest 

that early-life stress disrupts the developmental ! subunit switch, which occurs in a 

regionally-dependent fashion over the first two weeks of rodent life.   

5. Double-labelling immunofluorescence and confocal microscopy were used to 

examine the effects of sex and early-life stress on GABAA receptor synaptic 

clustering.  Regardless of sex, mice exposed to early-life stress (NH) showed reduced 

colocalisation of the GABAA receptor !2 subunit with the synaptic marker protein 

gephyrin relative to the control condition (EH).  This suggests that early-life stress 

impairs adulthood inhibitory synaptic strength and is consistent with the increased 

anxiety of the stressed relative to control mice.  

6. Finally, the effects of early-life stress on adulthood swim stress-induced changes in 

GABAA receptor binding were examined using quantitative receptor autoradiography 

in forebrain cortical regions.  Findings showed that the effect of adulthood stress on 

the total number of GABAA receptor binding sites for [
3
H]GABA in forebrain 

cortical regions was altered by early-life stress in both male and female mice, 

suggesting that the rapid adulthood stress response of GABAA receptors is affected 

by early-life experience.  

7. Together these results show that GABAA receptors are sensitive to subtle changes in 

the environment in both early-life and adulthood and that these neurochemical 

responses to stress in adulthood are sex-dependent.  The short and long-term stress-

sensitivity of the GABAergic system implicates GABAA receptors in the non-genetic 

aetiology of psychiatric illnesses in which sex and stress are important factors. 
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CHAPTER 1:   

GABAA Receptors, Sex-Differences and Stress 

 

1.1  The GABAergic system 

1.1.1. GABA as a neurotransmitter 

!-Aminobutyric acid (GABA) is an amino acid neurotransmitter that is important 

during development and adulthood.  GABA was first discovered as a transmitter at 

inhibitory synapses in 1950 (Awapara et al., 1950; Roberts and Frankel, 1950; Roberts 

et al., 1950).  In the adult mammalian brain, between 20-30% of neurons synthesise 

GABA, 25-50% of synapses contain GABA and every neuron expresses GABA 

receptors, thus GABA is an important neurotransmitter in adulthood brain function 

(Curtis and Johnston, 1970; Koella, 1981). 

 

1.1.2. GABA synthesis, release, re-uptake and metabolism 

Functioning of the GABAergic system relies on numerous proteins involved in its 

synthesis, release, reuptake and metabolism.  GABA is synthesised in neuronal 

terminals via "-decarboxylation of L-glutamate (Roberts and Frankel, 1950) in a  

rate-limiting step by the enzyme glutamate decarboxylase (GAD) for which there are 

two protein isoforms GAD65 and GAD67 (Erlander et al., 1991).  GABA is packaged 

into vesicles in the neuronal terminal where it is stored until neuronal depolarisation 

induces Ca
2+

 dependent vesicular exocytosis from the presynaptic terminal.  High 

affinity Na
+
 dependent GABA reuptake transporters terminate the activity of GABA.  In 

the brain GABA reuptake is primarily dependent on the GAT-1 and GAT-3 transporters 

(Dalby, 2003).  GAT-1 appears to be expressed in presynaptic neuronal terminals, 

astrocytic processes and possibly postsynaptic terminals (Dalby, 2003; Pow et al., 
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2005), whilst GAT-3 is found in astrocytic processes surrounding synapses (Dalby, 

2003, Pow et al., 2005) and oligodendrocytes in the human, cat and monkey brain (Pow 

et al., 2005).   Once removed from the synaptic cleft GABA may be recycled for  

re-release or it may be metabolised by a mitochondrial enzyme,  

GABA-aminotransferase (GABA-T) in either the terminal or neighbouring astrocytes. 

GABA-T transfers the amino group from GABA to "-oxoglutaric acid to yield 

glutamate and succinic-semialdehyde.  Succinic-semialdehyde is oxidised by succinic-

semialdehyde dehydrogenase to succinic acid, which enters the KREBS cycle.  A 

typical GABAergic synapse is shown in figure 1.1, with pharmacological agents acting 

on different components of synthesis, release, reuptake and metabolism given in italics. 

 

 
Figure 1.1: Physiology and pharmacology of GABAA receptor transmission 
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1.1.3. GABA receptors  

GABA is a flexible compound that can assume a number of low energy 

conformations that bind to reuptake transporters as well as receptors (Johnston, 1996).  

Synaptic GABA mediates neuronal inhibition via receptors, which are found on almost 

all cortical neurons (Silvotti and Nistri, 1991).  There are three different classes of 

GABA receptors; GABAA, GABAB and GABAC receptors.  GABAA and GABAC 

receptors are pentameric ligand-gated chloride channels and GABAB receptors are  

7-transmembrane G-protein coupled metabotropic receptors. GABAA receptors are 

pharmacologically defined on the basis of selective antagonism by bicuculline and 

insensitivity to baclofen (Johnston, 2005).  They are distinguished from GABAB 

receptors, which are selectively stimulated by baclofen and insensitive to bicuculline, 

and GABAC receptors, which are insensitive to bicuculline and baclofen but selectively 

antagonised by TPMPA (Johnston, 2005).  

 

1.2  GABAA receptors  

1.2.1. GABAA receptor complexity 

GABAA receptors are widespread throughout the brain.  These receptors are structurally 

and pharmacologically complex with a number of different receptor subtypes being 

expressed in the adult mammalian brain.  Subtypes vary in their regional and cellular 

distributions, pharmacological sensitivities and the behavioural effects they mediate.  

An understanding of the complexity of GABAA receptors is highly relevant to an 

examination of alterations in GABAA receptor expression.   
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1.2.2. GABAA receptor structure  

GABAA receptors belong to the cys-loop or nicotinoid family of ligand-gated ion 

channels, which also includes the nicotinic acetylcholine (nAChR), 5-HT3, and glycine 

receptors (Barnard, 1996).  Based on sequence homology with the nACh receptor, all 

receptors of the nicotinoid family are considered to be a combination of 5-membrane 

spanning protein subunits around a central ion channel (Nayeem et al., 1994; Le Novere 

and Changeux, 1995; Unwin, 1989). GABAA receptors are heteromeric receptors as 

more than one type of subunit is required for expression of functional receptors 

(Schofield et al., 1987; Sieghart et al., 1999).  In contrast, ionotropic GABAC receptors 

are homomeric because functional receptors form from a single subunit protein.  

 

 
Figure 1.2:  GABAA receptor subunit structure and arrangement.  A.  Schematic structure of a subunit 
of a GABAA receptor showing the agonist-binding extracellular domain and the four transmembrane 
domains. B. Pentameric structure of a GABAA receptor showing M2 domains facing the ion-conducting pore.  
Adapted from Whiting, 2003 

 

Figure 1.2 shows the postulated structure of nicotinoid family receptors based on 

the structure of the nicotinic ACh receptor (Unwin, 2000).  Each subunit has an 

extracellular N-terminal region containing a cysteine-cysteine bridge (cys-loop), 4 

membrane spanning hydrophobic domains (M1-4) and an extracellular carboxyl 

terminal (Le Novere and Changeux, 1995).  The cys-loop contains agonist / antagonist 
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binding sites (Johnston, 2005) whilst the cytoplasmic loop between the third and fourth 

transmembrane domains contains sites for intracellular mediators including serine, 

threonine and tyrosine kinases (Moss and Smart, 1996) and microtubule binding 

elements (Johnston, 2005).  These protein subunits are arranged such that the M2 

domain lines the central channel pore (Schofield et al., 1987).   

 

1.2.3. Effects on membrane potential 

For GABAA receptors the central pore conducts chloride ions when the ion 

channel is in the ‘open-state’.  Presumably a rapid conformational change underlies the 

transition from the closed to the open state.  This transition may involve removal of an 

entity masking the pore perhaps from regions of the protein itself as is suggested for 

nACh receptors, or by membrane lipids which appear important for GABAA receptors.  

However, the molecular basis of channel gating remains poorly understood, in part due 

to the lack of a high-resolution structure of the entire receptor (Kash et al., 2004). 

GABA is the primary source of inhibition in the brain but also a source of 

excitation.  GABA can induce hyperpolarizing or depolarizing potentials via the 

GABAA receptor (Cherubini et al., 1991; Gao et al., 2001) depending on the 

transmembrane chloride concentration gradient, which determines whether inward or 

outward chloride currents arise upon channel opening (Luhmann and Prince, 1991; 

Rivera et al., 1999).  Excitatory actions of GABA are most prominent during brain 

development prior to postnatal day (P) 4-10 in rodents (Ben-Ari et al., 1989; Gao et al., 

2001; Obrietan and van den Pol, 1995) by which time chloride ion transporter 

maturation (Lee et al., 2005; Plotkin et al., 1997) results in a negative chloride ion 

membrane reversal potential.  However, GABAA receptors can also mediate membrane 

depolarisation in certain parts of the adult brain such as the hippocampus (Ben-Ari et 
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al., 1989; Ben-Ari et al., 1997; Cherubini et al., 1998; Cherubini et al., 1990; 

Michelson and Wong, 1991; Otis and Mody, 1992), hypothalamus (Gao and Van den 

Pol, 2001) neocortex (Owens et al., 1996), and brainstem (Marchetti et al., 2002; Ritter 

and Zhang, 2000).  During development outward chloride current-induced membrane 

depolarisation is sufficient to result in opening of voltage-gated calcium channels 

leading to a rise in intracellular calcium, which has trophic effects on neurons (Barbin et 

al., 1993; Barker et al., 1998; Behar et al., 1996; Cherubini et al., 1998; Maric et al., 

2001; Meier et al., 1987; Meier and Jorgensen, 1986; Spoerri, 1988), and may be 

involved in neuronal differentiation (Ben-Ari et al., 1994; Kullmann et al., 2002; Marty 

et al., 1996) and the expression of other growth factors such as brain derived 

neurotrophic factor (BDNF) (Berninger et al, 1995).  

 

1.2.4. GABAA receptor subtypes 

1.2.4.1. Subunit diversity 

GABAA receptors are the most complex, both structurally and pharmacologically, 

of the ligand-gated ion-channel superfamily (Johnston, 1996). Combined affinity 

purification and cloning from cDNA libraries has identified 16 subunits from which 

GABAA receptors may be assembled in the mammalian brain.  These subunits are 

encoded by separate genes and classified by sequence identity into seven subunit 

classes, including six " ("1-"6), four # (#1-#4), three ! (!1-!3, 2 splice variants; !2short, 

!2long), one $, one %, and one & subunit (Whiting, 2003).  Splice variants also exist for 

the "5, "6, #2, #3 and !2 subunits (Barnard et al., 1998).  Approximately 30% amino acid 

sequence homology exists between, and 70-80% exists within, the subunit classes 

(Costa, 1998).  
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1.2.4.2. Composition 

Receptors assembled from different subunit protein combinations are considered 

different receptor subtypes.  The diversity of subunits and a hetero-pentameric 

arrangement implies a large number of GABAA receptor subtypes exist, yet no more 

than 20 have been clearly identified in the mammalian CNS (McKernan and Whiting, 

1996).  This is because the subunits cannot form functional receptors when expressed 

alone and not all subunits can co-assemble to give functional receptors (Verdoorn et al., 

1990). Immunohistochemistry and in situ hybridisation studies measuring subunit 

colocalisation on membranes suggest that most subtypes contain ", # and ! subunits 

(Fritschy & Mohler, 1995; Sieghart et al., 1999; Wisden et al., 1992), particularly in the 

ratio 2:2:1, although stoichiometry may vary (i.e. 2:1:2, 3:2:0) (Whiting et al., 1995).  

Functional receptors appear to be arranged only in the order !#"#", substantially 

reducing the number of possible configurations (Baumann et al., 2002).  However, ! 

and % subunits may be able to replace !, and & may replace # subunits in some subunit 

combinations (Sieghart et al., 1999).  Neurons express from two to many subunit 

mRNAs (Sieghart et al., 1999) and protein subunit expression appears to vary over time 

(Zheng et al., 1994) and location (Fritschy et al., 1992) within a single neuron 

(Penschuck et al., 1999).  

 

1.2.4.3. Regional distribution of GABAA receptor subtypes 

Immunohistochemical studies indicate that GABAA receptor subtypes are 

differentially distributed in the CNS (Pirker et al., 2000).  The most common subtype 

(~43%) contains "1, #2/3 and !2 subunits and is distributed throughout the brain, with 
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highest expression in the cortex and thalamus (Fritschy et al., 1992; Gao & Fritschy, 

1994; McKernan and Whiting, 1996; Pirker et al., 2000).  Interestingly, deletion of "1 

and #2 subunits is not lethal and does not cause seizures despite a loss of 50% of total 

GABAA receptors (Sur et al., 2001; Vicini et al., 2001).  In contrast, deletion of #3 and 

!2 subunits produces non-viable offspring which die shortly after birth, indicating the 

importance of these subunits (DeLorey et al., 1998; Gunther et al., 1995; Homanics et 

al., 1997).  

Subtypes containing "2#2/3!2 and "3#n!2/3 subunit combinations are also common 

and are expressed mainly in regions where "1 is low, such as the striatum, internal 

granular layer of the olfactory bulb, reticular thalamic nucleus (Pirker et al., 2000; 

Waldvogel et al., 1999; Zimprich et al., 1991) and cholinergic and monoaminergic cells 

projecting to the cortex (Fritschy et al., 1992; Gao et al., 1993).  Furthermore, whilst "3 

subunits predominate in the inner layers of the cortex, "2 subunits predominate in the 

outer layers (Pirker et al., 2000; Zimprich et al., 1991).  All three # subunits are widely 

distributed in the brain with complementary expression in subcortical and cerebellar 

regions and a pattern of #2 predominance on interneurons (Miralles et al., 1999; Pirker 

et al., 2000).  In contrast to the widely distributed "1/2 # and !2 subunits, the "3-6, !1 and 

! subunits are largely confined to particular regions.  For example, the "6 is present only 

in the granule cell layer of the cerebellum and comprises only 4% of GABAA receptors 

(Fritschy and Mohler, 1995; Gao et al., 1993; McKernan and Whiting, 1996; Pirker et 

al., 2000), whilst "5 is largely confined to the hippocampus (Fritschy and Mohler, 

1995).  Finally, immunohistochemical staining patterns show an overlap of "1 and #2, 

"2 and #3, "4/6 and ! subunit distributions, suggesting that in general, these subunit 

combinations are preferred (Jechlinger et al., 1998; Pirker et al., 2000; Sur et al., 1999). 
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1.2.5. GABAA receptor pharmacology  

1.2.5.1. The orthosteric site 

The orthosteric site of GABAA receptors is the site where GABA binds to induce 

chloride channel opening and membrane currents.  The orthosteric site is selectively 

blocked by the antagonist bicuculline (Curtis et al., 1970) but no selective GABAA 

receptor agonist exists that does not act on GABAB or GABAC receptors (Johnston, 

2005).  For example muscimol acts as an agonist at the GABAA receptor orthosteric site 

but also acts as a potent agonist on the GABAC receptor (Johnston, 2005).  Partial 

agonists that have reduced maximal efficacy compared with GABA also exist such as 

THIP, which acts as an antagonist at GABAC receptors (Johnston, 2005).  

The GABAA receptor orthosteric site is thought to exist at the interface of the " 

and # subunits of GABAA receptors (Baur and Siegel, 2003).  The orthosteric binding 

site has been extensively studied using radiolabelled agonists such as [
3
H]GABA and 

[
3
H]muscimol and antagonists such as [

3
H]bicuculline and [

3
H]SR 95531.  Analysis of 

Scatchard plots from such studies has lead to a general consensus that there exists both 

high affinity (nM) and low affinity (nM-"M) binding sites.  Whether these different 

binding site populations represent different conformations of the same binding site, or 

distinct sites on the same or different macromolecular complexes is unknown (Baur and 

Siegel 2003; Cash and Subbarao, 1987; Edgar and Schwartz, 1992; Harris and Allan, 

1985; Maksay, 1996; Smith and Olsen 1994; Yeung et al., 2003).  However, 

electrophysiological studies on cerebellar neuronal patches (Maconochie et al., 1994) 

and recombinant receptors (Baur and Siegel, 2003) as well as studies of chloride uptake 

into brain vesicle preparations (Harris and Allan, 1985) all show that "M concentrations 
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of GABA are required for channel opening, suggesting that the low affinity GABA 

binding site represents the functional site.  

 

1.2.5.2. Abundance of allosteric sites 

GABAA receptors contain many allosteric modulatory sites that are presumably 

remote from the orthosteric site (Johnston, 2005).  When these sites are occupied, 

binding of GABA or its ability to open the ion channel changes. Agents that act to 

enhance the action of GABA on GABAA receptors are termed positive modulators and 

separate positive modulatory sites exist for a variety of compounds including 

therapeutic agents (benzodiazepines, barbiturates, anaesthetics), recreational agents 

(ethanol), cations (e.g Zn
2+

, Mg
2+

, Ca
2+

), endogenous neurosteroids (e.g. 

allopregnanalone, THDOC) and dietary compounds (flavonoids, terpenes, sage) 

(Johnston, 2005).  Conversely, those that reduce the action of GABA on GABAA 

receptors are termed negative modulators or inverse agonists (Johnston, 2005).  These 

compounds have anxiogenic and convulsant effects and so their clinical use is limited to 

cases of overdose with drugs of abuse such as GHB.  Agents can also block the 

allosteric modulatory sites without exerting any effect on the chloride channel opening 

and these are termed neutralising allosteric modulators of which flumazenil is an 

example at the benzodiazepine site (Johnston, 2005).  In addition, some compounds 

appear to bind directly within the ion-channel to block GABAA receptor function such 

as picrotoxin, TBPS and TBOB (Squires et al., 1983).  

 

1.2.5.3. Variations in pharmacological sensitivity according to receptor subtype  

Different GABAA receptor subtypes appear to vary in pharmacological sensitivity 

based on subunit composition.  Studies in Xenopus oocytes suggest an " and # subunit 
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are required for GABA to exert an effect (Pritchett et al., 1989).  Varying the # subunit 

of recombinant receptors does not affect GABA-induced responses, but varying the " 

subunit can produce a 70-fold difference in sensitivity to GABA ("5>"1>"6>"3) (Ebert 

et al., 1994) and inclusion of a ! subunit results in reduced sensitivity to GABA.  

The binding of allosteric modulators is also affected by subunit composition.  

Benzodiazepines are thought to act at the interface of " and !2 subunits to increase the 

frequency of ion-channel opening.  Benzodiazepines produce high affinity (nM) 

modulation of GABA at subtypes containing !2 subunits, with only low affinity (mM) 

enhancement if !1 or no ! subunits are present (Pritchett et al., 1989; Walters et al., 

2000), indicating that two separate or overlapping sites may exist.  Varying the type of 

# subunit expressed in recombinant receptors does not change benzodiazepine 

enhancement of GABA-currents (Pritchett et al., 1989), but varying the " subunit does, 

with benzodiazepines like diazepam and flunitrazepam having greatly reduced affinity 

for "4 and "6 containing subtypes (Luddens et al., 1991).  Similarly, ethanol 

enhancement of GABA chloride currents depends on ! subunit presence (Lobo and 

Harris, 2008) and the isoform of the # subunit influences the effects of the anaesthetic 

etomidate and the anticonvulsant loreclezole (Belelli et al., 1997). 

Studies of subunit knockout mice largely agree with the subunit pharmacology 

established for GABAergic compounds from electrophysiological studies on 

recombinant receptors.  Mice deficient in the !2L subunit show slightly greater sleep 

times in response to benzodiazepines and the "1 subunit selective allosteric modulator 

zolpidem but responses to non-benzodiazepines like ethanol and barbiturate 

anaesthetics are unchanged (Quinlan et al., 2000; Homanics et al., 1999).  #3 subunit 

null mice show reduced sensitivity to etomidate but not pentobarbital or ethanol 
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(Quinlan et al., 1998).   It has also been shown that mice deficient in the ! subunit show 

reduced sensitivity to neuroactive steroids (Mihalek et al., 1999).   

 

1.2.6. GABAA receptors and behaviour  

Compounds acting to enhance GABAergic transmission via GABAA receptors 

have widespread therapeutic use as anxiolytics, sedative-hypnotics, anticonvulsants and 

anaesthetics (Johnston, 2005).  Mice lacking GABAA receptor subunits provide insight 

into the role of GABAA receptors in brain function and behaviour.  Mice lacking the !2 

or #3 subunits die shortly after birth (Gunther et al., 1995), whereas mice deficient in all 

other subunits are viable (Blednov et al. 2003), although spontaneous seizures are 

observed in ! subunit deficient mice (Mihalek et al., 1999).   Studies with knockout 

mice have suggested that different " subunit isoforms may be involved in different 

behavioural effects of drugs, with "1 mediating sedation and "2/3 subunits mediating 

anxiolysis resulting from benzodiazepine administration (McKernan, 2000; Reynolds et 

al., 2001; Rudolph et al., 1999) and "5 subunits mediating spatial memory (Johnston, 

2005).  Compounds developed with preferential affinities for "1 (zolpidem) and "2/3 

subunits (L-838, 417) have confirmed this subtype selective sedation-anxiety effect 

(Crestani et al., 2000; McKernan, 2000).  The !2 subunit has also been implicated in 

anxiety as mice heterozygous for the !2 subunit show enhanced fear conditioning and 

harm avoidance behaviours without alterations in spatial memory or sedation following 

benzodiazepine treatment (Chandra et al., 2005; Crestani et al., 1999).  Given that "2 

receptors are common in extrasynaptic regions and !2 deficiency leads to reduced 

synaptic clusters, susceptibility to stress and anxiety may be related to reduced synaptic 

clustering (Chandra et al., 2005; Crestani et al., 1999). 
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1.2.7. GABAA receptors and human psychiatric illness:  Schizophrenia, Anxiety 

disorders and Depression 

1.2.7.1. Schizophrenia 

 In schizophrenia, one of the most consistently observed abnormalities post-

mortem is an increase in GABAA receptors.  A number of studies have shown increased 

total [
3
H]muscimol binding at GABAA receptors in various regions of the schizophrenic 

brain suggesting an upregulation of GABAA receptors occurs in schizophrenia (Benes et 

al., 1992; Benes et al., 1996a; Benes et al., 1996b; Benes et al., 1997;  Dean et al., 

1999; Deng and Huang, 2006; Hanada et al., 1987).  Such radioligand binding studies 

are further supported by studies showing increased GABAA receptor "1, "2, "3, "4 and 

"5 subunit mRNAs (Impagnatiello et al., 1998; Onhuma et al., 1999; Pesold et al., 

1998; Volk et al., 2002) and increased "1 and #2/3 subunit protein in the PFC of the 

schizophrenic brain (Ishikawa et al., 2004).  However, whilst the total population of 

GABAA receptors, labelled by [
3
H]muscimol, appear to be increased in schizophrenia, 

benzodiazepine-sensitive GABAA receptors, measured by benzodiazepine-site specific 

radioligands, appear to be either unchanged (Benes et al., 1997; Owen et al., 1981; 

Reynolds & Stroud, 1993) or reduced (Squires et al., 1993) in the schizophrenic brain.  

Furthermore, mRNA and protein expression for the !2 subunit that is required for high 

affinity benzodiazepine binding is also reduced (Huntsman et al., 1998), or unchanged  

(Akbarian et al., 1995) in the PFC of schizophrenic brains.  Thus, whilst GABAA 

receptors are upregulated in schizophrenia, only a subset of GABAA receptors appear to 

be affected. 
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 The changes in GABAA receptors that are observed in schizophrenia do not 

appear to be a result of antipsychotic drug treatment.  Studies in rats have indicated that 

long-term antipsychotic drug administration does not produce the increases in 

[
3
H]muscimol binding that are observed post-mortem in schizophrenia but rather, result 

in no change, or reductions in [
3
H]muscimol binding in the PFC (Skilbeck et al., 2007; 

Skilbeck et al., 2008b), temporal cortex, hippocampus (Farnbach-Pralong et al., 1998), 

striatum (Dean et al., 2001) and thalamus (McLeod et al., 2008).  Furthermore, 

combined treatment of haloperidol and diazepam over 12 days does not appear to 

produce the increases in [
3
H]muscimol binding that are observed post-mortem in 

schizophrenia (McLeod et al., 2008).  Similarly, antipsychotic drug treatment alters 

benzodiazepine-sensitive receptors in a fashion that is inconsistent with the changes 

observed post-mortem in schizophrenia with studies showing increased 

[
3
H]flunitrazepam binding in the PFC following prolonged administration of 

antipsychotic drugs (Skilbeck et al., 2007; Skilbeck et al., 2008b).  Thus, GABAA 

receptor changes observed in the schizophrenic brain do not appear to arise from 

antipsychotic drug treatment for the disorder. 

 It is unknown what the significance of altered GABAA receptors in schizophrenia 

holds.  For example, alterations in GABAA receptors may result from an adaptation to 

impaired presynaptic GABAergic function, or an adaptation to changes in other 

neurotransmitter systems.  However, in support of a role for GABAA receptors in the 

disease symptoms, certain studies have shown a correlation between symptom severity 

and reduced in vivo binding at the benzodiazepine site of GABAA receptors (Asai et al., 

2008; Ball et al., 1998; Busatto et al., 1997).  Furthermore, recent studies showing that 

GABAA receptor "3 and "5 subunit knockout mice show specific deficits in 

sensorimotor gating, measured using the pre-pulse inhibition (PPI) test, suggest that a 
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loss of specific GABAA receptor subtypes (i.e: "3 and "5 – subunit containing 

subtypes), or a compensatory increase in remaining GABAA receptor subunits in these 

knockout mice, may be responsible for sensorimotor gating impairments in 

schizophrenia (Hauser et al., 2005; Yee et al., 2005). 

 

1.2.7.2. Anxiety disorders 

 Several lines of evidence support a role for GABAA receptors in anxiety disorders 

including panic disorder, generalised anxiety disorder and post-traumatic stress 

disorder.  For example, PET (positron emission tomography) and SPET (single photon 

emission tomography) studies show that in vivo binding at the benzodiazepine site 

measured using benzodiazepine site ligands such as [
11

C]flumazenil and [
123

I]iomazenil, 

is reduced in patients suffering from panic disorder (Malizia et al., 1998; Nutt and 

Malizia 2001; Tokunaga et al., 1997) and generalised anxiety disorders (Tiihonen et al., 

1997).  Furthermore, reduced [
3
H]flunitrazepam binding is observed in the cortex and 

hippocampus of rats displaying anxiety-type behaviours such as a bias towards 

threatening cues in the environment that are similar to those observed in human anxiety 

disorders (Crestani et al., 1999).  Thus, alterations in GABAA receptors are thought to 

be of primary importance in the pathophysiology of anxiety disorders (Mohler, 2006). 

 

1.2.7.3. Depression 

 The overlap of symptoms and clinical treatments for depression and anxiety 

disorders has resulted in GABAA receptors being implicated in the pathophysiology of 

major depressive disorder.  The most compelling evidence comes from animal models 

of depression which show that depressive type behaviours such as immobility in the 

forced swim test and escape failure in the learned helplessness model are reduced by the 
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administration of GABAA receptor agonists muscimol and THIP (Borsini et al., 1986; 

Borsini et al., 1988; Poncelet et al., 1987; Sherman and Petty, 1980), but enhanced by 

the GABAA receptor antagonist bicuculline (Sherman and Petty, 1980) and the 

benzodiazepine inverse agonist FG 7142 (Corda et al., 1983; Drugan et al., 1985; 

Guidotti et al., 1985).  Furthermore, in rats that develop learned helplessness, the total 

number of GABAA receptor binding sites is largely down-regulated in the frontal 

cortex, hippocampus and striatum (Drugan et al., 1989).  Thus, animal studies support a 

deficit in GABAergic function in depression.  

 Despite evidence from animal studies suggesting GABAA receptors may be 

relevant to depression, neuropathological studies of GABAA receptors in people with 

depression are limited.  For example, radioligand binding studies of GABAA receptors 

in the depressed brain have only examined benzodiazepine-sensitive GABAA receptors 

and observed no change in the maximum number of benzodiazepine sites in most brain 

regions (Cheetham et al., 1988; Crow et al., 1984; Manchon et al., 1987; Stocks et al., 

1990), except the frontal cortex, where either no change  (Crow et al., 1984), or 

increases (Cheetham et al., 1988; Pandey et al., 1997) are observed.  However, one 

more recent study has shown that GABAA receptor "1, "3, "4 and $ subunit mRNA 

expression is reduced in post-mortem tissue from depressed suicides relative to controls 

in the frontopolar cortex (Merali et al., 2004).  Thus, a deficit in GABAergic 

transmission via certain GABAA receptor subtypes may be of importance in depression. 

 Changes in GABAA receptors that are observed in depression do not appear to be 

a result of chronic antidepressant drug treatment.  For example, treatment for a 

minimum of 21 days with tricyclic, monoamine-oxidase inhibitor (MAOI) and selective 

serotonin reuptake-inhibitor (SSRI) antidepressant drug classes in rats has been shown 

to reduce the number of benzodiazepine binding sites in most brain regions (McKenna 
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et al., 1994; Suranyi-Cadotte et al., 1984; Tunnicliff et al., 1999), although not all 

studies have shown changes in benzodiazepine binding (Kimber et al., 1987; 

Przegalinski et al., 1987; Todd et al., 1995).  Nonetheless, antidepressant-induced 

reductions in benzodiazepine binding are supported by observations of reduced 

flurazepam efficacy in the rat brain following chronic treatment with antidepressants 

but only after two weeks of drug treatment suggesting a potential role for altered 

benzodiazepine binding in the delayed therapeutic efficacy of antidepressants 

(Bouthillier and deMontigny, 1987).  Furthermore, infusion of imipramine over 21 days 

has been shown to increase #2, "2 and !2 but decrease "1 subunit mRNA expression in 

the rat brainstem (Tanay et al., 1996; Tanay et al., 2001), suggesting chronic 

antidepressant administration has subtype dependent effects on GABAA receptors. 

 

1.2.8. Summary 

 From the above review of the literature it is clear that GABAA receptor 

ionophores are a complex receptor class.  There are a number of receptor subtypes 

distinguished by the molecular composition of subunits contributing to the pentameric 

structure.  Despite the potential for a number of subtypes given the subunit molecular 

diversity, only about 20 appear to exist in the mammalian brain.  These receptor 

subtypes vary in regional distributions and pharmacological sensitivities, with evidence 

suggesting a greater relative importance of certain subtypes for certain behaviours and 

in psychiatric disorders such as anxiety disorders, schizophrenia and depression.  
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1.3  GABAA receptor regulation 

1.3.1. GABAA receptor trafficking and membrane expression 

The mechanisms involved in GABAA receptor trafficking that underlie the actual 

expression of a functional receptor on the plasma membrane are becoming increasingly 

understood (see figure 1.3).  When examining protein expression, possible subcellular 

locations of the protein must be understood, as only receptors expressed on the 

membrane surface are likely to affect membrane potential (Brunig et al., 2001; Kittler et 

al., 2001; Nusser et al., 1997; Wan et al., 1997).  Altered expression of protein subunits 

on the plasma membrane may arise from quite rapid (3-10 minutes) trafficking 

processes (up/down regulation) (Thomas et al., 2005; Wan et al., 1997; Washbourne et 

al., 2004) resulting in an altered subcellular distribution of receptors, or over longer 

periods (hours), may arise from alterations in protein synthesis (Connolly et al., 1999a).  

 
Figure 1.3:  GABAA receptor trafficking.  Adapted from Lusher and Keller, 2001. 
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1.3.2. Receptor assembly 

GABAA receptors are synthesised in the endoplasmic reticulum of the neuronal 

cell body.  Following translation of GABAA receptor subunit mRNA to protein in the 

endoplasmic reticulum, GABAA receptors are assembled into pentameric ion channels. 

Immunohistochemistry experiments measuring the subcellular distribution of epitope 

tagged subunit proteins in cell expression systems have indicated that subunits are 

assembled into pentamers in the endoplasmic reticulum (ER) (Connolly et al., 1996a). 

Assembled subunits are then transported via the Golgi apparatus to the plasma 

membrane (Connolly et al., 1996a).  Intracellular transport proteins including 

GABARAP, catalytically inactive phospholipase C (p130), Plic-1 and  

N-ethylmaleimide-sensitive factor (NSF) are then responsible for the movement of the 

assembled pentamer to the plasma membrane (Kittler and Moss, 2001). 

Only certain subunit combinations may form functional receptors that reach the 

plasma membrane.  When expressed alone, only !2S, #1, #3 and the chick #4 subunits can 

reach the plasma membrane (Barnes, 2000; Kittler et al., 2002) and in mammals only #1 

and #3 subunits may produce homomeric channels at the surface but are sensitive only 

to pentobarbital and picrotoxin (Connolly et al., 1996b; Davies et al., 1997; Krishek et 

al., 1996; Wooltorton et al., 1997).  In contrast, when " and #2, subunits are expressed 

alone in neuronal cultures they are retained in the ER and rapidly degraded, but when 

expressed together and in the presence of !2 subunits they access the membrane as 

functional GABA-gated channels that are blocked by bicuculline (Connolly et al., 

1996b; Connolly et al., 1999b; Gorrie et al., 1997, Kittler et al., 2000; Pritchett et al., 

1989).  Thus, access of translated protein to the cell surface requires formation of a 



PART A:  REVIEW OF LITERATURE 

CHAPTER 1 

 21 

pentamer in the ER of which only a few subunit combinations, including "#, "#!/!, 

may actually be expressed on the membrane as functioning receptors. 

 

1.3.3. Distribution of GABAA receptor subtypes on the membrane  

GABAA receptors are usually found on post-synaptic densities, dendrites and cell 

bodies but studies suggest variations in the membrane locations between different 

GABAA receptor subunit combinations (Connolly et al., 1996a; Fritschy et al., 1998; 

Nusser et al., 1996).  For example, studies of hippocampal pyramidal cells using 

immunogold electron microscopy and immunofluorescence suggest that "5 subunits are 

found almost exclusively on soma and dendrites, whilst "2 subunits are preferably 

located on the axon-initial segment of mainly somato-dendritic synapses (Connolly et 

al., 1996a; Fritschy et al., 1998; Nusser et al., 1996).   Additionally, studies of 

colocalisation of GABAA receptors subunits with the putative GABAergic synaptic 

marker gephyrin indicate certain subunits may be preferentially located in synaptic 

positions (see below).  In contrast, extrasynaptic receptors may be formed by any 

subunits except !2 (Essrich et al., 1998) and certain subunits such as the "4 and $ 

subunits only appear to form extrasynaptic receptors.  Receptors at extrasynaptic sites 

provide tonic inhibition as demonstrated by the slow decay kinetics and high affinity for 

GABA of !-subunit containing GABAA receptors, allowing for sensitivity to GABA 

that spills over from the synapse (Banks et al., 2000).  This tonic inhibition appears to 

serve an important role in brain function given that !-subunit knockout mice display 

spontaneous seizures indicative of a drastic loss of inhibitory tone (Mihalek et al., 

1999). 

 



PART A:  REVIEW OF LITERATURE 

CHAPTER 1 

 22 

1.3.4. GABAA receptor synapses and gephyrin 

 Fast-synaptic or phasic transmission between neurons requires close alignment of 

the presynaptic terminal with a high density of post-synaptic receptors. A number of 

proteins have been identified that appear to serve a role in the movement and membrane 

stability of GABAA receptors.  Several lines of evidence suggest that gephyrin, a 93kDa 

protein that is necessary for glycine receptor clustering, contributes to GABAA receptor 

synaptic clustering. In the brain gephyrin IR is enriched on the cytoplasmic side of 

GABAA receptor synapses and largely overlaps with the 3 most predominant " subunit 

variants (1-3) as well as the !2 subunit (Sassoe-Pognetto et al., 1995).  Gephyrin is 

observed at GABAergic synapses throughout the CNS (Bohlhalter et al., 1994; Cabot et 

al., 1995; Crestani et al., 1999; Giustetto et al., 1998; Sassoe-Pognetto et al., 1995; 

Todd et al., 1996; Triller et al., 1985) as well as in cultured hippocampal (Craig et al., 

1996; Essrich et al., 1998) and cortical neurons (Essrich et al., 1998).  Thus, gephyrin is 

used as a marker of GABAA receptor synaptic clusters (Yu et al., 2006).  

 The function of gephyrin at this post-synaptic location is still under investigation.  

The contribution of gephyrin to GABAA receptor clustering has been confirmed in both 

gephyrin knockout mice, which show a loss of post-synaptic "2 and !2 subunit clusters 

(Kneussel et al., 1999b), and in experiments showing reduced "2 and !2 subunit clusters 

when gephyrin expression is inhibited (Essrich et al., 1998).  However, gephyrin does 

not appear to be involved in either cluster assembly, trafficking or membrane insertion 

as gephyrin-deficient mice retain small GABAA receptor clusters (that are likely 

extrasynaptic or intracellular) (Fischer et al., 2000; Kneussel et al., 2001; Levi et al., 

2004), and receptor function is only marginally reduced (Kneussel et al., 1999b; Betz, 

1998).  Instead, gephyrin is thought to facilitate the accumulation of GABAA receptors 
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at synaptic sites (Levi et al., 2004) as studies have shown that lateral movements of 

synaptic receptors are reduced compared with extrasynaptic receptors (Thomas et al., 

2005) and gephyrin reduces the diffusion rate of GABAA receptors (Jacob et al., 2005). 

Thus, when gephyrin auto-oligimerises it is thought to provide a scaffold that facilitates 

GABAA receptor clustering beneath the synapse (Jacob et al., 2005; Levi et al., 2004; 

Studler et al., 2005; Yu et al., 2007).  

 Interestingly, different GABAA receptors appear to vary in terms of the extent to 

which they colocalise with gephyrin.  For example, in contrast to "1-3, # and !2 subunits, 

the extrasynaptically located "4, "5 and $ subunits fail to colocalise with gephyrin 

(Kralic et al., 2006, Crestani et al., 2002, Serwanski et al., 2006; Sassoe-Pognetto et al., 

1995).  Furthermore, recent studies have observed that gephyrin binds directly to a 

hydrophobic motif of the "2 subunit intracellular loop to regulate the synaptic 

localisation of "2 containing GABAA receptors in cultured cortical neurons (Tretter et 

al., 2008).  Despite this, as the "2-3 subunits show diffuse IR in addition to the clustered 

punctate staining that colocalises with gephyrin, it appears that " subunits may occupy 

synaptic, extrasynaptic (Essrich et al., 1998; Fritschy et al., 1998; Nusser et al., 1995; 

Somogyi et al., 1996) or intracellular locations.  Staining for the !2 subunit overlaps 

more closely with that of gephyrin, indicating a preferential synaptic location for this 

subunit (Kneussel and Betz, 2000). Whilst no direct binding motif has been observed 

for gephyrin on the !2 subunit (Alldred et al., 2005; Meyer et al., 1995; Fritschy et al., 

2008), there appears to be an interdependence of these two proteins as  

!2 subunit-deficient mice lose both gephyrin and !2 receptor clusters (Alldred et al., 

2005; Essrich et al., 1998; Yu et al., 2007).   



PART A:  REVIEW OF LITERATURE 

CHAPTER 1 

 24 

Whilst the role of gephyrin in GABAA receptor synaptic clustering is still under 

investigation, studies indicate that reductions in the colocalisation of gephyrin with 

GABAA receptor subunit proteins affects GABAergic function.  For example, reduced 

GABAA receptor colocalisation with gephyrin results in alterations in single channel 

conductance times (Crestani et al., 1999) and in the mean amplitude, but not the 

frequency of whole cell mIPSCs (Levi et al., 2004; Kneussel et al., 1999b).  Such 

findings indicate a change in GABAergic synaptic strength and a redistribution of 

receptors to extrasynaptic sites on the plasma membrane arises following loss of 

receptors in the synapse (Crestani et al., 1999; Levi et al., 2004).   

 Functional alterations in GABAergic synaptic function appear to translate into 

behavioural differences.  For example, a loss of "1 and "2 receptor clusters in 

hippocampus without alteration in gephyrin clusters is observed in mice lacking 

dystrophin in which animals show severe cognitive deficits (Kneussel et al., 1999b). 

Furthermore, a loss of GABAA receptor synaptic clusters in the hippocampus and cortex 

of heterozygous !2 deficient mice is associated with increased bias for learning negative 

associations (trace fear conditioning; ambiguous cue discrimination), enhanced 

reactivity to aversive stimuli and increased anxiety on several behavioural measures 

(Crestani et al., 1999).  Thus, deficits in GABAA receptor synaptic clustering appear to 

translate into a more anxious, behaviourally reactive phenotype reminiscent of anxiety 

disorders and depression in humans (Crestani et al., 1999).   

 

1.3.5. Endocytosis, degradation and recycling 

GABAA receptors undergo constitutive endocytosis under basal conditions to 

facilitate receptor turnover.  GABAA receptors on the plasma membrane cluster in 

Clathrin-coated pits which endocytose to form clathrin-coated vesicles, the main vehicle 
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for receptor internalisation in the CNS (Barnes, 2000).  Endocytosis of GABAA 

receptors into clathrin-coated pits is dependent on the GTPase dynamin, its binding 

partner amphiphysin and the adaptin AP2 (Kittler et al., 2000).  Once in clathrin-coated 

vesicles receptors are returned to the endosomal system where they are degraded via 

proteolysis in late endosomes or lysosomes or recycled to the plasma membrane.   

Interestingly, large pools of GABAA receptors appear to reside in clathrin-coated 

vesicles from where they may be rapidly expressed on the surface (Tehrani and Barnes, 

1997; Tehrani et al., 1997).  Receptors in clathrin-coated vesicles are labelled by 

orthosteric site agonists in ex vivo studies, but have impaired allosteric coupling with 

benzodiazepines and picrotoxin (Tehrani et al., 1997).  Whilst the major subunit 

identities of GABAA receptors residing in coated-coated vesicles have not been 

characterised, receptors containing only " and # subunits appear to be targeted to 

peripheral endosomes whilst "#! subtypes are targeted to late endosomes (Connolly et 

al., 1999b) suggesting that "# subtypes are more likely involved in rapid up and down 

regulation of receptors. 

Orthosteric and allosteric site agonists induce ligand-dependent endocytosis or 

receptor downregulation.  For example, receptor endocytosis is observed when GABA 

or benzodiazepines are incubated with cortical neurons for 2 hours at 37°C, a process 

that is blocked by benzodiazepine antagonists (Johnston et al., 1998).  Chronic 

administration of benzodiazepines (Tehrani and Barnes, 1997) and ethanol (Poisbeau et 

al., 1997) in rats also results in enhanced GABAA receptor subunit immunoreactivity in 

clathrin-coated vesicles.  Ligand-dependent endocytosis likely provides a mechanism 

via which surface receptors are controlled by tonic levels of GABA and may underlie 

tolerance to GABAergic compounds (Barnes 2000; Kittler et al., 2002). 
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1.3.6. Phosphorylation and GABAA receptor regulation 

GABAA receptor phosphorylation is a complex topic.  A number of residues 

within the # and !2 subunits are capable of binding known kinases.  The #1-3 subunits 

may be phosphorylated by protein kinase A, C, G (PKA; PKC, PKG) and 

Ca
2+

/calmodulin-dependent protein kinase II (CaMKII) (McDonald and Moss, 1997; 

Moss et al., 1992).  The !2 subunit is phosphorylated by both PKC and CaMKII 

(Brandon et al., 2002; McDonald and Moss, 1997; Moss et al., 1992).  Kinase induced 

alterations of the GABAA receptor phosphorylation state via the # or !2 subunits may 

affect channel opening as suggested by effects of PKA, PKC and tyrosine kinase on 

GABA-induced chloride currents (Brandon et al., 2000; Brandon and Moss, 2000; 

Brandon et al., 2002; McDonald et al., 1998; Moss et al., 1995; Moss and Smart, 1996).  

