
Ensuring Serializable Executions with Snapshot
Isolation DBMS

THIS THESIS IS

PRESENTED TO THE

FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGIES

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OF

THE UNIVERSITY OF SYDNEY

By

Mohammad I Alomari

December 2008

c© Copyright 2008

by

Mohammad I Alomari

ii

Abstract

Snapshot Isolation (SI) is a multiversion concurrency control that has been imple-

mented by open source and commercial database systems such as PostgreSQL and

Oracle. The main feature of SI is that a read operation does not block a write operation

and vice versa, which allows higher degree of concurrency than traditional two-phase

locking. SI prevents many anomalies that appear in other isolation levels, but it still

can result in non-serializable execution, in which database integrity constraints can be

violated. Several techniques have been proposed to ensure serializable execution with

engines running SI; these techniques are based on modifying the applications by intro-

ducing conflicting SQL statements. However, with each of these techniques the DBA has

to make a difficult choice among possible transactions to modify.

This thesis helps the DBA’s to choose between these different techniques and choices

by understanding how the choices affect system performance. It also proposes a novel

technique called ’External Lock Manager’ (ELM) which introduces conflicts in a separate

lock-manager object so that every execution will be serializable.

We build a prototype system for ELM and we run experiments to demonstrate the robust-

ness of the new technique compare to the previous techniques. Experiments show that

modifying the application code for some transactions has a high impact on performance

for some choices, which makes it very hard for DBA’s to choose wisely. However, ELM

has peak performance which is similar to SI, no matter which transactions are chosen

for modification. Thus we say that ELM is a robust technique for ensure serializable

execution.

iii

Prior Publications

Parts of this thesis are taken from the following jointly authored papers:

1. Mohammad Alomari, Alan Fekete and Uwe Rohm, A Robust Technique to En-

sure Serializable Executions with Snapshot Isolation DBMS, in Proceedings of

IEEE International Conference on Data Engineering (ICDE09), 2009, to appear.

2. Mohammad Alomari, Michael Cahill, Alan Fekete and Uwe Rohm, The cost of

serializability on platforms that use snapshot isolation, in Proceedings of IEEE

International Conference on Data Engineering (ICDE08), 2008, pp. 576-585.

3. Mohammad Alomari, Michael Cahill, Alan Fekete and Uwe Rohm, Serializable

executions with snapshot isolation: Modifying application code or mixing isolation

levels? in Proceedings of DASFAA08, 2008, pp. 267-281.

4. Mohamad Alomari, Michael Cahill, Alan Fekete and Uwe Rohm, When serializ-

ability comes without cost, Computer Systems and Applications, 2008. AICCSA08.

IEEE/ACS International Conference on, 2008,pp. 164-171.

The work described was done jointly with Alan Fekete, Uwe Röhm and Michael Cahill.

My particular contributions to this have been

• Conceiving and implementing the ELM technique described in chapter 3

iv

• Design a new benchmark that has the required characteristics to evaluate the dif-

ferent techniques

• Carrying out the performance experiments

• As well, I participated in interpreting the data and writing these papers

v

Acknowledgements

I
would like to thank my research advisor, Alan Fekete, for his constant support and

counsel during my stay as a graduate student. I have learned many principles for per-

forming good research. He helped me focus directly on the essence of the problems, and

persisted on doing excellent research. I feel deeply indebted to his encouragement and

support.

I also would like to thank many of the technical and administrative staff of the school of

Information Technology who provided the timely support.

Words cannot even come close to expressing my gratitude to my parents, and to my

brother Dr. Ahmad Alomari who deserve the credit for whatever positive that I have

achieved in my life. They have always supported me in all my endeavors and have pa-

tiently waited for the completion of my degree. Last but not least, my wife Esra’a has

been supportive and encouraging while I have been trying to finish up my thesis.

vi

Contents

Abstract iii

Prior Publications iv

Acknowledgements vi

1 Introduction 1

1.1 An Overview . 1

1.2 Motivation and Contributions of this Work 3

1.3 Thesis Outline . 5

2 Background Concepts 6

2.1 Transaction Processing . 6

2.2 Serializability . 8

2.3 Concurrency control . 10

2.4 Isolation levels . 13

2.4.1 Read Committed Isolation . 15

2.5 Multiversion Concurrency Control . 15

vii

2.5.1 Multiversion Serializability Theory 16

2.6 Snapshot Isolation (SI) . 18

2.6.1 Snapshot Isolation Anomalies 21

2.6.2 Multiversion Concurrency in PostgreSQL 23

2.6.3 Multiversion Concurrency in Oracle 24

2.6.4 Multiversion Concurrency in Microsoft SQL Server 26

2.6.5 Analysis Using SDG . 28

2.6.6 Options to ensure Serializability 30

2.7 Benchmark . 34

3 The External Lock Manager (ELM) Technique 37

3.1 The ELM Approach . 38

3.1.1 Lock Alternatives . 40

3.2 Proof of ELM Serializability . 43

3.3 Architecture And Design of ELM . 44

3.3.1 Design Features . 45

3.3.2 Location of ELM . 49

3.4 ELM Fault Tolerance . 50

3.5 Prototype ELM Implementation . 54

3.6 Implementation of Lock Manager . 56

3.7 Summary . 59

4 Experimental Framework 61

viii

4.1 Software and Hardware . 61

4.2 Performance Metrics . 63

4.3 Workload Parameters . 64

4.4 Benchmarks . 65

4.4.1 Smallbank benchmark . 65

4.4.2 MoreChoices Benchmark . 83

4.5 Summary . 93

5 Evaluation 94

5.1 Options to ensure serializable execution with SmallBank 95

5.2 Serializability of SI on PostgreSQL, for SmallBank 95

5.2.1 Low Contention, High Update Rate 95

5.2.2 High Contention, High Update Rate 107

5.2.3 Low Update Rate . 112

5.2.4 Comparison with Low Isolation Level 115

5.3 Serializability of SI on Oracle . 120

5.3.1 Low Contention . 121

5.3.2 High Contention . 125

5.4 MoreChoices Benchmark Programs . 127

5.4.1 Low Contention . 128

5.4.2 High Contention . 135

5.5 Conclusions . 141

5.6 Summary . 142

ix

6 Conclusions 143

6.1 Future Work . 145

Bibliography 148

x

List of Tables

1 different isolation levels based on ANSI definitions [1] 14

2 TPC-C Benchmark. 34

3 Overview of Modification Introduced with each Option. 83

xi

List of Figures

1 Conflict serializable schedule. 9

2 Non-serializable schedule. 10

3 Non-serializable schedule. 18

4 Vulnerable edge. 29

5 Write Dependencies edge . 29

6 Read Dependencies edge. 29

7 Dangerous structure example. 30

8 Pivot Example. 33

9 System Architecture with ELM. 38

10 System Architecture for Experiments without ELM. 44

11 Architecture of ELM-Failure. 47

12 ELM Middleware Design. 49

13 Additional Component Inside the database. 51

14 Client-Server Architecture with Fault Tolerance. 52

15 Middleware Architecture with Fault Tolerance. 53

16 Implementation Example. 56

xii

17 The SDG for the SmallBank benchmark. 69

18 SDG for Option promoteWT and MaterializeWT. 78

19 SDG for Option ELM-WT. 79

20 SDG for MaterializeBW. 81

21 SDG for PromoteBW-upd. 81

22 SDG for Option ELM-BW. 82

23 SDG for MoreChoices benchmark. 88

24 SDG for MoreChoice, Choice1-Materialize. 89

25 SDG for MoreChoice, Choice1-Promotion. 90

26 SDG for MoreChoice, ELM-Choice1. 90

27 SDG for MoreChoice, Choice2-Promotion and Choice2-Materialize. . . . 91

28 SDG for MoreChoice, ELM-Choice2. 91

29 SDG for MoreChoice, ALL-Promotion and ALL-Materialize. 92

30 SDG for MoreChoice, ELM-ALL. 92

31 Throughput over MPL, Low Contention, High Update, SmallBank, Post-

greSQL. 96

32 Throughput relative to SI, Low Contention, High Update, SmallBank,

PostgreSQL. 97

33 Serialization Failure, Low Contention, high Update, SmallBank, Post-

greSQL. 98

34 Serialization Failure Ratio per Transaction Type, Low Contention, Small-

Bank, PostgreSQL. 100

35 Mean Response Time, Low Contention, SmallBank, PostgreSQL. 101

xiii

36 Message sequence diagram. 102

37 Average Execution time, Low Contention, SmallBank, PostgreSQL. . . . 103

38 Costs for SI-serializability when eliminating ALL vulnerable edges, Low

Contention, SmallBank, PostgreSQL.. 104

39 Relative Throughput to SI (ALL vulnerable edges), Low Contention,

SmallBank, PostgreSQL.. 104

40 Percentage of Serialization Failure (ALL edges), Low Contention, Small-

Bank, PostgreSQL.. 106

41 Throughput over MPL, High Contention, SmallBank, PostgreSQL. 107

42 Throughput relative to SI, High Contention, SmallBank, PostgreSQL. . . 108

43 Serialization Failure, High Contention, SmallBank, PostgreSQL. 109

44 Serialization Failure Ratio per Transaction Type, High Contention, Small-

Bank, PostgreSQL. 110

45 Mean Response Time, High Contention, SmallBank, PostgreSQL. 110

46 Average Execution time, High Contention, SmallBank, PostgreSQL. . . . 111

47 Relative Throughput to SI (ALL vulnerable edges), High Contention,

SmallBank, PostgreSQL. 112

48 Throughput with 60% read-only, Low Contention, SmallBank, PostgreSQL.113

49 Relative Throughput with 60% read-only, Low Contention, SmallBank,

PostgreSQL. 113

50 Mean Response Time with 60% read-only, Low Contention, SmallBank,

PostgreSQL. 115

51 Serialization Failure with 60% read-only, Low Contention, SmallBank,

PostgreSQL. 116

xiv

52 Throughput with 60% read-only-, High Contention, SmallBank, Post-

greSQL. 116

53 Relative Throughput with 60% read-only, High Contention, SmallBank,

PostgreSQL. 117

54 Relative Throughput to Read Committed, Low Contention, SmallBank,

PostgreSQL. 118

55 Mean Response Time, Low Contention, SmallBank, PostgreSQL. 119

56 Relative Throughput to Read Committed, High Contention, SmallBank,

PostgreSQL. 120

57 Throughput over MPL, Low Contention, SmallBank, Oracle. 121

58 Throughput relative to SI, Low Contention, SmallBank, Oracle. 122

59 FCW Error per Transaction Type, Low Contention, SmallBank, Oracle. . 123

60 Average Execution time, Low Contention, SmallBank, Oracle. 124

61 FCW Error per Transaction Type, Low Contention, SmallBank, Oracle. . 125

62 Throughput over MPL, High Contention, SmallBank, Oracle. 126

63 FCW Error per Transaction Type, High Contention, SmallBank, Oracle. . 127

64 SDG for MoreChoice benchmark. 128

65 Throughput Summery, Low Contention, MoreChoices, PostgreSQL. . . . 129

66 Choice1 Throughput, Low Contention, MoreChoices, PostgreSQL. 130

67 Serialization Failure for choice1, Low Contention, MoreChoices, Post-

greSQL. 130

68 Serialization Failure per Transaction for choice1, Low Contention, More-

Choices, PostgreSQL. 131

xv

69 Choice1 Throughput, Low Contention, MoreChoices, PostgreSQL. 132

70 Choice2 Throughput, Low Contention, MoreChoices, PostgreSQL. 133

71 Serialization Failure for choice2, Low Contention, MoreChoices, Post-

greSQL. 133

72 Choice3 Throughput, Low Contention, MoreChoices, PostgreSQL. 134

73 Serialization Failure for choice3, Low Contention, MoreChoices, Post-

greSQL. 134

74 Throughput summary, High Contention, MoreChoices, PostgreSQL. . . . 135

75 Choice1 Throughput, High Contention, MoreChoices, PostgreSQL. . . . 136

76 Serialization Failure for choice1, High Contention, MoreChoices, Post-

greSQL. 136

77 Choice2 Throughput, High Contention, MoreChoices, PostgreSQL. . . . 138

78 Serialization Failure for choice2, High Contention, MoreChoices, Post-

greSQL. 138

79 Percentage of Deadlock with choice2, High Contention, MoreChoices,

PostgreSQL. 139

80 Choice3 Throughput, High Contention, MoreChoices, PostgreSQL. . . . 140

81 Serialization Failure for choice3, High Contention, MoreChoices, Post-

greSQL. 140

xvi

Chapter 1

Introduction

This chapter introduces my thesis with general overview of Snapshot isolation (SI)

and the serializability problem. Then it shows the motivations, contributions, and

the structure of the thesis.

1.1 An Overview

One of the main reasons that application developers use databases is to maintain the in-

tegrity and consistency of their data. Transactions are typically viewed as sequences of

read and write operations that run as one unit, and the interleaved operations of read and

write requests for a concurrent execution of transactions is called the schedule. Serial-

izability of any interleaving is a notion of correctness, based on whether that schedule

is equivalent to some serial one. The essential property is that all integrity constraints

are valid at the end of a serializable execution (so long as each transaction separately is

written to maintain the constraints). Many database vendors provide two-phase locking

(2PL) to ensure serializability. The data integrity guaranteed by 2PL comes at a consider-

able cost in performance, as a read operation is delayed until the commit of a concurrent

1

CHAPTER 1. INTRODUCTION 2

transaction which wrote the same item, and as a write operation is delayed until there is

no active transaction that has read the item.

The concept of isolation level was introduced under name ’Degrees of Consistency’ [10].

The ANSI/ISO SQL standard defines several levels of transaction isolation with differing

degrees of impact on transaction processing throughput, to allow the database industry

to weaken the requirement of serializability, in case where absolute correctness is not

critical in order to increase the performance of common multi-user application . A greater

degree of concurrency and better performance can be achieved using a lower level of

transaction isolation. However, lower isolation can allow anomalies which might affect

the consistency of the data.

Berenson et al [10] defined a new concurrency control algorithm called Snapshot Isola-

tion (SI), variants of which are implemented in platforms such as Oracle, PostgreSQL

and Microsoft SQL Server 2005. SI saves the old versions of any updated data item, in

order to use these later to satisfy read requests, with each transaction seeing each data

item in the version that committed most recently before the start of the reading trans-

action. SI does not allow inconsistent read anomalies, and it also prevents lost updates

since the First Committer Wins (FCW) rule prevents two concurrent update transactions

from modifying the same data item.

However, non-serializable executions are possible with SI, and data can be corrupted so

that (undeclared) integrity constraints are violated. In particular, [10] shows an anomaly

called Write Skew that is possible with SI. Fortunately some applications have specific

patterns of data access, so that for these particular sets of programs, all executions are

serializable even if SI is the concurrency control mechanism. The TPC-C benchmark has

this property. There is a theory which allows one to prove this situation, when it occurs

[25]. To apply the theory, the DBA looks at the transaction programs, finds conflicts be-

tween the programs, and represents these conflicts in a graph called Static Dependency

CHAPTER 1. INTRODUCTION 3

Graph (SDG). An SDG without any cycle containing two consecutive edges of a particu-

lar sort (called vulnerable edges) indicates that every execution of the programs under SI

will be serializable.

In [25], it was shown how to take a given collection of programs and modify them,

so that serializable execution under SI is ensured. The modifications place extra SQL

statements in some programs; this will introduce extra conflicts between them, but they

do not change the semantic effect of any program. Two modification techniques are

Promotion and Materialize.

To guarantee serializable executions, Promotion or Materialize must be done for an ap-

propriate set of edges in the original SDG; the essential requirement is the set of edges

(for which conflict-introduction is done) must include at least one from every pair of

vulnerable edges that are consecutive within a cycle.

1.2 Motivation and Contributions of this Work

In order that they ensure all executions are serializable (on a platform providing SI), the

DBA has a complicated choice to make: In general, there are many different subsets

of the edges in the SDG that include one from every pair of vulnerable edges that are

consecutive in a cycle, and so modification of these are sufficient to guarantee serializable

execution. There might be many such sets of edges which are minimal (no subset of the

set is sufficient) and finding such a set with the fewest number of edges is NP-hard [34].

Also DBA’s have several options of which technique to use with the chosen subset of

edges; they can modify the application in different ways.

Therefore, we offer a new technique to ensure serializability with SI through introducing

lock conflicts outside the DBMS, as a way to control concurrent execution. We suggest

coding an application-level component called “External Lock Manger” (ELM). ELM

CHAPTER 1. INTRODUCTION 4

provides an interface for a transaction to set an exclusive lock; a subsequent request by

another transaction to set the same lock will be blocked until the lock holder releases the

lock. To introduce a conflict along an edge which is vulnerable in the SDG, we place at

the start of each program, a call to ELM to set a lock. The lock being requested should

be such that the transactions will try to get the same lock, in those cases where their

parameters give rise to conflict between data accesses that makes for a vulnerable edge.

Note that ELM is different in several ways from using traditional two-phase locking.

Those transactions that are not involved in chosen edges do not set locks at all. There

are only exclusive locks, no shared locks. Even if a transaction touches many objects, it

may need to lock only one or a few string values. All locking is done at the start of the

transaction, before any database activity has occurred; together with resource-ordering in

obtaining locks, we can prevent any deadlock involving ELM.

The motivation of my thesis is to help DBA’s (e.g., software engineers) to make sensible

choices of edges and conflict-introduction techniques among those available that ensure

correctness of their applications.

The key contributions of this work are

• Development of a novel algorithm: I have designed a new concurrency control al-

gorithm called External Lock Manager (ELM). Several database systems only offer

a concurrency control mechanism providing the transaction isolation level snapshot

isolation which allows certain anomalies to occur. In this case, the transactions can

be extended to access ELM in order to guarantee serializable executions avoiding

any form of anomaly. I developed a prototype implementation of ELM.

• Performance Evaluation: I evaluated the performance of both the new algorithm

ELM and the state of the art algorithms for making applications run serializable on

snapshot isolation. We have found many situations where performance for ELM

CHAPTER 1. INTRODUCTION 5

approaches that of unmodified (not necessarily serializable) SI. Unlike with pro-

mote and materialize techniques, this seems to hold across a range of choices for

edge set on which to introduce conflicts.

• New Benchmarks: Existing benchmarks do not allow evaluating the performance

and the impacts of the snapshot isolation level appropriately because they do not

have non-serializable executions at all. Thus, I have designed new benchmarks

that allow to stress-test the behavior of different ways to guarantee serializability

for transactions running under snapshot isolation.

1.3 Thesis Outline

This thesis is organized as follow:

Chapter 2 covers the background concepts and other material from previous literature

that is related to the thesis. The discussion includes transaction processes, database con-

currency control, serializability theory, and TPC performance benchmarks.

Chapter 3 presents our new algorithm called the External Lock Manager (ELM) with de-

tails. We discuss the alternative designs and the implementation of the ELM algorithm.

Fault tolerance is also discussed briefly.

In Chapter 4, we give a detailed discussion of how the experiments are designed and

setup. It describes the environment and the workload that we use for the performance

study.

Chapter 5 thoroughly presents the experiment results for various techniques that ensure

serializable executions under SI. We clearly explain the results.

In Chapter 6, we conclude the thesis with summary of our work and findings.

Chapter 2

Background Concepts

This chapter introduces all the background information underlying the work in this

thesis and it reviews the previous research literature related to the topic of this

thesis.

2.1 Transaction Processing

A transaction is a unit of work that consists of several operations. A unit of work means

that a transaction must be completely processed or completely aborted, and it can not

leave the system in an intermediate state between these extremes.

Transaction Interface A transaction generally consists of beginning, read/write oper-

ations, logic, and finally abort/commit.

Begin: By sending a begin command, a client explicitly starts a new transaction. Some

databases implicitly start the transaction upon the arrival of the first request or operation.

Read/Write: After the client starts a transaction, it can submit read/write operations to

retrieve or modify a data item. The implementation of these operations depends on the

6

CHAPTER 2. BACKGROUND CONCEPTS 7

database engine.

Commit: By committing a transaction, the state of the database is left in consistent state.

Any changes to the data items will be reflected permanently in the database.

Abort: If a transaction decides to abort for any reason (e.g., violating constraint, locks

conflict), then the database engine should undo all the changes it did so far in order to

leave the database consistent. The client should re-submit the same transaction if he is

still interested in achieving its outcome.

Transaction properties Among the database engine’s responsibility is to ensure that a

transaction preserves certain properties called ”ACID” properties. ACID is referring to:

Atomicity, Consistency, Isolation and Durability [28]. In the following we briefly explain

each property:

Atomicity: Means that the system must ensure either a transaction runs successfully

(completes), or, if it does not complete, it has no effect at all on data. Hence, if a client

crashes while sending the operation of transaction or if it decides to abort the current

transaction, the database must undo the effects of all operations of the client’s transaction

being executed so far.

Consistency: Requires that the effect of each transaction maintains all database integrity

constraints i.e., it moves a database from one consistent state to another that correctly

models the new state of an enterprise. For example if business rules say that the sum of

a certain set of accounts must be greater than a given amount, then a transaction should

not violate this constraint, otherwise, the whole transaction must be aborted.

Isolation: A collection of concurrent transactions has the same effect as that of some

serial running of that set. Each transaction must observe the data in the database as if no

other transaction would be currently running and the final effect should be as if we run

the transactions one after each other.

Durability: The result of committed transactions are permanently reflected in the database.

CHAPTER 2. BACKGROUND CONCEPTS 8

This property must also be fulfilled in presence of hardware and software failures such

as disk failure or crash of the operating system.

2.2 Serializability

One way to improve performance is to allow transactions to run concurrently [44]. This

means that while one transaction is waiting for I/O operations, the CPU can process

another transaction, as I/O operations can be done in parallel with CPU activity in a com-

puter. However, this interleaving between transactions is dangerous, and could lead to

data corruption unless interleaving is controlled. Database systems must control concur-

rent executions to keep data consistency, using a scheduler component[32]. This com-

ponent is responsible for receiving operations from user transactions and it ensures that

they will be executed in such a way that the execution will be correct.

Any sequence-preserving merge of the actions of a set of transactions into a single se-

quence is called a history for the set of transactions. A history indicates the order in

which the operations of the transactions were executed relative to each other [28, 15].

Serializability is the precise concept for correctness. It can be guaranteed by ensuring

that the final state of a database (after a set of concurrent transactions commit), is as if

the transactions ran in some serial order. Serializability is the strictest correctness crite-

rion, but there are other weaker forms of correctness or isolation levels. The levels differ

according to the kinds of inconsistencies they allow. This is discussed in Section 2.4

below.

Serializability theory has been developed in order to provide more compact criteria for

deciding whether a history is serializable. Database researchers have developed two main

serializable theories. One is conflict serializability, and another is view serializability. A

history is conflict serializable if it is equivalent to a serial schedule in the sense that

CHAPTER 2. BACKGROUND CONCEPTS 9

1

Example

conflict
W1(x)

W1(y)

W1(z)

R2(x)

W2(y)

R3(z)

W3(y)

W3(z)

T1 T2 T3

Sconf

W1(y) W3(y)

W2(Y) W3(Y)

T1 T2 T3

Serializability Graph

W1(x) R2(x)

Figure 1: Conflict serializable schedule.

conflicting operations are ordered in the same way in both. We define a history H to be

view serializable (VSR) if for any prefix H’ of H, the committed projection, C(H’), is

view equivalent to some serial history.

Theorem 1. If H is conflict serializable then it is view serializable. The converse is not,

generally, true [15].

We can determine whether a certain history is serializable or not by analyzing a graph de-

rived from the history called a serialization graph (SG). SG for particular schedule, S, of

committed transactions is a directed graph in which the nodes are the transactions partic-

ipating in the schedule (and there is a directed edge pointing from the node representing

Ti to the node representing transaction Tj . When there exist conflicting operations Ii and

Ij , and Ii occurs before Ij in the schedule.) We say instructions Ii and Ij conflict if they

are operations by different transactions (Ii is an op of Ti, and Ij is an op of Tj) on the

same data item, and at least one of these instructions is a write operation.

Theorem 2. Serializability Theorem: A history H is conflict serializable iff SG(H) is

acyclic.

