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Summary

This body of research uses numerical and experimental investigative techniques to further
the understanding of autoignition. Hydrogen/nitrogen and methane/air fuel configurations of
turbulent lifted flamesin avitiated coflow burner are used asmodel flamesfor thisinvestigation.
Characterisation was undertaken to understand the impact of controlling parameters and the
overall behaviour of the flames, and to provide a body of data for modelling comparisons.

Modelling of the flames was conducted using the PDF-RANS technique with detailed
chemistry incorporated using In-situ Adaptive Tabulation (ISAT) within the commercial CFD
package, FLUENT 6.2. From these investigations, two numerical indicators for autoignition
were developed: convection-reaction balance in the species transport budget at the mean flame
base; and the build-up of ignition precursors prior to key ignition species. These indicators
were tested in well defined autoignition and premixed flame cases, and subsequently used with
the calculated turbulent lifted flames to identify if these are stabilised through autoignition.

Based on learnings from the modelling, a quantitative, high-resolution simultaneous imag-
ing experiment was designed to investigate the correlations of an ignition precursor (formalde-
hyde: CH,0) with akey flame radical (OH) and temperature. Rayleigh scattering was used to
measure temperature, while Laser Induced Fluorescence (LIF) was used to measure OH and
CH,0O concentrations. The high resolution in the Rayleigh imaging permitted the extraction
of temperature gradient data, and the product of the OH and CH,O images was shown to be a
valid and useful proxy for peak heat release rate in autoigniting and transient flames.

The experimental data confirmed the presence of formaldehyde as a precursor for autoigni-
tion in methane flames and led to the identification of other indicators. Sequenced images of
CH,0, OH and temperature show clearly that formaldehyde exists before OH and peaks when
autoignition occurs, as confirmed by images of heat release. The CH,O peaks decrease later

while those of OH remain almost unchanged in the reaction zone.
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accurately frozen mixing, due to the nature of the calculations. 134
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An example of the variation in collisional environment for OH versus temperature,
calculated from laminar opposed flow flame simulations. Thefuel composition isthat
of the helium replacement fuel at 320K, and the oxidiser stream is the equilibrium
coflow composition at 1400K. The OH quenching coefficients Q.4, Qs;, and the
vibrational transfer coefficient V,; are plotted for an unstrained case. Vo3 = V4. The

strained curves are omitted due to similarity to the unstrained curves.

Comparison between normalized CH,O profiles through a & = 1.2 Bunsen flame,
processed as labeled.

Scatter of OH mole fraction versustemperature from the Berkeley V CB website (left)
and current experimental work (right) at 50D for a liftoff height = 35D CNG-Air

flame.

Mean and RMS profiles for IMG_H2N2 TLF 6.45 of temperature and OH mole
fraction versus data from Berkeley VCB Hydrogen Site (2003). Axial location re-
ported in bracketsisfor datafrom IMG_H2N2 TLF_6.45.

A series of images from IMG_H2N2 TLF 6.45. Images of OH mole fraction, tem-

perature and (77°)* from top to bottom. Image window 9 x 18 mm.

A sequence of images taken at 9 diametersfor IMG_H2N2_TLF_6.45, showing the
variety of structuresthat can exist upstream of the mean stabilisation location. Image

window 9 x 18 mm.

Set of imagesfrom IMG_H2N2_TLF_6.55. Each image group isfrom top to bottom:
OH mole fraction; Temperature (K); and (77')®. Images are centered horizontally at

4.5D. Image window is9 x 18 mm.

OH imagesfromIMG_H2N2 TLF_6.55. Colour scale hasbeen reduced to 2.5x 10~*
to show detail near fuel jet exit. Images are centered horizontally at 4.5D.

Scatter of OH molefraction versustemperatureand (77°)* for IMG_H2N2 TLF 6.45
progressing axially downstream as labeled. Open diamonds:. unstrained laminar sim-

ulation; Crosses; strained laminar simulation.

