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 ABSTRACT 

The aim of the work presented in this thesis was to examine the associations between the 

kinematics of the knee characterised by the tibiofemoral contact pattern, and degenerative 

change, in the context of anterior cruciate ligament (ACL) injury. While the natural history 

of degenerative change following knee injury is well understood, the role of kinematics in 

these changes is unclear. Kinematics of the knee has been described in a variety of ways, 

most commonly by describing motion according to the six degrees of freedom of the knee. 

The advantage of mapping the tibiofemoral contact pattern is that it describes events at the 

articular surface, important to degenerative change. It was hypothesised that the 

tibiofemoral contact pattern would be affected by injury to the knee. A model of ACL 

injury was chosen because the kinematics of the knee have been shown to be affected by 

ACL injury, and because the majority of chronic ACL-deficient knees develop 

osteoarthritis, the associations between kinematics and degenerative change could be 

explored. 

A technique of tibiofemoral contact pattern mapping was established using MRI, as a 

quantifiable measure of knee kinematics. The tibiofemoral contact pattern was recorded 

from 0º to 90º knee flexion while subjects performed a leg-press against a 150N load, using 

sagittal magnetic resonance imaging (MRI) scans. The technique was tested and found to 

be reliable, allowing a description of the tibiofemoral contact pattern in 12 healthy subjects.  

The tibiofemoral contact patterns of knee pathology were then examined in a series of 

studies of subjects at a variety of stages of chronicity of ligament injury and osteoarthritis. 

Twenty subjects with recent ACL injury, 23 subjects with chronic ACL deficiency of at 



 

v

least 10 years standing, and 14 subjects with established osteoarthritis of the knee were 

recruited. The 20 subjects with recent ACL injury were examined again at 12 weeks and 2 

years following knee reconstruction.  

The tibiofemoral contact patterns were examined for each group of subjects and the 

associations between changes in the contact patterns and evidence of joint damage 

explored. Evidence of joint damage and severity of osteoarthritis were recorded from x-

rays, diagnostic MRI, operation reports and bone densitometry at the tibial and femoral 

condyles of the knee. 

Each of the three groups with knee pathology exhibited different characteristics in the 

tibiofemoral contact pattern, and these differences were associated with severity of joint 

damage and osteoarthritis. The recently ACL-injured knees demonstrated a tibiofemoral 

contact pattern that was posterior on the tibial plateau, particularly in the lateral 

compartment. Those with chronic ACL deficiency demonstrated differences in the contact 

pattern in the medial compartment, associated with severity of damage to the knee joint. 

Osteoarthritic knees showed reduced femoral roll back and longitudinal rotation that 

normally occur during knee flexion. Two years following knee reconstruction there was no 

difference between the contact pattern of the reconstructed and healthy contralateral knees. 

This technique of tibiofemoral contact pattern mapping is sensitive to the abnormal 

characteristics of kinematics in ligament injury and osteoarthritis. This is the first time the 

tibiofemoral contact characteristics of chronic ACL-deficient and osteoarthritis knees have 

been described and links examined between tibiofemoral contact patterns and degenerative 

change. 
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KNEE KINEMATICS AND DEGENERATIVE CHANGE 

The relationship between kinematics and degenerative change in the knee is not well 

understood, despite general recognition that injuries that alter the kinematic pattern are likely 

to result in degeneration (Frankel et al. 1971). Tear of the anterior cruciate ligament (ACL) is 

one such injury. Instability caused by the ligament injury permits greater anterior tibial 

translation and knee internal rotation during daily activities than healthy knees (Karrholm et 

al. 1988; Beard et al. 1996; Vergis et al. 1998; Brandsson et al. 2001). People with chronic 

ACL deficiency are known to have a 50-90% incidence of late degeneration in the injured 

knee (Clatworthy et al. 1999; Gillquist et al. 1999). While several studies have examined the 

kinematics of ACL-injured knees (Vergis et al. 1997; Brandsson et al. 2001; Georgoulis et al. 

2003), none has linked the aberrant kinematics to degeneration. 

Animal models have been used to study the process of degeneration resulting from ACL 

injury, as these studies are not possible in humans (Marshall et al. 1971; Lukoschek et al. 

1988; Lopez et al. 2003a; Lopez et al. 2003b). Indeed, ACL sectioning has been used in 

experimental designs to produce an animal model for the development of osteoarthritis (Hulth 

et al. 1970; Marshall and Olsson 1971). Meniscectomy and impact trauma to the articular 

cartilage also provide models for the development of osteoarthritis (Moskowitz et al. 1987; 

Calvo et al. 1999; Messner et al. 2000; Calvo et al. 2001), but it is the kinematic pattern in 

ACL deficiency, rather than the trauma to the articular cartilage, that makes the ACL-section 

model relevant to this study. ACL-sectioned knees of dogs, rabbits and sheep produce a 

characteristic pattern of osteophytosis. This osteophytosis precedes the articular cartilage 
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degeneration, chronic meniscal damage and flattening of the femoral condyles and tibial 

plateau which signify osteoarthritic change (Marshall and Olsson 1971; Lukoschek et al. 

1988; Lopez et al. 2003a; Lopez and Markel 2003b). These changes are seen on radiographs 

of human ACL-deficient knees occurring in the same manner (Kannus et al. 1989; Dejour et 

al. 1994; Gillquist and Messner 1999). Unusual shear stresses at the osteochondral junction 

stimulate the development of osteophytes early in ACL deficiency (Moskowitz and Goldberg 

1987). These osteophytes indicate the role of aberrant knee kinematics in the process of 

degenerative change.  

While ACL sectioning has been used as a model for degenerative change, the role of altered 

kinematics in degenerative change has not been examined in animal studies. Studies in dogs 

have shown the process of degeneration occurring in the ACL-sectioned knee over time 

(Marshall and Olsson 1971; Lopez and Markel 2003b). Studies have also looked at the laxity 

of knees of ACL-sectioned dogs and the ground reaction forces produced by the dogs running 

(Lopez et al. 2003a), but the links between knee kinematic changes over time and 

degeneration have not been examined. 

In humans, kinematics of acute ACL-injured knees have been studied in some detail, but not 

chronic ACL-deficient knees (Jonsson et al. 1989; Yack et al. 1994; Beard et al. 1996; Dennis 

et al. 1996; Vergis and Gillquist 1998; Brandsson et al. 2001). The kinematics of chronic 

ACL-deficient knees are not necessarily the same as acutely injured knees, because of 

adaptation of tissues under altered loads, degenerative wear of soft tissues and an altered 

neuromuscular environment (Steele et al. 1995; Wexler et al. 1998; Ferber et al. 2002). To 

study the relationship between kinematics of chronic ACL-deficient knees and degenerative 
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change, the kinematics of chronic ACL-deficient knees need to be accurately mapped and the 

differences in kinematic characteristics compared to the pattern of degeneration. 

The end stage of the degenerative process is knee osteoarthritis (Buckwalter et al. 1997), 

which is a major problem in our aging community (Segal et al. 2002), yet there are few 

studies of the kinematics in osteoarthritic knees (Nagao et al. 1998). Gait analysis, using 

multiplanar video recordings with skin markers has been used to calculate kinetic forces and 

kinematics (Kaufman et al. 2001; Al-Zahrani et al. 2002; Gok et al. 2002). Assessment of 

knee kinematics by gait analysis has mainly been limited to sagittal plane motion (Kaufman et 

al. 2001) though frontal plane rotations have been reported (Hurwitz et al. 1998). Coronal 

plane rotation during active knee extension was shown to be reduced in osteoarthritic knees in 

a study using ultrasound (Nagao et al. 1998). There are still many unanswered questions 

regarding knee kinematics in knee osteoarthritis, such as the role of ligament injury and 

attrition. 

Movement is comprised of kinematics and kinetics. The term kinematics is used to describe 

the three rotational motions of the tibia with respect to the femur (flexion-extension, 

adduction-abduction, internal-external rotation) and the three translational motions of the tibia 

with respect to the femur without reference to the forces or moments that cause the motion. 

Kinetics is used to describe the joint forces and moments associated with motion 

(Papadonikolakis et al. 2003). It is kinematics that has been studied in this thesis. 

Methods used to examine kinematics of ACL-injured knees have included techniques which 

enable visualisation of the bony anatomy such as roentgen stereophotogrammetric analysis 
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(RSA) (Karrholm et al. 1988; Brandsson et al. 2001) and magnetic resonance imaging (MRI), 

indirect measurement of bony anatomy such as video analysis of jumping in subjects with 

implanted intracortical pins (Ramsey et al. 2001) and electrogoniometry (Vergis et al. 1997; 

Kvist et al. 2001; Hollman et al. 2002; Georgoulis et al. 2003); and measurement from skin 

markers such as 3D video analysis (Hollman et al. 2002; Georgoulis et al. 2003). MRI has the 

advantages of direct measurement of bony structures, including accuracy and direct 

visualisation of the tibiofemoral contact areas of the knee, without the radiation dosage or 

complications of surgical procedures associated with RSA or intracortical pins (Thompson et 

al. 1991; Todo et al. 1999). In an open-field MRI machine it is possible to perform everyday 

activities, such as a squat, step up or lunge (Vedi et al. 1999; Hill et al. 2000; Nakagawa et al. 

2000). In a closed field MRI these activities can be simulated in supine, by controlling the 

knee position in a loaded situation (Smith et al. 1999). Currently MRI gives the best image 

resolution for accurate visualisation of knee anatomy when performed as a series of still 

images, at intervals through range of motion. Cine MRI is a technology still under 

development (Niitsu et al. 1990; Niitsu 2001). For the assessment of knee kinematics in vivo, 

current MRI technology provides the best direct visualisation method, with least risk to the 

patient. 

This thesis has investigated the ACL-deficient human model, both recently injured knees, 

chronic ACL-deficient knees and knees with established osteoarthritis in order to explore the 

relationship between movement at the tibiofemoral interface and degenerative change. 
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Relationship between ACL injury and osteoarthritis of the 

knee 

Epidemiology of ACL injury  

Injuries to the ACL are common among active people. In the United States of America the 

incidence of ACL injury is estimated at 30 per 100 000 population per year (Miyasaka et al. 

1991). This represents 80 000 ACL injuries annually in the USA (Griffin et al. 2000). ACL 

injuries account for 20% of knee injuries presenting at general hospitals (Daniel et al. 1994) 

and 60% of those occurring on the ski fields (Feagin et al. 1987). In Scandinavia the incidence 

is similar (Buhl-Nielsen 1991). 

Data about incidence of ACL injuries in Australia is not available, but it is expected to be 

similar to the USA. In Australia the incidence of ACL injuries in netball is approximately 4.7 

per week, from among 350 000 registered players (Otago et al. 1999) and 950 per year in 

professional Australian Football (Orchard et al. 2002), though this figure does not include 

amateur and junior grade players. In skiing the incidence of knee injuries is reported as 

increasing, despite improvements in binding releases (Sherry et al. 1991). Australian hospital 

data do not differentiate between ACL injuries and other sports injuries. In the year 1998-9 

there were 11,422 people admitted after injuries on playing-fields and 39,966 people admitted 

for injuries to the knee and lower leg (Australian Institute of Health and Welfare 1999). These 

data include people admitted with ACL injuries. However, many people with ACL injuries 
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not admitted to hospital. Therefore, it is not possible to obtain Australian injury statistics from 

current methods of data collection. 

Demographically, knee ligament injuries are most common in individuals between 15 and 25 

years of age (Hirshman et al. 1990; Griffin et al. 2000), with injuries in males predominating 

due to levels of sports participation (Miyasaka et al. 1991). However, there is a reported 4 to 6 

times higher risk of ACL injury in those women participating in sport (Roos 1994; Arendt 

1997; Gwinn et al. 2000; Huston et al. 2000; Kirkendall et al. 2000), thought to be due to a 

combination of neuromuscular, hormonal and anatomical factors (Arendt 2001). While sports 

injuries may account for 74% of ACL injuries, not all ACL injuries occur during sport (Daniel 

et al. 1994). ACL injuries also occur from falls, during social activities and to pedestrians in 

vehicular accidents. 

Non-contact injuries account for 70% of all ACL injuries (Griffin et al. 2000) occurring in 

jumping, landing or side-stepping, but the proportion of non-contact injuries may be higher 

for women (Arendt 1997; Kirkendall and Garrett 2000). The most common mechanism for 

non-contact injury has been described as a rapid deceleration with the knee close to full 

extension, associated with a change of direction or rotation factor (Boden et al. 2000). A 

powerful eccentric quadriceps force is considered to be a major contributor to injury, 

generating a large anterior tibial shear force. Non-contact ACL injuries are commonly a 

discrete ACL injury, without damage to other knee structures (Griffin et al. 2000).  

Contact injuries are more likely to result in damage to other knee structures as well as the 

ACL. Contact injuries are most commonly a valgus blow, either from another player, a fall 
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across an obstacle or occasionally a pedestrian accident. Contact injuries are frequently 

associated with injury to several structures in the knee, such as the medial collateral ligament 

(MCL) and menisci, as the direction of the blow and loading through the knee are likely to 

load to failure both primary and secondary restraints in the valgus direction. O’Donoghue’s 

“unhappy triad” is one description of this pattern of injury, consisting of damage to the ACL, 

MCL and medial meniscus from a valgus blow to the knee (O'Donoghue 1959). Frequently, 

the meniscus involved is the lateral meniscus, due to the joint compression and rotation loads 

involved in the injury forcing the trapped lateral meniscus beyond its available mobility 

(O'Donoghue 1959; Shelbourne et al. 1991). Evidence of the large joint compression forces in 

a contact injury may also be seen in the bone bruises found in subchondral bone, particularly 

of the lateral compartment, visible on MRI (Johnson et al. 1998; Lahm et al. 1998; Johnson et 

al. 2000). These bone bruises are visible indications of articular cartilage and subchondral 

bone trauma, even fracture (Johnson et al. 1998). Thus, contact injuries may result in more 

damage to the knee than the isolated ACL tear of a non-contact injury. 

The risk of osteoarthritis is higher after sustaining a contact injury than a non-contact injury to 

the knee, because of damage to other structures in addition to the ACL. The risk of 

osteoarthritis in the knee joint following a non-contact, discrete ACL injury may be as low as 

15 - 20% (McDaniel et al. 1983; Gillquist and Messner 1999). However, if there is meniscal 

injury associated with ACL deficiency, the risk of osteoarthritis rises to 65% - 70% (Kannus 

and Jarvinen 1989; Neyret et al. 1992). Meniscal damage is a common late sequela of ACL 

deficiency (Myers et al. 2001). There are few studies that report the original mechanism of 

injury, as opposed to the presence of late meniscal damage, as a risk factor for osteoarthritis in 

the injured knee. Where a contact injury has also resulted in bone bruising or trauma, the risk 
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of late osteoarthritis is further increased (Stein et al. 1995). In a study of 141 acute ACL 

injuries 48 were found to have osseous lesions on MRI, of which 26 were bone bruises, 11 

were subchondral fractures and 7 were osteochondral fractures (Lahm et al. 1998). Fifty 

percent of these osseous lesions can be expected to develop articular cartilage lesions that do 

not recover (Stein and Fischer 1995). Thus, a discreet ACL injury is a known risk factor for 

the development of late osteoarthritis, which is increased by other associated damage to the 

knee.  

Development of osteoarthritis in ACL-injured knees 

Research into osteoarthritis has depended on animal models. The models that have been used 

because they consistently develop osteoarthritis are application of blunt impact trauma to the 

articular cartilage (Oegema et al. 1993; Newberry et al. 1998), meniscectomy (Messner et al. 

2000; Calvo et al. 2001) and ACL sectioning of animals (Marshall and Olsson 1971). The 

ACL-sectioned model has been a reliable model, in that a high percentage of animals develop 

osteoarthritis (Marshall and Olsson 1971; Bailey et al. 1997; Lopez et al. 2003a). 

Furthermore, it is less traumatic to experimental animals to perform a discrete ACL section 

via arthroscopy or radio frequency burn, than the more aggressive meniscectomy or impact 

trauma (Lopez et al. 2003a). Marshall et al (1971) described in detail the structural changes to 

the bone, cartilage and soft tissues of dogs’ knees following ACL transection via arthrotomy. 

All 12 dogs studied showed proliferative osteophytes, thickened joint capsule and early 

cartilage fibrillation (Marshall and Olsson 1971). Lopez et al (2003) similarly found early 

radiographic signs of osteoarthritis in all the ACL-sectioned dogs with characteristic 

osteophyte development, subchondral sclerosis and cartilage thinning at 34 weeks. 
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Differences in kinematics between humans and dogs limit the extrapolation of results from 

animal studies to humans. Not all ACL-injured people develop osteoarthritis. It is important 

to look for the relationship between kinematics and degenerative changes in humans. 

Currently there are three contributing factors considered responsible for the development of 

osteoarthritis in ACL-injured knees: damage to joint structures at the time of ACL injury 

(Lundberg et al. 1997); chronic instability resulting in damage to the menisci and reducing 

their effectiveness as load sharing structures (Shoemaker et al. 1986; Chorev et al. 2000); and 

altered tibiofemoral contact patterns changing the contact footprint of the tibia, as well as 

changing the roll/glide characteristics of motion and shear forces as the tibiofemoral interface 

(Brandsson et al. 2001).  