This theory implies that if a history H has no cycle in the SDG, then H is equivalent to a

CHAPTER 2. BACKGROUND CONCEPTS 10

1

Example

conflict
W1(x)

W1(y)

R2(x)

W2(y)

R3(z)

W1(z)

T1 T2 T3

R3(z)

W1(y)

W1(z)

T1 T2 T3

Serializability Graph

W3(y)

W2(y) W3(y)W3(y)

W1(x) R2(x)

Figure 2: Non-serializable schedule.

serial history. 1

Figure 1 shows an example where the SG(H) does not have any cycle, this implies that

this schedule is serializable. Figure 2 shows another example where the schedule is non-

serailizable, as SG(H) has a cycle between T1→T3→T1.

In this thesis we use some variant definitions for multiversion systems. In the multiver-

sion systems, each write on a data item x produces a new copy or version of x. The

DBMS tells which version, chosen among the versions of x, to read. Serializability the-

ory can be extended to such systems, ensure correctness. These concepts are presented

in Section 2.5.

2.3 Concurrency control

Concurrency control (CC) ensures concurrent transactions will be executed at the same

time with results as if they execute in sequence. Several concurrency control techniques

have been proposed. Traditionally, concurrency control techniques have been classified

into four categories- Locking, timestamp ordering, optimistic and hybrid.

1Proof of this theorem can be found in [15].

CHAPTER 2. BACKGROUND CONCEPTS 11

Locking: A transaction that needs to read or write a data item must acquire a lock on

that item; two modes of locking are available, shared (a transaction which acquires this

mode can read, but cannot write) and exclusive (a transaction which acquires this mode

can read and write). All locks are implicitly released by commit of the holding transac-

tion. Every transaction obtains its locks in a two-phase manner (growing phase, shrinking

phase). During the growing phase, the transaction obtains locks without releasing any

locks. During the shrinking phase, the transaction releases locks without obtaining any

locks. An example to this is strict Two Phase Locking Protocol (2PL), which is used in

most platforms. A basic strict 2PL scheduler follows the following rules:

1. Conflict test; when the 2PL scheduler receives a lock request, it tests whether the

requested lock conflicts with the other locks that already set. If lock conflict is

there, then it queues the lock request, otherwise it sets the lock.

2. During the transaction’s life, the scheduler can not release any lock until the trans-

action commits or aborts.

Two variants of the basic 2PL are Dynamic and Static 2PL. In dynamic 2PL, a trans-

action obtains a lock only when it needs to access the data item, while in static 2PL, a

transaction pre-declares and obtains all the locks it may need before it begins any oper-

ation or computation. Performance of locking protocols have been widely studied and

investigated [8, 54, 57, 55, 31, 42].

Timestamp Ordering (TO): Each transaction is assigned a unique time stamp when it

starts, and this is used to order transaction activity. A scheduler orders conflicting oper-

ations based on their timestamp. The scheduler rejects an operation if it has already ex-

ecuted a conflicting operation with a later timestamp. If the operation has been rejected,

then its transaction must abort. A timestamp ordering technique that avoids restarts is

conservative timestamp ordering (CTO); this delays operations until the system is sure

CHAPTER 2. BACKGROUND CONCEPTS 12

that there are no conflicting operations with lower timestamp [12]. Performance of times-

tamp ordering concurrency control has been studied in [8, 52, 42]

Optimistic: Multiple transactions are allowed to read and write without blocking, trans-

actions keep histories of their data usage, and before committing a transaction checks for

conflict. If any conflict is found then one of the conflicting transactions should abort. A

transaction proceeds in three phases

1. Read Phase: Transaction reads and writes data from database, and saves it in private

workspace.

2. Validation phase: Checks if there is any conflict between transactions.

3. Write phase: Commit the transaction in case there is no conflict, and copy new

values from private workplace to the database.

The transaction may abort at a very late stage, when it has completed all its computation,

thus resulting in a large amount of wasted processing. A variation on this concurrency

control is adaptive optimistic concurrency control [6]. Optimistic concurrency control

has been investigated in [8, 42, 36].

Hybrid: Several concurrency control methods that combine 2PL and timestamp sched-

ulers has been discussed in [13]. In [17] Cary and Livny execute transactions using op-

timistic scheduler, but if a transaction aborts, they use 2PL to execute the transaction

second time. In [41] a complex protocol which shares features of optimistic and mul-

tiversion concurrency control was presented. [50] claimed that these hybrid algorithms

would perform better than algorithms based on a single concurrency control mechanisms.

The performance of hybrid concurrency control algorithms has been investigated analyt-

ically as well as experimentally in different studies [56, 48, 53, 39]. These techniques

have not been adopted in widespread platforms.

CHAPTER 2. BACKGROUND CONCEPTS 13

2.4 Isolation levels

The concept of isolation level was introduced under name ”Degrees of Consistency”.

The most significant effort in this field was early work by Gray in [27], Gray tried to

provide declarative definitions of consistency degree using locking techniques. Influ-

enced by [27, 20], the ANSI/ISO SQL standard defines several levels of transaction iso-

lation with differing degrees of impact on transaction processing throughput, because the

database industry desires to weaken the requirement of serializability [27, 1, 32], in order

to increase the performance of common multi-user application especially in cases where

absolute correctness is not critical. The isolation levels are defined in terms of ”phe-

nomena” that must be prevented between concurrency executing transactions in order to

achieve the required isolation. A greater degree of concurrency and better performance

can be achieved using lower levels of transaction isolation[33]. We have three types of

phenomena:

1. P1 (Dirty Read): Transaction T1 reads a data item x that was written by another

concurrent transaction T2. If T1 reads x while T2 is still active, then T1 may read a

value of x that never existed (as T2 may aborted later).

2. P2 (Non-Repeatable Read or Fuzzy Read): Transaction T1 reads a data item x,

then another transaction T2 writes into x. If T then reads x again, it will read a

different value (or it will find out that x was deleted).

3. P3 (Phantom): Transaction T1 reads a set of data elements which satisfy some

search condition in the where statement. Another transaction T2 then creates a new

data item that satisfy the search condition. So, if T1 repeats its read, it will get a

different set of data items.

Transactions must be run at an isolation level of repeatable read or higher to prevent lost

updates that can occur when two transactions each retrieve the same row, and then later

CHAPTER 2. BACKGROUND CONCEPTS 14

Isolation Level Dirty Read Non-repeatable Read Phantom
Read Uncommitted Possible Possible Possible
Read Committed Not Possible Possible Possible
Repeatable Read Not Possible Not Possible Possible

Serializable Not Possible Not Possible Not Possible

Table 1: different isolation levels based on ANSI definitions [1]

update the row based on the originally retrieved values. If the two transactions update

rows using a single UPDATE statement and do not base the update on the previously re-

trieved values, lost updates cannot occur at the default isolation level of read committed.

According to ANSI definition, serializable isolation level must be truly serializable as

defined in Section 2.2, as well as not allowing any of previous mentioned phenomenas.

[10] studied ANSI-SQL definitions of isolation level and provided a critique on these

definitions, showing that some definitions can be interpreted ambiguously, while oth-

ers are missing complectly. [10] shows that disallowing all phenomena does not imply

disallowing all non-serializable schedules. They redefined phenomena P1-P3 by using

operational patterns, and suggest an additional phenomenon P0 (Dirty writes) that all

isolation levels should disallow.

P0 (Dirty Write): Transaction T1 modifies a data item. Another transaction T2 then fur-

ther modifies that data item before T1 performs a COMMIT or ROLLBACK. If T1 or T2

then performs a ROLLBACK, it is unclear what the correct data value should be.

An alternative definition of isolation levels was given in [7], which extended the clas-

sical data model in [15]. Those definitions are more portable because they can apply

to database systems that implement concurrency control by other methods than locking,

such as multi-version and optimistic systems. This approach mainly defines isolation

levels based on the types of cycles that would be allowed in the serialization graph of a

history.

CHAPTER 2. BACKGROUND CONCEPTS 15

2.4.1 Read Committed Isolation

The Read Committed (abbreviated as RC) isolation level is the default in most DBMS

platforms. The usual locking implementation has the engine set a lock, which is kept in

an in-memory component called the Lock Manager, before each access to a data item

(typically a record in the data or in an index). Locks have the usual modes, including

Shared Mode for read access and Exclusive mode for write access. In RC isolation level,

exclusive locks are held as long as the transaction runs (that is, till commit or abort) but

Shared locks are released early, once the transaction has finished the access to the item

involved. This gives much better performance than 2PL (often throughput is 3 times

greater) because updates are not blocked for as long; however it is vulnerable to lost

update, inconsistent read, and other anomalies that can violate integrity constraints.

For example, consider the following history H under RC;

H: R1(x, 50)..R2(x, 50)..W2(x, 10)..R2(y, 50)..W2(y, 90)..C2..R1(y, 90)..C2

RC allows T2 to write data items read by T1 transaction. But explaining [10] if T1 has

written data item x, no other transaction should be allowed to write x until T1 commits or

aborts.

2.5 Multiversion Concurrency Control

Multi-Version Concurrency Control (MVCC) [14] is a highly developed technique for

improving multi-user performance in a database. The aim of MVCC is to avoid the prob-

lem of writers which block readers and vice-versa, by making use of multiple versions

of data. Multiversion concurrency control treats write operations as the creation of new

versions of the database objects in contrast to the update-in-place (locking) and deferred-

update (optimistic) semantics normally given to writing. Timestamps are used to return

appropriate versions for read request. An advantage of maintaining multiple versions of

CHAPTER 2. BACKGROUND CONCEPTS 16

data item is that they may not add to the cost of concurrency control, because the ver-

sions may be needed anyway by the recovery algorithm [15]. The ANSI definitions are

specified in terms of single-version history rather than multiversion histories. Therefore,

Berenson et el.[10] suggested that the designer of the schema must first map the histo-

ries of such schema to single-version histories and then apply the consistency conditions.

MVCC has been widely studied and investigated [16, 18, 14, 30, 29, 45, 52] under dif-

ferent conditions in several papers. It provides improvement in performance by allowing

transactions to access previous versions of data items.

Implementing multiversion concurrency control faces several challenges and overheads;

each UPDATE/DELETE operation generates a new version, the new versions kept in

temporary place that leads to increase space usage and I/O’s. Thus the system requires

an efficient garbage collection mechanism to get rid of old versions when they are no

longer needed.

There are two different approaches on how to implement multi-version concurrency con-

trol. The first approach is to store multiple versions of records in the database, and

garbage collect records when they are no longer required. This is the approach used

by PostgreSQL. The second approach is to keep only the latest version of data in the

database, but reconstruct older versions of data dynamically as required by exploiting

information within the Write Ahead Log. This is the approach used by Oracle.

2.5.1 Multiversion Serializability Theory

A multiversion timestamp ordering (MVTO) system maintain versions that could come

with performance benefit. MVTO scheduler keeps the timestamps of different versions

of data items, read(x) operation is executed by telling which version of x to use. The

scheduler rejects a write if a read with later timestamps has already read an earlier version

of the data item [15].

CHAPTER 2. BACKGROUND CONCEPTS 17

The operations from different transactions may be interleaved during an execution pro-

vided that the execution is 1-copy serializable (1-SR), which means it is equivalent to an

execution in which transactions execute sequentially on a single copy of the objects.

Bernstein and Goodman [14] proposed a mechanism that characterize the correctness of

general multiversion concurrency control algorithm. Serialization graph is modified to

present the order of versions of data items that were accessed by concurrent transactions.

This graph is called Multiversion Serialization Graph (MVSG).

For each data item x, we denote the versions of x by xi, xj , .., where the subscript is

the index of the transaction that wrote the version. Thus, each write operation in an MV

history is always of the form Wi[xi], where the version subscript equals the transaction

subscript. A Read operation is denoted in the same way as Rj[xj].

Multiversion Serialization Graph (MVSG): For a given MV schedule S and a version

order <<, the MVSG for schedule S and <<, MVSG(s,<<), is a graph with all edges

that described by applying the definition of SG of single version schedule, with the fol-

lowing version order edges added: for each Rk[xj] and Wi[xi] where i, j, and k are

distinct.

1. if xi << xj then include Ti→Tj;

2. otherwise include Tk→Ti.

Then, the 1-copy serializability of multiversion schedule can be characterized by the

acyclicity of corresponding MVSG.

Theorem 3. MV Serializability Theorem: A multiversion schedule S is one-copy-serializable

iff the multiversion serialization graph (MVSG) is acyclic.

Figure 3 shows an example for a schedule of MVSG. The graph is acyclic, so this multi-

version schedule is one copy serializable. Actually the edges in MVSG clearly indicated

the execution order of transactions in an equivalent serial schedule.

CHAPTER 2. BACKGROUND CONCEPTS 18

1

Example

conflict
R1(x0)

W1(x1)

R2(z0)

W2(y2)

R3(y0)

W3(y3)

R2(x1)

T1 T2 T3

W1(x1)

R3(y0)

R2(x1) T1 T2 T3

Multiversion Serializability Graph

W2(y2)

W3(y3) W2(y2)

Figure 3: Non-serializable schedule.

2.6 Snapshot Isolation (SI)

Snapshot Isolation is a multi-version concurrency control mechanism used in databases.

It was introduced in 1995 in [10]. Among popular database engines (commercial and

open source) that use SI are Oracle, Microsoft SQL Server and PostgreSQL. One of the

most important properties of SI is the fact that a read does not block any write, and write

does not block any read, by allowing transactions to access previous versions of each

record, rather than always accessing the most recent state of the record. This property is

a big win in comparison to systems that implement Two phase locking (2PL) mechanism,

where many update operations could be blocked by reader even with no conflict between

the update operations. Each transaction in a SI-based system has a logical timestamp,

indicating when the transaction started. Any read done by the transaction T, sees the

state of the data which reflects exactly the other transactions that committed before start-

time(T). Similarly, any where clause evaluated in a statement of T uses values from this

snapshot. (There is an exception, that T sees changes it has made itself.) This already

prevents the inconsistent-read anomaly: T can never see part but not all of the effects of

another transaction. It also prevents traditional phantoms, where a predicate is evaluated

twice with different results.

CHAPTER 2. BACKGROUND CONCEPTS 19

First Committer Wins (FCW): The other essential in the SI mechanism is that when-

ever there are two concurrent transactions (ie when the interval [start-time(T),commit-

time(T)] overlaps with the interval [start-time(U),commit-time(U)]) and both have written

to the same item, at least one of them will abort. This prevents the lost update anomaly.

First Committer Wins Implementation: The first committer wins rule can be imple-

mented without write locks using a deferred update system. When a transaction com-

pleted, it is validated (optimistic). Validation is successful if a transaction snapshot num-

ber is greater than or equal to the version number of each item that it has updated. 2

• Assume that we have transaction T1 that requests to commit, and the version num-

ber that T1 has updated is greater than T1’s snapshot number. This means that some

other concurrent transaction committed a new version of the shared data item while

T1 was executing. T1 should abort since T2 is the first committer.

• Assume that we have T1 that requests to commit, and the version number of data

items that T1 has updated is less than or equal to T1’s snapshot number. This means

that T1 is creating new versions, and T1 does not conflict with other concurrent

transactions. T1 commits and increments that data item version number.

Another possible implementation is using exclusive write locks. Oracle uses this imple-

mentation to deal with conflicted data items. Assume that we have transaction T1 request

to write x data item.

1. if no concurrent transaction has a write lock on x
2A transaction snapshot number(TSN): it is a number used internally to determine the current system

state. TSN acts as a timestamp. It is incremented when a transaction commits. When a system trans-
action starts, it makes a note of the current TSN. It is used to determine if the page contains the effects
of transactions that should not be visible to the current transaction. Only those committed transactions
should be visible whose TSN number is less than the TSN number noted by the current transaction. Also,
transactions that have not yet committed should not be visible.

CHAPTER 2. BACKGROUND CONCEPTS 20

• If the version number of x is greater than T1’s snapshot number, T1 is aborted

since a concurrent transaction wrote x, committed and released the locks.

• If the version number of x is less than or equal T1’s snapshot number, T1 is

getting a write lock on x. The lock will be released after T1 commits or aborts.

2. if another transaction T1 is holding the lock on x, then T1 must wait until T1 commit

or abort

• If T2 commits, then T1 is aborted.

• If T2 aborts, then T1 gets the lock on x.

In PostgreSQL, this is implemented by having each transaction set an exclusive write-

lock on data it modifies, and also aborting a transaction if it ever tries to write to an item

whose most recent version is not the one in its snapshot. Thus we can describe this as

“First Updater Wins” (in contrast to “First Committer Wins” described in [10]). Note

that SI does not use read-locks at all, and a read is never blocked by any concurrent trans-

action.

SI was presented in [10] as a particular concurrency control mechanism, but Adya et al

[7] have offered an abstract definition of the isolation level it provides (by analogy to the

way true serializability is provided by two-phase locking, but can be characterized more

abstractly as the absence of cycles in the serialization graph).

SI has been widely studied as a help in managing replicated data [58, 40, 46]; it is much

cheaper to obtain global SI than to ensure true global serializability. Other work on repli-

cation has used slight variants of SI, following the same principles but relaxing the choice

of start-timestamp [22, 21] However, the improved performance comes not for free: while

SI completely avoids the four extended ANSI SQL anomalies, it does not guarantee se-

rializability as shown in [10]. They showed that SI could allows non-serializable execu-

tions in general as we discuss in 2.6.1 below.

CHAPTER 2. BACKGROUND CONCEPTS 21

2.6.1 Snapshot Isolation Anomalies

Snapshot Isolation may be associated with some anomalies such as Write Skew, and

Phantom.

SI Write Skew Anomaly: Write skew is anomaly that could make application non-

serializable and violate data integrity under SI. It happens when we have two or more

concurrent transactions (T1 and T2) read a value each, then change the other’s value, but

neither sees the result of the other’s update, under the assumption that the other remained

stable (that’s the reason we call it ”Write Skew”). An example is shown below

T1: R(x0) R(y0) W(x1) commit

T2: R(x0) R(y0) W(y1) commit.

A well known example can be given on a bank scenario. Suppose we have two val-

ues x and y representing checking account balances of a couple at a bank, with a invariant

that x+y>0. Thus the bank permits either account to be overdrawn, as long as the sum of

the account balances remains positive. Assume that initially x = 50 and y = 50. Under SI,

transaction T1 reads x and y, then subtracts 90 from x, assuming it is safe because the two

data items added up to 100. Transaction T2 concurrently reads x and y, then subtracts 80

from y, assuming it is safe for the same reason. Each update is safe by itself, but SI will

end up in violation of the invariant x+y>0, since T2 has been successfully executed even

though the sum of the accounts is negative [26]. Unfortunately, this problem will not be

detected by First Committer Wins because two different data items were updated.

CHAPTER 2. BACKGROUND CONCEPTS 22

Read-Only Anomaly: Read-Only Transaction Anomaly [26] is another problem which

appears in SI. For example suppose we have x and y as two data items representing check-

ing account balance and saving account balance. However, suppose a withdrawal is al-

lowed to make x+y negative, but an extra one is withdrawn in that case, as penalty fee.

Consider this sequence of operations where T1 tries to deposit 20 to saving balance y, and

T2 subtracts 10 from the checking account x.

T1: R(y=0) W(y=20) C1.

T2: R(x=0)R(y=0) W(x=-11) C2.

T3: R(x=0)R(y=20) C3.

Then the anomaly arises here is that read-only transaction T3 has x=0 and y=20, and

this situation does not happen in any serializable execution that produces the observed

final state x=-11, y=20. Because if 20 were added to y before 10 were subtracted from x

in any serial execution, no charge of 1 could occur. So the final result should be -10 not

-11 in a serial execution where T3 sees x=0, y=20. [25]

Phantom Anomaly: There is no agreed-upon definition in the literature of what phan-

tom is. Some sources say that an isolation level permits phantom if, when a transaction

executes the same SELECT statement twice, the second execution can return a result

set containing different number of rows. Considering this definition, Phantoms are not

possible under snapshot isolation since it will return the same set using the same ver-

sions. Using another definition of phantom, where inserting a new value during the life

of transaction is a phantom, then snapshot isolation can have a phantom [35].

CHAPTER 2. BACKGROUND CONCEPTS 23

2.6.2 Multiversion Concurrency in PostgreSQL

PostgreSQL is an open source database system. It was developed from an earlier re-

search system Postgres coded at University of California under Michael Stonebraker.

PostgreSQL uses a multi-version concurrency control idea: when a row is updated, a new

version of the row is created and replaces the old version in the table, but the old version

is provided with pointer to the new version and marked as expired. Garbage collection

collects the expired version later in the process. In order to support multi-versioning,

each row has additional data recorded with it

• Xmin- The ID of the transaction that created, inserted, and updated this row

• Xmax- The ID of the transaction that created a new later version or which deleted

this version.

Initially Xmin and Xmax are equal to NULL value. PG LOG is a table where the system

can track the status of a transaction. The table can contain two bits of status informa-

tion for each transaction; the possible status are committed, in progress, and aborted.

In case of failure, PostgreSQL does not remove the transaction’s versions, instead, it

marks the transaction as aborted in PG-LOG. Therefore, PostgreSQL tables can have

data from aborted transactions. A vacuum operation in PostgreSQL is responsible for

garbage collecting expired/aborted versions from tables and associated indexes. Indexes

in PostgreSQL do not contain any versioning information.

SnapshotData is a data structure that contains a list of all active transactions at the time

the snapshot is taken. Using the above information, two conditions should be satisfied

for a tuple to be visible at the beginning of a transaction:

1. The Xmin (creation transaction) ID of the tuple:

• Is a committed transaction according to PG LOG and

CHAPTER 2. BACKGROUND CONCEPTS 24

• Is less than the transaction counter stored in SnapshotData and

• Was not in process at query start according to SnapshotData.

2. The Xmax (expire transaction) ID:

• Is blank or Aborted according to PG LOG or

• Is greater than the transaction counter stored in SnapshotData or

• Was in process at query time accroding to SnapshotData.

To avoid consulting the PG LOG table repeatedly, PostgreSQL also keeps some status

bits in the table to indicate whether the tuple is already committed or aborted. These bits

are updated by the first transaction that queries the PG LOG table. Finally, PostgreSQL

is very similar to multi-version timestamp ordering, since it does not use locks for DML

commands [49, 2, 51].

2.6.3 Multiversion Concurrency in Oracle

Oracle is a commercial database system. Oracle’s multiversion concurrency control sys-

tem differs from other concurrency controls used by database vendors. It supports both

statement and transaction level read consistency based on the isolation levels (Read Com-

mitted or Snapshot). Oracle does not maintain multiple versions of data on tables (as in

PostgreSQL). Instead, it rebuilds older versions of data on the fly as and when required in

the rollback segment. A rollback segment is a special table where undo records are stored

while a transaction is in progress. Rollback segments manage their space so that new

transactions can reuse storage from older transactions that have committed or aborted;

this automatic facility enables Oracle to manage large numbers of transactions using a

finite set of rollback segments. Modifications to rollback segments are logged so that

their contents can be recovered in the event of a system crash.

CHAPTER 2. BACKGROUND CONCEPTS 25

Oracle uses System Change Number (SCN) to determine the current system state. SCN

acts as a timestamp. SCN consists of a set of numbers that points to the transaction entry

(slot) in a Rollback segment header. The System Change Number (SCN) is incremented

when a transaction commits. When an Oracle transaction starts, it makes a note of the

current SCN. When reading a table or an index page, Oracle uses the SCN number to

determine if the page contains the effects of transactions that should not be visible to

the current transaction. Only those committed transactions should be visible whose SCN

number is less than the SCN number noted by the current transaction. Also, Transactions

that have not yet committed should not be visible. Oracle checks the commit status of a

transaction by looking up the associated Rollback segment header, but, to save time, the

first time a transaction is looked up, its status is recorded in the page itself to avoid future

lookups.

If the page is found to contain the effects of invisible transactions, then Oracle recreates

an older version of the page by undoing the effects of each such transaction. It scans

the undo records associated with each transaction and applies them to the page until the

effects of those transactions are removed. The new page created this way is then used to

access the tuples within it. Since Oracle applies this logic to both table and index blocks,

it never sees tuples that are invalid.

Oracle records the Transaction ID that inserted or modified a row within the data page.

Rather than storing a transaction ID with each row in the page, Oracle saves space by

maintaining an array of unique transactions IDs separately within the page, and stores

only the offset of this array with the row. Along with each transaction ID, Oracle stores a

pointer to the last undo record created by the transaction for the page. The undo records

are chained, so that Oracle can follow the chain of undo records for a transaction/page,

and by applying these to the page, the effects of the transaction can be completely undone.