Phosphorylation also appears to play a role in receptor trafficking with findings that the 

AP2 protein found in clathrin-coated pits colocalises with unphosphorylated # and !2 

subunits in cultured hippocampal neurons, and manipulation of the function of PKC in 

vitro alters membrane expression of receptors (Connolly et al., 1999a; Filippova et al., 

2000). Thus, it is likely that phosphorylation of GABAA receptors is important for both 

receptor trafficking and chloride ion conductance both of which are highly important to 

receptor function. 

Phosphorylation also appears to play a role in allosteric modulation of the 

GABAA receptor channel but whether these effects relate to direct effects on receptor 

conformation or altered trafficking are unknown.  For example, PKC has been shown to 

potentiate benzodiazepine and TBPS binding but inhibit muscimol binding in a region 

specific manner in the brain (Oh et al., 1999) and activation of PKC reduces 

benzodiazepine potency at GABAA receptors.  Constitutive PKC function appears 
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necessary for the neurosteroid allopregnanalone to positively modulate GABAA 

receptors (Brandon et al., 2002), and allopregnanolone binding at GABAA receptors 

prevents PKC induced inhibition of GABAA receptor currents (Brussard et al., 2000).  

CAMKII has also been shown to affect benzodiazepine activity by inducing enhanced 

benzodiazepine binding to GABAA receptors via interactions with the "1 subunit 

(Churn et al., 2002).  Phosphorylation has also been implicated in behavioural effects of 

allosteric modulators with PKC% (Hodge et al., 1999) but not PKC! (Harris et al., 1995) 

knockout mice showing an increased sensitivity to benzodiazepines (Gao and 

Greenfield, 2005).  

 

1.3.7. Summary 

In summary, the subcellular location of GABAA receptors on the plasma 

membrane is regulated by complex trafficking mechanisms. A number of proteins 

including protein kinases and gephyrin have been identified for their involvement in the 

movement and stabilisation of pentameric subunit combinations from the endoplasmic 

reticulum, to the membrane, and consequently from the membrane to Clathrin-coated 

vesicles where they may be recycled or destroyed.  Only certain subunit combinations 

may be expressed on the membrane and there appears to be preferential membrane 

locations for a number of subunits.  The location of receptors as synaptic or 

extrasynaptic provides an indication as to the type of inhibitory function within a 

neuron and variations in the expression at such locations may induce 

electrophysiological and behavioural changes.   
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1.4  Developmental changes in GABAA receptor expression 

1.4.1. GABAA receptor onset and maturation  

The developmental onset and maturational changes in brain GABAA receptor 

expression is of interest given the role of the GABAergic system in normal brain 

development (see sections 1.1.1. and 1.1.2).  Studies measuring GABAA receptor 

binding sites (Schlumpf et al., 1983; Shaw et al., 1991), subunit mRNA expression 

(Laurie et al., 1992; MacLennan et al., 1991; Poulter et al., 1992; Poulter et al., 1993; 

Zhang et al., 1991) and electrophysiological responses (Kellogg and Pleger, 1989) all 

show that GABAA receptors are abundant and functional in early brain development 

appearing by 15-18 weeks gestation in human cortex (Aaltonen et al., 1983; 

Brooksbank et al., 1982), foetal day 60 in the developing macaque cortex (Hendrickson 

et al., 1994; Shaw et al., 1991) and around gestational day 14 in rat brainstem (Poulter 

et al., 1992; Schlumpf et al., 1983).  Radioligand binding studies suggest that the total 

population of GABAA receptors (both high and low affinity) measured by [
3
H]GABA 

or [
3
H]muscimol in the rat (Coyle and Enna, 1976; Frostholm and Rotter, 1987; Rothe 

and Bigl, 1989; Skerritt and Johnston, 1982; Xia and Haddad, 1992) and primate 

(Lidow et al., 1991) brain increases dramatically after birth.  The subset of GABAA 

receptors containing the !2 subunit that are labelled by benzodiazepines are highly 

expressed early in cortical development but they decrease during development to reach 

adult levels by PND 14 in rats (McKernan et al., 1991) and by birth in primates (Shaw 

et al., 1991), consistent with the loss of !2 mRNA from PND 14 in rats (Gambarana et 

al., 1991). 
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1.4.2. Developmental ‘switch’ in GABAA receptor "  subunits 

Interestingly, all species examined show developmental changes in GABAA 

receptor subunit protein and mRNA expression.  The most striking change is the 

decrease in "2 subunit expression, the predominant " subunit in early development, and 

maturational increase in "1 subunit expression, the predominant adult form of " subunit 

(Araki et al., 1992; Bosman et al., 2002; Fritschy et al., 1994; Fuchs and Sieghart, 

1989; Gambarana et al., 1990; Gambarana et al., 1991; Heinen et al., 2004; 

Hendrickson et al., 1994; Hornung and Fritschy, 1996; Laurie et al., 1992;  

Lopez-Tellez et al., 2004; MacLennan et al., 1991; McKernan et al., 1991; Okada et al., 

2000; Paysan et al., 1994; Poulter et al., 1992; Poulter et al., 1993; Sato and Neale, 

1989; Vitorica et al., 1990; Zhang et al., 1992).  These maturational changes in " 

subunit expression are also supported by binding studies examining type I ("1/5  

subunit-containing) and type II ("2/3 subunit-containing) benzodiazepine sites which 

show developmental decreases in type II sites and increases in [
3
H]zolpidem labelling 

of type-I sites (Hendrickson et al., 1994; March and Shaw, 1993; Sato and Neale, 1989; 

Vitorica et al., 1990).  This developmental change in " subunit expression is termed the 

"1/"2 subunit ‘switch’ (McKernan et al., 1991).   

The " subunit ‘switch’ appears to be largely conserved across species and sexes 

(Davis et al., 2000) despite variations in the timecourse (Hornung and Fritschy, 1996).  

Immunoreactivity for the "1 subunit is mostly absent from the foetal brain of humans 

(Brooks-Kayal and Pritchett, 1993; Kananumi et al., 2006; Reichelt et al., 1991),  

non-human primates (Hendrickson et al., 1994; Hornung and Fritschy, 1996) and 

rodents (Fritschy et al., 1994; Lopez-Tellez et al., 2004; McKernan et al., 1991) whilst 

"2 immunoreactivity is prominent and widespread prenatally (Fritschy et al., 1994; 
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Hornung and Fritschy, 1996; Lopez-Tellez et al., 2004; McKernan et al., 1991).  "2/3 

Subunit mRNAs are first detected in rat brain at E15 with "5 appearing at E17.  "1 

Subunit mRNA appears in the rat cortex at E19 and PND 5 in the hippocampus  

(Lopez-Tellez et al., 2004; Poulter et al., 1992).  

 

1.4.3. Regional variations in the developmental ‘switch’ 

Table 1.1 shows regional variations in the "1/2 developmental ‘switch’. 

Immunoreactivity for the "1 subunit is first seen in regions of the brainstem, 

cerebellum, basal forebrain, primary sensory cortices (visual and somatosensory) and 

pallidum during the last weeks of gestation in primates (where prenatal expression has 

been examined), whilst regions such as the thalamus, and remaining neocortex appear to 

have delayed onset of "1 immunoreactivity (Brooks-Kayal and Pritchett, 1993; 

Hendrickson et al., 1994; Hornung and Fritschy, 1996; Kananumi et al., 2006;  

Lopez-Tellez et al., 2004; Paysan et al., 1994; Reichelt et al., 1991) or just after birth in 

rodents (Fritschy et al., 1994; Lopez-Tellez et al., 2004; McKernan et al., 1991; Paysan 

et al., 1994).  These findings are consistent with the appearance of [
3
H]zolpidem 

binding in the macaque (Hendrickson et al., 1994) and [
3
H]flunitrazepam displacement 

by "1 selective ligand CL218872 in the human brain (March and Shaw, 1993), as well 

as studies of mRNA expression (Gambarana et al., 1990; Laurie et al., 1992).  

Disappearance of "2 immunoreactivity occurs initially in similar regions of the basal 

forebrain, substantia nigra, primary sensory cortices (visual and somatosensory) and 

pallidum usually just after the appearance of "1 immunoreactivity (Fritschy et al., 1994; 

Hornung and Fritschy, 1996; Lopez-Tellez et al., 2004; McKernan et al., 1991).  The 

adult " subunit regional immunoreactivity pattern is generally observed by the onset of 
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behavioural and sexual maturity for rats (21 days) (Fritschy et al., 1994) and marmosets 

(3 years) (Hornung and Fritschy, 1996).   

Variations in the prominence of the ‘switch’ are observed amongst brain regions.  

The ‘switch’ appears to be most evident in the thalamus and pallidum where "2 subunit 

immunoreactivity is intense in foetal brain and lacking in the adult (Fritschy et al., 

1994; Hornung and Fritschy, 1996).  It is noted, however that some amygdalar, 

hippocampal and hypothalamic regions do not appear to show the " subunit ‘switch’ 

during brain maturation (Davis et al., 2000; Kanaumi et al., 2006) and certain nuclei of 

the brainstem show constant "2 expression but a ‘switch’ from "3 to "1 subunit 

expression during development (Liu and Wong-Riley, 2004; Liu and Wong-Riley, 

2006) (see table 1.1).  Furthermore, regions such as the granule cell layer of the 

hippocampus, striatum and outer cortical layers have little to no "1 immunoreactivity at 

any age and maintain intense "2 immunoreactivity (Fritschy et al., 1994; Hornung and 

Fritschy, 1996) into adulthood, whilst regions such as the reticular nucleus of the 

thalamus and superior olivary complex never express either "1 or "2 subunits (Fritschy 

et al., 1994).   

The pattern of the developmental ‘switch’ in GABAA receptor " subunits shows 

an area and lamina specific pattern however, it is unknown what signals trigger its 

onset.  The onset of "1 subunit immunoreactivity is marked by sharp regional 

boundaries seen particularly in the primary sensory cortices.  The primary visual and 

somatosensory cortex are the first cortical regions that show "1 immunoreactivity 

(Fritschy et al., 1994; Hendrickson et al., 1994; Hornung and Fritschy, 1996; Paysan et 

al., 1994) and displacement of [
3
H]flunitrazepam binding by "1-selective ligands 

(Hendrickson et al., 1994) both of which are evident first in the major thalamic input 
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layers (layer III-IV and VI).  Other cortical regions and layers only become apparent 

postnatally with staining appearing first in lamina V (Fritschy et al., 1994; Hornung and 

Fritschy, 1996).  In contrast, "2 is lost from layer III of primary sensory cortices first, 

with loss from other layers occurring later in development, with the exception of outer 

cortical layers which retain intense "2 staining in the adult brain.   
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Table 1.1:  Maturational changes in "1 and "2 subunit protein expression by region  

Region "1  "2  Species  Reference 

Whole ' ( Rat McKernan et al., 1991 

Primary 
sensory  

(BA17, S1) 

' ( 

Marmoset  
Rat  

 
Macaque 

Hornung and Fritschy, 1996 
Fritschy et al., 1994 

*Paysan et al., 1994 
Hendrickson et al., 1994 

Temporal  ^' 0 Human Kanaumi et al., 2006 

Motor, 
association 
areas  

' ( 

Marmoset  
Rat  
 
Macaque 

Hornung and Fritschy, 1996 
Fritschy et al., 1994 
Paysan et al., 1994 
Hendrickson et al., 1994 

Cortex 

Infragranular 
layers 

^' 0 

Marmoset  
Rat  
 
Macaque 

Hornung and Fritschy, 1996 
Fritschy et al., 1994 
Paysan et al., 1994 
Hendrickson et al., 1994 

Whole '  0 

Human 
Marmoset 
Rat 

Kanaumi et al.,2006 
Hornung and Fritschy, 1996 
Fritschy et al., 1994 
Lopez-Tellez et al., 2004 

Dentate Gyrus ^'  (  
Human 
Rat 

Kanaumi et al., 2006 
Lopez-Tellez et al., 2004 

CA1 ' ' 
Human 
Rat 

Kanaumi et al., 2006 
Davis et al., 2000 
Lopez-Tellez et al., 2004 

Hippocampus 

CA3 
0 (Human) 
' (Rat)  

0 

Human 
Rat 

Kanaumi et al., 2006 
Davis et al., 2000 

Lopez-Tellez et al., 2004 

Thalamus Whole ' ( 
Marmoset 
Rat 

Hornung and Fritschy, 1996 
Fritschy et al., 1994 

  
Ventrolateral 
nucleus 

' ( Rat Davis et al., 2000 

 
Laterodorsal 
nucleus 

' ( Rat Okada et al., 2000  

Hypothalamus POA 0 ' 

  VMN ( ' 
Rat Davis et al., 2000 

Amygdala Whole ( ( Rat Davis et al., 2000 

Globus pallidus ' ( 

Substantia 
nigra 

' ( 

Medial septum ' ( 

Basal Forebrain 

Pallidum ' ( 

Marmoset 
Rat 

Hornung and Fritschy, 1996 
Fritschy et al., 1994 

Cerebellum Whole ' ( Rat 
McKernan et al., 1991 
Fritschy et al., 1994 

Pre-botzinger 
complex 

' Rat Liu and Wong-Riley, 2004 

NTS ' 
Brainstem 

Cuneate ' 

0  
Rat Liu and Wong-Riley, 2006 

*Denotes references that only apply to "1 subunit changes, ^denotes transient change 
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1.4.4. Cellular expression of the subunit ‘switch’ 

At the cellular level, the subunit ‘switch’ appears to represent a gradual 

replacement of "2 subunits with "1, with all neurons in a given region being affected by 

the subunit ‘switch’ (Fritschy et al., 1994; Hornung and Fritschy, 1996).  Disappearance 

of "2 occurs first from dendrites then cell bodies and neuropil whilst "1 

immunoreactivity progresses from cell bodies and dendrites to the neuropil (Fritschy et 

al., 1994; Hendrickson et al., 1994; Hornung and Fritschy, 1996).  Death of "2  

subunit-containing neurons is unlikely as it has been shown that the increase in "1 

precedes the loss of "2 by several days resulting in coexpression of both subunits during 

a limited time window (Fritschy et al., 1994; Hornung and Fritschy, 1996).  

 Throughout development, both "1 and "2 subunits largely overlap with #2/3 

subunits, which in turn are widespread in neonatal and adult brain of rodents and 

primates (Fritschy et al., 1994; Hendrickson et al., 1994; Hornung and Fritschy, 1996; 

Meinecke and Rakic, 1992).  Protein expression of the #2/3 subunit is fairly constant in 

comparison to the " subunits, however, maturational increases are observed in the 

striatum, pallidum, substantia nigra, cerebellum and reticular formation and decreases 

with age in the superior and inferior olivary complexes and the reticular nucleus of the 

thalamus (Fritschy et al., 1994) and primary visual cortex (Hendrickson et al., 1994).  

Interestingly, it has been suggested that another # subunit may be prominent in very 

early development where immunoreactive colocalisation is not as evident as the adult 

pattern of "1-#2/3 and "2-#2/3 colocalisation (Hendrickson et al., 1994; Hornung and 

Fritschy, 1996).   However, studies of # subunit mRNA expression suggest limited #1 

expression throughout development while reports on the #2 and #3 subunit genes are 

conflicting.  Some reports suggest both #2 and #3 mRNAs are highly expressed at birth 
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(Gambarana et al., 1991; Poulter et al., 1993), whilst other studies observed that #3 

predominates in earlier development and remains constant, whilst #2 subunit mRNA 

shows a delayed increase in expression (Laurie et al., 1992; Zhang et al., 1991).  

 

1.4.5. Significance of the subunit ‘switch’ for brain function 

The ‘switch’ in " subunit expression alters GABAA receptor function.  In terms of 

pharmacological function, there is a change in the sensitivity to GABAergic compounds 

during brain development in rodents and primates (Brooks-Kayal and Pritchett, 1993; 

Candy and Martin, 1979; Hendrickson et al., 1994; Kapur and MacDonald, 1999; Lippa 

et al., 1981; March and Shaw, 1993; Reichelt et al., 1991; Shaw et al., 1991) with "2 

subunit containing receptors, predominant in early life, showing greater sensitivity to 

GABA and the neurosteroid allopregnanalone (Brussard et al., 1997).  In studies of 

recombinant receptors, "1 subunit containing receptors have reduced sensitivity to 

diazepam and clonazepam compared with the "2 and "3 containing subtypes (Puia et 

al., 1991).  Furthermore, in "1 subunit knockout mice, the absence of the subunit 

‘switch’ results in altered behavioural sensitivities in response to a number of 

compounds such as zolpidem, ethanol, THIP and flurazepam (Blednov et al., 2003).  

Such changes in pharmacological sensitivity may be associated with the marked 

reductions in the number of adult GABAA receptor sites that are measured by 

[
3
H]muscimol, [

3
H]flumazenil, [

35
S]TBPS (Sur et al., 2001), and the reduced muscimol-

stimulated chloride uptake (Blednov et al., 2003) observed in these mice.  Thus, the " 

subunit ‘switch’ appears to alter adulthood receptor expression and pharmacology. 

The ‘switch’ from "2 to "1 also leads to alterations in channel gating properties 

and such changes are associated with certain behaviours.  "2 and "3 subunit-containing 

receptors show slower decay times and greater current amplitudes of mIPSPs than "1 
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receptors (Bosman et al., 2002; Heinen et al., 2004; Hollrigel and Soltesz, 1997; 

Hutcheon et al., 2000; Juttner et al., 2001; Okada et al., 2000; Ortinski et al., 2004; 

Taketo and Yoshioka, 2000; Vicini et al., 2001).  Predictably then, the onset of "1 

expression coincides with the onset of faster decay time constants for mIPSPs (Bosman 

et al., 2002; Juttner et al., 2001; Okada et al., 2000), which are not observed at any 

developmental stage in "1 subunit knockout mice (Barberis et al., 2005; Bosman et al., 

2005; Goldstein et al., 2002; Heinen et al., 2003; Lagier et al., 2007; Vicini et al., 

2001).  Longer decay times support enhanced synaptic efficacy and lead to sedation 

(Franks and Lieb, 1994; Tanelian et al., 1993), whereas shorter decay times can produce 

anxiety and seizures (Worms and Lloyd, 1981).  Interestingly, it has been suggested that 

developmental shortening of decay time may support fast rhythmic oscillations required 

for high-level consciousness seen in adulthood (Okada et al., 2000).  Thus, evidence 

suggests that the " subunit ‘switch’ has a significant impact on normal and 

pharmacologically-manipulated brain function. 

 

1.4.6. Significance of the subunit ‘switch’ in brain development 

The change in the predominant " subunit coincides with important developmental 

changes leading to the hypothesis that the subunit ‘switch’ plays a role in brain 

development.  One suggestion is that the "1/2 subunit ‘switch’ plays a role in the 

‘switch’ from excitatory to inhibitory GABAergic currents. Whilst the immediate cause 

of the onset of hyperpolarizing currents involves changes in the internal chloride 

concentration, the subunit ‘switch’ coincides with the onset of GABAergic inhibition 

(Lin et al., 1994) and the immature "2/3 subunits are expressed predominantly in 

neurons where excitatory GABAA receptors have been observed in the adult brain 
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(Cherubini et al., 1990, Isomura et al., 2003; Laurie et al., 1992; Mercuri et al., 1991; 

Michelson and Wong, 1991; Reichling et al., 1994).  Thus, it is possible that some form 

of signalling triggers both hyperpolarizing currents and subunit expression changes, yet 

it is unknown which precedes the other. 

The GABAA receptor " subunit ‘switch’ has also been implicated in the onset of 

synaptogenesis.  The onset of "1 and disappearance of "2 immunoreactivity (Hornung 

and Fritschy, 1996) coincides with the period of synaptogenesis in marmoset primary 

visual cortex (after embryonic day (ED) 100 - post-natal day (PND) 60) (Missler et al., 

1993).  However, in the macaque, the subunit ‘switch’ occurs much later than 

synaptogenesis (Zielinski et al., 1992) limiting the importance of the subunit ‘switch’ 

for the onset of synaptogenesis (Hendrickson et al., 1994).  Alternatively, it has been 

suggested that the subunit ‘switch’ is associated with axonal sorting and area 

specification in the macaque (Hendrickson et al., 1994).  Consistent with this, "1 

subunit knockout mice show impaired maturation of dendritic spines and reduced 

adulthood spine density, suggesting an impairment in synaptic consolidation (Heinen et 

al., 2003).  However, future studies are required to confirm the role of " subunit 

maturational changes in brain development. 

 

1.4.7. Summary 

In summary, there are well known variations in the expression of GABAA 

receptor " subunits in the developing brain with the "2 subunit predominating in the 

immature brain and the "1 subunit in the adult brain.  This subunit ‘switch’ is likely 

important given the different pharmacological and electrophysiological profiles for the 

"1 and "2 subunit containing GABAA receptors.  Important developmental changes 
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such as synapse formation and the ‘switch’ of GABA from excitatory to inhibitory 

show temporal correlation with the subunit ‘switch’, which may be due to a causal 

relationship or triggered by the same pathways of molecules. It is hypothesised then that 

disruptions to the subunit ‘switch’ would alter behavioural, electrophysiological, and 

pharmacological properties of the GABAergic system.  

 

1.5.  Sex differences and GABAA receptors 

1.5.1. Sexual differentiation of the brain 

Investigation into sex-differences in the brain is highly relevant given the 

observed sex-differences in psychiatric disorders.  For example, research has 

consistently shown that women are about twice as likely as men to develop depression, 

regardless of culture or ethnicity (Nolen-Hoeksema, 2001; Weissman et al., 1996).  For 

anxiety disorders such as agoraphobia, panic disorder, post-traumatic stress disorder 

(PTSD) and generalised anxiety disorders, but not social phobia and obsessive 

compulsive disorder (OCD), females have substantially higher lifetime prevalence and 

symptom severity than do males (reviewed in Bekker and van Mens-Verhulst, 2007).  

In contrast, epidemiological studies of schizophrenic patient populations show that, 

females have a later age of symptom onset and generally a better course of illness than 

males (Angermeyer et al., 1989; Holden, 2005; Goldstein, 1988; Grossman et al., 2008; 

Grossman et al., 2006; Seeman, 1986).   Thus, an improved understanding of the 

neurobiological differences between males and females may improve understanding of 

the causes and treatments of such diseases. 

Recent microarray studies show that approximately 650 genes are differentially 

expressed in the brains of male and female mice (around 15% of all genes expressed) 

with 50% being more abundant in males and 50% in females (Yang et al., 2006).  Not 
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surprisingly then, sex differences are observed at many levels of investigation including 

neuropsychology, brain anatomy, brain function and neurochemistry (Cahill et al., 

2006; Davies and Wilkinson, 2006).  In terms of brain anatomy, differences in neuronal 

density and regional volume are observed in regions that are important for reproductive 

behaviour such as the sexually dimorphic nucleus of the medial preoptic area which is 

larger in males (Gorski et al., 1980; Simmerly, 2002) and the anteroventral 

periventricular nucleus of the hypothalamus which is larger in females.  Regions that 

are not linked directly with reproductive behaviour also show sexual dimorphism, for 

example the cortex (anterior cingulate and posterior temporal) (Markham and Juraska, 

2002; Witelson et al., 1995) and hippocampus (Madeira et al., 1991; Nunez et al., 

2000), particularly CA1 (Isgor et al., 1998) and dentate gyrus (Juraska et al., 1989).  

Sex differences in brain function are supported by differences in the connectivities 

between regions (Simerly, 2002) and in neurotransmitter systems such as the 

monoaminergic, GABAergic (see below) and opioid systems (Cahill et al., 2006). 

Undoubtedly, such sex-differences in brain anatomy and function may lead to 

behavioural sex-differences or may allow for compensation to prevent differences 

arising from both hormonal and genetic sex-differences (DeVries et al., 2004).   

 

1.5.2. Causes of brain sex-differences 

The role of hormones in sexual differentiation has been recognised for many years 

and traditionally hormonal signalling was considered the basis for brain sexual 

differentiation. For example, some regional differences may be reversed by treating 

females with testosterone or blocking the effects of testosterone in males (Arnold and 

Gorski, 1984; Nordeen et al., 1985; Phoenix et al., 1959).  In other cases  

sex-differences precede or are only partially explained by testosterone or oestrogen 
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(Arnold et al., 2003) implicating other gonadal hormones such as MIS (Wang et al., 

2005) as well as chromosomal differences (Arnold et al., 2003; Arnold et al., 2004; 

Davies and Wilkinson, 2006) in the expression of brain sex-differences. 

 

1.5.3. Sex-differences and behavioural sensitivity to GABAA receptor ligands  

In general, most studies have indicated that where sex-differences exist, males are 

more sensitive to the behavioural effects of compounds acting at GABAA receptors than 

females (see table 1.2 and table 1.3).  As shown in table 1.2, literature examining sex-

differences in the effects of different allosteric modulators such as benzodiazepine site 

agonists and inverse agonists as well as ethanol and the neurosteroid allopregnanalone, 

is complex.  For example, observations of sex-differences depend on the dose of ethanol 

(Crippens et al., 1999; Tayyabkhan et al., 2002; Webb et al., 2002) and diazepam 

(Bitran et al., 1991; Fernandez-Guasti and Picazo, 1990; Fernandez-Guasti and Picazo, 

1997; Fernandez-Guasti and Picazo, 1999; Wilson et al., 2004) and the behavioural 

parameter that is examined for the neurosteroid allopregnanalone (Fernandez-Guasti 

and Picazo, 1990; Fernandez-Guasti and Picazo, 1997; Fernandez-Guasti and Picazo, 

1999).  As shown in table 1.3 convulsant effects of agents administered intravenously 

(i.v.) in rats, such as pentylenetetrazol (Kokka et al., 1992), picrotoxin (Pericic and 

Bujas, 1997a) and bicuculline (Bujas et al., 1997; Guillet and Dunham, 1995; Pericic 

and Bujas, 1997a; Pericic and Bujas, 1997b; Pericic et al., 1999; Manev et al., 1987; 

Wilson 1992) are more apparent in males, however, both drug administration route  

(Pericic and Bujas, 1997a; Pericic et al., 1985; Pericic et al., 1986) and species (Manev 

et al., 1987) appear to be complicating factors, suggesting that sex-differences in 

sensitivity to GABAergic compounds are affected by pharmacokinetic sex-differences 

(Webb et al., 2002).  
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Table 1.2:  Sex-differences in behavioural sensitivities to GABAA receptor allosteric modulators 

Drug  
Behavioural Effect of drug 
(test) 

Species More sensitive sex 

Ro 15-4513 
FG7142 

Learning Impairment (operant 
conditioning) 

Mice Males (Bao et al., 1992) 

 Reduced Activity (Open Field) Rats Males (Meng and Drugan, 1993) 

Diazepam  
Anxiolysis (Light-dark 
transitions)  

Mice 
Males (depends on female oestrous 
cycle) (Carey et al., 1992) 

 
Protection from PTZ-induced 
seizure  

Rats 
No difference (Kokka et al., 1992; Wilson 
and Biscardi, 1992) 

 
Protection from bicuculline-
induced seizure  

Rats No difference (Wilson, 1992) 

 Anxiolysis (plus-maze)  Rats Males - Low dose (Wilson et al., 2004) 

 
Anxiolysis (defensive prod 
burying) 

Rats 
Males - Low dose (Fernandez-Guasti 
and Picazzo, 1990; 1997; 1999) 

   
No difference – High dose (Wilson et 
al., 2004; Boehm et al., 2002) 

 

Reduced conflict behaviour 

(punished vs. unpunished 
drinking) 

Rats No Difference (Pericic and Pivac, 1995) 

Allopregnanalone Anxiolysis (plus-maze) Rats 
No difference (Fernandez-Guasti and 
Picazo, 1999) 

 
Anxiolysis (defensive prod 
burying) 

Rats 
Males (Fernandez-Guasti and Picazo, 
1997; 1999) 

 Anxiolysis (acoustic startle) Rats Males (Guinello and Smith, 2003) 
 Anxiolysis (grooming) Rats Females (Zimmerberg et al., 1999) 

Ethanol 
Protection from PTZ-induced 
seizure  

Rats 
No difference (Kokka et al., 1992; Wilson 
and Biscardi, 1992) 

 Anxiolysis (plus maze) Rats 
No difference – low / high dose (Wilson 
et al., 2004; 1992; Stock et al., 2000) 

 Defensive prod-burying Rats 
No difference – low dose (Wilson et al., 
2004; Boehm et al., 2004) 

 Operant Conditioning Mice No difference (Bao et al., 1992) 

 Sedation (high dose) Rats 

Males (Webb et al., 2002; Tayyabkhan et 
al., 2002; Crippens et al., 1999; Wilson et 
al., 2004) 
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Support that sex-differences arise from pharmacodynamic as opposed to 

pharmacokinetic parameters has come from several studies.  For example, it has been 

shown that males are more sensitive than females to the behavioural effects of ethanol 

and diazepam when there is no sex-difference in the brain concentration of these drugs 

(Crippens et al., 1999).  Furthermore, there appears to be a physiological sex-difference 

in GABAA receptor sensitivity to ethanol as female pyramidal neurons are less sensitive 

to the ethanol induced spontaneous GABAergic activity (Cha et al., 2006) and female 

hippocampal neurons take longer to alter protein subunit expression (9 days) following 

ethanol administration than male hippocampal neurons (3 days) (Devaud and Alele, 

2004).  Sex-differences at the level of neuronal function are also observed for channel 

blocking agents with female spinal motor neuron discharge frequency being more 

sensitive to picrotoxin (Pericic et al., 1986).  However, no sex-differences were 

observed in allopregnanalone effects on GABA activated chloride flux (Wilson and 

Biscardi, 1997).  Thus, sex-differences occur in neuronal sensitivity to GABAergic 

compounds suggesting that sex-differences in the GABAergic system are at least 

partially responsible for sex-differences in the behavioural sensitivities to compounds 

acting via GABAA receptors. 

 

Table 1.3:  Sex-differences in convulsant activity of GABAA receptor channel blockers and 
orthosteric site antagonists 

Drug Species More sensitive sex 

PTZ (i.v) Rats Males (Kokka et al., 1992 ; Pericic and Bujas, 1997a) 

Bicuculline (i.v) Rats 

Males (Pericic et al., 1999; Guillet and Dunham, 1995; Pericic and Bujas, 
1997a & b; Wilson 1992; Bujas et al.,, 1997; Manev et al., 1987) 
No difference (Wilson and Biscardi, 1992; Devaud et al., 1995) 
Females (Finn and Gee, 1994) 

Bicuculline (i.p) Rats No difference (Pericic et al., 1986) 

Picrotoxin (i.v) Rats Males (Pericic and Bujas, 1997a) 
Picrotoxin (i.v) Mice No difference (Pericic and Bujas, 1997a) 
Picrotoxin (i.p) Rats Females (Pericic et al., 1985) 
Picrotoxin (i.p) Cats Females (Pericic et al., 1986) 
Picrotoxin (i.p) Mice Males (Pericic et al., 1986) 
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1.5.4. Effects of gonadal hormones on drug sensitivity 

Sex-differences in responses to drugs acting on GABAA receptors appear to be 

affected by gonadal hormones.  Sex-differences in ethanol-induced sedation (Silveri and 

Spear, 1998) and seizure induction following picrotoxin (Manev et al., 1987) and 

bicuculline administration (Bujas et al., 1997; Schwarz-Giblin et al., 1989; Wilson, 

1992) are absent in sexually immature animals.  Female gonadectomy also removes 

sex-differences in picrotoxin, bicuculline (Bujas et al., 1997; Schwarz-Giblin et al., 

1989; Wilson, 1992) and PTZ-induced (Kokka et al., 1992) seizure thresholds.  

Interestingly, gonadectomy appears to exaggerate sex-differences in diazepam-induced 

anxiolysis by decreasing female (Bitran et al., 1991) and increasing male sensitivity 

(Fernandez-Guasti and Mota, 2003) relative to proestrous females or intact males, 

respectively.  Furthermore, oestrogen and progesterone administration reinstate 

diazepam-induced anxiolysis in ovariectomised females (Bitran et al., 1991) and 

testosterone reduces diazepam sensitivity of the gonadectomized male  

(Fernandez-Guasti and Mota, 2003).  Thus, the role of gonadal steroids in GABAA 

receptor pharmacological sensitivity is complex and appears less important for some 

drugs such as diazepam, than others such as the cage convulsants. 

The female oestrous cycle stage also alters drug sensitivity, highlighting the 

importance of oestrogen and progesterone.  Sex-differences in the anxiolytic actions of 

low dose diazepam are only observed in metoestrous and proestrous (Carey et al., 1992; 

Fernandez-Guasti and Picazo, 1997) and sex-differences in sedative effects of high dose 

ethanol are only observed in proestrous or diestrous phases (Crippens et al., 1999) 

suggesting that subtype selectivity of circulating oestrogen and progesterone are 

important in the actions of each of these drugs.  
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1.5.5. Sex-differences in the GABAergic system 

Sex differences are apparent in the GABAergic system. Human males have a 

higher GABA concentration in CSF (Hare et al., 1980) and male rats have a higher 

concentration of GABA in the medial preoptic area (MPA), diagonal band, 

ventromedial hypothalamus (Frankfurt et al., 1984) and cingulate cortex (Manev et al., 

1985), but a lower GABA concentration in the hypophysis (Manev et al., 1985).  Male 

rats also appear to have a higher rate of GABA synthesis in the substantia nigra (Manev 

et al., 1986; Manev and Pericic, 1987) despite no difference being observed in GABA 

concentration (Manev and Pericic, 1987).  Gonadal hormones appear to play a role in 

such sex differences in the GABAergic system as adulthood gonadectomy affects 

GABA turnover (Grattan and Selmanoff, 1993), neuronal activity and concentration 

(Earley and Leonard, 1978; Grattan and Selmanoff, 1993; Yoo et al., 2000) in males, 

and GABA concentration (Ondo et al., 1982; Saad, 1970), neuronal activity (Yoo et al., 

2000) and GAT expression (Herbison et al., 1995) in females, with most changes being 

observed in striatal and hypothalamic regions.  Furthermore, in various striatal, 

hypothalamic and amygdalar regions oestrogen administration has been shown to alter 

GAD expression (Leigh et al., 1990; Weiland, 1992), reduce GAD activity (Gordon et 

al., 1977; McGinnis et al., 1980; Nicoletti et al., 1982; Nicoletti and Meek, 1985; 

Wallis and Luttge, 1980) and alter basal GABA concentrations (Demling et al., 1985; 

Daabees et al., 1981; Herbison et al., 1991; Mansky et al., 1982; Nicoletti and Meek, 

1985) of both intact males and ovariectimised females as has progesterone in females 

(Wallis and Luttge, 1980).  Testosterone administration appears to produce similar 

effects to oestrogen raising the possibility that the effects of testosterone arise from its 

conversion to oestrogen (Earley and Leonard, 1978).  Thus, in many brain regions 
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males appear to have more GABA and a more active GABA system with evidence 

suggesting a role for gonadal hormones, particularly oestrogen, in such sex-differences. 

 

1.5.6. Sex-differences in GABAA receptors 

Whilst it is unclear if sex-differences exist in GABAA receptor expression, there 

appear to be sex-differences in receptor sensitivity.  No sex-differences were observed 

in the number (Wilson, 1992; Wilson and Biscardi, 1992) or affinity (Bujas et al., 1997; 

Wilson, 1992; Wilson and Biscardi, 1992) of whole cortical and cerebellar 

[
3
H]bicuculline sites (Kokka et al., 1992), however, regional information is not 

available.  Interestingly, intact females do show a lower GABA IC50 than males for 

displacement of [
3
H]bicuculline binding, suggesting that overall female GABAA 

receptors are more sensitive to the effects of GABA.  This difference was eliminated by 

gonadectomy (Bitran et al., 1991; Wilson, 1992) and both testosterone (Bitran et al., 

1993) and oestrogen (Perez et al., 1988) administration have been observed to affect 

chloride influx to cortical synaptosomes (Bitran et al., 1993) and cortical TBPS / TBOB 

binding (Perez et al., 1988).  Thus, the presence of gonadal hormones in adulthood 

likely affects the functional state of the GABAA receptor resulting in females having 

greater receptor sensitivity to orthosteric site agonists.  

Information regarding the number of high affinity binding sites varies according 

to region.  [
3
H]muscimol binding is increased in the substantia nigra, ventrolateral 

thalamus, bed nucleus of the stria terminalis and caudate putamen of the female 

woodland rodent brain (Canonaco et al., 1996).  However, these sex differences depend 

on the brain region as males appear to have higher [
3
H]muscimol binding in 

hypothalamic brain regions such as the preoptic area and mediobasal hypothalamus of 

the rat (Juptner and Hiemke, 1990) and the anterior hypothalamus and ventromedial 
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hypothalamus of the woodland rodent (Canonaco et al., 1996).  Sexually dimorphic 

[
3
H]muscimol binding may be mediated by ovarian hormones, given that both oestrogen 

alone (Maggi and Perez, 1984; McCarthy et al., 1991; Perez et al., 1986; Perez et al., 

1988; Schumacher et al., 1989a) and in combination with progesterone (Maggi and 

Perez, 1984; McCarthy et al., 1991; Schumacher et al., 1989a; Weiland, 1992) increases 

muscimol binding in many brain regions, except various hypothalamic regions where 

oestrogen decreases muscimol binding (reversed by progesterone) in ovariectomised 

female rats (O’Connor et al., 1988; Schumacher et al., 1989b).  Finally, it is unknown if 

sex-differences in [
3
H]muscimol binding occur in the cortex as slightly more (Juptner 

and Hiemke, 1990), less (Kokka et al., 1992) or the same (Bujas et al., 1997) number of 

[
3
H]muscimol binding sites have been observed in females compared with males.  Thus, 

[
3
H]muscimol binding appears to be sexually dimorphic in a number of regions, 

although whether males or females have a greater number of sites depends on the brain 

region. 

Sex-differences in benzodiazepine binding sites are not well understood.  It has 

been shown that there are no sex differences (Kokka et al., 1992) or higher 

[
3
H]flunitrazepam binding in the female cortex, but lower benzodiazepine sites than 

males have been observed in the striatum and hippocampus (Shephard et al., 1982).  

Females have also been observed to have a higher binding affinity for flunitrazepam in 

the cortex compared with males and gonadectomized groups (Wilson, 1992).  Thus sex 

differences in flunitrazepam binding are likely dependent on brain region. 

 

1.5.7. Gonadal hormone effects on GABAA receptors 

Ovarian steroids appear to affect certain GABAA receptor subtypes preferentially.   

For example, in regions where there is a number of type II GABAA ("2- and "3-  
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subunit containing) receptors such as the spinal cord, cortex and hippocampus, 

oestrogen produces an increase in high affinity GABAA receptor binding, but the 

opposite occurs in regions where there is a predominance of type I ("1-containing) 

GABAA receptors (McCarthy et al., 1991).  It has also been observed that GABA 

receptor subunit expression changes over the oestrous cycle in Wistar rats, with falling 

progesterone levels (late diestrous) being associated with increased "4 (Gallo and 

Smith, 1993; Guinello et al., 2003; Lovick et al., 2005; Smith et al., 1998; Sundstrom-

Poromaa et al., 2003) and ! subunit (Gallo and Smith, 1993; Smith et al., 1998; 

Guinello et al., 2003; Sundstrom-Poromaa et al., 2003) labelling in the PAG (Lovick et 

al., 2005), hippocampus and amygdala (Gallo and Smith, 1993; Guinello et al., 2003; 

Smith et al., 1998; Sundstrom-Poromaa et al., 2003), whilst in other phases of oestrous 

cycle females are similar to males (Lovick et al., 2005). These changes in subunit 

expression are thought to be due to underlying changes in the levels of the potent 

GABAA receptor modulator allopregnanalone  (Smith et al., 1998) that accompanies 

changes in progesterone levels.  Effects of oestrogen and progesterone on these subunits 

likely results in functional changes given that the ! subunits are extrasynaptic and their 

absence results in spontaneous seizures (Nusser et al., 1998).   

 

1.5.8. Summary 

In conclusion, sex-differences are observed in the GABAergic system but 

literature concerning this issue is complex.  Studies examining behavioural effects of 

GABAA receptor compounds are affected by a number of factors such as drug dose, 

behavioural parameter examined, drug administration route and species examined, thus 

conclusions from this information about sex-differences in GABAA receptors are 
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difficult to make.  Whilst males often appear to be more sensitive to the behavioural 

effects of compounds acting on GABAA receptors, this is by no means a robust finding.  

Ex vivo investigations provide more convincing results regarding sex-differences in 

GABAA receptors, with evidence to suggest that GABAA receptors in females are more 

sensitive to orthosteric site ligands and channel blocking drugs whilst male neurons are 

more sensitive to the allosteric modulator ethanol.  However, given knowledge of sex-

differences in GABA turnover, basal levels of GABA and GABAA receptor sensitivity, 

without information on sex differences in GABAA receptor expression, it is difficult to 

predict how GABAergic function varies between the sexes.  

 

1.6.  Acute stress and GABAA receptors 

1.6.1. Defining stress 

The physiologist Walter Cannon (Cannon, 1929) borrowed the word “stress” from 

engineering to refer to the physiological reaction that is a universal biological 

phenomenon caused by the perception of aversive or threatening situations (Cannon, 

1929).  Hans Seyle (1956), a pioneer in stress research defined stress as the non-specific 

response of the body to any demand whether it is caused by or results in pleasant or 

unpleasant conditions.  Seyle’s definition of stress is helpful as it does not require that 

stress only be applied to negative circumstances.  Thus, the term eustress is used to refer 

to stress evoked by positive events and distress to refer to stress evoked by negative 

events, allowing the concept of stress itself to remain neutral. For the purposes of this 

thesis stress is defined in a manner consistent with the original and current definitions of 

the term in medical research, as the integrated bodily response that is produced to deal 

with extraordinary circumstances (Herman et al., 2003).  
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A stressor is anything that provides a real or predicted threat to an organism.  

Stressors may be associated with positive or negative events of varying intensities and 

may include both physical (e.g. pain) and / or psychological (e.g. exposure to 

uncontrollable environment, learned fear) events.  Each of these categories underlies 

different physiological and behavioural response patterns. For example, stressors that 

present a genuine homeostatic threat to the organism (changes in body temperature, 

haemorrhage or immunological challenges) activate different brain regions to purely 

psychological or anticipatory stressors (learned response to an impending adverse 

condition or a species specific fear) (Herman et al., 2003).  Importantly, this distinction 

between physical and psychological stressors is not necessarily mutually exclusive with 

some stressors consisting of a physical stimulus with a psychological component such 

as pain, footshock, immobilisation and swim stress (Van de Kar and Blair, 1999).  

 

1.6.2. Physiology of stress 

The stress response encompasses neuronal and hormonal activity and results in 

physiological and behavioural changes organised to preserve homeostasis.  The major 

systems involved in stress include the sympathetic-adrenal-medullary system (SAM) 

and the hypothalamic-pituitary adrenal (HPA) axis.   

 

1.6.2.1. The hypothalamic-pituitary-adrenal axis 

The HPA axis triggers the release of glucocorticoids, which provide tissue with 

the fuel for emergency situations by shutting down energy expensive systems (growth, 

reproduction, immune system), initiating glycogenolysis, proteolysis and lipolysis 

(Munck et al., 1984) and increasing blood pressure and cardiac output (Sambhi et al., 

1965).  HPA axis activity is initiated by the paraventricular nucleus (PVN) of the 
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hypothalamus, which releases oxytocin, vasopressin and the peptide corticotropin-

releasing factor (CRF) within seconds of being exposed to a stressor (Swanson and 

Sawchenko 1983; Carrasco and Van de Kar, 2003; Brownstein et al., 1980).   CRF is 

released directly into portal blood at the median eminence and travels in the 

hypothalamo-hypophyseal portal system to the anterior lobe of the pituitary where it 

induces proteolytic cleavage of pro-opiomelanocortin (POMC) products including 

adrenal corticotrophin releasing-hormone (ACTH) and #-endorphin (Seidah et al., 

1999).  ACTH is released into the systemic circulation from the anterior pituitary, and 

acts on the adrenal cortex to trigger the synthesis and secretion of glucocorticoids 

(Jacobson, 2005) in a species-specific fashion (e.g. cortisol in primates, swine and 

canines and corticosterone in rodents which lack 17"-hydroxylase) (Dallman et al., 

1987). Glucocorticoids (long-feedback loop) and possibly ACTH (short-feedback loop) 

also exert negative feedback inhibition on the HPA axis (Aguilera, 1998).  