XXi

139

140

143

146

148

150

151

152

154



XXii

10.7

111

112

11.3

114

115

11.6

11.7

L1ST OF FIGURES

Scatter of OH mole fraction versus temperature and (v77')” for a variety of flame
structures present at the stabilisation zone (x/D = 13) of IMG_H2N2_TLF_6.45.
Open diamonds: unstrained laminar simulation; Crosses:. strained laminar simulation.
155

Image examples, from left to right, of Bunsen flames of ® = 0.8, 0.9, and 1.0. From
top to bottom, images are OH mole fraction, CH,O-LIF, and Rayleigh Temperature.

Image dimensions are 9 mm by 18 mm.

Image examples, from left to right, of Bunsen flamesof ® = 1.1, 1.2 and 1.5. From
top to bottom, images are OH mole fraction, CH,O-LIF, and Rayleigh Temperature.

Image dimensions are 9 mm by 18 mm.

Image examples, from left to right, of Bunsen flames of & = 2.0, and 4.76, and a
diffusion flame. From top to bottom, images are OH mole fraction, CH,O-LIF, and

Rayleigh Temperature. Image dimensions are 9 mm by 18 mm.

Image examples from IMG_CNG_Diff_3Sc (liftoff height 6.5D). First two images
are of the flame base, last image is 2D downstream, displaying the flame wall. From
top to bottom, images are OH-LIF, CH,O-LIF, and Rayleigh Temperature (processed
with constant cross-section). Image dimensions are 9mm by 18 mm. Jet centerline
is marked with a dashed white line.

Image examples from IMG_HeO2 3Sc 0.43 at the liftoff location of 22.5D. From
top to bottom: OH Mole fraction, CH,O, and temperature. Images are 9mm by

18 mm. Jet centerlineis 4 mm left of viewing window.

Image examplesfrom IMG_HeO2_3Sc 0.40 at the liftoff location of 43D. From top
to bottom: OH Mole fraction, CH,O, and temperature. Images are 9mm by 18 mm.

Jet centerline is 4 mm left of viewing window.

Image examplesfrom IMG_HeO2_3Sc_0.38 at the liftoff location of 56 D. From top
to bottom: OH Mole fraction, CH,O, and temperature. Images are 9mm by 18 mm.

Jet centerline is 4 mm left of viewing window.
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Normalised axial profiles of temperature, OH and CH,O for IMG_HeO2_3Sc_0.43
(top), PDF_CH4_ARM?2_1430 (middle), and IMG_CNG_Diff_3Sc (the lifted diffu-
sion flame).

Image examples from IMG_HeO2 3Sc 0.43 of structures as labeled. From top to
bottom: OH Molefraction, CH,O, and temperature. Flame featuresin white ellipses.
Examplesof ‘Border’ Flamesarevisiblein thefirst 4 images (dashed boxes). Images
vertically centered at x = 22D, except for ‘Downstream Flame' (32D). Images are

9mm by 18 mm. Jet centerline is 4 mm left of viewing window.

11.10 Pseudo-temporal evolution of CH,O and OH versus temperature conditioned by

121

12.2

12.3

12.4

flame structures.

Heat release rate (top) compared to the product of OH and CH,O (bottom) versus
mixture fraction for transient autoignition flamel ets undergoing strain as labeled.
Image examples, from left to right, of a stoichiometric premixed Bunsen flame, a
Bunsen flame with ® =1.5, and a diffusion Bunsen flame. From top to bottom, im-
ages are OH mole fraction, CH,O-LIF, Rayleigh temperature, the product of the OH
and CH,0 images, and (577)°. Image dimensions are 9 mm by 18 mm.