Not only are table rows stored in this way, Oracle employs the same techniques when

CHAPTER 2. BACKGROUND CONCEPTS 26

storing index rows.

Since older versions are not stored in the DBMS, there is no need to garbage collect data.

Since indexes are also versioned, when scanning a relation using an index, Oracle does

not need to access the row to determine whether it is valid or not. In Oracle’s approach,

reads may be converted to writes because of updates to the status of a transaction within

the page.

Reconstructing an older version of the page is an expensive operation. However, since

Rollback segments are similar to ordinary tables, Oracle is able to use the Buffer Pool

to effectively ensure that most of the undo data is always kept in memory. In particular,

Rollback segment headers are always in memory and can be accessed directly. As a

result, if the Buffer Pool is large enough, Oracle is able create older versions of blocks

without incurring much disk I/O. Reconstructed versions of a page are also stored in the

Buffer Pool. An issue with Oracle’s approach is that if the rollback segments are not large

enough, Oracle may end up reusing the space used by completed/aborted transactions too

quickly. This can mean that the information required to reconstruct an older version of

a block may not be available. Transactions that fail to reconstruct older version of data

will abort. [49, 5]

2.6.4 Multiversion Concurrency in Microsoft SQL Server

Microsoft SQL Server has implemented concurrency control in two ways

1. Locking: Where traditional locking concurrency control has been used.

2. Row versions: Where Multi-version concurrency control is used, and no read locks.

If row versioning is enabled, then whenever a transaction modifies a row, the image of

the row before modification is copied into a page in the version store. The version store

is a collection of data pages in tempdb. If multiple transactions modify a row, multiple

CHAPTER 2. BACKGROUND CONCEPTS 27

versions of the row are linked in a version chain. Read operations using row versioning

retrieve the last version of each row that had been committed when the transaction or

statement started. These versions are garbage-collected when there are no active trans-

actions that could require them. The tempdb database must have enough space for the

version store. When tempdb is full, update operations will stop generating versions and

continue to succeed, but read operations might fail because a particular row version that

is needed no longer exists. When application developers decide to use multi-version con-

currency control (timestamp), they actually decide not to use locks and instead use the

old versions in case of conflicts. The SQL Server added a few bytes to each row to keep

the following information:

• XTS (transaction sequence number). It takes 6 bytes. This is used for marking the

transaction that did the DML operation on the row.

• RID (row identifier) that points to the versioned row. It takes 8 bytes.

These extra bytes are used to decide the visible and invisible data blocks at start time

for a transaction. When a transaction reads a row that has a version chain, the Database

Engine follows the chain and retrieves the row where the transaction sequence number

is:

• Closest to but lower than the sequence number of the snapshot transaction reading

the row.

• Not in the list of the transactions active when the snapshot transaction started.

Read operations performed by a transaction retrieve the last version of each row that had

been committed at the time the snapshot transaction started. This provides a transactionally-

consistent snapshot of the data as it existed at the start of the transaction. The transaction

Uses row versions to select rows to update. It tries to acquire an exclusive lock on the

CHAPTER 2. BACKGROUND CONCEPTS 28

actual data row to be modified, and if the data has been modified by another transaction,

an update conflict occurs and the snapshot transaction is terminated.

2.6.5 Analysis Using SDG

The experts in the Transaction Processing Council could not find any non-serializable ex-

ecutions when the TPC-C benchmark [4] executes on a platform using SI, and so Oracle7

was allowed to be used in benchmarks. This leads one to explore what features of a set

of programs will ensure all executions are serializable (when the DBMS uses SI). The

first example of a theorem of this sort was in [23], and a much more extensive theory is

in [25]. The latter paper proves that the TPC-C benchmark has every execution serializ-

able on an SI-based platform. Jorwekar et al [34] have shown that one can automate the

detection of some cases where the theory of [25] holds. Fekete [24] deals with platforms

(like SQL Server 2005) which support both SI and conventional two-phase locking, by

showing how one can decide which programs need to use 2PL, and which can use SI.

Earlier, Bernstein et al [11] showed how to prove that certain programs maintain a given

integrity constraint when run under a variety of weak isolation levels, including SI.

The key result of [25] is based on a particular graph, called the Static Dependency Graph

(SDG). This has nodes which represent the transaction programs that run in the system.

There is an edge from program P to program Q exactly when P can give rise to a transac-

tion T, and Q can give rise to a transaction U, with T and U having a conflict (for example,

T reads item x and U writes item x). Different types of edges are defined:

1. Vulnerable edge (RW): We say that the edge from P to Q is vulnerable if P can give

rise to transaction T, and Q can give rise to U, and T and U can execute concurrently

with a read-write conflict (also called an anti-dependency); that is, where T reads

a version of item x which is earlier than the version of x which is produced by U

(Figure 4 shows the edge).

CHAPTER 2. BACKGROUND CONCEPTS 29

WR

WW

RW

Figure 4: Vulnerable edge.

WR

WW

RW

Figure 5: Write Dependencies edge

2. Write Dependencies edge (WW): We say that the edge from P to Q is Write De-

pendencies if P can give rise to transaction T, and Q can give rise to U, and T and U

can execute concurrently with a write-write conflict ; One of the transaction should

abort as result of FCW rule(Figure 5 shows the edge).

3. Read Dependencies edge (WR): We say that the edge from P to Q is Read Depen-

dencies if P can give rise to transaction T, and Q can give rise to U, and T writes a

value x and commits, then later, U reads x (Figure 6 shows the edge).

Within the SDG, we say that a dangerous structure occurs when there are two vulnerable

edges in a row, as part of a cycle (the other edges of the cycle may be vulnerable, or not),

Figure 7 shows a dangerous structure. The main theorem of [25] is that if a SDG has

no dangerous structure, then every execution of the programs is serializable (on a DBMS

using SI for concurrency control).

WR

WW

RW

Figure 6: Read Dependencies edge.

CHAPTER 2. BACKGROUND CONCEPTS 30

RW

RW

WR/ WW /RW

Figure 7: Dangerous structure example.

2.6.6 Options to ensure Serializability

The papers described above give theorems which state that, under certain conditions on

the programs making up an application mix, all executions of these programs will be

serializable. What is the DBA to do, however, when s/he is faced with a set of programs

that do not meet these conditions, and indeed may have non-serializable executions? A

natural idea is to modify the programs so that the modified forms do satisfy the condi-

tions; of course we want that the modifications do not alter the essential functionality of

the programs. In [25], several such modifications were proposed. The simplest idea to

describe, and the most widely applicable, is called “materializing the conflict”. In this

approach, a new table is introduced into the database, and certain programs get an addi-

tional statement which modifies a row in this table. Another approach is “promotion”;

this can be used in many, but not all, situations. We give more detail of these approaches

below. The idea behind both techniques is that we choose one edge of the two successive

vulnerable edges that define a dangerous structure, and modify the programs joined by

that edge, so that the edge becomes no longer vulnerable. We can ensure that an edge

is not vulnerable, by making sure that some data item is written in both transactions (to

be more precise, we make sure that some item is written in both, in all cases where a

read-write conflict exists). Clearly we need to do this for one edge out of each pair that

CHAPTER 2. BACKGROUND CONCEPTS 31

makes up a dangerous structure. If there are many dangerous structures, there are many

choices of which edges to make non-vulnerable. [34] showed that choosing a minimal

set of appropriate edges is NP-hard.

Different techniques were proposed by [25] to ensure serializability using snapshot iso-

lation. As mentioned above, the main idea behind these techniques is that we choose

one edge of the two successive vulnerable edges that define a dangerous structure, and

modify the programs joined by the edge, so that the edge no longer vulnerable.

Materialization: To make an edge not vulnerable by materialization, we introduce an

update statement into each program involved in the edge. The update statement modi-

fies a row of the special table Conflict, which is not used elsewhere in the application.

In the simplest approach, each program modifies a fixed row of Conflict; this will en-

sure that one of the programs aborts whenever they are running concurrently (because

the First Updater Wins property, or the First Committer Wins property, insists on this).

However, we usually try to introduce contention only if it is needed. Thus if we have

programs P and Q which have a read-write conflict when they share the same value for

some parameter x, then we can place into each a statement

1- UPDATE Conflict

2- SET val = val+1

3- WHERE id = :x

This gives a write-write conflict only when the programs share the same parameter x,

which is exactly the case where we need to prevent committing both of the concurrent

transactions.

Promotion: To use promotion to make an edge from P to Q not vulnerable, we add to

P an update statement called an identity write which does not in fact change the item on

CHAPTER 2. BACKGROUND CONCEPTS 32

which the read-write conflict occurs; we do not alter Q at all. Thus suppose that for some

parameter values, Q modifies some item in T where a condition C holds, and P contains

1- SELECT ...

2- FROM T

3- WHERE C

We include in P an extra statement

1- UPDATE T

2- SET col = col

3- WHERE C

Once again, the First Updater Rule will ensure that P and Q do not run concurrently (ex-

cept in the situations where parameter values mean that there is not a read-write conflict

either). Promotion is less general than materialization, since it does not work for con-

flicts where one transaction changes the set of items returned in a predicate evaluation in

another transaction. Fortunately this is rare in typical code, where most predicates use a

primary key to determine which record to read.

Another related approach to promotion is by replacing the SELECT statement (that is in

a vulnerable read-write conflict) by Select ... For Update (SFU). This does

not modify the data, but it is treated for concurrency control in Oracle like an Update,

and the statement cannot appear in a transaction that is concurrent with another that mod-

ifies the item. In other platforms, such as PostgreSQL and SQL Server, this statement

prevents some but not all of the interleavings that give a vulnerable edge. In particular,

in PostgreSQL the interleaving begin(T) begin(U) read-sfu(T, x) commit(T) write(U, x)

commit(U) is allowed, even though it gives a vulnerable rw-edge from T to U.

Oracle supports another version of SFU Select ... For Update NOWAIT. If

CHAPTER 2. BACKGROUND CONCEPTS 33

RW

RW

Figure 8: Pivot Example.

NOWAIT is not specified and a row to be locked is locked by another transaction, SE-

LECT...FOR UPDATE will wait indefinitely until the lock is released. If NOWAIT is

specified and a row to be selected is locked by another transaction, the SELECT...FOR

UPDATE will return immediately with a ”ORA-00054: resource busy and acquire with

NOWAIT specified” error.

Using 2PL: Another possible way to modify application programs is provided by [24].

[24] defines a node as a pivot, if it has incoming and outgoing vulnerable edges (Figure 8

shows the pivot as a diamond), and the path from to original node is a chord-free-cycle.

If every pivot transaction is run with 2PL, rather than SI, then all executions will be

serializable. Allocating each transaction with the appropriate isolation level does not

require any changes to the application code, or recompilation. It can be done at run-time,

entirely in the client. In contrast, most installations insist on extensive testing before

approving any changes to the application code (even ones as simple as Update x=x).

In many cases, each application is a stored procedure in the database, so modification

requires substantial permissions on the server; but changing isolation level happens in the

client without any authorization. Unfortunately, many platforms, including PostgreSQL

and Oracle, do not offer declarative use of conventional 2PL. In these platforms it is

possible to explicitly set locks, and so one can simulate 2PL; however the explicit locks

CHAPTER 2. BACKGROUND CONCEPTS 34

are all of table granularity and thus will have very poor performance. We studied the

performance of these methods in a platform that does offer both SI and 2PL in [9], and

we found that running the pivot with strict two-phase locking has significantly worse

throughput than promotion and materialize. We do not consider this technique further in

this thesis.

2.7 Benchmark

A database benchmark is a way of doing a quantitative comparison of different database

management systems (DBMS) in terms of performance or price/performance metrics.

These metrics are obtained by means of the execution of a performance test on appli-

cations [4, 28]. Different benchmarks have been released but the most important one

were developed by the Transaction Processing Council (TPC). These benchmarks has

been designed to be run on computers, networks, and database of different size, from the

small to the largest. Using these benchmarks, we can compute the throughput, which

is shown in transaction per second or transaction per minute, and we can also compute

price/performance.

Table Name Transaction Name
Warehouse New-order

District Payment
Customer Delivery

History Order-status
New-order Stock-level

Order
Order-line

Item
stock

Table 2: TPC-C Benchmark.

CHAPTER 2. BACKGROUND CONCEPTS 35

TPC-A: Defined in 1989, it is a simple banking transaction that measures the per-

formance and the price of a computer network in addition to the database system. It

simulates a typical banking application by a single type of transaction that models cash

withdraw and deposit at bank teller. The database operations are a mix of main memory,

random, and sequential accesses. The system definition and price includes 10 terminals

per tps.

TPC-B: Was a new version of TPC-A with the terminals, network, and two-third of

the long term storage removed. It’s only designed to give high throughput rating and low

price/performance rating to database systems. Its price/performance rating is often 10

times better than TPC-A.

TPC-C: Involves a mix of five concurrent transactions of different types and complex-

ity either executed on-line or queued for late execution. The domain is an order and

inventory system. TPC-C is more complex than TPC-A and TPC-B, it simulates realistic

features for a production system, such as queued transactions, response time, and abort-

ing. TPC-C has been approved as a standard and it is still widely used today [49]. The

database contains nine types of records with a wide range of record and population sizes.

Table 2 shows the transactions and the tables used in this benchmark.

TPC-D: Was designed to measure the performance of database systems on decision

support queries. TPC-A, TPC-B, and TPC-C do not measure the performance of de-

cision support queries, but measure the performance of transaction workload. TPC-D

simulates a sales/distribution application.

CHAPTER 2. BACKGROUND CONCEPTS 36

TPC-E: This benchmark is based on a number of different transaction types that are

executed on a complex database. The TPC-E benchmark measures the performance of

online transaction processing systems (OLTP). TPC-E is a hardware and software inde-

pendent and can thus be run on every test platform, i.e., proprietary or open. In addition to

the results of the measurement, all the details of the systems measured and the measuring

method must also be explained in a measurement report (Full Disclosure Report or FDR).

Consequently, this ensures that the measurement meets all benchmark requirements and

is reproducible. TPC-E does not just measure an individual server, but a rather extensive

system configuration. Keys to performance in this respect are the database server, disk

I/O and network communication.

TPC-H: TPC-H is a benchmark that support a business intelligence database environ-

ment. The performance of a system is measured when the system is tasked with providing

answers for business analysis on a data set. This analysis can include pricing, promotion,

demand management, shipping Management, and more.

The server system runs a read-intensive Decision Support System (DSS) style database

to provide the results for the business analysis. The DSS database is designed to mimic a

repository of commercial order-processing Online Transaction Processing Databases.

Different TPC benchmarks (e.g., TPC-W) has been defined as standard for database sys-

tems, more details can be found in [3]. Other benchmarks have been published; some of

them were not successful because lack of general statement, while others did not obtain

much help from vendors and provided only few results. In this thesis we used our own

benchmarks described in Chapter 4; [25] proved that TPC-C already serializable under

snapshot isolation (SI), therefore, we need benchmarks that have certain characteristics

(e.g., such as having a dangerous structures, or write skew) for the thesis study.

Chapter 3

The External Lock Manager (ELM)

Technique

In this Chapter we introduce a new technique called ”External Lock Manager (ELM)”

that ensures serializability with snapshot isolation. We extend the overall system of

application clients and DBMS with an object which manages locks (unlike traditional

lock-managers, the ELM lock manager can sit outside the DBMS). In order to introduce

a conflict between application programs P and Q, the DBA modifies the chosen programs

(but not other programs), so that each obtains an ELM lock before beginning a database

transaction, and it releases the ELM lock after the database transaction completes or

aborts.

Roadmap: This chapter is structured as follows: In Section 3.1 we present the ELM

approach. We describe the proof of ELM serializability in Section 3.2. In Section 3.3 we

illustrate the architecture and design of ELM. ELM prototype implementation is covered

in Section 3.5. Section 3.7 summarizes the chapter.

37

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 38

Database Server

 ELM

`

Client (1)

`

Client (N)

`

Client (2)

1

1

2

2

3

3

Figure 9: System Architecture with ELM.

3.1 The ELM Approach

Our proposed ELM approach introduces an additional software component to manage

locks. In any application program for which a conflict is introduced, the client begins

by sending a request to the ELM component in order to request an appropriate lock or

locks. The client blocks until it receives a reply from the ELM component, granting the

lock. Once the request is granted, the client can then invoke the rest of the business logic

for the application program, for example, by calling a stored procedure on the database

server. Finally, after the transaction has completed in the database, the client again sends

a message to the ELM component to release the lock(s) it holds. This interaction is shown

in Figure 9. The labels 1, 2 and 3 on the message exchanges indicate the order of events

within one program (1-Sending lock request to ELM, 2-Communicating with database

server, 3-Releasing locks).

Let’s suppose that the DBA has decided to introduce conflict on a vulnerable edge in the

SDG that goes from program P to program Q. As described in Chapter 2, the definition

of vulnerable edge says that there can be transactions T and U, where T arises from

invoking P and U arises from invoking Q, such that there is a read-write dependency from

T to U, and also such that T and U can execute concurrently. The DBA will introduce

into P a call to set a lock in ELM, and a later call to release the lock; these calls should

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 39

completed surround the database transaction T that P invokes. For example, if P invokes

a transaction through a JDBC call to a stored procedure, the lock request will precede the

call and the lock release will follow it; if P contains several separate SQL statements that

make up T, we place the lock request before the first SQL statement, and the lock release

after the last SQL statement in the program. Similarly, program Q is modified so that a

lock request and release surround the whole invocation of transaction U.

In order to introduce the necessary conflicts to remove the vulnerability of an SDG edge,

we surround transactions with ELM lock-set and lock-release calls. However, we only

need to make sure that there are lock conflicts, in those cases where the transactions have

a read-write dependency. In many programs, the particular items accessed depend on

parameters of the application program. For example, a program representing depositing

money in a bank account may take the account number as parameter. We want the ELM

locking to be fine-grained, 1 that is, we prefer that the ELM locks do not block one

another unless the two programs are actually dealing with the same data object (e.g., the

same account); two programs that deal with different data items should set different locks

(and thus they can run concurrently). By appropriate choice of the lock to request (for

example, setting a lock on a primary key for the account), we can achieve fine grained

exclusion. If the transaction program logic is too complex, and the DBA can not identify

an appropriate lock that will conflict when necessary, then we suggest reversion to coarse-

grained ELM locks, which are easy to determine from static analysis and which do not

require any form of predicate locking.

1We use our own ELM locks, rather than the locking available directly in the database engine, to get
fine-grained exclusion. While most platforms use record-level locks for automatic locking, they typically
offer user-controlled locks only at table-granularity (eg SET TABLE LOCK ON tablename).

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 40

3.1.1 Lock Alternatives

The performance of ELM depends dominantly on the specific details of the locks we

use and the frequency of conflict this leads to. In this section we discuss alternative

techniques to choose what exactly will be locked. We use the following example to

describe each technique.

Example: Let us assume that we have two simple Programs P1 and P2. Suppose P1 has

a parameter x, and P2 has a parameter y, and both of them access table Table1. Table1

has two column (tabID:integer,value:real).

Let T1(x) denote the transaction that arises when P1 is run on the parameter x. In this

example, T1(x:integer) reads a value from Table1 using the parameter x to satisfy the

where statement. The essential SQL in P1 is:

1- ...

2- SELECT val

3- FROM Table1

4- WHERE tabID=x

5- COMMIT;

Similarly, T2(y:integer) updates Table1 using the parameter y to satisfy the where state-

ment. Its SQL is:

...

1- UPDATE Table1

2- SET val=val+1

3- WHERE tabID=y

4- COMMIT;

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 41

If we use ELM to remove the vulnerability from the edge P1 to P2 then we need to make

sure that whatever we lock in each transaction will stop them running concurrently when

they in fact conflict that is, when x=y. Here are some techniques to achieve this:

• Edge-Name Technique: One technique is to lock the edge’s name. Edge name

could be the concatenation of names of the programs that joined the chosen edge.

The edge name can be P1+P2. So when we have two transaction T1(x) and T2(y)

running concurrently, let us say T1(x) starts first, then T1(x) will acquire the ELM

to lock the edge’s name (P1+P2) and hold this until the time of commit. Since

T2(y) will try to acquire the same lock, T2 will wait in the queue until T1 commit

and release the lock. This technique will stop T2(y) conflicting transactions and

T1(x) running concurrently. It also stops two instances of P1 running together

(and similarly it prevents concurrent T2 transactions). However, this technique is

not fine-grained and it reduces the number of concurrent transactions, since even

when x6=y, so T1(x) has no conflict with T2(y), T1(x) will block T2(y). This can be

considered a false positive.

• Item-Name Technique: An alternative technique is to lock the common column

name that the transactions have a conflict on. Transactions with conflicts share

the same data item in the schema. Using the previous example, T1(x) and T2(y)

access tabID which is the same item name (field name) in the schema. Now if

T1(x) acquires the ELM to lock the item name (tabID), and T2(y) concurrently

tries to acquire the same lock, therefore T2(y) will be blocked until T1(x) commits

and releases the lock. Now this delay will ensure that T1(x) and T2(y) can not

run concurrently. Unfortunately, this technique can have false positives as in the

previous technique, since it prevents concurrency even when x6=y.

• Parameter-Value Technique: A third technique is what we actually use in our

experiments in Chapter 5. Here a transaction locks on the transaction’s parameter

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 42

value. When two transactions have the same parameter values then we can use

these values to stop concurrent transactions that can cause non-serializable execu-

tions. Assume T1(x) accesses the ELM and locks the value of parameter x, and

then if T2 concurrently tries to lock the value of the parameter y, then:

– If x=y, then the transaction who started later will wait until the earlier trans-

action commits and releases the lock.

– If x 6=y, then both transactions can acquire the locks and invoke their business

logic to the database without any delay.

But what about in the case where the transaction has more than one parameter?

Since our aim is to increase the number of serializable concurrent transactions in-

side the database, therefore we should try to find the minimum set of parameters

that need to be locked to stop non-serializable executions in any history. For exam-

ple suppose T1 passes different types of parameters (e.g., x1,x2...xn) and T2 passes

another set of parameters (e.g., y1,y2...ym), and suppose T1 and T2 have only a con-

flict when x1=y1 and x2=y2, then we lock a minimum set of the parameters that

can stop T1 and T2 from running concurrently. In this case T1 could lock x1 and T2

lock y1; alternatively T1 could lock x2 and T2 could lock y2.

Finding the minimum set is quite easy with a simple set of parameters. However,

if the set of parameters are complex and big, it is more difficult. Further research

is still needed In this topic.

• Very Fine-Granularity Technique: The parameter-value algorithm described above

is fine-grained but it does still allow some unnecessary conflicts. For example, sup-

pose T1 has a parameter x, and T2 has a parameter y, and T3 has a parameter z, and

we want to make sure that T1 and T2 are not concurrent when x=y (but they can

run concurrently provided x and y differ), and T2 and T3 are not concurrent when

y=z, but we do not need to introduce conflict between T1 and T3, perhaps because

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 43

this edge is non-vulnerable in the original SDG. Our description above said that

T1 would request an ELM lock on x, T2 would request an ELM lock on y, and T3

would request an ELM lock on z. These locks conflict as required, but as well there

will be a lock-conflict between T1 and T3 when their parameters agree. This can

be avoided by using more complicated String values as the names to be locked,

where the name encodes both the edge and the parameter. For example, we could

have T1 set a lock on the String which is a concatenation“T1”+“T2”+x, and T2 sets

two locks, one on the concatenation “T1”+“T2”+y, and the other on “T2”+“T3”+y;

finally T3 sets a lock on “T2”+“T3”+z. This would remove the vulnerability on

the edge T1 to T2 when x=y, and on T2 to T3 when y=z, but they would not lead

to conflict between T1 and T3. In our implementation, we do not use such super-

fine locking. Instead we set the ELM locks on the parameters x or y respectively.

This slightly imprecise choice of lock actually can have some benefits for perfor-

mance. Setting a lock just on the primary key of the item involved in the read-write

dependency also introduces a conflict between two instances of T2 if they share

the parameter value; this conflict is not necessary for correctness, since the trans-

actions would have a write-write conflict anyway, but the ELM conflict leads to

waiting, whereas otherwise one of the two instances would be aborted by FCW,

and then restarted. Thus the blocking of ELM can reduce aborts compared even to

the unmodified programs.

3.2 Proof of ELM Serializability

The proof that the ELM algorithm ensures serializable execution is immediate from the

main theorem of [25].