 

1.6.2.2. The sympathetic-adrenal-medullary system 

When exposed to real or perceived threats the sympathetic nervous system 

underlies the expression of the “fight-flight” response first described by Walter Cannon 

over 75 years ago (Cannon, 1929) which serves to enhance skeletal muscle function and 

provide readily available sources of energy.  Activation of the sympathetic nervous 

system involves the activity of noradrenaline in central neuronal circuits and adrenaline 

as an endocrine messenger in the periphery.  In the periphery, the medulla of the adrenal 

gland receives preganglionic sympathetic fibers from the spinal cord, which release 

ACh and cause the secretion of adrenaline and noradrenaline from chromaffin cells into 

the blood where adrenaline acts as a hormone (al’Absi and Arnett, 2000).  In the 

brainstem the major noradrenergic projections from the locus coeruleus project to both 
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the spinal cord and the cortex and the release of noradrenaline to these central regions is 

thought to be involved in heightened attention and vigilance during stress or its 

anticipation (anxiety) (Redmond and Huang, 1979).  

 

1.6.2.3. Neuroscience of stress responses 

CRF neuronal responses to stress are triggered by either direct or indirect 

innervation that may arise from various forebrain and brainstem regions as shown in 

figure 1.4.  The medial parvocellular PVN, which acts as a gatekeeper of the HPA 

response receives monosynaptic input from the nucleus of the solitary tract (NTS), the 

raphe nuclei, the parabrachial nucleus, the periaqueductal grey (PAG), the bed nucleus 

of the stria terminalis (BNST), the thalamus and the hypothalamus.  Many of these 

regions such as the NTS, PAG, raphe and parabrachial nuclei of the brainstem receive 

information on primary sensory modalities including cardiovascular tone, respiration 

and pain, such that physical or reactive stressors can directly activate PVN neurons 

(Herman et al., 2003; Herman et al., 2005).   These regions may also interact with each 

other or with higher brain structures such as the amygdala, prefrontal cortex (PFC) and 

hippocampus (Herman et al., 2003; Herman et al., 2005).  The PVN itself may also 

provide direct input via axosomatic interactions of corticotropin releasing hormone 

(CRH) and non-CRH neurons, dendritic release of peptides and release of nitric oxide 

from magnocellular neurons of the PVN (Herman et al., 2003).  The PVN also receives 

direct input from soluble factors in the blood (steroid hormones, aldosterone, cytokines) 

via a dense capillary plexus and possibly from CSF-borne substances (Herman et al., 

2003). 

Whilst stressors that induce physical homeostatic challenges activate regions that 

synapse directly on CRF releasing cells in the PVN, psychological or emotional 
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stressors activate limbic and cortical areas that do not project directly to the PVN 

(Herman et al., 2003; Herman et al., 2005). Sensory cortices, which receive incoming 

information from the thalamus project to the perirhinal cortex, which can communicate 

with the lateral amygdala directly or via the hippocampus (Van de Kar and Blair, 1999; 

Herman et al., 2005).  Input from forebrain regions is largely mediated via the BNST 

and the other nuclei of the hypothalamus such as the peri-PVN region, the dorsomedial, 

posterior, arcuate and lateral nuclei and the medial preoptic area (Herman et al., 2003; 

Herman et al., 2005). Forebrain projections come from limbic areas including the 

infralimbic / prelimbic neurons of the PFC, the ventral subiculum of the hippocampus, 

the central amygdala and lateral septum (Cullinan et al., 1993; Hurley et al., 1991; 

Canteras and Swanson, 1992; Prewitt and Herman, 1998; Canteras et al., 1995).  

 
Figure 1.4:  Diagrammatic representation of brain regions involved in stress responses.  Adapted 

from Herman et al., 2005. 
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1.6.2.4. Sex differences and stress responses 

 A number of studies suggest males and females vary in their stress responses. The 

pattern of circadian rhythm in female rats is the reverse of that in males but resting 

levels of plasma corticosterone do not show sexual dimorphism (Hiroshige et al., 1973).  

Females produce more corticosterone (Akinci and Johnston, 1993; Kitay, 1961; Shors et 

al., 2001) and more CRF than males following stress (Hiroshige et al., 1973).  This 

enhanced HPA axis stress reactivity in females appears to be at least partially mediated 

by gonadal hormones as female rats display HPA axis hyperactivity particularly during 

proestrus (Carey et al., 1995) and oestrogen-replaced ovarectomised females show 

enhanced stress-induced corticosterone release and CRF mRNA levels (Carey et al., 

1995; Viau et al., 1999).  In contrast, testosterone injections inhibit HPA responses to 

stress (Viau et al., 1999).  Such sex differences may be affected by the stressor 

environment.  For example, male rodents exhibit impaired stress responses following 

crowded housing rather than isolation (Brown and Grunberg, 1995), presumably due to 

increased aggression, but in females social instability in primates and isolation in 

rodents (Haller et al., 1998) appear to be stressful.   

 

1.6.3. Effects of acute stress on GABAA receptors 

1.6.3.1. Overview 

Not surprisingly, studies of the effects of acute adulthood stress on GABAA 

receptors have focused on rapid changes in binding site expression, affinity and 

function rather than the delayed effects on protein and mRNA expression of subunits.  

Such radioligand binding studies (as reviewed below) suggest rapid alterations in the 

GABAergic system occur in response to stress.  These rapid alterations are of particular 

interest as they provide an example of fast neurotransmitter system plasticity in 
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response to experience that may be mediated by alterations in the expression of 

endogenous GABAergic ligands and / or rapid trafficking of GABAA receptors. 

 

1.6.3.2. Orthosteric binding sites 

Studies measuring [
3
H]GABA binding suggest that the availability of low-affinity 

binding sites (BMAX) is rapidly affected following stress in a sex and paradigm specific 

manner (see table 1.4), whilst the affinity (KD) is not affected.  Studies in males suggest 

that different stressors produce different effects, with acute swim stress producing no 

changes (Skerritt et al. 1981; Motohashi et al., 1993) while footshock stress (Biggio et 

al., 1981; Concas et al., 1985; Corda et al., 1985; Cuadra and Molina, 1993) and stress 

from guillotine in handling-naïve rats (Biggio et al., 1981; Biggio et al., 1984; Biggio et 

al., 1987; Concas et al., 1985) reduced forebrain low affinity [
3
H]GABA binding.  

Apparent differences between different stressors may also arise from different 

laboratory stress protocols given that the presence of conspecifics during stress (Cuadra 

and Molina, 1993) and habituation of animals to experimenter handling (Biggio et al., 

1981; Concas et al., 1985; Corda et al., 1985; Cuadra and Molina, 1993) have been 

shown to affect GABAA receptor binding even in the same stress paradigm.   

There appear to be sex differences in the effects of stress on GABAA receptors.  

Studies have shown rapid increases in female but no change in male low-affinity 

(BMAX) [
3
H]GABA binding sites following acute swim stress (Akinci and Johnston, 

1997; Akinci and Johnston, 1993; Skerritt et al., 1981).  Interestingly, comparisons of 

unwashed and well washed crude membrane preparations used for [
3
H]GABA binding 

show that female mice appear to contain higher concentrations of endogenous inhibitors 

of [
3
H]GABA binding compared with male mice (Akinci and Johnston, 1993).  Thus, in 

general stress appears to induce an increase in functional binding sites in females and 
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various changes in males, apparently dependent on the stress-paradigm used.  However 

it is unknown if any of these effects are regionally specific.  

 Binding of channel blocking agents is also affected by acute swim stress, 

suggesting alterations in functional GABA binding sites consistent with altered  

low-affinity GABA binding (Havoundjan et al., 1986).  [
35

S]TBPS binds within the 

channel domain of the GABAA receptor.  Reduced binding of [
35

S]TBPS is observed in 

the presence of orthosteric and allosteric agonists and enhanced binding is observed in 

the presence of orthosteric and allosteric site antagonists (Concas et al., 1987; Concas et 

al., 1988b).  The authors of many studies examining [
35

S]TBPS binding speculate that 

changes in binding of this radioligand reflect changes in the availability of GABAA 

receptor binding-sites, and receptors that are bound by [
35

S]TBPS are thought to be in 

an antagonist-preferring conformation with reduced ability to conduct chloride ions 

(Concas et al., 1986; Concas et al., 1987; Havoundjan et al., 1986).  Thus, the 

consistently observed increase in the number and affinity of [
35

S]TBPS sites in the brain 

following various stressors such as footshock (Concas et al., 1987; Concas et al., 1988a; 

Concas et al., 1993), exposure to carbon dioxide gas (Concas et al., 1993), restraint 

stress (McIntyre et al., 1988), swim stress (Havoundjian et al., 1986) and learned 

helplessness (Drugan et al., 1994) is thought to represent an increase in non-functional 

receptors and correlates with the reduced binding at the low-affinity orthosteric site 

observed by the same groups in separate studies.  However studies by other groups 

directly examining the function of the ion channel through measurement of chloride 

uptake into rat brain synaptosomes contradict these findings as they have found either 

no change (Drugan et al., 1989) or increased (Schwartz et al., 1987)  

muscimol-stimulated chloride uptake following footshock and swim stress respectively. 
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Table 1.4: Stress-induced changes in GABAA receptor orthosteric site binding maximum 

Stress Animal Radioligand Change Reference 

Swim (3 minutes, 32°C) 
Male mice 

Female mice 
[
3
H]GABA, low affinity  

No change 
Increase 

Akinci and 
Johnston, 1993 

Swim (3 minutes, 32°C) 
Male mice 

Female mice 
[
3
H]GABA, low affinity  

No change 
Increase 

Skerritt et al., 1981 

Swim (15 minutes, 25°C) Male rats [
3
H]Muscimol No change 

Motohashi et al., 
1993 

Swim (10 minutes 17°C) Male Rats 
Muscimol-stimulated 

Cl
-
 uptake 

Increase 
Schwartz et al., 

1987 

Male Rats [
3
H]GABA, low affinity  Decrease Biggio et al., 1981 

Male Rats 
Male Rat Pairs 

[
3
H]GABA, low affinity 

[
3
H]GABA, low affinity 

Decrease 
No Change 

Cuadra and 
Molina, 1993 

Male rats [
3
H]Muscimol Increase Drugan et al., 1993 

Male rats 
Muscimol-stimulated 

Cl
-
 uptake 

No Change Drugan et al., 1989 

Footshock 

Male rats 
Muscimol-stimulated 

Cl
-
 uptake 

No Change Drugan et al., 1989 

Handling naïve exposure 
to death by guillotine 

Male Rats [
3
H]GABA, low affinity  Decrease Biggio et al., 1981 

 

1.6.3.3. Allosteric binding sites 

As was the case for agents binding to the orthosteric binding site, the effects of 

stress on benzodiazepine binding in rodents vary depending on the stress paradigm (see 

table 1.5) and are typically of smaller magnitude than changes observed in the 

orthosteric site (Braestrup et al., 1979).  For example, whilst male mice show no 

changes in benzodiazepine site binding following swim stress and isolation (Braestrup 

et al., 1979; Park et al., 1993; Skerritt et al., 1981), footshock and social immobilisation 

resulted in increased and decreased benzodiazepine binding respectively in forebrain 

cortical regions (Braestrup et al., 1979).  Regional information is available for stress-

induced changes in benzodiazepine binding but is largely inconsistent as some studies 

show increased binding at the benzodiazepine site compared with controls in the cortex 

(Motohashi et al., 1993; Rago et al., 1989; Soubrie et al., 1980) but not the 

hippocampus or cerebellum (Motohashi et al., 1993) following swim stress, whereas 

others have consistently found decreases in [
3
H]flunitrazepam and [

3
H]#CCE binding in 

the cortex of male rats following swim stress (Medina et al., 1983a; Medina et al., 
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1983b).  Differences in stress-induced changes in benzodiazepine binding also appear to 

depend on the radioligand examined as no change was observed in the binding of 

benzodiazepine agonists in males subject to social defeat (Miller et al., 1987) and swim 

stress (Park et al., 1993), but changes were observed in binding of a benzodiazepine-site 

antagonist ([
3
H]Ro 15-1788) in the same mice.  Thus, changes in both the number of 

sites and the preferred conformation of the benzodiazepine site (Miller et al., 1997; Park 

et al., 1993) may result from stress but the effects are not as large or consistent as those 

seen for the orthosteric site.  

Studies in chicks subjected to swim stress, have found more consistent increases 

in forebrain benzodiazepine sites (Benavidez and Arce, 2002; Martijena et al., 1992; 

Salvatierra et al., 1994).  Interestingly, these increases in benzodiazepine binding 

appear to be explained by a rapid recruitment of the benzodiazepine receptor from a 

pool that is unmasked using triton-X solubilisation in controls (Benavidez and Arce, 

2002).  Furthermore, disruption of microtubules and phosphorylation prevents  

stress-induced increases in the benzodiazepine-site (Martijena et al., 1992) suggesting a 

role for receptor trafficking in the rapid alterations of GABAA receptors following acute 

stress.  

In contrast to the orthosteric site, sex differences in benzodiazepine-site binding 

following stress have not been observed.  In mice, only one study looked at females and 

found no change in [3H]diazepam binding in the forebrain following warm water swim 

stress in males or females.  This study also suggests that the large changes observed in 

binding at the orthosteric site in stressed females are not accompanied by changes in 

allosteric site binding (Skerritt et al., 1981) suggesting stress has greater effects on  

non !2-containing GABAA receptor subtypes.   
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Table 1.5: Stress-induced changes in GABAA receptor benzodiazepine site binding maximum  

Stress Animal Radioligand Change Region Reference 

Swim  
(25°C, 15 min) 

Male rats [
3
H]Flunitrazepam 

Increase  
No change 
No change 

Cortex 
Hippocampus 
Cerebellum 

Motohashi et al., 1993 

Swim  
(6°C, 3 min) 

Male rats [
3
H]Flunitrazepam 

Increase 
No change 

Cortex 
Cerebellum 

Soubrie et al., 1980 

Swim  Male rats [
3
H]Flunitrazepam Increase Cortex Rago et al., 1989 

Swim  
(18°C, 15 min) 

Rats 
[
3
H]Flunitrazepam 

[
3
H]#CCE 

Decrease Cortex 
Medina et al., 1983a; 
1983b 

[
3
H]Flunitrazepam 

No change 
No change 
No change 

Cortex 
Hippocampus 
Cerebellum Swim  

(6°C, 10 min) 
Male mice 

[
3
H]Ro 15-1788 

Decrease  

No change 
Increased  

Cortex 

Hippocampus 
Cerebellum 

Park et al., 1993 

Swim  
(32°C, 3 min) 

Male mice 
Female mice 

[
3
H]Diazepam 

No change 
No change 

Forebrain Skerritt et al., 1981 

Swim (25°C)  No change 

Footshock Decrease 

Immobilisation Increase 

Isolation 

Male mice [3H]Diazepam 

No change 

Forebrain Braestrup et al., 1979 

Handling Male rats [
3
H]Flunitrazepam Decrease Cortex 

Mennini et al., 1989;  
Andrews et al., 1992 

[
3
H]Flunitrazepam No change 

Cortex 
Hypothalamus 
Cerebellum 

Social Defeat Male mice 

[
3
H]Ro 15-1788 Increase 

Cortex 
Hypothalamus 

Cerebellum 

Miller et al., 1987 

Conflict 
Footshock 

Male rats [
3
H]Diazepam Decrease Cortex Lippa et al., 1981 

Swim  
(38°C, 15 min) 

Male Chicks 
Female 
Chicks 

[
3
H]Flunitrazepam Increase Forebrain 

Salvatierra et al., 
1994; Benavidez and 
Arce, 2002; Martijena 
et al., 1992;  Primus 

and Kellogg, 1991 

Learned 
helplessness 

Male rats [
3
H]Ro15-1788 

Decrease 
Decrease 
Decrease 
No Change 
No Change 

Cortex 
Hippocampus 
Striatum 
Cerebellum 
Hypothalamus 

Drugan et al., 1989 

Footshock Male rats [
3
H]Ro15-1788 No Change 

Cortex 

Hippocampus 
Striatum 
Cerebellum 
Hypothalamus 

Drugan et al., 1989 
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1.6.4. Endogenous mediators of GABAA receptors and stress 

Steroids that influence receptors in the brain via non-genomic mechanisms are 

termed neuroactive steroids.  Potent positive modulation (nM) of GABAergic currents 

is observed with numerous steroids including the anaesthetic alphaxalone (Harrison and 

Simmonds, 1984) and endogenous metabolites of progesterone (allopregnanolone, 

pregnenolone) and deoxycorticosterone (allotetrahydrodeoxycorticosterone; THDOC) 

(Barker et al., 1987; Majewska et al., 1986) and at higher concentrations, these 

endogenous steroids act as direct agonists on the GABAA receptor (Cottrell et al., 

1987).  Cortisol acts as a bi-directional modulator of GABA function with enhancement 

at low concentrations (pM) and inhibition at higher concentrations (nM) and cortisone 

inhibits GABA function at low concentrations (pM) in guinea pig ileum preparations 

(Ong et al., 1987; Ong et al., 1990).  In contrast, sulphated steroids such as 

pregnenolone sulphate and dehydroepiandrosterone sulphate (DHEAS) are low potency 

("M) negative modulators of GABAA receptors (Majewska et al., 1990; Majewska and 

Schwartz, 1987). As mentioned above, steroid action is affected by phosphorylation 

state and subunit composition, with the ! subunit appearing necessary for steroid 

enhancement (Belelli et al., 2002; Belelli and Lambert, 2005; Mihalek et al., 1999). 

Endogenous steroids are synthesised from cholesterol by enzymes in the adrenals 

(e.g.THDOC) and enzymes in the brain.  Steroids synthesised in the brain are termed 

neurosteroids (e.g. allopregnanolone) (Robel et al., 1999).  Following stress 

neurosteroids are rapidly elevated in the brain but not in plasma of adrenalectomised 

rats (Purdy et al., 1991).  In intact animals, increases in brain and plasma concentrations 

of neurosteroids have been observed following swim stress (Mele et al., 2004; Purdy et 

al., 1991), exposure to footshock and carbon dioxide inhalation (Barbaccia et al., 

1996a; Barbaccia et al., 2001).  Progesterone and deoxycorticosterone show maximal 
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increases in rat cortex 10 minutes after stress with return to basal values by 30 and 60 

minutes respectively.  In contrast, pregnanolone and allopregnanolone concentrations 

are maximally increased 30 minutes after stress and return to baseline 120 minutes later 

(Barbaccia et al., 1996a; Barbaccia et al., 1996b).  Whilst rapid stress-induced increases 

in steroids that alter GABAA receptor function may contribute to observations of rapid 

changes in GABAA receptor binding following stress, they are not sufficient to explain 

them, as altered [
3
H]GABA binding occurs in the absence of endogenous mediators 

(Akinci and Johnston, 1993).  Thus the effects of neurosteroids may be mediated by 

their effects on receptor trafficking, which in turn may occur via effects on receptor 

phosphorylation state. 

 

1.6.5. GABAA receptors and behavioural changes following acute stress 

Consistent with stress-induced changes in GABAA receptors, acute stress alters 

behavioural sensitivities to GABAA receptor ligands.  In males forced swim stress has 

been observed to remove anxiolytic effects of diazepam on the dark-light exploratory 

behaviour test (Briones-Aranda et al., 2005), reduce the anti-seizure efficacy of 

benzodiazepines (Deutsch et al., 1990) and reduce the seizure-threshold for bicuculline 

and picrotoxin (Abel and Berman, 1993; Drugan et al., 1985; Pericic et al., 2001; 

Soubrie et al., 1980) suggesting impaired sensitivity of GABAA receptors, consistent 

with a loss of functional GABA binding sites in stressed males.  Consistent with  

sex differences in the effects of stress on GABAA receptors, stress has been observed to 

eliminate sex differences in behavioural responses to diazepam and ethanol (Wilson et 

al., 2004).  Interestingly, stress-induced reductions in the convulsive activity of GABAA 

receptor antagonists is blocked by finasteride inhibition of THDOC synthesis 
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(Barbaccia et al., 1998) implicating neurosteroids in the effects of stress on GABAA 

receptors.  

 

1.6.6. Summary 

Stress, defined as an integrated bodily response that is produced to deal with 

extraordinary circumstances, involves recruitment of the hypothalamic pituitary adrenal 

axis and the sympathetic-adrenal medullary system and results in both rapid (mins) and 

more delayed effects on target tissues.  The PVN of the hypothalamus acts as a 

‘gatekeeper’ of such stress systems and itself is activated by various, limbic and 

brainstem structures.  Acute stress induces rapid changes in binding at the GABAA 

receptor, particularly the orthosteric site, with the direction of the changes varying 

according to sex and stress paradigm but likely resulting in altered behavioural 

sensitivity to GABAergic ligands.  These rapid alterations are of particular interest as 

they provide an example of fast neurotransmitter system plasticity that may be mediated 

by stress-induced increases in neurosteroids, perhaps via effects on phosphorylation and 

/ or receptor trafficking. 
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1.7.  Early-life stress and GABAA receptors  

1.7.1. Early-life environment: Impact in adulthood? 

Clinical and epidemiological studies are increasingly showing a relationship 

between the early post-natal environment and long-term neurobiological and 

psychological development.  Indeed early loss of a parent, parental neglect or abuse or 

being cared for by a parent with psychiatric concerns results in increased vulnerability 

to a number of medical concerns in adulthood (Heim et al., 2001; Heim et al., 2000a 

Heim et al., 2000b; Heim and Nemeroff, 2001) irrespective of genetic predisposition.  

Whilst genetics is of great importance in developing psychiatric illnesses, in humans 

early postnatal environmental factors can increase the risk of developing psychiatric 

disorders, cardiovascular disorders, adult obesity and diabetes (Canetti et al., 1997; 

Felitti et al., 1998; Lissau and Sorensen, 1994; McCauley et al., 1997; Russak and 

Schwartz, 1997).  Thus, an understanding of the long-term changes in physiology, 

behaviour and stress reactivity incurred following post-natal environmental disturbances 

is highly relevant to a number of human diseases. 

 

1.7.2. Models of early-life environmental manipulations in rodents 

Models of interrupted early-life environment have been examined for over 50 

years (see Levine, 1957) leading to the development of a number of animal models to 

examine the effects of early-life stress on adulthood physiology and behaviour (see 

table 1.6).  Table 1.6 outlines the number of models in use and the nomenclature 

proposed by Pryce (Pryce and Feldon, 2003) in an attempt to provide a universal 

framework amongst researchers.  
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Table 1.6:  Early-life environmental manipulation protocols in rodents (Adapted from Pryce and 
Feldon, 2003) 

Classification  Protocol  

Early-life handling (EH) 
Experimenter removes pups from home cage, mother and siblings for several 
minutes daily over early post-natal life  

Non-Handled (NH) No handling, cage cleaning e.t.c from experimenters or animal house staff  

Maternal Separation 
(MS) 

Separation of litter from dam for at least 1 hour per day over several 
postnatal days 

Single MS Separation of litter from mother for 1 24 hour period 

Early-life deprivation 
(ED) 

Separation of pups from mother and litter for more than 1 hour over several 
post-natal days (more than normal bouts of mother leaving the nest)  

Animal Facility Rearing 

(AFR) 
Varies but involves normal cage-cleaning 

 

The most commonly used experimental designs providing the most robust 

adulthood differences are comparisons of EH and NH groups.  The EH group is better 

identified as the ‘control’ condition despite the natural assumption that the  

‘no-intervention’ condition, that is the NH condition, would represent the baseline.  The 

EH group represents a standardised ‘normal’ rearing condition for laboratory rodents 

not achieved in the AFR group due to variations amongst breeding facilities (Pryce et 

al., 2002).   EH laboratory rodents receive minimal amounts of stress and human 

stimulation not provided in the NH group (Pryce and Feldon, 2003), and this situation is 

thought to best represent that in the wild, where the mother leaves the nest and pups 

briefly every day to forage (Calhoun, 1963).  EH procedures result in enhanced 

maternal attention to the offspring in the form of licking, grooming and arched-back 

nursing, behaviours, which are not observed as readily in the NH group, perhaps due to 

the stress of prolonged confinement of the mother with the pups (Anisman et al., 2001; 

Cadji et al., 1998; Francis et al., 1999; Hennessy et al., 1982; Lee and Williams, 1975; 

Liu et al., 1997; Smotherman and Bell, 1980).  However, whether the robust and long-

lasting differences between NH and EH groups arise from enhanced maternal care, 

altered behaviour amongst siblings, changes in body temperature or brief periods of 

human stimulation, remains uncertain (Pryce and Feldon, 2003; Denenberg, 1999).   
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What is clear is that in adulthood the NH group performs in a less ‘adaptive’ fashion 

than the EH group. 

There are clear differences in terms of behavioural responses to novelty, learning 

acquisition and HPA axis stress reactivity between EH and NH groups (see below).  

Interestingly, the other paradigms of early-life manipulation presented in table 1.6 are 

largely similar on such measures to either the EH or NH groups.  For example, the 

majority of studies the AFR group do not vary from the EH group in HPA axis 

responses or behaviours in adulthood (Ladd et al., 2000; Pryce et al., 2001; Parfitt et al., 

2007; Millstein and Holmes, 2007).  ED groups are different from NH groups, but 

surprisingly, resemble EH and AFR groups in stress-induced corticosterone responses, 

behavioural responses to novelty (Pryce et al, 2001) and a variety of learning paradigms 

(Lehmann and Feldon, 2000; Pryce et al., 2003).  The MS group appears to be different 

to the AFR and EH groups (Huot et al., 2001; Ladd et al., 2000) but largely similar to 

the NH group in behaviour (Caldji et al., 2000b; Moffett et al., 2006; Parfitt et al., 

2004) and stress reactivity (Liu et al., 2000; Plotsky et al., 2005; Plotsky et al., 1993).  

However, there are a number of discrepancies in the literature regarding the behavioural 

outcome of MS in early-life, perhaps given the variety of separation periods that are 

used and the variability between studies in the post-natal days on which such 

separations are performed.  Furthermore, a recent study has shown that features such as 

the ambient temperature and the light phase during which the MS procedure is carried 

out affects the behavioural outcome in these rodents (Ruedi-Bettschen et al., 2005).  

Longer periods of maternal separation (i.e. at least 6 hours given that mothers may leave 

the nest for up to 3 hours) appear to be required to differentiate MS and NH groups 

(Huot et al., 2001) and 24 hour MS does appear to produce different patterns of 

behaviour and stress-reactivity to NH mice (De Kloet et al., 1998; Macri and Laviola, 
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2004; MacQueen et al., 2003; Venerosi et al., 2003).  Nonetheless, EH and NH have 

been studied the most extensively in the literature and provide distinct adulthood 

behavioural and stress reactive phenotypes with the other experimental groups not 

greatly adding to our understanding of how early-life environment impacts on 

development.  

 

1.7.3. Effects of early-life environment on behaviour 

A number of differences in adulthood behaviour and physiological stress 

reactivity are observed between EH and NH groups (reviewed in Chappillon et al., 

2002; Meaney, 2001; Pryce and Feldon, 2003; Pryce et al., 2002).  The NH group has a 

well defined behavioural phenotype in that NH animals are more anxious and 

behaviourally reactive than their EH counterparts.  NH rats (McIntosh et al., 1999; 

Meerlo et al., 1999; Nunez et al., 1995; Vallee et al., 1997; Ploj et al., 1999) and mice 

(Cabib et al., 1993; D’Amato et al., 1998; Pryce et al., 2001) of both sexes show 

increased anxiety-type behaviour on the elevated plus maze (EPM) relative to EH 

rodents.  Similarly, studies using the open field test to measure locomotor exploration 

and fear of novel open spaces, have shown that NH and MS rodents have reduced 

exploration, more defecation and spend less time in the central squares compared with 

EH groups (Caldji et al., 2000b; Meerlo et al., 1999; Vallee et al., 1997; Weizman et 

al., 1999; Ader and Grota, 1969; Denenberg, 1964; Levine, 1957; Pihoker et al., 1993; 

Plotsky and Meaney, 1993; Pryce et al., 2001, Pryce et al., 2003).  Behavioural 

reactivity is also observed in the NH group in that they show increased acoustic startle 

responses (Caldji et al., 2000b; Pryce et al., 2001, Pryce et al., 2003) and increased 

behavioural inhibition in response to a predator (Padoin et al., 2001).  
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Of relevance to diseases such as depression, studies also indicate a reduction in 

reward seeking behaviours occurs in adult rats exposed to an early-life NH protocol 

compared to an EH protocol.  For example, NH male and female rats consume less of a 

palatable reward snack over 10 days (Graham wafer), than their EH and female MS 

counterparts (McIntosh et al., 1999).  NH rats (Bodnoff et al., 1987; Fernandez-Teruel 

et al., 1991; Levine, 1962, Levine, 1967, Levine, 1957; Meerlo et al., 1999; Denenberg 

1964, Caldji et al., 2000b) and mice (Ferre et al., 1995) also show enhanced novelty 

induced suppression of appetitive behaviours such as feeding in a novel area (neophagia 

test) relative to EH, perhaps indicative of both neophobia as well as reduced motivation 

to seek reward.  

Studies of adulthood learning acquisition are enlightening in supporting the EH 

group as the ‘normal’ situation and thus the control condition in the EH-NH 

comparison.  NH adult males show impaired learning in two-way active avoidance 

(Escorihuela et al., 1992; Pryce et al., 2003), passive avoidance (Nunez et al., 1996) 

and latent inhibition tasks (Weiner et al., 1985), which measure the ability to ignore 

irrelevant information by ‘unlearning’ an association between a neutral and noxious 

stimulus when the temporal association no longer exists.  Such abnormalities in learning 

may result from either the apparent increase in fearfulness observed in response to 

innately noxious stimuli e.g. open field, acoustic startle or from impairments in making 

associations between stimuli, or even a combination of the two.  Nonetheless, as stated 

by Pryce and Feldon (2003), such impairments in adaptive and ubiquitous behavioural 

phenomena such as latent inhibition suggest that the NH group represent a 

behaviourally abnormal adulthood phenotype relative to the EH group.  Interestingly, 

latent inhibition (e.g. pre-pulse inhibition test) is also disrupted in psychiatric disorders 

such as schizophrenia (Pryce and Feldon, 2003).    
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Thus, the NH condition, when compared with the EH condition, appears to 

produce a more anxious, behaviourally reactive, neophobic and less reward motivated 

adulthood phenotype which is of relevance to psychiatric diseases where anhedonia, 

anxiety, behavioural reactivity and fear are prominent.  

 

1.7.4. Effects of early-life environment on stress reactivity 

Given that adulthood stress has been related to the symptom onset in a number of 

affective disorders (major depression) and psychotic disorders (schizophrenia), it is 

highly relevant to investigate experimental paradigms that produce lasting changes on 

stress reactivity, and early-life interventions provide an example of this.  There are no 

differences between EH and NH animals in basal diurnal corticosterone (Levine, 1957; 

Levine, 1962; Meaney et al., 1985; Meaney et al., 1989), ACTH (Meaney et al., 1989; 

Meaney et al., 1991) nor sensitivity to these hormones (Meaney et al., 1989).  However, 

EH and NH males do differ in adulthood HPA axis responses to a variety of stressors 

including restraint (Meaney et al., 1989; Plotsky and Meaney, 1993) exposure to an 

open field (Levine, 1967), air puff, startle and electric shock (Meaney et al., 1996).  EH 

have less CRF released into the hypophyseal system (Plotsky et al., 1993), and lower 

peak plasma ACTH (Meaney et al., 1989) and corticosterone (Meaney et al., 1989; 

Pryce et al., 2001; Zaharia et al., 1996) levels, with faster returns of each hormone to 

baseline following stress (Levine, 1962; Meaney et al., 1989).  Baseline CRF mRNA 

and immunoreactivity in the hypothalamus (Plotsky and Meaney, 1993) particularly the 

PVN (Plotsky et al., 2005) is reduced and glucocorticoid (GR) receptor expression and 

sensitivity is increased in the hippocampus of EH rats suggesting that HPA axis 

differences arise from differences in negative feedback capabilities (Meaney et al., 

1996; Meaney et al., 1989; Meaney et al., 1985; O’Donnell et al., 1994).  However, 
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altered neuronal circuitry, particularly enhanced GABAergic inhibition in the amygdala, 

locus coerulus and NTS of EH vs. NH animals may also play a role (Caldji et al., 

2000b; Caldji et al., 1998).   

In contrast to the reduced stress-induced HPA activity observed in EH males, little 

is known about the effects of EH on stress responsivity in females. EH and NH females 

do not differ in their plasma corticosterone levels during stress (Ader, 1975).  However, 

EH females, like EH males have a faster return to baseline levels of corticosterone 

following stress and increased glucocorticoid binding sites in the hippocampus (Meaney 

et al., 1985; Meaney et al., 1991) suggesting that early-life intervention produces  

long-term changes in the HPA axis and its ability to respond to stress.  Further study is 

required to better understand sex differences in effects of early-life manipulations on 

HPA stress responses. 

 

1.7.5. Early-life stress and GABAA receptors 

Several lines of evidence have suggested long-lasting changes in GABAA 

receptors arise in animal models of early-life stress.  For example, adult rats exposed to 

early-life stress (NH condition) display decreased numbers of high affinity GABA 

binding sites in the mPFC, NTS and locus coeruleus (LC) (Caldji et al., 2000b) as well 

as decreased numbers of forebrain and amygdala benzodiazepine sites compared with 

EH controls (Bodnoff et al., 1987; Bolden et al., 1990).  Consistent with early-life stress 

inducing long-term decreases in benzodiazepine receptors, are observations of 

decreased !2 subunit expression in the amygdala, NTS and LC in NH and MS groups 

relative to EH controls (Caldji et al., 2000b).  Thus it appears that early-life stress 

results in long-term decreases in benzodiazepine receptors and their requisite !2 subunit 
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mRNA, with the amygdala having been identified as a forebrain region relevant to such 

changes. 

Early-life stress also appears to influence the "1/2 subunit ‘switch’ that occurs in 

rodents during the early post-natal period suggesting environmental manipulations may 

affect GABAergic system development.  Hippocampal dentate gyrus cells from adult 

rats given two handling separations (30 minutes / 6 hours) (MS) before P10 were less 

sensitive to zolpidem enhancement of GABAergic currents and showed longer current 

decay times relative to AFR controls (Hsu et al., 2003) indicative of a reduced "1 

subunit contribution.  These findings were confirmed by observations of decreased "1 

and increased "2 subunit mRNA without evidence of cell loss in the dentate gyrus of the 

MS group (Hsu et al., 2003).  Consistent with these findings for MS animals, following 

the NH early-life stress condition, a reduction in binding sites for the "1-subunit 

selective compound [
3
H]zolpidem was observed in the amygdala (Caldji et al., 2000b).  

Thus, whilst examination of other brain regions is required to confirm this hypothesis, 

there is evidence that the developmental subunit ‘switch’ may be disrupted by early-life 

stress resulting in an alteration of the GABAA receptor phenotype that prevails into 

adulthood (Hsu et al., 2003).  

 

1.7.6. Summary  

 Early-life intervention models in rodents produce changes in adulthood stress 

reactivity and behaviour.  The best examined models showing the most robust 

differences are the EH and NH protocols, where the NH protocol appears to produce the 

more anxious and stress-reactive phenotype that is reflective of psychiatric disorders 

such as schizophrenia.  Few studies have examined the effects of early-life intervention 
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protocols on GABAA receptors however from those that have it is apparent there are 

long-lasting changes in [
3
H]flunitrazepam binding and alterations in GABAA receptor 

subunit expression.  Alterations in "1 and "2 subunit expression are consistent with 

disruptions in the development of the GABAergic system, in that there appears to be an 

impairment in the "1/"2 subunit developmental ‘switch’ in certain brain regions of 

animals that display abnormal behavioural and stress-reactive phenotypes in adulthood.  

Evidence of disruptions in brain development leading to alterations in adulthood 

behaviour and HPA-axis stress-reactivity are highly relevant to neurodevelopmental 

psychiatric disorders such as schizophrenia.  However, it remains to be investigated 

whether other brain regions may be implicated. Furthermore, given the diathesis-stress 

models of psychiatric disorders such as schizophrenia and depression in which 

adulthood stress is hypothesised to precipitate the expression of disease symptoms in 

individuals with impairments in brain development, it will be interesting to ascertain if 

adulthood stress reactivity in the GABAergic system is affected following early-life 

stress. 
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1.8.  Thesis aims  

 The aims of this thesis were to define the brain regions in which adulthood and 

early-life stress affect GABAA receptor binding site availability and the " protein 

subunits associated with early brain development and adulthood behaviour.  Following 

on from this, as early-life stress affects adulthood behavioural and neuroendocrine stress 

responses, this thesis also aims to examine if early-life stress affects the adulthood stress 

responses of GABAA receptors.  This research is relevant to our understanding of the 

neurophysiology of stress and the role of the environment in contributing to GABAA 

receptor pathologies observed in psychiatric illnesses such as schizophrenia, anxiety 

disorders and depression.  
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CHAPTER 2: 

Effects of Adulthood Stress on GABAA Receptor Binding Sites by Region 

 

2.1. Introduction 

2.1.1. Background 

An understanding of the differences between males and females and their 

responses to stress is of importance given that a number of clinical conditions, from 

cardiovascular disease and diabetes through to psychiatric conditions such as anorexia, 

schizophrenia and depression, have both stress and sex as predisposing factors. 

Previous studies have shown that acute stress in adulthood induces rapid changes 

in GABAA receptor binding sites in a sex dependent fashion.  Radioligand binding 

studies measuring high and low-affinity sites for [
3
H]GABA show a rapid increase in 

the availability of low-affinity binding sites (BMAX), and a smaller decrease in the 

number of high-affinity binding sites, following acute swim stress in females (Akinci 

and Johnston, 1993; Akinci and Johnston, 1997; Skerritt et al., 1981; Wilson and 

Biscardi, 1994).   In contrast, male rats and mice exposed to swim stress show no 

changes in either the high or low-affinity GABA binding sites (Motohashi et al., 1993; 

Skerritt et al. 1981), and in other stress paradigms, show large reductions in forebrain 

low-affinity [
3
H]GABA binding sites (Biggio et al., 1981; Concas et al., 1985; Cuadra 

and Molina, 1993).  As electrophysiological studies indicate that micromolar 

concentrations of GABA are required for channel conductance, stress-induced 

alterations in low-affinity (1µM) [
3
H]GABA binding are indicative of alterations in 

GABAA receptor function (Baur and Siegel, 2003; Harris and Allan, 1985; Maconochie 

et al., 1994).  Thus, stress rapidly alters the availability of functional (low-affinity) 

GABAA receptor sites in a sex-dependent fashion, with females showing an increase 
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and males showing a decrease or no change in functional GABA binding sites.  

However, as these previous studies have only examined brain homogenate preparations, 

it is unknown whether such rapid alterations in the availability of GABA binding sites 

are specific to certain brain regions activated during stress, or are a more generalised 

stress response affecting all GABAA receptors in the brain. 

Sex differences apparent in control animals are reduced following stress.  Stress 

has been shown to reduce sex differences observed in unstressed mice in the number of 

low-affinity GABA binding sites (Akinci and Johnston, 1993; Skerritt et al., 1981; 

Wilson and Biscardi, 1994) and the sensitivity to GABAA receptor modulators (Wilson 

et al., 2004).  However, baseline sex differences in the GABAergic system are not 

found in all studies.  For example, whilst males are often found to be more sensitive to 

compounds that act on GABAA receptors (Bujas et al., 1997; Crippens et al., 1999; 

Fernandez-Gausti and Picazo, 1997; Fernandez-Gausti and Picazo, 1999; Guillet and 

Dunham, 1995; Gulinello and Smith, 2003; Kokka et al., 1992; Manev et al., 1987; 

Pericic and Bujas, 1997; Pericic et al., 1999; Tayyabkhan et al., 2002; Webb et al., 

2002; Wilson 1992; Wilson et al., 2004), findings vary according to species (Manev et 

al., 1987; Pericic and Bujas, 1997), route of drug administration (Pericic et al., 1986), 

drug dose (Wilson et al., 2004) and the behavioural parameter measured.  Sex 

differences in GABAA receptor binding sites are also variable between studies with 

some studies suggesting no sex differences in low-affinity binding sites (Bujas et al., 

1997; Wilson, 1992; Wilson and Biscardi, 1992;), in contrast to the reports mentioned 

above, where unstressed males had a greater number of low-affinity sites than 

unstressed females (Akinci and Johnston, 1993; Skerritt et al., 1981; Wilson and 

Biscardi, 1994).  Interestingly, for high-affinity GABA binding sites it has been 
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observed that sex differences in GABA binding are regionally dependent (Juptner and 

Hiemke, 1990; Kokka et al., 1992).  Thus, regional information on sex differences in 

low-affinity GABA binding is likely to provide a greater understanding of GABAA 

receptor sex differences. 

 

2.1.2. Overview of the quantitative receptor autoradiography technique  

Quantitative receptor autoradiography is a method of determining both the 

quantity and anatomical location of receptor binding sites.  The procedure involves 

exposure of tissue sections to a radiolabelled compound that binds selectively to a site 

on a protein of interest.  Tissue containing the bound radioligand is then exposed to a 

silver halide photographic emulsion (Keen & MacDermot, 1993).  Energy emitted from 

the radioactive specimen disrupts the silver halide lattice of the emulsion producing 

deposits of silver (Keen & MacDermot, 1993).  The deposits of silver produce an image 

of the radio-labelled binding sites in the tissue allowing for quantification of binding 

sites by region.   

Radioligand binding at a receptor is theoretically described by the law of mass 

action for the association of a diffusible ligand [L] and receptor [R] to form a complex 

[LR] of ligand bound to the receptor:  

 

 

 

where k+1 and k-1 are the rates for the forward and reverse reactions respectively (Keen 

& MacDermot, 1993).  Forward (association) and reverse (dissociation) rates of the 

reaction are dependent on a number of factors including temperature, pH and drug 
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concentration (Enna and Snyder, 1977).  When equilibrium is reached under constant 

conditions, the association and dissociation rates are stable.  Thus the equilibrium 

dissociation constant KD=k-1/k+1 is a measure of the affinity of the ligand for the 

receptor.  BMAX provides a measure of the number of available binding sites for a ligand 

and is equal to the asymptote for the hyperbolic relationship between radioligand 

concentration exposed to the tissue and radioactivity remaining in the tissue when 

unbound radioligand is removed.  Radioligand binding assays performed in this thesis 

are based on the law of mass action at equilibrium and use concentrations of GABA 

known to produce BMAX for the high- and low-affinity binding sites. 

 

2.1.3. Aims 

The aim of this study was to determine the brain regions where baseline  

sex differences and stress-induced alterations in the number of GABA binding sites 

occur.  To determine these brain regions, the density of both high and low-affinity 

[
3
H]GABA binding sites was measured using quantitative receptor autoradiography in 

several brain regions of male and female mice that were exposed to no stress or a 3 

minute swim stress immediately prior to brain removal.  As it has been suggested that 

the presence of conspecifics may influence stress responses differently between sexes 

(Cuadra and Molina, 1993; Taylor et al., 2000; Troisi, 2001), mice were swum either 

individually or with cage-mates in order to examine the potential influence of the social 

environment of the stressor.  This study was performed to better clarify the literature 

regarding sex differences in GABAA receptor binding, and to provide a better 

understanding of the mechanism of rapid GABAA receptor alterations in response to 

stress.   
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2.2. Methods: Acute stress in adult mice 

2.2.1. Subjects 

Eighteen female and eighteen male Quackenbush Swiss (QS) albino mice aged 8 

weeks (Laboratory Animal Services, Perth, WA) were housed in groups of three upon 

arrival at the animal house.  All mice were housed under a 12hr/12hr light/dark cycle 

with constant temperature (21°C) and permitted food and water ad libitum.  Minimising 

animal stress in housing and immediately prior to the procedure was considered crucial 

to distinguishing between control and stressed groups, thus animals were allowed to 

habituate to the environment of the animal house for 1 week and were then handled by 

experimenters for an additional 2 weeks prior to acute stress protocols.  The experiment 

protocols were approved by the Animal Ethics Committee of the University of Sydney. 