Image examples from IMG_CNG_Diff_3Sc. First two images are of the flame base,
last image is 2D downstream, displaying the flame wall. From top to bottom, im-
ages are OH-LIF, CH,O-LIF, Rayleigh temperature (processed with constant cross-
section), the product of the OH and CH,O images (a proxy for heat release rate),
and (7%, Image dimensions are 9mm by 18 mm. Jet centerline is marked with a
dashed white line.

Image examples from alifted autoigniting flame with liftoff height = 20D of CH,O
only, small and medium kernels. Examples of ‘border’ flames are marked with a
white dashed box. From top to bottom, images are OH mole fraction, CH,O-LIF,
Rayleigh temperature, the product of the OH and CH,O images (a proxy for heat
release rate), and (s77')°. All images are vertically centered at x = 22D. Image
dimensions are 9mm by 18 mm. Jet centerline is 4mm to the left of the viewing

window.
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Image examples from alifted autoigniting flame with liftoff height = 20D of alarge
kernel, a flame at the liftoff location, and a fully developed flame 10D downstream
of the liftoff location. An example of a ‘border’ flame is marked with a dashed box
in the first image set. From top to bottom, images are OH mole fraction, CH,O-LIF,
Rayleigh temperature, the product of the OH and CH,O images (a proxy for heat
release rate), and (577))°. All images are vertically centered at x = 22D, except for
‘Downstream Flame'. Image dimensions are 9 mm by 18 mm. Jet centerlineis 4 mm

to the left of the viewing window.

Scatter of the product of OH and CH,O versus temperature (top) and versus OH mole
fraction (bottom) for Bunsen flames with & = 1.0, 1.5, and in diffusion mode. Grey
symbolsin the upper plots are datafrom unstrained laminar opposed flow simulations

at the respective stoichiometry.

Scatter of the product of OH and CH,O versus temperature (top) and versus OH
mole fraction (bottom) for the flame base, peak reaction tip, and established flame of

alifted diffusion flame. Steady laminar flame simulations represented with symbols.

Scatter of the product of OH and CH,,O versus temperature (top) and versus OH mole
fraction (bottom) for small, medium and large kernels at the liftoff location of alifted
autoigniting flame (L, = 20D). Dark grey diamonds: conditional means, light grey
symbols: steady strained laminar flame.

Scatter of the product of OH and CH,,O versus temperature (top) and versus OH mole
fraction (bottom) for border and established flames at the liftoff location, and estab-
lished flames 10 D downstream for alifted autoigniting flame (L;, = 20 D). Dark grey
diamonds: conditional means, light grey symbols: steady strained laminar flame.
Scatter of the product of OH and CH,O versus (77)* for flames as indicated in
graph titles.

Scatter of the product of OH and CH,O versus (577)° for large kernels from the
liftoff location of a lifted autoigniting flame (L, = 20D), coloured by temperature.
LHSisfull dataset, RHSisonly the data for super-equilibrium OH (> 6x 10~2 mole

fraction).
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13.1 Scatter of the product of OH and CH,O versus (77')° for methane flames as indi-

H.1

H.2

H.3

HA4

cated in graph titles.

Examples of images from IMG_H2N2_TLF_6.55 taken from the liftoff height (top)
and just below the liftoff height (bottom). Each image group is from top to bottom:

OH mole fraction; temperature (K); and (vT)Z. Image window is9 x 18 mm.

Examples of images from IMG_H2N2_TLF_6.45 taken from the liftoff height (top)
and just below the liftoff height (bottom). Each image group is from top to bottom:

OH mole fraction; temperature (K); and (vT)Q. Image window is9 x 18 mm.

Examples of images from IMG_H2N2_TLF_6.35 taken from the liftoff height (top)
and just below the liftoff height (bottom). Each image group is from top to bottom:

OH mole fraction; temperature (K); and (77°)*. Image window is 9 x 18 mm.

Examples of images from IMG_H2N2_TLF_6.30 taken from the liftoff height (top)
and just below the liftoff height (bottom). Each image group is from top to bottom:

OH mole fraction; temperature (K); and (77°)*. Image window is 9 x 18 mm.