Firstly, damage to the joint structures at the time of the original injury has long-term 

consequences. Haemarthrosis and trauma to articular cartilage and menisci produce 

biochemical changes within the joint, which accelerate degenerative change to the articular 

cartilage and failure of repair of the proteoglycan matrix (Lundberg et al. 1997; Clatworthy 

and Amendola 1999). Many ACL injuries, particularly contact injuries, occur with an 

associated impact trauma to the articular cartilage and subchondral bone. Impact trauma may 

fail to recover, leading to necrosis of subchondral bone (Stein and Fischer 1995; Lahm et al. 

1998). Impact trauma commonly occurs in the posterolateral tibial corner and lateral femoral 

condyle, due to the mechanism of the original injury. However, articular cartilage 

degeneration in ACL-deficient knees frequently occurs in the medial tibial compartment, 

suggesting that impact trauma is not responsible for medial compartment osteoarthritis 

(Dejour et al. 1994).  
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Secondly, the instability produced by the loss of the ACL alters the biomechanics of the 

injured knee and loads previously resisted by the ACL are transferred to the menisci. In the 

absence of the ACL the secondary restraints to anterior tibial translation are the medial 

meniscus and medial collateral ligament (Butler et al. 1980). Meniscal damage secondary to 

cruciate injury is common because while restraining sagittal displacement the menisci are 

compressed and ground between the condyles (Sherman et al.1988; Gillquist et al.1999; Allen 

et al. 2000). The damaged menisci are then ineffective in redistribution of weight-bearing 

forces through the knee. The weight-bearing area of the knee is consequently decreased and 

the pressure magnified. Weight is also taken in a more posterior position on the tibial plateau 

(Kurosawa et al. 1980; Arnoczky 1994). The consequences of meniscal insufficiency in the 

knee are well documented: osteophytosis, flattening of the condyles and articular cartilage 

degeneration (Fairbank 1948). Meniscal damage and meniscectomy secondary to instability in 

chronic ACL-deficient knees are known risk factors for the development of osteoarthritis 

(Sherman et al. 1988; Shirakura et al. 1995a) (Figure 1.1). 
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Figure 1.1: The knee of a 26-year-old female 10 years 

after an ACL injury. It demonstrates lateral meniscus 

maceration (black arrow), full thickness cartilage damage 

to the lateral tibial and femoral surfaces (white arrows) 

and extensive osteophytes (triangles).  

 

 

Finally, the contact pattern of the femoral condyles on the tibial plateau is altered when the 

restraining influence of the ACL is removed (Dennis et al. 1996; Smith et al. 1999). The area 

of the tibiofemoral contact footprint and the roll/glide characteristics at the tibiofemoral 

interface may be implicated in the development of osteoarthritis in ACL-injured knees. 

Chondrocytes may be able to sense deformations in articular cartilage during stress loading 

(Mow et al. 2000) and respond quickly to repair minor damage to the cartilage matrix. 

However, early in knee instability chondrocyte swelling occurs, with a resultant increase in 

water content of the cartilage matrix. Micro-trauma causing disruption to the collagen fibres 

also occurs, resulting in a cartilage matrix less able to withstand demands of weight-bearing 

(Mow et al. 2000). Although this response of articular cartilage to the altered contact stresses 

caused by ACL sectioning was observed in animal models, the characteristics are likely to be 

similar in humans. Progressive lesions of the articular cartilage include pitting, fissuring and 

ulceration (Mow et al. 2000). These gross degenerative changes are most common in the 

medial aspect of the medial tibial plateau in ACL-deficient knees, with less involvement of 
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the lateral tibial and femoral surfaces (Mow et al. 2000). The earliest radiographic changes in 

human ACL-deficient knees are increased horizontal trabeculae in the cancellous bone 

underlying the medial tibial plateau (Buckland-Wright et al. 2000). This response of the 

trabeculae may be a response to shear forces within the knee and a precursor to subchondral 

sclerosis. Aberrant kinematics of unstable ACL-deficient knees can therefore produce 

changes to the articular cartilage and subchondral bone that are the precursor to osteoarthritis 

(Radin et al. 1986). 

Not all ACL-deficient knees develop osteoarthritis; some remain free of symptoms and signs 

for many years. The risks for the development of osteoarthritis in the ACL-deficient knee 

have already been discussed and include a contact mechanism of injury, injury to other knee 

structures rather than a discrete ACL injury and in particular, damage to the menisci (Gillquist 

and Messner 1999). However, there are also individual variations in lifestyle that constitute 

risk factors including continuing to play pivoting sports, thereby subjecting the unstable knee 

to repeated episodes of trauma (Roos 1994) and neuromuscular coordination factors, that may 

protect the knee (Chmielewski et al. 2001).  

Neuromuscular factors may be involved in the risk of developing osteoarthritis (Chmielewski 

et al. 2001; Rudolph et al. 2001). Some ACL-injured patients report symptoms of pain and 

instability of the ACL-injured knee, which they cannot tolerate, while others cope well with 

ACL deficiency (Noyes et al. 1983). Friden (et al 1993) found symptomatic patients had 

increased anterior tibial translation during a standing lunge test, viewed radiographically, than 

asymptomatic patients, irrespective of the passive laxity of the knee (Noyes et al. 1983; 

Friden et al. 1993). It appeared that asymptomatic patients were dynamically controlling the 
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knee instability. Dynamic control of knee stability has also been identified in gait analysis and 

EMG studies (Chmielewski et al. 2001; Rudolph et al. 2001). Thus, it appears that kinematic 

patterns and kinetic control may be associated with the risk of developing osteoarthritis in 

chronic ACL-deficient knees. 

The natural history of degeneration in knees of community-dwelling chronic ACL-deficient 

subjects is not clear. The reported incidence of osteoarthritis in chronic ACL-deficient knees 

ranges widely from 10% (McDaniel et al. 1980; Ciccotti et al. 1994), to 50-76% at 10 years 

(Roos et al. 1995; Shirakura et al. 1995b; Segawa et al. 2001). This range is probably because 

some studies sampled patients referred for surgery (Finsterbush et al. 1990; Shirakura et al. 

1995a; Chorev and Soudry 2000; Murrell et al. 2001), while other studies re-examined 

patients injured 10 years earlier (McDaniel and Dameron 1980; Ciccotti et al. 1994; Roos et 

al. 1995; Segawa et al. 2001). There are many ACL-injured people who do not require 

surgery, because the level of disability and pain they experience as a result of the ACL 

deficiency is minor. Nevertheless, when the results of the studies are pooled, it appears the 

majority of chronic ACL-deficient knees do develop osteoarthritis (Clatworthy and Amendola 

1999; Gillquist and Messner 1999). 
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Epidemiology and pathology of osteoarthritis in the knee  

Knee osteoarthritis has been described as the single most common cause of disability in older 

adults (Peat et al. 2001). In Australia, about 12% of the population and 34% of people aged 

over 50 years, suffer from osteoarthritis (Chapman et al. 2003). The most commonly affected 

joint is the knee (Osbourne et al. 2002). The incidence of total knee arthroplasty (TKA) in 

Australia has risen from 56.4 per 100,000 in 1994 to 76.8 per 100,000 population in 1998 

(Wells et al. 2002). In the United Kingdom 20.4 per 1000 people aged over 55 years were 

self-reported to be so disabled that they would benefit from knee arthroplasty (Tennant et al. 

1995). The Framingham study in Massachusetts found a population incidence of 10% among 

women aged 60-90 years (Zhang et al. 2000). A Beijing cohort study found symptomatic knee 

osteoarthritis occurred in 15% of women and 6% of men aged 61 to 91 years (Zhang et al. 

2001). In Italy the incidence of osteoarthritis was 30% in people aged over 65 years (Mannoni 

et al. 2003). While there are regional differences in the incidence of knee osteoarthritis, it is 

clear that it is a widespread problem in the international community. 

Knee osteoarthritis is most frequently of the primary idiopathic type and increases in 

prevalence with increasing age (Praemer et al. 1992). Secondary osteoarthritis is related to 

age, but also to time since the causative insult (Peat et al. 2001; Wilder et al. 2002). 

Secondary osteoarthritis may be due to injury or infection, or a variety of mechanical, 

metabolic or neurological disorders (Buckwalter and Mankin 1997). Knee injuries in youth, 

for example, increase the risk of later osteoarthritis 5 to 8 times (Gelber et al. 2000; Wilder et 

al. 2002). Progression of secondary osteoarthritis is influenced by factors including body mass 
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index, mechanical alignment and occupational load to the knee (Cooper et al. 1994). 

Idiopathic osteoarthritis is strongly related to age, whereas secondary osteoarthritis is 

dependent on the time since injury, as well as the age of the subject, due to wear over time. 

Injuries to the knee that can cause secondary osteoarthritis include ACL-injury (as previously 

described), meniscal tears and fractures through the joint. These injuries change the normal 

load distribution, location of the load and shear stresses at the joint. Meniscectomy, for 

example, decreases the load-bearing area of the knee and increases the transmitted forces 

through the knee 2 to 3 times (Kurosawa et al. 1980). Fracture through the joint line creates a 

step in the articular cartilage, which produces a shearing interface and local area of stress (Bai 

et al. 2001). Knee trauma can produce a focal defect in the articular cartilage and trauma to 

the subchondral bone. This focal defect alters load transmission to the underlying bone, which 

stiffens, causing a shearing effect where the overlying cartilage covers the bridge between the 

normal and stiffened bone. Thus, secondary osteoarthritis follows a local acute injury 

(McKinley et al. 2001).  

It has been suggested that changes to the kinematics of the knee can also produce damage to 

the articular cartilage over the long-term. Frankel et al (1971) postulated that changes to the 

axis of rotation of the knee would alter the roll/glide characteristics of knee motion and cause 

gouging of the joint surface (Frankel et al. 1971). This change to the axis of rotation could be 

due to ligament tear or to deformity altering the alignment of the knee. Since then, 

biomechanical studies, using electrogoniometry and force platforms to record the kinematics 

as well as direction and magnitude of forces through the knee have been able to demonstrate 

that pathological shearing occurs during walking and stepping activities, in ACL-deficient 
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subjects (Marans et al. 1989; Andriacchi 1990; Hollman et al. 2002; Georgoulis et al. 2003). 

These in vivo studies have increased the understanding of the pathological biomechanics of 

injured knees, which may be responsible for the osteoarthritic consequences of chronic ACL 

deficiency and made it possible to model the load and shear forces at the joint surface 

(Anderson et al. 1993; Steele et al. 1999). However, with the technology now available 

through MRI, it is now possible to directly visualise the kinematics of the tibiofemoral 

interface to compare normal and pathological motion. 

 

Characteristics of osteoarthritis in the knee 

The osteoarthritic knee is characterised by fibrillation and later eburnation of the articular 

cartilage, remodelling of the bone with sclerosis of subchondral bone, change to the shape of 

the condylar surfaces, formation of osteophytes and change to the soft tissues of the knee 

including synovial thickening, ligament attenuation and muscular atrophy. These changes to 

cartilage, bone and soft tissue do not occur in a temporal sequence, but rather are intimately 

related and coexist (Hough et al. 1989). The disease progresses very slowly, making it 

difficult to follow for any length of time. Consequently, there has been much research, 

particularly in animal studies, to isolate initiating events from secondary responses in the 

joint. However, changes to cartilage are rarely seen without subchondral bone changes (Radin 

and Rose 1986; Hough and Sokoloff 1989) and synovial reactions (Lukoschek et al. 1988) 

very early in the process. The processes occurring in the articular cartilage, soft tissues of the 

joint and the bony changes will now be discussed in more detail. 
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Changes to articular cartilage  

The degeneration and progressive loss of the normal structure and function of articular 

cartilage is an integral part of the disease process in osteoarthritis (Buckwalter and Mankin 

1997). The earliest visible sign of osteoarthritis at arthroscopy is fibrillation and softening of 

the superficial layers of the cartilage (Buckwalter and Mankin 1997). These surface 

irregularities become clefts, extending deeper into the cartilage, releasing broken fragments of 

cartilage into the joint space and reaching subchondral bone. Eventually the progressive loss 

of cartilage leaves only exposed bone (Buckwalter and Mankin 1997). These macroscopic 

changes reflect the changes occurring to the molecular framework of the cartilage. 

Prior to the appearance of visible surface fibrillation, damage to the cartilage has already 

disrupted the molecular matrix of the cartilage and the water content has increased (Mow et 

al. 1984). The molecular matrix is made up of collagen fibres and proteoglycan chain 

macromolecules, along with glycoproteins and chondrocyte cells. In early cartilage damage, 

the long proteoglycan chains that form the matrix are broken into shorter lengths and the 

concentration of proteoglycan molecules decreases. Damage to the collagen fibre and 

proteoglycan framework increases the permeability of the cartilage. The fluid pressurisation 

in cartilage is essential to its load bearing and lubricating function (Mow et al. 1984). 

Consequently, the increase in permeability severely reduces the ability of the cartilage to 

withstand stresses from loading and shearing, thereby increasing the vulnerability of the 

cartilage tissue to additional mechanical damage (Mow et al. 2000).  
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In response to the cartilage tissue damage, the chondrocytes begin the repair process. 

Chondrocytes detect alterations in tissue strain and osmolarity and their response is rapid: the 

chondrocytes multiply by cloning and synthesise new cartilage matrix (Hough and Sokoloff 

1989). The chondrocyte response at this stage is able to restore the cartilage matrix and 

successfully repair the cartilage (Radin et al. 1984; Buckwalter and Mankin 1997). If the 

repair response is insufficient to repair the cartilage in the face of increased mechanical loads 

or as a result of metabolic changes in the tissue that interfere with the ability of the 

chondrocytes to maintain the matrix, then the loss of cartilage matrix progresses. 

Further loss of cartilage presents as visible cartilage damage and frequently symptoms of 

arthritis (Buckwalter and Mankin 1997). Then activity of chondrocytes reduces and they are 

less responsive to mechanical and metabolic stimuli. Mechanical damage and death of 

chondrocytes unsupported by a sound matrix structure means the cartilage is no longer able to 

restore itself.  

Changes to bony structures 

Changes to the subchondral bone accompany the articular cartilage changes. It has been 

suggested that bone changes precede or accelerate changes in the articular cartilage (Radin 

and Rose 1986; Bailey and Mansell 1997), but it appears difficult to isolate the sequence of 

events, as the bone and articular cartilage changes happen concurrently (Pugh et al. 1974; Wu 

et al. 1990). Micro fissures in the subchondral bone heal by formation of new bone tissue in 

the subchondral bone layer, as part of the bone’s remodelling response (Wolff 1892; Churches 

et al. 1979). The increased density of this remodelled bone results in increased stiffness 
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(Finlay et al. 1989; Oegema et al. 1997; Day et al. 2001). A large part of the load taken 

through the joint is normally transmitted to the subchondral bone. The flexibility of the bone 

improves the ability of the joint to conform under load and increases the load bearing area 

(Radin and Rose 1986). The subchondral bone normally absorbs the load taken through the 

compliant articular cartilage, but as the bone stiffens the articular cartilage is compressed 

between the load and the stiff bone. Shear stress levels within the deepest layer of articular 

cartilage increase in the presence of calcified tidal cartilage and subchondral plate thickening 

(Anderson et al. 1993). The remodelled bone has higher mineral density (Madsen et al. 1994; 

Akamatsu et al. 1997), but it is of poor mechanical quality (Ding et al. 2001). On plain x-rays 

this remodelled subchondral bone appears as subchondral sclerosis (Fairbank 1948; Kellgren 

et al. 1957). This bone remodelling process can thicken and stiffen the subchondral bone and 

can also change the shape of the bone.  

Bone remodelling during the progression of osteoarthritis can change the shape of the 

articulation. The shape of the articulation can become flattened and the joint margins 

extended by the formation of new bone osteophytes. (Kellgren and Lawrence 1957; Ahlback 

1968). Animals with osteoarthritis induced by meniscectomy have developed osteophytes as 

fast as two weeks post surgery (Moskowitz and Goldberg 1987). The osteophytes are thought 

to be a response to shearing at the osteochondral junction, as the direction of the osteophyte is 

governed by the lines of mechanical force exerted on the area of growth and corresponds to 

the contour of the joint surface from which it extends (Moskowitz and Goldberg 1987; Hough 

and Sokoloff 1989). Osteophytes, complete with articular cartilage layer, are continuous with 

the bone at the margin of the joint. They can be painful to palpate and can limit joint 

flexibility, but they can also be completely asymptomatic (Peat et al. 2001). There is poor 
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correlation between the extent of bone remodelling in osteoarthritis and pain or disability 

(Buckwalter and Mankin 1997). Osteophytes have been considered as attempts by the joint to 

stabilise, since the varus/valgus laxity of the joint is increased by removal of the marginal 

osteophytes (Pottenger et al. 1990). Osteophytes could therefore be considered a response of 

bone and articular cartilage to abnormal shearing forces at the joint, extending the articular 

surface and contributing to the stability of the joint. 

Changes to periarticular soft tissues 

Pain in osteoarthritis may be due to bony changes and loss of cartilage, but is more likely to 

be due to chronic synovitis in the joint (Buckwalter and Mankin 1997). Although 

osteoarthritis is not considered an inflammatory condition, at joint replacement surgery, the 

synovium is frequently seen to be inflamed, with villous hypertrophy and fibrosis (Hough and 

Sokoloff 1989). This inflammation may be a secondary reaction to joint detritus, and 

fragments of articular cartilage have been found embedded in the synovium (Buckwalter and 

Mankin 1997). The synovium may also become sensitised to the presence of joint detritus and 

produce an autoimmune response (Hough and Sokoloff 1989). This synovial inflammation is 

considered responsible for the joint effusion and much of the pain accompanying 

osteoarthritis as is it a well-innervated and highly vascular structure (Hough and Sokoloff 

1989). Capsular thickening as a result of chronic synovial inflammation and fibrosis may also 

be partly responsible for loss of range of motion in the osteoarthritic knee (Pottenger et al. 