Proof. Suppose we have a history H execution under SI, and suppose that history is not

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 44

Database Server

`

Client (1)

`

Client (N)

`

Client (2)

Figure 10: System Architecture for Experiments without ELM.

serializable. Then H has a dangerous structure such as T199KT2 is rw-vulnerable edge

and T299KT3 is another rw-vulnerable edge, and there is a path between T3 and T1 (or T1

and T3 are identical). Then if we stop T1 and T2 from running concurrently (or T2 and T3)

by blocking one of them in case of conflict (until the lock is released), then the chosen

edge is no longer vulnerable, as a result, the definition of dangerous structure is not any

more valid. Using the theorem [25] which insists that the absence of dangerous structure

ensures serializbility with SI, we guarantee that the history H is serializable under SI

using ELM.

3.3 Architecture And Design of ELM

In our design, we assume a client-server or multi-tier architecture, with a separate ma-

chine acting as the database server, invoked across a network by clients. One way to

execute the business logic is to create stored procedures on the database server; thus

each transaction involves a single request/response exchange between the client and the

server. This is illustrated in Figure 10. Another way of executing the business logic is

with multiple round-trips; Here the client sends multiple requests, and receives multiple

responses, to execute one transaction. In our experiments, we consider the business logic

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 45

as stored procedure on a database server.

3.3.1 Design Features

We believe that introducing conflict on an edge by using ELM locks has considerable

potential advantages compared to the previous approaches in Chapter 2 where conflict is

introduced by additional SQL statements that lead to updates in the database (So that the

conflict is provided by the FCW mechanism). These benefits are:

• Logging Cost: Data modifications are recorded in a data structure called the log

to ensure Atomicity. The log is a sequence of log records, recording all the update

activities in the database (permanently). These records are used later in case of

any type of failure [49]. The previous techniques (Materialize and Promotion)

introduce update statements, and thus need to write a log record to disk during

the life of transaction. Logging increases the number of I/O operations needed,

and that reduces the overall performance. Over the last decade CPU speeds have

increased dramatically while disk access times have only improved slowly and this

trend is likely to continue in the future and it will cause more and more applications

to become disk bound [47].

ELM involves no change at all in the database server. Also ELM does not need to

preserve the previous status of transactions locks to perform correctly. Therefore,

ELM does not cause any additional logging even on the ELM system.

• Resource Management: A second benefit of the use of ELM locks is that one

of a pair of conflicting transactions may delay, being blocked while waiting for

the ELM lock. In contrast, in Promotion or Materialize, the conflict leads to one

transaction aborting, and restarting after the other has finished. Thus ELM avoids

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 46

a lot of wasted work in transactions that eventually abort. Also, the blocking that

occurs in ELM happens before the database transaction starts, and so there are no

database resources being occupied while a program waits.

It is important that we understand that ELM differs from traditional database lock-

ing, and thus it should not have the poor performance often experienced by 2PL.

The most important difference is that in ELM, we do not lock every item that is

accessed, and indeed many transactions operate without any locks at all. Locks are

only set by the transactions involved in the set of vulnerable edges that the DBA

has chosen for conflict-introduction, and even then, the requested lock is chosen

so that it will collide with the other transaction involved in that edge in those situ-

ations when the parameter values require conflict. Since only a few locks are set,

and there are only exclusive locks, we do not need to be concerned with lock mode

upgrade, hierarchical locking, etc.

• Deadlock Avoidance: Traditional deadlock scenario may develops between two

update transactions T1 and T2. Assume T1 holds an exclusive lock on x and T2

holds an exclusive lock on y. Then, T2 tries to update x and T1 tries to update y.

Neither T1 nor T2 can proceed as each is waiting for the other. Such scenario can

occur when we try to promote an edge that is part of a write skew anomaly.

Actually any suggestion of blocking in a system raising fears of deadlock in the

minds of experienced developers. In ELM, however, we can make sure that our

proposal never introduces deadlock. We first observe that because each applica-

tion obtains any ELM locks before starting the database transaction, no thread can

possibly be holding any database resources while waiting on a queue in ELM (that

is, no waiting cycle can go between the DBMS and the ELM subsystems). Thus

the only risk of additional deadlock is within ELM itself, and this can be avoided

through resource-ordering;2 that is, we code each application that needs multiple
2Another approach to avoid deadlock is if each transaction requests its locks all at once in a single

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 47

`` `

Figure 11: Architecture of ELM-Failure.

ELM locks, so that there is a canonical order in which they locks are requested

(note that we know exactly which locks will be needed, based on the parameter

values of the transaction, before requesting any ELM locks). If the application is

coded this way, no deadlock can involve ELM. Thus we have not needed to in-

troduce any deadlock detection mechanism nor any additional restart mechanism,

outside what already exists in the DBMS engine.

Any design comes with some limitations and drawbacks. Some of these limitations of

ELM are

• Extra Communication: Communication between the chosen programs and the

ELM depends on the ELM location. If the ELM resides in the database server as

extra component or in a middleware (see Section 3.3.2), then no extra communica-

tions are needed, since the programs already communicate with the database server

and the middleware. The only case where communication need to be considered

interaction with the ELM lock manager. We only implemented the first approach.

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 48

is when we have the ELM as separate component as shown in Figure 9. In this

case, the ELM needs two extra communications: when the program acquires the

lock and when it releases it. However, this extra communications are needed only

by some of the programs not all of them. Different studies shown that in many

modern systems, the network communication times are less than the disk access

times [37, 43].

• Lock Overhead: ELM uses exclusive locks during the transaction life, so the time

to get these locks and to release them could be considered as extra computational

operations. But we found in our experiments that the lock operation inside the ELM

can be worthwhile, as they reduce the wasted work inside the database server.

• Component Failure: System failures refer to main memory loss or corruption due

to a power failure or an operation system failure. Media failure refers to damaged

disks or other stable storage.

The ELM server could be seen as an additional single-point-of failure for those

transaction programs that require an ELM lock. We discuss the issue of fault toler-

ance in Section 3.4.

• Extra coding and maintenance: Any extra component need to be coded and

maintained to be integrated in a system correctly. The ELM basic idea is very

simple derived from [28]. ELM uses techniques such as having a collection of

waiting queues, indexed by a hash of the key being locked.

ELM was developed once, so we do not need to re-write it every time we create a

new database. Also, this component is shared among all applications (clients) for

different platforms.

There are another additional drawbacks to which we did not pay much attention, and

need further research: the additional task switching by the operating system that may

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 49

Database Server

`

 Client (1)

`

Client (N)

`

Client (2)

Middlware

ELM

Figure 12: ELM Middleware Design.

result, and increased susceptibility to partial failure of the network.

3.3.2 Location of ELM

There is nothing in our design that would limit where to place the ELM. Here we propose

different locations as follows:

• Separate Machine: We can implement the ELM on a separate machine as in Fig-

ure 9. Each client can communicate with the ELM based on locking for the chosen

edges. This design is easy to implement, and no modification to database source

code is required. Failure of ELM node does not need recovery and undoing/redoing

transactions in the database. We used this design in our experiments (Chapter 5).

• Middleware: Another design inspiration can be by placing the ELM as a middle-

ware. Each client is connected directly to the ELM. When a client sends a trans-

action (request) to database server, each transaction will be filtered in the ELM

middleware based on the conflicts between these transactions. If a transaction has

a conflict with other transactions, it will be delayed until the other transactions re-

lease the locks. Figure 12 shows this design. One drawback to this design that each

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 50

client needs to access the ELM middleware which could cause overloading to the

middleware. Another drawback that is in case of middleware/ELM crash, clients

need to wait until ELM is restarted. The previous design is potentially less harmful

because some of clients need to wait not all. Note that implementing (coding and

maintaining) the middleware is more complex than coding ELM itself as a separate

node in the system.

• Additional Component in the DBMS: The ELM server could be seen as an ad-

ditional single-point-of failure for those transaction programs that require an ELM

lock. Thus we consider that database vendors could actually integrate the ELM

functionality into their own DBMS code. Given that all transactions are imple-

mented as stored procedures (which is a common practice nowadays) the ELM

functionality could be leveraged to a fully declarative approach inside a DBMS:

A corresponding DBMS could offer a declarative interface for the DBA to specify

potential SI conflicts between stored procedures; these conflicts could then be en-

forced by the DBMS by automatically acquiring an ELM lock for the procedure’s

argument values just before executing a marked transaction, and by automatically

releasing this lock just after the commit. Most importantly, such an integrated ap-

proach would be fully declarative to the DBA, not requiring any changes to client

code. Figure 13 shows this design.

3.4 ELM Fault Tolerance

Fault tolerance is a major concern in transaction processing. Applications such as flight-

reservation systems and real-time market data feeds must be fault-tolerant. This means

that important services remain available in spite of the failure of part of the computers

on which the servers are running (high availability), and that no information is lost or

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 51

`

 Client (1)

`

Client (N)

`

Client (2)

Database Server

Additional component

ELM

Figure 13: Additional Component Inside the database.

corrupted when a failure occurs (consistency). If we consider a distributed system as a

collection of servers that communicate with each other and their clients, they not ade-

quately providing services mean that servers, communication channels, or possibly both,

are not doing what they are supposed to do.

Including ELM in the system design introduces extra failure modes. We discuss some of

these, and also mention some possible ways to mitigate the failures; however the experi-

ments reported later in Chapter 5 were done on a system without any fault-tolerance (and

they measure executions without failures). If a lock request or release message is lost, or

if an acknowledgement is lost, the system can be blocked. To mitigate this, one would

introduce reliable messaging with retransmission. If the ELM component fails, we either

leave the system blocked, or else we need to ensure that all locks are re-acquired before

lock request processing resumes in a replacement ELM. Information about locks which

were held could be obtained by contacting the clients (using information from the DBMS

engine to identify them), or by keeping a persistent log in the ELM, or by a combination

of these methods. If a client fails, the ELM will need to release any locks held for that

client. Failure of the DBMS does not affect the ELM at all besides releasing the locks of

the failed transactions. Another way to make the ELM design fault tolerant would be to

replicate the ELM over several machines kept in consistent states. This ”state-machine

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 52

Database Server

 ELM(1)

`

Client (1)

`

Client (N)

1

2

`

Client (1)

 ELM(2) ELM(3)

2

1

3 3

4

4

5

5

66

1- Acquire the locks
2- Receive the locks
and replicate it
3- Access the
database server
4- Commit/Abort
5- Release the Locks
6- Release the locks
from replicas

Figure 14: Client-Server Architecture with Fault Tolerance.

replication” is a well-known technique in distributed systems [49, 28, 38, 15, 16].

Here we discuss the fault tolerance based on the ELM location considering three types of

failures.

1. The ELM failure.

2. Network failure.

3. Client failure.

• Separate Machine: Using this architecture, the ELM can be replicated, which

means it is provided redundantly on multiple computers (Figure 14). The replica-

tion algorithm uses a leader elected from the set of nodes. The other replicas keep

up-to-date with the leader, ready to take over when needed [38].

On failure. If the ELM fails, another replica is elected to perform as new ELM.

This can eliminate the first type of failure. Network failure can be handled by dis-

tributing the replicas on different locations, so if one connection fails, the system

can automatically use one of the other connections. However, using replicas will

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 53

Database Server

`

 Client (1)

`

Client (N)

`

Client (2)

Middlware

ELM ELMELM

1

4

3

5

1- Acquire the locks
2- Receive the locks and
replicate it
3- Access the database
4- Release the locks
5- The client receive the
answer

2 2

Figure 15: Middleware Architecture with Fault Tolerance.

not prevent the system from client’s failure; assume a client program fails after

transaction completes but before releasing the locks, the other clients that try to

obtain a conflict lock will hang without any chance for success.

On recovery. When the ELM recovers from a crash, it requests a full transfer of

lock state from the current ELM leader.

• Middleware: Several studies have been performed on middleware fault tolerance.

In our middleware architecture, we can use the same previous idea to deal with

fault tolerance. The ELM Middleware combination can be replicated across a

small set of nodes. The replication algorithm uses a leader elected from the set

of nodes [58, 40, 21, 22].

On failure. When the ELM fails, another replica can be used to ensure the avail-

ability of the ELM services. Network failure can be handled by distributing the

replicas on different locations, so if one replica fails, the system can automatically

use one of the other connections.

The advantage of using the middleware over the separate machine architecture that

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 54

failing of a client after submitting the transaction will not effect other transactions

since the middleware is responsible of releasing the lock after it receive the result

from database server (Figure 15).

On recovery. When the ELM middleware node recovers from a crash, it requests

an update from the leader.

• Additional Component: The database server uses standard recovery schemas,

redoing/undoing transactions in the database log as necessary.

On failure. If the database server fails, the clients hang until the database server

restarts. The previous status of the ELM does not need to be maintained since the

server itself has failed and all active transactions will be terminated.

On recovery. After the database server recovers, nothing need to be done for the

ELM component. The ELM starts a new set of lock/release operations.

3.5 Prototype ELM Implementation

In our prototype implementation, we deal with client applications which are written in

Java and invoke stored procedures in the database through JDBC. We have implemented

the ELM through a software component written in Java, and we use Java Remote Method

Invocation (RMI) for the message communication between the clients and the ELM com-

ponent. The ELM object is a singleton instance of the LockManager class. At system

startup, the client must execute the following:

1- LockManager lmgr =

2- (LockManager)Naming.lookup

3- ("///LockManagerServer");

4- Locker locker = lmgr.newLocker();

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 55

We wrap the transaction call by a lock/locks request at the beginning and release lock/locks

after the transaction commit. Here is what the code of the client looks like, after modify-

ing it to use ELM in a case where more than one lock are required.

1- cstmt = con.prepareCall("{call SomeTransaction(?,?)}");

2- String[] keys = {key1, key2...keyn};

3- Lock[] locks = locker.getLocks(keys, false);

4- numlocked+= 1;

5- try {

6- cstmt.setString(1, key1);

7- cstmt.setString(2, key2);

8- .

9- .

10- cstmt.setString(2, keyn);

11- cstmt.execute();

12- con.commit();

13- } finally {

14- for (int i = 0; i < locks.length; i++)

15- locks[i].release();

16- }

ELM grants a lock through a factory method Lock getLock(String name); the

lock is released by calling the Lock instance’s method void release(). These locks

are exclusive locks that stay during the life of the transactions.

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 56

ELM Component

Lock
object1

Lock
object2

Lock
object n

H
as

h
Fu

nc
tio

n

T2

T1

Tn

Wait /
Restart

Figure 16: Implementation Example.

3.6 Implementation of Lock Manager

Within ELM, locks are managed by the usual techniques from [28], such as having a

collection of waiting queues, indexed by a hash of the key being locked. The main lock

data structure in our design is ”lock hash array”. Each array entry defined as a lock

object. Then we use a hash function to assign a parameter to an entry in that array. So

if we have two transactions with different parameters, the hash function will point them

with high probability to a different array entries. But if the two transactions use the same

parameters, then they will be hashed to the same entry causing one of them to wait using

wait() function. Figure 16 shows that T1 and T2 hashed to the same entry, and T2 starts

after T1, then T2 has to wait or restart depending on the way we solve the conflict. The

coding of the lock manager is somewhat simple, as we do not upgrade locks and we do

not have multiple lock modes (only exclusive). Our implementation is deadlock free, and

does not need to re-implement in case of using different databases or different platforms.

We have implemented getting a lock in two different ways:

1. When a transaction requests a lock, if the lock is taken by other transaction, we

can restart the request and submit it again (by using the flag boolean noWait). This

approach has a drawback in some cases, since restarting the request needs extra

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 57

communication (lock/release) between the client and the ELM component.

2. Instead, in our experiments if the lock is taken by other transaction, the request can

wait in the queue until the lock released. This approach can save and reduce the

communication cost. Our experiments use this implementation

ELM returns the locks in reverse order so they are fully nested. Here is what the code of

the lock Implementation looks like.

1- synchronized int lock(LockerImpl locker, String key,

2- boolean noWait) {

3-if (holder == locker) { /* we already have this lock */

4-++refcount;

5-return LOCK_HELD;

6-}

7-while (holder != null)

8-try {

9-if (noWait)

10-return LOCK_FAILED;

11-this.wait();

12-} catch (Exception e) {

13-// ignore it

14-}

15-holder = locker;

16-this.key = key;

17-refcount = 1;

18-return LOCK_NEW;

19- }

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 58

Releasing the locks can be much easier than getting the locks. Once the transaction

commits inside the database, then the client who initiated that transaction communicates

with the ELM to release the locks. The code of releasing the locks after the transaction

commit in the database server looks like.

1- public synchronized void release() {

2-//System.out.println("Unlocking " + key);

3-if (refcount == 1) {

4-holder.held.remove(this);

5-holder = null;

6-key = null;

7-this.notify();

8-}

9---refcount;

10- }

Now when we acquire multiple looks, we sort them in order to avoid deadlock. Sorting

the parameters enforces the transactions to acquire the locks in order, so the conflict will

arise earlier rather than later. Here is what the code to perform sorting looks like.

1- public Lock[] getLocks(String[] keys, boolean noWait)

2- throws RemoteException {

3- /* Put the keys into hash bucket order to avoid deadlock. */

4-Arrays.sort(keys, new Comparator() {

5-public int compare(Object o1, Object o2) {

6-int k1 = LockManagerImpl.getLockNum((String)o1);

7-int k2 = LockManagerImpl.getLockNum((String)o2);

8-return k2 - k1;

9-}

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 59

10-public boolean equals(Object o) {

11-return false;

12-}

13-});

14-/* Return the locks in reverse order so they are fully nested. */

15-Lock[] locks = new Lock[keys.length];

16-for (int i = 0; i < keys.length; i++)

17-locks[(keys.length - 1) - i] = getLock(keys[i], noWait);

18-return locks;

19- }

In this prototype, we make a separate round-trip communication from client to the ELM

machine for each request and each release. This is not a significant drawback in our

design, since each transaction is usually protected by zero or one locks (or in a single

case in our benchmarks it must obtain two locks). To improve performance with more

complicated application logic, where several locks are needed to bracket a single database

transaction, a production implementation would also allow batching, for example, there

might be a single method which obtains locks on a whole collection of names (and returns

only when all the requested locks have been obtained), and also the LockManager class

itself could provide a method which releases all the locks held by the calling thread.

3.7 Summary

This chapter details our new component ”External Lock Manager’ (ELM). ELM is a new

component that allows the application to ensure serializability with SI using a lock and

block technique outside the database, without changes to the database engine. We pre-

sented the ELM-algorithm and different ways to implement it. The architectural designs

CHAPTER 3. THE EXTERNAL LOCK MANAGER (ELM) TECHNIQUE 60

of ELM haves been described with their pros and cons. For experimental evaluation, we

mentioned the implementation prototype for ELM.

In the following chapter we explain the experimental framework for our experiments in

detail.

Chapter 4

Experimental Framework

This chapter describes the experimental setup we used to evaluate the different

techniques that ensure serializability with snapshot isolation. We implemented

a client-server system, where business logic is saved as stored procedures in the database

server. We used multiple threads in a single test driver to simulate concurrent clients.

Roadmap: This chapter is structured as follows: In Section 4.1 we present the soft-

ware and hardware used in the experiments. We describe the performance metrics in

Section 4.2. In Section 4.3 we describe the workload parameters that we vary in our ex-

periments. Two benchmarks used in this thesis are explained in Section 4.4. Section 4.5

summarizes the chapter.

4.1 Software and Hardware

We use a local network with three dedicated machines for our experiments. All our ex-

periments were performed on a dedicated database server running Windows 2003 Server

61

CHAPTER 4. EXPERIMENTAL FRAMEWORK 62

SP2 that has 2 gigabytes of RAM, a 3.0 GHz Pentium IV CPU, and 2 IDE disks as sep-

arate log and data disks. Because we are investigating attempts to avoid data corruption,

we have made sure that the log disk on the database server has caching disabled; thus

WAL disk writes are performed on the persistent storage itself, before the call returns to

the DBMS engine. We configured commit-delay = 1ms, thus taking advantage of group

commit.

The additional component (the ELM instance) is running on a separate machine, equipped

with 1 gigabyte of RAM, a 2.5 GHz Pentium CPU, and running Windows 2003 Server

SP2. The lock-manager class is written in Java (SDK 1.5.0) and communicates using

Java Remote Method Invocation (Java RMI). Thus in experiments that measure perfor-

mance of Promote or Materialize techniques, there is no overhead from the existence of

the lock manager, on any machine where the application is doing work.

The actual test driver is running on a separate client machine that connects to the database

server and ELM through Fast Ethernet. The client machine is running Windows 2003

Server SP2 and is equipped with 1 gigabyte of RAM and a 2.5 GHz Pentium CPU. The

test driver is written in Java 1.5.0 and connects via JDBC to the database server. It em-

ulates a varying number of concurrent clients (the multiprogramming level, MPL) using

multiple threads.

Note that a single ELM is shared among all the clients, which may have different JVMs

for the application programs. The ELM design is not application specific, nor DBMS-

engine or JDBC specific, and indeed one ELM component can be used by multiple ap-

plication sets which are on different SI platforms.

We use two DBMS platforms: one is PostgreSQL 8.2 which an open source database

engine, so we can benefit from implementation details, and the second is Oracle 10g,

which is a commercial database engine. We do not compare the two platforms with one

another; rather we use each platform separately to compare the behavior of the various

CHAPTER 4. EXPERIMENTAL FRAMEWORK 63

techniques that ensure serializable execution with SI.

Our experimental system is a closed system: each client calls the database server to

run the selected transaction and waits for the reply. If a transaction aborts, it is retried

repeatedly; eventually it commits and then the client thread immediately (with no think

time) initiates another transaction. Each experiment is conducted with a ramp-up period

of 30 seconds followed by a one minute measurement interval. Each thread tracks how

many transactions commit, how many abort (and for what reasons), and also the average

response time.

We repeated each experiment five times; the figures show the average values plus a 95%

confidence interval as error bar.

4.2 Performance Metrics

The primary performance metric used throughout the thesis is the transaction through-

put, which is how many transactions commit per second. As MPL increases, we expect

throughput to increase until some resource saturates; thrashing can lead to throughput

which drops again as MPL increases even further. Note that for a given size of hotspot,

there is an increasing probability of a transaction having a conflict with a concurrent

transaction, as MPL increases.

The average response time, expressed in milliseconds, is also measured to reflect the

difference between when a client first begins to process a new program, and when the

transaction returns to the client following its commit; this includes any time spent waiting

blocked in ELM, and also it includes the time spent while being restarted. Another useful

measurement is the percentage of transaction invocations that are aborted because of the

FCW mechanism in the DBMS engine (in PostgreSQL this is indicated by a Serialization

Failure exception).

CHAPTER 4. EXPERIMENTAL FRAMEWORK 64

4.3 Workload Parameters

We vary number of parameters that can affect the overall throughput in our experiments.

Some of these parameters are:

• Data contention: We designed our experiments to have 90% of the transactions

access a portion of database called hotspot, and the other 10% access the rest of

the database (database size - hotspot) to produce realistic contention patterns. We

consider the hotspot which has size 100 rows (out of 20,000 in the whole table) as

a low contention scenario, whereas a hotspot with 10 rows is a high contention sce-

nario. The low contention scenario is more realistic than the high contention; the

high contention hotspot measures the robustness of the techniques under extreme

conditions.

• Transaction Mix: Each experiment runs several different transaction programs, ac-

cording to the particular benchmark application. Some of the programs are read-

only. In some experiments each call chooses a transaction type with uniform prob-

ability, but other experiments give greater frequency for read-only transactions.

• DBMS Platforms: We mainly used the PostgreSQL 8.2 platform, but to ensure that

our results are not platform specific, we ran some experiments on Oracle 10g as a

commercial platform to support our conclusions.

• Multiprogramming Level (MPL): MPL is the number of concurrent client threads

which submit transactions; we vary it from 1 client to 30 clients. We generally

found 30 threads sufficient to reach maximum throughput.

• Disk Write Cache(On/Off): Enabling the write cache allows the drive to do write-

back caching. This can improve the overall performance by reducing the mean

response time. However, it will increase the chance of data corruption and data

CHAPTER 4. EXPERIMENTAL FRAMEWORK 65

loss if the system crashes. Therefore, we disable this feature to ensure that our data

is recoverable is case of failure. In all of the displayed results we use disk write

cache off.