 

2.2.2. Subject allocation 

On the day of experimentation, cages of mice (n=3) were randomly assigned to 

either individual or group conditions.  Within the cages assigned to individual 

conditions, mice were randomly assigned to either control or acute stress conditions.  

As a result there were 6 experimental groups with n=6 subjects per group; male control, 

male individual stress, male group stress, female control, female individual stress, 

female group stress.  The 12 cages were processed on 2 consecutive days with 6 cages 

and n=3 per group, tested in a random order, on each day.   

 

2.2.3. Acute swim stress 

This protocol has been designed to produce a mild, painless stress that is effective 

in producing rapid release of adrenal hormones and non-opioid mediated analgesia 
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(Akinci and Johnston, 1993; Skerritt et al., 1981), which indicate a physiological stress 

response.  Six (6) cages of 3 single sex QS mice aged 11 weeks were carried to the 

experimental room at 10am and remained there unhandled for 1 hour under normal 

housing conditions.  Mice assigned to a stress condition were swum either individually 

or in groups of 3 between 11am and 1pm.  All animal procedures were performed in 

this 2 hour time period to minimise between group effects of diurnal hormone variations 

(Jacobson, 2005).  The swim stress procedure involved mice being placed in 32±1°C 

water at 10cm depth in a 39 x 20 x 15 cm container.  Water was changed between 

sessions and temperature measured immediately before mice were exposed to it to 

ensure consistency between groups.  Mice were swum for 3 minutes then immediately 

killed via cervical dislocation in isolation from other animals.  The immediacy of death 

following swim-stress was important as adrenal steroid release and GABA binding both 

decline over time following separation from the stressor (Skerritt et al., 1981).  Control 

mice remained in their home cage until they were carried in the arms of the 

experimenter to the adjacent room where they were immediately euthanased.  

 

2.3. Materials and methods: Quantitative receptor autoradiography 

2.3.1. Materials 

2.3.1.1. Radioligand binding materials 

[
3
H]GABA (87 Ci/mmol) was purchased from G.E Healthcare (Castle Hill, NSW, 

Australia).  The concentration of radioactivity was corrected from the date of purchase 

to the time of experiments using the tritium decay equation; Fraction remaining  

= e
-0.056.t

.  Hydrochloric acid for pH adjustments was purchased from APS Finechem 
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(Seven Hills, Australia).  TRIZMA base was obtained from Sigma-Aldrich (St. Louis, 

MO, USA).  

 

2.3.1.2. Materials for tissue preparation 

3-Aminopropyltriethoxy silane (silane) and 2-methylbutane (isopentane) were 

obtained from Sigma-Aldrich (St. Louis, MO, USA).  Tissue-Tek- OCT (optimal 

cutting temperature) embedding compound was purchased from Sakura Finetechnical 

(Tokyo, Japan.).   

 

2.3.1.3. Materials for autoradiogram generation 

Kodak Biomax MS film, autoradiography cassettes and tritium microscale 

standards (2.0-110.0 nCi/mg and 0.1-15.4 nCi/mg) were all purchased from G.E 

Healthcare (Castle Hill, NSW, Australia).  Phenisol developer and Hypam Rapid Fixer 

were obtained from Ilford (Mt Waverley, NSW, Australia). 

 

2.3.2. Tissue acquisition and preparation 

Because perfusion and tissue fixation can affect radioligand binding (Young & 

Kuhar, 1979) fresh tissue was used with immediate freezing to maintain the anatomical 

and chemical environment of receptors (Keen & MacDermot, 1993).  Mice were 

sacrificed by cervical dislocation and immediately decapitated with scissors.  Brains 

were removed from the cranium over ice then immediately immersed in liquid 

isopentane on dry ice (-30°C) for 30 seconds to ensure rapid freezing.  Frozen tissue 

was then stored at -70°C in OCT embedding compound until sectioning.   

Coronal sections were cut at 12 !m thickness in a cryostat (Damon/IEC Division, 

Nedham Heights, MA, USA) maintained at -14°C then thaw-mounted onto slides pre-
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treated with 2% silane in acetone.  As tritium is a weak ! emitter, binding would only 

be expected to occur in the top 5!m of tissue exposed to [
3
H]GABA (Kuhar and 

Unnerstall, 1985).  Sections were cut from three blocks at levels of bregma;  

1.1-0.62mm, -1.0-1.34 mm, -1.7-2.18 mm (Paxinos and Franklin, 2001).  Three sections 

were mounted per slide and slides were stored for a maximum of 12 days at -70°C prior 

to receptor binding assays.   

 

2.3.3. Cresyl violet staining 

Cresyl violet stains blue or violet the nucleoli, Nissl bodies and nuclear membrane 

of each cell body including neurons and glia.  Representative adjacent cryosections 

were Nissl stained to allow delineation of anatomical regions during analysis.  Before 

staining, tissue was baked at 60°C for 40 minutes to ensure adherence to the slide.  

Tissue was then dehydrated and rehydrated to extract lipids and facilitate stain 

penetration, by dipping (5 x each) in increasing then decreasing concentrations of 

ethanol (70% , 95%, 95%, 100%).  Tissue was stained by incubation in filtered 0.1% 

cresyl violet solution for 1-2 minutes. Following incubation, slides were rinsed in water, 

then transferred through increasing concentrations of ethanol (70, 95%, 95%, 100%) to 

reduce background staining of cytoplasm until clear differentiation of nucleoli was 

possible when viewed under a light microscope.  Slides were placed in the clearing 

agent histoclear for a minimum of 1 minute before mounting a coverslip using DEPX 

(Pentex, Medite, Germany). 
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2.3.4. Receptor binding assays 

2.3.4.1. Buffer  

50mM Tris-HCl buffer (50mM TRIZMA base in deionised water) pH 7.4 (using 

10M HCl) was used for tissue incubations.  Tris-HCl buffer is a salt solution, which 

mimics neuronal extracellular solution for facilitation of binding (Keen & Macdermot, 

1993).  Care was taken to ensure that ions such as Na
+
 and Ca

2+
 were not present in the 

buffer to remove binding to reuptake transporters (Enna and Snyder, 1975) and GABAB 

receptors (Bristow and Martin, 1989), respectively.  

 

2.3.4.2. Radioligand incubation conditions 

For quantitative analysis of the number of binding sites at a given concentration to 

be unaffected by binding kinetics, it is essential that equilibrium between free and 

bound ligand is reached over the period of incubation. As the rates of the forward and 

reverse reactions are temperature dependent, incubation and washing steps were 

performed at 0°C to retard the dissociation of the radioligand from the receptor (Keen & 

MacDermot, 1993).  The incubation time of 60 minutes for [
3
H]GABA was based on 

and previous experiments measuring the association profile of specific [
3
H]GABA 

binding in autoradiography experiments (Bristow and Martin, 1989).  

 

2.3.4.3. Radioligand concentrations used 

For experiments examining the high-affinity [
3
H]GABA site, 30nM [

3
H]GABA 

(87 Ci/mmol) was used as this is the experimentally derived concentration of GABA at 

which BMAX (saturation of high-affinity sites) occurs for the high-affinity site (see table 

2.1) and thus provides the best estimate of the number of high-affinity binding sites.  



PART B: ADULTHOOD STRESS  

CHAPTER 2 

 

 82 

For experiments examining the low-affinity [
3
H]GABA site 1000nM [

3
H]GABA was 

used as this is the experimentally derived concentration of GABA at which BMAX 

(saturation of low-affinity sites) occurs for the low-affinity site (see table 2.1) and thus 

provides the best estimate of the number of low-affinity binding sites.  For cost 

effectiveness and to enable the same film exposure period for high and low-affinity 

GABA binding sites, the technique of homoisotopic dilution of the radioligand (Akinci 

and Johnston, 1993; Bylund and Murrin, 2000; Cuadra and Molina, 1993; Skerritt et al., 

1981; Toffano et al., 1978) was employed.  Thus, [
3
H]GABA stock (87 Ci/mmol) was 

diluted 1/10 with unlabelled GABA such that the final specific activity of [
3
H]GABA in 

experiments with 1000nM [
3
H]GABA was 8.7 Ci/mmol. Non-specific binding of 

[
3
H]GABA was determined on additional sections at each concentration by adding 

100!M GABA to the radioligand incubation medium.   

As [
3
H]GABA binding fits a two site binding curve it is not necessarily possible 

to measure only one site independently of the other site using currently available 

techniques. Thus, the sites measured at 30nM GABA may indeed represent a good 

proportion of high-affinity binding sites plus a small proportion of low-affinity binding 

sites.  Conversely, the sites measured at 1000nM GABA may represent a combination 

of high- and low-affinity binding sites.  However, it is uncertain from the literature 

whether the high and low-affinity sites represent the same site in different confirmations 

or two different sites acting independently and thus it is impossible to define the 

separate the proportions of high and low-affinity sites that are measured at each 

concentration.  Nonetheless, the assays performed in this study at concentrations 

representing the BMAX values of the two-site GABA binding curve do provide the best 

available means of estimating how stress affects the availability of each site.  For this 
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reason, binding measured at 30nM [
3
H]GABA is referred to as ‘high-affinity binding’, 

whilst that measured at 1000nM GABA is referred to as ‘low-affinity binding’. 

Table 2.1: High- and low-affinity binding sites for [
3
H]GABA 

 High-affinity Low-affinity 

Kd  (nM) 5-20nM 100-400nM 

[GABA] for BMAX (nM) 30nM 1000nM 

References 

Olsen et al., 1981 
Guidotti et al., 1979 

Enna and Snyder, 1975 

Olsen et al., 1981 
Guidotti et al., 1979 

Enna and Snyder, 1975 

 

2.3.4.4. Procedure 

The radioligand binding procedure is outlined in figure 2.1.  Sections were thawed 

for 20 minutes at room temperature.  Two 15-minute pre-incubations at room 

temperature were performed in 50mM tris-HCl buffer to remove endogenous ligands 

(such as GABA) that may compete for the radioligand binding site.  Sections from the 

brains of each subject were incubated for 60 minutes at 0°C in 50 mM Tris-HCl (pH 

7.4) containing the concentration of radioligand under investigation.  The incubation 

was terminated by a rapid dip wash in four separate flasks of ice cold 50mM Tris-HCl 

(pH 7.4).  Slides were then dipped in distilled water to remove excess salts before rapid 

drying under a stream of cool air to prevent radioligand diffusion from the binding site.  

Slides were stored overnight at 4°C. Sections from all 36 mice were processed 

simultaneously in each experiment to minimise variability between subjects. 
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Figure 2.1:  Schematic of the radioligand binding procedure 

 

2.3.5. Generation of autoradiograms 

Slides were placed in an autoradiography cassette with two tritium microscale 

standards (2.0–110.0nCi/mg and 0.1–15.4nCi/mg protein) and exposed to Kodak 

Biomax-MS film at -20°C.  In pilot studies sections were exposed to films for variable 

times (2, 4 or 6 weeks) to determine the optimal exposure period for later studies.  In all 

other studies sections were exposed to film for 6 weeks as this was determined as a 

sufficient period to produce a signal in the required dynamic range of the film.   

After 6 weeks, films were developed for 5 minutes in Ilford Phenisol then 

immediately placed in a 0.5% glacial acetic acid for 30 secs to stop the film 

development.  Following fixation for 7 minutes in Ilford Hypam Rapid Fixer, films 

were thoroughly rinsed under running water then air dried overnight.  All films were 

exposed and developed without any light sources then scanned using a BIO-RAD 

densitometry scanner (GS-800 Imaging Densitometer, School of Molecular and 

Microbial Sciences, University of Sydney). 
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2.3.6. Brain regions examined 

Brain regions were defined by the experimenter circling a brain region on the 

digital autoradiograph with reference to cresyl violet stained slides and the mouse brain 

atlas (Paxinos & Franklin, 2001).  Brain regions were selected based on ease of 

delineation of boundaries on the autoradiograph as well as relevance to stress 

physiology.  On sections taken from between bregma 1.10 - 0.50 mm the following 

regions were examined; frontal cortex (layers I-VI), upper cortical layers (I-III), lower 

cortical layers (IV-VI), cingulate cortex, lateral septum, caudate-putamen.  On sections 

taken from between bregma -1.70 and -2.30 mm the following regions were examined; 

temporal cortex, hippocampus, CA1-CA2, CA3, dentate gyrus, medial amygdala, 

basolateral amygdala.  Thus thirteen brain regions were examined per animal as shown 

in figure 2.2. 

 

 

Figure 2.2: Brain regions examined in acute stress autoradiography.  Images are reproduced with 
permission from “The Mouse Brain Atlas in Stereotaxic Coordinates” (Paxinos & Franklin, 2001).  Regions 
examined in this experiment are labelled with the following abbreviations:  cingulate cortex (Cg); caudate 
putamen (CPu); lateral septum (LS); basolateral amygdala (BLa); medial amygdala (Me); dentate gyrus 
(DG); cortical layers (I-VI). 
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2.3.7. Quantitative analysis of binding  

2.3.7.1. Optical density measurements 

Mean optical density (sum of pixel values / number of pixels) was measured in 

each brain region of interest on 8 bit greyscale digital images using the program Image 

Quant v1.1 software (Molecular Dynamics, ITC-Academic Computing Health Science, 

University of Virginia, USA).  For each brain region examined four optical density 

measurements were made (2 per hemisphere) on each section.  Slide background optical 

density was subtracted from the mean optical density measured for each brain region.  

 

2.3.7.2. Calibration of optical density measurements 

Optical density measurements were converted to concentration of radioactivity 

per weight of tissue equivalent (nCi/mg) using [
3
H]microscales.  Tritium concentrations 

in the microscale standards were corrected for radioactive decay using the radioactive 

decay equation (see 2.1.3.1).  The relationship between measured optical density for 

microscale standards and the known concentration of tritium per weight of tissue 

equivalent was plotted using GraphPad Prism 4.0 (GraphPad Software Inc., San Diego, 

CA, USA).  Using Prism, first-order (Y=A+BX) and second order (Y=A+BX+CX
2
) 

polynomials were compared for best fit.  If the second order polynomial fit best then 

higher data points were successively separated from lower data points until first order 

polynomials could be fit to all sets of points.  All optical density measurements were 

then substituted for Y in the first order polynomial established for their optical density 

range and defined by the slope constant, A, and Y-intercept, B: X=(Y-A)/B, where X is 

the optical density transformed into nCi/mg.   
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2.3.7.3. Determination of specific binding 

Specific binding was determined per animal in each experiment by subtracting 

non-specific binding (mean nCi/mg value in the presence of 100!m unlabelled GABA) 

from total binding (mean nCi/mg value).  Graphs of specific binding for each brain 

region were then compiled in Prism 4.0. 

 

2.3.8. Statistical analysis 

All statistical analyses were performed using SPSS 12.0 (SPSS Inc., Chicago, Ill., 

USA).  To examine the effects of sex on stress-induced differences in high and low-

affinity [
3
H]GABA binding, between-subjects type-III two-way ANOVA was 

conducted using pairwise Bonferroni’s planned contrasts to determine the source of 

significant main effects.  Means comparison contrasts were used to examine the source 

of differences for significant sex by stress interactions.  
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2.4. Results: Regional changes in GABAA receptor binding sites 

2.4.1. Low-affinity (1000nM) [
3
H]GABA binding sites 

2.4.1.1. Cortical regions 

Low-affinity binding site regional distributions were consistent with those 

reported in the literature (Olsen et al., 1990).  Figures 2.3 and 2.4 show results from 

experiments measuring the number of low-affinity GABA binding sites in cortical 

regions from males and females exposed to different stress conditions.  Results from the 

two-way ANOVA by region are presented in table 2.2.  No significant effects of stress 

or sex were observed in the temporal cortex (see table 2.2).  There were significant main 

effects of sex in the whole frontal cortex (F1,27=8.91, p=0.006) and both the upper 

(F1,27=8.94, p=0.006) and lower (F1,27=7.88, p=0.009) layers of the frontal cortex 

indicating that regardless of stress condition, females have reduced [
3
H]GABA binding 

site density relative to males in these regions.  There were significant interaction effects 

(sex x stress) in the frontal cortex (F2,27=4.33, p=0.023), the upper layers of the frontal 

cortex (F2,27=8.30, p=0.002) and the cingulate cortex (F2,27=6.56, p=0.005) indicating 

that the effects of stress on [
3
H]GABA binding site density vary according to sex.   

 

Sex differences 

Post-hoc contrast analysis, showed that control males had significantly higher 

[
3
H]GABA binding densities than control females in the frontal cortex (p<0.001), the 

upper layers of the cortex (p<0.001) and the cingulate cortex (p=0.009) but no 

differences were observed between the sexes after exposure to either individual (frontal 

p=0.547; upper p=0.371; cingulate p=0.307) or group stress (frontal p=0.665; upper 

p=0.931; cingulate p=0.075) in these regions.   
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Effects of stress 

Post-hoc contrast analysis, showed that stress-induced increases in female low-

affinity [
3
H]GABA binding were significant in the upper layers of the cortex (individual 

stress p=0.037; group stress p=0.027) and the cingulate cortex (individual stress 

p=0.017; group stress p=0.019) but not the whole frontal cortex (individual stress 

p=0.547; group stress p=0.665).  Stress-induced decreases in male [
3
H]GABA binding 

density were only significant in the group-stressed males in both the frontal cortex 

measured as a whole (p=0.046) and the upper layers of the frontal cortex (p=0.029) 

relative to controls but not the cingulate cortex (p=0.185).  In contrast, individual stress 

did not alter [
3
H]GABA binding sites in males relative to controls (frontal p=0.285; 

upper p=0.444; cingulate p=0.998).   

Thus, as demonstrated in figure 2.3, for regions of the frontal cortex, stress 

reduced the number of low-affinity sites for males but increased binding to these sites 

for females, such that sex differences between control groups in low-affinity [
3
H]GABA 

binding (male>female)  were removed by stress (male=female). 

 

Figure 2.3:  Representative autoradiographs of forebrain 1000nM [
3
H]GABA binding sites.  Pictures 

are from male (a, b, c) and female (d, e, f) mice exposed to no adulthood stress (a, d), individual 3 minute 
adulthood swim stress (b, e) and group stress in adulthood (c, f).  Scale bar represents 0.5cm. 
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Figure 2.4:  Effects of sex and adulthood stress on 1000nM [

3
H]GABA binding sites in cortical regions.   Data are expressed as mean ± SEM for a) cingulate 

b) frontal c) temporal cortical regions and d) upper e) lower cortical layers.  *=p<0.05, **=p<0.01 for significant stress induced differences relative to control mice of 
the same sex.  ^=p<0.05, ^^=p<0.01 for significant sex differences relative to male controls of the same adulthood stress condition.  Grouped bars represent 
significant main effects where the overall interaction was not significant. 

Table 2.2:  Results of 2-way ANOVA tests for 1000nM [
3
H]GABA binding in cortical regions.  Tests reaching significance with p<0.05 are 

highlighted. 

  Cingulate Frontal Temporal Upper Lower 

Main Effects  

Sex F(1,27)=3.03, p=0.087 F(1,27)=8.91, p=0.006 F(1,27)=0.26, p=0.613 F(1,27)=8.94, p=0.006 F(1,27)=7.88, p=0.009 

Stress  F(2,27)=0.89, p=0.424 F(2,27)=0.33, p=0.720 F(2,27)=0.84, p=0.442 F(2,27)=0.41, p=0.666 F(2,27)=0.29, p=0.752 

Interaction                     

Sex x Stress  F(2,27)=6.56, p=0.005 F(2,27)=4.33, p=0.023 F(2,27)=0.08, p=0.927 F(2,27)=8.30, p=0.002 F(2,27)=2.68, p=0.087 

Control

Stress

Group Stress
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2.4.1.2. Hippocampal regions 

Figure 2.5 shows low-affinity GABA binding in hippocampal regions of male and 

female mice exposed to different stress conditions. Results from the two-way ANOVA 

by hippocampal region are presented in table 2.3.  No significant main or interaction 

effects were observed in the hippocampus, CA1-CA2 or CA3 regions.  A significant 

interaction effect was observed in the dentate gyrus (F2,27=3.49, p=0.046) indicating that 

the effects of stress varied according to sex.  Post-hoc contrast analysis showed that 

control males had significantly higher 1000nM [
3
H]GABA binding than control females 

in the dentate gyrus (p=0.028), but following exposure to individual (p=0.334) and 

group (p=0.187) stress no sex difference was observed.  In females, individual stress 

caused significant increases (p=0.041) in low-affinity GABA binding relative to 

controls whilst group stress did not affect low-affinity GABA binding sites in females 

(p=1.000).  In males, group stress caused significant decreases (p=0.039) in GABA 

binding sites relative to controls but individual stress (p=0.635) did not affect low-

affinity [
3
H]GABA binding.   
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Figure 2.5:   Effects of sex and adulthood stress on 1000nM [
3
H]GABA binding sites in the 

hippocampus.  Data are expressed as mean ± SEM for a) whole hippocampus and b) CA1-CA2 c) CA3 

d) dentate gyrus subregions of the hippocampus.  *=p<0.05 for significant stress induced differences 
relative to control mice of the same sex.  ^=p<0.05 for significant sex differences relative to male controls 
of the same adulthood stress condition.   

Table 2.3:  Results of 2-way ANOVA tests for 1000nM [
3
H]GABA binding in hippocampal regions.  

Tests reaching significance with p<0.05 are highlighted 

  Hippocampus CA1-CA2 CA3 Dentate Gyrus 

Sex F(1,27)=0.05, p>0.05 F(1,27)=0.77,  p>0.05 F(1,27)=1.02, p>0.05 F(1,27)=0.34, p>0.05 

Stress  F(2,27)=1.14, p>0.05 F(2,27)=2.51,  p>0.05 F(2,27)=0.58, p>0.05 F(2,27)=1.96, p>0.05 

Sex x 
Stress  

F(2,27)=0.10, p>0.05 F(2,27)=0.36, p>0.05 F(2,27)=1.23, p>0.05 F(2,27)=3.49, p<0.05 
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2.4.1.3. Other subcortical regions 

Figure 2.6 shows the densities of low-affinity [
3
H]GABA binding sites in various 

subcortical regions.  As seen in Table 2.4, there were no significant main or interaction 

effects in the amygdalar regions examined (basolateral and medial amygdala) or the 

caudate-putamen.  In the lateral septum, there was a significant interaction effect 

meaning stress-induced changes depended on sex (F2,27=3.40, p=0.038).  Post-hoc 

contrast analysis showed that control males had greater 1000nM [
3
H]GABA binding 

sites than control females (p=0.042) with no sex differences being observed in the 

individually (p=0.155) nor group-stressed (p=0.482) groups.  For males, stress-induced 

decreases in low-affinity [
3
H]GABA binding relative to the control group resulted from 

exposure to the group stress condition (p=0.017), whilst neither individually stressed 

males (p=1.000), individually (p=1.000) nor group (p=1.000) stressed females varied 

significantly from controls. 
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Figure 2.6: Effects of sex and adulthood stress on 1000nM [
3
H]GABA binding sites in various 

subcortical regions. Data are expressed as mean ± SEM for the a) caudate putamen b) lateral septum 

c) baolateral amygdala and d) medial amygdala.  *=p<0.05, for significant stress induced differences 

relative to control mice of the same sex.   

 

 

Table 2.4:  Results of 2-way ANOVA tests for 1000nM [
3
H]GABA binding in subcortical regions.    

Tests reaching significance with p<0.05 are highlighted 

  
Caudate-Putamen Lateral Septum 

Basolateral 

Amygdala 
Medial Amygdala 

Sex F(1,27)=3.01, p=0.914 F(1,27)=1.57, p=0.221 F(1,27)=0.00, p=0.963 F(1,27)=1.48, p=0.235 

Stress  F(2,27)=0.52, p=0.603 F(2,27)=2.85, p=0.075 F(2,27)=0.22, p=0.805 F(2,27)=0.08, p=0.925 

Sex x 
Stress  

F(2,27)=1.55, p=0.230 F(2,27)=3.40, p=0.038 F(2,27)=0.20, p=0.823 F(2,27)=0.19, p=0.830 
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2.4.2. High-affinity (30nM) [
3
H]GABA binding sites 

2.4.2.1. Cortical regions 

High-affinity binding site regional distributions were consistent with those 

reported previously for [
3
H]GABA binding at 30nM (Hechler et al., 1987; Palacios et 

al., 1981).  Figures 2.7 and 2.8 show results from experiments measuring 30nM GABA 

binding at high-affinity sites in cortical regions from males and females exposed to 

different stress conditions.  Table 2.5 shows results from the two-way ANOVA by 

region.  No significant effects of stress or sex were observed in the temporal cortex or 

lower cortical layers (see table 2.5).  There was a significant sex x stress interaction in 

the frontal cortex (F2,25=4.93, p=0.016), the upper layers of the frontal cortex 

(F2,25=4.09, p=0.030) and the cingulate cortex (F2,27=4.30, p=0.025) indicating that the 

effects of stress on high-affinity [
3
H]GABA binding density varied according to sex in 

these forebrain regions. Post-hoc interaction means comparison contrasts were 

examined to determine the source of the interactions. 

 

Sex differences 

In the frontal cortex (p=0.045), upper cortical layers (p=0.048) and cingulate 

cortex (p=0.048), control males had fewer high-affinity sites than control females.  

Following individual stress, this sex difference was reversed in each of these regions 

(frontal cortex p=0.050, upper cortical layers p=0.050, and cingulate cortex p=0.019) 

with stressed males having more high-affinity GABA binding sites than stressed 

females.  Following group stress, no sex differences were observed (frontal cortex 

p=0.105, upper cortical layers p=0.194, and cingulate cortex p=0.092). 
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Effects of stress 

Despite the stress-induced reversal of sex differences, individual stress did not 

induce significant changes relative to controls in any of the brain regions examined for 

males (frontal cortex p=0.289, upper cortical layers p=0.401, and cingulate cortex 

p=0.201) or females (frontal cortex p=0.166, upper cortical layers p=0.179, and 

cingulate cortex p=0.237).  Similarly, group stress did not induce significant changes 

relative to controls in any of the brain regions examined for males (frontal cortex 

p=0.220, upper cortical layers p=0.272, and cingulate cortex p=0.814) or females 

(frontal cortex p=0.396, upper cortical layers p=0.893, and cingulate cortex p=0.217). 

In summary and as displayed in figure 2.7, exposure to stress resulted in an 

increase in high-affinity sites for males but a decrease for females, with a net individual 

stress-induced sex difference such that stressed males became similar to control females 

and stressed females became similar to control males. 

 

Figure 2.7:  Representative autoradiographs of forebrain 30nM [
3
H]GABA binding sites. Images are 

from male (a, b) and female (c, d) mice exposed to no adulthood stress (a, c) and individual 3 minute 
adulthood swim stress (b, d).  Scale bar represents 0.5cm. 
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Table 2.5:  Results of 2-way ANOVA test for 30nM [
3
H]GABA binding in cortical regions.  Tests reaching significance with p<0.05 are highlighted. 

  Cingulate Frontal Temporal Upper Lower 

Main Effects  

Sex F(1,27)=3.27, p>0.05 F(1,27)=1.35, p>0.05 F(1,27)=0.26, p>0.05 F(1,27)=1.19, p>0.05 F(1,27)=0.22, p>0.05 

Stress  F(2,27)=0.20, p>0.05 F(2,27)=0.09, p>0.05 F(2,27)=0.46, p>0.05 F(2,27)=0.32, p>0.05 F(2,27)=0.50, p>0.05 

Interaction                     

Sex x Stress  F(2,27)=4.30, P<0.05 F(2,27)=4.93, p>0.05 F(2,27)=1.56, p>0.05 F(2,27)=4.09, P<0.05 F(2,27)=2.70, p>0.05 

 

a b c d e 

     

Figure 2.8:   Effects of sex and adulthood stress on 30nM [
3
H]GABA binding sites in cortical regions.  Data are expressed as mean ± SEM for the a) 

cingulate b) frontal c) temporal cortical regions and d) upper e) lower cortical layers. ^=p<0.05 for significant sex differences relative to male controls of the same 

adulthood stress condition.  Grouped bars represent significant main effects where the overall interaction was not significant. 

Control

Stress

Group Stress
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2.4.2.2. Hippocampal regions 

Figures 2.9 and 2.10 show high-affinity GABA binding sites in hippocampal 

regions.  Two-way ANOVA of this data (see table 2.6) showed no significant main or 

interaction effects in the dentate gyrus.  However, there was a significant main effect of 

sex in the whole hippocampus (F1,27=3.88,p=0.041) indicating that regardless of stress 

condition, females had fewer high-affinity GABA binding sites in the hippocampus 

compared with males.  There were also significant interaction effects in the 

hippocampus (measured as a single region) (F2,27=3.12, p=0.045), CA1-CA2 

(F2,27=3.41, p=0.039) and CA3 (F2,27=3.47, p=0.048) indicating that the effects of stress 

on high-affinity GABA binding sites varied according to sex in these regions.   

 

Sex differences 

Post-hoc means comparison contrasts showed that, no sex differences were 

apparent in any of the hippocampal regions examined in control mice (hippocampus 

p=0.669; CA1-CA2 p=0.311, CA3 p=0.212).  Individually stressed females showed 

reduced 30nM GABA binding sites relative to individually stressed males in the 

hippocampus (p=0.001) and CA1-CA2 subregion (p=0.034) but not the CA3 subregion 

(p=0.483).  Group stressed females also showed reduced GABA binding relative to 

group stressed males in the whole hippocampus (p=0.037) but not the CA1-CA2 

(p=0.319) nor CA3 (p=0.483) subregions.  

 

Effects of stress 

Post-hoc means comparison contrasts showed that for females, individually 

stressed mice had reduced high-affinity [
3
H]GABA binding density in the hippocampus 
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(p=0.043) including CA1-CA2 (p=0.009) and CA3 (p=0.016) regions relative to 

controls.  Individual stress did not affect 30nM GABA binding in males (hippocampus 

p=0.999; CA1-CA2 p=0.999, CA3 p=0.999).  Group stress did not affect 30nM GABA 

binding in neither the male hippocampus (p=0.999; CA1-CA2 p=0.999, CA3 p=0.999) 

nor the female (hippocampus p=0.694; CA1-CA2 p=0.199, CA3 p=0.376) hippocampal 

regions examined. 

In summary, as shown in figure 2.9, reduced high-affinity GABA binding sites 

were observed in individually stressed female hippocampi relative to controls and 

stressed males, whilst no stress differences occurred in the male hippocampus.   

 

 

Figure 2.9:  Representative autoradiographs of hippocampal 30nM [
3
H]GABA binding sites.  Images 

are  from male (a, b) and female (c, d) mice exposed to no adulthood stress (a, c) and individual 3 minute 
adulthood swim stress (b, d).  Scale bar represents 0.5cm. 
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Figure 2.10: Effects of sex and adulthood stress on 30nM [
3
H]GABA binding sites in hippocampal 

regions.  Data are expressed as mean ± SEM for the a) whole hippocampus and b) CA1-CA2 c) CA3 d) 

dentate gyrus subregions of the hippocampus.  *=p<0.05, **=p<0.01 for significant stress-induced 
differences relative to control mice of the same sex.  ^=p<0.05 for significant sex differences relative to 
male controls of the same adulthood stress condition.   
 

 

 

Table 2.6:  Results of 2-way ANOVA tests for 30nM [
3
H]GABA binding in hippocampal regions.  Tests 

reaching significance with p<0.05 are highlighted 

  Hippocampus CA1-CA2 CA3 Dentate Gyrus 

Sex F(1,27)=3.88, p<0.05 F(1,27)=1.91, p>0.05 F(1,27)=0.13, p>0.05 F(1,27)=0.13, p>0.05 

Stress  F(2,27)=0.62, p>0.05 F(2,27)=2.12, p>0.05  F(2,27)=3.01, p>0.05 F(2,27)=1.11, p>0.05 

Sex x 
Stress  

F(2,27)=3.12, p<0.05 F(2,27)=3.41, p<0.05 F(2,27)=3.47, p<0.05 F(2,27)=0.80, p>0.05 
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2.4.2.3. Other subcortical regions 

30nM [
3
H]GABA binding values for various subcortical regions are given in 

figure 2.11.  Results of the two-way ANOVA in these regions given in table 2.7 show 

there were no significant effects of stress or sex on high-affinity GABA binding in the 

caudate putamen, lateral septum or the basolateral and medial amygdalar regions.   

 

Table 2.7:  Results of 2-way ANOVA tests for 30nM [
3
H]GABA binding in subcortical regions.  Tests 

reaching significance with p<0.05 are highlighted 

  
Caudate-Putamen Lateral Septum 

Basolateral 

Amygdala 
Medial Amygdala 

Sex F(1,27)=0.06, p>0.05 F(1,27)=0.01, p>0.05 F(1,27)=0.00,  p>0.05 F(1,27)=0.91,  p>0.05 

Stress  F(2,27)=0.59, p>0.05 F(2,27)=0.13,  p>0.05 F(2,27)=0.05,  p>0.05 F(2,27)=0.12,  p>0.05 

Sex x 
Stress  

F(2,27)=0.10, p>0.05 F(2,27)=0.06,  p>0.05 F(2,27)=0.47,  p>0.05 F(2,27)=0.19,  p>0.05 

 

a b  

  
c d 

  

Control

Stress

Group Stress
 

Figure 2.11: Effects of sex and adulthood stress on 30nM [
3
H]GABA binding sites in subcortical 

regions. Data are expressed as mean ± SEM for the a) caudate putamen b) lateral septum c) basolateral 

amygdala and d) medial amygdala.  
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2.5. Discussion 

2.5.1. Baseline sex differences in regional [
3
H]GABA binding 

2.5.1.1. Low-affinity binding sites (1000nM GABA) 

 Results of the present study indicate that males have a greater number of GABAA 

receptor low-affinity binding sites than females in particular forebrain cortical regions.  

Few studies have previously examined sex differences in binding at the low-affinity 

GABA binding site, and some of these previous studies observed no sex differences in 

cortical membrane preparations (Wilson, 1992; Wilson and Biscardi, 1992).  This 

suggests that the regional differences that were observed in the present study are 

masked when the net effects on the whole cortex are examined.  This increase in the 

number of low-affinity GABA binding sites, those that are found in electrophysiological 

studies to correspond to sites of channel conductance, may contribute to an explanation 

as to why a number of studies have indicated that males are more sensitive to the 

behavioural effects of compounds that act on GABAA receptors. 

Interestingly, a study that examined different membrane washing procedures 

(Akinci and Johnston, 1993) found that the number of GABA binding sites and the 

proportion of low-affinity binding sites in crude forebrain homogenates were greatly 

increased in males compared with females, as was observed in the present study.  This 

earlier finding suggests that the presence of endogenous mediators such as neurosteroids 

that are often lost or extracted with more vigorous membrane washing procedures may 

be relevant to the increased number low-affinity GABA binding sites in males (Akinci 

and Johnston, 1993).  Thus, it appears that sex differences in low-affinity binding sites 

are observed only in tissue that undergoes limited post-mortem manipulation and are 
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restricted to certain forebrain cortical regions where perhaps such endogenous 

mediators are most abundant.  

 

2.5.1.2. High-affinity binding sites (30nM GABA) 

Binding sites labelled by 30nM GABA in the present experiments are 

representative of high-affinity GABAA receptor orthosteric sites.  In contrast to 1000nM 

GABA binding sites, females showed a greater number of binding sites labelled by 

30nM GABA compared with males.  This finding was observed in the frontal cortex, 

particularly the upper layers and the cingulate cortex, and is consistent with previous 

work showing increased [
3
H]muscimol binding in cortical homogenates from females 

(Juptner and Hiemke, 1990) and the finding that ovarian steroids increase [
3
H]muscimol 

binding in the cortex (Maggi and Perez, 1984; Perez et al., 1986) without variation over 

the oestrus cycle (Hamon et al., 1983).  

The relevance of increased high-affinity GABA binding sites in certain forebrain 

cortical regions of the female brain is difficult to interpret.  Whilst analysis of Scatchard 

plots from [
3
H]GABA binding studies has lead to a general consensus that there exists 

both high-affinity (nM) and low-affinity (nM-!M) binding sites, and that high GABA 

concentrations are required for opening of the central chloride channel (Baur and Siegel, 

2003; Harris and Allan, 1985; Maconochie et al., 1994), whether the different binding 

site populations represent different conformations of the same binding site, or distinct 

sites on the same or different macromolecular complexes is unknown (Baur and Sigel 

2003; Cash and Subbarao, 1987; Edgar and Schwartz, 1992; Harris and Allan, 1985; 

Maksay, 1996; Smith and Olsen 1994; Yeung et al., 2003).  Perhaps of importance are 

findings from electrophysiological studies that have observed extrasynaptic GABAA 



PART B: ADULTHOOD STRESS  

CHAPTER 2 

 

104 

 

receptors with a higher affinity for GABA (Yeung et al., 2003).  Thus it is possible that 

the present findings of sex differences in high-affinity sites represent sex differences in 

the subset of extrasynaptic GABAA receptors responsible for mediating tonic  

non-densensitising GABAergic currents in the brain.   

 

2.5.2. Stress-induced changes in [
3
H]GABA binding sites 

2.5.2.1. Effects of stress in males 

Males exposed to group stress showed no change in the number of binding sites 

labelled by 30nM GABA but a reduced number of sites labelled by 1000nM GABA in 

the frontal cortex, upper layers of the frontal cortex, cingulate cortex, dentate gyrus and 

lateral septum.  Similarly previous studies have observed no stress-induced changes in 

cortical [
3
H]muscimol labelling of the high-affinity GABA binding site (Motohashi et 

al., 1993).  As well, reductions in the density of cortical low-affinity GABA binding 

sites have been observed previously in rats following both footshock stress (Biggio et 

al., 1981; Concas et al., 1985; Corda et al., 1985; Cuadra and Molina, 1993) and stress 

from guillotine in handling-naïve rats (Biggio et al., 1981; Biggio et al., 1984; Concas 

et al., 1985; Biggio et al., 1987).   However, no change (Akinci and Johnston, 1993; 

Skerritt et al., 1981) and increased (Wilson and Biscardi, 1992) cortical low-affinity 

GABAA receptor binding sites have also been reported in males following swim stress 

and handling stress, respectively.  Such discrepancies in the literature may arise from 

differences between studies in habituation of animals to experimenter handling as 

suggested previously (Biggio et al., 1981; Concas et al., 1985; Corda et al., 1985; 

Cuadra and Molina, 1993).  The presence of cage-mates during male stress, may also be 

relevant to such discrepancies in the literature as our findings show that only  
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group-stressed and not individually stressed males undergo changes in GABA binding 

sites. 

Loss of cortical low-affinity GABAA binding sites suggests a stress-induced loss 

of functional GABAA receptor sites in male frontal cortical regions.  Interestingly, 

forced swim stress has been observed to remove anxiolytic effects of diazepam 

(Briones-Aranda et al., 2005), reduce the anti-seizure efficacy of benzodiazepines 

(Deutsch et al., 1990) and reduce the convulsive activity of GABAA receptor 

antagonists (Drugan et al., 1985; Pericic et al., 2000; Pericic et al., 2001; Soubrie et al., 

1980), suggesting impaired sensitivity of GABAA receptors following stress and 

consistent with the findings of a loss of functional GABA binding sites in stressed 

males that were observed here.  

 

2.5.2.2. Effects of stress in females 

Females exposed to individual stress experienced a stress-induced increase in the 

number of binding sites labelled by 1000nM GABA in the upper layers of the frontal 

cortex, the cingulate cortex and the dentate gyrus.   This finding is consistent with 

previous studies that also found stress-induced increases in the density of cortical  

low-affinity GABA binding sites in females (Akinci and Johnston, 1993; Skerritt et al., 

1981; Wilson and Biscardi, 1994).  High-affinity binding sites in females were also 

affected by stress with a net reduction in these sites in hippocampal regions suggesting a 

difference between males and females in the recruitment of the hippocampus for stress.  

Thus there appears to be an increase in the number of low-affinity sites for GABA in 

the cortex but a reduction in the number of hippocampal high-affinity GABA binding 

sites in stressed females.   
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2.5.2.3. Stress-induced sex differences 

The present study shows that a brief 3 minute swim stress affects [
3
H]GABA 

binding differently in males and females. Stress reversed the sex differences in high-

affinity GABA binding sites such that the stressed males had a greater number of 

cortical high-affinity sites than stressed females. In contrast, stress eliminated  

sex differences in cortical low-affinity [
3
H]GABA binding sites.  A stress-induced 

elimination of sex differences in the number of functional GABA binding sites suggests 

that stress rapidly alters the availability of GABA binding sites in a regional and sex 

dependent fashion. Consistent with the present study, previous work has observed that 

stress eliminates sex differences in low-affinity cortical GABA binding (Wilson and 

Biscardi, 1994) and in behavioural responses to GABAA receptor modulators diazepam 

and ethanol (Wilson et al., 2004).  These findings suggest that following stress,  

sex differences in GABAergic signalling and behaviours mediated via this 

neurotransmitter system would be reduced.  

 

2.5.3. Potential mechanism of rapid stress-induced changes in GABAA receptors 

The rapid alterations in male and female GABA binding observed in this study 

suggest a mechanism for rapid plasticity of neurochemical signalling systems in 

response to stress. It is important to recognise that changes in maximum [
3
H]GABA 

binding site availability, which are observed immediately following a 3 minute stressor, 

are unlikely to represent changes in the total number of GABAA receptors.  For 

example, alterations in protein and mRNA synthesis take at least hours to occur 

(Connolly et al., 1996a; Kang et al., 1991; Orchinik et al., 1995).  However, rapid 

changes in binding site availability may occur via effects on receptor surface expression 
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as is proposed to explain the rapid modifications of GABAA receptors observed during 

seizures (Goodkin et al., 2007).  Thus alterations in GABAA receptor binding site 

exposure may be observed following stress due to the presence of intracellular 

transporter proteins (Thomas et al., 2005; Wan et al., 1997; Washbourne et al., 2004) or 

membrane lipids. 

Rapid post-translational modifications of the GABAA receptor population may be 

mediated by neurosteroids and corticosteroids released in the brain during stress (Akinci 

and Johnston, 1993; Purdy et al., 1991).  As altered [
3
H]GABA binding occurs in the 

absence of endogenous mediators (Akinci and Johnston, 1993), effects of such 

endogenous mediators are not a result of direct ligand-receptor interactions.  However, 

neurosteroids may be responsible for rapid post-translational modifications of GABAA 

receptors following stress via effects on receptor trafficking, which in turn appears to 

involve effects on receptor phosphorylation state.  Future studies should examine if a 

brief incubation of brain tissue with different neurosteroids may produce changes in 

GABA binding site availability that can be observed following their removal from the 

tissue. 

Of particular interest in this study is the discovery of regional differences in the 

stress-induced alterations in [
3
H]GABA binding sites.  In both males and females 

predominantly forebrain cortical regions were affected by stress, despite the fact that 

changes were in opposite directions in either sex.  Relative to other brain regions 

forebrain cortical preparations show the greatest increases in concentrations of 

endogenous neurosteroids such as allopregnanalone and THDOC during stress (Purdy et 

al., 1993) and this may explain the regional specificity of the stress-induced changes in 

GABAA receptors that were observed in the present study. Alternatively, regional 
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differences in GABAA receptor subunit composition may explain the varied sensitivity 

of different brain regions to stress.  For example, regions such as the outer cortical 

layers and the dentate gyrus of the hippocampus which have abundant !2 subunit 

expression (Fritschy and Mohler, 1995) appear to be more affected by acute swim stress 

than other brain regions in both males and females. Variations in pharmacological 

sensitivity amongst GABAA receptor subtypes to endogenous steroids released in the 

brain during stress may thus explain the regional differences in the effects on 

[
3
H]GABA binding observed in the present study.  