1990).  
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Changes to the soft tissues of the knee may also involve attrition of the cruciate ligaments and 

menisci within the joint. Frequently during knee replacement surgery, the cruciate ligaments 

are found to be absent, partly torn or show degeneration. Wada et al (1996) found that the 

ACL was absent in 50% of knees, partly torn in 25% and in only 25% was the ACL intact 

(Wada et al. 1996). The PCL, however, was intact in all the knees. Allain et al (2001) found 

similar incidence of ACL damage in the OA knee, but in 75% of cases where the ACL was 

torn, the PCL in that knee also had histological evidence of degeneration. They suggested that 

the attrition of the ACL indicates the quality of the PCL as a viable restraint structure is 

probably also compromised. The menisci also, are frequently found to be macerated or absent 

in advanced knee osteoarthritis (Buckwalter and Mankin 1997). It is not clear whether the 

damage to the menisci precedes the osteoarthritis, since meniscectomy is known to be a 

predictor of late osteoarthritis (Fairbank 1948). However, it is also likely that the menisci 

acquire degenerative tears and become macerated during the progress of the disease itself. 

The soft tissues within the knee, including the synovium, the ligaments and menisci, are 

therefore involved in the process of osteoarthritis.  (Allain et al. 2001) 
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Significance of the thesis 

When diagnosis of ACL insufficiency is made, whether an isolated lesion or in combination 

with other ligament structures… the affected joint appears to embark upon a course of 

progressive deterioration and dysfunction.                                                                            

(Fetto et al. 1980) 

As early as 1938 it was recognized that ACL injury was likely to initiate a cascade of events 

terminating in osteoarthritis of the injured knee (Palmer 1938), yet the links between 

abnormal knee kinematics and degenerative change are not well understood. Frankel et al 

(1971) proposed a model for the damage of the articular surfaces of the knee by injuries that 

altered the alignment of the flexion/extension axis. This altered axis caused compression, 

gouging and shearing to damage the articular cartilage. It was a useful model to describe the 

effects of ligament injury on tibiofemoral interface dynamics, but the description of the 

flexion/extension axis was based on the method of Reuleaux, which becomes inaccurate when 

applied to sagittal x-rays of the knee (Soudan et al. 1979: see Chapter 2). Despite some flaws 

to the model, it may be that the concept is correct, that is, change to the axis of the knee 

produces degeneration.  

Since the model of Frankel et al. (1971), shearing at the articular cartilage interface has been 

considered an important factor in degeneration of ACL-deficient knees (Anderson et al. 

1993). However, there is a knowledge gap regarding whether kinematic characteristics 
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peculiar to ACL-deficient knees are the cause of degenerative changes or indeed associated 

with degenerative changes, either prospectively or in a cross-sectional study. 

The pattern of tibiofemoral contact describes kinematics at the articular cartilage level. 

However, there is not a good understanding of the tibiofemoral contact pattern in healthy 

knees and no information on injured knees. Tibiofemoral contact patterns have been reported 

in only three papers (Dennis et al. 1998; Smith et al. 1999; Wretenberg et al. 2002), with 

conflicting findings. There is little published information regarding the effects of ACL injury 

on tibiofemoral contact patterns (Dennis et al. 1996), although tibiofemoral interface 

dynamics are believed to be responsible for osteoarthritis in ACL-deficient knees.  

Tibiofemoral contact patterns are an important aspect of kinematic behaviour, because the 

tibiofemoral interface represents the area of load-bearing in the knee, the site of shear forces 

and hence articular cartilage stress. The tibiofemoral contact patterns of osteoarthritic knees 

have never been mapped, so associations between tibiofemoral contact patterns and 

degeneration have not been examined. This is despite events at the tibiofemoral interface 

being critical to health or failure of articular cartilage. This thesis examines the associations 

between aberrant tibiofemoral contact patterns in ligament-injured knees and the evidence of 

degeneration of the articular cartilage and menisci and changes to subchondral bone. 
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Aim of the thesis 

The aim of this thesis was to examine the relationship between kinematics in ligament injury 

and degenerative change in the knee. This was achieved by firstly establishing a reliable 

technique for in vivo kinematic analysis of the knee. Then characteristics of kinematic 

behaviour were examined in terms of damage to the knee and evidence of degenerative 

change. It was hypothesised that knee injuries and pathology would be exhibited as 

differences in the tibiofemoral contact pattern.  

Kinematics of the knee can be described by recording the pattern of tibiofemoral contact 

during knee flexion. A technique was established to map the tibiofemoral contact pattern 

through the range of active knee motion from 0º to 90º knee flexion in subjects performing a 

supine leg press, using MRI to record the position of the structures of the knee. 

Characteristics of the tibiofemoral contact pattern were examined. 

Injury to the ACL was used as a model for the process of degenerative change in humans. In a 

cross-sectional study, knee kinematics of healthy control subjects were compared to recently 

injured subjects, subjects injured at least ten years previously and subjects with established 

knee osteoarthritis. Damage to the knee joint, menisci and subchondral bone changes, as well 

as areas of wear, were described and the associations between joint changes and kinematic 

abnormalities examined.  
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Development of the Concepts of Knee Kinematics
Paul N. Smith, BMBS, FRACS, Kathryn M. Refshauge, PhD, Jennifer M. Scarvell, BAppSc

ABSTRACT. Smith PN, Refshauge KM, Scarvell JM.
Development of the concepts of knee kinematics. Arch Phys
Med Rehabil 2003;84:1895-902.

Objectives: To review the experimental evidence and de-
velopment of concepts in knee kinematics and to present a
synthesis of current theories.

Data Sources: Historical literature from private collections
and published journals, from Galen in 160 AD, and Weber and
Weber in 1860, through to current research in knee kinematics,
sourced through MEDLINE and CINAHL.

Study Selection: Studies of the healthy human knee in vivo
and in vitro were included. Other studies were included when
relevant, for example, when knee surgery methods have led to
a change in kinematic concepts. Of 285 items, 94 were in-
cluded based on their contribution to original research. When
relevant, authors were contacted to resolve issues.

Data Extraction: Sources included were descriptive studies,
anatomic dissections, controlled experimental designs, editori-
als, and review articles.

Data Synthesis: The axes of rotation of the knee are funda-
mental to kinematic models. The hinge model is contradicted by
the ellipsoid shape of the femoral condyles, which results in a
moving instant center of motion. However, the “instant center of
motion” model was based on analysis of sagittal sections, oblique
to the plane of movement and neglecting rotation. The four-bar
linkage theory linked cruciate ligament isometry with the roll and
glide pattern of knee motion. Recently, however, studies of the
biomechanics and histology of the knee ligaments have enabled
more accurate kinematic modeling. Three-dimensional imaging
and computer modeling have made possible analysis of kinemat-
ics parallel to the planes of motion and incorporation of conjoint
rotation. Femoral roll back is now described as the manifestation
of longitudinal rotation during knee flexion.

Conclusions: Current research concludes that the knee has 4
independent axes: patella, posterior condylar, distal condylar,
and longitudinal axes. The axes combine to produce the char-
acteristic helical motion of the knee.

Key Words: Anterior cruciate ligament; Biomechanics;
Knee; Knee joint; Rehabilitation.

© 2003 by the American Congress of Rehabilitation Medi-
cine and the American Academy of Physical Medicine and
Rehabilitation

IN THE PAST FEW YEARS, a paradigm shift has taken
place in the understanding of normal knee kinematics. The

previous work using mathematical analysis of sagittal slices

through femora described the axis of rotation of the knee as an
instant center of rotation, shifting along a predictable, curved
pathway as the knee moved through its range of flexion.1-9 The
model of the knee as a four-bar linkage was also supported by
mathematical analysis, when the anterior (ACL) and posterior
cruciate ligaments (PCL) were defined as rigid links.4,10-13

These 2 theories helped explain the combination of glide and
roll that occurs at the articular surface.14,15 However, both of
these theories were based on 2-dimensional descriptions of
motion, whereas the knee moves through 3 dimensions, with 6
degrees of freedom.16-18 These 2-dimensional models were
unable to analyze the flexion and extension axis offset from the
anatomic sagittal plane19 or to account for the concomitant
longitudinal rotation occurring around an axis independent
from the flexion and extension axis of the knee.20

Magnetic resonance imaging (MRI) has enabled great ad-
vances in research into knee kinematics by permitting accurate
study of the knee in 3 dimensions, initially in vitro,20,21 and
then in vivo.22-24 In November 2000, in theBritish Journal of
Bone and Joint Surgery, the international research team of
Freeman published a set of articles25-27 describing the kine-
matic motion of the normal knee by using MRI. As a result of
this research, kinematic theory has seen a fundamental revision
of the concept of the axes of motion of the knee, which has
implications for understanding the effect of knee pathology on
kinematics, for rehabilitation, and surgery.28 We therefore
present a review of the development of concepts of knee
kinematics and present a synthesis of current theories and
experimental evidence.

DERIVATION OF THE FLEXION AND EXTENSION
AXIS OF THE KNEE

Geometry of the Femoral Condyles
The axis of knee flexion and extension was derived from the

geometry of the femoral condyles, as early as the late 19th
century, by analysis of true sagittal plane sections through the
femoral condyles.1,2,10From these sagittal sections, it was clear
that the femoral condyles were not circular, but were elongated.
The femoral condyles were described as spirals, with the lateral
condyle having a greater variation in curvature than the medial
condyle. If the femoral condyles were circular, the axis of
flexion and extension of the knee would be fixed at its center,
like a hinge. However, the changing curvature of the condyles
seen on sagittal sections results in an axis that moves as the
knee flexes and extends. This was described as “the instant
center of motion” moving along a predictable curved pathway
during knee flexion.1,4,5

The instant center of motion model was useful because it
linked the shape of the condyles to the motion characteristics of
the knee (fig 1). In the flexed position, the instant center is
closest to the joint surface, and the radius of curvature is short:
only 12mm at the lateral condyle and 15mm at the medial
femoral condyle.5 This allows the collateral ligaments and the
ACL to slacken. In knee extension, the radius of curvature of
the condyles is longer, and the axis of motion is furthest from
the articular surface; thus, the collateral ligaments and the ACL
become fully tensed, bringing the knee into its most stable
position.29,30
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The principal criticism of the instant center theory is that it
assumes the flexion and extension axis lies exactly in the
sagittal plane. Fick in 19113 reanalyzed the condyle shapes by
using 3 rather than 2 dimensions and concluded that the flex-
ion-extension axis of the knee did not lie in the sagittal plane
but was offset by several degrees. This offset orientation of the
flexion-extension axis would result in a single, fixed axis,
rather than an instant center.20 The method of Reuleaux31-33

used to map the instant center of motion depends on the plane
of motion being accurate.19 If the plane of movement is offset,
then the calculated axis appears to move. From Braune and
Fisher in 1891,1 until at least the 1970s, researchers had based
their calculations on this assumption.5,32

The second argument against the instant center of motion
theory is that, for most human articulations, the simplest artic-
ular surface shape has evolved to produce the most efficient
movement. A circular articular surface with a fixed axis, such
as occurs in the ankle,34,35 shoulder,36-38 elbow,39 and hip,40

satisfies this requirement. A constantly moving axis is ineffi-
cient because the movement of inertia is also constantly chang-
ing. However, the instant center of motion theory prevailed
until recently.7-9

Contemporary movement toward the concept of a fixed
flexion-extension axis began in the field of total knee arthro-
plasty. The dynamic growth in knee arthroplasty in the 1970s
required that knee kinematics be understood for prosthetic
design. The prosthesis must possess the stability and flexibility
characteristics of the knee,33,41 and the axes of the knee must be
reproduced as closely as possible, because malalignment had
been associated with loosening and accelerated wear of pros-
theses.33 Either the posterior femoral condyles or the epicon-
dyles42 were used as landmarks for alignment. These land-
marks define the posterior condylar axis and the epicondylar
axis of the knee (fig 2). Use of the epicondylar axis to align the
prosthesis during surgery indicated that a conceptual shift was
taking place in the view of knee kinematics at this time. These
researchers and surgeons were beginning to consider a fixed
flexion-extension axis.41,43-46

Derivation of the Flexion-Extension Axis by Using
3-Dimensional Imaging Technology

Progress in imaging and computational technology have
enabled major advances in analysis of the geometry of the
knee. MRI, radiostereometry, and cine computed tomography
provide the ability to build 3-dimensional models of
knee motion and computer representations of the articular
surfaces,41,44,47-52 but with the aim of improving prosthetic
design, rather than kinematic analysis.

The theory of a fixed axis of motion offset to the sagittal
plane29 was tested in vitro20 by using an engineering tool, the
“axis finder.” Although this research was performed on a small
sample, and the technique simple, the accuracy of the technique
was excellent, and the conclusions have been supported by
subsequent studies. The work of Hollister et al20 supported the
concept of a fixed axis of flexion in the knee offset to the
sagittal plane by 7°, and with a second and independent axis for
the longitudinal rotation of the knee. After this, further research
in vitro was performed combining MRI to analyze movement
and anatomic study to analyze geometry.25,53,54 This work has
been followed up by using open-field MRI to analyze knee
motion of volunteers sitting, standing, and squatting. This in
vivo research will be discussed later.

The in vitro research has led to the development of a model
of the tibiofemoral joint with 3 independent axes of motion,
about which the knee moves during different kinematic events.
These 3 axes are as follows.

One, the posterior condylar axis is effective from 15° to 150°
of knee flexion. This axis passes through the origins of the
medial (MCL) and lateral collateral ligaments (LCL) and
passes through the intersection of the cruciate ligaments.20,21 It
closely approximates the epicondylar line45 and is offset from
the sagittal plane by 7° (fig 3).

Two, as the knee reaches extension, the axis of motion shifts
from the posterior condylar axis to the distal condylar axis. The
flattened distal femoral condyles are in contact with the tibial
plateau as the knee extends. The radius of this curve is much larger
than the patellar or posterior condylar radii, locating the distal
condylar axis proximal to the roof of the intercondylar notch.21

Three, the longitudinal axis of rotation of the knee is con-
trolled more by the ligaments and tibial geometry of the knee
than by the femoral geometry. Its derivation will be discussed
in the next section.

There is an independent axis for the patellofemoral joint, which
is anchored by the patella retinaculum.21 However, patellofemoral
biomechanics are beyond the scope of this review.

Fig 2. Diagram of the axial view of the right distal femur as seen
from below by the surgeon during total knee arthroplasty with the
knee flexed at 90°. The posterior condylar angle is the angle be-
tween the posterior condylar surfaces and the surgical epicondylar
axis, defined by using the medial and lateral epicondyle. From:
Berger RA, Rubash H, Seel M, Thompson W, Crossett L. Determin-
ing the rotational alignment of the femoral component in total knee
arthroplasty using the epicondylar axis. Clin Orthop 1983;Jan(286):
40-7. Lippincott Williams & Wilkins. http://www.lww.com. Re-
printed with permission.42

Fig 1. Anatomically sagittal diagram of the medial and lateral
femoral condyles. The axis of knee flexion and extension or “instant
center” moves as the knee flexes, following a predictable pathway.
Here the instant center pathway is shown for the tibiofemoral joint
and the patellofemoral joint for the medial and lateral femoral
condyles. The distance from the instant center to the joint surface is
the radius of curvature, which appears to vary throughout knee
flexion.5 NOTE. The radius of curvature m to m� ranges from 17 to
38mm for the medial femoral condyle; the radius of curvature n to
n� ranges from 12 to 60mm for the lateral femoral condyle. Legend:
m to m�, instant center pathway for tibiofemoral joint; m� to m�,
instant center pathway for patellofemoral joint; t, anterior limit of
tibiofemoral contact; n to n�, instant center pathway for tibiofemo-
ral joint; n� to n�, instant center pathway for the patellofemoral
joint. Reprinted with permission.5
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DERIVATION OF THE AXIS OF LONGITUDINAL
ROTATION OF THE KNEE

Methods used to derive the flexion-extension axis were
applied to the longitudinal axis of the knee: in vivo by applying
the method of Reuleaux to radiographs,5,6 in vitro using the
“axis finder,” 20 or biplanar photography55 by using MRI56 and
radiostereometry.50 However, wide variations in interpretation
still exist. There are aspects of asymmetry to the anatomy of
the knee that determine the freedom and control of its longi-
tudinal rotation. Although there are distinct medial and lateral
tibiofemoral compartments, there are important differences that
render the knee asymmetrical. The angle of the femur to the
tibia is slightly valgus.57 The articular surface of the medial
condyle is shorter and wider than the lateral condyle (fig 4).58

As a result of this asymmetry, rotation around the longitudinal
axis of the knee occurs during knee flexion and extension.

Details in the asymmetry of the tibial plateau contribute to
the longitudinal rotation. The medial tibial plateau is slightly
concave and deepened by the medial meniscus.57 The lateral
tibial plateau is saddle-shaped, that is, concave laterally and
convex anteroposteriorly. The lateral meniscus provides con-
gruity for the femoral condyles, but the ligamentous restraints
of the lateral meniscus permit some mobility. The net result of
the saddle-shaped lateral tibial plateau and the concave medial
plateau is to center the axis of longitudinal rotation of the knee
through the medial side of the knee.25,59

The differences between the medial and lateral menisci
further illuminate the concept of longitudinal tibial rotation.
The ligamentous tether to the tibia is flexible enough to allow
the menisci to slide anteroposteriorly with knee motion. The
medial meniscus has a deeper femoral surface and is more
firmly anchored than the lateral meniscus. The lateral meniscus
is permitted more mobility by its restraining ligaments.30 In
vivo MRI studies have observed that the lateral meniscus
displaces posteriorly as much as 2 times further than the medial

meniscus on knee flexion,60,61 suggesting that the longitudinal
axis of rotation is medially located.