Image examples of CH,O only. From top to bottom, images are OH mole fraction,
CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images (a proxy
for heat release rate), and (77')°. Image titles indicate where and from which flame
the image was captured. Image dimensions are 9mm by 18 mm. Jet centerline is

4 mm to the left of the viewing window.

Image examples of Small Kernels. From top to bottom, images are OH molefraction,
CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images (a proxy
for heat release rate), and (77')°. Image titles indicate where and from which flame
the image was captured. Image dimensions are 9mm by 18 mm. Jet centerline is

4 mm to the left of the viewing window.
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Image examples of Medium Kernels. From top to bottom, images are OH mole
fraction, CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images
(a proxy for heat release rate), and (vT)Q. Image titles indicate where and from
which flame the image was captured. Image dimensions are 9mm by 18 mm. Jet

centerlineis 4 mm to the left of the viewing window.

Image examples of Large Kernels. From top to bottom, images are OH molefraction,
CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images (a proxy
for heat release rate), and (77')°. Image titles indicate where and from which flame
the image was captured. Image dimensions are 9mm by 18 mm. Jet centerline is

4 mm to the left of the viewing window.

Image examples of Border Flames. From top to bottom, images are OH mole frac-
tion, CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images (a
proxy for heat release rate), and (77°)*. Image titles indicate where and from which
flame the image was captured. Image dimensions are 9 mm by 18 mm. Jet centerline

is4 mm to the left of the viewing window.

Image examples of Liftoff Flames. From top to bottom, images are OH molefraction,
CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images (a proxy
for heat release rate), and (77")°. Image titles indicate where and from which flame
the image was captured. Image dimensions are 9mm by 18 mm. Jet centerline is

4 mm to the left of the viewing window.

Image examples of Downstream Flames. From top to bottom, images are OH mole
fraction, CH,O-LIF, Rayleigh temperature, the product of the OH and CH,O images
(a proxy for heat release rate), and (v77')°. Image titles indicate where and from
which flame the image was captured. Image dimensions are 9mm by 18 mm. Jet

centerlineis 4 mm to the left of the viewing window.

Evolution of CH,O (left) and OH (right) for atransient autoignition flamelet.

A comparison of evolution of mass fractions of CH,O (left) and OH (right) for three

differently strained flames, with N, = 5 (top), 50 (middie) and 100 (bottom).
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Heat release rate (top) compared to the product of OH and CH,O (bottom) versus
mixture fraction for atransient autoignition flamelet.

Product of OH and CH,O versus heat release rate at different strain rates.

Product of OH and CH,O versus OH for atransient autoignition flamelet at different

strain rates.
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Nomenclature

Roman
Symbol Definition Units
a Strain rate parameter s!
A Einstein coefficient of spontaneous emission st
b Bias
Bis Einstein coefficient of absorption m?.(J.s)~ !
c Constant
Ca First experimental constant from the e transport equation
Ce Second experimental constant from the e transport equation
Cs Mixing model constant
C, Modelling constant from the turbulent viscosity model
D Diameter m, mm
E Error
f Mixture fraction
fo Boltzmann fraction
F Fluorescence intensity counts
| Rayleigh Rayleigh Image
I Laser Intensity Jem—2
I Turbulence intensity %
k Turbulent kinetic energy m?.s~2
K ref Zero cross-section reflection image
I Turbulence length scale m
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XXX NOMENCLATURE

Symbol Definition Units
m, MW Molecular weight kg.mol !
Refractive index

Number of particles (mixing models)