 

2.5.4. Relevance of GABAA receptor stress responses 

The present study confirmed previous findings which showed rapid stress-induced 

alterations in [
3
H]GABA binding sites, and extended upon this work to show the 

specific forebrain cortical regions that are involved in this stress response. The rapid 

upregulation of GABAA receptor binding sites may impact both endocrine and 

behavioural responses to stress.  For example, rapid changes in GABA binding with 

stress may contribute to behavioural effects, associated with GABAergic signalling that 

are observed immediately following stress such as opioid resistant analgesia (Skerritt et 

al., 1981) and anxiolysis (Briones-Aranda et al., 2005; Johnston and File, 1991).  

 

2.5.5. Conclusions 

 These data show that both sex and stress affect the number of functional GABA 

binding sites in a regionally specific manner. Forced swim stress induced rapid changes 

in forebrain GABA binding sites in females and group stressed males suggesting a 

mechanism for rapid GABAergic plasticity and potential alterations in inhibitory tone 
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perhaps via receptor trafficking or changes in endogenous GABAergic substances.  

However the number of functional binding sites for GABA in certain forebrain regions 

was altered by stress in opposite directions in males and females, such that following 

stress baseline sex differences were removed.  These results exemplify sex differences 

in brain chemical function and stress responses and disruptions to such responses may 

be relevant to disorders in which stress is a predisposing factor such as schizophrenia 

and depression.  



 

PART C: 

EFFECTS OF EARLY-LIFE STRESS ON GABAA RECEPTORS  

IN ADULTHOOD 
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CHAPTER 3:  

Early-Life Stress Models and Adulthood Behaviour 

 

3.1. Introduction 

3.1.1.  Background 

Aversive early-life experiences are thought to affect long-term neurobiological 

and psychological development and can lead to increased vulnerability to a number of 

diseases such as psychiatric disorders, cardiovascular disorders, adult obesity and 

diabetes (Canetti et al., 1997; Felitti et al., 1998; Lissau and Sorensen, 1994; McCauley 

et al., 1997; Russak and Schwartz, 1997).  Early post-natal environmental 

manipulations in rodents have been observed to produce long-lasting changes in 

adulthood behaviour (Moffett et al., 2007), immune function (Avistur et al., 2006) 

stress reactivity, and neurophysiology (Blaise et al., 2008; Vicentic et al., 2006), thus 

offering insight into the relationship between early-life-environment and susceptibility 

to illness in adulthood.   

Models of early-life experience involving maternal separation are complex.  The 

EH-NH model has been used most consistently throughout the literature and produces 

the most robust between-group differences (see section 1.7).  Rodents that are separated 

briefly (15 minutes) every day from the dam, home cage and siblings over post-natal 

day (PND) 1-14, are termed early-life handled (EH).  Despite the fact that the EH 

condition undergoes active experimenter interaction, these animals are considered the 

control group as they best represent the ‘normal’ early-life experience of rodents in an 

animal house and in the wild where pups are briefly separated from the dam and litter 

during cage cleaning and in bouts of maternal foraging (Calhoun, 1963). The NH, or 
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non-handled, group is left undisturbed by both experimenters and animal house staff 

over PND1-14.  This prolonged uninterrupted confinement of the dam and litter in their 

cage results in large reductions in dam-pup interactions and maternal stress, both of 

which are expected to act as aversive early-life events and result in a more anxious, 

reactive and fearful adulthood behavioural phenotype.  Thus, the NH group is 

considered the experimental ‘early-life stress’ condition (Anisman et al., 2001; Cadji et 

al., 1998; Francis et al., 1999; Hennessy et al., 1982; Lee and Williams, 1975; Liu et 

al., 1997; Smotherman and Bell, 1980).  

When compared with the EH condition, NH animals show consistent behavioural 

differences in adulthood across studies.  For example, increased anxiety-type behaviour 

has been observed by NH animals on the elevated plus maze (EPM) (Cabib et al., 1993; 

D’Amato et al., 1998; McIntosh et al., 1999; Meerlo et al., 1999; Moles et al., 2004; 

Nunez et al., 1995; Ploj et al., 1999; Pryce et al., 2001; Vallee et al., 1997), and the 

light-dark box test (Fernandez-Teruel et al., 1991; Steimer et al., 1998).  Associated 

with these increased anxiety behaviours are findings that NH rodents also show 

increased behavioural responsivity, interpreted as increased fearfulness, in response to 

an acoustic stimulus (Caldji et al., 2000b; Pryce et al., 2001, Pryce et al., 2003) or the 

presence of a predator (Padoin et al., 2001) relative to the EH condition.  Thus, the  

EH-NH model consistently produces mice with different adulthood anxiety profiles.  

Studies such as the present one that employ the EH-NH model therefore benefit from 

confirmation of the adulthood behavioural effects of the early-life environmental 

manipulation prior to post-mortem analysis.  
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3.1.2. Overview of the elevated plus maze 

The elevated plus maze (EPM) has been extensively validated as a test of anxiety 

in both mice and rats and thus is considered one of the most robust behavioural 

indicators of anxiety in rodents (File, 2001).  It is used in screening for anxiolytic drugs 

as well as a post-hoc tool for providing evidence of altered emotionality in animals 

(Carobrez and Bertoglio, 2005).  It is of particular advantage with respect to the present 

study that unlike other behavioural measurements of anxiety, the EPM does not greatly 

interfere with animals through requirements of training, food or water deprivation, or 

exposure to stress in the form of predators, restraint or electric shock (Rodgers and 

Johnson, 1995).  

The maze is designed to exploit the natural fear rodents have of open space, 

unfamiliarity and elevation (File, 2001).  It is comprised of four elevated intersecting 

arms of equal size separated by a central platform.  Two opposing arms are bounded by 

walls (“closed arms”) and the other two opposing arms, at right angles to the closed 

arms, are unbounded (“open arms”) (File, 2001).  The EPM is most useful in providing 

measures of two independent factors:  anxiety and locomotor activity (Lister, 1987).  

Measures of anxiety that are largely independent of other behavioural parameters (factor 

loadings >0.9), are the open arm entries expressed as a percentage of total entries, and 

the time spent on the open arms expressed as a percentage of total time spent on either 

the open or closed arms (Espejo, 1997; File, 2001; Lister, 1987; Rodgers and Johnson, 

1995).  Importantly, percentages are not expressed with respect to the 5 minute test 

duration as it is uncertain exactly what the time spent on the central platform represents 

(File, 2001).   Locomotor activity is best represented by number of closed arm entries 

(Fernandes and File, 1996; Rodgers and Johnson, 1995) with factor analysis studies 
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showing that the total number of arm entries, the parameter often used to indicate motor 

activity, is affected by both anxiety and locomotion.  Interestingly, factor analysis 

reveals sex differences in the contribution of different factors on the EPM in rats.  For 

male rats the test is most sensitive to variability in anxiety, while for female rats the test 

is most sensitive to differences in motor activity (Fernandes et al., 1999).  This may 

suggest it is more difficult to identify changes in anxiety in females on the plus maze, 

however it is evident that this sex-difference in factor loadings is not observed in mice 

as it is for rats (File, 2001; Miyakawa et al.,, 1996).  

 

3.1.3. Aims 

In the current study the EH-NH model was used to examine the effects of  

early-life environmental stress on GABAA receptor subunit expression and synaptic 

clustering.  In order to validate the use of this early-life stress model in our animal 

house and to ensure the expected adulthood behavioural phenotype could be produced, 

behavioural testing was carried out prior to brain removal.  Thus, the aims of this study 

were to investigate anxiety of male and female mice exposed to EH and NH early-life 

conditions using the EPM.  
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3.2. Materials and Methods:  

3.2.1 Materials 

3.2.1.1.  EPM apparatus 

The elevated plus maze (EPM) comprised two open arms (30x5 cm), and two 

closed arms (10x5 cm, surrounded by 15 cm high walls) extending from a common 

central platform (5x5 cm).  The apparatus was constructed from plexiglass (black floor, 

clear walls covered with black cardboard) elevated to a height of 60 cm.  A video 

camera containing a DVD burner and mounted on a tripod was positioned such that the 

entire maze could be recorded in the field of view. 

 

3.2.2  Methods: Animal Model 

3.2.2.1. Subjects 

Six female Quakenbush Swiss (QS) albino mice from a single litter (9 weeks) and 

one male QS albino mouse (9 weeks) (Laboratory Animal Services, Perth, WA) were 

housed together upon arrival at the animal house for 24 hours, allowing for 

impregnation of the females.  Pregnant female mice were then housed individually in 

solid-bottomed breeding cages with free access to food and water.  Litters born 18-22 

days later were immediately culled to a maximum of 8 pups each and in all but one 

litter (where only 3 females were present), 4 males and 4 females remained.  It was 

considered important that mice were born in the animal house from mothers 

impregnated in the animal house to avoid exposure to stress of transport during the 

gestational and post-natal periods.  All mice were housed under a 12hr/12hr light/dark 

cycle with constant temperature (21°C) and permitted food and water ad libitum.  The 
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Animal Ethics Committee of the University of Sydney approved all animal experiment 

protocols. 

 

3.2.2.2. Timeline 

The timeline of live animal work is given in table 3.1 Active experimental 

interventions occurred on post-natal day (PND) 1-14 (see section 3.2.2.4. for details), 

and in adulthood (age 13 weeks) when an adulthood acute stress protocol was 

performed (see section 3.2.2.6.).  

Adulthood behavioural testing was performed to ensure the EH-NH model of 

early-life stress carried out in our animal house produced similar behavioural effects to 

those performed elsewhere.  At age 11 weeks the elevated plus-maze test for anxiety 

was performed.  This test was chosen on the basis that it is less likely to act as a stressor 

than alternative procedures by avoiding shock administration, as well as food and water 

deprivation (Lister, 1987; Stephens and Andrews, 1991).  Furthermore, the EPM and 

the acute stress protocol were each carried out with two weeks between each procedure 

to minimise carry over effects between tests. 

Table 3.1:  Timeline of animal model.   

Time Period 
  

Stage of animal model 

ED   1-21    Gestation period 

PND 0-14   EH-NH model 

PND 14-21   Routine monitoring 

PND 21 
  

Weaning 

PND 22-57   Routine Monitoring 

PND 58-77 
  

Routine monitoring & experimenter handling 

PND 78-79   Elevated Plus Maze 

PND 90-91   Adulthood stress protocol and euthanasia 

Abbreviations: Post-natal day (PND), ED (embryonic day) 
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3.2.2.3. Subject assignment 

On PND1 (with date of birth considered PND0), litters were randomly assigned to 

either non-handled (NH: stress) or early-life handled (EH: control) conditions such that 

there were n=3 litters (24 mice; 12 male, 12 female) in each condition.  Whole litters 

were assigned to the same early-life condition as the NH condition required complete 

absence of experimenter intervention.   

Animals remained in their litters until PND21 when they were weaned from their 

mother.  Weaning involved removal from the dam and separation into cages of 4-6 

mice.  Each cage contained only one sex (male or female) and one early-life condition 

(EH or NH). To prevent behavioural differences between EH and NH mice being 

transmitted between groups, animals that experienced the same early-life conditions 

were housed together.  The cage assignments at weaning were counterbalanced between 

litters of the same early-life condition, thus mice were housed with at least one full 

sibling (same mother and father) and two half siblings (same father only).   

 

3.2.2.4 Early-life manipulation procedure 

The early-life manipulation procedure was carried out to establish EH and NH 

groups according to the nomenclature of Pryce and Feldon (2003).  Litters allocated to 

the early-life handling (EH) group were separated from the dam and siblings for 15 

minutes a day at room temperature on PND1-14.   During the EH procedure, dams were 

removed from the home cage and placed into individual cages for the duration of the 

separation.  Pups were placed individually in plastic cages with tissue bedding for 15 

minutes.  At the conclusion of the separation period pups were returned to the nest 
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before the dam was replaced in the cage.  NH litters were left undisturbed from  

PND1-14.   

 

3.2.2.5. Elevated plus maze behavioural testing 

i) Procedure 

The elevated plus maze test was carried out when mice were 11 weeks of age.  

Subjects were tested between the hours of 11 am - 1 pm to minimise effects of diurnal 

hormonal variations.  Cages were transported to a room adjacent to the testing room and 

left undisturbed for 1 hour. 

The testing procedure involved mice being individually carried to the plus maze 

by the experimenter and placed on the central platform facing an open arm.  Mice were 

then allowed to freely explore the maze for 5 minutes whilst being videotaped.  The 

apparatus was thoroughly cleaned with detergent and dried between subjects and prior 

to the first animal of the day being tested. To avoid scent or movement distraction, the 

experimenter waited in a separate room behind a closed door during the 5 minute 

exploration period. 

 

ii) Behavioural measures 

Parameters measured from video recordings were: the total number of arm entries, 

number of closed arm entries, number of open arm entries (expressed as a % of total 

entries), time spent on the open arm (expressed as a % of time spent on open + closed 

arms), time spent on the closed arm (expressed as a % of time spent on open + closed 

arms) and latency to enter the open arm.  For all of these parameters, an arm entry 

occurred when all 4 paws were present in a single arm.  
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iii)  Data analysis 

All graphs were compiled in PRISM 4.0 and groups were compared on all 

parameters by two-way ANOVA (sex by early-life condition) using SPSS 15.0.  Means 

comparison contrast analysis was performed in the case of significant interaction 

effects.  

 

3.2.2.6.  Adulthood acute stress procedure 

 At 13 weeks of age mice were exposed to the acute adulthood stress procedure 

immediately prior to euthanasia.  Mice assigned to the control (no stress) condition were 

used as subjects for ex vivo studies in chapters 4 and 5.  In chapter 6, both stressed and 

control mice were compared.   

 

i) Subject assignment 

For adulthood stress, animals within a cage were assigned to either individual 

swim stress or control conditions.  In each of the two pairs of siblings per cage, one 

would be assigned to the stress condition and another to the control condition. As a 

result control and stress conditions of the adulthood acute swim stress procedure were 

each comprised of equal numbers of mice from different litters and post-weaning cage 

environments.  

 

ii) Procedure 

The procedure took place over two separate days between 11am and 1pm with 

eight cages being processed per day.  On each day four male and four female cages 
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were processed, two from each early-life condition for each sex.  Cages were processed 

in a random order and the order of control and stress treatments was randomised within 

a cage.  The procedure followed that already described in section 2.2.3.  In brief, mice 

assigned to a stress condition were swum individually for 3 minutes in 32±1°C water at 

10 cm depth in a 39 x 20 x 15 cm container, then immediately euthanased.  Control 

mice remained in their home cage until euthanasia.   

 

3.2.2.7. Tissue preparation 

Mice were killed by cervical dislocation and decapitated.  Brains were removed 

from the cranium on ice and snap frozen in isopentane on dry ice.  Frozen whole brains 

were then embedded in OCT embedding compound and stored at -70°C until 

sectioning.  Coronal sections were cut rostral-caudally using a cryostat (Reichert-Jung, 

Vienna, Austria) maintained at -20°C.  Sections were thaw mounted onto silane-coated 

slides to give a 1:20 parallel series with six 10 !m sections per slide (every second 

section was collected).  Slides were then stored at -70°C until use in either 

immunohistochemsitry (see chapter 4 and chapter 5) or autoradiography experiments 

(see chapter 6).  

 

3.2.2.8. Cresyl violet staining 

Representative adjacent cryosections were Nissl stained to allow delineation of 

anatomical regions during analysis.  Staining was performed as described in section 

2.3.3.
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3.3. Results:  Elevated plus maze behavioural testing  

Figure 3.1 shows the effects of sex and early-life experience on EPM behaviours. 

NH mice showed a decreased % of open arm entries (F1,44=4.58, p<0.05), and decreased 

% of time spent on the open arm (F1,44=4.28, p<0.05).  There were no significant main 

effects of sex (p>0.05) or significant interactions (p>0.05) between sex and early-life on 

either the % of open arm entries or % of time spent on the open arms, indicating that sex 

did not affect the impact of early-life on the preference for the open arms.  Additionally, 

there was no significant main effect of sex (F1,44=0.42, p>0.05), early-life condition 

(F1,44=2.10, p>0.05) or sex x early-life interaction (F1,44=1.19, p>0.05) on the number of 

closed arm entries. 

 

A B C 

  

 

 
Figure 3.1: The effects of sex and early-life condition on elevated plus-maze behaviours.  Figures 
represent % of entries into the open arms (A), the time spent on the open arms (B), and the total number of 
closed arm entries (C) over 5 minutes of free exploration of the elevated plus maze.  Data are expressed 
as mean±SEM.  Bars represent a significant main effect, where *p<0.05 denotes significant differences of 

NH relative to EH. 
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3.4. Discussion 

3.4.1. Effects of early-life stress on adulthood anxiety 

Results from the EPM showed that both male and female mice exposed to the NH 

early-life condition spent less time and made fewer entries onto the open arms than their 

EH counterparts.  This finding indicates that NH mice display more anxious behaviour 

on the EPM, and is consistent with previous reports using the same  

early-life stress model in rats (Bodnoff et al., 1987; D’Amato et al., 1998; Fernandez-

Teruel et al., 1990; Ferre et al., 1995; McIntosh et al., 1999; Meerlo et al., 1999; Nunez 

et al., 1995; Ploj et al., 1999; Pryce et al., 2001; Vallee et al., 1997) and mice (Cabib et 

al., 1993; Moles et al., 2004).  Studies using other tests to measure anxiety are also in 

accordance with these findings showing that NH rodents are more anxious in light-dark 

box tests (Fernandez-Teruel et al., 1991; Steimer et al., 1998) and tests of behavioural 

reactivity (Caldji et al., 2000b; Padoin et al., 2001).  Furthermore, previous studies that 

have examined the effects of early-life stress on the EPM behaviour of both males and 

females have also observed no sex differences in the effect of the NH procedure on 

anxiety (McIntosh et al., 1999; Severino et al., 2004).  Thus, as expected, the NH  

early-life stress condition produced a more anxious adulthood phenotype in both males 

and females than the EH condition.  

Results of this study also showed that early-life experience had no effect on the 

number of closed arm entries in the EPM.  This indicates that locomotor activity does 

not vary between sexes or different early-life conditions and that the increased anxiety 

observed in NH mice occurs without effects on locomotor activity.  Consistent with this 

finding, previous studies have also indicated that EH and NH early-life conditions do 

not affect locomotor activity on the EPM for either sex (McIntosh et al., 1999; Severino 
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et al., 2004).  Interestingly, studies using the open field test to examine locomotion have 

suggested that NH mice of both sexes show a locomotor deficit (Arnold and Siviy, 

2002; Ader and Grota, 1969; Caldji et al., 2000b; Denenberg, 1964; Levine, 1957; 

Meerlo et al., 1999; Pihoker et al., 1993; Plotsky and Meaney, 1993; Pryce et al., 2001, 

Pryce et al., 2003; Vallee et al., 1997; Weizman et al., 1999).  However, given that 

factor analysis studies have shown that activity measurements using the open field test 

are confounded by anxiety and / or exploration (Fernandes et al., 1999; File, 1985; File, 

2001), and that adulthood anxiety is consistently shown to be affected in the NH vs. EH 

model in several different anxiety tests, findings from the open field test regarding 

locomotor activity are inconclusive.  In contrast, the EPM has been shown to measure 

locomotion independently of anxiety in both males and females from various strains of 

rats and mice (File et al., 2001).  Therefore it seems more likely that NH and EH mice 

do not vary in locomotor activity.  Confirmation of this finding should be attained via 

examination of the effects of the EH and NH conditions on the holeboard test which, 

like the EPM, is thought to measure motor activity independently of other behavioural 

parameters (File, 2001).   

 

3.4.2. Conclusions 

The current investigation aimed to reproduce findings from previous studies 

measuring adulthood anxiety following early-life manipulation using the EH-NH 

model.  Behavioural testing showed that regardless of sex, NH mice are more anxious 

on the elevated plus maze compared with EH mice, with no between-group differences 

in locomotor activity.  Thus, the early-life model used in the current study produced 

adulthood behavioural changes consistent with previous work.  Whilst specific early-life 
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environmental factors identified in animal models cannot be directly extrapolated to 

human rearing conditions, the EH-NH model of early-life stress in rodents provides a 

model by which we can systematically examine the long-term effects of early-life 

environment on neurochemical systems and behaviour.  Given the role of GABAA 

receptors as targets for anxiolytic drugs, differences in adulthood behaviour in animals 

exposed to different early-life conditions may be related to alterations in GABAA 

receptors. In the following chapters the effects of early-life manipulation on adulthood 

GABAA receptors (chapter 4 and 5) and stress-induced changes in GABAA receptors 

(chapter 6) are addressed.    
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CHAPTER 4:  

Effects of Early-Life Stress on GABAA Receptor !  Subunit Expression 

 

4.1. Introduction 

4.1.1. Background  

Characterisation of the long-term effects of early-life environment on 

neurochemical functioning is important for understanding factors contributing to 

proposed neurodevelopmental disorders such as schizophrenia where genetics do not 

completely explain the disease etiology.  Long-lasting behavioural changes that were 

observed following different early-life conditions in chapter 3 suggest that the 

developing nervous system is sensitive to subtle changes in the environment, however 

neurochemical changes underlying such behaviours are not fully understood.  Whilst 

previous studies have indicated long-lasting effects of early-life environment on 

multiple neurotransmitter systems (Arborelius and Eklund, 2007; Heim et al., 2001), the 

GABAergic system has largely been ignored despite its involvement in mediating 

anxiety and behavioural reactivity.  Thus, an improved understanding of the effects of 

early-life environment on the adulthood GABAergic system is required.   

GABAA receptors undergo marked changes in their subunit composition during 

development, involving the gradual replacement of the !2 subunit with the !1 subunit 

(Fritschy et al., 1994; Laurie et al., 1992; Lopez-Tellez et al., 2004; MacLennan et al., 

1991; McKernan et al., 1991; Okada et al., 2000; Paysan et al., 1994; Poulter et al., 

1992; Poulter et al., 1993). This switch from !2 to !1 subunit dominance is regionally-

dependent, being most evident in regions such as the thalamus and lower cortical layers 

of primary sensory cortices (Fritschy et al., 1994), but almost non-existent in regions 

which maintain high !2 expression throughout maturation such as the outer cortical 
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layers, the pyramidal and granule cell layers of the hippocampus and certain amygdalar 

nuclei (Fritschy et al., 1994).  The gradual replacement of !2 subunits with the !1 

subunit occurs largely over the first two post-natal weeks in rodents and so it is feasible 

that early-life environmental manipulations over this time period may disrupt this 

developmental process.  Given that the !1 and !2 subunits are thought to be responsible 

for mediating different behaviours via GABAA receptors (Bosman et al., 2002;  

Brooks-Kayal and Pritchett, 1993; Juttner et al., 2001; Kapur and MacDonald, 1999; 

Okada et al., 2000), disruptions in the developmental ‘switch’ may provide a molecular 

basis for the effects of early-life stress on adulthood anxiety.  Thus, an understanding of 

whether early life stress has long-term effects on GABAA receptor !1 and !2 receptor 

subunits is highly relevant.  

Previous studies have suggested early-life environment can have long-lasting 

effects on GABAA receptors.  For example, compared with EH rats, NH rats have been 

observed to show reduced high-affinity [
3
H]GABA binding sites in brainstem nuclei 

(Caldji et al., 2000b), reduced benzodiazepine binding sites in forebrain and amygdalar 

regions (Bodnoff et al., 1987; Bolden et al., 1990; Caldji et al., 2000b) and reduced "2 

subunit mRNA in the amygdala (Caldji et al., 2000b; Caldji et al., 2003; Caldji et al., 

2004). As well, previous studies have provided support for long-term effects of  

early-life environment on the !1 subunit in the dentate gyrus and amygdala (Caldji et 

al., 2000b; Hsu et al., 2003), and the !2 subunit in the dentate gyrus (DG) (Hsu et al., 

2003) of male rats.  Surprisingly, no previous studies have examined changes in ! 

subunit expression in regions such as the primary sensory cortices and the thalamus, 

where the developmental subunit switch in ! subunits is most prominent. Thus, the 

present study investigated the effects of early-life stress on !1 and !2 subunit protein 
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expression in various brain regions, including those where the subunit switch is most 

prominent, using immunohistochemistry.  Furthermore, given the abundant evidence 

indicating sex differences in GABAA receptors and how they are affected by stress (see 

chapter 2), both male and female mice were examined. 

 

4.1.2. Overview of immunohistochemistry 

Immunohistochemistry allows the observation of the anatomical distribution of 

proteins at a microscopic scale.  Immunohistochemical staining occurs when an 

antibody directed against an immunogenic substance, termed an antigen, binds 

specifically to a small portion of that antigen, termed an epitope, in a tissue section, to 

form an antibody-antigen complex (Hudson and Hay, 1989). The formation of an 

antigen-antibody complex may occur via hydrogen bonds, hydrophilic bonds and Van 

der Waals forces (Chemicon, 2005).  

Antibodies are glycoproteins synthesised as part of the body’s humoral response 

following exposure to an antigen (Benjamin and Leskowitz, 1991). Structurally, 

antibodies have two heavy and two light chain polypeptides arranged in a Y shape 

(Benjamin and Leskowitz, 1991).  The tail of the Y forms the Fc binding site for 

immune cells, and the arms of the Y give rise to two F(ab) variable regions, which 

provide the antigen binding sites (Benjamin and Leskowitz, 1991). The most 

concentrated serum antibodies are the IgG class (secondary humoral response), which 

are typically used in immunohistochemistry (Pearse, 1980; Radford et al., 2005).  

Antibodies are commercially available as either polyclonal (mixture of antibodies that 

react with a variety of epitopes on the immunising antigen) or monoclonal (copies of a 

single antibody directed against a single epitope) preparations, which may be purified of 
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non-specific serum proteins and immunoglobulins using protein A, protein G or 

antigen-affinity purification techniques (Chemicon, 2005).  

Visualisation of the antibody-labelled antigen occurs using an enzyme 

(immunohistochemistry) or fluorochrome reporter molecule (immunofluorescence) 

(Hudson and Hay, 1989; Radford et al., 2005).  The present chapter deals with 

visualisation of antibodies using enzymes while the following chapter deals with 

visualisation via fluorophores, which is preferred when cellular and subcellular staining 

is of interest. 

Enzymes used in immunohistochemistry catalyse the formation of coloured  

end-products that can be visualised with light microscopy. In the present study the 

enzyme horse-radish peroxidase was used to catalyse the reaction between substrates 

hydrogen peroxide and diaminobenzidine (DAB) to give a brown coloured end-product.  

Enzymes may be directly conjugated to the primary antibody (direct method) or 

conjugated to a secondary antibody (indirect method).  The secondary antibody binds to 

one or more Fc receptors on the primary antibody allowing a greater number of enzyme 

molecules per antigen, resulting in an increased signal (Pearse, 1980; Radford et al., 

2005).  Other signal amplification techniques may result in the enzyme being 

conjugated to the secondary antibody in a polymerised enzyme complex (used in 

section 4.2.4 !1 staining procedure), or in immune (PAP method) or non-immune 

avidin- or streptavidin-biotin complexes (see section 4.2.5 - !2 staining procedure) 

(Chemicon, 2005; Radford et al., 2005).  
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4.1.3. Aims 

The aim of this study was to examine the effects of early-life stress on regional 

and laminae patterns of adulthood GABAA receptor !1 and !2 subunit expression in a 

variety of brain regions.  Immunoperoxidase histochemistry was used to examine the 

relative density of each of the !1 and !2 subunit proteins in male and female mice 

exposed to either EH or NH early-life conditions. This study will thus aid in 

understanding whether the development of the GABAergic system is affected by  

early-life environment and is of relevance to neurodevelopmental disorders such as 

schizophrenia. 
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4.2. Materials and methods 

4.2.1. Materials 

4.2.1.1. General immunohistochemistry materials 

Slides (76 x 36 mm) were obtained from Starfrost (Berlin, Germany).  Liquid 

blocker super pap-pen and Tissue-Tek
®

 OCT mounting media were purchased from 

ProSciTech (Thuringowa, QLD, Australia). Isopentane (2-methylbutane), 

paraformaldehyde powder, sodium chloride, sodium phosphate monobasic (anhydrous), 

sodium phosphate dibasic (anhydrous), TRIZMA base, tris-HCl, bovine serum albumin 

(BSA, fraction V) and triton-X 100 (t-octylphenoxypolyethoxyethanol) were all 

purchased from Sigma Aldrich (St Louis, MO, USA).  Cresyl violet acetate was 

obtained from BDH Laboratory supplies (Poole, England).   

 

4.2.1.2. Immunoperoxidase staining materials 

Hydrogen peroxide was obtained from Biolab (Clayton, VIC, Australia).  Normal 

goat serum was purchased from Sigma Aldrich (St Louis, MO, USA).  DEPX mountant 

was obtained from Pentex (Medite, Germany).  A Liquid DAB (3,3’-Diaminobenzidine) 

and Substrate Chromogen Visualisation System, rabbit IgG isotype control solution and 

serum-free protein block were all purchased from Dako (Carpenteria, CA, USA).  A 

Standard Vectastain Elite
®

 ABC kit was purchased from Vector Laboratories 

(Burlighame, CA, USA).  

 

4.2.2. Tissue acquisition and preparation 

4.2.2.1. Subjects 

Subjects were those described in section 3.2.2.1.  In brief, male (n=13) and female 

(n=11) Quackenbush Swiss (QS) albino mice were born in the animal house and 
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exposed to either EH or NH early-life conditions on PND1-14 as described in section 

3.2.2.4 (males NH n=7, EH n=6; females NH n=5, EH n=6). Mice examined in 

immunohistochemistry experiments were not exposed to adulthood swim stress and 

were those described as controls in section 3.2.2.6. 

 

4.2.2.2. Tissue preparation and fixation 

Fresh frozen tissue was prepared and cryosectioned as described in section 

3.2.2.7.  Slides devoted to immunohistochemistry were post-fixed within 10 days of 

sectioning to preserve tissue morphology and prevent breakdown of structures during 

storage.  A post-fixation method was used on all slides as previous studies examining 

GABAA receptor immunohistochemistry have revealed a reduction in background 

staining when fresh-frozen cryostat sectioned tissue is used with minimal fixation as 

opposed to perfusion fixed tissue (Fritschy et al., 1998).  Fixation involved  

5 minute immersion of slides in 4% paraformaldehyde in 0.01 M phosphate-buffered 

saline (PBS) at room temperature followed by 5 dips in 0.01 M PBS to remove excess 

fixative.  Sections were air-dried in a fumehood overnight, then stored at -20°C until 

immunohistochemistry experiments.   

 

4.2.3. General immunohistochemistry methods 

4.2.3.1. Buffers for immunohistochemistry 

Buffers were compared in pilot studies in an attempt to reduce background 

staining.  0.1 M Tris-buffered saline (TBS) pH 7.4 was found to increase the  

signal : noise ratio of staining compared with 0.01 M phosphate buffered saline (PBS) 

pH 7.4.  A variety of NaCl concentrations (4-15g/L) for the 0.1 M TBS buffer were also 

investigated to further reduce background staining produced by unwanted ionic 
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interactions.  Increasing the salt strength in the buffer to 15 g/L of NaCl was found to 

provide optimal staining for the !1 primary antibody but did not affect the !2 subunit 

staining.  Thus, 0.1 M TBS
+
 pH 7.4 was used for washing slides and reagent dilution 

throughout the !1 staining procedure whilst standard 0.1 M TBS pH 7.4 was used for 

the !2 staining procedure. 

 

4.2.3.2. Staining sections on slides 

All staining was performed on sections thaw-mounted onto slides.  Washes were 

performed in Coplin staining jars.  For incubation of solutions (300 !L per slide) 

sections on each slide were circled with the liquid blocker super pap-pen, which repels 

water and thus prevents solutions running off the slide.  All incubations were performed 

in Nunc bioassay dishes (Nalge Nunc International, Naperville, Ill, USA) with raised 

grids upon which sections were placed to ensure even and complete distribution of 

solution across the tissue.  To prevent tissue drying out and resultant staining artefacts, 

humidity was maintained during incubation by placing dampened tissue in the bottom 

of the bioassay dish and the dish was then sealed during incubation (Costa and Furness, 

1983).  

 

4.2.3.3. Experimental design 

i)  Replicates 

As each brain was sectioned in a 1:20 series with 6 sections per slide, for each 

animal, there were two 1:20 series; one comprising sections between bregma 2.0 mm 

and 0.0 mm and the other comprising sections between bregma  -0.55 mm and  

-2.54 mm (Paxinos and Franklin, 2001).  For each animal two replicate slides from each 
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of the two blocks were stained in separate experiments for each antibody.  Thus, there 

were four separate experiments for each antibody.   

 

ii)  Controls 

Negative controls were included in every experiment to ensure the secondary 

antibody did not cross-react with non-antigenic proteins.  For !1 subunit staining, 

negative isotype controls were used where the primary antibody was replaced with 

rabbit IgG (Dako, Carpenteria, CA, USA) at the same protein concentration.  For !2 

subunit staining, the primary antibody solution was replaced with the antibody diluent. 

No staining was observed on negative control slides included in final experiments. 

 

4.2.4. !1 Immunoperoxidase staining 

4.2.4.1. Antibodies 

i)  Primary antibody 

A polyclonal rabbit IgG directed against the GABAA receptor !1 subunit protein 

(batch # 31775) was obtained from Millipore (Billerica, MA, USA).  The protein-A 

purified IgG was raised in rabbits immunised with the synthetic peptide sequence 

(QPSQDELKDNTTV FT-C) corresponding to amino acids 1-15 at the C-terminal of 

the rat GABAA receptor !1 subunit.  This sequence is identical in mice.  This antibody 

has been characterised by Western blot analysis on rat brain microsomal preparations 

where it recognises a protein band at 51 kDa representing the !1 subunit protein 

(company product details).  This antibody produces a similar staining distribution 

pattern in mouse brain (see section 4.3.1.1) as a previously characterised antibody for 

the !1 subunit (Fritschy and Mohler, 1994). 
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ii)  Secondary antibody 

The secondary antibody used was an anti-rabbit IgG raised in goat and conjugated 

to a HRP (horse radish peroxidase)-labelled polymer (Envision
+
 DakoCytomation, 

Carpenteria, CA, USA).  This antibody was used to enhance the signal of the primary 

antibody as it has an increased number of peroxidase molecules attached to each 

secondary antibody IgG molecule compared with a streptavidin-peroxidase labelled 

biotinylated secondary antibody. 

 

4.2.4.2. !1 Immunoperoxidase staining procedure 

i)  Endogenous peroxidase activity blocking 

As immunoperoxidase techniques rely on the peroxidase catalysed conversion of 

DAB and hydrogen peroxide to a brown coloured precipitant, endogenous peroxidase in 

tissue can result in non-specific staining.  Thus, after slides were thawed for 20 minutes 

at room temperature, endogenous peroxidase was blocked by incubating sections for 15 

minutes at room temperature in 0.3% H202 in TBS.  Sections were then washed three 

times for 5 minutes each in 0.1 M TBS. 

 

ii)  Non-immune protein blocking 

Tissue was exposed to an innocuous protein solution to mask charged proteins in 

the tissue and thus reduce background staining.  Pilot studies indicated significantly 

reduced background with a serum-free protein block (Dako) compared with 2-10% 

normal goat serum.  Thus, 300 !L of serum free protein block was added to each slide 

and incubated for 40 minutes at room temperature.  After 40 minutes the blocking 

solution was tipped off the slide before the primary antibody solution was added.  



PART C:  EARLY-LIFE STRESS 

CHAPTER 4 

 

 135 

 

iii)  Primary antibody incubation 

In pilot studies, the primary antibody was titrated 1:50-1:1000 (0.02 mg/mL - 

0.001 mg/mL) against the secondary antibody.  The minimum concentration that 

provided sufficient antibody signal 1:100 v/v (0.01 mg/mL) was used and diluted in  

0.1 M TBS containing 3% v/v normal goat serum (NGS) and 0.025% v/v triton-X 100 

to aid antibody penetration.  The primary antibody solution was incubated with tissue 

sections at 4°C for 16 hours in a humidity chamber.  At the end of the incubation, 

unbound primary antibody was removed by three 10 minute washes in 0.1 M TBS. 

 

iv)  Secondary antibody incubation  

The anti-rabbit secondary antibody conjugated to a HRP-labelled polymer 

described in section 4.2.4.1(ii) was a ‘ready to use’ solution.  Thus, as per the 

manufacturer’s instructions 300 !L of this solution was added to each slide and 

incubated at room temperature for 40 minutes.  The solution was removed by three  

10 minute washes in 0.1 M TBS.   

 

v)  DAB reaction 

DAB and hydrogen peroxide are converted to an insoluble brown precipitant in a 

peroxidase catalysed reaction.  Thus, a brown precipitant is formed at the site of 

peroxidase-labelled secondary antibodies upon addition of DAB and hydrogen peroxide 

substrates.  Peroxidase catalysed visualisation was performed using the Liquid DAB 

and Substrate Chromogen System according to the manufacturer’s instructions (Dako, 

Carpenteria, CA, USA).  Liquid DAB was diluted in hydrogen peroxide buffer (20 !L 

liquid DAB per 1 mL H202 buffer) as per the manufacturer’s instructions.  Pilot studies 
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examining the optimal time for DAB incubation (1-20 minutes) showed 3 minutes gave 

the most intense staining with the least background.  Thus, 300 !L of DAB-H2O2 was 

added per slide and incubated at room temperature for exactly 3 minutes before the slide 

was rinsed thoroughly in 0.1 M TBS for 3 lots of 10 minutes.   

 

vi)  Coverslipping slides 

Sections were dehydrated by immersion through a series of increasing 

concentrations of ethanol (70%, 80%, 95%, 100%) for 30 seconds each.  Slides were 

then cleared in histoclear for 5 minutes before mounting coverslips (76 x 30 mm) using 

DEPX mountant (Pentex, Medite, Germany).  Coverslipped slides were then air-dried in 

a fumehood overnight.   
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4.2.5. !2 Immunoperoxidase staining 

4.2.5.1. Antibodies 

i)  Primary Antibody 

A polyclonal guinea-pig antibody directed against the !2 subunit was kindly 

provided by Dr Jean-Marc Fritschy (Institute of Pharmacology and Toxicology, 

University of Zurich, Switzerland).  The affinity-purified antisera came from guinea 

pigs immunised with a synthetic peptide sequence specific for the !2 subunit N-terminal 

(extracellular) residue 1-9 (Fritschy and Mohler, 1995).  This antisera has been 

previously characterised by immunoreactivity on rat (Fritschy and Mohler, 1995; 

Fritschy et al., 1998) and mouse (Crestani et al., 1999; Crestani et al., 2002) brain, and 

by Western blotting on rat and mouse brain where it recognises a single protein band at 

52 kDa (McKernan et al., 1991; Marksitzer et al., 1993).  Immunoperoxidase staining 

throughout the cortex, hippocampus and thalamus (see section 4.3.2.1) produced a 

pattern of !2 subunit immunoreactivity that was identical with previous descriptions.   

 

ii)  Secondary Antibody 

A biotinylated anti-guinea pig IgG (H+L) (Vector Labs, Burlingame, CA, USA) 

was used as the secondary antibody for these experiments.  This antibody was raised in 

goats against guinea pig serum IgG, then conjugated to biotin.  This secondary antibody 

was chosen as it has been used successfully with this primary antibody in previous 

studies (Fritschy and Mohler, 1995).  Furthermore, no HRP-polymer labelled  

anti-guinea-pig secondary antibody (see section 4.2.4.1), which would be expected to 

reduce the required amount of primary antibody, was available at the time of 

experimentation.   
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4.2.5.2. !2 Immunoperoxidase staining procedure 

i)  Antigen retrieval 

Antigen retrieval is a procedure carried out to unmask antigens in tissue using 

either proteolytic digestion or exposure to heat prior to immunostaining.  The exact 

mechanism underlying these procedures is not well understood but is thought to involve 

removal of crosslinks formed during formaldehyde fixation and / or reversal of protein 

denaturation that presumably occurs during fixation (Fritschy et al., 1998).  The most 

effective antigen retrieval method varies for a given antigen and depends on pH and 

temperature (Fritschy et al., 1998).   In the case of the GABAA receptor !2 subunit, it 

has been shown that antigen retrieval via exposure to heat (microwave irradiation) 

under acidic conditions improves the signal to noise ratio of staining for GABAA 

receptor subunits (Fritschy et al., 1998), even in tissue exposed to minimal fixation.  In 

pilot experiments of the current study, microwave irradiation methods designed for free-

floating section immunohistochemistry were originally attempted but abandoned due to 

compromised tissue morphology, with some of the tissue appearing to come off the 

slide.  Thus a gentler method of antigen retrieval developed for sections on slides was 

used (Dixon and Harper, 2001) and found to substantially improve the signal to noise 

ratio of !2 subunit staining.  Of note, !1 staining seemed largely unaffected by this 

antigen retrieval method suggesting limited epitope masking occurs during fixation with 

this antibody.  Thus no antigen retrieval was used in the !1 staining protocol described 

in section 4.2.4.   

The gentle antigen retrieval method involved thawing slides for 20 minutes at 

room temperature then incubating in a polyacetyl staining box (HD Scientific, 
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Blacktown, NSW, Australia) containing 0.01 M citric acid buffer (pH 6.0) and 

suspended in boiling water.  The temperature of the citric-acid buffer was maintained at 

90°C over a 90 minute incubation period and then the polyacetyl staining box was 

removed from the boiling water and cooled to room temperature.  Slides were then 

removed from the citric acid buffer and washed for 3 x 10 minutes in 0.1 M TBS.    

 

ii)  Blocking 

Previous studies using the !2 antibody provided by The Institute of Pharmacology 

and Toxicology, University of Zurich, Switzerland have not used blocking steps prior to 

primary antibody incubation (Fritschy and Mohler, 1995; Fritschy et al., 1998).  Pilot 

studies indicated no significant effect of peroxidase, serum (2-10% NGS) or non-serum 

(Dako) protein blocking on !2 subunit staining.  Thus no blocking step was performed 

for the !2 subunit immunoperoxidase procedure in the present study. 

 

iii)  Primary antibody incubation 

In pilot studies, the primary antibody (0.2 mg/mL stock) was titrated 1:200-

1:2000 against the secondary antibody (1:100, 1:200 and 1:500).  The minimum 

concentration that provided sufficient antibody signal 1:300 v/v was used.  The primary 

antibody was diluted in 0.1 M TBS containing 2% v/v NGS and 0.2% v/v triton-X 100 

as described previously for this antibody (Fritschy and Mohler, 1995).  The primary 

antibody solution (300 !L per slide) was then incubated with tissue sections at 4°C for 

22 hours in a humidity chamber.  At the end of the incubation, the primary antibody 

solution was tipped off the slides and unbound primary antibody was removed by three 

10 minute washes in 0.1 M TBS. 
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iv)  Secondary antibody incubation  

The optimal dilution factor of the biotinylated secondary antibody was established 

in pilot experiments to be 1:200.  Thus, the secondary antibody was diluted 1:200 in 

0.1M TBS with 2% (v/v) NGS.  This secondary antibody solution was then incubated 

with tissue sections at room temperature for 1.5 hours as per the manufacturer’s 

instructions.  The secondary antibody solution was then tipped from the slides and 

excess solution removed by three 10 minute washes in 0.1 M TBS. 

 

v)  Streptavidin-peroxidase reaction 

Avidin-biotin and streptavidin-biotin methods for peroxidase labelling of 

secondary antibodies rely on the high affinity interaction of the vitamin biotin with the 

glycoproteins avidin and streptavidin (Harlow and Lane, 1999).  Streptavidin is neutral 

at physiological pH and thus is used preferentially to avidin to avoid background from 

unwanted ionic interactions with charged proteins (Harlow and Lane, 1999).  In 

streptavidin-biotin techniques a streptavidin-biotin peroxidase complex acts as a tertiary 

label of the antigen providing a number (16) of peroxidase molecules per biotinylated 

secondary antibody (Harlow and Lane, 1999). 