Attempts to map the longitudinal axis have resulted in wide
variations in interpretation. Cadaveric studies have described a
fixed longitudinal axis passing through the medial femoral
condyle,30 through the intercondylar imminence20,62 (fig 5), or
as an instant center.55 In vivo studies have shown longitudinal
rotation occurring throughout the range of knee flexion by
using MRI to measure the displacement of the menisci60,61 and
by measurement of bony landmarks.63 However, even with
3-dimensional imaging, the location and nature of the axis have
been difficult to describe with consistency.

Evidence of the importance of the longitudinal axis of rota-
tion of the knee is illustrated by the development of knee
prostheses. Early knee prostheses were designed to constrain
longitudinal rotation of the knee, but became loose or broke
under this constraint. Mobile bearing knee prostheses have
allowed longitudinal rotation around a centrally located axis,
with better longevity of the prosthesis.64 Recently, a knee
prosthesis has been designed with the medial compartment
acting as a ball-and-socket joint and the lateral compartment as
an outrigger, but it has not yet been in use long enough to show
whether drawing the longitudinal axis of the knee medially
reduces wear and thus extends the life and function of the
prosthesis.65

The wide variation of opinion regarding both the location of
the axis of longitudinal rotation, and whether the axis is fixed
is because of the axis being subject to many more factors than
just the bony architecture. The bony architecture could be used
reliably to derive the flexion-extension axis of the knee, so
cadaveric dissection experiments and in vivo experiments of
passive or active knee motion could give consistent results. The
longitudinal rotation axis, by contrast, is subject to the influ-

Fig 4. The anatomy of the flexed knee showing the asymmetry of
the joint. Ant., anterior; lig., ligament; post., posterior. Reprinted
with permission.58

Fig 3. Diagram representing the 2 flexion axes of the knee. Abbre-
viations: EF, extension facet, with the corresponding distal condylar
facet; FF, flexion facet, with the corresponding posterior condylar
axis; TAF tibial articular facet, where the lateral femoral condyle
articulates with the tibia; M, medial; L, lateral. Reprinted with per-
mission.25
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ence of the bony architecture in addition to the effect of
ligamentous restraints, load-bearing forces, and muscle activ-
ity. It is therefore necessary to review these factors before
drawing conclusion about the nature of the longitudinal rota-
tion axis in the knee.

ROLE OF THE KNEE LIGAMENTS IN
DETERMINING KNEE KINEMATICS

Galen in 160 AD described the role of ligaments as support-
ing structures, stabilizing the joints and preventing abnormal
motion. Since then, the knee ligaments have been subject to
rigorous scrutiny, probably because the knee derives its stabil-
ity from ligament structures, rather than its bony architecture.
Much of the current understanding of the guidance of knee
motion by the knee ligaments is based on the work of Brantigan
and Voschell in 1941.30 They observed that the MCL, LCL,
and ACL were taut in knee extension, but the LCL slackened
in flexion. They observed tension in different regions of the
MCL as the knee flexed. Both cruciates appeared taut, although
not tense, throughout flexion. Advances in technology and
biomechanics have enabled modeling of the various bundles
and fascicles within the structure of the ligaments, and descrip-
tion of their roles during knee movement.66-68 Belief that the
cruciate ligaments were isotonic through flexion have been
superseded by the concept of ligament loads shifting between
intraligamentous bundles at different stages of knee move-
ment.69,70

The most recent role designated to the knee ligaments is to
act as the fulcrum for the axes of motion.21 This is made
possible by the ability of discrete ligament bundles within the
major ligaments to maintain steady tension while the ligament
twists during movement.67,70 This is particularly true of the
MCL and ACL. Frankel et al32 found damage to joint structures
resulted from pathologic shifts in the axis of rotation in the
sagittal plane. Radiostereometry studies have recorded the
change in the longitudinal rotation after ACL injury, with the
assumption being that this change is implicated in the genesis

of osteoarthritis in the injured knee.71-73 Further 3-dimensional
research is required to determine the effect of ligament damage
on the axis of motion and resultant in vivo knee kinematics.

INTEGRATING THE BONY GEOMETRY AND
LIGAMENT RESTRAINT IN THE KNEE

The passive motion characteristics of the knee are deter-
mined by the bony architecture and the ligament structures
working in concert. The geometry of the femoral condyles,
together with the direction of action of the ligaments, control
the flexion and extension motion and determine the location of
the flexion-extension axis of rotation. The flat shape of the
tibial plateau surfaces, the relative mobility of the menisci, and
the action of the ligaments of the knee determine the motion
pathway of the femoral condyles on the tibial plateau.

Several models have attempted to integrate the structure and
function of the knee, ranging from a hinge at its most simplis-
tic, to a complex roll-glide mechanism.5,11,13 The knee does not
purely glide on the tibia, as evidenced by the position of the
femoral condyle at the end of flexion seated posteriorly on the
tibial plateau. Nor does it purely roll, because the articular
surfaces of the femoral condyles are much longer than the tibial
plateau11 (fig 6).

Four-Bar Linkage
The four-bar linkage theory defines the 4 rigid links as the

ACL and PCL and the bony structure of the femur and tibia.
This model married cruciate ligament isometry with the roll-
glide pattern of knee motion.11,13 It has been a useful theory in
modeling the placement of grafts in reconstruction surgery.74 It
has also provided a model to explain the appearance of roll
back of the femoral condyles on the tibial plateau, which is
seen on plain radiographs32,75 and fluoroscopy76 (fig 7). Roll
back was therefore incorporated into the design of knee pros-
theses and was the basis of the posterior cruciate retaining
prosthetic designs.12,77-79 Recently, however, studies66,70 of the
biomechanics and histology of the knee ligaments have enabled

Fig 5. The location of the rotation axes of the knee. (A) Diagrammatic representation of axes in anteroposterior (AP) view with axis parallel
to the plate. A is the angle the flexion-extension (FE) axis makes with the shaft of the femur (mean, 84°); B is the angle between the
flexion-extension and left-right (LR) axes in the AP plane (mean, 88°). C is the angle between the longitudinal rotation (LR) axis and the tibial
plateau (mean, 89°). (B) Diagrammatic representation of axes in sagittal view with x-ray beam parallel to the flexion-extension axis. E is the
angle between the LR axis and the tibial plateau in the axial lateral plane (mean, 85°). From: Hollister A, Jatana S, Singh A, Sullivan W,
Lupichuk A. The axes of rotation of the knee. Clin Orthop 1993;May(290):259-68. Lippincott Williams & Wilkins. http://www.lww.com.
Reprinted with permission.20
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more accurate kinematic modeling. To describe the cruciates as
isometric may be an oversimplification.70,80 Study into the
tensions in the various fascicles of the cruciate ligaments
during knee flexion has enabled better understanding of their
dual roles in controlling rotation and tibiofemoral stability in
the terminal extension of the knee as compared with flexion.
When performing knee reconstruction, surgeons have also
found that ACL graft tension is highly dependent on knee
position, and they have found more flexibility in graft place-
ment than is expected under the four-bar linkage model.74

Role of the ACL and Screw-Home Mechanism
The stability of the knee in extension is thought to be more

because of ligament restraint than the bony architecture.11 Knee
extension is characterized by increasing tension in the MCL,
LCL, and ACL and the checkrein effect of the posterior cap-
sule.11 The increased radius of curvature of the distal femoral
condyle increases the distance between the articular surfaces
and the ligament origins, thus creating tension in these liga-
ments and decelerating the joint. The stability of the extended
knee is therefore highly dependent on ligament integrity.

The external rotation (or screw-home) of the tibia in terminal
extension of the knee provides a further check to extension.11

This passive phenomenon was thought to be because of tension
of the ACL at the limit of extension, causing external rotation
of the tibia.5,81 The asymmetry of the femoral condyles also
contributes to the terminal rotation: the longer medial femoral
condyle continues to roll after the lateral condyle has reached
its limit of motion.5,30 The curve of the intercondylar notch of

the medial femoral condyle forces the tibia to rotate as it glides
against the tibial spine.82

However, Blankevoort et al16 and La Fortune et al83 found no
evidence of screw-home in vivo. Blankevoort suggested that,
within the envelope of passive motion, which characterizes the
knee, there is a pattern of joint motion for each specific task,
which is a combination of the passive motion characteristics
and the external loads of muscle forces and weight bearing.
Therefore, screw-home can be overcome by external forces
during active movement.16,83,84

The description of the screw-home mechanism implies that
the external rotation of the tibia is restricted to terminal exten-
sion. However, recent work on the longitudinal axis of rotation
in the tibia shows that the rotation of the tibia during knee
extension is a continuation of the rotation that occurs through-
out the range of knee movement from flexion into terminal
extension.20,26

NORMAL MOTION PATHWAY OF THE
TIBIOFEMORAL JOINT

The ability to reconstruct 3-dimensional interpretations of in
vivo knee kinematics using MRI has led to review of knee
kinematics theory by permitting separate analysis of the medial
and lateral compartments and accurate alignment with the axes
of motion.23,24 Todo et al23 analyzed MR images perpendicular
to the flexion-extension axis, rather than sagittal images. They
concluded that roll back, if present at all, is small, perhaps
2mm, and can be suppressed in either the medial or lateral
compartment by the longitudinal rotation of the knee (fig 8).

Fig 6. Roll and glide move-
ments of the femoral condyle.
(A) Pure rolling motion: the fe-
mur rolls off the tibial plateau
before full flexion is complete.
(B) Pure sliding motion: the fe-
mur impinges the posterior
tibial plateau before full flex-
ion is achieved. (C) Combined
rolling and gliding of the fem-
oral condyles allows full range
of flexion. Reprinted with per-
mission.11

Fig 7. Schematic representa-
tion of the knee as a four-bar
linkage system showing pos-
terior displacement of the
point of tibiofemoral contact
with flexion. Reprinted with
permission.11
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The study was limited by small sample and small effect size
and by positioning the subjects in side lying, possibly increas-
ing medial ligament tension. However, the results have been
reproduced by subsequent research.26,85

Motion of the femoral condyles on the tibial plateau can be
explained by the longitudinal rotation of the knee. The knee
rotates about its longitudinal axis simultaneously with flexion
about its flexion-extension axis (in helical motion)50 through-
out knee flexion.86 The medial location of the longitudinal axis
results in a greater posterior displacement of the lateral femoral
condyle than the medial femoral condyle during knee flex-
ion.23,87

Our team performed a similar mapping of the tibiofemoral
contact points in a closed kinetic chain “ legpress.” 87 Tib-
iofemoral roll was shown from knee extension to 30° of flex-
ion, then from 30° to 90° of flexion the knee showed more
femoral gliding on the tibial plateau. However, the axis of
longitudinal rotation did not appear to pass through the medial
tibial plateau, as it has with open kinetic chain studies. This
suggests the longitudinal rotation of the knee was constrained
by the placement of the feet in the closed chain position. Other
research has also shown the constraint of longitudinal rotation
by weight bearing.26

Passive Knee Kinematics and Active Motion
Structural characteristics of the knee determine its limits of

flexibility and stability. Within this envelope of passive motion
the muscular forces and weight-bearing loads imposed during
active movement will direct the pattern of knee motion.16 The
muscular forces of the hamstrings and gastrocnemius are able
to control the longitudinal rotation of the knee in flexion, for
example, putting a toe into a sock (open chain) or during a
cutting maneuver (closed chain). Kinematic characteristics
such as screw-home, which are evident in vitro, may not be
shown in vivo, because they can be constrained by the dynamic

forces occurring. Much research in vivo has been plagued by
the problem of inconsistency of movement: subjects stepping
up onto a box will step up 5 times, in 5 different ways. This is
because many variations of active movement are available
within the envelope of passive motion of the knee. The longi-
tudinal rotation of the knee may not be a fixed axis, as occurs
with the flexion-extension axis, because it is influenced less by
the bony anatomy of the knee, and controlled by the summation
of passive soft tissue structures and dynamic forces occurring
around the knee. Thus, the location of the longitudinal rotation
axis of the knee differs for each activity.

CONCLUSION

Several concepts of knee kinematics have been used to
explain the relationship between the structure of the knee and
its movement characteristics. The major paradigm shift in
recent years was from the instant center of motion theory to
fixed axes of motion. Three-dimensional imaging and com-
puter modeling have made possible analysis of kinematics
parallel to the planes of motion and incorporation of conjoint
rotation. Femoral roll back is now described as the manifesta-
tion of longitudinal rotation during knee flexion. The integrity
of the MCL and ACL are crucial to knee kinematics under this
model, because the restraint provided by the various fascicles
influence knee stability throughout the range of motion. The
model of the knee as a ball-and-socket joint through the medial
compartment, with the lateral compartment acting as an out-
rigger, may be one set of conditions in which the knee can
function, but the axis of longitudinal rotation is more likely to
vary, depending on the dynamic forces of the particular situa-
tion. The designers of knee prostheses must therefore consider,
not the incorporation of roll back into design, but rather the
freedom or control of longitudinal rotation. Knee brace design
likewise must consider the constraint to longitudinal rotation.

Fig 8. The position of femoral condyles on the tibial surface.22 Mean tibiofemoral contact positions of normal knees of (A) 4 female
volunteers and (B) 10 male volunteers. Four positions are shown: early flexion (15° or 20°) with neutral rotation, 90° of flexion with neutral
rotation (90° N), 90° of flexion with internal rotation (90° IR), 90° of flexion with external rotation (90° ER). From: Todo S, Kadoya Y, Moilanen
T, et al. Anteroposterior and rotational movement of the femur during knee flexion. Clin Orthop 1999;May(362):162-70. Lippincott Williams
& Wilkins. http://www.lww.com. Reprinted with permission.23
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Structure and function of the ACL 

Anatomy 

The anterior cruciate ligament (ACL) arises from the lateral femoral condyle on its medial 

surface (Jobe and Wright 1994). The fibres run with a lateral twist to the tibia. The tibial 

insertion is oval-shaped and the ligament inserts over a wide area at the tibial eminence. The 

ACL is described as having two or three bundles, although often these bundles are not grossly 

discernable (Dye and Vaupel 2000). The bundles are defined by the tibial attachment: the 

anteromedial bundle, the posterolateral bundle (Girgis et al. 1975) and sometimes an 

intermediate bundle (Dye and Vaupel 2000). The complex twisting geometry and discrete 

fibre bundles allow the ACL to be functional over a wide range of flexion and rotation angles 

(Woo et al. 1994). 

The role of the ACL as a primary and secondary restraint 

The ACL is the primary restraint to anterior tibial displacement in the knee (Butler et al. 

1980). The ACL resists the anterior component of the quadriceps mechanism load, thus 

stabilising the knee joint (Boden et al. 2000). The ACL is also a primary restraint to medial 

tibial translation (Woo et al. 1994). A secondary role of the ACL is to control the coupled 

rotation of the knee during flexion and extension (Lane et al. 1994; Anderson and Dyhre-

Poulsen 1997). The attachment to the medial side of the lateral femoral condyle provides a 

rotary component to the tension in the ligament (Brantigan and Voschell 1941; Markolf et al. 
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1990). In terminal extension of the knee the ACL acts to produce some external rotation of the 

tibia in the final locking or screw-home of knee extension (Hallen and Lindahl 1966; Fuss 

1992).  

Tension in the anteromedial and posterolateral bundles  

There has been lack of agreement regarding the tension in the bundles of the ACL. Every 

combination of tension in flexion, tension in extension and tension midrange has been 

proposed by various research groups. Brantigan and Voschell in 1941, described the entire 

ACL as taut in extension and relaxed in knee flexion (Brantigan and Voschell 1941). 

However, his study was limited to manual manipulation of cadaver sections. France et al 

(1983) using strain gauges, found the anteromedial bundle of the ACL was under little tension 

in knee extension, peak tension at 70° and relaxed again further into flexion (France et al. 

1983). The posterolateral bundle was under peak tension at 0°, slackened towards 70° and 

tightened again beyond 100° knee flexion. This pattern of ligament tensioning midrange has 

not been supported by other authors. This lack of support could be because strain gauges are 

sensitive to temperature variations, which are complex to account for or because the unloaded 

knee is capable of a wide variety of kinematic patterns. Markolf et al (1990) found the 

anteromedial bundle was under peak tension at 0° and relaxed to zero by 20°, but between 20° 

and 90° there were erratic strain patterns in the anteromedial bundle (Markolf et al. 1990). 

These conflicting experimental results regarding tension in the bundles of the ACL were 

clarified by later research enabled by advances in experimental design and the development of 

constrained testing machines fitted with force and direction sensors.  
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Constrained testing machines have enabled in vitro studies that simulate directional forces 

acting across the knee joint. The advantage of customised testing jigs is that test conditions 

can be strictly controlled. Force, direction and displacement can be recorded accurately. The 

contribution of each ligament or portion of a ligament to restraint, can be calculated by testing, 

sectioning the ligament and retesting. Ligaments may be sectioned in different sequences to 

distinguish the roles of primary and secondary restraints. Experiments using the Oxford rig 

(Markolf et al. 1990; Shoemaker and Daniel 1990; Zavatsky 1997) were able to record the 

loads through various ligaments during a simulated stance phase of gait. Freedom of motion 

could be permitted or constrained at the knee in prescribed directions. Displacement could 

then be measured and compared to directional loads while the ligaments were sectioned in 

sequence (Pizziali et al. 1980; Lipke et al. 1981; Fukubayashi et al. 1982; Grood et al. 1988; 

Shoemaker and Daniel 1990). Thus, the relative contributions of ligaments could be derived. 