• AutoCommit(True/False): If AutoCommit is set to True, all the data operations that

modify data in the database are automatically committed after the statement is exe-

cuted. On the other hand, If AutoCommit is set to False, you need to use the trans-

action methods (BeginTrans, CommitTrans, and Rollback) to control transactions.

To execute the business logic as one using autocommit, we found that autocommit

is platform specific; for example in PostgreSQL we set the autocommit to true,

where in Oracle and SQL Server we set it to false.

4.4 Benchmarks

Usually, performance measurements use a standard benchmark such as TPC-C [4] which

contains several transaction types, and which is carefully designed to exercise a range of

features of a system. We cannot use TPC-C itself to compare different ways of making

applications serializable, since TPC-C generates only serializable executions on SI-based

platforms, as has been known since Oracle obtained benchmarks. This was proved for-

mally in [25]. Thus in this thesis we have used new benchmark mixes which are contrived

to offer a diverse choice among modifications that will ensure serializable execution on

SI.

4.4.1 Smallbank benchmark

SmallBank benchmark is based on the example of an SI anomaly from [26], and provides

some functionality reflecting a small banking system, where each customer has a pair of

accounts, one for savings and one for checking.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 66

SmallBank Schema

Our proposed benchmark is a small banking database consist of three main tables: Account(Name,

CustomerID), Saving(CustomerID, Balance), Checking(CustomerID, Balance). The Account

table represents the customers; its primary key is Name and we declared a DBMS-

enforced non-null uniqueness constraint for its CustomerID attribute. Similarly Cus-

tomerID is a primary key for both Saving and Checking tables. Checking.Balance

and Savings.Balance are numeric valued, each representing the balance in the corre-

sponding account for one customer.1

Programs 1 to 3 show the SQL statements for these tables in PostgreSQL.

It is generally considered worthwhile to create a table with WITHOUT OIDS since it

Program 1 Account(Name, CustomerID) using PostgreSQL.

-- Table: sitest.account

-- DROP TABLE sitest.account;

CREATE TABLE sitest.account
(

name character varying NOT NULL,
custid integer UNIQUE NOT NULL,
CONSTRAINT account_pkey PRIMARY KEY (name)

)
WITHOUT OIDS;
ALTER TABLE sitest.account OWNER TO sitester;

will reduce OID consumption and thereby postpone the wraparound of the 32-bit OID

counter. Once the counter wraps around, OIDs can no longer be assumed to be unique,

which makes them considerably less useful. In addition, excluding OIDs from a table

1It is worth while to mention that the SmallBank schema is not a realistic example; In the account
table,name, rather than CustID, is the primary key. This means we can not have two people with same
name as bank cusomers. Then, by making CustID the primary keyof the checking and account table, it
becomes impossible for a customer to have more than one checking account. Likewise there is a limit of
only one saving account. However, this has no effect on the true purpose of the example for testing the
ELM performance.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 67

Program 2 Saving(CustomerID, Balance) using PostgreSQL.

-- Table: sitest.saving

-- DROP TABLE sitest.saving;

CREATE TABLE sitest.saving
(

custid integer references account(custid),
bal real DEFAULT 0.0,
CONSTRAINT saving_pkey PRIMARY KEY (custid)

)
WITHOUT OIDS;
ALTER TABLE sitest.saving OWNER TO sitester;

Program 3 Checking(CustomerID, Balance) using PostgreSQL.

-- Table: sitest.checking

-- DROP TABLE sitest.checking;

CREATE TABLE sitest.checking
(

custid integer references account(custid),
bal real DEFAULT 0.0,
CONSTRAINT checking_pkey PRIMARY KEY (custid)

)
WITHOUT OIDS;
ALTER TABLE sitest.checking OWNER TO sitester;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 68

reduces the space required on disk to storage the table by 4 bytes per row, leading to

increased performance.

Transaction Mix

The SmallBank benchmark runs instances of five transaction programs. These transac-

tions are:

Balance, or Bal(N), is a parameterized transaction that represents calculating the total

balance for a customer. It looks up Account to get the CustomerID value for N, and then

returns the sum of savings and checking balances for that CustomerID. Program 4 shows

Balance transaction using PostgreSQL, and Program 5 shows it using Oracle.

DepositChecking, or DC(N,V), is a parameterized transaction that represents making a

deposit on the checking account of a customer. Its operation is to look up the Account

table to get CustomerID corresponding to the name N and increase the checking balance

by V for that CustomerID. If the value V is negative or if the name N is not found in the

table, the transaction will rollback. Program 6 shows the essential SQL of DepositCheck-

ing transaction.

TransactSaving, or TS(N, V), represents making a deposit or withdrawal on the savings

account. It increases the savings balance by V for that customer. If the name N is not

found in the table or if the transaction would result in a negative savings balance for the

customer, the transaction will rollback. Program 7 shows the core of the SQL.

Amalgamate, or Amg(N1, N2), represents moving all the funds from one customer to

another. It reads the balances for both accounts of customer N1, then sets both to zero,

and finally increases the checking balance for N2 by the sum of N1’s previous balances.

Program 8 shows the core of the SQL.

WriteCheck, or WC(N,V), represents writing a check against an account. Its operation is

to look up Account to get the CustomerID value for N, evaluate the sum of savings and

CHAPTER 4. EXPERIMENTAL FRAMEWORK 69

Amg

DC Bal TS

WC

Figure 17: The SDG for the SmallBank benchmark.

checking balances for that CustomerID. If the sum is less than V, it decreases the checking

balance by V+1 (reflecting a penalty of 1 for overdrawing), otherwise it decreases the

checking balance by V. Program 9 shows the core of the SQL code.

The SDG for SmallBank

Figure 17 shows the SDG for the SmallBank benchmark. We use dashed edges to indi-

cate vulnerability, and we shade the nodes representing update transactions. Most of the

analysis is quite simple, since TS, Amg and DC all read an item only if they will then

modify it; from such a program, any read-write conflict is also a write-write conflict and

thus not vulnerable. The edges from Bal are clearly vulnerable, since Bal has no writes

at all, and thus a read-write conflict can happen when executing Bal concurrently with

another program having the same parameter. The only subtle cases are the edges from

WC (which reads the appropriate row in both Checking and Saving, and only updates

the row in Checking). Since TS writes Saving but not Checking, the edge from WC to

TS is vulnerable. In contrast, whenever Amg writes a row in Saving it also writes the

CHAPTER 4. EXPERIMENTAL FRAMEWORK 70

Program 4 Balance(N) transaction using PostgreSQL.

-- Function: sitest.balance(n character varying)

-- DROP FUNCTION sitest.balance(n character varying);

CREATE OR REPLACE FUNCTION sitest.balance(n character varying)
RETURNS real AS

$BODY$
DECLARE
cid INTEGER;
a REAL;
b REAL;
total REAL := 0;
BEGIN

SELECT custid INTO cid
FROM account
WHERE name=n;

IF NOT FOUND THEN
RAISE EXCEPTION ’Balance: customer % not found’, n;
END IF;

SELECT bal INTO a
FROM saving
WHERE custid=cid;

SELECT bal INTO b
FROM checking
WHERE custid=cid;

total:=a+b;

RETURN total;
END;
$BODY$

LANGUAGE ’plpgsql’ STABLE;
ALTER FUNCTION sitest.balance(n character varying) OWNER TO
postgres;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 71

Program 5 Balance(N) transaction using Oracle.

CREATE OR REPLACE PROCEDURE Balance(n IN STRING , total OUT REAL)
IS cid INTEGER;

a REAL;
b REAL;

BEGIN

SELECT custid INTO cid
FROM account
WHERE name=n;

SELECT bal INTO a
FROM saving
WHERE custid=cid;

SELECT bal INTO b
FROM checking
WHERE custid=cid;

total:=a+b;

/* no commit needed after here when used with AutoCommit() */

EXCEPTION
WHEN NO_DATA_FOUND THEN -- catches all ’no data found’ errors

ROLLBACK; -- free lock
raise_application_error(+100,’Balance: customer ’ || n ||

’ not found.’);
END;
/

CHAPTER 4. EXPERIMENTAL FRAMEWORK 72

Program 6 DepositCecking(N,V) transaction.

SELECT CustomerId INTO :x
FROM Account
WHERE Name=:N;

SELECT Balance INTO :b
FROM Checking
WHERE CustomerId=:x;

UPDATE Checking
SET Balance = Balance+:V
WHERE CustomerId=:x;

COMMIT;

Program 7 TransactSaving(N,V) transaction.

SELECT CustomerId INTO :x
FROM Account
WHERE Name=:N;

SELECT Balance INTO :a
FROM Saving
WHERE CustomerId=:x;

UPDATE Saving
SET Balance = Balance+:V
WHERE CustomerId=:x;

COMMIT;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 73

Program 8 Amalgamate(N1,N2) transaction.

SELECT CustomerId INTO :x
FROM Account
WHERE Name=:N1;

SELECT CustomerId INTO :y
FROM Account
WHERE Name=:N2;

SELECT Balance INTO :a
FROM Saving
WHERE CustomerId=:x;

SELECT Balance INTO :b
FROM Checking
WHERE CustomerId=:x;

Total := :a+:b;

UPDATE Saving
SET Balance = 0.0
WHERE CustomerId=:x;

UPDATE Checking
SET Balance = 0.0
WHERE CustomerId=:x;

UPDATE Checking
SET Balance = Balance + :Total
WHERE CustomerId=:y;

COMMIT;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 74

Program 9 WriteCheck(N,V) transaction.

SELECT CustomerId INTO :x
FROM Account
WHERE Name=:N;

SELECT Balance INTO :a
FROM Saving
WHERE CustomerId=:x;

SELECT Balance INTO :b
FROM Checking
WHERE CustomerId=:x;

IF (:a+:b) < :V THEN
UPDATE Checking

SET Balance = Balance-(:V+1)
WHERE CustomerId=:x;

ELSE
UPDATE Checking

SET Balance = Balance-:V
WHERE CustomerId=:x;

END IF;

COMMIT;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 75

corresponding row in Checking; thus if there is a read-write conflict from WC to Amg

on Saving, there is also a write-write conflict on Checking (and so this cannot happen

between concurrently executing transactions). That is, the edge from WC to Amg is not

vulnerable.

We see that the only dangerous structure is Balance (Bal) 99K WriteCheck (WC) 99K

TransactSaving (TS). The other vulnerable edges run from Bal to programs which are not

in turn the source of any vulnerable edge. The non-serializable executions possible are

like the one in [26], in which Bal sees a total balance value which implies that a overdraw

penalty would not be charged, but the final state shows such a penalty because WC and

TS executed concurrently on the same snapshot.

Ways to Ensure Serializable Executions for SmallBank

We have two options to eliminate the dangerous structure in the SmallBank SDG: either

we make the edge from WriteCheck to TransactSaving non vulnerable (Option WT),

or we make the edge from Balance to WriteCheck not vulnerable (Option BW). We

further have three alternatives on how to make each option non vulnerable (Promotion,

Materialize, and ELM).

Option WT In Option WT we eliminate the dangerous structure by making the edge

from WriteCheck to TransactSaving not vulnerable. This can be done by materializing

the conflict (that is, placing “update table conflict” statements into both WriteCheck and

TransactSaving). Thus we define a table Conflict, not mentioned elsewhere in the

application, whose schema is Conflict(Id, Value). In order to introduce write-write con-

flicts only when the transactions actually have a read-write conflict (that is, when both

deal with the same customer), we update only the row in table Conflict where the primary

key=x, where x is the CustomerId of the customer involved in the transaction. We call

CHAPTER 4. EXPERIMENTAL FRAMEWORK 76

this strategy MaterializeWT. Here is the statement we include in both programs, WC and

TS.

1- UPDATE Conflict

2- SET Value = Value+1

3- WHERE id=:x

For this to work properly, we must initialize Conflict with one row for every CustomerId,

before starting the benchmark; otherwise we need more complicated code in WC and TS,

that inserts a new row if now exists yet for the given id.

An alternative approach which also eliminates the vulnerability is by promotion, adding

an identity update in WriteCheck. We represent this strategy by PromoteWT-upd. To

be precise, PromoteWT-upd includes the following extra statement in the code of WC

above.

1- UPDATE Saving

2- SET Balance = Balance

3- WHERE CustomerId=:x

In the commercial platform (Oracle) we consider, there is also a strategy PromoteWT-sfu,

where the second SELECT statement in the code above for WC is replaced by

1- SELECT Balance INTO :b

2- FROM Saving

3- WHERE CustomerId=:x

4- FOR UPDATE

Finally, using the ELM technique, we only need to wrap WriteCheck and TransactSaving

transactions with a few statements to ensure that they are not running concurrently, so at

CHAPTER 4. EXPERIMENTAL FRAMEWORK 77

the beginning we acquire the locks (using getLock();), execute the stored procedure, and

then release the locks (using release();). The lock-choice are based on the parameter-

Value technique discussed in 3.1.1. We represent this technique by ELM-WT. Here is

how the client calling WriteCheck looks after we modify it. The N parameters of the

WriteCheck(N,V) transaction is taken as one element name[] from an array of possible

account holder names.

1- cstmt = con.prepareCall

2- ("{call WriteCheck(N,V)}");

3- Lock l = locker.getLock(names[counter]); //To acquire locks.

4- try {

5- cstmt.setString(1, names[counter]);

6- cstmt.execute(); //Execute the transaction.

7- con.commit();

8- } finally {

9- l.release(); //Release the locks.

10- }

And here is the client for modified TransactSaving.

1- cstmt = con.prepareCall

2- ("{call TransactSaving(N,V)}");

3- Lock l = locker.getLock(names[counter]; //To acquire locks.

4- try {

5- cstmt.setString(1, names[counter]);

6- cstmt.execute(); //Execute the transaction.

7- con.commit();

8- } finally {

9- l.release(); //Release the locks.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 78

Amg

DC Bal TS

WC

Figure 18: SDG for Option promoteWT and MaterializeWT.

10- }

Note that we only modify WriteCheck and TransactSaving to acquire locks, and leave

the other transactions unmodified.

In Figure 18, we show the SDG for promote and materialize the WT options, Figure 19

shows the SDG for using ELM with WT option. Only the edge between WriteCheck and

TransactSaving has changed, the remaining edges are unchanged.

Option BW We can also ensure that all executions are serializable, by changing the

programs so that the edge from Balance to WriteCheck is not vulnerable. This can again

be done by materializing (which includes an update on Conflict in both programs Bal

and WC), and we call it MaterializeBW. Here is the statement we include in both pro-

grams,Bal and WC.

1- UPDATE Conflict

2- SET Value = Value+1

3- WHERE id=:x

CHAPTER 4. EXPERIMENTAL FRAMEWORK 79

Figure 19: SDG for Option ELM-WT.

The second choice is by promoting with identity update on the table Checking in Bal,

and we call it PromoteBW-upd.

1- UPDATE Checking

2- SET Balance = Balance

3- WHERE CustomerId=:x

Or (in the commercial platform only) we can promote with select-for-update on table

Checking in Bal, and we call this PromoteBW-sfu.

1- SELECT Balance INTO :b

2- FROM Checking

3- WHERE CustomerId=:x

4- FOR UPDATE

Finally, using the ELM technique, we only need to wrap Balance and WriteCheck trans-

actions with few statements to ensure that they are not running concurrently.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 80

1- cstmt = con.prepareCall("{call Balance(?,?)}");

2-if ("LockBW".equals(serialMethod)||"LockALL".equals(serialMethod))

3-{

4-numlocked += 1;

5-Lock l = locker.getLock(names[counter], false);

6-try

7-{

8-cstmt.setString(1, names[counter]);

9-cstmt.registerOutParameter(2, Types.REAL);

10-cstmt.execute();

11-con.commit();

12-}finally {

13-l.release();

14- }

15-}

In Figure 20 to 22 are the SDGs for PromotionBW, MaterializeBW and ELM-BW tech-

nique. Note that the Balance transaction is no longer read-only in Figure 20 and 21, other

outgoing edges from Balance have changed.

Option ALL All the strategies discussed so far work from a detailed examination of the

SDG, and identifying the dangerous structures in that. An approach which has less work

for the DBA is to simply eliminate all vulnerable edges. This can be done by considering

each pair of transactions, and deciding whether or not there is an RW conflict without

a WW one; if so we remove the vulnerability on that edge (by materialization, promo-

tion, or by using ELM). We refer to these strategies as MaterializeALL, PromoteALL, and

ELM-ALL.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 81

Amg

DC Bal TS

WC

Figure 20: SDG for MaterializeBW.

Amg

DC Bal TS

WC

Figure 21: SDG for PromoteBW-upd.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 82

Figure 22: SDG for Option ELM-BW.

Because every transaction (except Bal itself) has a vulnerable edge from Bal, the ap-

proach MaterializeALL includes an update on table Conflict in every transaction (and

indeed, transaction Amg must update two rows in Conflict, one for each parameter, since

either customer could be involved in a vulnerable conflict from Bal). PromoteALL adds

an identity update on Savings to transaction WC, and it adds identity updates to both

Savings and Checking tables in transaction Bal, since Bal has a vulnerable conflict on

Checking with WC, Amg and DC and a vulnerable conflict on Savings table with TS and

Amg. Using ELM ELM-ALL technique, every pair of transactions joined by a vulnerable

edge, must acquire ELM lock on the common parameters that construct the vulnerable

edges, so they do not run concurrently. We use the parameter-value technique to control

concurrent transactions. 2

Table 3 summarize the different options which we compare. It lists for each option to

ensure serializable executions, and for each type of transaction, which modifications are

2ALL transactions use customer name ”Name[counter]” parameter to control the concurrent update.
Amg transaction needs to lock two parameters ”names[account1], names[account2]”.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 83

Table 3: Overview of Modification Introduced with each Option.

Option / TX Bal WC TS Amg DC
ELM-BW Lock Lock
ELM-WT Lock Lock
ELM-ALL Lock Lock Lock Lock Lock
PromoteBW Chk
PromoteWT Sav
PromoteALL Chk,Sav Sav
MaterializeBW Cnf Cnf
MaterializeWT Cnf Cnf
MaterializeALL Cnf Cnf Cnf Cnf Cnf

introduced. For Promote and Materialize, the modifications are additional updates on ei-

ther the Saving table (Sav), the Checking table (Chk), or to the dedicated Conflict

table (Cnf); for each option within the ELM approach, and for each transaction, the mod-

ification can be to set a lock in the ELM (Lock).

4.4.2 MoreChoices Benchmark

The SmallBank benchmark has been useful for exploring the performance of different

approaches that each guarantee serializable execution. However, SmallBank has a num-

ber of characteristics that are atypical (for example, its SDG has only one dangerous

structure and no examples of Write Skew). In order to check that our conclusions are

not specific to these aspects of SmallBank, we have designed another set of application

programs, designed to have different characteristics (e.g., more cycles and write skew).

We call this benchmark MoreChoices. In this benchmark, unlike SmallBank or TPC-C,

we do not try to make the schema or programs meaningful for any domain.

MoreChoices Benchmark Schema: Our proposed benchmark consists of three main

tables: Table0(CharID, Id), Table1(ID, Value1), Table2(ID, Value2). Programs 10 to 12

show the SQL statements for these tables using PostgreSQL.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 84

Program 10 Table0(CharID, Id) using PostgreSQL.

-- Table: sitest.Table0

-- DROP TABLE sitest.Table0;

CREATE TABLE sitest.Table0
(

name character varying NOT NULL,
custid integer,
CONSTRAINT table0_pkey PRIMARY KEY (name)

)
WITHOUT OIDS;
ALTER TABLE sitest.Table0 OWNER TO sitester;

Program 11 Table1(ID, Value1) using PostgreSQL.

-- Table: sitest.Table1

-- DROP TABLE sitest.Table1;

CREATE TABLE sitest.Table1
(

custid integer NOT NULL,
val1 real DEFAULT 0.0,
CONSTRAINT table1_pkey PRIMARY KEY (custid)

)
WITHOUT OIDS;
ALTER TABLE sitest.table1 OWNER TO sitester;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 85

Program 12 Table2(ID, Value2) using PostgreSQL.

-- Table: sitest.Table2

-- DROP TABLE sitest.Table2;

CREATE TABLE sitest.Table2
(

custid integer NOT NULL,
val2 real DEFAULT 0.0,
CONSTRAINT table2_pkey PRIMARY KEY (custid)

)
WITHOUT OIDS;
ALTER TABLE sitest.Table2 OWNER TO sitester;

Transaction Mix:

Our MoreChoices benchmark runs four different types of transactions. T1 is a read-only

transaction, and T2, T3, and T4 are update transactions. The SQL logic here does not have

any meaning, it only exercises the DBMS.

• Transaction1(T1): T1 reads Table1 and Table2. Program 13 shows the core of the

SQL code.

• Transaction2(T2): T2 reads Table1,Table2 and it updates Table1. Program 14 shows

the core of the SQL code.

• Transaction3(T3): T3 reads Table2 and updates Table2. Program 15 shows the core

of the SQL code.

• Transaction4(T4): T4 reads Table1, and Table2 and it updates Table2 in order to

create write skew with T2. Program 16 shows the core of the SQL code.

Figure 23 shows the SDG for MoreChoices benchmark. We use dashed edges to indi-

cate vulnerability, and we shade the nodes representing update transactions. Computing

CHAPTER 4. EXPERIMENTAL FRAMEWORK 86

Program 13 Transaction1(N) transaction.

SELECT Id INTO :x
FROM Table0
WHERE CharID=:N;

SELECT val1 INTO :a
FROM Table1
WHERE Id=:x;

SELECT val2 INTO :b
FROM Table2
WHERE Id=:x;

COMMIT;

Program 14 Transaction2(N,V) transaction.

SELECT Id INTO :x
FROM Table0
WHERE CharID=:N;

SELECT val1 INTO :a
FROM Table1
WHERE Id=:x;

SELECT val2 INTO :b
FROM Table2
WHERE Id=:x;

UPDATE table1
SET val1 = val1 - v
WHERE custid=cid;

COMMIT;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 87

Program 15 Transaction3(N,V) transaction.

SELECT Id INTO :x
FROM Table0
WHERE CharID=:N;

SELECT val2 INTO :b
FROM Table2
WHERE Id=:x;

UPDATE table2
SET val2 = val2 + v
WHERE custid=cid;

COMMIT;

Program 16 Transaction4(N,V) transaction.

SELECT Id INTO :x
FROM Table0
WHERE CharID=:N;

SELECT val1 INTO :a
FROM Table1
WHERE Id=:x;

SELECT val2 INTO :b
FROM Table2
WHERE Id=:x;

UPDATE table2
SET val2 = val2 + v
WHERE custid=cid;

COMMIT;

CHAPTER 4. EXPERIMENTAL FRAMEWORK 88

Figure 23: SDG for MoreChoices benchmark.

the SDG is very similar to analyzing SmallBank benchmark. As explained in Chapter 2

we consider an edge to be vulnerable when we have read-write without write-write con-

flict between the same pair. For example we have analyzed the MoreChoices SDG by

hand following the approaches described in Chapter 2. We have found five dangerous

structures.

1. T1 99K T2, T2 99K T4, T4→ T1.

2. T4 99K T2, T2 99K T3, T3→ T4.

3. T2 99K T4, T4 99K T2.

4. T1 99K T2, T2 99K T3, T3→ T1.

5. T1 99K T4, T4 99K T2, T2→ T1.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 89

Figure 24: SDG for MoreChoice, Choice1-Materialize.

Ways to ensure serializablity with MoreChoices benchmark:

We consider three options of edge set to deal with. We further have three alternatives on

how to make each option non vulnerable (Promotion, Materialize, and ELM 3). Each of

these different choices guarantees that we do not have a dangerous structure in our SDG

graph.

There are 2 minimal sets of edges that break each dangerous cycle. We also consider the

option where we remove vulnerability on ALL vulnerable edges.

• Choice1: Removing the vulnerable edges { T1 99K T2, and T4 99K T2}. Figure 24,

26, 25 show the SDG for MoreChoice benchmark after we materialize, promote,

and using ELM with choice1 edges. 4

• Choice2: Removing the vulnerable edges { T2 99K T4, T4 99K T2, and T2 99K T3}.

Figure 27 and 28 show the SDG for MoreChoice benchmark after we materialize,

3In using Materialize to ensure that we do not increase the amount of contention by introducing the new
table ”Conflict”, we make sure that each edge has its own conflict table.

4Note that T1 is not read-only transaction any more after we promote or materialize the edge T1 99K
T2.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 90

Figure 25: SDG for MoreChoice, Choice1-Promotion.