The streptavidin-peroxidase conjugate was prepared according to the 

manufacturer’s instructions for the Standard Vectastain Elite ABC kit.  Briefly, 

components A and B were each diluted 1:50 in 0.1 M TBS and this solution was 

incubated for 30 minutes at room temperature to allow conjugation of the two 

components.  This streptavidin-peroxidase solution was then incubated with the tissue 

for 45 minutes at room temperature as per the manufacturer’s instructions.  The solution 
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was then tipped from the slides and excess removed by three 10 minute washes in 0.1 M 

TBS. 

 

vi)  DAB reaction 

Colorimetric visualisation using DAB was performed as described in section 

4.2.4.2 (see part v). 

 

vii)  Coverslipping slides 

Slide coverslipping was performed as described in section 4.2.4.2 (see part vi). 
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4.2.6. Image acquisition 

4.2.6.1. Brightfield microscopy image capture  

Immunostained images were collected using a binocular Olympus (BX51, 

Olympus Optical Ltd, Mount Waverley, Victoria, Australia) light microscope set up for 

brightfield microscopy under Köhler illumination conditions.  The microscope was 

fitted with a DC500 digital colour camera connected to a PC, using the Leica image 

capture software IM1000 (Leica Biosystems, Mount Waverley, Victoria, Australia).  

Digital shading corrections were performed using the IM1000 software to ensure even 

illumination across the captured field of view.  Images for analysis were then captured 

as 8 bit greyscale tiff images (1024 x 1024) on a 4X, numerical aperture 0.16 plan 

apochromat objective.  Digital images of each region to be analysed were captured from 

8 sections per animal per antibody in each hemisphere.   

Prior to image capture a number of sections were viewed such that the microscope 

light intensity could be adjusted to provide maximal signal range whilst ensuring no 

signal was lost through over- or under-saturation. All images were taken for a given 

antibody in a given region on the same day under constant conditions of exposure time 

(684 ms) and gamma (=1).  Despite all precautions to ensure consistency in imaging, it 

is expected that the illumination provided by the microscope light source will vary over 

a given session from variations in the voltage supplying the light source.  Such 

variations were accounted for by randomising the order of imaging across groups and 

making background corrections in the final image analysis.  Representative captured 

images from each group were then compiled in Adobe Photoshop V7.0 (Adobe Systems 

Incorporated, San Jose, USA) for presentation.  
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4.2.6.2. Brain regions examined 

Figure 4.1 shows the brain regions examined.  Brain regions were defined by the 

experimenter circling a the region on the digital image with reference to cresyl violet 

stained slides and the mouse brain atlas (Paxinos & Franklin, 2001).  Brain regions 

selected were those where the developmental subunit switch was prominent, well 

characterised and occurred in late gestation or early postnatal life of rodents.  The 

amygdala (central, basal and lateral nuclei) was examined as it has previously been 

shown to have altered ! subunit expression in adulthood when exposed to different 

early-life manipulations (Caldji et al., 2000b).  On sections taken from between bregma 

2.00 and 0.00 mm the following regions were examined; cingulate cortex, frontal cortex 

(M1, M2), somatosensory cortex (SS, layers I-VI) as illustrated in figure 4.1.  On 

sections taken from between bregma 0.00 and -2.00 mm the following regions were 

examined; somatosensory cortex (SS, layers I-VI), hippocampus (CA1-CA2, CA3, 

dentate gyrus (DG)), amygdala (lateral, basolateral, central) and hippocampal layers of 

the CA1 (striatum oriens, pyramidal cell layer, striatum radiatum) and dentate gyrus 

(molecular cell, granule cell, polymorphic cell), as shown in figure 4.1. 



PART C:  EARLY-LIFE STRESS 

CHAPTER 4 

 

 144 

 
Figure 4.1: Brain regions examined in immunohistochemistry experiments.  Images are reproduced 
with permission from “The Mouse Brain Atlas in Stereotaxic Coordinates” (Paxinos & Franklin, 2001).  
Regions examined in this experiment are labelled with the following abbreviations:  cingulate cortex (Cg); 

motor cortices (M1, M2); somatosensory cortex (SS); Cortical layers (I-VI); basolateral amygdala (BLa); 
central amygdala (Ce); lateral amygdala (La); dentate gyrus (DG); CA1 stratum oriens (Or); CA1 pyramidal 
cell layer (Pyr); CA1 stratum radiatum (Rad); DG molecular cell layer (Mol); DG granule cell layer (Gran); 
DG polymorphic cell layer (Poly).  

 

4.2.7. Data analysis 

4.2.7.1. Semi-quantitative image analysis  

Immunohistochemistry is most often used to determine cellular location of 

proteins.  Under controlled conditions, this method is also used with computer aided 

image analysis to examine amounts of reaction product (Auger et al., 1995; Benno et 

al., 1982a; Benno et al., 1982b; Huang et al., 1996; Mize et al., 1994). In the absence of 

calibrated standards, the non-linear nature of the peroxidase reaction precludes 

statements relating immunoreactivity to absolute protein quantities, however differences 

in the regional optical densities of the reaction product may be used to make 

conclusions regarding changes in the protein density between groups in certain brain 

regions.   This semi-quantitative method for immunohistochemistry data analysis is 

particularly applicable to comparing different treatment groups in levels of GABAA 

receptor staining (Yu et al., 2006) which is typically diffuse, including membrane and 
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subcellular staining amongst neuropil, making delineation of individual cells for 

stereological counts or cellular protein densities highly subjective. 

Optical density scores in arbitrary units were calculated using similar methods to 

that of Yu et al. (2006) in a GABAA receptor subunit immunohistochemistry study.  

Mean optical density (sum of pixel values / number of pixels) was measured in each 

brain region of interest on 8 bit greyscale digital images (1024 x 1024 pixels) using the 

program Image Quant v1.1 software (Molecular Dynamics, ITC-Academic Computing 

Health Science, University of Virginia, USA).  For each brain region examined four 

optical density measurements were made (2 per hemisphere) on each section.  

Background optical density was measured from white matter on the same section and 

this was subtracted from the mean optical density measured for each brain region.  

 

4.2.7.2. Statistical analysis 

All statistical analyses were performed using SPSS V15.0 (SPSS, Inc., Chicago, 

Ill., USA).  To examine the effects of sex and early-life stress on !1 or !2  subunit 

density in a given brain region, between-subjects type III two-way ANOVA was 

conducted followed by pairwise Bonferroni’s planned contrasts to determine the source 

of significant main effects.  Means comparison contrasts were used to examine the 

source of differences for significant sex x early-life environment interactions.  
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4.3. Results: Early-life environment effects on GABAA receptors 

4.3.1. !1 Subunit immunoreactivity 

4.3.1.1. !1 Subunit distribution 

!1 Subunit immunohistochemistry (IHC) revealed a selective pattern of 

distribution (see table 4.1).  In general, the !1 subunit expression was greatest in the 

cortex with abundant expression throughout the frontal (motor), somatosensory and 

cingulate cortices of all animals.  !1 subunit immunoreactivity (IR) in the cortex 

showed a particularly strong band of staining in layer IV throughout the neocortex and a 

somewhat weaker band of staining in layer V.  In the hippocampus, !1 IR was greatest 

in the CA1 region with only weak to moderate staining in the DG.  Furthermore, the !1 

subunit was not expressed in the layers with the greatest !2 IR - the cell body layers 

(pyramidal layers of CA1-CA3 and the granule cell layer of the dentate gyrus). !1 

staining was moderate in the amygdala, being particularly weak in the central nucleus 

where !2 staining was strong.  In the thalamus, the !1 subunit was abundantly expressed 

in most nuclei, particularly the lateral dorsal and the ventral-lateral nuclei, although it 

was absent in the reticular nucleus and weak in the periventricular nucleus.   In the more 

medially positioned thalamic nuclei !1 expression was moderate. 

 



PART C:  EARLY-LIFE STRESS 

CHAPTER 4 

 

 147 

4.3.1.2. !1 Subunit regional IR 

Table 4.1 shows the optical density of !1 subunit IR in male and female mice 

exposed to either EH or NH early-life conditions in various brain regions.  Two-way 

ANOVA (sex x early-life) of this data for each of the brain regions examined showed 

there were no significant main effects of sex or early-life condition in any of the brain 

regions examined.  No significant sex x early-life environment interaction effects were 

observed in any of the brain regions examined either. 

 

 

 

Table 4.1:  Regional optical density scores for the GABAA receptor !1 subunit immunoreactivity 

by brain region in males and females exposed to EH and NH early-life conditions.  Data are given 
as mean relative OD±SEM (n).   

Male Female 

 
Brain Region 

EH NH EH NH 

CING 88.92±7.4 (5) 87.43±7.8 (6) 78.50±3.3 (5) 89.35±8.6 (5)  

M1 84.20±11.3 (5) 84.95±6.1 (6) 74.67±4.2 (5) 94.01±7.2 (5) 

M2 82.46±14.5 (5) 80.57±7.0 (6) 79.08±5.6 (5) 94.75±8.0 (5) 

C
O

R
T

E
X

 

SS 85.49±7.7 (5) 72.74±8.0 (6)  75.97±6.0 (5) 84.43±5.4 (5) 

CA1 105.70±8.9 (5) 100.67±11.9 (6) 108.45±5.7 (5) 105.36±8.3 (5) 

CA3 48.25±3.8 (5) 46.32±5.3 (6) 48.83±3.3 (5) 50.68±6.6 (5) 

H
IP

P
 

DG 68.96±5.4 (5) 61.59±6.1 (6) 62.05±5.1 (5) 57.56±4.4 (5) 

VL 87.06±9.1 (5) 83.74±8.2 (6) 81.11±6.8 (5) 80.30±8.8 (5) 

T
H

A
L

 

LD 96.32±6.5 (5) 94.00±7.7 (6) 93.05±7.6 (5) 88.64±7.1 (5) 

Lateral 77.28±10.7 (4) 86.2±3.4 (5) 96.0±10.6 (4) 77.91±10.7 (4) 

BLa 53.28±11.8 (4) 57.93±13.0 (5) 63.25±8.4 (4) 59.56±8.5 (4) 

A
M

Y
G

 

CeA 17.13±2.2 (4) 12.46±6.4 (4) 15.09±5.5 (4) 16.69±1.8 (4) 

Abbreviations:  Cingulate cortex (CING), primary motor cortex (M1), secondary motor cortex (M2), 
somatosensory cortex (SS), hippocampus (HIPP), dentate gyrus (DG), thalamus (THAL), ventrolateral 
thalamic nucleus (VL), lateral-dorsal thalamic nucleus (LD), amygdala (AMYG), basolateral amygdaloid 
nucleus (BLa), central amygdaloid nucleus (CeA). 
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4.3.1.3. !1 Subunit IR in cortical laminae 

Figures 4.2 and 4.3 show the effects of sex and early-life environment on !1 

subunit IR in the cortical laminae of region S1 of the somatosensory cortex.  Results of 

the two-way ANOVA shown in table 4.2 indicated !1 subunit IR is significantly 

different between sexes in layers II-III.  This means that regardless of early-life 

condition, males showed greater !1 IR compared with females (mean difference EH: 

6.3±4.5; NH: 14.4±6.6).  No other main effects of sex or early-life condition were 

observed for !1 subunit IR.  As shown in table 4.2, significant sex x early-life 

interactions were observed for !1 subunit IR in layers IV, V and VI, indicating that the 

effects of early-life stress depend on sex in each of these cortical layers.  Post-hoc 

contrast analysis showed that in layers IV, V and VI, NH females had increased !1 IR 

relative to EH females (layer IV mean difference 17.7±8.2, p=0.049: layer V mean 

difference: 16.0±7.2, p=0.046; layer VI mean difference: 15.0±6.4, p=0.047) whilst NH 

and EH males did not vary significantly (layer IV p=0.290; layer V p=0.582; layer VI 

p=0.870).  In layers V and VI, no sex differences were observed in EH (layer V 

p=0.132; layer VI p=0.161) or NH groups (layer V p=0.307; layer VI p=0.612).  In 

layer IV EH males had increased !2 IR relative to EH females (mean difference: 

22.6±9.2, p=0.029), whilst no sex difference occurred in NH mice (p=0.559).  

 

Table 4.2:  Results of 2-way ANOVA tests for !1 subunit immunoreactivity in cortical laminae.  

Tests reaching significance with p<0.05 are highlighted. 

Cortical Layer Sex Early-life environment 
Sex x Early-life 

environment 

I F(1,17)=0.02, p>0.05 F(1,17)=0.86, p>0.05 F(1,17)=0.26, p>0.05 

II-III F(1,17)=4.70, p<0.05 F(1,17)=4.14, p>0.05 F(1,17)=0.71, p>0.05 

IV F(1,17)=1.56, p>0.05 F(1,17)=0.27, p>0.05 F(1,17)=4.50, p<0.05 

V F(1,17)=1.79, p>0.05 F(1,17)=0.42, p>0.05 F(1,17)=4.44, p<0.05 

VI F(1,17)=0.56, p>0.05 F(1,17)=3.36, p>0.05 F(1,17)=4.56, p<0.05 
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Figure 4.2:  Representative images of !1 subunit immunoreactivity in the somatosensory cortex.  

Images are taken from male (a,b) and female (c,d) mice exposed to EH (a,c) and NH (b, d) early-life 
environmental conditions. Scale 1 mm. 

 
 
 
 
 

 

Figure 4.3: The effects of sex and early-life condition on !1 subunit expression by cortical layer. Data 

represent mean relative optical density±SEM in optical density units (ODU).  *p<0.05 denotes significant 
effects of early-life relative to EH group of same sex following a significant interaction. ^p<0.05 denotes 
significant effects of sex relative to males of the same early-life condition following a significant interaction.  
Bars represent significant main effects at p<0.05 for * early-life and ^ sex. 
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4.3.1.4. !1 Subunit IR in hippocampal laminae 

Figures 4.4 and 4.5 show the effects of sex and early-life condition on !1 subunit 

IR in hippocampal layers.  Results of the two-way ANOVA shown in table 4.3 indicate 

a significant reduction  in !1 IR in the molecular cell layer and polymorphic cell layer 

of the dentate gyrus of NH mice compared with EH mice when data were averaged for 

sex.  No significant main effects of sex or sex x early-life condition interactions were 

observed in any hippocampal layers (see table 4.3).   

 
Table 4.3:  Results of 2-way ANOVA tests for !1 subunit immunoreactivity in layers of the 

hippocampus CA1 and DG subregions.  Tests reaching significance with p<0.05 are highlighted. 

Hippocampal Layer Sex Early-life environment 
Sex x Early-life 

environment 

Stratum oriens F(1,19)=1.24, p>0.05 F(1,19)=1.12, p>0.05 F(1,19)=0.45, p>0.05 

Pyramidal cell F(1,19)=0.01, p>0.05 F(1,19)=0.00, p>0.05 F(1,19)=1.02, p>0.05 

Stratum radiatum F(1,19)=1.59, p>0.05 F(1,19)=0.38, p>0.05 F(1,19)=0.80, p>0.05 

Molecular cell F(1,19)=0.00, p>0.05 F(1,19)=4.22, p<0.05 F(1,19)=0.55, p>0.05 

Granule cell  F(1,19)=0.40, p>0.05 F(1,19)=0.31, p>0.05 F(1,19)=0.24, p>0.05 

Polymorphic F(1,19)=0.04, p>0.05 F(1,19)=4.12, p<0.05 F(1,19)=0.97, p>0.05 
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Figure 4.4:  Representative images of !1 subunit IR in the hippocampus.  Images are taken from 

male (a,c) and female (b, d) mice exposed to EH (a,b) and NH (c,d) early-life environmental conditions. 
Scale 1 mm. 

 
 
 

 

Figure 4.5: The effects of sex and early-life condition on !1 subunit expression by layer in the CA1 

and dentate gyrus hippocampal subregions. Data represent mean relative optical density±SEM in 
optical density units (ODU). Bars represent significant main effects at p<0.05 for * early-life condition. 
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4.3.2. !2 Subunit immunoreactivity 

4.3.2.1. !2 Subunit distribution 

Similar to !1 subunit expression, !2 IR was high in the cortex with expression 

throughout the frontal (motor), somatosensory and cingulate cortices (see table 4.4).  

However, the pattern of !2 staining was distinguished by its preferential distribution in 

the outer cortical layers (I-IV) with weaker IR in the deeper cortical layers (V-VI) (see 

figure 4.6).  The !2 subunit was abundant in the hippocampus with slightly stronger 

staining in the dentate gyrus compared with the CA1-CA3 regions.  A clear laminar 

pattern was also observed in the hippocampus for the !2 subunit (see figure 4.8) with 

strong bands of staining distinguishing the cell body layers where !1 immunostaining 

was largely absent (pyramidal cell layers of CA1-CA3 and the granular cell layer of the 

dentate gyrus), from the more moderately stained dendritic layers.  The only layer 

showing weak !2 immunostaining in the hippocampus was the polymorphic cell layer 

of the dentate gyrus.  In the amygdala, !2 subunit IR was also more abundant than !1 

with strong staining in nuclei where !1 was weak such as the central nucleus of the 

amygdala.  In the thalamus, the !2 subunit was only weakly expressed with the 

exception of nuclei such as the reticular and the periventricular nuclei where the !1 

expression was low.   

 

4.3.2.2. !2 Subunit regional IR 

Table 4.4 shows the effects of early-life condition and sex on the mean !2 subunit 

relative optical density values in various brain regions.  Table 4.5 shows the results of 

the two-way ANOVA (sex x early-life) of this data for each of the brain regions 

examined.  In the cortex, no main effects were observed with the exception of a 
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significant main effect of early-life stress in the somatosensory cortex where NH mice 

showed reduced !2 subunit IR relative to EH mice.  However, a significant interaction 

in the somatosensory cortex indicated that effects of early-life stress varied for males 

and females.  Post-hoc analysis showed that whilst NH males had reduced !2 subunit IR 

compared with EH males (mean difference 25.2±9.4; p=0.016), early-life environment 

did not affect !2 IR in females (p=0.763).  EH females also showed reduced !2 IR 

relative to EH males (mean difference 21.3±9.4; p=0.037) but NH males and females 

did not vary (p=0.934).   

In the hippocampus and amygdala early life condition did not affect !2 subunit 

regional IR (see table 4.5).  However, there was a significant main effect of sex in the 

dentate gyrus with females showing increased !2 subunit IR in this region compared 

with males regardless of early-life environment (mean difference: EH 13.6±5.5; NH 

11.0±6.7).  There were no other significant main effects of sex in any of the 

hippocampal or amygdalar regions examined (see table 4.5).  

In the thalamus, there was a significant interaction in the lateral-dorsal nucleus but 

not the ventrolateral nucleus (see table 4.5) indicating that the effects of early-life stress 

were sex-dependent in this nucleus.  Post-hoc analysis showed that whilst NH females 

did not vary from EH females (p=0.494), NH males showed reduced !2 subunit IR 

relative to EH males (mean difference 14.2±5.3; p=0.046).  There were no other  

sex differences in the EH (p=0.133) or NH mice (p=0.252). 
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Table 4.4:  Regional optical density scores for the GABAA receptor !2 subunit immunoreactivities 

by brain region in males and females exposed to EH and NH early-life conditions.  Data are given as 
mean relative OD±SEM (n). 

 

Table 4.5:  Results of 2-way ANOVA tests for !2 subunit immunoreactivity in various brain regions.  

Tests reaching significance with p<0.05 are highlighted. 

Brain Region Sex Early-life environment 
Sex x Early-life 

environment 

CING F(1,19)=2.49, p>0.05 F(1,19)=1.47, p>0.05 F(1,19)=0.08, p>0.05 

M1 F(1,19)=1.00, p>0.05 F(1,19)=1.88, p>0.05 F(1,19)=0.27, p>0.05 

M2 F(1,19)=0.41, p>0.05 F(1,19)=0.01, p>0.05 F(1,19)=0.45, p>0.05 

SS F(1,19)=2.20, p>0.05 F(1,19)=4.52, p<0.05 F(1,19)=5.58, p<0.05 

CA1 F(1,17)=2.86, p>0.05 F(1,17)=2.28, p>0.05 F(1,17)=0.15, p>0.05 

CA3 F(1,17)=3.27, p>0.05 F(1,17)=0.08, p>0.05 F(1,17)=0.60, p>0.05 

DG F(1,17)=4.62, p<0.05 F(1,17)=0.54, p>0.05 F(1,17)=0.05, p>0.05 

VL F(1,17)=3.19, p>0.05 F(1,17)=0.14, p>0.05 F(1,17)=0.18, p>0.05 

LD F(1,17)=0.06, p>0.05 F(1,17)=0.88, p>0.05 F(1,17)=4.42, p<0.05 

Lat F(1,19)=0.57, p>0.05 F(1,19)=0.00, p>0.05 F(1,19)=0.23, p>0.05 

BLa F(1,19)=0.46, p>0.05 F(1,19)=0.21, p>0.05 F(1,19)=0.20, p>0.05 

CeA F(1,19)=0.00, p>0.05 F(1,19)=0.11, p>0.05 F(1,19)=0.02, p>0.05 

Abbreviations:  Cingulate cortex (CING), primary motor cortex (M1), secondary motor cortex (M2), 
somatosensory cortex (SS), dentate gyrus (DG), ventrolateral thalamic nucleus (VL), lateral-dorsal 
thalamic nucleus (LD), lateral amygdaloid nucleus (lat), basolateral amygdaloid nucleus (BLa), central 
amygdaloid nucleus (CeA). 

Male Female 

 
Brain Region 

EH NH EH NH 

CING 90.06±7.4 (6) 83.94 ±4.6 (6) 102.48±8.3 (6) 92.50±5.5 (5)  

M1 97.02±7.3 (6) 81.79±6.9 (6) 84.79±8.4 (6) 77.91±8.3 (5) 

M2 85.42±6.6 (6) 80.97±4.1 (6) 85.17±9.5 (6) 90.62±9.4 (5) 

C
O

R
T

E
X

 

S!  96.98±7.8 (6)* 71.79±2.4 (6)  75.71±7.5 (6) 72.63±8.0 (5) 

CA1 77.25±3.7 (6) 84.22±3.5 (5) 84.88±1.6 (6) 88.99±5.2 (5) 

CA3 89.12±3.6 (6) 92.18±8.8 (5) 105.27±4.8 (6) 98.65±7.8 (5) 

H
IP

P
 

DG"  98.01±3.8 (6) 95.11±8.1 (5) 111.65±2.7 (6) 106.11±6.7 (5) 

VL 55.87±2.4 (6) 56.01±1.9 (5) 50.28±4.2 (6) 47.06±5.9 (5) 

T
H

A
L

 

LD 58.97±2.0 (6) 45.81±5.1 (5)* 51.91±4.0 (6) 53.62±6.9 (5) 

Lateral 82.18±3.1 (6) 86.57±9.8 (6) 90.12±5.4 (6) 88.81±10.2 (5) 

BLa 82.54±2.4 (6) 89.22±10.0 (6) 90.86±2.5 (6) 90.89±8.7 (5) 

A
M

Y
G

 

CeA 101.83±6.0 (6) 100.34±10.3 (6) 102.51±3.8 (6) 98.73±10.1 (5) 

Data are given as mean±SEM (n). "  p<0.05 for a main effect of sex; !  p<0.05 for a main effect of early 

life; * p<0.05 for an effect of early-life following a significant interaction effect. Abbreviations:  Cingulate 
cortex (CING), primary motor cortex (M1), secondary motor cortex (M2), somatosensory cortex (SS), 
hippocampus (HIPP), dentate gyrus (DG), thalamus (THAL), ventrolateral thalamic nucleus (VL), 
lateral-dorsal thalamic nucleus (LD), amygdala (AMYG), basolateral amygdaloid nucleus (BLa), central 
amygdaloid nucleus (CeA). 
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4.3.2.3. !2 Subunit IR in cortical laminae 

Figures 4.6 and 4.7 show the effects of sex and early-life condition on !2 subunit 

IR in somatosensory cortical layers.  Results of the two-way ANOVA are shown in 

table 4.6. There was a significant main effect of early-life condition on !2 subunit IR in 

layer IV, V and VI, indicating that regardless of sex, NH mice have reduced !2 subunit 

IR compared with EH mice in these layers.  The difference between EH and NH mice 

was of greater magnitude in layer IV of males (layer IV: 21.0±8.7; layer V: 15.9±7.6; 

layer VI 13.5±8.7) compared with females (layer IV 12.7±9.1; layer V 13.5±6.5; layer 

VI 10.9±7.0), however, the interaction was not significant.  No other main or interaction 

effects were observed in any cortical laminae.  Thus, NH mice showed a reduction in !2 

subunit IR in cortical layers IV and V and VI relative to EH mice. 

  

Table 4.6:  Results of 2-way ANOVA tests for !2 subunit immunoreactivity in cortical laminae.  

Tests reaching significance with p<0.05 are highlighted. 

Cortical Layer Sex Early-life environment 
Sex x Early-life 

environment 

I F(1,17)=1.97, p>0.05 F(1,17)=4.08, p>0.05 F(1,17)=4.17, p>0.05 

II-III F(1,17)=0.66, p>0.05 F(1,17)=3.89, p>0.05 F(1,17)=2.53, p>0.05 

IV F(1,17)=3.23, p>0.05 F(1,17)=7.68, p<0.05 F(1,17)=0.47, p>0.05 

V F(1,17)=3.49, p>0.05 F(1,17)=5.80, p<0.05 F(1,17)=0.04, p>0.05 

VI F(1,17)=2.61, p>0.05 F(1,17)=4.43, p<0.05 F(1,17)=0.04, p>0.05 
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Figure 4.6:  Representative images of !2 subunit IR in the somatosensory cortex.  Images are taken 

from male (a,b) and female (c,d) mice exposed to EH (a,c) and NH (b, d) early-life environmental 
conditions. Scale 1mm. 

 
 
 

 

Figure 4.7:  The effects of sex and early-life condition on !2 subunit expression by cortical layer.  

Data represent mean relative optical density±SEM in optical density units (ODU).  *p<0.05, **p<0.01 
denote significant effects of early-life relative to EH group of same sex following a significant interaction. ^ 
p<0.05 denotes significant sex difference relative to males from the same early-life condition following a 
significant interaction.  Grouped bars represent significant main effects at p<0.05 for individual layers. 
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4.3.2.4. !2 Subunit IR in hippocampal laminae 

Figures 4.8 and 4.9 show the effects of sex and early-life condition on !2 subunit 

IR in hippocampal layers.  Results of the two-way ANOVA shown in table 4.7 

indicated significant main effects of sex in the molecular and polymorphic cell layers of 

the DG.  Thus, regardless of early-life condition, male mice have a small but significant 

reduction of !2 subunit IR in the molecular (mean sex difference EH 13.1±8.7; NH 

20.8±9.8) and polymorphic (mean sex difference EH 14.7±7.2; NH 10.1±6.3) cell layers 

of the DG compared with females.  No main effects of sex were observed in CA1 or the 

granule cell layer of the DG.  Furthermore, no main effects of early-life condition or sex 

x early-life condition interactions were observed in any hippocampal layers. 

 

 
Table 4.7:  Results of 2-way ANOVA tests for !1 subunit immunoreactivity in layers of the 

hippocampus CA1 and DG subregions.  Tests reaching significance with p<0.05 are highlighted. 

Hippocampal Layer Sex Early-life environment 
Sex x Early-life 

environment 

Stratum oriens F(1,19)=5.35, p<0.05 F(1,19)=0.30, p>0.05 F(1,19)=0.19, p>0.05 

Pyramidal cell F(1,19)=2.26, p>0.05 F(1,19)=0.00, p>0.05 F(1,19)=0.03, p>0.05 

Stratum radiatum F(1,19)=10.27, p<0.05 F(1,19)=0.54, p>0.05 F(1,19)=0.00, p>0.05 

Molecular cell F(1,19)=7.10, p<0.05 F(1,19)=0.65, p>0.05 F(1,19)=0.76, p>0.05 

Granule cell  F(1,19)=0.79, p>0.05 F(1,19)=0.02, p>0.05 F(1,19)=0.06, p>0.05 

Polymorphic F(1,19)=1.67, p>0.05 F(1,19)=0.03, p>0.05 F(1,19)=0.09, p>0.05 
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Figure 4.8:  Representative images of !2 subunit IR in the hippocampus.  Images are taken from male 

(a, c) and female (b, d) mice exposed to EH (a,b) and NH (c, d) early-life environmental conditions. Scale 
1mm. 
 

 

Figure 4.9: The effects of sex and early-life condition !2 subunit expression in the CA1 and DG 

hippocampal subregions. Data represent mean relative optical density±SEM in optical density units 
(ODU).  Grouped bars represent significant main effects of sex for individual layers of the hippocampus at ^ 
p<0.05. 
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4.4. Discussion 

4.4.1. Sex differences in GABAA receptor !  subunit expression 

Results from the present study showed sex differences in GABAA receptor !1 and 

!2 subunit density and distribution, which occurred regardless of early-life condition.  

In layer II-III of the SS cortex, males were observed to have increased IR for the !1 

subunit compared with females. Consistent with this finding, previous work has 

observed increased !1 subunit mRNA in the SS cortex of male relative to female rats 

(Li et al., 2007).  Findings from the present study using immunohistochemical 

procedures extend upon the previous RT-PCR study (Li et al., 2007) to suggest that 

increased !1 subunit in the male SS cortex is either specific to layer II-III of the SS 

cortex or alternatively, is only translated to differences in protein expression in these 

outer cortical layers. That sex differences in GABAA receptor protein subunit 

expression may be confined to the outer cortical layers is also consistent with findings 

in chapter 2, where sex differences in [
3
H]GABA receptor binding sites at GABAA 

receptors were most prominent in the outer cortical layers. 

The present study also observed increased !2 subunit IR in the dentate gyrus of 

females relative to males.  Interestingly, findings in chapter 2 suggested that whilst sex 

differences occurred in the dentate gyrus of the hippocampus, males had a greater 

number of [
3
H]GABA binding sites at GABAA receptors compared with females.  In 

order to consolidate this finding, sex differences in other GABAA receptor subunits 

require investigation, such as the !5 subunit, which is also highly expressed in this 

region (Crestani et al., 2002).  
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It is important to note that most regions examined in the present study showed no 

sex differences in the IR for either the !1 or !2 GABAA receptor subunits.  There are 

limited studies examining !1 and !2 subunit expression in both adult males and females, 

with most previous studies of sex differences focussing on the less abundant subunits 

GABAA receptor subunits such as the !4 and # subunits (Gallo and Smith, 1993; 

Guinello et al., 2003; Lovick et al., 2005; Smith et al., 1998; Sundstrom-Poromaa et al., 

2002).  Despite this, one previous study also observed no sex differences in !1 or !2 

immunoreactivity in the CA1 region of the hippocampus, the amygdala and the 

thalamus (Davis et al., 2000), which is consistent with findings of the present study.  

Thus, the density of the !1 and !2 subunits appear to be largely conserved across most 

brain regions. 

Whilst the sex differences in !1 and !2 subunit expression were limited, any 

differences in the expression of these subunits would be important to brain function and 

behaviour.  Previous studies have demonstrated that !1 and !2 subunits mediate 

different behavioural effects of benzodiazepines (Fritschy and Brunig, 2003; Mohler et 

al., 2001; Rudolph et al., 1999) and affect both GABAA receptor pharmacological 

sensitivities and channel conductance times (Bosman et al., 2002; Brooks-Kayal and 

Pritchett, 1993; Juttner et al., 2001; Kapur and MacDonald, 1999; Okada et al., 2000).  

Thus, sex differences in the relative amounts of the !1 and !2 subunit proteins may 

contribute to the sex differences observed in the behavioural effects of GABAA receptor 

compounds such as ethanol (Crippens et al., 1999; Tayyabkhan et al., 2002; Webb et 

al., 2002; Wilson et al., 2004), allopregnanalone (Fernandez-Gausti and Picazo, 1997; 

1999; Guinello and Smith, 2003) and diazepam (Fernandez-Gausti and Picazzo, 1990; 

1997; Fernandez-Gausti and Picazzo, 1999; Wilson et al., 2004).  Furthermore, future 
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work should examine whether males and females vary in their responses to the  

!1-selective compounds such as zolpidem. 

 

4.4.2. Effects of early-life stress on GABAA receptor !  subunit IR 

4.4.2.1. Effects of early-life stress on adult male GABAA receptor !  subunit IR 

Findings of the present study indicate long-term effects of early life stress on 

GABAA receptor ! subunit protein regional densities in males.  In adulthood, NH males 

showed reduced !2 subunit expression in layers I, IV, V and VI of the SS cortex and the 

lateral-dorsal thalamic nucleus relative to EH males. This is the first study to show an 

effect of early-life environment on ! subunit expression in the male SS cortex and 

thalamus.  Additionally, reduced !1 subunit expression in the polymorphic and 

molecular cell layers of the dentate gyrus was also observed in NH males compared 

with EH males consistent with a previous study of !1 subunit mRNA expression in the 

DG (Hsu et al., 2003).  However, the authors of this previous study also observed 

effects of early-life stress on !2 subunit mRNA in the adult male DG, which is in 

contrast to the present study where no differences according to early-life condition were 

observed for the !2 subunit IR in this region.  Hsu et al. (2003) also used a different 

early-life stress procedure to the present study, involving a comparison of facility-reared 

controls (AFR) with maternally separated (MS) rats.  Given that it is difficult to 

anticipate the specific handling procedures of the AFR group and the maternal 

separations performed were on specific days (PND 9-10) during the post-natal period, 

whilst the present study involved variations across the entire first 2 post-natal weeks, 

the findings of Hsu et al. (2003) may not be directly comparable with those of the 

present study.  However, it is also possible that changes in !2 mRNA in the DG that 
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were observed by Hsu et al. (2003) are not translated to changes in protein density and 

thus not observed in the present study.  Alternatively, the semi-quantitative analysis of 

the relative staining OD to compare subunit density between groups may not be as 

sensitive to subunit changes as the rt-PCR technique used by Hsu et al. (2003).  Thus at 

least for an EH-NH early-life model it appears that !2 subunit protein expression is not 

affected in the DG. 

No early-life environment-induced changes were observed in the !1 or !2 subunit 

protein density or distribution in any other brain regions.  The regionally limited effects 

of early-life stress observed for the !1 subunit in the present study are consistent with a 

previous study showing that zolpidem binding at !1 subunit-containing GABAA 

receptors did not vary between EH and NH groups in the frontal cortex and amygdala 

(Caldji et al., 2000b).  As previous studies have only examined !2 subunit changes 

following early-life environmental stressors in the DG (Hsu et al., 2003), the present 

study is the first to suggest that the effects of early-life stress on the !2 subunit are 

regionally dependent.   

 

4.4.2.2. Effects of early-life stress on adult female GABAA receptor !  subunit IR 

Findings of the present study also indicated long-term effects of early-life stress 

on GABAA receptor ! subunit protein densities in females.  Similarly to males, adult 

NH females showed a reduction in !2 subunit density in the lower SS cortical layers as 

well as a reduction in !1 subunit density in the polymorphic and molecular cell layers of 

the DG relative to EH females.  NH females also showed an increase in !1 subunit 

density in the lower layers (IV, V, VI) of the SS cortex.  To our knowledge no previous 

studies have examined the effects of early-life environment on female ! subunit 
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expression in adulthood and thus, this is the first study to indicate long-term changes 

occur in females.  The changes observed here in the female brain occurred in similar 

regions to males, with the exception of the laterodorsal nucleus of the thalamus.   Thus, 

the present study indicates subtle changes in the environment of early-life affect the 

adulthood expression of GABAA receptor ! subunits in similar regions in both males 

and females.  

 

4.4.3. Neurodevelopmental disruption and long-term effects of early-life stress  

Whilst the present study did not examine GABAA receptor subunit expression at 

different developmental time-points, and so cannot causally relate adulthood changes in 

! subunit expression to a disruption of the developmental changes in GABAA receptors, 

the regional dependence of the effects observed in the present study are consistent with 

disruptions of the ! subunit developmental reshuffling that occurs over the first few 

postnatal weeks.  The !2 subunit was only affected in the adult male lateral-dorsal 

thalamus and lower cortical layers, the two major regions undergoing the most 

prominent reductions in this subunit during development (Fritschy et al., 1994).  The 

fact that !2 expression in the supragranular layers of the SS cortex, which undergo only 

small reductions in !2 subunit expression during development (Fritschy et al., 1994), 

were not affected by early-life environment, supports the hypothesis that early-life 

effects on adulthood ! subunit expression may be mediated via a disruption of the 

developmental reshuffling of these subunits.  In females the lower cortical layers of the 

SS cortex also showed changes in ! subunit expression with both the !1 and !2 subunits 

being affected but in opposite directions. This suggests that both the developmental 

increase in the !1 subunit and decrease in the !2 subunit may be disrupted in females.  



PART C:  EARLY-LIFE STRESS 

CHAPTER 4 

 

 164 

Interestingly, if early-life effects on adulthood ! subunit expression are mediated via a 

disruption of the normal developmental changes in these subunits, then results of the 

present study would then suggest that the early-life stress condition (NH group), 

exaggerates the developmental changes in the expression of these subunits that occur 

during development.  

The subunit switch has been associated with important developmental properties 

and a developmental disruption of this process would suggest more extensive 

neurodevelopmental aberrations.  For example, the !2:!1 subunit switch has been 

shown to occur in a similar fashion in a number of species including rodents, primates 

and humans, and across sexes (Brooks-Kayal and Pritchett, 1993; Davis et al., 2000; 

Fritschy et al., 1994; Hendrickson et al., 1994; Hornung and Fritschy, 1996; McKernan 

et al., 1991; Reichelt et al., 1991), suggesting that the occurrence of the switch is 

important in mammalian brain development.  Indeed, studies have implicated the 

subunit switch in synapse formation (Hornung and Fritschy, 1996) and / or maturation 

(Hendrickson et al., 1994), with evidence from !1 subunit knockout mice indicating the 

switch aids the process of axonal sorting and synaptic consolidation (Heinen et al., 

2003; Hendrickson et al., 1994).  Thus, the different adulthood !1:!2 subunit ratios 

observed in the present work as a result of early-life stress, may represent disruptions to 

a range of important neurodevelopmental processes that have been associated with the 

developmental ! subunit switch.  

 

4.4.4. Relevance of altered GABAA receptor !  subunit expression in adulthood 

The present study expands on work of others suggesting that handling-induced 

behavioural changes may be mediated by alterations in GABAA receptors (Bodnoff et 
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al., 1987; Bolden et al., 1990; Caldji et al., 2000a; Caldji et al., 2000b). Unfortunately, 

it is difficult to differentiate between differences in GABAA receptor subunit expression 

and a loss in the number of GABAergic cells within a region using GABAA receptor 

immunohistochemistry (Yu et al., 2006).  Nonetheless, it is thought that the expression 

ratio between different subunits is a more accurate predictor of inhibitory tone in a 

region (Brooks-Kayal et al., 1998; Brooks-Kayal et al., 2001).   

The !1 and !2 subunits are abundant in the regions where they were affected by 

early-life environment and so it is likely that alterations in their expression would affect 

adulthood GABAergic function. In this study the NH group show an increased !1:!2 

ratio in a regionally specific fashion whilst EH group showed a reduced ratio of !1:!2 

subunits.  It is well documented that different GABAA receptor subtypes exhibit distinct 

pharmacological and electrophysiological properties (Brooks-Kayal et al., 2001; Mohler 

et al., 2001). For example, previous studies have demonstrated that distinct GABAA 

receptor subunits are associated with different behavioural effects of benzodiazepines, 

with the !1 subunit being associated with the sedative, amnesic, and anticonvulsant 

actions, whilst "2, "3, and "5 subunits are thought to mediate the anxiolytic effects of 

these drugs (Fritschy and Brunig, 2003; Mohler et al., 2001; Rudolph et al., 1999).  

Furthermore, !2 subunit-containing receptors show slower decay times and greater 

mIPSP current amplitudes than !1 receptors (Bosman et al., 2002; Heinen et al., 2004; 

Hollrigel and Soltesz, 1997; Hutcheon et al., 2000; Juttner et al., 2001; Okada et al., 

2000; Ortinski et al., 2004; Taketo and Yoshioka, 2000; Vicini et al., 2001).  These 

longer decay times are thought to support enhanced synaptic efficacy that is associated 

with anxiolysis in animals with greater !2:!1 subunit ratios (Franks and Lieb, 1994).  

Thus, the increased !1:!2 subunit ratio observed in both the male and female groups 
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exposed to an NH relative to the EH early-life condition is consistent with the increased 

adulthood anxiety in NH groups compared with EH groups that was reported in  

chapter 3.  Early-life induced alterations in the adulthood !1:!2 subunit ratios observed 

in the present study therefore support behavioural findings that the NH manipulation 

produces a more anxious adulthood behavioural phenotype than the EH manipulation. 

4.4.5. Early-life stress and GABAA receptor disturbances in psychiatric disorders 

The effects of early-life stress on GABAA receptor !1 and !2 subunit protein 

density observed in the present study may be relevant to understanding GABAA receptor 

changes that are seen in psychiatric illnesses.  In schizophrenia, studies have shown 

increased !1 and !2 subunit protein expression in the PFC of schizophrenic subjects 

(Ishikawa et al., 2004; Pesold et al., 1998; Volk et al., 2002), whilst in depression 

reduced !1, !3, !4 and # subunit mRNA expression is seen in the frontopolar cortex of 

depressed suicides (Merali et al., 2004).  Given that the present study showed effects of 

early-life stress on ! subunit expression were only evident in the SS cortex, laterodorsal 

thalamus and certain hippocampal laminae, it is evident that GABAA receptor 

pathologies observed in psychiatric illnesses are unlikely to arise solely from early-life 

stress.  However, there are a number of discrepancies in the literature regarding how 

GABAA receptors are affected in depression, perhaps due to the fact that different 

studies come from subjects dying of varying methods of suicide (Pandey et al., 1997), 

meaning there are still uncertainties regarding the nature of GABAA receptor changes in 

the depressed brain. Furthermore, as diseases such as schizophrenia and depression 

occur on a background of genetic disturbances and are associated with not only  

early-life but also stress in early-adulthood prior to symptom manifestation (McGrath et 

al., 2003), and adulthood stress is known to affect GABAA receptors (see chapter 2), it 
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is likely that the changes in GABAA receptors observed post-mortem in such diseases 

reflect a variety of these factors making it difficult to ascertain the contribution of any 

one factor alone.  

Early-life stress may also be involved in changes in GABAA receptors that occur 

in anxiety disorders.  For example, given the role of the !2 subunit in mediation of 

anxiolytic effects of GABAergic compounds (Fritschy and Brunig, 2003; Mohler et al., 

2001; Rudolph et al., 1999), it is interesting to speculate that a reduction in the !2 

subunit in the brains of adult animals exposed to early-life stress may be relevant to the 

pathology of human anxiety type disorders.  However, there is currently no information 

on how the !2 subunit is affected in anxiety disorders such as PTSD, panic disorder and 

generalised anxiety disorder.  Furthermore, in animal models of anxiety-disorders, 

abnormal cue discrimination, which is associated with pathological anxiety in humans, 

has been better associated with a change in the subcellular locations of GABAA 

receptors, namely, a loss of synaptic clustering of GABAA receptors.  Thus, in the next 

chapter (chapter 5) the effects of early-life stress on GABAA receptor synaptic 

clustering shall be examined. 

 

4.4.6. Conclusions 

Findings of the present study indicated region-dependent sex differences and 

long-term effects of early-life stress on GABAA receptor ! subunit expression.  The !1 

and !2 subunit expression in males and females was largely conserved across most 

brain regions with the exception of layer II-III of the SS cortex and the dentate gyrus.  