This method has developed as technology has progressed. Now six-degrees-of-freedom 

motion and load sensing can be permitted (Rudy et al. 1996). This six-degrees-of-freedom jig 

has been named the Robotic Universal Force Moment Sensor (UFS). Motion with six degrees-

of-freedom also permits coupled movements to be analysed: the result of ACL sectioning was 

laxity in anterior translation and internal rotation of the knee (Rudy et al. 2000).  

The primary and secondary restraint roles of the ACL were derived from experiments with the 

Oxford rig and robotic UFS (Butler et al. 1980; Woo et al. 1994; Livesay et al. 1995; Sakane 

et al. 1996; Livesay et al. 1997; Sakane et al. 1997; Sakane et al. 1999; Woo et al. 1999). 

Under an anterior load of 100N applied to the tibia, the in situ load in the ACL exceeded the 

applied load (up to 129N: (Takai et al. 1993). The distribution of the load between the 

anteromedial and posterolateral bundles varied with the knee flexion angle: in extension the 



 40

load was evenly distributed between the bundles, but at greater than 45º flexion the load was 

borne through the anteromedial bundle alone (Takai et al. 1993; Sakane et al. 1997).  

In vivo experiments have also been performed to determine the tension in the anteromedial 

bundle of the ACL, using strain gauges implanted under local anaesthetic in consenting 

volunteers (Beynnon et al. 1990; Fleming et al. 1993; Beynnon et al. 1995; Beynnon et al. 

1997; Beynnon and Fleming 1998; Fleming et al. 1998). These experiments recorded the 

strain in the anteromedial bundle of the ACL during functional activities including cycling 

(Fleming et al. 2002), active knee motion and rehabilitation exercises (Beynnon et al. 1995; 

Beynnon et al. 1997). The anteromedial bundle of the ACL consistently bore higher tension in 

knee extension, the tension decreasing with increasing knee flexion.  

The consensus at present from in vitro testing, is that tension in the anteromedial bundle of the 

ACL remains relatively constant through knee flexion, whereas the posterolateral bundle 

relaxes as the knee flexes (Dye and Vaupel 2000). On the contrary, the in vivo tests tend to 

suggest that tension in the anteromedial bundle decreases as the knee flexes (Beynnon et al. 

1997). This difference may be accounted for by other dynamic forces acting across the knee in 

vivo, such as joint compression and muscle loads. The effect of these dynamic forces will now 

be discussed. 

The role of the ACL in stabilising the knee during dynamic activities is relevant for exercise 

prescription post-injury or reconstruction. The quadriceps tendon exerts an anteriorly directed 

load on the tibia, particularly in the early part of knee flexion, for which the ACL is the 

primary restraint. In vitro and in vivo studies have found that quadriceps activation produces 
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an anterior shear force at the tibial plateau in knees between 0º and 45° flexion (Arms et al. 

1984; Hsieh and Draganich 1998; Li et al. 1999). However, between 60º and 90° the resultant 

force of the quadriceps was a posterior shear force (Smidt 1973; Howe et al. 1990; Beynnon 

and Fleming 1998). The strain produced in the ACL by quadriceps activity may be countered 

by co-contraction of hamstrings muscles or increasing joint compression (O'Connor 1993). 

Activation of the hamstrings muscles reduced the anterior shear force produced by quadriceps 

muscles in mathematical models of knee activity (O'Connor 1993; MacWilliams et al. 1999; 

Pandy and Shelburne 2000; Toutoungi 2000). However, in vivo, Beynnon et al (1995) found 

that activation of hamstrings muscles was not able to fully eliminate the ACL strain during 

open-chain exercises. Beynnon et al (1995) concluded there was less strain on the ACL if 

quadriceps muscle strengthening exercises were performed at greater than 60° knee flexion or 

with hamstrings muscle co-contractions between 35º and 60° knee flexion.  

Joint compression may also reduce the strain on the ACL during physical activity (McGinty 

2000). In vitro the knee has more stability when joint compression is applied (Markolf et al. 

1981), implying that joint compression, such as occurs during closed-chain exercises, would 

protect the joint from shear forces. Closed-chain exercises are those where the kinetic chain is 

closed by fixation of the foot to the ground or another solid structure, enabling joint 

compression due to body weight and ground reaction forces to occur (Fu et al. 1992). Open-

chain exercises are those where the foot is free, for example, non-weight bearing exercises and 

the forces across the joint are muscular. In vivo, closed-chain exercises result in less ACL 

strain than open-chain exercises (Wilk et al. 1996; Escamilla et al. 1998). Anterior tibial 

translation is reduced in joint compression conditions, which suggests that joint compression 

can be used to protect the ACL from strain (Torzilli et al. 1994). Rehabilitation protocols for 
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patients following ACL injury or reconstruction have therefore been designed to protect the 

ACL from strain by combining joint compression, closed-chain conditions and 

quadriceps/hamstrings muscles co-contraction (O'Connor 1993; MacWilliams et al. 1999; 

McGinty 2000; Toutoungi 2000). 

 

Kinematics of the ACL-deficient knee in vitro 

In vitro studies have shown that the knee kinematics change when the ACL is sectioned. In the 

absence of the ACL the knee has additional anterior and rotational laxity (Butler et al. 1980; 

Lipke et al. 1981; Anderson and Dyhre-Poulsen 1997). Secondary restraints to anterior and 

rotational motion become important for stability and are subject to increased or unusual strain 

(Butler et al. 1980). The secondary restraints to anterior translation are the medial meniscus 

(Allen et al. 2000) and the medial collateral ligament (MCL) (Markolf et al. 1976; Butler et al. 

1980). The role of the ACL was derived from in vitro studies where the ACL was sectioned 

before and after the MCL (Markolf et al. 1976) and before and after meniscectomy (Markolf et 

al. 1976; Allen et al. 2000). The medial meniscus, for example, is subjected to significantly 

greater strain after the ACL is sectioned. The strain on the medial meniscus is greatest at 60° 

knee flexion (Allen et al. 2000). The MCL is also subject to increased strain after the ACL is 

sectioned, particularly from 0º to 45° (Markolf et al. 1976). The MCL is the primary restraint 

to valgus rotation, but is also the secondary restraint to anterior translation and medial 

translation in the ACL-sectioned knee, particularly in knee extension (Woo et al. 1994). 

Further into knee flexion the medial capsule also contributes. In the ACL-sectioned knee the 
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MCL and medial meniscus become important as the secondary restraints to anterior translation 

and internal rotation. They are therefore also vulnerable to increased strain loading (Allen et 

al. 2000). Thus, the kinematics of the ACL-deficient knee are characterised by increased joint 

laxity during motion and loading conditions and the roles of the secondary restraint structures, 

particularly the MCL and medial meniscus are emphasised.  

 

Kinematics of the ACL-deficient knee in vivo 

Recent advances in technology, particularly radiography and in data transformation, have 

enabled in vivo imaging to move from two to three dimensional images and improve in 

accuracy. The new technologies have enabled advances in the understanding of normal knee 

kinematics, as was described in Chapter 2. They have also been applied to the study of 

kinematics of ACL-deficient knees. It is logical at this point to describe the methods that have 

been used for the study of in vivo knee kinematics and then to describe their findings. 
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Methods of kinematic analysis in vivo  

In vivo studies of kinematics in the ACL-deficient knee have been conducted in order to 

understand the resultant pathological motion and to assess the effectiveness of interventions 

such as surgery and bracing. These studies have used a variety of methods including non-

invasive electrogoniometry (Alkjaer et al. 2002; Beynnon et al. 2003); highly invasive 

implants into the tibia and femur using intracortical pins as bone markers for the measurement 

of kinematics from 3-dimensional video footage (La Fortune et al. 1992; Ramsey et al. 2001) 

or tantalum pellets imaged by roentgen stereo photogrammetry (RSA)(Karrholm et al. 1988a; 

Brandsson et al. 2001). MRI has not yet been used to examine ACL-deficient knee kinematics. 

These kinematics studies have enabled an understanding of kinematics of the ACL-deficient 

knee, in particular the differences in translations and rotations that occur in the knee 

unconstrained by the ACL. 

2-dimensional analysis of kinematics 

Some of the earliest investigations of kinematics in ACL-deficient knees were performed 

using plain x-rays, as this was the best available technology at the time for direct visualisation 

of the knee (Frankel et al. 1971). Plain x-rays use accessible technology but are limited to still 

images at intervals of knee flexion, not motion. Measurement of longitudinal rotation is not 

possible from x-rays because the two femoral condyles are superimposed and there are 

inadequate tibial landmarks in the images. 

Fluoroscopy produces a 2-dimensional image, but records images rapidly (10 frames per 

second), so that motion is recorded. Banks and Hodge (1996) initiated the use of this method 
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of kinematic analysis in normal and replaced knees (Banks and Hodge 1996).The technique 

was developed subsequently to assess the effect of ACL and PCL sectioning on kinematics 

after total knee arthroplasty (TKA) (Dennis et al. 1996). Researchers have found fluoroscopy 

to be limited due to its 2-dimensional nature and poor image resolution. The method has been 

refined by computer-assisted image fitting, that is, by superimposing images of knee 

prostheses or 3-dimensional computerised tomography images, in order to improve the 

accuracy of the technique (Banks and Hodge 1996; Dennis et al. 1998; Stiehl et al. 2001; 

Komistek et al. 2003). The technique is currently being used to describe kinematics in 

prosthetic knees (Bellemans et al. 2002; Komistek et al. 2003). 

3-dimensional analysis of kinematics 

Biplanar video 

To investigate the 3-dimensional nature of knee kinematics, technologies such as biplanar 

video, electrogoniometry and biplanar x-ray techniques have been used. Biplanar video 

analysis with skin markers has the advantages of being non-invasive, not involving radiation 

and it is easily synchronised with other data collection, such as electromyography (EMG) and 

force platform data (Wexler et al. 1998; Chmielewski et al. 2001; Alkjaer et al. 2002; Hollman 

et al. 2002; Georgoulis et al. 2003). Using this combination of data it is possible to build up a 

model of kinematics and kinetics in vivo. Motion of the subject is not inhibited by this 

method, so that activities such as walking, jumping, running and stair climbing are possible. 

The primary disadvantage in this method of video analysis is that the skin markers move 

independently of the underlying bone. As a method of kinematic research it is indirect and 

consequently lacks accuracy. There has been a modification of the method, using point 
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clustering to define a body segment (Andriacchi et al. 1998) and this improves its accuracy. 

Another problem with using biplanar video for kinematic study of the knee, is that the model 

used for analysis of kinematics usually defines all joints as spherical socket joints (Wexler et 

al. 1998), which is inaccurate. The model may be built with the knee as a multiaxial joint 

(Hollman et al. 2002), but this model is insufficient to describe the axes of rotation at the knee. 

Because of these limitations (movement of the skin markers and the simplistic model of the 

knee), the method is not able to measure the finer details of knee motion, such as anterior 

translations, longitudinal rotations and tibiofemoral contact behaviour. Despite the limitations 

of video analysis, it is still very useful, because it is able to describe kinematics and kinetics in 

ACL-deficient knees during a wide variety of functional activities.  

A variation of biplanar video techniques using skin markers, is biplanar video with bone 

markers (La Fortune et al. 1992; Ramsey et al. 2001). In this method, intraosseous pins are 

implanted into the tibia and femur under local anaesthetic (Figure 1). Three-dimensional 

positional data is recorded by up to six high-speed video or infrared cameras. Digital analysis 

provides accurate and reliable kinematic information. This method has been used only in small 

numbers of subjects, because of its highly invasive and painful nature and consequent high 

risk to subjects (La Fortune et al. 1992; Iishi et al. 1997). Non-invasive methods may be less 

accurate in some cases, but have advantages in ease of use and low risk to subjects. 
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Figure 3.1: View from one of the high-speed video cameras as a subject walks with three point-

markers attached to tibial, femoral and patella intraosseous pins (La Fortune et al. 1992).  

Electrogoniometry 

Electrogoniometry is a non-invasive, in vivo method of analysis, which purports to enable six- 

degrees-of-freedom in analysis of knee motion (Marans et al. 1989; Yack et al. 1994; Vergis et 

al. 1997; Kvist and Gillquist 2001; Vergis et al. 2002; Witvrouw et al. 2002). It is low risk to 

volunteers as it is non-invasive and involves no radiation exposure. However, like video 

analysis, it is an indirect measure and is limited in its ability to characterise motion of the bony 

structures and the electrogoniometry frame is prone to slipping against the skin. Vergis et al 

(2002) recently compared the CA-4000 electrogoniometer with lateral fluoroscopy images for 

measurement of tibial translation. They found a correlation of r = 0.89 between the 

electrogoniometer and fluoroscopic measurements in healthy knees, with lower reliability for 

ACL-injured knees. However, it would have been more rigorous to validate electrogoniometry 
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against image enhanced fluoroscopy or the reference standard in kinematics analysis, RSA 

(Brandsson et al. 2001). Electrogoniometry is non-invasive 3-dimensional method of 

kinematic analysis and as such is a useful tool in the research and clinical environment (Beard 

et al. 2001; Kvist and Gillquist 2001; Kvist et al. 2001; Hollman et al. 2002).  

Roentgen Stereophotogrammetric Analysis (RSA) 

The gold standard for kinematic analysis of the ACL-deficient knee is RSA (Karrholm et al. 

1988a; Jonsson et al. 1989). The ACL-deficient knee was studied using RSA as early as 1988 

by implanting tantalum beads into the tibia and femur during arthroscopy (Karrholm et al. 

1988a; Karrholm et al. 1988b; Jonsson et al. 1989). These beads are more accurate than 

anatomical landmarks from which to reference motion and are fixed within the bone, so they 

do not slip or move independently of the underlying tissues. In vivo kinematics is then 

recorded via biplanar x-ray. The accuracy of this method is reported as 0.2º rotation and 

0.2mm translation (Karrholm et al. 1988a). Sample sizes are limited by this method due to its 

invasive nature and high exposure to ionising radiation. Brandsson et al (2002) reported that in 

subjects performing a step-up, standard deviations in recorded kinematics were ten times 

higher than the measurement error, indicating that variations in performance were markedly 

larger than the error of the method.  

While RSA is considered the gold standard for kinematic analysis, it has distinct 

disadvantages: it is expensive, has limited availability and is invasive. It is an invasive 

technique, requiring transcutaneous implantation of intraosseous tantalum beads under 

anaesthetic (Jonsson et al. 1989; Karrholm et al. 2000). It is suited to subjects having a 
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procedure such as arthroscopy, but difficult to ethically justify in healthy or conservatively 

managed subjects. RSA exposes the subjects to high doses of ionising radiation, which 

increases risk, particularly to young subjects. The tantalum beads are left in situ permanently 

and while the tantalum is an inert material, migration of the beads may be possible. RSA is 

limited to the acquisition rate of the films, usually 2-4 per second, which is quite slow for 

kinematic analysis (Brandsson et al. 2002). Fluoroscopy image acquisition, for example 

operates at 10 frames per second (Komistek et al. 2003) and optoelectrical and video systems 

at 60 per second (Hollman et al. 2002). Due to these constraints, RSA is limited to surgical 

populations, in small sample groups. 

Magnetic Resonance Imaging (MRI) 

Knee kinematics is amenable to study by MRI because it permits clear measurement from 

bony or soft tissue landmarks, the medial and lateral compartment kinematics can be analysed 

separately and 3-dimensional kinematic behaviour of the knee can be reconstructed from the 

layers of images. For example, the ability to acquire images along any plane enables images to 

be selected through the medial compartment of the knee or aligned with any chosen plane or 

axis. It is non-invasive, involves no exposure to ionising radiation and is accessible.  

MRI is of low risk to subjects (Shellock and Kanal 1998; Westbrook 2002). Subjects are 

exposed to three forms of electromagnetic radiation: a static magnetic field, gradient magnetic 

fields and radio frequency electromagnetic fields (Shellock and Kanal 1998). It is necessary to 

exclude subjects with ferromagnetic implants in soft tissues that have the potential to become 

dislodged (such as some earlier aneurysm clips and shrapnel) and electrically or magnetically 
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activated implants (such as pacemakers or cochlear implants) (Shellock and Kanal 1998). 

While MRI is not believed to be hazardous to the developing foetus, safety committees in the 

UK, USA and Australia recommend not using MRI in the first trimester, unless there is a clear 

risk-benefit advantage (Shellock and Kanal 1998; Westbrook 2002). Anxiety may be 

encountered in 5-10% of patients referred to MRI, because of the restricted dimensions of the 

magnetic core and the noise generated (Shellock and Kanal 1998). This anxiety can be 

alleviated by maintaining verbal or physical contact with the subject, calm music, clear 

explanation of the procedure and good lighting. Bearing in mind these precautions for its use, 

MRI remains a useful clinical and research tool.  

Traditionally, diagnostic MRI has required the patient to be prone or supine to enter the 

magnetic core (Todo et al. 1999). Recently interventional and open field MRI have been 

developed to create a vertical open space approximately 450mm wide, between two magnetic 

coils. This enables a subject to stand or perform activities such as a standing squat or a step up 

within the MRI field (Hill et al. 2000). The flexibility of MRI for imaging particular tissues 

and possibilities of positioning in open field MRI has useful applications to study of knee 

kinematics. However, the subjects must remain still during image acquisition. This is the 

greatest limitation of MRI for kinematics at present. 