Figure 26: SDG for MoreChoice, ELM-Choice1.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 91

Figure 27: SDG for MoreChoice, Choice2-Promotion and Choice2-Materialize.

Figure 28: SDG for MoreChoice, ELM-Choice2.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 92

Figure 29: SDG for MoreChoice, ALL-Promotion and ALL-Materialize.

Figure 30: SDG for MoreChoice, ELM-ALL.

CHAPTER 4. EXPERIMENTAL FRAMEWORK 93

promote, and use ELM with choice2 edges.

• ALL: Removing ALL vulnerable edges { T1 99K T2, T1 99K T3, T1 99K T4, T2 99K

T4, T4 99K T2, and T2 99K T3}. Figure 29 and 30 show the SDG for MoreChoice

benchmark after we materialize, promote, and use ELM with choice3 edges.

4.5 Summary

This chapter describes the experimental framework: the software and the hardware, dif-

ferent factors that may affect our conclusions, and finally we describe the two bench-

marks that we use in the next chapter.

In the next chapter, we use the experimental framework to explore in detail the perfor-

mance impact of the various techniques that guarantee serializable execution.

Chapter 5

Evaluation

Th is chapter evaluates the various techniques described previously, including our

new ELM proposal as well as Materialize and Promotion described in Chapter2.

As also discussed in Section 2.6.6 there is another approach called pivot 2PL which was

shown in [24, 9] to be worse than the existing techniques, therefore we do not discuss it

anymore.

We compare these techniques using one open source platform-PostgreSQL (so we have

access to the source code) and one commercial paltform-Oracle, to be able to generalize

our findings and conclusions. We evaluate each technique under different conditions,

such as low data contention, high data contention, varying the number of concurrent

clients (MPL), and changing the percentage of read-only transactions in the mix.

Roadmap: This chapter is structured as follows: In Section 5.1 we briefly review the

SmallBank benchmark and its options for making SI serializable. Section 5.2 we present

performance comparison between ELM and other techniques that ensure serializable ex-

ecution under SI on PostgreSQL. In Section 5.3 we use a different platform: Oracle.

Finally, we evaluate with the MoreChoices benchmark in 5.4. We conclude the previous

sections in 5.5. Summary of the chapter in 5.6

94

CHAPTER 5. EVALUATION 95

5.1 Options to ensure serializable execution with Small-

Bank

In this chapter we use Table 3 from Chapter 4 that summarizes the different options which

we compare. It lists for each option to ensure serializable executions, and for each type

of transaction, which modifications are introduced. For Promote and Materialize, the

modifications are additional updates on either the Saving table (Sav), the Checking

table (Chk), or to the dedicated Conflict table (Cnf); for each option within the ELM

approach, and for each transaction, the modification can be to set a lock in the ELM

(Lock).

5.2 Serializability of SI on PostgreSQL, for SmallBank

Through several sections we will explore the performance of the techniques for guar-

anteeing serializable execution on SI platforms. Each section deals with a particular

platform, and a particular benchmark of programs that are executed. In this section,

we use PostgreSQL as the DBMS engine, and we use the SmallBank benchmark set of

application programs.

5.2.1 Low Contention, High Update Rate

In this experiment we select each transaction uniformly. That is Bal is 20% of transac-

tions, WC is 20%, Dc is 20%, TS is 20%, and Amg is 20%. This means that 80% of the

transactions update the database and only 20% are read-only. Here we explore in detail

the case where hotspot has 100 rows; this means that even at MPL=30, a given transac-

tion sees no contention about 2/3 of the time.

Figure 31 shows the throughput in transaction per second (TPS) as a function of MPL for

CHAPTER 5. EVALUATION 96

0

200

400

600

800

1000

1200

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 31: Throughput over MPL, Low Contention, High Update, SmallBank, PostgreSQL.

the more sophisticated among the different options available in SmallBank for guarantee-

ing serializable execution. 1 We also include the figures (labelled SI) for the unmodified

application under SI. From the same data, we derive Figure 32 which shows the relative

performance as compared to the throughput with SI at the same MPL for each option that

ensures serializable executions. In this graph, we use the thick horizon line at the 100%

level, which is the score of SI, that is, running unmodified applications(these may have

anomalies!).

We perceive that

• For each option, throughput rises with MPL till it reaches a plateau. The plateau

(maximal) value for throughput of the unmodified application (SI) is about 971,

reached with MPL between 20 and 25.

• Throughput for PromotionBW upd (Identity update), and also for MaterializeBW,

1These options all required the DBA to identify dangerous structures, and chose a minimal set of edges
to make non-vulnerable.

CHAPTER 5. EVALUATION 97

0%

20%

40%

60%

80%

100%

120%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
Pe

rfo
rm

an
ce

 to
 S

I
ELM-BW ELM-WT PromoteBW
PromoteWT MaterializeBW MaterializeWT

Figure 32: Throughput relative to SI, Low Contention, High Update, SmallBank, Post-
greSQL.

starts 21% lower than SI and rises till it reaches about 94% of that for SI with

MPL=30.

• PromoteWT and MaterializeWT are very close to SI until MPL=20 (for PromoteWT)

or till MPL=10 (for MaterializeWT). Beyond this, they drop a bit but still are

around 95%.

• ELM-BW and ELM-WT are often indistinguishable from results for SI, and some-

times slightly higher.

We now attempt to explain why these effects arise:

PromoteBW and MaterializeBW, have a somewhat lower peak and reach it more slowly

(at MPL=30). MaterializeBW and PromoteBW introduce a write into Balance, and thus

make every transaction need a disk write. This is clearly seen in the performance with

MPL=1, where (with a single thread submitting transactions) there is no contention at

all, and the slowdown comes only from the overhead. We see a slowdown of 20% for

CHAPTER 5. EVALUATION 98

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

0 5 10 15 20 25 30
MPL

P
er

ce
nt

ag
e

of
 S

er
ia

liz
at

io
n

Fa
ilu

re
SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 33: Serialization Failure, Low Contention, high Update, SmallBank, PostgreSQL.

those modifications that increase the fraction of transactions that must do disk-writes by

5/4, and no slowdown at MPL=1 for the other modifications (cf. Figure 32). This clearly

shows that the need to write to disk is overwhelmingly dominant in the work done; once

a transaction needs one write, as happen for example in WC under MaterilizeWT, extra

writes have negligible extra cost.

PromoteWT and MaterializeWT come close to the peak of SI. Materialization or promo-

tion on WT introduce updates only into programs (WC and TS) that already have them,

and so one-fifth of the transactions remain read-only (the Balance transactions).

ELM-BW and ELM-WT have very similar or even slightly higher throughput than un-

modified SI. With ELM-BW, the extra cost of communication between the driver (when

a Bal or WC transaction is to be run) and the ELM is negligible and it does not affect the

overall throughput compared to SI itself.

Figure 33 shows the percentage of serialization failure of different options. As we ex-

pect, the Promote and Materialize techniques increase the ratio of “Serialization Failure”

aborts compared to the unmodified application under SI, because they introduce conflicts

CHAPTER 5. EVALUATION 99

through the FCW mechanism.

Promotion of BW does lead to contention between Bal and DC, and also between Bal and

Amg. This is because both DC and Amg include updates on Checking, and the promoted

version of Bal has an identity update, on the appropriate row of the Checking table. We

see that for MPL of 25 or more, PromoteBW reaches a worrying level where over 17%

of transactions must abort. MaterializeBW has a lower abort rate than PromoteBW, since

MaterializeBW only stops the conflicts between Bal and WC without creating any extra

conflict as happens with PromoteBW.

In contrast, the options that use the ELM technique have a lower rate of these errors even

than the unmodified application. This is because when two threads concurrently try to

run one of the modified programs, with the same account number, the ELM lock will

delay one till the other finishes, 2 whereas in this same scenario, one instance of the un-

modified program will abort due to FCW.

Figure 34 shows how different transaction types have different patterns for the ratio of Se-

rialization Failure errors with MPL=25. We see that every transaction type individually

shows lower abort rates in the ELM techniques, even than for the unmodified applica-

tion under SI. On the other hand, PromoteBW and MaterializeBW cause aborts in the

(originally abort-free, because read-only) Balance transaction, similarly PromoteWT and

MaterializeWT raise the abort rates in WC and TS transaction types.

We conclude that performance of Promotion and Materialize techniques are dominantly

affected by the transactions that join the chosen edges, so if the developers are interested

in high performance for a specific transaction type, then this should not be changed nei-

ther using materialisation or promotion. However, introducing locks into this transaction

using the ELM technique is quite acceptable.

2The lock is introduced to prevent concurrency between the two programs at opposite ends of an SDG
edge, but it also causes conflicts between each program and itself, where the SDG has a non-vulnerable
loop edge.

CHAPTER 5. EVALUATION 100

0%

1%

2%

3%

4%

5%

6%

7%

Balance TransactionSaving Amalgamate Depositchecking WriteCheck

Pe
rc

en
ra

ge
 o

f S
er

ia
liz

at
io

n
 E

rr
or

s
pe

r T
xs SI ELM-BW ELM-WT

promoteBW promoteWT materializeBW
materializeWT

0.
0%0.
0

%

2.
6

0.
0

1.
6

1.
1 %

1.
7%

.9
7%

0.
61.

0 %1.
1%

0.
0%

1.
0%

5.
4

5.
2

5.
7

6.
4

5.
0%

5.
3

5.
8

2.
1

2.
22.
3

2.
6

2.
0%2.

12.
3

2.
8

2.
62.

9
2.

6
1.

8%1.
8

2.
4

0.
0

Figure 34: Serialization Failure Ratio per Transaction Type, Low Contention, SmallBank,
PostgreSQL.

Figure 35 shows the mean response time averaged over all transactions, in milliseconds.

We see that PromoteBW and MaterializeBW have the highest mean response time. This

seems to be due to two reasons:

• Changing the read-only (Bal transaction) to update transaction, which adds a lot of

extra time by forcing Bal transaction to access the disk when writing the log.

• Since our system restarts the aborted transactions, and PromoteBW and Material-

izeBW have the highest abort rate, then extra time is needed to re-try those trans-

actions.

Each of the ELM techniques generally has mean response time which is less than the best

available among other approaches.

Figure 36 shows the message sequence diagram. The mean response time consists of

three components which are:

CHAPTER 5. EVALUATION 101

0
5

10
15
20
25
30
35
40

0 5 10 15 20 25 30
MPL

M
R

T/
 M

ill
is

ec
on

d
SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 35: Mean Response Time, Low Contention, SmallBank, PostgreSQL.

1. Commit Time: It is the average time for successful transaction to commit. It starts

from the last time we submit the business logic (which is the attempt that succeeds)

to the time we receive the answer (commit).

2. Restart Time: It is the average wasted time for transactions that could not commit

their jobs. It starts from the time we submit business logic to the time we receive

an error message (Abort).

3. ELM overhead Time: It is the time we need to communicate with the ELM, acquire

locks, and release them. It includes the period starts from the time we submit a

request to the ELM until we get the answer that the lock was obtained, plus the

time we need to release these locks after commit.

Figure 37 shows the detailed breakdown of the mean response time for MPL=25. We

have also labeled each portion of time as percentage of the total response time for that

option. For example, ELM-BW mean response time is split between 83.7% (Commit

CHAPTER 5. EVALUATION 102

Client Thread ELM Services DBMS

Lock request

granted

Invoke stored
procedure

Response
(Aborted)

Release lock
Acknowledgment

First attempt
(unsuccessful)

A

A

B

C

B

A ELM Time

Restart Time

Commit Time

Lock request (reply)

granted

Invoke stored
procedure

Commit

Release lock
Acknowledgment

Restart

A

C

A

To
ta

l R
es

po
ns

e
Ti

m
e

Figure 36: Message sequence diagram.

CHAPTER 5. EVALUATION 103

0

5

10

15

20

25

30

SI ELM-BW ELM-WT PromoteBW PromoteWT MaterializeBW MaterializeWT

Ex
ec

ut
io

n
Ti

m
e

Restart_Time ELM (Comm+Lock+Release) Commit_Time

6.7%
11.8%9.8%12%12%8.8%9.6%11%

9.4%

88.2%90.2%88%88%81.8%83.7%89%

Figure 37: Average Execution time, Low Contention, SmallBank, PostgreSQL.

time) + 6.7% (ELM overhead) + 9.6% (Restart overhead).

The commit time for ELM-BW and ELM-WT is less than for any other option available.

This simply because the ELM reduces the amount of contention inside the database,

therefore, the average waiting time of a transaction is less even than for unmodified un-

committed SI. Notice that the ELM-WT commits time is even lower than ELM-BW,

because ELM-WT prevents more conflicts inside the database by controlling both WC

and TS which would otherwise invoke FCW and cause more transactions to abort.

ELM-WT stops WC and TS from running concurrently, which reduces the probability

of conflict between (WC and TS) and (Amg and DC). In contrast, in ELM-BW we only

reduce the conflict between WC and (Amg and DC), while TS still has higher chance to

conflict with (Amg and DC).

We obviously see that the waiting time for ELM locks is highly compensated by the lower

commit time, and slightly by the reduction in time wasted in restarts.

Finally, we consider the straight-forward strategies that remove the vulnerability from

CHAPTER 5. EVALUATION 104

0

200

400

600

800

1000

1200

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-ALL PromoteALL MaterializeALL

Figure 38: Costs for SI-serializability when eliminating ALL vulnerable edges, Low Con-
tention, SmallBank, PostgreSQL..

0%

20%

40%

60%

80%

100%

120%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
Th

ro
ug

hp
ut

 to
 S

I

ELM-ALL PromoteALL MaterializeALL

Figure 39: Relative Throughput to SI (ALL vulnerable edges), Low Contention, SmallBank,
PostgreSQL..

CHAPTER 5. EVALUATION 105

every vulnerable edge. These modify many transactions, but they do not require the DBA

to look for cycles and dangerous structures in the SDG; instead the DBA can think about

each pair of transactions separately.

Figure 38 shows the resulting throughput in Transactions Per Second (TPS) as a function

of MPL. Figure 39 shows the relative performance as compared to the throughput with SI

(shown as thick horizontal line) for each option that ensures serializable executions. As

we see, the simple approaches induce hefty performance costs except with ELM-ALL.

Promoting every vulnerable edge has performance that starts 20% lower than SI and rises

till it reaches about 91% of that for SI. Materializing on every vulnerable edge gives per-

formance that peaks at about 807 TPS (about 18% less than that for SI). The relative

performance between these is understandable: when we promote every vulnerable edge,

we simply add two writes to Balance, and one to WriteCheck, without changing the other

programs, and so we do continue to allow DC and TS to run concurrently (they do not

conflict at all). In contrast, materializing all, by including a write to the conflict table in

every transaction, means that a conflict is likely between any pair of transactions which

deal with the same customer.

Figure 40 shows that ELM has zero serialization failure, where other options have 18-

19%.

While we notice that ELM has better throughput than the other options, and sometimes

it is even better than SI, 3 the improvement is often small, and so this is not what we

consider the central benefit of ELM. Rather, we notice that ELM is quite robust among

the different choices of edge set. Even with the simplistic ALL choice, ELM never loses

much. That is, ELM is a robust approach, which protects the DBA against making a poor

choice of edge set.

3When we use ELM with every vulnerable edge, we actually prevent every single program from getting
into a conflict with other programs and with itself.

CHAPTER 5. EVALUATION 106

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

0 5 10 15 20 25 30
MPL

Pe
rc

en
ta

ge
 o

f S
er

ia
liz

at
io

n
Fa

ilu
re

SI ELM-ALL
PromoteALL MaterializeALL

Figure 40: Percentage of Serialization Failure (ALL edges), Low Contention, SmallBank,
PostgreSQL..

CHAPTER 5. EVALUATION 107

0

100

200

300

400

500

600

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 41: Throughput over MPL, High Contention, SmallBank, PostgreSQL.

5.2.2 High Contention, High Update Rate

We repeated our experiments with a reduced hotspot size of 10 rows (out of 20,000 in

the tables), to create a situation in which conflicts are very frequent. Testing the different

techniques’ performance under such extreme conditions assists us to verify the robustness

of these techniques. The transaction types are uniformly selected (20% for each).

Figure 41 shows the throughput in transaction per second (TPS) as a function of MPL

for the different options available in SmallBank for guaranteeing serializable execution.

We also include the figures (labeled SI) for the unmodified application under SI. Where

Figure 42 shows the relative performance as compared to the throughput with SI (shown

as thick horizontal line) for each option that ensures serializable executions. We perceive

that

• For each option, the overall shapes look similar to low data contention, but with

less throughput in each case.

CHAPTER 5. EVALUATION 108

0%

20%

40%

60%

80%

100%

120%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
pe

rfo
rm

an
ce

 to
 S

I
ELM-BW ELM-WT PromoteBW
PromoteWT MaterializeBW MaterializeWT

Figure 42: Throughput relative to SI, High Contention, SmallBank, PostgreSQL.

• Throughput for PromotionBW upd (Identity update) edge starts 21% lower than SI

and rises till it reaches about 83% of that for SI with MPL=30.

• Throughput for MaterializeBW edge starts 20% lower than SI and rises till it

reaches about 97% of that for SI with MPL=30.

• PromoteWT and MaterializeWT are very close to SI.

• ELM-BW and ELM-WT are indistinguishable of that for SI, and sometime slightly

higher.

Our observations from the low data contention are still valid for high data contention

except that MaterializeBW throughput is higher that PromoteBW due to the extra abort

rate and restarts with PromoteBW.

Figure 43 shows the percentage of serialization failure of different options. Under this

extreme condition, the percentage of serialization failure has been increased due to the

CHAPTER 5. EVALUATION 109

0%

10%

20%

30%

40%

50%

60%

70%

0 5 10 15 20 25 30
MPL

P
er

ce
nt

ag
e

of
 S

er
ia

liz
at

io
n

Fa
ilu

re
SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 43: Serialization Failure, High Contention, SmallBank, PostgreSQL.

high conflict, PromoteBW still has the highest number between the options (around

63%). Again ELM-WT and ELM-BW have lower failure rates than unmodified SI

(around 50-52%).

Figure 44 shows the percentage of serialization failure per transaction type. PromoteBW

and MaterializeBW cause aborts in the Balance transaction(2.5%-6.9%), similarly Pro-

moteWT and MaterializeWT raise the abort rates in WC and TS transaction types. On

the other hand, we see that every transaction type individually shows lower serialization

failure rates in the ELM techniques, even than for the unmodified application under SI

(especially with TS, and AMG). Our conclusion for low contention is still valid here: the

ELM technique has lower abort rate for each specific transaction type than Promotion

and Materialize techniques.

Figure 45 shows the mean response time for the different options that make SI serial-

izable. We still see that PromoteBW and MaterializeBW have the highest response time

due to the same reason of changing a read-only transaction to be an update transaction

CHAPTER 5. EVALUATION 110

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Balance TransactionSaving Amalgamate Depositchecking WriteCheckPe
rc

en
ra

ge
 o

f S
er

ia
liz

at
io

n
Er

or
s

pe
r T

xs
SI ELM-BW ELM-WT
promoteBW promoteWT materializeBW
materializeWT

0.
0%

6.
9%

0.
0%

4.
4%

3.
0%

5.
4%

2.
2%

2.
0%

3.
3%

3.
2%

0.
0%

2.
5%

33
%34

%

36
%

39
%

33
%35

%
39

%

6.
2%6.

5%
6.

1%6.
5%6.
8%

6.
7%

6.
9%

11
%

10
%12

%
7.

2%7.
7%

7.
6%

7.
4%

0.
0%

0.
0%

Figure 44: Serialization Failure Ratio per Transaction Type, High Contention, SmallBank,
PostgreSQL.

0
10
20
30
40
50
60
70
80
90

0 5 10 15 20 25 30
MPL

M
R

T/
 M

ill
is

ec
on

d

SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 45: Mean Response Time, High Contention, SmallBank, PostgreSQL.

CHAPTER 5. EVALUATION 111

0

10

20

30

40

50

60

70

80

SI ELM-BW ELM-WT PromoteBW PromoteWT MaterializeBW MaterializeWT

Ex
ec

ut
io

n
Ti

m
e

Restart_Time ELM (Comm+Lock+Release) Commit_Time

11.5

63%60%64%65%49%54%63%

18%

37%44%36%

35%

33%34.537%

Figure 46: Average Execution time, High Contention, SmallBank, PostgreSQL.

(Bal transaction), and due to the high percentage of restart.

Figure 46 shows the detailed mean response time for MPL=25. The percentage of restart

with ELM-BW is higher than ELM-WT. ELM-WT stops WC and TS from running con-

currently, which reduces the probability of conflict between (WC and TS) and (Amg and

DC). ELM-BW only reduces the conflict between WC and (Amg and DC), while still TS

has higher chance to conflict with (Amg and DC). We clearly see that ELM overhead is

highly compensated by a reduction in restart time and slightly by the commit time (these

effects are ranked opposite to the low data contention case).

Figure 47 shows the relative performance as compared to the throughput with SI (shown

as thick horizontal line) for each option that ensures serializable executions by removing

ALL vulnerable edges. As we see, all simple approaches induce hefty performance costs.

Promoting and Materializing every vulnerable edge has performance that start 20% lower

than SI and rises till it reaches around 85% of that for SI. ELM-ALL perform better than

both techniques.

CHAPTER 5. EVALUATION 112

0%

20%

40%

60%

80%

100%

120%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
Th

ro
ug

hp
ut

 to
 S

I
ELM-ALL PromoteALL MaterializeALL

Figure 47: Relative Throughput to SI (ALL vulnerable edges), High Contention, SmallBank,
PostgreSQL.

The qualitative conclusions are the same as the low contention case: any techniques that

affect the WT edge do quite well, but Promotion and Materialize are fragile, losing per-

formance if ALL edges (or even just BW edge) are chosen for conflict introduction. In

contrast, ELM never does very badly, even with ALL edges chosen (between 2%-12%

lower than SI).

5.2.3 Low Update Rate

Many real world applications have more frequent read-only transactions than update [19].

Therefore we also run experiments where we increased the percentage of Balance trans-

action (which is the only read-only transaction in SmallBank) to 60% instead of 20%.

The update transactions are submitted each 10% of the time, with total update rate 40%.

We vary the data contention between low (100 rows) and high (10 rows) to understand

the options that ensure serailizable execution with SI behaviors.

Figure 48 shows the throughput in transaction per second (TPS) as a function of MPL

CHAPTER 5. EVALUATION 113

0

200

400

600

800

1000

1200

1400

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 48: Throughput with 60% read-only, Low Contention, SmallBank, PostgreSQL.

0%

20%

40%

60%

80%

100%

120%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
Pe

rfo
rm

an
ce

 to
 S

I

ELM-BW ELM-WT PromoteBW
PromoteWT MaterializeBW MaterializeWT

Figure 49: Relative Throughput with 60% read-only, Low Contention, SmallBank, Post-
greSQL.

CHAPTER 5. EVALUATION 114

for the different options available in SmallBank for guaranteeing serializable execution.

Figure 49 shows the relative performance as compared to the throughput with SI (shown

as thick horizontal line) for each option that ensures serializable executions. We see that

increasing the number of Balance transactions has a high impact on the performance of

PromoteBW since more transactions become update transactions under this option and

there is more chance for extra conflict between Bal and DC, and also between Bal and

Amg. PromoteBW and MaterializeBW have performance that starts 60% lower than SI

and rises till it reaches about 77-79% of that for SI. However, ELM-BW suffers much

less when we increase the percentage of Balance transaction. Its performance starts 32%

lower than SI and rises till it reaches about 92-94% of that for SI (indistinguishable be-

tween MPL=15-20).

The mean response time (Figure 50) for PromoteBW and MaterializeBW is much higher

than any other option due to the percentage of Bal transaction in the mix. ELM-BW has

mean response time which is slightly higher than for SI (after MPL=20) due to the extra

communication with ELM. Other options (PromoteWT, MaterializeWT, and ELM-WT)

have mean response times which are close to unmodified SI du to the small percentage

of WC and TS update transactions (10% for each).

The high level conclusions from Figure 51 is similar to Figure 33. Promoting BW edge

comes with a high cost especially with 60% of Balance transaction, Balance transaction

increases the probability of extra abort rate as we discussed before. ELM technique has

lower failure rate even than the unmodified SI. Between these these extremes, it really

depends on the percentage of the transactions in the mix. For example, in Figure 51 Ma-

terialize BW edge has higher failure rate than unmodified SI, PromoteWT and Material-

izeWT, because Balance transaction is 60% and (TransactionSaving and Writechecking)

is only 20%. On the other hand, in Figure 33, Materialize BW edge is really close to

unmodified SI, PromoteWT and MaterializeWT, where percentages of transactions are

fixed.