Early-life stress produced long term effects on the adult !1:!2 subunit ratios of the 

lower cortical layers where the NH group showed an increased !1:!2 subunit ratio as a 
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result of reduced !2 expression in males and a combined reduction of !2 and increase of 

!1 expression in females.  The increased !1:!2 subunit ratio observed in NH animals is 

consistent with the enhanced behavioural anxiety reported for these animals in  

chapter 3, however it is surprising that this was observed in the somatosensory cortex, a 

region that is not traditionally associated with anxiety. Nonetheless, the regional 

dependence of alterations in the !1:!2 subunit ratio that was observed in the present 

study is consistent with the region-dependent variations in !1:!2 subunit expression 

during the first two post-natal weeks.  Thus it is proposed that  

early-life environmental manipulations over the first two post-natal weeks exert long-

term effects on GABAA receptors via disruptions of the ! subunit developmental 

reshuffling that occurs during the same period.  
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CHAPTER 5:  

Effects of Early-Life Stress on GABAA Receptor Synaptic Clustering 

 

5.1. Introduction 

5.1.1.  Background 

 As shown in the previous study (chapter 4), early-life stress alters the ratio of 

!1:!2 subunit protein expression in a region-dependent fashion, consistent with  

long-lasting changes in behaviour.  However, both brain function and behaviour may be 

affected not only by changes in the regional protein expression of subunits for GABAA 

receptors, but also by the sub-cellular distribution of these receptors (Chhatwal et al., 

2005; Crestani et al., 1999; Levi et al., 2004).  The aggregation of receptors beneath 

inhibitory terminals is required for fast or phasic signal transmission at synapses and 

variations in the amount of synaptic GABAA receptors affect post-synaptic membrane 

currents (Levi et al., 2004).  Thus, in order to gain better insight into the 

neurophysiological changes that accompany the behavioural differences between EH 

and NH mice that were reported in chapter 3, it is important to determine if these 

different early-life conditions may also exert long-lasting changes on subcellular 

distributions of GABAA receptors.   

 GABAA receptor clustering on the post-synaptic membrane is associated with the 

protein gephyrin (Fritschy et al., 2008; Fritschy et al., 2003; Kneussel and Betz; 2000; 

Sassoe-Pognetto and Fritschy, 2000). Whilst the role of this protein in GABAA receptor 

synaptic clustering is not well understood (see section 1.3.4), several lines of evidence 

support the use of gephyrin as a synaptic marker in vivo.  For example, gephyrin is 

enriched at post-synaptic sites of GABAergic synapses throughout the brain and spinal 

cord (Bolthalter et al., 1994; Cabot et al., 1995; Craig et al., 1996; Giustetto et al., 
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1998; Sassoe-Pognetto et al., 1995; Todd et al., 1996; Triller et al., 1987), and a 

disruption in gephyrin expression via gene knockout or mRNA inhibition results in an 

impairment of GABAA receptor !2 and "2 subunit post-synaptic clustering (Essrich et 

al., 1998; Fisher et al., 2000; Kneussel et al., 1999b; Levi et al., 2004; Yu et al., 2007). 

Thus, gephyrin is presumed to provide an indication of the synaptic location of at least 

the !2 and "2 subunit-containing GABAA receptors (Essrich et al., 1998; Jacob et al., 

2005; Kneussel et al., 1999b; Levi et al., 2004), and alterations in the extent to which 

these proteins colocalise with gephyrin can indicate changes in GABAA receptor 

synaptic clustering. 

 Previous studies have observed that alterations in GABAA receptor synaptic 

clustering result in variations in brain function and behaviour.  In particular, a reduction 

in colocalisation of the !2 subunit with gephyrin in the hippocampus (CA1 and DG) of 

mice heterozygous for the GABAA receptor "2 subunit, was observed to result in 

enhanced anxiety, enhanced behavioural reactivity, a behavioural bias for threat cues 

and enhanced fear conditioning (Crestani et al., 1999).  This behavioural phenotype is 

similar to that which has been well documented for the EH-NH early-life stress model 

where NH mice show increased behavioural reactivity and anxiety relative to the EH 

group (reviewed in section 1.7.3; and see Chapillon et al., 2002; Levine, 2000; Meaney 

et al., 2001; Pryce and Feldon, 2003; Pryce et al., 2002).  Thus it is of interest to 

examine the effects of early-life environment on GABAA receptor synaptic clustering.   

 GABAA receptor synaptic clustering is particularly likely to be sensitive to  

early-life environmental manipulations.  Recruitment of GABAA receptors to clusters 

and the formation of synapses is largely post-natal in rodents, occurring at or about the 

same time as the protein switch from !2 to !1 subunits and the functional switch from 
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an excitatory to an inhibitory role of this neurotransmitter (Fritschy et al., 1994; 

Hutcheon et al., 2004; Laurie et al., 1992; Poulter et al., 1992; Viltono et al., 2008). An 

effect of early-life stress on such developmental processes would be of relevance to 

neurodevelopmental psychiatric disorders that have been associated with early-life 

environmental factors such as schizophrenia. 

 

5.1.2. Aims 

The aim of this study was to examine the effects of early-life stress and sex on the 

clustering of GABAA receptors and their cellular location.  To examine GABAA 

receptor clustering the !2 subunit and gephyrin proteins were immunofluorescently 

labelled on the same tissue sections.  Individual protein cluster properties (size, number, 

area) and the extent of colocalisation of the two proteins was measured in male and 

female mice exposed to either EH or NH early-life conditions. Measurements were 

taken from confocal images of the hippocampus as this region has been investigated 

most rigorously in previous studies relating GABAA receptor synaptic clustering to 

behaviour.  Furthermore, as we wanted to examine specific effects on receptor 

clustering that were not confounded by alterations in protein expression, measurements 

were taken from the granule cell layer of the dentate gyrus, a region observed in the 

previous study (see chapter 4) to have equivalent !2 IR across sexes and early-life 

manipulation conditions.  The present investigation will provide insight into the effects 

of early-life stress on another aspect of GABAA receptor expression that is associated 

with brain function and behaviour and thus may provide insight into the 

neurophysiological correlates of the long-term behavioural differences of the EH and 

NH groups (see chapter 3). 
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5.2. Materials and Methods:  Double-labelling immunofluorescence 

5.2.1. Materials 

5.2.1.1. General materials 

 General materials used are those described in section 4.2.1.1. 

 

5.2.1.2. Immunofluorescence materials 

 VECTASHIELD anti-fade fluorescent mounting medium was purchased from 

Vector Laboratories (Burlingame, CA, USA).  

 

5.2.1.3. Primary antibodies 

i)  !2 primary antibody 

At the time of experimentation no guinea pig raised anti-GABAA receptor !2 

subunit antibody, as described in section 4.2.5.1 (part i), was available for use and the 

only commercially available source with proven specificity was a rabbit raised IgG.   

The polyclonal rabbit anti-GABAAR !2 subunit antibody (batch # AN-01; 

0.8mg/mL) was obtained from Alomone Labs (Jerusalem, Israel).  The affinity purified 

IgG was raised in rabbits immunised with the synthetic peptide sequence 

((C)TPEPNKKPENKPA) corresponding to amino acids 393-405 at the C-terminal 

(cytoplasmic region) of the rat GABAA receptor !2 subunit.  This antibody has been 

characterized by Western blotting of rat brain membranes recognizing a single protein 

band with the appropriate molecular weight and by immunohistochemistry on mouse 

cerebellum (manufacturer's technical information).  Antigen pre-absorption studies on 

our mouse tissue using a sample of the antigen supplied by the manufacturer resulted in 

the loss of specific immunoreactivity.  Furthermore, immunofluorescent staining 
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throughout the cortex, hippocampus and thalamus produced a pattern of !2 subunit 

immunoreactivity that was identical with previous descriptions for the !2 subunit 

(Fritschy and Mohler, 1995). 

 

ii)  Gephyrin primary antibody 

The monoclonal mouse antibody (clone mAB7a; 1!g/!L) was imported from 

Synaptic Systems (Göttingen, Germany).  The affinity purified IgG1 was raised against 

purified rat gephyrin and is known to identify the brain specific 93 kDa splice variant of 

gephyrin in rat, mouse, human, pig and goldfish tissue (company data sheet).  This 

antibody has been extensively characterized by immunohistochemistry on mouse (Baer 

et al., 2000; Crestani et al., 1999; Kneussel et al., 1999a; Kneussel et al., 1999b; Kralic 

et al., 2006; Studer et al., 2006) and rat (Fritschy et al., 1998; Hermann et al., 2001) 

tissue.  The mAB7a clone is also observed to colocalise with the anti-gephyrin clone 

against the c-terminus of the gephyrin protein in mouse cerebellum (Sassoe-Pognetto 

company product page).  The staining procedure described for the current experiments, 

produced a pattern of gephyrin immunoreactivity identical with previous descriptions 

(Crestani et al., 1999; Fritschy et al., 1998). 

 

5.2.1.4. Secondary antibodies 

Secondary antibodies conjugated to Alexa Fluor® fluorescent dyes were 

purchased from Molecular Probes (Eugene, Oregon, USA).  Alexa Fluor® fluorescent 

dyes were chosen as they provide high absorbance and output, narrow spectral 

bandwidths (see section 5.2.2.5i - Visualisation of fluorescence) and are particularly 

photostable compared with other fluorescent dye conjugates (e.g. fluorescein, Texas 



PART C:  EARLY-LIFE STRESS 

CHAPTER 5 

 

 174 

red, CY3) (Invitrogen Guide to Fluorescence Handbook).  To label the rabbit primary 

antibody against the !2 subunit of the GABAA receptor an anti-rabbit IgG conjugated to 

the Alexa Fluor® 594 dye was used.  To label the mouse primary antibody directed 

against gephyrin an anti-mouse IgG conjugated to the Alexa Fluor® 488 dye was used.  

Both secondary antibodies were raised in goats and directed against affinity purified 

IgG’s (from either rabbit or mice) resulting in specific reactivity with IgG heavy chains 

and all immunoglobulin light chains (H+L) of IgG’s from the species they were raised 

against.  To minimise cross reactivity, experimenter contamination, or the binding of 

secondary antibodies to one another, each secondary antibody was highly  

cross-adsorbed.  That is, they were adsorbed against human IgG and human serum, as 

well as goat, bovine, and rat serum.  The anti-rabbit secondary antibody (intended to 

label the rabbit antibody against the !2 subunit) was also adsorbed against mouse IgG to 

reduce non-specific binding to endogenous mouse IgG or the mouse raised gephyrin 

antibody.  

 

5.2.2. Methods 

5.2.2.1.  Subjects 

Subjects are those described in section 3.2.2. Briefly, as described in section 

4.2.2.1, subjects were male (n=13) and female (n=11) Quackenbush Swiss (QS) albino 

mice, born in the animal house and exposed to either EH or NH early-life conditions 

over PND1-14. Mice were not exposed to adulthood swim stress and were those 

described as controls in section 3.2.2.6.  Thus, the following groups were examined in 

this chapter:  Males NH n=7, EH n=6; Females NH n=5, EH n=6.   
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5.2.2.2. Tissue preparation and fixation 

Tissue was collected and sectioned as described in section 3.2.2.7 and briefly 

post-fixed in 4% paraformaldehyde for 5 minutes as described in section 4.2.2.2. 

 

5.2.2.3. Experimental design 

i)  Replicates 

All staining was performed on sections thaw-mounted onto slides using the 

general principles described in the section 4.2.3.2 - Staining of sections on slides.  For 

each animal 2 replicate slides (6 sections per slide) from between bregma -0.55 and  

-2.54 mm (Paxinos and Franklin, 2001), were double-labelled in separate experiments. 

 

ii)  Pilot experiments: Confirming specificity of double-labelling procedure 

Pilot studies were first performed to optimise staining for each antibody 

individually.  Negative isotype control experiments were performed concurrently to 

monitor secondary antibody specificity.  In negative control experiments, the IgG 

concentration of the primary antibody was replaced with rabbit IgG (Dako, Carpenteria, 

CA, USA) for the !2 antibody, or mouse IgG1 (Dako, Carpenteria, CA, USA) for the 

gephyrin antibody.  These negative control slides did not produce fluorescent signals 

above the background autofluorescence when each secondary antibody was used at a 

concentration of 1:1000. 

Once single-labelling fluorescence was optimised for each antigen, simultaneous 

addition of primary antibodies then secondary antibodies was examined.  Concurrent 

negative isotype control slides, were performed to determine if secondary antibodies 

were cross-reacting with primary antibodies raised in a different species.  In these 
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experiments the primary antibody solution (containing both gephyrin and !2 subunit 

antibodies) was replaced with a negative isotype control solution, containing equal 

rabbit and mouse IgG concentrations as the !2 and gephyrin antibodies, respectively.  

Simultaneous addition of antibodies did not alter the staining properties observed in the 

single-labelling experiments.  The specificity of the simultaneous double-labelling 

technique was confirmed by ensuring no staining occurred on single-labelled slides 

where the secondary antibody was replaced with that intended to label the other primary 

antibody.  Thus, a simultaneous double-labelling procedure was used in final 

experiments.  

 

5.2.2.4. Double-labelling immunofluorescence staining procedure 

i)  Buffer 

Buffers were compared in pilot studies in an attempt to reduce background 

staining observed with both !2 and gephyrin immunofluorescence staining individually.  

0.1 M Tris-buffered saline (TBS) pH 7.4 was found to provide optimal staining across 

all protocols compared with 0.01 M phosphate buffered saline (PBS) pH 7.4.  Thus 0.1 

M TBS pH 7.4 was used throughout the procedures for washing slides and reagent 

dilution. 

 

ii)  Antigen retrieval 

Antigen retrieval was performed as described in section 4.2.5.2 (see part i). 
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iii)  Incubation with primary antibodies 

In pilot studies, the primary antibodies were individually titrated 1:50-1:2000 

against their secondary antibody solution (both diluted 1:1000) to establish working 

concentrations that were then adjusted for the simultaneous addition of antibodies in the 

double-labelling procedure.  The final dilution factor of the !2 primary antibody was 

1:100 and for the gephyrin primary antibody it was 1:300.  Primary antibodies were 

diluted in 0.1 M TBS containing 1% v/v BSA and 0.2% v/v triton-X 100.  The primary 

antibody solution (300 !L per slide) was then incubated with tissue sections at 4°C for 

22 hours in a humidity chamber.  At the end of the incubation, the solution was tipped 

off and tissue was washed three times for 10 minutes each time in 0.1 M TBS. 

 

iv)  Incubation with secondary antibodies 

The anti-rabbit and anti-mouse fluorophore-conjugated secondary antibodies were 

both diluted 1:1000 in TBS with 1% BSA and 0.2% v/v triton-X 100.  The secondary 

antibody solution was then incubated with tissue sections at room temperature for 1 

hour in a “light-tight” humidity chamber, as per the manufacturer’s instructions.  

Following incubation, the secondary antibody solution was tipped from the slides and 

excess solution removed by three 10 minute washes in 0.1 M TBS. 

 

v)  Coverslipping Slides 

The aqueous VECTASHIELD anti-fade fluorescent mountant (Vector 

Laboratories, Burlinghame, CA, USA) was used as previous studies indicate it 

minimises photobleaching during fluorescence microscopy and slows the rate of fading 

during long term storage without quenching fluorescent emission (Florijn et al., 1995).  
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The anti-fade mountant was applied to each slide following the final washes and 

sections were coverslipped.  Clear nail polish was then applied to edge of the coverslip 

on the slide to seal the water-soluble mountant.  Once nail polish dried, sections were 

stored in microscopic slide folders at 4°C.   

  

5.2.2.5. Image capture and analysis 

i)  Fluorescence visualisation and fluorophore selection  

Visualisation of fluorescent molecules occurs in three stages.  Fluorescent 

molecules absorb energy of a particular wavelength resulting in their excitation to a 

higher energy state.  The excited state of the molecule exists only briefly before it 

returns to ground state, emitting energy at a particular wavelength in the process that is 

visualised as fluorescence. Due to loss of energy during the excitation state, emitted 

light has a longer wavelength than that which is initially absorbed.  The excitation and 

emission process occurs continuously unless molecules are destroyed, usually when 

exposed to light of high intensity or over prolonged periods - referred to as 

photobleaching.   

For a fluorescent molecule in solution, light is absorbed and emitted over a 

spectral bandwidth referred to as absorption and emission spectra which are provided in 

figure 5.1 for the Alexa fluor 594 and 488 dyes used in this experiment.  Given these 

spectral bandwidths, the microscope optics used for visualisation and image capture 

were set-up such that the different photomultiplier tube detectors of the microscope 

received emission from only a single dye.  For visualisation of the Alexa 488 dye an 

argon laser, producing laser lines at 458, 477, 488, 514 nm wavelengths (argon 2 458, 

477, 488, 514), was directed to the specimen via a beamsplitter (HFT 405, 488, 561) 
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selecting for the 488 nm laser line, which excites only the Alexa 488 dye (see figure 

5.1).  Emission from the Alexa 488 dye was directed to a single detector channel via 

successive beamsplitters rejecting light of longer wavelength than 565 nm (NFT 565) 

and of shorter wavelength than 490 nm (NFT 490), followed by a 505-550 nm bandpass 

filter selecting for light in the range of the Alexa 488 emission spectra only.  For 

visualisation of the Alexa 594 dye, a diode pumped solid state laser producing a laser 

line at 561 nm (DPSS 561), falling in the excitation bandwidth of the Alexa 594 dye, 

was directed to the specimen (see figure 5.1).  Emission from the Alexa 594 dye was 

then directed to a different detector to that of the Alexa 488 dye via a beamsplitter 

accepting light of longer wavelength than 565 nm (NFT 565), and a bandpass filter  

selecting for light above 575 nm.   

 

 

 

Figure 5.1: Excitation and emission spectra for fluorescent dyes Alexa Fluor 488 and Alexa Fluor 
594.  Absorption spectra are represented as dashed lines, whilst emission spectra are represented by filled 
lines.  Green lines show the Alexa 488 spectra, whilst red lines show the Alexa 594 spectra.  Laser lines for 
excitation of dyes are shown as vertical lines at 488 nm and 561 nm.  Detected bandwidths are shown as 
translucent bandwidths overlapping emission spectra, in green for Alexa Fluor 488, and red for Alexa Fluor 
594.  Image created using the Invitrogen fluorescence spectra viewer tool available online at 

www.invitrogen.com. 
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ii)  Confocal microscopy  

Confocal microscopy was used for fluorescence visualisation and image capture 

as it provides enhanced resolution in the lateral (x,y) and vertical (z) planes by reducing 

interference from out of focus light.  Confocal microscopy is particularly useful for 

double-labelling experiments as the provision of optical sectioning along the z-axis 

reduces the incidence of overlapping signals being detected from fluorophores at 

different depths.  Confocal microscopes reduce the detection of out-of-focus light 

through the use of pinholes to focus light beams produced by the laser, as well as 

scanning mirrors, which provide point by point illumination of the specimen at a 

particular depth.  In comparison, conventional fluorescent microscopes use extended 

light sources, which broadly illuminate the entire specimen simultaneously resulting in 

interference from out-of focus light in the lateral and vertical planes.  

 

iii)  Image capture   

Images of the molecular cell layer of the dentate gyrus were captured on a Zeiss 

inverted confocal microscope (LSM 510) into the LSM 510 image capture software 

(Carl Zeiss, Thornwood, NY, USA).  Prior to image capture a range of sections from 

each group was examined to establish the minimal laser intensity for each channel that 

was required to observe fluorescence in stained sections.  The gain and offset of the 

photomultiplier tubes for each channel were then adjusted such that the brightest 

sections were not saturated (gain) and isotype controls provided no signal (offset).  

Once these conditions were established they were kept constant for the capture of all 

images.   
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Images were captured using a sequential acquisition procedure, where 

fluorophores were individually excited and detected, to avoid crosstalk between the 

fluorescent channels.  Stacks of 6-10 confocal sections spaced by 380 nm at a 1 x 

optical zoom factor were acquired from the brightest portion of the section.  All images 

were acquired at a depth of 8 bits with a resolution of 2048 x 2048 pixels and a 

magnification of 70 nm/pixel using a 63 x oil immersion lens (numerical aperture 1.4) 

and a pinhole set at 1 Airy unit.  Criteria for pixel size (70 nm/pixel i.e. 1 pixel = 0.0049 

!m
2
) was selected based on previous investigations investigating the size range of 

clusters for a similar experiment (Christie et al., 2002; Marty et al., 2004;  

Sassoe-Pognetto et al., 2000) and the Nyquist criterion, which requires 2.3 pixels to 

digitally sample a minimum resolved distance.   

 

iv)  Image analysis 

For quantification, single confocal images judged to be the brightest in each stack 

were processed using the Image J 1.40 software (National Institutes of Health, USA - 

available online at http://rsb.info.nih.gov/ij/).  Four images from each hemisphere were 

analysed per animal as described previously (Crestani et al., 1999; Koksma et al., 

2005).  Overlaid images were split into two 8-bit greyscale images of the individual red 

and green channels.  Pairs of these 8-bit greyscale images were then processed with a 

colocalisation algorithm provided as a plugin (“colocalization.class”) for the ImageJ 

program.  This plugin produces a binary image displaying all the pixels above a user-

defined segmentation threshold (30% of maximal intensity for each channel).  The 

threshold for each channel was based on criteria of Koksma et al. (2005) that is, to 

minimise the inclusion of single-labelled grainy structures in the analysis.  These 
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thresholds were then applied to the images from each channel and the three resulting 

binary images (red channel, green channel, colocalised pixels) were converted to a 

stack.  From this stack the molecular cell layer of the dentate gyrus was outlined as a 

region of interest and cluster properties (size, area and number) within this region were 

analysed using the Image J ‘particle analysis’ algorithm, where the minimal cluster size 

was defined as 150 nm
2
 (3 adjacent pixels).   

 

5.2.2.6. Statistical analysis 

All statistical analyses were performed using SPSS V15.0 (SPSS, Inc., Chicago, 

Ill., USA).  For each of the features of the !2, gephyrin and colocalised gephyrin 

clusters (number, size, area covered) and the % area colocalised for each of the !2 and 

gephyrin proteins, a between-subjects type-III two-way ANOVA was conducted to 

examine the effects of sex and early-life environment.  
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5.3. Results 

5.3.1. !2 Subunit-containing GABAA receptor clusters 

Figure 5.2 shows the effects of sex and early-life condition on !2 subunit cluster 

properties in the granule cell layer of the dentate gyrus of the hippocampus.  Results of 

the two-way ANOVA shown in table 5.1 indicate that whilst the number of clusters 

counted per 1000 !m
2
 was not significantly different between EH and NH conditions, 

there was a significant main effect of early-life stress on the size of !2 subunit clusters 

(F(1,16)=9.59, p<0.01) and the area covered by !2 subunit clusters (F(1,16)=11.30, p<0.01).  

Thus, regardless of sex, !2 subunit clusters of NH compared with EH mice are reduced 

in size (mean difference between early-life conditions for males: 0.22±0.08 !m
2
; and 

females: 0.19±0.09 !m
2
) and occupy a smaller area (mean difference between early-life 

conditions for males: 174.70±62.08 !m
2
/1000 !m

2
; and females: 128.46±65.43 

!m
2
/1000 !m

2
).  No significant effects of sex or sex x early-life interactions were 

observed for any of the !2 subunit cluster characteristics (see table 5.1). 

 

5.3.2. Gephyrin protein clusters 

Figure 5.3 shows the effects of sex and early-life condition on gephyrin subunit 

cluster properties in the granule cell layer of the dentate gyrus of the hippocampus.  

Results of the two-way ANOVA shown in table 5.2 indicate no significant main effects 

of sex or early-life, nor sex x early-life interactions for any of the gephyrin subunit 

cluster characteristics (see table 5.2). 
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a b c 

 
 

 
Figure 5.2:  Effects of sex and early-life condition on !2 receptor subunit clusters in the granule cell 

layer of the dentate gyrus. Data points represent average(n=5)±SEM (a) number of clusters / 1000 !m
2
; 

b) size of clusters (µm
2
); and c) area covered by clusters (!m

2
)/ 1000 !m

2
.  Bars represent significant main 

effects at p<0.01 for **early-life environmental condition.  

 

 
Table 5.1:  Results of 2-way ANOVA tests examining between-group differences in features of !2 

subunit protein clusters in the hippocampal granule cell layer.  Tests reaching significance with 

p<0.05 are highlighted. 

Feature Sex Early-life condition 
Sex x Early-life 

condition 

Count / 1000 !m
2
 F(1,16)=1.05; P>0.05 F(1,16)=4.22; P>0.05 F(1,16)=0.04; P>0.05 

Size (!m
2
) F(1,16)=0.32; P>0.05 F(1,16)=9.59; P<0.01 F(1,16)=0.08; P>0.05 

Area (!m
2
) / 1000 !m

2
 F(1,16)=0.13; P>0.05 F(1,16)=11.30; P<0.01 F(1,16)=0.26; P>0.05 

 

 

a b c 

 
 

 

Figure 5.3:  Effects of sex and early-life condition on gephyrin protein clusters in the granule cell 

layer of the dentate gyrus. Data points represent average (n=5) ±SEM (a) number of clusters / 1000 
!m

2
; b) size of clusters (µm

2
); and c) area covered by clusters !m

2
 / 1000 !m

2
.   

 

Table 5.2: Results of two way-ANOVA tests examining between group differences in features of 
gephyrin protein clusters in the hippocampal granule cell layer.  

Feature Sex Early-life condition 
Sex x Early-life 

condition 

Count / 1000 !m
2
 F(1,16)=0.57; P>0.05 F(1,16)=0.10; P>0.05 F(1,16)=0.12; P>0.05 

Size (!m
2
) F(1,16)=0.23; P>0.05 F(1,16)=0.06; P>0.05 F(1,16)=3.47; P>0.05 

Area (!m
2
) / 1000 !m

2
 F(1,16)=0.10; P>0.05 F(1,16)=0.11; P>0.05 F(1,16)=0.10; P>0.05 
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5.3.3. !2 Subunit and gephyrin colocalisation 

Figure 5.4 and 5.5 show the effects of sex and early-life condition on !2 subunit 

cluster properties in the granule cell layer of the dentate gyrus of the hippocampus.  

Results of the two-way ANOVA shown in table 5.3 indicate that whilst the size of 

colocalised clusters was not significantly different between early-life conditions, there 

was a significant main effect of early-life stress on the number (F(1,16)=5.60, p<0.05) and 

area covered (F(1,16)=8.15, p<0.05) by colocalised clusters.  Thus, when male and female 

data is averaged, colocalised clusters of NH mice are reduced in number (mean 

difference for males: 269.35±128.73 /1000 !m
2
; and females: 332.28±149.73 /1000 

!m
2
) and occupy a smaller area (mean difference for males: 43.47±18.24 !m

2
/1000 

!m
2
; and females: 30.14±12.24 !m

2
/1000 !m

2
) compared with those of EH mice.  

Following from this there were significant main effects of early-life stress on the % of 

both gephyrin (F(1,16)=6.52, p<0.05) and !2 subunit (F(1,16)=9.35, p<0.01) staining that 

was colocalised.  This means that when data is averaged across sexes, NH mice have a 

reduced % of staining area colocalised for both gephyrin (mean difference for males: 

9.90±4.73 %; and females: 10.41±4.68 %) and !2 (mean difference for males: 

18.25±8.22 %; and females: 23.86±9.22 %) proteins compared with EH mice.  No 

significant main effects of sex or sex x early-life interactions were observed for any of 

the colocalised cluster characteristics, or proportion of colocalisation observed for either 

protein (table 5.3). 

Table 5.3: Results of two way-ANOVA tests examining between-group differences in features of 
!2 and gephyrin overlap in the hippocampal granule cell layer. Tests with p<0.05 are highlighted. 

Feature Sex Early-life condition Sex x Early-life condition 

Count / 1000 !m
2
 F(1,16)=0.03; P>0.05 F(1,16)=5.60; P<0.05 F(1,16)=0.06; P>0.05 

Size (!m
2
) F(1,16)=0.04; P>0.05 F(1,16)=0.00; P>0.05 F(1,16)=0.09; P>0.05 

Area (!m
2
) / 1000 

!m
2
 

F(1,16)=1.01; P>0.05 F(1,16)=8.15; P<0.05 F(1,16)=0.27; P>0.05 

% of !2 area F(1,16)=0.00; P>0.05 F(1,16)=9.35; P<0.01 F(1,16)=0.17; P>0.05 

% gephyrin area F(1,16)=1.24; P>0.05 F(1,16)=6.52; P<0.05 F(1,16)=0.02; P>0.05 
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Figure 5.4:  Effects of sex and early-life condition on colocalisation of the !2 subunit with gephyrin 

in the granule cell layer of the dentate gyrus.  Data points represent average(n=5)±SEM (a) number of 
colocalised clusters / 1000 !m

2
; b) size of colocalised clusters (µm

2
); c) area covered by clusters (!m

2
)/ 

1000 !m
2
.  Bars represent significant main effects at *p<0.05  or ** p<0.01 for early-life condition. 

     

  

Figure 5.5: Representative z-stack projections showing !2 subunit colocalisation with the 

presumed synaptic marker gephyrin in the granule cell layer of the dentate gyrus of the 
hippocampus.  Images are taken from male (a, b,) and female (c, d) mice exposed to EH (a,c) and NH 
(b, d) early-life conditions. The GABAA receptor !2 subunit protein is stained in red, gephyrin is stained in 

green.  Yellow depicts sites of protein colocalisation.  Scale 10!m.   
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5.4. Discussion 

5.4.1. Effects of early-life stress on protein clustering  

5.4.1.1. Effects of early-life stress on GABAA receptor !2 subunit protein clusters 

 Findings of the present study indicate that regardless of sex there was a reduction 

in the mean size of !2 subunit clusters in NH relative to EH mice in the adult DG 

granule cell layer.  The mean number of !2 subunit clusters per unit area was not 

affected by early-life condition.  Nonetheless, the reduction in the size of !2 subunit 

clusters was consistent with a reduction in the mean surface area covered by these 

clusters per unit area of the granule cell layer.  As this reduction in size was observed in 

the absence of altered expression of the !2 subunit protein (see section 4.3.2.4), it 

cannot be explained by a lack of available !2 protein for incorporation into receptors.  

Therefore, this finding suggests that early-life condition had a specific effect on the 

process of GABAA receptor clustering in the hippocampal dentate gyrus of both male 

and female mice.  

 A reduction in cluster size in NH relative to EH mice is consistent with the 

hypothesis that early-life stress can affect developmental processes in the GABAergic 

system.  In most brain regions cluster size is greater in adulthood relative to early-life, 

suggesting developmental processes determine GABAA receptor cluster size (Hutcheon 

et al., 2004).  However, it is observed that more mature rats show a decrease in the size 

of !2 clusters in the DG of the hippocampus relative to younger rats (Hutcheon et al., 

2004).  In the present study, NH mice showed a reduction in !2 subunit cluster size 

relative to EH mice suggesting that early-life stress (NH group) may enhance the 

developmental processes governing GABAA receptor clustering.  
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5.4.1.2. Effects of early-life stress on gephyrin protein clusters 

 This study also showed that gephyrin clustering properties were not affected by 

either sex or early-life condition.  Whilst no previous studies have examined the effects 

of early-life stress on gephyrin clustering, a lack of sex differences in this protein is 

consistent with recent work showing that variations in sex-hormone levels during 

pregnancy or administration of the contraceptive pill do not affect gephyrin expression 

or clustering (Sassoe-Pognetto et al., 2007).  As gephyrin cluster properties were 

unaffected by early-life stress, it is predicted that alterations in !2 subunit clustering or 

colocalisation with gephyrin (see below) would not be caused via a disruption of 

gephyrin, which is proposed to act as an anchoring ‘scaffold’ for receptors in the 

synapse  (Fritschy et al., 2008).   

  

5.4.2. Effects of early-life stress on !2-gephyrin colocalisation  

 Another major finding of the present study was that, regardless of sex, there was a 

reduction in the number of overlapping clusters for the !2 and gephyrin proteins 

(colocalisation) in the NH compared with EH group.  Whilst the size of these  

!2-gephyrin colocalised clusters did not vary between groups, the surface area covered 

by them was altered in accordance with the reduction in the number.  Under the 

presumption that gephyrin is a marker for !2 subunits present in the synapse, this 

finding then shows that the !2-subunit containing GABAA receptor synaptic clusters 

were equivalent in size, but less frequent in the adult DG of the NH compared with the 

EH condition. To our knowledge, these findings are the first to indicate that early-life 

stress has long lasting effects on !2 subunit-containing GABAA receptor synaptic 
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clusters. Future work should examine whether this loss in GABAA receptor synaptic 

clustering is also observed in other brain regions.    

 It is possible that these variations in synaptic clustering occur via a loss of the "2 

subunit, which is required for synaptic clustering of GABAA receptors (Essrich et al., 

1998).  In support of this idea, a reduction in the "2-dependent benzodiazepine binding 

sites has been observed in forebrain homogenates of NH relative to EH mice (Bodnoff 

et al., 1987).  Furthermore, significant reductions in "2 subunit mRNA expression have 

been observed in the brainstem and amygdalar nuclei of NH relative to EH rats (Caldji 

et al., 2000b).   However, loss of the "2 subunit would be expected to result in a loss of 

clustering of both GABAA receptor subunits and gephyrin (Alldred et al., 2005; Essrich 

et al., 1998; Li et al., 2005; Schweizer et al., 2003).  The present study did not find any 

changes in gephyrin clustering properties, suggesting that the "2 subunit may not have 

been affected.  Thus, an investigation of "2 subunit protein expression in the DG is 

required to determine if the loss of GABAA receptor synaptic clusters may be mediated 

via a loss of the "2 subunit.   

 

5.4.3. GABAA receptor synaptic clustering, brain function and behaviour 

 Whilst further work is required to determine whether the observed disruptions to 

GABAA receptor clustering extend to other subunits or brain regions, the present study 

provides a basis to suggest alterations in brain function and behaviour as a result of 

reduced synaptic clustering.  Following a loss of synaptic clusters GABAergic synaptic 

strength appears to be reduced (Crestani et al., 1999; Essrich et al., 1998; Levi et al., 

2004) with studies indicating that a reduced surface area covered by synaptic clusters is 

associated with reductions in the mean amplitude of miniature inhibitory post-synaptic 
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currents (mIPSCs) (Levi et al., 2004; Nusser et al., 1997).  Furthermore, alterations in 

the frequencies of single channel conductance times (Crestani et al., 1999) have 

suggested that loss of GABAA receptor synaptic clustering may result in an increase in 

extrasynaptic receptors.  Thus NH mice would be expected to have alterations in 

inhibitory transmission as a result of the lost synaptic clusters.  

 Consistent with functional alterations in inhibitory transmission, previous studies 

suggest behavioural changes in mice with altered synaptic clustering.  For example, 

reductions in clustering of !2-subunit containing GABAA receptors in the dentate gyrus 

of the mouse hippocampus are associated with a more anxious and behaviourally 

reactive phenotype (Crestani et al., 1999).  Given the findings of Crestani et al. (1999), 

reductions in GABAA receptor synaptic clustering observed in NH mice relative to EH 

mice in the present study are consistent with the enhanced anxiety observed in chapter 3 

for NH animals. Thus, the present study expands on work of others suggesting that 

early-life stress-induced behavioural changes may be mediated by alterations in 

GABAA receptors in terms not only of their expression and regional distributions (See 

chapter 4; Bodnoff et al., 1987; Bolden et al., 1990; Caldji et al., 2000a; Caldji et al., 

2000b), but also their subcellular distributions. 

 It is also of interest that the study by Crestani et al. (1999) showed that the 

reduction in GABAA receptor synaptic clustering is associated with specific attentional 

biases towards threatening cues and an inability to ignore irrelevant information in the 

environment.  These types of attentional biases are characteristic of depression and 

anxiety disorders and may also be relevant to symptoms observed in schizophrenia.  In 

schizophrenia and anxiety disorders, a loss of "2 subunit protein expression or 

benzodiazepine binding sites, which require the "2 subunit, has been observed 
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(Huntsman et al., 1998; Malizia et al., 1998; Nutt and Malizia 2001; Squires et al., 

1993; Tiihonen et al., 1997; Tokunaga et al., 1997).  Given that "2 subunit-containing 

receptors are usually found in synaptic clusters (Kneussel et al., 1999b), it is possible 

that a deficiency in the expression of this subunit causes or reflects a loss of GABAA 

receptor synaptic clusters in such illnesses.  Reduced GABAA receptor synaptic 

clustering may thus be relevant to our understanding of these diseases and so it is 

important for future work to investigate synaptic clustering of GABAA receptors in the 

brains of people suffering from illnesses such as schizophrenia, depression and anxiety 

disorders.  

Interestingly, it has recently been observed that enhanced activity at !2-containing 

GABAA receptors improves cognitive symptoms that are observed in people with 

schizophrenia (Lewis et al., 2008).  This finding provided support for the hypothesis 

that deficient GABAergic signalling via this GABAA receptor subtype in a subset of 

GABAergic neurons may underlie the negative symptoms in schizophrenia (Lewis et 

al., 2008).  Deficient signalling via the !2 receptor subtype in disorders such as 

schizophrenia may be related to deficiencies in the synaptic clustering of such receptors 

in the PFC. Such deficient synaptic clustering may potentially even arise from the 

deficiencies observed in the presynaptic components of GABAergic transmission that 

are observed in subsets of GABAergic neurons in schizophrenia (Akbarian et al., 1995; 

Volk et al., 2000; Guidotti et al., 2000; Straub et al., 2007).   Thus, future studies 

should specifically look at GABAA receptor clustering in the DLPFC of the 

schizophrenic brain. 
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5.4.4. Conclusions 

 Findings from the present study indicated that GABAA subcellular distribution is 

affected by early-life stress.  Regardless of sex, mice exposed to the NH early-life 

condition showed a reduction in the size and surface area covered by !2  

subunit-containing GABAA receptor clusters.  This alteration in !2 subunit clusters did 

not arise from a loss of !2 subunit protein, which showed equivalent IR between groups 

in this area (chapter 4).  Therefore, early-life stress specifically affected cluster 

formation in the granule cell layer of the DG and this is consistent with the previous 

hypothesis that early-life condition affects GABAA receptor developmental processes in 

the NH relative to the EH group.  The number of synaptic !2 subunit containing 

GABAA receptors was also reduced in NH relative to EH mice suggesting reduced 

inhibitory synaptic strength that is relevant to explaining the increased anxiety and 

behavioural reactivity of NH relative to EH mice. This is the first study to show that 

early-life stress can affect the cellular distributions of GABAA receptors.  Further work 

is required to examine the potential role of the "2 subunit in mediating altered GABAA 

receptor synaptic clustering, as well as to determine how other brain regions and 

GABAA receptor subunit clusters may be affected by early-life stress.  Furthermore, 

given the relevance of early-life paradigms for research into psychiatric disorders such 

as schizophrenia and depression, this study highlights the importance of examining how 

GABAA receptor cellular distributions may be altered in such diseases. 
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CHAPTER 6:  

Effects of Early-Life Stress on GABAA Receptor Responses to Adulthood Stress  

 

6.1. Introduction 

6.1.1  Background 

Variations in stress reactivity have been associated with several illnesses 

including mood disorders, diabetes, autoimmune disorders and coronary heart disease 

(Chrousos and Gold, 1992; Higley et al., 1991; McEwan and Stellar, 1993; Seckl and 

Meaney, 2004).  In particular, prior stress is associated with the onset of symptoms in 

psychiatric disorders such as depression (Heim and Nemerhoff, 2001) and 

schizophrenia (McGrath et al., 2003).  The association of stress exposure with symptom 

onset has resulted in the “diathesis-stress” or ‘two-hit’ hypotheses (McGrath et al., 

2003).  These hypotheses suggest that an impairment in stress coping ability underlies 

the precipitation of disease symptoms in individuals predisposed to such illnesses due to 

genetic and/or early life environmental factors (McGrath et al., 2003).  Thus, in order to 

better understand the pathophysiology of these diseases, it is important to determine 

how neurochemical system responses to stress in adulthood may vary. 

 A large amount of research has indicated that early postnatal environment affects 

stress reactivity in adulthood.  This makes animal models where early-life environment 

is manipulated highly relevant to the investigation of the physiological bases of altered 

stress coping in psychiatric illness (Ader et al., 1970; Denenberg, 1964; Hess et al., 

1969; Meaney et al., 1996).  In the EH-NH model, stress responses have been shown to 

vary between groups on both behavioural and neuroendocrine levels.  As explained 

previously, relative to the EH condition in adulthood, animals exposed to the NH 
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condition in early-life are behaviourally more reactive to stressful situations (Caldji et 

al., 2000b; Padoin et al., 2001; Pryce et al., 2001, Pryce et al., 2003).   Enhanced 

behavioural reactivity of the NH group is correlated with long-lasting changes in 

neuroendocrine responses to stress.  In adulthood, the NH group show enhanced and 

prolonged release of HPA axis hormones following exposure to a stressor compared 

with the EH group (Levine et al., 1967; Liu et al., 1997; Meaney et al., 1996; Meaney 

et al., 1989; Plotsky and Meaney, 1993).  Enhanced HPA axis responses in the NH 

group are likely explained by enhanced neuronal activity, measured by cfos expression, 

following both physical and emotional stress in the brain regions signalling to the PVN 

of the hypothalamus, including the bed nucleus of the stria terminalis (BNST), central 

nucleus of the amygdala, hippocampus, posterior cingulate cortex, piriform cortex 

(Abraham and Kovacs, 2000) and locus coeruleus (Pearson et al., 1997).  Thus, the 

incoming stress signal appears to be increased in NH rodents and this results in 

enhanced neuroendocrine and behavioural responses to stress. 

 Given the evidence for altered adulthood HPA axis and behavioural stress 

responses as a result of early-life stress, it is likely that stress responses of 

neurotransmitter systems such as the GABAergic system may also be affected by  

early-life experience.  As described in chapter 2, following a 3 minute swim stress, 

rapid changes in forebrain low-affinity GABA binding sites in females and  

group-stressed males are observed particularly in forebrain cortical regions (Skilbeck et 

al., 2008a; chapter 2).  As electrophysiological studies indicate that micromolar 

concentrations of GABA are required for channel conductance, stress-induced 

alterations in low-affinity (1µM) [
3
H]GABA binding are indicative of alterations in 

GABAA receptor function, (Baur and Siegel, 2003; Harris and Allan, 1985; Maconochie 



PART D:  EARLY-LIFE & ADULTHOOD STRESS 

CHAPTER 6 
 

 

 196 

et al., 1994).  Thus, stress rapidly alters the availability of functional (low-affinity) 

GABAA receptor sites in a sex-dependent fashion (Skilbeck et al., 2008a), with females 

showing an increase and males showing a decrease or no change in functional GABA 

binding sites.  As GABAA receptors are strongly implicated in the neuropathology of 

schizophrenia (Hinton and Johnston, 2008) and stress appears to precipitate the onset of 

psychotic episodes in people with schizophrenia (McGrath et al., 2003), variations in 

the effect of adulthood stress on GABAA receptors arising from stress in early-life may 

be relevant to understanding this disease. 

 Effects of early-life environment on stress-induced changes in [
3
H]GABA binding 

sites in adulthood would likely be sex-dependent.  For example, in chapter 2 the effects 

of stress on [
3
H]GABA binding sites were observed to vary between males and females, 

with females showing increases and males showing decreases in the number of  

low-affinity [
3
H]GABA binding sites following a 3 minute swim stress (chapter 2; 

Skilbeck et al., 2008a).  The magnitude of HPA axis stress responses are also sex-

dependent (Akinci and Johnston, 1993) and previous work has suggested that early 

postnatal environment has sex-specific neuroendocrine effects following stress (Erskine 

et al., 1975; Higley et al., 1991; Liu et al., 2000; McCormick et al., 2005; Meaney et 

al., 2001; Sutanto et al., 1996;  Weinberg et al., 1978; Weinberg and Levine, 1977). 