Image acquisition is becoming faster as new sequences are written for imaging. However, the 

fastest sequences still have an acquisition time of approximately 30 seconds. These sequences 

were developed to image tissues such as the liver, which are influenced by motion of the 

diaphragm so that image acquisition can take place in a breath hold (Behrens and King 2000). 

MRI of the moving knee will be the next advance (Rebmann and Sheehan 2003). The method 
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is being developed whereby a tracking device maintains the scanning plane and a single slice 

image is acquired at a rate of 20 per second (Niitsu et al. 1990; Niitsu 2001). This technique 

still has problems in terms of image resolution, reliability of the plane of the acquired slice and 

difficulty in handling out of plane motion, because a single 2-dimensional image is generated 

using this method. It may be possible to generate 3-dimensional images of the moving knee 

with reliable precision in the future, but image resolution and motion artefact on the images 

are presently a problem (Rebmann and Sheehan 2003). Once these issues are resolved, MRI 

will be able to image true kinematics, rather than a series of still shots.  

 

Summary of findings of kinematics of the ACL-deficient knee in vivo 

Examination of ACL-sectioned knees in vitro demonstrated increased anterior translation and 

internal rotation under loads. This laxity was also seen in vivo in subjects performing a 

standing lunge onto the injured leg (Friden et al. 1993). Furthermore, increased anterior 

translation was correlated with subjects’ complaints of instability. During a step up exercise 

increased anterior tibial translation and internal rotation of the tibia on the injured side were 

recorded by electrogoniometry (Vergis and Gillquist 1998). Electrogoniometry has also 

demonstrated that tibial translation during open chain is greater than during closed chain 

exercises, enabling safer exercise prescription (Yack et al. 1994; Kvist et al. 2001). 
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The kinematic behaviour of the lateral compartment seems to be more affected by ACL 

deficiency than the medial compartment (Brandsson et al. 2001), which also suggests that the 

ACL has a role in rotary stability.  

In one of the earliest RSA studies, Karrholm et al (1988a) studied knee flexion in prone 

subjects with x-rays acquired at 2-4 frames/second. They found that the ACL-deficient knees 

exhibited less internal rotation as the knee flexed than the intact knees (by 2.6º). Karrholm et 

al (1988a) also found the ACL-deficient knee exhibited greater posterior translation of the 

tibia during knee flexion than the intact knee. Translation was measured from the 

intercondylar eminence, as referenced from images of the knee taken with the subject relaxed 

and supine in knee extension. This appears to be counterintuitive, that the tibial intercondylar 

eminence of the ACL-deficient knee would be posterior to the intact knee. However, the 

interpretation could be in the semantics: Karrholm et al (1988a) are not referring to the 

anterior tibial translation laxity of the ACL-deficient knee, but to the motion of the tibia 

referenced to the femur as the knee flexes, that used to be called roll-back. Karrholm et al 

(1988a) concluded that the ACL injury caused a multiplanar instability that had previously 

been unrecognised, with components of instability in the adduction/abduction rotations, 

medial and lateral translation and anteroposterior planes. 

This multiplanar instability was recognised by Brandsson et al (2001), in their analysis of 

ACL-deficient subjects performing a step-up. They found the tibia was more posteriorly 

displaced and externally rotated on the injured side. They analysed the medial and lateral 

femoral condyle position separately and found that the lateral femoral condyle of the injured 

side was displaced more anteriorly. Conversely, the medial femoral condyle was unchanged from 
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the intact side. Thus, the ACL deficiency had more effect on the kinematics of the lateral 

compartment than the medial compartment.  

Tibiofemoral contact point behaviour has been described in the ACL-deficient knee in only 

one study of ten subjects, who demonstrated a wide variation of individual contact patterns 

(Dennis et al. 1996). In some subjects the femur was posterior on the tibial plateau in 

extension compared to normal knees and then paradoxically rolled forward during knee 

flexion. In other subjects the contact began in the normal position on the tibial plateau (quite 

anterior) and then rolled back during early knee flexion and forward again to 90º knee flexion. 

Other subjects had a more normal contact pattern. This fluoroscopic analysis of walking 

kinematics was limited by 2-dimensional information and could not report on rotations in the 

knee.  

It appears that ACL-deficient subjects walking and ascending stairs avoid using their 

quadriceps muscles at heelstrike (Berchuk et al. 1990). This analysis of the kinematics and 

kinetics of gait was achieved by combining biplanar video and force platform data. 

“Quadriceps avoidance gait” appeared logical since quadriceps muscles exert an anterior 

drawer at the knee which ACL-deficient subjects may be attempting to minimise in their gait. 

Beard et al (1996) reproduced this experiment using EMG in addition to video and force 

platform data and found that the quadriceps were working in the same manner in the ACL-

deficient and healthy knees, but in the ACL-deficient knees the onset of hamstrings activity 

was earlier and with activity greater, resulting in a net flexion moment at the knee, protecting 

the knee from anterior translation (Beard et al. 1996). This increased hamstrings activity has 
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been linked to the ability to dynamically stabilise the ACL-deficient knee (Steele and Brown 

1999; Fitzgerald et al. 2000; Chmielewski et al. 2001; Rudolph et al. 2001).  

Kinematics of jumping and landing using video, EMG and force platform data showed 

subjects with ACL-deficient knees delay hamstring muscle activation so that peak hamstring 

activity is more synchronous with initial contact and with the high impact and shear forces that 

occur after initial contact (Steele and Brown 1999). The delayed hamstring activation was 

proposed to be an adaptation developed to stabilize the injured limb against a giving-way 

episode via increased joint compression and posterior tibial drawer. Jumping was also 

examined using intracortical pins (Ramsey et al. 2001). In this study of six subjects, one 

subject lacerated the quadriceps muscle and bent the intracortical pin through the force of his 

quadriceps muscle contraction and in another subject the data were corrupted. The remaining 

four subjects did not provide an adequate sample size for any conclusions beyond a descriptive 

comment on the wide variation in kinematics among subjects.  

However, this study was useful in demonstrating the wide variation in kinematics among 

subjects with ACL deficiency and the small magnitude of change produced by an intervention 

(in this case application of a Donjoy knee brace: dj Orthopaedics, Vista, California). In 

kinematic analysis it is very useful to use the contralateral knee as a healthy control, due to the 

high between-subjects variation, but low intra-subject variation (Smith et al. 1999). However, 

in a highly invasive method such as the use of intracortical pin markers, discomfort and risk to 

the subject are increased if both legs are incised and pinned. Consequently, motion analysis 

using intracortical pins has never been performed bilaterally. 
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Clinical examination of ACL deficiency  

Diagnosis of ACL deficiency in the clinical setting has been founded on the features of 

anterior and rotary instability in the knee. The three most commonly performed clinical tests 

for the diagnosis of ACL deficiency are the anterior drawer at 90º knee flexion with the 

addition of internal or external rotation, the anterior drawer at 30º knee flexion (the Lachman 

test) and the pivot shift test.  

The anterior drawer test is performed by applying a manual anterior force to the proximal tibia 

with the knee at 90º flexion. Addition of internal or external rotation may give added 

information regarding rotational laxity (Sandberg et al. 1986). Sensitivity of the anterior 

drawer test in the alert patient has been reported as 41% (Harilainen 1987). The anterior 

drawer test may be more sensitive in the chronic ACL-deficient knee or knee with injuries in 

addition to the ACL tear. The laxity of the knee in flexion may become more pronounced as 

the secondary restraint structures of anterior stability are lost (Malanga et al. 2003). 

Pivot shift is both a clinical symptom, described by the subject as causing the knee to give way 

and a physical sign that can be elicited on examination (Malanga et al. 2003). The knee is held 

passively in flexion and a valgus and internal rotation force is manually applied, causing the 

lateral tibial plateau to sublux anteriorly (Galway and MacIntosh 1980; Lucie et al. 1984). The 

knee is passively extended until at approximately 30º the displaced tibia reduces (Galway and 

MacIntosh 1980). The pivot shift can also be demonstrated in vitro (Tamen and Henning 

1981; Matsumoto 1990). Quantification of the pivot shift using an electrogoniometer 

demonstrated the pivot shift in stable knees post reconstruction and the subjects’ contralateral 
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asymptomatic knees (Gillquist and Messner 1995). The electrogoniometer appeared to be very 

sensitive in measuring the pivot shift or anterior subluxation of the tibia during a rotation-

extension manoeuvre. Disadvantages of the pivot shift are that it is uncomfortable for the 

subject, who may find it difficult to relax and prevent the pivot occurring. The sensitivity is 

low (0.18 to 0.48) but specificity is high (0.97 to 0.99), meaning that it has good predictive 

value (Scholten et al. 2003). The pivot shift is most reliable in anaesthetised subjects 

(Sandberg et al. 1986). 

The Lachman test has better sensitivity (0.63 to 0.93) and reasonable specificity (0.55 to 0.99) 

(Scholten et al. 2003). The Lachman test is performed by applying an anterior force to the 

proximal tibia with the knee at 30º flexion (Torg et al. 1976). When performed manually, 

internal and external rotation can be applied to the knee to assess rotary components of 

instability. An instrumented quantification of the Lachman test has been developed, using a 

device called the KT1000 (Daniel et al. 1985b). When an anterior drawer is applied to the 

tibia, the displacement of the tibial tubercle is measured, a difference of 3mm or greater 

between the injured and contralateral knee is considered indicative of ACL injury with a 

specificity of 0.85 (Daniel et al. 1985a). Advantages of the Lachman test are its simplicity and 

comfort for the subject. One final interesting consideration is that measured passive anterior 

laxity of the knee has no association with dynamic instability (Friden et al. 1993; Sernert et al. 

1999; Tyler et al. 1999; Patel et al. 2003). The dynamic stabilisation of the knee is produced 

by neuromuscular coordination and may be highly effective in stabilising the knee during 

active movements, despite substantial passive laxity of the knee (Steele and Brown 1999; 

Chmielewski et al. 2001; Rudolph et al. 2001). 
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These clinical tests for ACL deficiency aim to test the anterior and rotary components of 

instability permitted in the ACL-deficient knee. The anterior laxity of the knee is best to 

examine and to quantify at 30º knee flexion, with the subject relaxed, using the Lachman test. 

The rotary components of instability are demonstrated clearly by the pivot shift, but it may be 

best used with restraint as a diagnostic tool.  

 

 

Kinematics of the osteoarthritic knee 

There are some clear relationships between changes to the cartilage, bone and soft tissues of 

the knee and the altered kinematics exhibited. The standing alignment of the knee has been 

linked to the areas of wear on the tibial plateau (Harman et al. 1998). Wear and bony 

remodelling changes the shape of the knee, causing varus or valgus malalignment. As the 

medial compartment collapses the knee drops into varus alignment, especially at 30º knee 

flexion, when the femur is sitting in the deepest wear cupola of the medial tibial plateau. In a 

study of 173 tibial plateaus collected during TKA, wear-patterns of the ACL-intact varus 

knees occurred on the anteromedial aspect of the medial tibial plateau (Harman et al. 1998). 

Wear patterns of the ACL-deficient varus knees were posterior on the medial tibial plateau. 

The ACL-deficient knees showed a wear pattern that was consistent with posterior femoral 

subluxation and posterior tibial contact observed after ligament injury. The varus and valgus 
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knees showed wear at the medial and lateral compartments respectively and the ACL-deficient 

knees showed wear more posteriorly on the tibia plateau (Harman et al. 1998). 

Bone and cartilage changes are also demonstrated by the joint space width appearing greater in 

x-rays in knee extension than in weight-bearing films at 30º flexion (Buckland-Wright et al. 

1995). In healthy knees in knee extension, the femur is positioned above the anterior tibial 

plateau (Todo et al. 1999). As the knee flexes the femur rolls a little more posteriorly. Joint 

space width is narrowest on x-rays when the knee is flexed at 30º because the area of cartilage 

thinning is greatest in this tibiofemoral contact area (White et al. 1991). From this it could be 

surmised that the joint space width is wider in knee extension, narrower at 30º and widens 

again as the femur moves posteriorly out of the area of deepest wear in knee flexion. However, 

there is no research to describe the tibiofemoral contact pattern in the osteoarthritic knee, only 

the position of the femur in healthy knees (Todo et al. 1999; Hill et al. 2000; Iwaki et al. 

2000). It could be that the bone and cartilage remodelling that occurs in knee osteoarthritis 

changes the tibiofemoral contact pattern. 

Remodelling of the bone and cartilage also changes the degree of laxity in the osteoarthritic 

knee. Disease progression has been linked to laxity, especially varus/valgus laxity associated 

with varus/valgus malalignment (Maquet 1976). As the medial compartment narrows, for 

example, the knee develops a varus malalignment, which increases the transmitted load 

through the medial compartment. Increased load bearing in turn increases the wear on the 

medial compartment. In a longitudinal study of 230 subjects the risk of disease progression 

increased four-fold when medial compartment disease was associated with varus alignment 

and risk of disease progression was increased five-fold when lateral compartment 
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osteoarthritic was associated with valgus alignment (Maquet 1976; Sharma et al. 2001). One 

of the solutions to this in the past was high tibial osteotomy, which is able to correct the varus 

alignment and spare the medial compartment from some of the load-bearing by resecting a 

bone wedge from the tibia (Akamatsu et al. 1997). This intervention delayed the progression 

of osteoarthritis in the knee (Maquet 1976). The unicompartmental knee replacement is now 

frequently used in place of osteotomy, restoring the normal joint space width to reduce weight 

bearing through the medial or lateral compartment as appropriate (Callaghan et al. 2000). It 

remains unclear, however, if the valgus laxity is present before the medial compartment 

osteoarthritis or is a result of the osteoarthritis. 

Varus/valgus laxity has been measured in healthy and age matched control subjects and both 

knees of osteoarthritic subjects in order to examine whether increased laxity is the cause or the 

result of the unicompartmental wear. In a cross-sectional study of 69 control subjects and 169 

osteoarthritic subjects, the varus/valgus laxity increased without evidence of osteoarthritic 

change and increased with the severity of the disease (Sharma et al. 1999b). It has been 

suggested that laxity contributes to disease progression (Wada et al. 1996; Sharma et al. 

1999b). Anterior-posterior (AP) laxity and rotational laxity, however, do not seem to be 

proportional to the severity of the disease. AP laxity is highest in the contralateral knee of 

osteoarthritic subjects and those with very early osteoarthritic changes, it then decreases in 

severe osteoarthritis, but does not return to normal age-matched levels (Brage et al. 1994). 

This pattern is similar for internal and external rotation laxity (Brage et al. 1994; Wada et al. 

1996; Sharma et al. 1999a). Another interesting finding from Wada et al (1996) was that 

although most of the subjects had ACL deficiency, they also had decreasing AP laxity as the 

severity of the disease progressed. They concluded that the capsular stiffness and osteophyte 
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growth restricting the passive laxity of the joint was able to override the laxity due to ACL 

deficiency. These studies all measured passive laxity of the knee; kinematics studies can 

confirm whether this passive varus/valgus laxity and AP and rotational restriction are apparent 

in active knee motion. 

Range of motion demands of the osteoarthritic knee, measured with electrogoniometry, 

showed that osteoarthritic subjects used less of their available knee flexion range than normal 

controls performing the same activities (Walker et al. 2001). Functional range did not correlate 

with available range, suggesting that subjects limited joint excursion due to pain on activity. 

Gait analysis has also found that osteoarthritic knees exhibit decreased flexion range during 

gait (Messier et al. 1992; Al-Zahrani and Bakheit 2002). These findings may be dependent on 

severity of the disease, however, as in early osteoarthritis, magnitude of flexion range used to 

ascend and descend stairs and for normal gait was not found to be different (Kaufman et al. 

2001). The range of motion used by the osteoarthritic knee may be limited as much by pain as 

structural limitations (Gok et al. 2002). 

Pain may be responsible for some other characteristics of gait in osteoarthritic subjects, 

including reduced flexion and adduction moments measured through a force platform during 

gait analysis (Hurwitz et al. 1999; Kaufman et al. 2001). The reduced external flexion moment 

recorded during stance phase in osteoarthritic knees is an indication of reduced net quadriceps 

activity (Hurwitz et al. 1999). Osteoarthritic subjects walk and descend stairs with reduced 

quadriceps activity either because the quadriceps are weak or the subjects are attempting to 

reduce joint compression loads by reducing quadriceps activity (Hurwitz et al. 1999; Kaufman 

et al. 2001). Patients with medial compartment osteoarthritis also demonstrate an increased 
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adduction moment during stance phase of gait (Hurwitz et al. 1998; Andriacchi et al. 2000; 

Baliunas et al. 2002). The increased adduction moment is related to the severity of the disease, 

causing an increased load through the medial side of the joint (Sharma et al. 1998) and 

therefore also a higher ratio of medial to lateral bone density (Madsen et al. 1994; Hurwitz et 

al. 1998). The adduction moment at the knee is also related to joint pain: patients in pain 

reduce the adduction moment and patients given non-steroidal anti-inflammatory or analgesic 

medication show an increased adduction moment (Hurwitz et al. 2000). Since a greater 

adduction moment is associated with disease progression, Hurwitz et al question the wisdom 

of prescribing analgesics to patients with medial compartment osteoarthritis (Hurwitz et al. 