Na Avogadro’s Number
Npc Number of particles per cell
Nta Number of stepsin the time average
N(f) Scalar dissipation rate distribution in mixture fraction
p Pressure kPa, Atm, Bar
P Probability Density Function (PDF)
Pr Prandtl number
Qa4 Quenching coefficient from /=0
Q31 Quenching coefficient from /=1
r Radial distance m, mm
Re Reynolds number
Ry Universal gas constant JK~1.mol~!
S Chemical source term
Sc Schmidt number
S Laminar flame speed m.s!
t Time S
T Temperature K
u Velocity m.s~!
U Velocity m.s~!
Vi Vibrational transfer coefficient
Vv Voltage \%
Axial distance m, mm
X Mole fraction

Y Composition array



GREEK

XXXi

Symbol Definition Units

Y Mass fraction
Greek

Symbol Definition Units
@ Scattering angle rad
dij Kronecker delta
€ Turbulent Dissipation Rate m?.s3
n Throughput efficiency
0] Diameter m
) Equivalence ratio
A Wavelength nm, cm—!
M Dynamic viscosity kg.(m.s) !
v Vibrational state
v Kinematic viscosity m2.s!
T Time scale st
P Density kg.m=3
Po Depolarization ratio
o RANS modelling constants
o Relative Rayleigh cross-section for speciesi
¢ Uniform random number
W Composition array
Q Solid angle srad



XXXii NOMENCLATURE

Super scripts
0 Origina state
! New state
Subscripts
ar Values taken in room temperature air
coflow Values taken in the coflow of the VCB
flame Values taken in the flame
€ Pertaining to turbulent dissipation rate

[ Value for speciesi

J Values taken in the fuel jet of the VCB

k pertaining to turbulent kinetic energy term, k
o} Excess velocity
stoich, s Stoichiometric value
T, t Turbulent
v vertically polarised
Notation
(p) Conventional mean of p
(plg) Mean of p conditional on g
[p] Concentration, mole fraction of p
Ap Delta- difference or changein valueinp
\Vi2 Gradient operator
D Average
D Favre average

P Rate operator



ABBREVIATIONS

Abbreviations

2Sc
3Sc
BD
BG
CCD
CDR
CFD
CL
CMC
CNG
DNS
EDC
EMST
FWHM
HCCI
HeO,
HRR
ICCD
IEM
1/l
IMG

LDV
LES
LHS
LIF
LSF
MC

Two Scalar experiment

Three Scalar experiment

Beam Dump

Black Glass

Charge Coupled Device
Convection, Diffusion, Reaction
Computational Fluid Dynamics
Cylindrical Lens

Conditional Moment Closure
Compressed Natural Gas

Direct Numerical Simulation

Eddy Dissipation Concept
Euclidian Minimum Spanning Tree
Full Width Half Maximum
Homogenous Compressed Charge Ignition
Helium-Oxygen replacement for air
Heat Release Rate

Intensified Charge Coupled Device
Interaction by Exchange with the Mean
Image Intensifier

Image

In-situ Adaptive Tabulation

Laser Doppler Velocimetry

Large Eddy Simulation

Left Hand Side

Laser Induced Fluorescence

Line Spread Function

Modified Curl’s
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XXXV NOMENCLATURE

Nd:YAG  Neodinium doped Yttrium Aluminium Garnet crystal laser

PAH Polycyclic Aromatic Hydrocarbons

PDF Probability Density Function

PDL Pumped Dye L aser

PISO Pressure-Implicit with Splitting of Operators
PMT Photo Multiplier Tube

PRESTO! PREssure STaggering Option
RANS Reynolds Averaged Navier Stokes

QE Quantum Efficiency

RHS Right Hand Side

RMS Root Mean Squared (square root of variance)
RR Heat Release Rate

SHG Second Harmonic Generator
SL Spherical Lens

SLM Standard Liters per Minute
SNR Signal to Noise Ratio

SRF Step Response Function

SS Stainless Steel

Tant. Tantalum

THG Third Harmonic Generator
TLF Turbulent Lifted Flame

TNF Turbulent Nonpremixed Flame
uv UltraViolet

VCB Vitiated Coflow Burner

VIS Visible luminescence experiment