Given that there appear to be sex differences in the onset and severity of symptoms in 

schizophrenia and stress is proposed to precipitate these symptoms, it is important to 

characterise how both males and females are affected by the combination of early-life 

and adulthood stress.  Thus, effects of early-life stress on the adulthood stress-induced 

changes in [
3
H]GABA binding were examined in both males and females.  
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6.1.2. Aims 

 In accordance with the known effects of early-life environment on adulthood 

behavioural and neuroendocrine stress responses, the main purpose of the present study 

was to examine whether early-life stress affected the adulthood stress-induced changes 

in low-affinity (functional) GABAA receptor binding sites, and whether such effects 

were sex-dependent.  However, in order to examine this primary aim, it became 

important to examine the secondary aims: i) to determine the effects of early-life 

environment on GABAA receptor binding sites and ii) to determine the effects of  

early-life environment on sex differences in GABAA receptor binding sites. To examine 

these aims, low-affinity [
3
H]GABA binding was measured using quantitative receptor 

autoradiography in male and female mice that were exposed to either the NH or EH 

condition in early-life and either the stress or control condition in adulthood. We 

examined brain regions from the cortex and hippocampus where the most robust stress-

induced changes were observed in chapter 2 (see publication Skilbeck et al., 2008a). 

This study is of relevance to understanding the biological mechanisms underlying the 

‘two-hit’ hypotheses that are used to explain psychiatric disorders such as schizophrenia 

and depression which are associated with both early-life and adulthood stress.  
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6.2. Materials and methods  

6.2.1. Materials 

 All materials for tissue preparation and autoradiography experiments have already 

been described in section 2.3.1. 

 

6.2.2. Subjects  

 Subjects were those already described in section 3.2.2.1.  Briefly, male (n=24) 

and female (n=24) Quackenbush Swiss (QS) albino mice born in the animal house were 

exposed to both early-life environmental manipulation (Males NH n=12, EH n=12; 

Females NH n=12, EH n=12) on PND 1-14 as described in section 3.2.2.4 combined 

with adulthood acute swim stress (control and stressed groups) as described in section 

3.2.2.6.  Thus brain sections from the following groups were examined in a 2 x 2 x 2 

between-subjects design as shown in table 6.1.  

 

Table 6.1:  Study design for examination of combined early-life environmental manipulation and 
adulthood stress 

 Males Females 

 EH NH EH NH 

Control n=6 n=7 n=6 n=5 

Swim stress n=6 n=6 n=6 n=6 

 

6.2.3. Tissue acquisition and preparation 

 Fresh frozen tissue was prepared and sectioned as described in section 3.2.2.7.  

Slides devoted to autoradiography were stored at -70ºC prior to autoradiography 

experiments, which were carried out within 14 days of sectioning. 
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6.2.4. Receptor binding assays 

 Low (1000nM [
3
H]GABA) affinity GABA binding sites were examined using the 

radioligand binding assay procedure described in section 2.3.4. 

 

6.2.5. Generation of autoradiograms 

 Autoradiograms were generated as described in section 2.3.5. 

 

6.2.6. Brain regions examined 

 The cortical and hippocampal brain regions examined are described in section 

2.3.6.  

 

6.2.7. Analysis of binding 

 Analysis of binding site density by region was performed as described in section 

2.3.7. 

 

6.2.8. Statistical analysis 

Graphs for each brain region were compiled in Prism 4.0 and groups were 

compared by a three-way between-subjects ANOVA (sex x early-life environment x 

adulthood stress) using SPSS 15.0.  The source of significant two-way interactions (sex 

x early-life environment; sex x adulthood stress, and early-life environment x adulthood 

stress) and significant three-way interactions (sex x adulthood stress x early-life 

environment) were determined using means comparison contrasts. 
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6.3. Results 

6.3.1. Cortical regions 

 Figure 6.1 shows 1000nM [
3
H]GABA binding in various cortical regions of male 

and female mice exposed to either NH or EH conditions in early life, and either acute 

swim stress or no stress in adulthood.  Table 6.2 shows the results of a three-way 

ANOVA (sex x adulthood stress condition x early-life manipulation) of this data for 

each brain region examined.  There were no significant three-way interactions in any of 

the cortical regions examined, meaning that differences between any two of the three 

factors (sex, stress, early-life condition) did not depend on the third factor.  Table 6.2 

shows that there were significant two-way interactions between early-life and adulthood 

stress in the cingulate and frontal cortices and the upper (layer I-III) and lower (layer 

IV-VI) cortical layers, indicating that the effects of adulthood stress on [
3
H]GABA 

binding depend on early-life condition, regardless of sex. Table 6.2 also shows there 

were significant sex x stress 2-way interactions in the cingulate and whole frontal 

cortices, particularly in the upper (layer I-III) cortical layers, indicating that the effects 

of adulthood stress on GABA binding varied between sexes regardless of early-life 

condition.  It was decided that an examination of simple contrast effects would best 

explain the source of these interactions.   

 

Sex differences 

Table 6.3 shows results from the simple contrast effects analysis.  Sex differences 

were observed for unstressed mice only and were similar in EH and NH mice.  In both 

EH and NH groups, males had more 1000nM [
3
H]GABA binding sites than females in 

the cingulate (EH p=0.013; NH p=0.011) and whole frontal cortex (EH p=0.011; NH 
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p=0.017), the lower cortical layers (EH p=0.045 NH p=0.040) and upper cortical layers 

(EH=0.040; NH p=0.042).  As can be seen in table 6.3, no sex differences were found 

between stressed groups in either early-life condition.  Thus, regardless of early-life 

condition, sex differences in low-affinity GABA binding sites are removed by 

adulthood swim stress. 

 

Effects of adulthood stress 

Adulthood stress affected 1000nM [
3
H]GABA binding in EH males and NH 

females but had no effect on NH males or EH females.  As shown in table 6.3, NH 

males were not affected by stress in any cortical regions whilst EH males experienced 

stress-induced reductions in GABA binding in the cingulate cortex (p=0.001), frontal 

cortex (p=0.009) and both the upper (p=0.019) and lower (p=0.006) cortical layers. In 

contrast, for females it was the EH mice that were unaffected by adulthood stress whilst 

the NH females showed adulthood stress-induced increases in GABA binding in the 

cingulate cortex (p=0.044), frontal cortex (p=0.032) and both the upper (p=0.021) and 

lower (p=0.047) cortical layers.  Thus EH males and NH females experience adulthood 

stress-induced alterations in low-affinity [
3
H]GABA binding in opposite directions to 

one another whilst NH males and EH females appear insensitive to the effects of stress 

on low-affinity [
3
H]GABA binding.   

 

Effects of early-life condition 

1000nM [
3
H]GABA binding was affected by early-life condition in mice that 

were not exposed to acute adulthood swim stress.  In the unstressed female group NH 

mice showed reduced [
3
H]GABA binding sites relative to EH mice in the cingulate 
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cortex (p=0.030), frontal cortex (p=0.025) and both the upper (p=0.040) and lower 

(p=0.038) cortical layers.  In the unstressed male group, NH mice showed reduced 

[
3
H]GABA binding sites relative to EH mice in the cingulate cortex (p=0.041) and 

frontal cortex (p=0.038), specifically in the lower (p=0.039) cortical layers.   As shown 

in table 6.3, early-life condition did not affect low-affinity [
3
H]GABA binding in males 

or females that were exposed to acute swim stress in adulthood. 

 

Summary for cortical regions   

As shown in figure 6.2 on representative autoradiographs, in unstressed mice 

early-life condition affected the number of low-affinity [
3
H]GABA binding sites in both 

males and females from the NH and EH groups. Males had more low-affinity GABA 

binding sites than females in certain forebrain cortical regions which was observed for 

each of the EH and NH groups. Early-life condition also determined how animals 

responded to adulthood stress with only EH males and NH females showing adulthood 

stress-induced changes in [
3
H]GABA binding, which involved decreases and increases, 

respectively.   
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Figure 6.1 Effects of sex, early-life condition and adulthood stress on 1000nM [
3
H]GABA binding 

sites in cortical regions. Data are expressed as mean±SEM for the a) cingulate b) frontal c) temporal 

cortical regions and d) upper e) lower cortical layers.  *=p<0.05, **=p<0.01 for significant stress-induced 
differences from control mice of the same sex and early-life handling condition.  ^=p<0.05 for significant 
sex differences relative to male controls of the same early-life and adulthood stress condition.  #=p<0.05 
for significant effects of NH relative to EH controls of the same sex. 
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Table 6.2:  Results of 3-way ANOVA tests for 1000nM [
3
H]GABA binding in cortical regions.  Tests reaching significance with p<0.05 are highlighted. 

  Cingulate Frontal Temporal Upper Lower 

Main Effects  

Sex F(1,40)=3.25, p=0.081 F(1,40)=2.37, p=0.131 F(1,40)=0.07, p=0.790 F(1,40)=3.04, p=0.089 F(1,40)=1.59, p=0.215 

Early-life  F(1,40)=0.44, p=0.511 F(1,40)=0.10, p=0.754 F(1,40)=3.44, p=0.071 F(1,40)=1.70, p=0.200 F(1,40)=0.00, p=0.952 

Stress  F(1,40)=4.75, p=0.037 F(1,40)=3.45, p=0.070 F(1,40)=0.20, p=0.661 F(1,40)=1.60, p=0.213 F(1,40)=3.40, p=0.073 

Two Way Interactions                     

Sex x Early-life F(1,40)=0.16, p=0.688 F(1,40)=0.03, p=0.861 F(1,40)=0.03, p=0.862 F(1,40)=0.00, p=0.953 F(1,40)=0.40, p=0.530 

Sex x Stress  F(1,40)=12.68, p=0.001 F(1,40)=4.82, p=0.048 F(1,40)=0.01, p=0.942 F(1,40)=4.90, p=0.047 F(1,40)=2.11, p=0.161 

Early-Life x Stress  F(1,40)=5.54, p=0.025 F(1,40)=4.50, p=0.040 F(1,40)=0.22, p=0.641 F(1,40)=4.40, p=0.042 F(1,40)=4.65, p=0.037 

Three-Way Interaction                     

Sex x Early-Life x Stress F(1,40)=0.24, p=0.627 F(1,40)=0.03, p=0.874 F(1,40)=3.51, p=0.068 F(1,40)=0.04, p=0.850 F(1,40)=0.10, p=0.760 

 

 

Figure 6.2:  Representative autoradiographs showing effects of sex, early-life condition and adulthood stress on forebrain 1000nM 
[
3
H]GABA binding sites.  Images are from male (a, b, e, f) and female (c, d, g, h) mice exposed to early-life conditions of NH (a-d) or EH (e-h) 

and adulthood conditions of no stress (a, c, e, g) or 3 minute swim stress (b, d, f, h).  Scale bar represents 0.5cm. 
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Table 6.3:  Simple contrast effect comparisons for 1000nM GABA binding in cortical regions.  
Highlighted boxes show significant effects at p<0.05  

 Male vs. Female 

 Control  Adulthood Stress 

 EH NH  EH NH 

Cingulate P=0.013 P=0.011  P=0.673 P=0.179 

Frontal P=0.011 P=0.017  P=0.910 P=0.817 

Upper Layers P=0.040 P=0.042  P=0.884 P=0.915 

Lower Layers P=0.045 P=0.040  P=0.938 P=0.798 

      

 Control vs. Stress 

 Male  Female 

 EH NH  EH NH 

Cingulate P=0.001 P=0.060  P=0.474 P=0.044 

Frontal P=0.009 P=0.426  P=0.218 P=0.032 

Upper Layers P=0.019 P=0.585  P=0.358 P=0.021 

Lower Layers P=0.006 P=0.676  P=0.263 P=0.047 

      

 EH vs. NH 

 Male  Female 

 Control Stress  Control Stress 

Cingulate P=0.041 P=0.281  P=0.030 P=0.061 

Frontal P=0.038 P=0.448  P=0.025 P=0.288 

Upper Layers P=0.109 P=0.778  P=0.040 P=0.604 

Lower Layers P=0.039 P=0.362  P=0.038 P=0.232 
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6.3.2. Hippocampal regions 

Figure 6.3 and 6.4 show 1000nM [
3
H]GABA binding in various hippocampal 

regions of male and female mice exposed to either NH or EH handling conditions in 

early life, and either acute swim stress or no stress in adulthood.  Table 6.4 shows there 

were no significant interaction effects in any of the hippocampal regions examined.  

However, there was a significant main effect of sex, meaning males have a greater 

number of 1000nM [
3
H]GABA binding sites than females in both the dentate gyrus and 

whole hippocampus, regardless of stress and early-life condition.  Analysis of simple 

main effects given in table 6.5 show this effect occurred due to a significant reduction in 

[
3
H]GABA binding of unstressed NH females relative to unstressed EH females and 

unstressed NH males in each of the hippocampal subregions that were examined (see 

table 6.5).   
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Figure 6.3 Effects of sex, early-life condition and adulthood stress on 1000nM [
3
H]GABA binding 

sites in hippocampal regions. Data are expressed as mean±SEM for the a) whole hippocampus and 
b) CA1-CA2 c) CA3 and d) dentate gyrus subregions of hippocampus. ^^=p<0.01 for significant sex 
differences relative to male controls of the same early-life and adulthood stress condition. ##=p<0.01 for 

significant effects of NH relative to EH controls of the same sex. 
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Table 6.4:  Results of 3-way ANOVA tests for 1000nM [
3
H]GABA binding in the hippocampus.  Tests reaching significance with p<0.05 are 

highlighted. 

  CA1 CA3 DG HIPP 

Main Effects                

Sex F(1,41)=1.21, p=0.278 F(1,41)=1.41, p=0.242 F(1,40)=8.50, p=0.006 F(1,40)=4.13, p=0.044 

Early-life  F(1,41)=1.90, p=0.176 F(1,41)=2.31, p=0.136 F(1,40)=0.70, p=0.410 F(1,40)=0.71, p=0.403 

Stress  F(1,41)=0.06, p=0.813 F(1,41)=0.01, p=0.936 F(1,40)=0.38, p=0.544 F(1,40)=0.07, p=0.799 

Two Way Interactions 

Sex x Early-life F(1,41)=1.30, p=0.261 F(1,41)=1.69, p=0.201 F(1,40)=2.33, p=0.136 F(1,40)=2.67, p=0.110 

Sex x Stress  F(1,41)=0.01, p=0.918 F(1,41)=0.00, p=0.966 F(1,40)=2.06, p=0.161 F(1,40)=0.11, p=0.742 

Early-Life x Stress  F(1,41)=2.10, p=0.155 F(1,41)=2.50, p=0.122 F(1,40)=0.01, p=0.924 F(1,40)=0.87, p=0.355 

Three-Way Interaction 

Sex x Early-Life x Stress F(1,41)=2.30, p=0.138 F(1,41)=2.30, p=0.137 F(1,40)=2.16, p=0.151 F(1,40)=3.86, p=0.057 

 

Figure 6.4:  Representative autoradiographs showing effects of sex, early-life condition and adulthood stress on 1000nM [
3
H]GABA 

binding sites at the level of the hippocampus.  Images are from male (a, b, e, f) and female (c, d, g, h) mice exposed to early-life conditions of 
NH (a-d) or EH (e-h) and adulthood conditions of no stress (a, c, e, g) or 3 minute swim stress (b, d, f, h).  Scale bar represents 0.5cm. 
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Table 6.5:  Simple contrast effect comparisons for 1000nM GABA binding in hippocampal regions.  
Highlighted boxes show significant effects at p<0.05. 

 Male vs. Female 

 Control  Adulthood Stress 

 EH NH  EH NH 

Hippocampus P=0.454 P=0.012  P=0.378 P=0.553 

CA1-CA2 P=0.923 P=0.045  P=0.466 P=0.721 

CA3 P=0.410 P=0.033  P=0.474 P=0.592 

Dentate Gyrus P=0.505 P=0.002  P=0.482 P=0.413 

      

 Control vs. Stress 

 Male  Female 

 EH NH  EH NH 

Hippocampus P=0.825 P=0.414  P=0.162 P=0.160 

CA1-CA2 P=0.881 P=0.817  P=0.459 P=0.155 

CA3 P=0.960 P=0.989  P=0.116 P=0.165 

Dentate Gyrus P=0.739 P=0.074  P=0.712 P=0.270 

      

 EH vs. NH 

 Male  Female 

 Control Stress  Control Stress 

Hippocampus P=0.387 P=0.898  P=0.013 P=0.834 

CA1-CA2 P=0.925 P=0.864  P=0.033 P=0.814 

CA3 P=0.888 P=0.933  P=0.008 P=0.891 

Dentate Gyrus P=0.310 P=0.715  P=0.032 P=0.694 
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6.4. Discussion 

6.4.1. Baseline sex differences in [
3
H]GABA binding 

 Table 6.6 summarises findings regarding sex differences in the present study 

according to early-life and adulthood stress conditions.  As shown in table 6.6, in the 

cortex, males exposed to both the EH and NH conditions had increased [
3
H]GABA 

binding sites relative to females.  Similarly, in the hippocampus, males also had an 

increased number of [
3
H]GABA binding sites but this sex-difference was only observed 

in the NH group.  Whilst no previous studies have examined the effects of early-life 

stress on both male and female [
3
H]GABA binding, these findings are consistent with 

previous studies showing sex differences in cortical and hippocampal low-affinity 

GABA binding (see chapter 2, Skilbeck et al., 2008a). As indicated in chapter 2, 

increased low-affinity GABA binding sites in males relative to females suggests that the 

number of functional GABAA receptors are higher in the male cortex.  This may be 

relevant to explaining the sex differences in behavioural sensitivities to GABAA 

receptor compounds that have been observed in many studies (Bujas et al., 1997; 

Crippens et al., 1999; Fernandez-Gausti and Picazo, 1997; Fernandez-Gausti and 

Picazo, 1999; Guillet and Dunham, 1995; Gulinello and Smith, 2003; Kokka et al., 

1992; Manev et al., 1987; Pericic and Bujas, 1997; Pericic et al., 1999; Tayyabkhan et 

al., 2002; Webb et al., 2002; Wilson 1992; Wilson et al., 2004).  Furthermore, as the 

present study indicates that sex differences in GABA binding are affected by early-life 

stress at least in the hippocampus, the varied early-life environments of different animal 

rearing facilities may help explain some of the discrepancies in the literature regarding 

such sex differences (see literature review).  Thus, the present study replicates findings 
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of chapter 2 but extends upon them to show that the effects of early-life condition on 

sex differences in GABA binding are regionally dependent.     

 

 

 

 

 

 

 

 

 

 

 

6.4.2. Effects of early-life stress on [
3
H]GABA binding in unstressed mice  

6.4.2.1. Males 

 Table 6.7 summarises the observed effects of early-life stress on [
3
H]GABA 

binding in males and females according to adulthood stress condition.  As shown in 

table 6.7, early-life condition only affected [
3
H]GABA binding in mice that were not 

exposed to adulthood stress.  In males, the NH group showed a reduced number of low-

affinity [
3
H]GABA binding sites relative to the EH group in forebrain cortical regions 

such as the cingulate and frontal cortices.  This was particularly evident in the lower 

cortical layers (IV-VI).  These findings are consistent with previous studies showing a 

small but significant reduction in low-affinity sites (Bolden et al., 1990) in forebrain 

cortical regions of NH males relative to EH males.  The present study expands on the 

Table 6.6.  Summary of  results indicating regional sex differences in [
3
H]GABA 

binding according to early-life and adulthood stress condition. 

   EH NH 

Cingulate M>F M>F 

Whole frontal M>F M>F 

Upper M>F M>F 

Lower M>F M>F 

Control 

Temporal - - 

Cingulate - - 

Whole frontal - - 

Upper - - 

Lower - - 

C
o

rt
e

x
 

Stress 

Temporal - - 

Whole Hippocampus - M>F 

CA1-CA2 - M>F 

CA3 - M>F 
Control 

DG - M>F 

Whole Hippocampus - - 

CA1-CA2 - - 

CA3 - - H
ip

p
o

c
a

m
p

u
s

 

Stress 

DG - - 

Abbreviations:  Mice exposed to 3 minute swim stress in adulthood (S), mice were not 
exposed to adulthood swim stress and thus represent the unstressed control group (C). 



PART D:  EARLY-LIFE & ADULTHOOD STRESS 

CHAPTER 6 

 212 

findings of Bolden et al. (1990) whose study was conducted in forebrain homogenates, 

by demonstrating that specific cortical regions are deficient in low-affinity [
3
H]GABA 

binding sites in adulthood as a result of early-life condition.  Furthermore, given the 

findings of chapter 4 where NH males showed significant reductions in !2 subunit 

expression across each of the cortical laminae IV, V, VI, it is possible that the loss of 

low-affinity sites in the lower cortical layers of NH mice is at least partially explained 

by a loss of receptors containing the !2 subunit. 

 

6.4.2.2. Females 

 Also shown in table 6.7, similarly to NH males, NH females also showed a 

reduction in the number of low-affinity [
3
H]GABA binding sites relative to EH females.  

However, early-life condition appears to affect the number of [
3
H]GABA binding sites 

to a greater extent in females than it does in males as all forebrain cortical and 

hippocampal regions examined showed a reduction in the number of low-affinity sites 

for NH relative to EH females.  To our knowledge, this is the first study to report a 

widespread and long-lasting deficit in GABA binding in females exposed to a stressful 

early-life condition (NH).  Interestingly, previous studies have also observed sex 

differences in the effects of early-life environment on the long-term behavioural and 

neuroendocrine effects.  Females are more sensitive than males to the adulthood effects 

of pre-natal stress (Richardson et al., 2006), brief periods of isolation (Kosten et al., 

2005), and prolonged maternal separation (Mesquita et al., 2007; Slotten et al., 2006).  

Such findings indicate that the events of early-life may be more important for the long-

term development of females.  
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 The loss of binding sites for [
3
H]GABA in NH females suggests a loss of GABAA 

receptors in regions of the frontal and cingulate cortex as well as the hippocampus.  

Results from the immunohistochemistry experiments in chapter 4 support a loss of !1 

and !2 subunit containing receptors from regions of the hippocampus in NH females 

(see chapter 4).  However, whilst !2 subunit protein was reduced in the cortex, !1 

subunit protein was increased, suggesting that perhaps other GABAA receptor subunits 

are affected to a greater extent by early-life condition.  Alternatively, as chapter 5 found 

deficits in the formation of membrane clusters, it may be that the effects of early-life 

environment on the number of GABAA receptor binding sites arise not from impaired 

protein expression but rather from alterations in receptor formation, membrane insertion 

or recycling. Nonetheless, this study shows a long-lasting, widespread effect of early-

life stress on GABA binding in females.   

 

Table 6.7.  Summary of the effects of early-life condition on [
3
H]GABA binding 

according to sex and adulthood stress condition. 

   Male Female 

Cingulate EH>NH EH>NH 

Whole frontal EH>NH EH>NH 

Upper - EH>NH 

Lower EH>NH EH>NH 

Control 

Temporal - - 

Cingulate - - 

Whole frontal - - 

Upper - - 

Lower - - 

C
o

rt
e

x
 

Stress 

Temporal - - 

Whole Hippocampus - EH>NH 

CA1-CA2 - EH>NH 

CA3 - EH>NH 
Control 

DG - EH>NH 

Whole Hippocampus - - 

CA1-CA2 - - 

CA3 - - H
ip

p
o

c
a

m
p

u
s

 

Stress 

DG - - 

Abbreviations:  Mice exposed to 3 minute swim stress in adulthood (S), mice were not 
exposed to adulthood swim stress and thus represent the unstressed control group (C). 
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6.4.3. Relevance of the effects of early-life stress on [
3
H]GABA binding  

 The effects of early-life stress on adulthood [
3
H]GABA binding in mice that were 

not exposed to swim stress extend on previous observations of this thesis (see part C: 

chapter 3-5) and the work of others (Bodnoff et al., 1987; Bolden et al., 1990; Caldji et 

al., 2000a; Caldji et al., 2000b) suggesting that the effects of early-life stress on 

adulthood behaviour may be mediated by alterations in GABAA receptors.  As the 

number of low-affinity sites labelled by [
3
H]GABA provides a measurement of the total 

number of functional binding sites available, the observed loss of GABA binding sites 

in the hippocampus of NH females and the cortex of both NH males and females is 

likely indicative of an impairment of GABAergic function in adulthood.  Impaired 

function in this major inhibitory neurotransmitter system may be relevant to the 

enhanced behavioural reactivity and anxiety displayed by NH mice relative to EH mice 

(see chapter 3).  Furthermore, the finding that females are more sensitive than males to 

the effects of early-life stress on [
3
H]GABA binding is relevant to understanding 

illnesses such as depression and anxiety that are more prevalent in women and are 

strongly associated with early-life experience (Becker et al., 2007; Simonds and 

Whiffen, 2003; Young et al., 1990).  

 

6.4.4. Effects of early-life on adulthood stress-induced changes in GABA binding  

 As can be seen in table 6.8, results of the present study indicate that early-life 

condition affects adulthood stress-induced changes in [
3
H]GABA binding in males and 

females.  In males [
3
H]GABA binding in the NH group was not affected by stress, but 

in the EH group there was a stress-induced decrease in [
3
H]GABA binding in all 

forebrain cortical regions examined.  In contrast, in females the EH group were 
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unaffected by adulthood stress, whilst the NH group showed a stress-induced increase 

in [
3
H]GABA binding in all forebrain cortical regions examined. Thus, in both males 

and females early-life condition affects adulthood stress-induced changes in GABA 

binding. 

 

Table 6.8.  Summary of the effects of early-life condition on adulthood stress-

induced changes in [
3
H]GABA binding according to sex. 

   EH NH 

Cingulate S<C - 

Whole frontal S<C - 

Upper S<C - 

Lower S<C - 

Male 

Temporal - - 

Cingulate - S>C 

Whole frontal - S>C 

Upper - S>C 

Lower - S>C 

C
o

rt
e

x
 

Female 

Temporal - - 

Whole Hippocampus - - 

CA1-CA2 - - 

CA3 - - 
Male 

DG - - 

Whole Hippocampus - - 

CA1-CA2 - - 

CA3 - - H
ip

p
o

c
a

m
p

u
s

 

Female 

DG - - 

Abbreviations:  Mice exposed to 3 minute swim stress in adulthood (S), mice were not 
exposed to adulthood swim stress and thus represent the unstressed control group (C). 

 

 These effects of early-life condition on adulthood stress-induced changes in 

GABA binding are relevant to discrepancies in the literature regarding the effects of 

stress.  For example, in males, adulthood stress is observed to decrease (Biggio et al., 

1981; Concas et al., 1985; Corda et al., 1985; Cuadra and Molina, 1992), increase 

(Wilson and Biscardi, 1992), or have no effect (Akinci and Johnston, 1993; Skerritt et 

al., 1981) on cortical low-affinity GABAA receptor binding sites. As the present study 

shows GABA binding in EH and NH males is affected differently by stress in 

adulthood, discrepancies in the literature may be at least partially explained by 
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variations in the early-life environments of different animal rearing facilities from 

which animals are obtained.   

 Following on from this line of reasoning, as the early-life environment of mice 

obtained for the study in chapter 2 is unknown, comparisons between the present study 

and that in chapter 2 require caution.  Previous work has indicated that NH mice are 

more stress responsive in terms of behaviour, HPA axis secretions and neuronal activity 

following stress, relative to the EH group (Caldji et al., 2000b; Levine et al., 1967; Liu 

et al., 1997; Meaney et al., 1996; Meaney et al., 1989; Padoin et al., 2001; Plotsky and 

Meaney, 1993; Pryce et al., 2001, Pryce et al., 2003).  Thus, in the present study, it was 

expected that the EH group would show similar effects of stress on GABA binding as 

the mice in chapter 2, whilst the NH group would show an exaggeration of these effects.  

This hypothesis assumes that the early-life environment of mice used in chapter 2, 

which were obtained from an animal rearing facility and underwent no systematic early-

life intervention, was similar to that of the EH group in the present study.  However, the 

findings of the present study question this assumption as the effects of adulthood stress 

on EH mice are not consistent with those reported in chapter 2. For example, in chapter 

2 adulthood acute swim stress increased low-affinity GABA binding sites in females but 

did not affect these sites in males.  In contrast, in the present study EH females did not 

show adulthood stress-induced changes and EH males showed stress-induced reductions 

in GABA binding. Therefore, despite our expectations, it is predicted that the early-life 

environment of the mice in chapter 2 was more like that of the NH group than the EH 

group as the changes in the number of cortical GABA binding sites observed for NH 

mice are consistent with those of the mice in chapter 2.  Furthermore, as NH females 

showed 30-40% increases whilst the females in chapter 2 showed only 10-25% 
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increases in GABA binding following stress, NH females did show an exaggerated 

effect of stress on GABAA receptor binding relative to mice in chapter 2, consistent 

with enhanced stress reactivity in the NH relative to the EH group. 

 The present finding that GABAA receptor adulthood stress-responses are affected 

by early-life environment contributes to our understanding of the neurochemical 

changes underlying impaired stress reactivity and coping.  As already mentioned,  

NH-reared groups show increased HPA axis responses and increased behavioural 

reactivity following stress relative to EH-reared groups (Caldji et al., 2000a; Caldji et 

al., 2000b; Levine et al., 1967; Liu et al., 1997; Meaney et al., 1996; Meaney et al., 

1989; Padoin et al., 2001; Plotsky and Meaney, 1993; Pryce et al., 2001, Pryce et al., 

2003).  Altered stress-responsivity arising from early-life stress appears to result in 

differences in stress coping, with NH mice showing prolonged HPA axis stress 

responses (Levine et al., 1967; Liu et al., 1997; Meaney et al., 1996; Meaney et al., 

1989; Plotsky and Meaney, 1993) and ‘helpless’ behaviours during stress as opposed to 

the active coping behaviours displayed in the EH mice (Hsu et al., 2003).  As the 

present findings demonstrated that the NH group have a different neurochemical 

response to stress in the GABAergic system relative to the EH group, the effects of 

early-life stress on adulthood stress-induced changes in GABAA receptors may be 

relevant to differential adulthood stress-coping between EH and NH groups.  Thus, 

from the findings of the present study it may be proposed that stress-induced increases 

in GABAA receptors observed in NH females may contribute to impaired recovery from 

stress, whilst stress-induced decreases observed in EH males may be advantageous to 

stress coping.  Furthermore, the present observation that neurochemical stress responses 

are altered in an animal model of impaired stress reactivity is of importance to diseases 
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such as schizophrenia and depression where stress is associated with the onset of 

disease symptoms but only in certain individuals (McGrath et al., 2003). 

 

6.4.5. Sex-dependent effects of early-life stress on adulthood GABAA receptors  

 Findings of the present study indicated that the early-life condition affected the 

adulthood stress-induced changes in [
3
H]GABA binding differently in males and 

females.  Such sex differences in stress reactivity are relevant to diseases in which sex 

and stress are associated with the onset and severity of disease symptoms such as 

schizophrenia and depression.  Only EH males and NH females showed stress-induced 

changes in GABA binding and these changes were in opposite directions.  Consistent 

with this finding, sex differences in the effects of early-life environment on stress 

responsivity both in terms of behaviour and serum corticosterone have been observed 

previously (Mitev et al., 2003).  Sex differences in the effects of early-life environment 

on stress-induced changes in GABAA receptors may be related to the effects of  

early-life environment on corticosteroid responses to stress.  For example, whilst both 

males and females show a prolonged corticosteroid response to stress (Meaney et al., 

1985; Meaney et al., 1991), only in males does the NH group show increased levels of 

corticosteroids following exposure to a stressor in adulthood relative to the EH group 

(Ader, 1975; Meaney et al., 1989; Meaney et al., 1996; Plotsky and Meaney, 1993).  

Corticosteroids act directly on GABAA receptors as bi-directional modulators (Ong et 

al., 1987; Ong et al., 1990), but are also necessary for the stress-induced synthesis of 

the potent GABAA receptor neurosteroid modulators (Mitev et al., 2003) and either of 

these endogenous GABAA receptor modulators may underlie the effects of stress on 

GABAA receptors.  Alternatively, given that the present thesis has indicated that 
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GABAA receptor expression (see chapter 4) and binding is affected in a sex-dependent 

fashion by early-life condition, changes in GABAA receptors may be upstream of the 

sex-dependent effects on corticosteroids.  In order to determine if GABAA receptor 

stress responses may be a cause or effect of the changes in corticosteroid release, future 

studies are required to determine how early-life environment and stress affect GABAA 

receptors on the neuronal projections to the PVN of the hypothalamus and how this 

varies between males and females.   

 

6.4.6. Absence of stress-induced sex differences  

The present study also showed that no sex differences occurred between stressed 

animals in [
3
H]GABA binding sites regardless of early-life condition. This finding is 

consistent with the findings of chapter 2 which showed that stress eliminated baseline 

sex differences.  As mentioned in chapter 2 this finding suggests that following 

adulthood stress, sex differences in GABAergic signalling and behaviours mediated via 

this neurotransmitter system would be removed.  Thus the present study replicates the 

findings of chapter 2 but extends upon them by suggesting that the removal of baseline 

sex differences in [
3
H]GABA binding following stress appears to be unaffected by 

early-life condition.  

 

6.4.7. Conclusions 

 The present observations highlight the sensitivity of the GABAergic system to 

environmental stress in both early-life and adulthood.  Early-life environment affected 

the number of functional [
3
H]GABA binding sites in unstressed male and female mice.  

Baseline sex differences in the number low-affinity [
3
H]GABA binding sites that were 
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reported in chapter 2 were present regardless of differences in [
3
H]GABA binding 

resulting from  early-life environment.  Importantly, it was also observed that adulthood 

stress-induced changes in GABAA receptors are dependent on early-life condition 

suggesting neurochemical correlates for the altered adulthood stress-responsivity and 

coping that differentiates the early-life environmental groups used in the present study. 

The interaction of early-life and adulthood stress varied between males and females and 

it was suggested that this may occur via a mechanism involving endogenous GABAA 

receptor modulators such as corticosteroids and / or neurosteroids.  Such sex-dependent 

changes in neurochemical stress responses that are related to different early-life 

conditions may contribute to our future understanding of the sex differences observed in 

diseases such as depression and schizophrenia.  



 

PART E: 
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CHAPTER 7:   

General Discussion 

 

7.1  Overview of findings 

 The main aims of this thesis were to examine the effects of adulthood and  

early-life stress on GABAA receptors, to aid understanding of the neurophysiology of 

stress, of possible sex differences in stress responses, and of the potential role of stress 

in the GABAA receptor abnormalities that are observed in psychiatric illnesses.  The 

major findings of this thesis were that the rapid and sex-dependent effects of adulthood 

stress on GABA binding occur in a regionally-dependent manner, that early-life stress 

has long-term effects on GABAA receptor protein subunit regional densities and 

receptor synaptic clustering, and that early-life stress can affect adulthood  

stress-induced changes in GABA binding.  In the course of this work, sex differences in 

GABA binding, subunit protein expression and the effects of stress on GABAA 

receptors were also identified.  To our knowledge no previous studies have reported 

such findings.  The potential implications and future directions that arise from this work 

are discussed below. 

 

7.2  Stress and GABAA receptors 

 Results reported in this thesis indicated that GABAA receptors are affected in the 

short and long-term by environmental stressors.  A brief 3 minute swim stress in 

adulthood induced rapid changes in forebrain GABA binding sites in females and group 

stressed males (chapter 2).  As well, stress over the first two weeks of post-natal life 

produced long-term effects on GABAA receptors in terms of both regional and laminar 

protein subunit expression (chapter 4) and cellular protein distribution (chapter 5).  

These effects highlight the sensitivity of the GABAergic system to changes in the 
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environment and exemplify how prior experience may affect neurochemical signalling 

over both the short and long term.  

These short and long-term changes in GABAA receptors that are incurred by stress 

have potential clinical implications.  For example, many drugs which act on GABAA 

receptors including anaesthetics and anxiolytic agents are used clinically, thus it is 

likely the effects of such drugs are altered in individuals who experience prior stressful 

events in early-life or in adulthood.  Along the same lines, behaviours such as 

anxiolysis, sedation and myorelaxation that are associated with signalling via GABAA 

receptors may also be altered by prior experience.  Furthermore, behavioural 

abnormalities, such as those observed in psychiatric disorders, may arise due to prior 

stressful experiences in early-life or adulthood.    

 

7.3  Sex differences and GABAA receptors 

7.3.1  Baseline sex differences  

In this thesis GABAA receptor sex differences were observed in control mice that 

had not been exposed to any stressful experiences. For example, low affinity 

[
3
H]GABA binding was observed to be greater in forebrain cortical regions of male 

mice relative to female mice in two separate studies (see chapter 2 and chapter 6).   That 

males have an increased number of low-affinity ‘functional’ [
3
H]GABA binding sites in 

certain forebrain cortical regions may help explain studies showing that, compared with 

females, males show behavioural responses to lower doses of GABAA receptor 

compounds such as ethanol (Crippens et al., 1999; Tayyabkhan et al., 2002; Webb et 

al., 2002; Wilson et al., 2004), allopregnanalone (Fernandez-Gausti and Picazo, 1997; 
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1999; Guinello and Smith, 2003) and diazepam (Fernandez-Gausti and Picazzo, 1990; 

1997; Fernandez-Gausti and Picazzo, 1999; Wilson et al., 2004).   

GABAA receptor subunits possibly involved in the sex-difference in the number 

of GABA binding sites observed in the frontal cortex were also examined in this thesis.  

Immunohistochemistry studies (chapter 4) showed that !1 and !2 subunit expression 

was similar in control males and females across a number of brain regions with the 

exception of the outer layers of the somatosensory cortex where males were observed to 

have increased IR for the !1 subunit expression compared with females.  This increase 

in !1 subunit expression in male mice, suggests that the increased number of cortical 

GABA binding sites in males (reported in chapters 2 and 6) may be at least partially due 

to the increased number of cortical !1-subunit containing GABAA receptors also 

observed in males.  Given that !1-subunit selective compounds such as zolpidem and 

zopiclone are used clinically for the short-term treatment of insomnia, it is important for 

future work to examine whether there are sex differences in the required doses of these 

drugs, or in the recent reports of adverse side-effects from these drugs.  Furthermore, 

sex differences in the expression of other ! subunits that were not examined in this 

thesis may also contribute to sex differences in the number of [
3
H]GABA binding sites 

and sensitivity to GABAergic compounds.  In particular, the !3 subunit which is 

transcribed from a gene on the X chromosome, is strongly expressed on neurons 

receiving monoaminergic projections (Gao et al., 1993) and has been associated with 

sensorimotor deficits in subunit knockout studies (Hauser et al., 2005; Yee et al., 2005), 

suggesting this subunit may be particularly important in sex differences in the 

symptoms and treatment of diseases such as schizophrenia.  
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7.3.2  Sex differences in stress responsivity 

 As a number of diseases have both stress and sex as predisposing factors, another 

aim of this thesis was to examine sex differences in the effects of stress on GABAA 

receptors. Effects of early-life stress on GABAA receptors were largely consistent 

across sexes.  For example both males and females showed similar reductions in low 

affinity [
3
H]GABA binding, !2 subunit expression in the lower layers of the SS cortex 

and synaptic clustering of GABAA receptors in the dentate gyrus (chapter 4).  In 

contrast, stress in adulthood affected [
3
H]GABA binding differently in males and 

females.  Whilst the effects of adulthood stress on GABA binding were dependent on 

the early-life stress condition animals were exposed to, adulthood stress altered GABA 

binding in opposite directions in males and females such that baseline sex differences 

were removed (chapter 2 and chapter 6).  These findings suggest that following stress, 

sex differences in GABAergic signalling and behaviours mediated via this 

neurotransmitter system would be reduced, highlighting the potential for stress to affect 

sex differences in responses to GABAergic agents in a clinical setting. 

 

7.4 Stress, sex differences and psychiatric disorders  

 The involvement of stress in psychiatric disorders such as depression, anxiety 

disorders (generalised anxiety disorder, panic disorder, social phobia, PTSD) and 

schizophrenia is well documented, however the neurophysiological basis for how stress 

may be associated with these disorders is unclear. As GABAA receptors are affected in 

each of these disorders (see section 1.2), and the present thesis shows they are affected 

by stress in the short and long term (chapters 2-6), GABAA receptors present a potential 

site by which stress may affect neurochemical signalling resulting in behavioural 
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abnormalities that present as disease symptoms.  However, given that such disorders 

occur on a genetic background, it is difficult to reproduce the GABAA receptor 

abnormalities observed in psychiatric disorders via purely exposing mice to early-life 

stress.  As was the case in this thesis, the regional selectivity of changes in ! subunit 

expression was not consistent with the changes in ! subunit expression that are 

observed in the brains of people with schizophrenia or depression (chapter 4).  

However, in depression GABAA receptor abnormalities are by no means conclusive.  

Furthermore, the regional dependence of the changes in ! subunit expression that arose 

in mice exposed to early-life stress are consistent with a disruption of the developmental 

! subunit switch. Whilst future studies are required to ensure changes in the expression 

of the ! subunits are a result of developmental abnormalities, the fact that early-life 

stress potentially alters brain development is of relevance to disorders such as 

schizophrenia for which abnormal brain development is a primary feature.  As well, the 

alterations in adulthood stress reactivity that were observed in mice exposed to early-

life stress (chapter 6) is of interest for disorders such as schizophrenia and depression 

where stress-vulnerability or two-hit hypotheses are proposed as an explanation for the 

association of symptom onset, severity and disease outcome with stressful life events. 

Therefore, an animal model involving a combination of early-life stress with the genetic 

abnormalities proposed for such psychiatric disorders would likely be informative 

regarding how GABAA receptor pathologies are acquired in such diseases.  Whilst these 

diseases appear to be polygenetic in origin, investigation of the involvement of different 

genes using knockout mouse models, as is currently the fashion, could be done in 

combination with studies of variations in early-life environment.  Thus, future studies 



PART E:  GENERAL DISCUSSION 

CHAPTER 7 

 

 227 

should seek to examine the effects of early-life stress in animal models of the genetic 

abnormalities proposed to play a role in disorders such as schizophrenia and depression.  

In anxiety disorders, little investigation into GABAA receptor pathologies in 

subjects with such disorders has been performed aside from in vivo imaging of GABAA 

receptor binding sites.  Interestingly, animal models of anxiety disorders have suggested 

that reductions in synaptic clustering are associated with specific attentional deficits that 

are observed in a number of psychiatric disorders.  In the present thesis early-life stress 

was observed to reduce GABAA receptor synaptic clustering in the dentate gyrus 

suggesting that early-life stress may be sufficient to produce the attentional deficits that 

are associated with several psychiatric illnesses such as depression, schizophrenia and 

anxiety disorders.  However, no previous studies have examined how GABAA receptor 

subcellular distribution is affected in the brains of patients affected by such diseases.  

Thus in addition to current studies examining regional and subregional distributions of 

proteins and mRNA that are proposed to be associated with certain psychiatric illnesses, 

future work should seek to determine if abnormal GABAA receptor synaptic clustering 

occurs in the brains of subjects with psychiatric disorders such as depression, 

schizophrenia and anxiety disorders.      

 

 

7.4  General Conclusions 

 

 In conclusion, this thesis shows that GABAA receptors are sensitive to subtle 

changes in the environment in both early-life and adulthood. The stress sensitivity of 

GABAA receptors both in the short and long-term suggests that both behaviours and 

clinically relevant drugs that are mediated via this system may be affected by prior 

stressful experiences throughout the lifespan. This thesis also sheds light on the 
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proposition of sexual differentiation of GABAA receptors, with evidence suggesting that 

baseline sex differences exist which likely affect how males and females respond 

behaviourally and pharmacologically. The short and long-term stress-sensitivity of the 

GABAergic system also implicates GABAA receptors in the non-genetic aetiology of 

psychiatric illnesses that are epidemiologically associated with sex and stress such as 

schizophrenia, depression and anxiety disorders.  Further investigation into the role of 

neurosteroids in mediating stress-induced changes in GABAA receptors and potential 

sex differences in the sensitivity to such effects may help our understanding of the 

mechanism by which GABAA receptors are affected by stress in the short and  

long-term. 
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