1999). Thus kinematics of the osteoarthritic knee is a function of not only the structural 

changes, ligament laxity or alignment of the knee, but also the requirements of patients to 

avoid pain. 

The tibiofemoral contact points in the osteoarthritic knee have not been studied. Two studies 

explored joint loading patterns (Fukubayashi and Kurosawa 1980; Riegger-Krugh et al. 1998), 

but these were both cadaver studies that limited the research question to loading in knee 

extension, not tibiofemoral contact patterns during knee flexion. Two studies found a loss of 

coupled rotation of the knee during active flexion and extension (Koga 1998; Nagao et al. 

1998) and loss of screw-home in osteoarthritis. Indeed, in severe osteoarthritis the knee may 

even internally rotate in terminal extension (Koga 1998). Koga et al (1998) relate this loss of 

rotation to the area of wear observed on the tibial plateau: the larger the area of wear, the less 

rotation present. However, it is not possible to examine the relationship between tibiofemoral 

contact patterns and wear from this study. Further research is required to map the tibiofemoral 
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contact patterns in the osteoarthritic knee and examine the relationship between contact 

patterns and wear. 

 

Measurement of bone mineral density by Dual Energy X-ray 

Absorptiometry 

Measurement of bone mineral density (BMD) is integral to this thesis because it is measures 

the subchondral sclerosis that is an indicator of early osteoarthritis in the knee. BMD can be 

used, not only to compare osteoarthritic subchondral bone to healthy bone, but also to compare 

medial and lateral compartment ratios that indicate the presence of unicompartmental 

osteoarthritis (Madsen et al. 1994). In animal studies, BMD has increased at the same time or 

even earlier than the first detectable articular cartilage changes (Bailey and Mansell 1997; 

Pastoureaux et al. 1999). In particular, changes to the articular cartilage that are evident on 

MRI are indications of already quite advanced osteoarthritic changes (Balkisoon 1996; 

Blackburn et al. 1996; Disler et al. 2000; Murphy 2001). Bone density measurement has the 

additional advantage of being possible through dual energy x-ray absorptiometry (DEXA), 

which is minimally invasive. 

Very early osteoarthritic changes are often examined by histology. Since this thesis includes 

ACL-injured and osteoarthritic subjects who are managed conservatively, surgical retrieval 

and histology of subchondral bone sections is not possible. Subchondral bone changes may be 
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the earliest indicator of osteoarthritic change in the knee and these can be measured by 

radiography (Buckland-Wright et al. 2000) 

Non-invasive methods of measuring BMD include dual photon absorptiometry (Bohr and 

Schaadt 1987; Petersen et al. 1996a), quantified computerised tomography (QCT) (Odgaard et 

al. 1989; Hans et al. 1997; Majumdar et al. 1997) fractal signature analysis of trabecular bone 

(Lynch et al. 1991; Majumdar et al. 1993; Buckland-Wright et al. 1994; Buckland-Wright et 

al. 1996) and DEXA (Casez et al. 1994; Genant et al. 1994; Mottet et al. 1996; Link et al. 

2000; Petley et al. 2000; Abrahamsen et al. 2001; Cure-Cure et al. 2002).  

Dual photon absorptiometry was developed in order to assess osteoporosis in individuals at 

risk of osteoporotic fractures (Hans et al. 1997). Photons are emitted by an injected 

radioisotope, gadolinium 153. Bone and soft tissue absorb the photon energy at different levels 

and relative density can be calculated (Ott 1998). Disadvantages of this method are accuracy 

of only 4-6% and the use of radioisotope, which decays fast and makes for poor test-retest 

reliability. It is also very expensive (Moyer-Metzler and Daniels 1999).  

QCT is highly accurate and reliable (Hans et al. 1997). It can be used to measure small regions 

of interest and it is three-dimensional (Majumdar et al. 1997; Muren et al. 2001). Because it is 

three-dimensional, it is able to measure cortical bone independently of cancellous bone, which 

the two-dimensional absorptiometry methods cannot (Moyer-Metzler and Daniels 1999). The 

disadvantage of QCT is the level of radiation exposure. It is estimated that worldwide CT 

made up 5% of radiological examinations in 2000, but made up 34% of the collective radiation 

dose (United Nations Scientific Committee on the Effects of Atomic Radiation 2000). For 
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example, a skull x-ray delivers a radiation dose of 0.07 mSv, whereas a cranial CT delivers a 

dose of 2.3mSv (European Commission 2000).  

Fractal signature analysis of trabecular bone enables details of trabecular structure to be 

examined, for example, comparison of vertical with horizontal trabecular density may be 

relevant in increased load bearing responses (Lynch et al. 1991; Majumdar et al. 1993; 

Buckland-Wright et al. 1994; Buckland-Wright et al. 1996). To image the fine detail of 

trabecular bone either a digitised image taken from a microfocal radiograph or an MRI is used. 

The digital data is analysed using a fractal pattern. This method is not widely used outside of 

specialised research institutions (Lynch et al. 1991).  

The most commonly used method for assessment and monitoring of osteoporosis is DEXA 

(Casez et al. 1994; Petley et al. 2000; Iki et al. 2001; Cure-Cure et al. 2002). It is non-invasive 

and the technology is widely available. Repeatability is reported to be 0.5 – 2%, but accuracy 

in measuring the true BMD is 5-10% (Szucs and Jonson 1992; Genant et al. 1994; Blake 1996; 

Hans et al. 1997). Possible sources of inaccuracy include inconsistency in measurements 

recorded using different machines (Genant et al. 1994), measurements calibrated against 

phantoms may not represent accuracy in vivo (Blake 1996) and regions of interest that are 

small may result in heterogeneous areas of tissues being sampled by the scanner and lead to 

low repeatability (Szucs and Jonson 1992). Despite these limitations, the availability and low 

radiation dose make DEXA popular for measurement of BMD.  

The principle indication for DEXA is the diagnosis and monitoring of osteoporosis, not knee 

research (Moyer-Metzler and Daniels 1999). The sites measured are sites prone to 
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osteoporotic fractures, i.e. the hip, spine and forearm. Techniques and computer programs 

designed for analysis of DEXA data are designed to sample tissues at these sites. Computer 

programs have been designed to analyse the x-ray absorption by the tissues in the field of the 

scan, including bone, muscle and fat (Ott 1998). Programs developed for analysis of forearm 

scans also include samples of air in the scan field. Different tissues absorb x-ray energy 

generated by the scanner at different rates and the different absorption of the tissue samples is 

compared to calculate bone mineral density. The knee is a narrow structure, so the region 

included in a knee scan will include samples of bone, muscle, fat and air. Forearm programs 

are suitable for scanning the knee, as air will be included at either side of the scan field 

(Murphy et al. 2001). Spine or hip programs may be used, but air must be excluded from the 

scan fields by placing rice bags or other tissue substitutes, beside the knee. The DEXA 

programs were not designed for analysing data from the knee, so reliability issues needed to be 

addressed to ensure the analysis system compares sampled tissue and sampled bone regions 

appropriately. 

Reliability of BMD measured at the knee by DEXA has been tested by several authors 

(Sievanen et al. 1992; Murphy et al. 2001; Nilsson 2001). A comparison was made between 

dual photon absorptiometry and DEXA at the knee, using a Norland DEXA scanner (MkII, 

Norland Corp, WI, USA), (Petersen 2000). Petersen reported that DEXA measurement in vivo 

at the proximal tibia had a coefficient of variation (CV) of 0.8% and at the distal tibia CV 

1.4%, in 8 subjects scanned 3 times in one week. When smaller regions were measured in the 

subchondral trabecular or cortical bone the precision was lower: 3.4 – 5.2% (Petersen et al. 

1996a). Using an Hologic DEXA scanner (Hologic, MA, USA) inter- and intra-observer 

repeatability of measurement at the proximal tibia were 2.9% and 2.8% respectively, but this 
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was repeat analysis of data from 20 subjects scanned once and analysed three times (Hulet et 

al. 2002). In the distal femur, the measurement of BMD was found to have a CV of 3.l – 3.7% 

in TKA patients (Lui et al. 1995). Using a Lunar (GE, USA) DEXA scanner, the precision was 

found to be lower: 3.2 – 16.9% at the proximal tibia (Nilsson 2001). One of the problems 

scanning the knee is the insufficient soft-tissue sample for comparison with bone. The soft 

tissue sample can be supplemented by substitutes such as rice bags placed beside the knee or a 

plexi-glass rod in the detector opening. There appears to be a range of precision values 

reported by researchers, ranging from that quoted for the spine and hip, of 0.5 – 1%, to 0.7 – 

16% around the knee. It is likely that the computer programs for analysis of DEXA are less 

reliable at the knee, than at the sites for which they were designed, but are nevertheless 

sufficiently reliable to enable research into BMD at the knee. 

Research has demonstrated that BMD changes occur in at least three conditions affecting the 

knee: ACL reconstruction, knee osteoarthritis and TKA. A single case study showed BMD 

after knee injury and reconstruction fell by 17.4% at the proximal tibia and by 18.5% at the 

distal femur (Sievanen and Kannus 1994). BMD reached the lowest point 15 weeks post 

reconstruction and was still reduced by 10-14% at 12 months. Findings were similar in a larger 

(n=33) ACL-injured group (Leppala et al. 1999). Conservatively managed subjects were found 

to have less marked BMD loss than surgically managed subjects. The difference between the 

BMD loss in surgical and conservatively managed ACL-injured knees was probably not due to 

kinematic changes in the initial 12 months inducing bone remodeling, but rather to surgical 

management, including chemical factors involved in inflammation and surgery and disuse of 

the operated limb (Leppala et al. 1999).  
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The bone mineral density of knees with osteoarthritis is higher where there is sclerosis of the 

subchondral bone (Petersen et al. 1996b; Pastoureaux et al. 1999). This increase in bone 

density due to sclerosis is often countered by a decrease in bone density due to pain avoidance 

decreasing the mechanical load through the knee (Hurwitz et al. 2001). It is possible to see 

lower bone mineral density in osteoarthritic knees than in age matched control subjects, 

particularly in very early symptomatic osteoarthritis (Karvonen et al. 1998). However, bone 

density changes in osteoarthritic knees reflect what is happening at the joint. Increase in BMD 

due to subchondral sclerosis is proportional to the severity of the osteoarthritis (Madsen et al. 

1994). Also the relative density of the medial to lateral compartments change as the alignment 

of the knee changes, reflecting the increased loading in one compartment and load-sparing in 

the other (Madsen et al. 1994; Hulet et al. 2002). The progress of unicompartmental knee 

osteoarthritis can be delayed by performing high tibial osteotomy (Maquet 1976). The 

osteotomy corrects the alignment of the knee (or over-corrects) and mechanically unloads the 

effected compartment. At one year following high tibial osteotomy the ratio of medial / lateral 

BMD at the knee had fallen significantly (Akamatsu et al. 1997). However, in this study it is 

not possible to isolate the effects of the high tibial osteotomy in mechanically unloading the 

medial compartment, from BMD changes due to osteoarthritic subchondral sclerosis, because 

both factors may be involved. It is not possible from this study of BMD alone, to say the 

osteoarthritic had been reversed by osteotomy. The value of measuring BMD at the 

subchondral regions of the knee in osteoarthritis is in monitoring medial to lateral 

compartment ratios in unilateral osteoarthritis, in detecting changes due to disease progression 

and changes due to therapeutic interventions to unload the knee joint. 
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In joint arthroplasty, BMD is measured as an indicator of events happening at the prosthesis-

bone interface. Early post-operative BMD loss has been seen following TKA (Li and Nilsson 

2000a). The subsequent study investigated whether this early BMD loss was related to 

migration of the prosthesis into the subchondral bone (or subsidence of the subchondral bone) 

(Li and Nilsson 2000b). Fixation of the prosthesis (either using bone cement or hydroxyapatite 

coated stems that are uncemented) may be influenced by the reaction of the bone. Bone 

mineral density has been studied in the peri-prosthetic regions of the femur and tibia as an 

indicator of bone resorption or formation, that may influence fixation (Lui et al. 1995). Much 

of the testing of the reliability of BMD testing at the knee was performed by the research 

teams investigating peri-prosthetic bone quality in TKA (Bohr and Schaadt 1987; Lui et al. 

1995; Li and Nilsson 2000a; Murphy et al. 2001; Nilsson 2001; Shahid et al. 2001). 

In this thesis bone mineral density is used to indicate changes to the structure of the bone that 

may be indicative of early osteoarthritis (Boyd et al. 2000; Shahid et al. 2001). The BMD at 

the knee in recently ACL-injured knees can be compared to those knees injured many years 

ago, in order to examine the effects of chronic ACL deficiency on structural changes of the 

subchondral bone. Subchondral BMD can also be measured in those subjects with established 

osteoarthritis of the knee. Thus the changes to the density of the subchondral bone may be 

examined at several stages of knee degeneration. 
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Structure of the thesis 

This thesis includes seven studies, each of which may be read independently. The studies 

examine the kinematic consequences of ACL deficiency. The kinematics of osteoarthritic 

knees are examined representing the end stage of degeneration of the knee. The changes in 

kinematics of the knees are compared to the wear and degeneration observed in the knees. 

The list of references cited in the thesis is to be found at the end of the thesis. The exception to 

this is where the published manuscript is included as a chapter, then the references are 

included at the end of that manuscript and also at the end of the thesis.  
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CHAPTER 4 

 

EVALUATION OF A METHOD TO MAP TIBIOFEMORAL 

CONTACT POINTS IN THE NORMAL KNEE USING MRI. 

 

 

 

 

 

 

 

 

 

This chapter has been published as: 

Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR. Evaluation of a 

method to map tibiofemoral contact points in the normal knee using MRI. Journal of 

Orthopaedic Research (In press).    www.elsevier.com/periodicals/orthres   



 71

Statement from co-authors confirming the authorship contribution of 

the PhD candidate 

"As co-authors of the paper “Evaluation of a method to map tibiofemoral contact points in 

the normal knee using MRI” we confirm that Jennifer M Scarvell has made the following 

contributions: 

• Contributed to discussions on design of the study 

• Collection, analysis and synthesis of literature  

• Submission for ethics approval, recruitment of subjects, and collection of data 

under supervision  

• Analysis and interpretation of data under supervision 

• Wrote the first draft of the manuscript, and followed through to publication, 

including proofing and final publication details of the manuscript." 

 

 

Professor Kathryn M Refshauge Signed: ………………… Date:……………….. 

Associate Professor Paul N Smith  Signed: …………………… Date:……………….. 

Dr Howard R. Galloway  Signed: …………………… Date:……………….. 

Dr Kevin R. Woods    Signed: …………………… Date:……………… 

Ms Jennifer M Scarvell  Signed: …………………… Date:……………….. 

.. 



ARTICLE IN PRESS
Journal of Orthopaedic Research xxx (2003) xxx–xxx

www.elsevier.com/locate/orthres
Evaluation of a method to map tibiofemoral contact points
in the normal knee using MRI

Jennifer M. Scarvell *, Paul N. Smith, Kathryn M. Refshauge,
Howard R. Galloway, Kevin R. Woods

Trauma and Orthopaedic Research Unit, 12A, The Canberra Hospital, PO Box 11, 2606, Australia

Received 11 September 2003; accepted 15 October 2003
Abstract

A technique using Magnetic Resonance Imaging (MRI) is proposed for analysis of knee motion that is practical in the clinical

situation. T1 weighted fast spin echo (FSE) and spoiled gradient echo (GE) sequences were compared to image both knees at 15�
intervals from 0� to 90� flexion, while unloaded and loaded. The medial and lateral tibiofemoral contact points were mapped reliably
using both FSE sequences and GE sequences with intra-class correlationð2;1Þ of 0.96 (CI 99%¼ 0.94–0.97) and 0.94 (CI 99%¼ 0.91–
0.97), respectively. Results were consistent with the current literature on knee motion: the medial and lateral tibiofemoral contact

pathways were different (F1;80 ¼ 253:9, p < 0:0001) reflecting the longitudinal rotation of the knee, the loaded and unloaded knees
were not different in the healthy knee (F1;80 ¼ 0:007, p ¼ 0:935), and the left and right knee were consistent for each individual
(F1;80 ¼ 0:005, p ¼ 0:943). Therefore, right to left differences may be attributed to pathology. MRI analysis of knee kinematics as
described by this technique of tibiofemoral contact point mapping provides a robust and reliable method of recording the tibio-

femoral contact pattern of the knee.

� 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Knee; Magnetic resonance imaging (MRI); Knee motion; Knee physiology
Introduction

Detailed understanding of normal knee kinematics is

essential for both conservative and surgical treatments
aimed at restoring kinematics after knee injury or dis-

ease. Knee ligament injuries are common, with an inci-

dence of at least 31 per 100,000 population per year [13],

and have significant implications in terms of subsequent

loss of function, and degenerative changes in the injured

knee [5,9]. Altered knee kinematics are thought to con-

tribute to the development of articular cartilage pathol-

ogy [4,8]. A method of analysing knee kinematics in the
clinical situation will provide accurate data for surgical

decision-making and outcome studies.

Magnetic resonance imaging (MRI) has advanced the

study of knee kinematics by enabling a three-dimen-

sional analysis of movement with great accuracy [17,18],

permitting separate analysis of the medial and lateral

compartments of the knee and accurate alignment with
* Corresponding author. Tel.: +61-2-6244-2122; fax: +61-2-6244-

2334.

E-mail address: jennie.scarvell@act.gov.au (J.M. Scarvell).