CHAPTER 5. EVALUATION 115

0
5

10
15
20
25
30
35
40

0 5 10 15 20 25 30
MPL

M
R

T/
 M

ill
is

ec
on

d
SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 50: Mean Response Time with 60% read-only, Low Contention, SmallBank, Post-
greSQL.

We also tested this mixture under a high contention scenario where the hotspot was

10. Figure 52 shows the throughput in transaction per second (TPS) as a function of

MPL, and Figure 53 shows the relative throughput to SI. While such high data con-

tention reduces the overall peak performance for each technique (SI peaks at 1257 TPS

with hotspot 100, and at 820 TPS with hotspot 10), it does not change the overall picture

from the low data contention graph, except that MaterializeBW performs better than Pro-

moteBW, since there more chance for extra conflict with PromoteBW between Bal and

DC, and also between Bal and Amg.

5.2.4 Comparison with Low Isolation Level

So far, we compared the throughput of the different options with the standard unmodified

SI, but it also interesting to investigate how much we may lose compared to a common,

CHAPTER 5. EVALUATION 116

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

0 5 10 15 20 25 30
MPL

P
er

ce
nt

ag
e

of
 S

er
ia

liz
at

io
n

Fa
ilu

re
SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 51: Serialization Failure with 60% read-only, Low Contention, SmallBank, Post-
greSQL.

0
100
200
300
400
500
600
700
800
900

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-BW ELM-WT
PromoteBW PromoteWT MaterializeBW
MaterializeWT

Figure 52: Throughput with 60% read-only-, High Contention, SmallBank, PostgreSQL.

CHAPTER 5. EVALUATION 117

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
pe

rfo
rm

an
ce

 to
 S

I
ELM-BW ELM-WT PromoteBW
PromoteWT MaterializeBW MaterializeWT

Figure 53: Relative Throughput with 60% read-only, High Contention, SmallBank, Post-
greSQL.

less restricted isolation level such as read committed.

Indeed in most SQL-based platforms, the Read Committed (abbreviated as RC) isolation

level is the default, used when the application developer has not explicitly set an isolation

level. In a platform that offers SI (such as PostgrSQL), when a transaction runs with

RC and updates a data item, it sets locks just as in 2PL, but read operation does not

require any locks (concurrent transactions may create new versions, but the reader sees

the data from the version at the time the read query started). In RC, Lost Update can not

occur, because any transaction that modifies the data keeps an exclusive lock on the item;

however the Inconsistent Read anomaly is possible. This is why RC is seen as offering

better performance, in return for accepting the risk of data corruption from anomalies

such as an inconsistent read.

In this section we show that sometimes, guaranteed correctness can be obtained along

with better throughput than RC, by use of the multiversion Snapshot Isolation mechanism

CHAPTER 5. EVALUATION 118

0%

20%

40%

60%

80%

100%

120%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
Th

ro
ug

hp
ut

 to
 R

C
ELM-BW ELM-WT ELM-ALL

Figure 54: Relative Throughput to Read Committed, Low Contention, SmallBank, Post-
greSQL.

along with ELM technique. Figure 54 shows the relative throughput to RC. 4 We perceive

that throughput of ELM-BW and ELM-WT starts indistinguishable from that RC up to

MPL=5, and then decreases up to 10% of that RC with MPL=30.

We clearly see that by running on SI and modifying the SDG using ELM, we can make

all execution serializable for very low cost (between 0%-10% less than RC even with

ALL option) compared to using RC which can suffer from many phenomena of data

corruption. Figure 55 shows the mean response time for different options. We clearly

see that RC comes with lowest mean response time followed by the ELM technique. SI

mean response time is higher than RC mean response time due the extra time it takes to

restart the failed transactions.

We also re-evaluate the experiments where we reduced the size of hotspot region from

4We ran new experiments to measure performance of RC, but otherwise these graphs use the same data
from other measurement.

CHAPTER 5. EVALUATION 119

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30
MPL

M
R

T/
 M

ill
is

ec
on

d
RC SI ELM-BW
ELM-WT ELM-ALL

Figure 55: Mean Response Time, Low Contention, SmallBank, PostgreSQL.

100 to 10 customers. Such high data contention reduces the overall peak performance for

each option. Figure 56 shows the relative throughput to RC. We perceive that throughput

for ELM-WT and ELM-WT edge starts indistinguishable from that RC and keep rising

till it reaches about 137% of that for RC with MPL=30.

If we have two transactions T1 and T2 trying to modify the same data item, and one of

them commits and releases its locks, a RC transaction proceeds with its intended update.

Therefore, transactions using RC need to wait in a queue until the predecessor transac-

tions commit (on the same data item). On the other hand, an SI-using transaction does

not wait, but it aborts, because the other transaction has committed a change that was

made since the serializable transaction began. Re-starting the transactions reduces the

contention for the high conflict scenario; this explains the reason behind higher perfor-

mance with options that makes SI serializable.

This illustrates that using a SDG analysis of the transaction mix and then run them under

CHAPTER 5. EVALUATION 120

0%
20%
40%
60%
80%

100%
120%
140%
160%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
Th

ro
ug

hp
ut

 to
 R

C
ELM-BW ELM-WT ELM-ALL

Figure 56: Relative Throughput to Read Committed, High Contention, SmallBank, Post-
greSQL.

SI using our ELM technique can give both serializable executions and good performance;

and is thus a much preferable approach rather than running with RC.

5.3 Serializability of SI on Oracle

So far, we have focused on PostgreSQL because we can seek understanding of our obser-

vations from knowledge of the detailed implementation. For comparison, we also ran our

experiments on one of the commercial platforms that offers Snapshot Isolation concur-

rency control, we use Oracle version 10g for this purpose. We investigate the behaviors of

the different options that ensure serializable executions with SI on this platform. We run

the same experiments under low and high data contention. Note that there is no sensible

comparison between the absolute numbers here, and those in previous sections.

CHAPTER 5. EVALUATION 121

0
100
200
300
400
500
600
700

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-BW ELM-WT
promoteBW_upd promoteWT_upd promoteBW_sfu
promoteWT_sfu materializeBW materializeWT

Figure 57: Throughput over MPL, Low Contention, SmallBank, Oracle.

5.3.1 Low Contention

We will explore in some detail the case where hotspot has 100 rows. We consider a

new option called Promote sfu, an option works only with Oracle. 5 Figure 57 shows

the throughput in transaction per second (TPS) as a function of MPL for the different

options available in SmallBank for guaranteeing serializable execution. We also include

the figures (labeled SI) for the unmodified application under SI. Figure 58 shows the

relative performance as compared to the throughput with SI (shown as thick horizontal

line) for each option that ensures serializable executions.

We perceive that

• Throughput for PromotionBW upd (Identity update) starts 20% lower than SI. It

peaks at MPL=10 and then drops. It decreases relative to SI, till it reaches about

5Some SQL dialects also allow the statement Select ... For Update (SFU). On Oracle SFU is treated
for concurrency control like an Update, and so promotion can be done by changing the read into SFU;
however on postgreSQL, we have found that using SFU does not always prevent an update in a concurrent
transaction, and so SFU can not be used to make an edge non-vulnerable.

CHAPTER 5. EVALUATION 122

0%
20%
40%
60%
80%

100%
120%
140%
160%

1 3 5 10 15 20 25 30
MPL

R
el

at
iv

e
P

er
fo

rm
an

ce
 to

 S
I

ELM-BW ELM-WT promoteBW_upd
promoteWT_upd promoteBW_sfu promoteWT_sfu
materializeBW materializeWT

Figure 58: Throughput relative to SI, Low Contention, SmallBank, Oracle.

57% of that for SI with MPL=25.

• Throughput for PromotionBW sfu (SELECT FOR UPDATE) edge starts 20% lower

than SI and decreases till it reaches about 65% of that for SI with MPL=25.

• Throughput for MaterializeBW edge starts 20% lower than SI and rises till it

reaches about 80% of that for SI with MPL=25.

• Throughput for PromotionWT upd edge starts 8% lower than SI and decreases till

it reaches about 53% of that for SI with MPL=25.

• Throughput for PromotionWT sfu edge starts 8% lower than SI and decreases till

it reaches about 74% of that for SI with MPL=25.

• Throughput for MaterializeWT edge starts 8% lower than SI and rises till it reaches

about 94% of that for SI with MPL=25.

• Throughput for ELM-BW and ELM-WT edge are indistinguishable of that for SI.

CHAPTER 5. EVALUATION 123

0%

1%

2%

3%

4%

5%

6%

7%

Balance TransactionSaving Amalgamate Depositchecking WriteCheckPe
rc

en
ra

ge
 o

f S
er

ia
liz

at
io

n
Er

ro
rs

 p
er

Tx

s

SI ELM-BW ELM-WT
promoteBW promoteWT materializeBW
materializeWT

1.
7%

0.
0%

0.
7%

0.
3%

1.
1%

0.
6%

0.
2%0.
3%0.
4%

0.
0%0.

2%

2.
2%2.

3%
4.

2%
6.

2%
1.

4%
2.

0%
3.

0%

0.
4%

0.
4%0.
5%

1.
6%

0.
2%0.

4%0.
6%

1.
2%

1.
1%

2.
3%

2.
0%

0.
3%0.

4%0.
8%

0.
0%

0.
0%

0.
0%

Figure 59: FCW Error per Transaction Type, Low Contention, SmallBank, Oracle.

We see a very different overall shape of that for PosgreSQL: the throughput for different

options rise to a peak but then quickly drops away as MPL increases.

Notice that Promotion leads to very poor performance under any edge choice, 6 and Ma-

terialize does reasonably with some choices. ELM on the other hand, is robust; it does

well (indeed better than unmodified SI) no matter which edge set is chosen.

Figure 59 shows the percentage of ”Can not Serialize” errors per transaction type with

MPL=15 (Peak throughput). 7 We see that every transaction type individually shows

lower abort rates in the ELM techniques; even than for the unmodified application un-

der SI (this is the same as we saw in PostgreSQL). On the other hand, PromoteBW and

6PromoteBW upd uses identity update to use FCW rule to force one of the transactions that join the
chosen edge to abort. This technique requires the transactions to access the disk, which cause extra cast
over PromoteBW sfu. When we issue a SELECT...FOR UPDATE statement, the RDBMS automatically
obtains exclusive row-level locks on all the rows identified by the SELECT statement, holding the records
”for your changes only”. No one else will be able to change any of these records until you perform a
ROLLBACK or a COMMIT. Furthermore, you do not have to actually UPDATE or DELETE any records
just because you issued a SELECT...FOR UPDATE, that act simply states your intention to be able to do
so. This explains the slight throughput difference between PromoteBW upd and PromoteBW sfu.

7Oracle called the FCW errors ”Can not serialize”, where PostgrSQL call it ”Serialization Failure”.

CHAPTER 5. EVALUATION 124

0

5

10

15

20

25

30

35

40

SI ELM-BW ELM-WT PromoteBW_upd PromoteBW_sfu PromoteWT_upd PromoteWT_sfu MaterializeBW MaterializeWT

Ex
ec

ut
io

n
Ti

m
e

Restart_Time ELM (Comm+Lock+Release) Commit_Time

90%92%
71%

67%

88%88%88%

79%
69%

8%

31%29%
33%

3%12%

21%

10%7%

5% 9%

Figure 60: Average Execution time, Low Contention, SmallBank, Oracle.

MaterializeBW cause aborts in the (originally abort-free, because read-only) Balance

transaction, similarly PromoteWT and MaterializeWT raise the abort rates in WC and

TS transaction types. This confirms our conclusion from PostgreSQL that Promotion

and Materialize options are affecting the percentage of aborts in transactions that are

joined by the chosen edge.

Figure 60 shows the detailed mean response time for MPL=15 (Peak throughput). As we

see, PromoteBW upd, and MaterializeBW have the highest commit time due to change

read-only transaction to update transaction, and PromoteBW upd and PromoteWT upd

have the highest restart time. We clearly see that ELM overhead is compensated only by

reduction in restart time.

Finally, we consider the straight-forward strategies that remove the vulnerability from

every vulnerable edge. Figure 61 shows the resulting throughput in Transactions Per Sec-

ond (TPS) as a function of MPL. Promote-ALL performs better than materialize-ALL.

Materialize-ALL is including a write to the conflict table in every transaction, this means

CHAPTER 5. EVALUATION 125

0
100
200
300
400
500
600
700
800

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-ALL promoteALL_upd
promoteALL_sfu materializeALL

Figure 61: FCW Error per Transaction Type, Low Contention, SmallBank, Oracle.

that a conflict is likely between any pair of transactions which deal with the same cus-

tomer. However, with Promote-ALL, we add two writes to Bal, and one to WC, without

changing the other programs, and so we do continue to allow DC and TS to run concur-

rently (they do not conflict at all). ELM-ALL throughput starts close to SI and continue

to increase dramatically up to 726 TPS with MPL=30, while SI is only 95 TPS at the

same MPL.

5.3.2 High Contention

Finally, we reduce the hotspot to 10 to create more contention in Oracle. The high con-

tention situation in Figure 62 does not change the overall story, but it confirms the con-

clusions from PostgreSQL and from the Oracle at low contention. Figure 62 shows that

materialize performs generally better than promotion but it still depends dominantly on

the MPL. Again, ELM technique performs very close to unmodified SI and even better

CHAPTER 5. EVALUATION 126

0
50

100
150
200
250
300
350
400
450
500

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-BW ELM-WT
promoteBW_upd promoteWT_upd promoteBW_sfu
promoteWT_sfu materializeBW materializeWT

Figure 62: Throughput over MPL, High Contention, SmallBank, Oracle.

in some situations.

Figure 63 shows the resulting throughput in Transactions Per Second (TPS) as a function

of MPL for removing the vulnerability from every vulnerable edge. ELM-ALL through-

put starts close to SI (3% less than unmodified SI) and continue to increase up to 354

TPS compared to SI at 61 TPS with MPL=30.

The overall story for both high and low data contention in Oracle is the same: Promotion

and Materialize are fragile, losing performance depending on the choice of edge, MPL

and the contention. In contrast, ELM never does very badly, and even performs much

better than SI with ALL edges chosen.

CHAPTER 5. EVALUATION 127

0
50

100
150
200
250
300
350
400

1 3 5 10 15 20 25 30
MPL

TP
S

SI ELM-ALL promoteALL_upd
promoteALL_sfu materializeALL

Figure 63: FCW Error per Transaction Type, High Contention, SmallBank, Oracle.

5.4 MoreChoices Benchmark Programs

The SmallBank benchmark has been useful for exploring the performance of different

approaches that each guarantees serializable execution. However, SmallBank has a num-

ber of characteristics that are atypical (for example, its SDG has only one dangerous

structure and no examples of Write Skew). In order to check that our conclusions are not

specific to these aspects of SmallBank, we have repeated experiments with another set of

application programs called MoreChoices, designed to have different characteristics, and

in particular to have a more complicated SDG mentioned in detail in Chapter 4.

The choices for this benchmark are:

• Choice1: Introduce conflicts on the vulnerable edges { T1 99K T2, T4 99K T2.}

• Choice2: Introduce conflicts on the vulnerable edges { T2 99K T4, T4 99K T2, T2

99K T3.}

• Choice3: Introduce a conflict on ALL vulnerable edges { T1 99K T2, T1 99K T3,

CHAPTER 5. EVALUATION 128

Figure 64: SDG for MoreChoice benchmark.

T1 99K T4, T2 99K T4, T4 99K T2, T2 99K T3.}

We run our experiments using PostgreSQL platform, with low and high data contention,

varying the number of concurrent transactions to study this benchmark.

5.4.1 Low Contention

We will explore in detail the case where hotspot has 100 rows out of 20,000. To make the

whole picture understandable, we show the summary of the choices using different op-

tions (Materialize, Promotion, and ELM) with MPL=25 (maximum throughput-plateau)

in Figure 65. The overall message is: ELM performs as well, and even slightly higher

than unmodified SI. 8 Promotion is a little higher than materialize, but both are lower

than SI or ELM. Next we explore each choice in some detail.

Choice1: Figure 66 shows the throughput in transaction per second (TPS) as a function

of MPL for the different options with choice1 that guaranteeing serializable execution

8choice1 overlap with SI, choice2 is higher that SI after MPL=25.

CHAPTER 5. EVALUATION 129

0%

20%

40%

60%

80%

100%

120%

ELM Promotion Materialize

R
el

at
iv

e
Th

ro
ug

hp
ut

 to
 S

I
choice1 choice2 choice3

Figure 65: Throughput Summery, Low Contention, MoreChoices, PostgreSQL.

with the new benchmark. Where Figure 67 shows the percentage of serialization failure

for each option with choice1. We perceive that

• Throughput for choice1 Promotion (abbreviated as choice1 pro) using identity up-

date starts 25% lower than SI and arises till it reaches about 86% of that for SI with

MPL=30.

• Throughput for choice1 Materialize (abbreviated as choice1 mat) starts 25% lower

than SI and rises till it reaches about 78% of that for SI with MPL=30.

• Throughput for choice1 ELM 5% lower than SI and rises till it reaches about 104%

of that for SI with MPL=30.

We see here that Promotion performs slightly better that Materialize after MPL=20. Both

techniques promotion and materialize change the read-only transaction (T1) to update

transaction. choice1 Promotion add two update statements one to T1 and another to T4,

and that causes extra abort rate between T1 and T4 since both of them update table1 (see

CHAPTER 5. EVALUATION 130

0

200

400

600

800

1000

1200

1400

1 3 5 10 15 20 25 30
MPL

TP
S

SI choice1_ELM choice1_pro choice1_mat

Figure 66: Choice1 Throughput, Low Contention, MoreChoices, PostgreSQL.

0%

2%

4%

6%

8%

10%

12%

14%

0 5 10 15 20 25 30
MPL

Pe
rc
en

ta
ge
 o
f S
er
ia
liz
at
io
n
Fa
ilu
re

SI choice1_ELM choice1_pro choice1_mat

Figure 67: Serialization Failure for choice1, Low Contention, MoreChoices, PostgreSQL.

CHAPTER 5. EVALUATION 131

0%

1%

2%

3%

4%

Transaction1 Transaction2 Transaction3 Transaction4

S
er

ia
liz

at
io

n
Fa

ilu
re

 p
er

 T
xs

SI choice1_ELM choice1_pro choice1_mat

0.
0%

2.
1%

2.
9%

0.
6%

1.
6%

1.
3%1.
4%

1.
2%

1.
6%

2.
1%2.

2%

0.
8%

0.
0%

1.
4%

2.
2%

0.
0%

Figure 68: Serialization Failure per Transaction for choice1, Low Contention, MoreChoices,
PostgreSQL.

Figure 68) .

Choice1 Materialize adds four update statements to {T1, T2, and T4}, but does not cause

any extra abort rate between T1 and T4. 9 This explains Figure 67 where choice1 pro has

the highest serialization failure (about 12%).

choice1 ELM throughput is indistinguishable from that unmodified SI, and this is be-

cause we keep T1 as read-only transaction and we does not cost any additional log forces

or re-starts. Choice1 ELM has the lowest serialization failure, even lower than unmodi-

fied SI, at around 3%.

Figure 69 shows the mean response time for choice1 options, as we see choice1 mat and

choice1 pro have the highest MRT between the options. And choice1 ELM has the low-

est, due to the high number of re-start.

9Each edge has it’s own conflict table with materialize, so T1 add two update statements, one for T4

and one for T2. Therefore we have no conflict between T1 and T4.

CHAPTER 5. EVALUATION 132

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30
MPL

M
RT

/M
ill
is
ec
on

d
SI choice1_ELM choice1_pro choice1_mat

Figure 69: Choice1 Throughput, Low Contention, MoreChoices, PostgreSQL.

Choice2: Figure 70 shows the throughput in transaction per second (TPS) as a function

of MPL for the different options with choice2 that guaranteeing serializable execution

with the new benchmark. Where figure71 shows the percentage of serialization failure

for each option with choice2.

We clearly see that promotion still slightly perform better than materialize, and the

ELM has the best throughput numbers between the options. choice2 pro has the highest

serialization error rate (9.6% with MPL=30) and choice2 ELM has the lowest (zero%). 10

Choice3: Choice3 considers the option when we remove every vulnerable edges from

the SDG. Figure 72 and Figure 73 shows that the ELM technique is still superior over

other available options, with zero ’Can not Serialize’ errors.

10Choice2 control the concurrent update transactions {T1, T2, and T4} which explain zero serialiaztion
failure.

CHAPTER 5. EVALUATION 133

0

200

400

600

800

1000

1200

1400

1 3 5 10 15 20 25 30
MPL

TP
S

SI choice2_ELM choice2_pro choice2_mat

Figure 70: Choice2 Throughput, Low Contention, MoreChoices, PostgreSQL.

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25 30
MPL

Pe
rc
en

ta
ge

 o
f S

er
ia
liz
at
io
n

Fa
ilu

re

SI choice2_ELM choice2_pro choice2_mat

Figure 71: Serialization Failure for choice2, Low Contention, MoreChoices, PostgreSQL.

CHAPTER 5. EVALUATION 134

0

200

400

600

800

1000

1200

1400

1 3 5 10 15 20 25 30
MPL

TP
S

SI choice3_ELM choice3_pro choice3_mat

Figure 72: Choice3 Throughput, Low Contention, MoreChoices, PostgreSQL.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 5 10 15 20 25 30
MPL

Pe
rc
en

ta
ge
 o
f S
er
ia
liz
at
io
n
Fa
ilu
re

SI choice3_ELM choice3_pro choice3_mat

Figure 73: Serialization Failure for choice3, Low Contention, MoreChoices, PostgreSQL.

CHAPTER 5. EVALUATION 135

0%

20%

40%

60%

80%

100%

120%

ELM Promotion Materialize

R
el

at
iv

e
Th

ro
ug

hp
ut

 to
 S

I
choice1 choice2 choice3

Figure 74: Throughput summary, High Contention, MoreChoices, PostgreSQL.

5.4.2 High Contention

We also ran the new benchmark under extreme conditions where the hotspot is only 10

rows. To make the whole picture understandable, we show the summary of the choices

using different options (Materialize, Promotion, and ELM) with MPL=25 in Figure 74.

The overall message is: ELM performs very close to unmodified SI: choice1 ELM is

indistinguishable from SI, choice2 ELM is 93% of SI, and choice3 ELM is 88%. In

contrast to the low contention conclusion, materialization is higher than promotion. Next

we explore each choice in some detail.

Choice1: Figure 75 shows the throughput in transaction per second (TPS) as a function

of MPL for the different options with choice1 that guaranteeing serializable execution

with the new benchmark. Figure 76 shows the percentage of serialization failure for each

option with choice1. We perceive that

CHAPTER 5. EVALUATION 136

0
100
200
300
400
500
600
700
800
900

1 3 5 10 15 20 25 30
MPL

TP
S

SI choice1_ELM choice1_pro choice1_mat

Figure 75: Choice1 Throughput, High Contention, MoreChoices, PostgreSQL.

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25 30
MPL

Pe
rc
en

ta
ge

 o
f S

er
ia
liz
at
io
n
Fa
ilu

re

SI choice1_ELM choice1_pro choice1_mat

Figure 76: Serialization Failure for choice1, High Contention, MoreChoices, PostgreSQL.

CHAPTER 5. EVALUATION 137

• Throughput for choice1 Promotion (abbreviated as choice1 pro) using identity up-

date is 25% lower than SI, and rises till it reaches about 86% of that for SI with

MPL=30.

• Throughput for choice1 Materialize (abbreviated as choice1 mat) starts 25% lower

than SI, and rises till it reaches about 78% of that for SI with MPL=30.

• Throughput for choice1 ELM is 5% lower than SI and rises till it reaches about

104% of that for SI with MPL=30.

We see that the conclusion from choice1 under a high data contention does not change

much from the low data contention.

Choice2: Figure 77 shows the throughput in transaction per second (TPS) as a function

of MPL for the different options with choice2 that guaranteeing serializable execution

with the new benchmark. Figure 78 shows the percentage of serialization failure for each

option with choice2.

The data from choice2 shows some different conclusions than that with low contention.

We see that materialize throughput is much better than promotion. The throughput degra-

dation with promotion option comes as a result of increasing number of deadlock after

we promote T2 and T4 transactions. 11 Figure 79 shows the percentage of deadlocks with

choice2. We clearly see that choice2 pro has a high percentage of deadlocks where other

options have zero deadlocks. Choice2 ELM does not increase the overall probability

of deadlock, because of resource-ordering idea. Deadlock has an extreme affect on the

throughput, since both transactions involved with the deadlock problem wait for a certain

time till it resolves, which causes reduction in the number of committed transactions.
11after we promote T2 and T4, both transactions are waiting for resources that the other transaction hold.

They keep holding the resources until the deadlock detection algorithm abort one of them.

CHAPTER 5. EVALUATION 138

0
100
200
300
400
500
600
700
800

1 3 5 10 15 20 25 30
MPL

TP
S

SI choice2_ELM choice2_pro choice2_mat

Figure 77: Choice2 Throughput, High Contention, MoreChoices, PostgreSQL.

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25 30
MPL

Pe
rc
en

ta
ge
 o
f S
er
ia
liz
at
io
n
Fa
ilu
re

SI choice2_ELM choice2_pro choice2_mat

Figure 78: Serialization Failure for choice2, High Contention, MoreChoices, PostgreSQL.

CHAPTER 5. EVALUATION 139

0%

2%

4%

6%

8%

10%

12%

1 3 5 10 15 20 25 30
MPL

P
er

ce
nt

ag
e

of
 D

ea
dl

oc
k

choice2_ELM choice2_pro choice2_mat

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

0.
0%

6.
0%

11
%

2.
1%

0.
8%

0.
6%

0.
4%

0.
2 %

Figure 79: Percentage of Deadlock with choice2, High Contention, MoreChoices, Post-
greSQL.

Choice2 ELM performs reasonably compared to unmodified SI and absolutely better

than choice2 pro and choice2 mat.

Choice3: Figure 80 shows the throughput in transaction per second (TPS) as a function

of MPL for the different options with choice3 that guaranteeing serializable execution

with the new benchmark. Where Figure 81 shows the percentage of serialization failure

for each option with choice3. choice3 has a very close throughput shape to choice2.

choice3 pro also suffer from deadlock problem, which cause less throughput numbers

than materialize option.

choice3 ELM throughput is 3% lower than SI and decreases relative to SI till it reaches

about 91% of that for SI with MPL=30. However, choice3 ELM throughput is still rea-

sonable compared to other techniques promotion and materialize.

CHAPTER 5. EVALUATION 140

0
100
200
300
400
500
600
700
800

1 3 5 10 15 20 25 30
MPL

TP
S

SI choice3_ELM choice3_pro choice3_mat

Figure 80: Choice3 Throughput, High Contention, MoreChoices, PostgreSQL.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25 30
MPL

Pe
rc
en

ta
ge
 o
f S
er
ia
liz
at
io
n
Fa
ilu
re

SI choice3_ELM choice3_pro choice3_mat

Figure 81: Serialization Failure for choice3, High Contention, MoreChoices, PostgreSQL.

CHAPTER 5. EVALUATION 141

5.5 Conclusions

We have run our experiments using two different platforms: one is an open sources

database (PostgreSQL), and one is a commercial database (Oracle 10g). We used two

of our own benchmarks called SmallBank and MoreChoices described in detail in Chap-

ter 4. The experiments were run under two main data contentions: low contention

(hotspot=100 customers) and high contention (hotspot=10 customers), while varying the

number of concurrent clients (MPL) between 1 to 30. In some scenarios we changed the

mix of the transaction from uniform distribution (20% each) to 60% for read-only trans-

action(BAL transaction in SmallBank) and 40% to the other update transaction (10%

each) to create more realistic scenarios. We conclude the following

• Choosing which edge/edges to remove from the dangerous structure to ensure se-

rializable execution is not straight forward when using Promotion and materialize

techniques, since the choice has so much impact on performance.

• Materialize performs better than promotion in some cases and vice versa (this de-

pends on which platform, contention, MPL, ..etc). In general, Promotion and Ma-

terialize are fragile, in that some edge choices (even some minimal edge choices)

reduce throughput greatly.

• The percentage of each transaction in the mix can strongly affect the overall through-

put, and it makes the choices between edges and techniques (Promotion and Mate-

rialize) is more complicated.

• On the other hand, ELM throughput is similar to the unmodified (anomaly-prone)

programs, across the range of choices of which edges to modify. Thus ELM is

robust against the DBA’s choice of edge set for modification; even a simplistic

choice, of introducing conflict in every vulnerable edge, does not lead to poor

performance.

CHAPTER 5. EVALUATION 142

• With ELM, developers do not need to trade consistency for performance since it

performs very close to RC in a low contention scenario (between 0%-10% less than

RC) and much better than RC in a high data contention case (up to 137% of that

for RC).

5.6 Summary

We have evaluated the External Lock Manager (ELM) technique using two platforms

which support SI (PostgreSQL and Oracle), and using two benchmarks. These bench-

marks have been designed to satisfy our need to find mixes of applications which can

produce anomalies if run unmodified under SI.

ELM guarantees that all executions are serializable, and our experiments show that the

modified applications have throughput which is similar to the unmodified (anomaly-

prone) programs, across the range of choices of which edges to modify. Thus ELM

is robust against the DBA’s choice of edge set for modification; even a simplistic choice,

of introducing conflict in every vulnerable edge, does not lead to poor performance. In

contrast, the previous techniques of Promotion and Materialize are fragile, in that some

edge choices (even some minimal edge choices) reduce throughput greatly.

Chapter 6

Conclusions

This thesis has focused on the problem of serializability of Snapshot isolation (SI)

on platforms such as Oracle, SQL Server 2005, and PostgeSQL. It demonstrates

the limitation of the existing techniques [25] called Promotion and Materialize that make

SI serializable and it also presents a new technique called External Lock Manager (ELM)

that shows more robustness.

The DBA has a complicated choice in order to ensure that all executions are serializable.

The DBA needs to choose a subset of edges on which to introduce conflicts. There are

different subsets of the edges in the SDG that include one from every pair of vulnerable

edges that are consecutive in a cycle, and modification of the edges in one such subset

are sufficient to guarantee serializable execution. [34] found that finding such a set with

the fewest number of edges is NP-hard. Moreover, the DBA’s have several options of

which technique to use with the chosen subset of edges; they can modify the application

in different ways.

The existing techniques, Promotion and Materialize, introduce SQL statements and these

statements involve write operations, so that the standard SI mechanism in DBMS engine

will prevent the transactions executing concurrently; one of the conflicting transactions

143

CHAPTER 6. CONCLUSIONS 144

will abort with a ’Cannot Serialize” error which may require re-submitting the aborted

transactions. Another effect of extra write operations is additional logging. We found

that these aspects can greatly reduce throughput if a write is introduced into a program

which was originally read-only.

We have designed and implemented a new technique called ’External Lock Manager’

(ELM) that ensures serializable execution with platforms that support SI. ELM provides

an interface for a transaction to set an exclusive lock; a subsequent request by another

transaction to set the same lock will be blocked until the lock holder releases the lock.

To introduce a conflict along an edge which is vulnerable in the SDG, we place at the

start of each program, a call to ELM to set a lock. The lock being requested should

be such that the transactions will try to get the same lock, in those cases where their

parameters give rise to conflict between data accesses that makes for a vulnerable edge.

Locking is fine-grained, and, unlike traditional two-phase locking, it is parsimonious.

Conflict is introduced when necessary to prevent SI anomalies, but not between most

transaction executions. Most transactions set no ELM locks (if the program isn’t adjacent

to a chosen edge) or only one ELM lock (if the program is adjacent to one chosen edge,

and the potential read-write dependency of that edge is on a single item). Because ELM

locks are obtained before the database transaction begins, by doing resource ordering, we

prevent any risk of deadlock involving ELM.

To evaluate these different techniques we need a benchmark, but the existing benchmarks

do not allow evaluating the performance and the impacts of the above techniques because

they do not have non-serializable executions at all. Thus, we have designed new bench-

marks that allow us to stress-test the behavior of different ways to guarantee serializabil-

ity for transactions running under snapshot isolation. These benchmarks demonstrated

different cases (e.g. write skew, multiple cycles).

CHAPTER 6. CONCLUSIONS 145

Our results shows that with ELM, the modified applications have throughput which is

similar to the unmodified (anomaly-prone) programs, across the range of choices of

which edges to modify. Thus ELM is robust against the DBA’s choice of edge set for

modification; even a simplistic choice, of introducing conflict in every vulnerable edge,

does not lead to poor performance. In contrast, the previous techniques of Promotion

and Materialize are fragile, in that some edge choices (even some minimal edge choices)

reduce throughput greatly.

6.1 Future Work

Our ELM design has been implemented with ELM located on a separate machine, which

leads to some limitations that can be improved. Some of these limitations which we saw

earlier include:

• The two extra communication round-trips, that are placed in the execution path of

those programs that are involved in the chosen SDG vulnerable edges.

• The ELM server could be seen as an additional single-point-of failure for those

transaction programs that require an ELM lock.

Chapter 3 discusses alternative designs where we can implement ELM as middleware or

as an additional component in the DBMS. One drawback to a middleware design that

each client needs to access the ELM middleware which could cause overloading. An-

other drawback that is in case of middleware/ELM crash, clients need to wait until we

fix the ELM. Note that implementing (coding and maintaining) the middleware is more

complex than coding ELM itself as a separate node in the system. A comprehensive per-

formance study needs to be conducted on the middleware design to compare it to other

designs.

CHAPTER 6. CONCLUSIONS 146

Further research is still needed on how we can integrate the ELM functionality into

DBMS code. Given that all transactions are implemented as stored procedures (which

is a common practice nowadays) the ELM functionality could be leveraged to a fully

declarative approach inside a DBMS: A corresponding DBMS could offer a declarative

interface for the DBA to specify potential SI conflicts between stored procedures; these

conflicts could then be enforced by the DBMS by automatically acquiring an ELM lock

for the procedure’s argument values just before executing a marked transaction, and by

automatically releasing this lock just after the commit. This could also be beneficial for

multi-core architectures, because no central synchronization between concurrent trans-

actions is needed other than a few fine-granular ELM-locks for such transactions marked

vulnerable by the DBA. Most importantly, such an integrated approach would be fully

declarative to the DBA, not requiring any changes to client code. However, unlike our

current design, we can not consider this design with commercial databases, since their

codes are not visible. To implement this design we need to use open-source platforms

such as PostgreSQL.

Fault tolerance is a non-functional (QoS) requirement that requires a system to continue

to operate, even in the presence of faults. It should be achieved with minimal involvement

of users or system administrators (who can be an inherent source of failures themselves).

Distributed systems can be more fault tolerant than centralized (where a failure is often

total), but with more processor hosts generally the occurrence of individual faults is likely

to be more frequent. Fault tolerance in distributed systems can be achieved by: Hardware

redundancy, i.e. replicated facilities to provide a high degree of availability and fault

tolerance, and Software recovery, e.g. by rollback to recover systems back to a recent

consistent state upon detection of a fault. However, the experiments reported in this

thesis were done on a system without any fault-tolerance (and they measure executions

without failures). We have suggested different alternatives in Chapter 3 for each design.

CHAPTER 6. CONCLUSIONS 147

Our plan is to build a complete system that includes fault-tolerance, and then to evaluate

it.

Also, in Section 3.1.1 we mentioned several options of what the ELM can lock. We

discussed Edge-Name technique, Item-Name, Parameter-Value, or Very Fine-Granularity

technique. We did not study the performance implications of these different choices.

Future work is needed to explore these locking options, and come up with guidelines for

making ELM locking choices. In addition, the choice of lock is so far done on a manual

basis. We aim to develop a tool that can assist DBA automatically, to determine what

locks to set in the ELM.

Bibliography

[1] Information technology-database languages. Found on the web at URL

http://www.sqlteam.com/article, 2006.

[2] PostgreSQL 8.2.9 documentation. Found on the web at URL

http://www.postgresql.org/docs/8.2/interactive, 2006.

[3] Tpc benchmarks. Found on the web at URL http://www.tpc.org, 2006.

[4] Tpc-c benchmark. Found on the web at URL http://www.tpc.org/tpcc/, 2006.

[5] Oracle documentation. Found on the web at URL

http://www.oracle.com/technology/documentation/index.html, 2006-2008.

[6] Atul Adya, Robert Gruber, Barbara Liskov and Umesh Maheshwari. Efficient op-

timistic concurrency control using loosely synchronized clocks. SIGMOD Rec.,

Volume 24, Number 2, pages 23–34, 1995.

[7] Atul Adya, Barbara Liskov and Patrick E. O’Neil. Generalized isolation level def-

initions. In Proceedings of the 21st IEEE International Conference on Data Engi-

neering (ICDE), pages 67–78, 2000.

[8] Rakesh Agrawal, Michael J. Carey and Miron Livny. Concurrency control per-

formance modeling: Alternatives and implications. ACM Trans. Database Syst.,

Volume 12, Number 4, pages 609–654, 1987.

148

BIBLIOGRAPHY 149

[9] Mohammad Alomari, Michael Cahill, Alan Fekete and Uwe Röhm. Serializable

executions with snapshot isolation: Modifying application code or mixing isolation

levels? In Proceedings of DASFAA’08, pages 267–281., 2008.

[10] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil and Patrick

O’Neil. A critique of ansi sql isolation levels. In SIGMOD ’95: Proceedings of

the 1995 ACM SIGMOD International Conference on Management of Data, pages

1–10, 1995.

[11] Arthur J. Bernstein, Philip M. Lewis and Shiyong Lu. Semantic conditions for

correctness at different isolation levels. In Proceedings of IEEE International Con-

ference on Data Engineering (ICDE), pages 57–66, 2000.

[12] Philip A. Bernstein and Nathan Goodman. Timestamp-based algorithms for concur-

rency control in distributed database systems. In VLDB ’1980: Proceedings of the

sixth international conference on Very Large Data Bases, pages 285–300. VLDB

Endowment, 1980.

[13] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed

database systems. ACM Comput. Surv., Volume 13, Number 2, pages 185–221,

1981.

[14] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control—

theory and algorithms. ACM Trans. Database Syst., Volume 8, Number 4, pages

465–483, 1983.

[15] Philip A. Bernstein, Vassos Hadzilacos and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley, 1987.

BIBLIOGRAPHY 150

[16] Albert Burger and Vijay Kumar. Performance of multiversion concurrency control

mechanism in partitioned and partially replicated databases. In Proceedings of the

1992 ACM annual conference on Communications, pages 109 – 119, 1992.

[17] Michael J. Carey and Miron Livny. Conflict detection tradeoffs for replicated data.

ACM Trans. Database Syst., Volume 16, Number 4, pages 703–742, 1991.

[18] Michael J. Carey and Waleed A. Muhanna. The performance of multiversion con-

currency control algorithms. ACM Trans. Comput. Syst., Volume 4, Number 4,

pages 338–378, 1986.

[19] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite and Willy

Zwaenepoel. Performance comparison of middleware architectures for generating

dynamic web content. Volume 2672, pages 997–1017, Rio de Janeiro, Brazil, 2003.

ACM.

[20] C.J Date. An Introduction to Database Systems. Addison Wesley, sixth edition,

1995.

[21] Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot

isolation. In Proceedings of the 32nd international conference on Very large data

bases (VLDB’06), pages 715–726. VLDB Endowment, 2006.

[22] Sameh Elnikety, Fernando Pedone and Willy Zwaenepoel. Database replication

using generalized snapshot isolation. In 24th IEEE Symposium on Reliable Dis-

tributed Systems (SRDS’05), pages 73–84, 2005.

[23] Alan Fekete. Serializability and snapshot isolation. In Proceedings of the Aus-

tralasian Database Conference (ADC’99), pages 201–210, 1999.

BIBLIOGRAPHY 151

[24] Alan Fekete. Allocating isolation levels to transactions. In PODS ’05: Proceedings

of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 206–215, New York, NY, USA, 2005. ACM Press.

[25] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil and Dennis

Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst., Vol-

ume 30, Number 2, pages 492–528, 2005.

[26] Alan Fekete, Elizabeth O’Neil and Patrick O’Neil. A read-only transaction anomaly

under snapshot isolation. SIGMOD Rec., Volume 33, Number 3, pages 12–14, 2004.

[27] Jim Gray, Raymond A Lorie, G. R. Putzolu and Irving L Traiger. Granularity of

locks and degrees of consistency in a shared data base. pages 181–208, San Fran-

cisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[28] Jim Gray and Andreas Reuter. Transaction Processing : Concepts and Techniques

(Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann,

1993.

[29] Thanasis Hadzilacos. Multiversion concurrency control scheme for a distributed

database system. In RIMS Symposia on Software Science and Engineering II, pages

158–180. Springer Berlin / Heidelberg, 1986.

[30] Thanasis Hadzilacos. Serialization graph algorithms for multiversion concurrency

control. In PODS ’88: Proceedings of the seventh ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems, pages 135–141, New York, NY,

USA, 1988. ACM.

[31] Carl S Hartzman. The delay due to dynamic two-phase locking. IEEE Transactions

on Software Engineering, Volume 15, Number 1, pages 72–82, 1989.

BIBLIOGRAPHY 152

[32] Joseph M. Hellerstein, Michael Stonebraker and James Hamilton. Architecture of

a database system. Foundations and Trends in Databases, Volume 1, Number 2,

pages 141–259, 2007.

[33] Ken Jacobs. Concurrency control: Transaction isolation and serializability in sql92

and oracle7. Technical Report A33745 (White Paper), Oracle Corporation, 1995.

[34] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham and S. Sudarshan. Automating

the detection of snapshot isolation anomalies. In VLDB ’07: Proceedings of the

33rd international conference on Very large data bases, pages 1263–1274. VLDB

Endowment, 2007.

[35] Michael Kifer, Arthur Bernstein and Philip M. Lewis. Database Systems: An Appli-

cation Oriented Approach, Compete Version. Addison-Wesley, 2nd edition, 2006.

[36] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.

ACM Trans. Database Syst., Volume 6, Number 2, pages 213–226, 1981.

[37] A. Leff, J.L. Wolf and P.S. Yu. Efficient lru-based buffering in a lan remote caching

architecture. IEEE Transactions on Parallel and Distributed Systems, Volume 7,

Number 2, pages 191–206, Feb 1996.

[38] Philip M. Lewis, Arthur J. Bernstein and Michael Kifer. Databases and Transaction

Processing: An Application-Oriented Approach. Addison-Wesley, 2001.

[39] Wen-Te K. Lin and Jerry Nolte. Basic timestamp, multiple version timestamp, and

two-phase locking. In Proceedings of the 9th International Conference on VLDB,

pages 109 – 119, 1983.

BIBLIOGRAPHY 153

[40] Yi Lin, Bettina Kemme, no-Martı́nez Marta Pati and Ricardo Jiménez-Peris. Mid-

dleware based data replication providing snapshot isolation. In SIGMOD ’05: Pro-

ceedings of the 2005 ACM SIGMOD international conference on Management of

data, pages 419–430, New York, NY, USA, 2005. ACM.

[41] Yi Lin and Sang Son. Concurrency control in real-time databases by dynamic ad-

justment of serialization order. In Proceedings of the Real-Time Systems Sympo-

sium, 11th, pages 104–112, Dec 1990.

[42] Song Chun Moon. Performance of concurrency control methods in distributed

database management systems (timestamp ordering, two-phase locking, optimistic

scheme, restart, transaction blocking). Ph.D. thesis, Champaign, IL, USA, 1985.

[43] David F. Nagle, Gregory R. Ganger, Jeff Butler, Garth Goodson and Chris Sabol.

Network support for network-attached storage. In Proc. of Hot Interconnects, pages

86–92, Stanford, California, U.S.A, 1999.

[44] Christos H. Papadimitriou. The serializability of concurrent database updates. J.

ACM, Volume 26, Number 4, pages 631–653, 1979.

[45] Chanjung Park and Seog Park. Alternative correctness criteria for multiversion

concurrency control and its applications in advanced database systems. In In Proc.

of the Nineth Int’l Workshop on Database and Expert Sys. and Applications, pages

864–869, 1998.

[46] Christian Plattner and Gustavo Alonso. Ganymed: scalable replication for transac-

tional web applications. In Proceedings of the 5th ACM/IFIP/USENIX international

conference on Middleware (Middleware’04), pages 155–174, New York, NY, USA,

2004. Springer-Verlag New York.

BIBLIOGRAPHY 154

[47] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a

log-structured file system. ACM Transactions on Computer Systems, Volume 10,

Number 1, pages 26–52, 1992.

[48] In Kyung Ryu and Alexander Thomasian. Analysis of database performance with

dynamic locking. Volume 37, pages 491–523, New York, NY, USA, 1990. ACM.

[49] Abraham Silberschatz, Henry Korth and S. Sudarshan. Database Systems Concepts.

McGraw Hill, 5th edition, 2005.

[50] Sang H. Son, Juhnyoung Lee and Yi Lin. Hybrid protocols using dynamic ad-

justment of serialization order for real-time concurrency control. Real-Time Syst.,

Volume 4, Number 3, pages 269–276, 1992.

[51] Michael Stonebraker. The design of the postgres storage system. In Peter M.

Stocker, William Kent and Peter Hammersley (editors), VLDB’87, Proceedings of

13th International Conference on Very Large Data Bases, September 1-4, 1987,

Brighton, England, pages 289–300. Morgan Kaufmann, 1987.

[52] R. Sun and G. Thomas. Performance results on multiversion timestamp concurrency

control with predeclared writesets. In PODS ’87: Proceedings of the sixth ACM

SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages

177–184, New York, NY, USA, 1987. ACM.

[53] Yong Chiang Tay. Locking performance in centralized databases. Academic Press

Professional, Inc., San Diego, CA, USA, 1988.

[54] Alexander Thomasian. Performance limits of two-phase locking. In Proceedings of

the Seventh International Conference on Data Engineering (ICDE), pages 426–435,

Washington, DC, USA, 1991. IEEE Computer Society.

BIBLIOGRAPHY 155

[55] Alexander Thomasian. Two-phase locking performance and its thrashing behavior.

ACM Trans. Database Syst., Volume 18, Number 4, pages 579–625, 1993.

[56] Alexander Thomasian. Concurrency control: methods, performance, and analysis.

ACM Comput. Surv., Volume 30, Number 1, pages 70–119, 1998.

[57] Alexander Thomasian and In Kyung Ryu. Performance analysis of two-phase lock-

ing. IEEE Trans. Softw. Eng., Volume 17, Number 5, pages 386–402, 1991.

[58] Shuqing Wu and Bettina Kemme. Postgres-r(si): Combining replica control with

concurrency control based on snapshot isolation. In Proceedings of the 21st IEEE

International Conference on Data Engineering (ICDE), pages 422–433, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

	Abstract
	Prior Publications
	Acknowledgements
	Introduction
	An Overview
	Motivation and Contributions of this Work
	Thesis Outline

	Background Concepts
	Transaction Processing
	Serializability
	Concurrency control
	Isolation levels
	Read Committed Isolation

	Multiversion Concurrency Control
	Multiversion Serializability Theory

	Snapshot Isolation (SI)
	Snapshot Isolation Anomalies
	Multiversion Concurrency in PostgreSQL
	Multiversion Concurrency in Oracle
	Multiversion Concurrency in Microsoft SQL Server
	Analysis Using SDG
	Options to ensure Serializability

	Benchmark

	The External Lock Manager (ELM) Technique
	The ELM Approach
	Lock Alternatives

	Proof of ELM Serializability
	Architecture And Design of ELM
	Design Features
	Location of ELM

	ELM Fault Tolerance
	Prototype ELM Implementation
	Implementation of Lock Manager
	Summary

	Experimental Framework
	Software and Hardware
	Performance Metrics
	Workload Parameters
	Benchmarks
	Smallbank benchmark
	MoreChoices Benchmark

	Summary

	Evaluation
	Options to ensure serializable execution with SmallBank
	Serializability of SI on PostgreSQL, for SmallBank
	Low Contention, High Update Rate
	High Contention, High Update Rate
	Low Update Rate
	Comparison with Low Isolation Level

	Serializability of SI on Oracle
	Low Contention
	High Contention

	MoreChoices Benchmark Programs
	Low Contention
	High Contention

	Conclusions
	Summary

	Conclusions
	Future Work

	Bibliography