0736-0266/$ - see front matter � 2003 Orthopaedic Research Society. Publis
doi:10.1016/j.orthres.2003.10.011
the axes of motion. Open field MRI systems have been

used to perform three-dimensional Fourier transforma-

tion gradient echo sequences for knee kinematic study

pertaining to the motion of the menisci [1]. The tibio-
femoral kinematics between 15� and 90� has been de-
scribed from analysis of T1 gradient echo images [18],

importantly describing the mediolateral asymmetry of

motion which demonstrates the longitudinal rotation of

the knee during flexion. The study was limited by small

sample size and effect size. However, the findings have

since been reproduced in cadaveric studies [12,15] and

in vivo [10,11,14]. Access to open field MRI systems,
however, is not widely available in clinical practice.

Knee kinematics can be described by the movement

of the centres of the posterior femoral condyles, or by

tibiofemoral contact mapping. The movement of the

femoral condylar centres is particularly relevant to de-

sign of total knee arthroplasty prostheses, as knee

prosthesis designs aims to replicate the normal motion

of the knee and the malalignment of the axis of motion
has been linked to loosening of the prosthesis [20].

Tibiofemoral contact patterns, in contrast, can be used

to describe events at the tibiofemoral interface that may
hed by Elsevier Ltd. All rights reserved.
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Fig. 1. Diagram of a subject performing a loaded leg-press in the MRI

tunnel. Knee flexion angle was controlled by the position of a sliding

wooden footplate. A 150 N weight and pulley provided resistance to

knee extension.
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contribute to articular cartilage damage and wear, such
as altered roll/glide characteristics, sheering and insta-

bility [6,19].

This study has established a technique for kinematic

analysis of knee motion by tibiofemoral contact map-

ping, achievable in the clinical situation, using a readily

available 1.5 T closed field MRI unit and a fast gradient

echo sequence that makes the technique practical for

clinical use. A comparison is made between the T1
weighted fast spin echo technique which enables thinner

slices but has longer scanning times and the T1 weighted

spoiled gradient echo sequence, which is fast enough to

take images in a breath hold [3]. Both sequences image

bone well, but the gradient echo sequences lose some

detail in imaging soft tissue. Thus, we have devised a

technique that utilises available technology and is

achievable in the clinic. This technique may be applied
to investigate the impact of knee injury to the kinematics

of the knee, the response to corrective surgery, or the

effectiveness of rehabilitation to restore the dynamic

stability of the knee.
Methods

Subjects

Twelve healthy subjects (seven male, five female, aged 20–50 years)
were recruited to the study and provided informed consent. Subjects
for whom MRI was contraindicated, were over 180 cm tall (to permit
knee flexion within the tunnel), or with a history of knee symptoms
were excluded. Approval to conduct the study was obtained from the
Health Department and university ethics committees.

MRI procedure

Imaging of both knees was performed using a 1.5 T Siemens
Magnetron Vision (Erlangen, Germany), using a body coil to generate
parasagittal images, perpendicular to each tibial plateau.
Five subjects (one male, four female), were scanned using a fast

spin echo sequence (FSE) (repetition time [TR]¼ 660.0; echo time
[TE]¼ 12.0) with a field of view of 15–16 cm. Fourteen slices were
obtained in each knee (slice width 7 mm). Scan time was 2.31 min,
giving a complete session time of 1.5 h. These films were scanned and
imported into Photoshop� version 5.0.2 (Adobe Systems Incorpo-
rated, San Jos�ee, USA) as Tiff (tagged image format) files for analysis.
The Photoshop� measuring tool was calibrated from scale printed on
the films.
Seven subjects (six male, one female), were scanned using a spoiled

gradient echo sequence (GE) [3]. Sixteen slices were generated (eight
through each knee) approximately 10 mm apart (TR¼ 160.0, TE¼ 2.3/
1, TA¼ 00:46), with a 256· 256 matrix. Scans took 38 s each, with a
complete session time of 35 min. These images were directly down-
loaded from the MRI machine as Dicom format files. The images were
analysed using Osiris� software version 4.11 (Universit�ee de Gen�eeve,
Switzerland).
A wooden frame was fitted to the MRI couch, to enable positioning

and loading of the subjects’ knees (Fig. 1). Elastic straps maintained
neutral tibial rotation and thigh adduction. Images were taken of both
knees, loaded and unloaded, at seven 15� intervals from full knee
extension to 90� flexion.

Loaded knee images

Subjects were scanned at each knee flexion position twice: once
while relaxed, and again pressing down against a footplate weighted
with a sandbag imposing a force in line with the axial skeleton of 150
N. This results in a lower flexion moment at the knee at 0�, than at 90�.
However, this increasing flexion moment at the knee with flexion is a
normal physiological condition for the knee. This experimental design
aims to simulate a leg-press, during which the flexion moment at the
knee normally changes with knee flexion. Subjects were requested to
press down firmly with the feet against the footplate, in order to pre-
vent it sliding towards them. Exerting more than the required load
would not result in movement of the footplate, but less than the re-
quired load would cause the footplate to slide. The load at the foot-
plate therefore represents a minimum level: subjects could have exerted
a greater load than required, particularly at 0� knee flexion.
One hundred fifty Newtons is a small load for the knee, which

physiologically is capable of loads greater than bodyweight. However,
it is difficult for a subject to remain still maintaining a maximal muscle
contraction for the time required for imaging. To test the effect on knee
kinematics of a greater weight, a comparison between a 150 and 250N
load was made in one subject. Tibiofemoral contact points were
compared for the two conditions 150 and 250 N using a paired t-test.

Testing for image distortion

Gradient echo sequences were tested for evidence of distortion,
since at 90� flexion the knees of the subject are close to the roof of the
tunnel. A cylindrical specimen jar 41 · 50 mm filled with water was
placed in the tunnel in six positions evenly spaced from the couch, to
the roof of the tunnel, all just lateral to the centre of the tunnel. A
seventh position was sited 150 mm proximal to the tunnel centre. The
diameter, length and diagonal dimensions of the jar were recorded at
each position. The diagonal dimension was 63± 0.9 mm. Dimensions
of the jar were tested for correlation with proximity to the roof of the
MRI tunnel, using a Pearson’s correlation.
The anteroposterior (AP) dimension of the medial tibial condyle

was recorded at each knee flexion position, for both knees of each
subject imaged using GE. Tibial AP dimensions were tested for cor-
relation with knee flexion to assess the influence of proximity to the
tunnel roof on distortion, using a Pearson’s correlation.

Tibiofemoral contact point measurement

The point at which the femur contacted the tibial plateau was re-
corded for the medial and lateral compartment of each knee at 15�
intervals from 0� to 90�, in the loaded and unloaded knee. Measure-
ment of the tibiofemoral contact point was referenced from the pos-
terior tibial cortex to the centre of the tibiofemoral contact area (Fig.
2). This generates a motion pathway of contact point behaviour for
each compartment representing the motion characteristics of the knee.
From the set of knee images for each subject at each knee position,

an image was chosen which was closest to the centre of the medial and
centre of the lateral compartment. This chosen image was used to re-
cord the tibiofemoral contact position. The tibial plateau is rounded,
so AP dimensions are sensitive to the mediolateral positioning. For
example, the distance from the posterior tibial cortex to the tibio-



Fig. 2. Measurement reference points for tibiofemoral contact map-

ping. T1 weighted gradient echo sagittal MRI images through the

medial compartment at 0� and the lateral compartment of the knee at
45�, demonstrating the posterior edge of the tibial cortex and the
contact point of the femoral condyle (arrows).
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femoral contact position is smaller if the chosen image is situated too
far lateral in the knee. Slices were chosen to represent the centre of
each compartment at each knee position from extension to flexion.
Consistency in choice of image for analysis was tested by repeating
observations on separate occasions more than a week apart.
Reliability of contact point measurement was tested by a single

trained observer, blinded to previous results, repeating the measure-
ment process on two occasions more than a week apart. This mea-
surement process includes two possible sources of error: choice of slice
and measurement error. The measurement reliability of FSE images
scanned into Photoshop� was compared with the GE images, analysed
using Osiris� software.
Controlling for variation in size of subjects

To account for variation in the size of subjects, tibial cortex to
contact point distance measurements were scaled in proportion to
mean tibial dimensions. The mean AP diameter of the medial tibial
plateau was 50± 4.4 mm, and the lateral tibial plateau was 42± 2.17
mm. The distance recorded for each tibiofemoral contact point for
each subject was then scaled proportionally to give a tibiofemoral
contact position represented on a tibial plateau of standard dimen-
sions.
Testing for construct validity

There is not a gold standard for analysis of knee kinematics with
which to compare this method. The method was therefore tested for
construct validity, by developing three statements based on contem-
porary kinematic research [11,12,14], and testing the results of this
kinematic study against the kinematic behaviour predicted by the
statements. The statements were:

1. That the contact patterns of the medial and lateral compartments
of the knee would be different, reflecting the longitudinal rotation
of the knee during knee flexion [11,12,14].

2. That the loaded and unloaded knee would not demonstrate a differ-
ence in contact pattern [11].

3. That the right and left knee would not demonstrate a difference in
contact pattern [16].
Statistical analysis

The agreement between test re-test measurement of contact points
from the knee images was determined by ICCð2;1Þ with 95% confidence
interval. This measure included reliability of choice of image for
analysis, and of measurement of contact point distance.
To compare the right to left, loaded to unloaded knees and medial

to lateral contact patterns, a repeated measures ANOVA design was
used. Factors were the knee (left or right), the condition (loaded or
unloaded), the compartment (medial or lateral), and the knee flexion
angle. Significance was set at p < 0:05 for all parameters. Statistical
analyses were performed using SPSS� version 9.1.
Results

Load

The heavier load demonstrated no significant differ-

ence in the tibiofemoral contact points of the knee

ðp ¼ 0:95).

Distortion

There was no correlation between position of the jar,
or its proximity to the roof of the tunnel, and the

dimensions of the jar measured (r ¼ 0:003, p ¼ 0:990).
None of the dimensions of the jar (width, depth or

diagonal) demonstrated distortion.

The mean tibial AP dimension for subjects scanned

using GE ranged from 51.5 ± 3.7 mm at 0� knee flexion
to 49.8 ± 3.1 mm at 90� knee flexion. However, there was
no correlation between knee flexion and tibial AP
dimension (r ¼ �0:14, p ¼ 0:13).

Consistency of choice of image slice for analysis

Both FSE and GE images were analysed for consis-

tency of choice of representative slice. Day to day reli-

ability for FSE sequences was high, with ICCð2;1Þ ¼ 0.99
(CI 99%¼ 0.99998–0.99999). Representative images

were also chosen with high reliability from the GE se-
quences, with an ICCð2;1Þ ¼ 0.99998 (CI 99%¼ 0.99998–
0.99999).

Measurement reliability

The reliability of the tibiofemoral contact point

measurement includes the effects of choice of image and

measurement error incorporated in the image resolution

and the accuracy of measurement with the Osiris� and
Photoshop� software (Figs. 3 and 4). For FSE and GE

scans measurement reliability was ICCð2;1Þ ¼ 0.96 (CI
99%¼ 0.94–0.97) and 0.94 (CI 99%¼ 0.91–0.97),
respectively.

Construct validity

There was no significant difference demonstrated in
the tibiofemoral contact pathway between the left and

right knee (F1;80 ¼ 0:005, p ¼ 0:943), or between the
loaded and unloaded knee (F1;80 ¼ 0:007, p ¼ 0:935).



 Measurement reliability of Fast Spin Echo scan images
 ICC(2,1) = 0.96

0

10

20

30

40

50

0 10 20 30 40 50

Contact position day 1: distance from posterior tibial cortex to contact 
point (mm)

C
on

ta
ct

 p
os

iti
on

 d
ay

 2
: d

is
ta

nc
e 

fro
m

 
po

st
er

io
r t

ib
ia

l c
or

te
x 

to
 c

on
ta

ct
 p

oi
nt

 
(m

m
)

Fig. 3. Reliability of tibiofemoral contact point measurements, re-

corded from fast spin echo images on two occasions more than a week

apart (ICCð2;1Þ ¼ 0.96).
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Fig. 4. Reliability of tibiofemoral contact point measurements, re-

corded from gradient echo images on two occasions more than a week

apart (ICCð2;1Þ ¼ 0.94).
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Fig. 5. Graph plotting the tibiofemoral contact points from 0� to 90� of
knee flexion (mean± standard error). The similarity in the tibiofemoral

contact pathway between the loaded and unloaded knee is demon-

strated. The medial compartment shows a contact pattern located

more anteriorly on the tibial plateau, than the lateral compartment.

Fig. 6. Diagram of the tibial plateau, showing the tibiofemoral contact

pattern from 0� to 90� of knee flexion, in the loaded knee. In both
medial and lateral compartments, the femoral condyle rolls back along

the tibial plateau from 0� to 30�. Between 30� and 90� the lateral
condyle continues to move posteriorly, while the medial condyle moves

back little.
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The tibiofemoral contact pathway in the healthy knee

did demonstrate mediolateral asymmetry (F1;80 ¼ 253:9,
p < 0:0001). In knee extension, the medial femoral
condyle rested further anteriorly on the tibial plateau

than the lateral femoral condyle (the medial femoral

condyle resting at mean 35± 4.0 mm and the lateral

femoral condyle resting 25± 4.0 mm from the posterior

edge) (Fig. 5). During knee flexion to 90�, the medial
femoral condyle moved back on the tibial plateau 15± 2

mm to a location 20 mm from the posterior tibial cortex.

The lateral femoral condyle, however, continued to

move back on the tibial plateau to 12± 2 mm from the

posterior tibial cortex at 90� flexion (Fig. 6). These
findings are in agreement with the theoretical construct

and therefore the technique has high construct validity.
Discussion

The study thoroughly tested this technique of kine-

matic analysis of the knee for practical application,

reliability and construct validity. The FSE and GE se-

quences that were used during this study were both

useful. GE sequences gave clearer definition of bony

landmarks, in particular clear definition of the posterior
tibial cortex reference point used for measurement, than

FSE sequences, and little loss of image resolution at the

magnification used for image analysis. FSE sequences

gave better articular cartilage detail, hence making the

tibiofemoral contact point more distinct, but less defi-

nition of the posterior tibial cortex reference point. Both

sequences generated suitable slice intervals. The prac-
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tical advantages of GE sequences were in the saving of
time for the patient, staff and use of resources.

Precise measurement of the tibiofemoral contact point

using MRI is complicated by the contact occurring over

an area, not a point. This contact area is small in knee

flexion and the centre point easily measured, but contact

area widens in knee extension as the distal femoral

condyle has greater congruence with the tibial plateau.

Visual estimation of the contact point with reference to
the centre of the articular contact area (seen on the MRI

scans by distortion of articular cartilage and the position

of the menisci) is prone to subjectivity. Wretenberg at-

tempted to solve this by measuring the extremes of the

contact area, and calculating the centroid [21]. In this

study direct visualisation of the centre of the contact area

provided accurate and reproducible measurement.

Description of knee kinematics with reference to the
femoral condylar centres also has limitations. Todo et al.

[18] superimposed a circle representing the posterior

femoral condylar arc over the MRI image, in order to

draw a line from the centre of the circle perpendicular to

the tibial plateau, thus defining the position of the fem-

oral condyle above the tibial plateau. This method is

useful in knee flexion, when the posterior femoral con-

dyle is in contact with the tibial plateau and the axis of
the knee is through the posterior condylar centre.

However, in knee extension the posterior condylar arc is

not relevant as the axis of rotation of the knee has shifted

to the extension facet centre [7]. Todo et al. did not study

knee kinematics from 0� to 20�, and so did not face this
limitation to their method [2,18]. Tibiofemoral contact

mapping can be applied throughout the range of knee

motion, including the terminal extension of the knee.
High construct validity of this technique is important

for the clinical application of the technique in assess-

ment of normal and injured knee kinematics. Recent

MRI studies have described the differences between the

movement of the medial and lateral femoral condyles,

which showed the longitudinal rotation of the knee

during flexion [10–12,14]. The femur rolled back on the

lateral tibial plateau throughout flexion, with less
backward movement in the medial compartment. The

tibiofemoral contact pattern also shows this longitudinal

rotation. The medial femoral condyle rested anteriorly

in knee extension and for the first 30� of knee flexion
simply rocked back to the centre of the tibial plateau.

For the remainder of knee flexion the medial condyle

rolled back very little. In contrast, the lateral femoral

condyle continued to move posteriorly throughout
flexion, indicating the rotation of the knee.

Rotation of the knee may be constrained by loading

the knee, or by fixing the position of the feet. Hill et al.

reported that in squatting, the longitudinal rotation of

the knee was suppressed, when compared with sitting

[11]. In the current study, longitudinal rotation of the

knee was still evident, despite the fixed foot and ankle
position. The suppression of rotation may be due to the
load imposed. While the current study did not demon-

strate differences between the loaded and unloaded knee

using a 150 or 250 N weight, the weight may have been

insufficient to induce the kinematic behaviour seen in a

standing squat. Weight-bearing and position constraints

are some of the biomechanical differences between a eg-

press in the supine position and a full squat.

For this technique of kinematic analysis to be appli-
cable in the clinical situation or to the study of patho-

logical knee behaviours, it is important that the right and

left knees are symmetrical. Research has shown that

while there is considerable variation between individuals,

there is symmetry within individuals [16]. Other studies

have analysed single knees, both in vitro and in vivo, but

the symmetrical kinematic behaviour has not been re-

ported [11,12,14]. This study has established the sym-
metry of healthy knees, so that differences in right to left

behaviour may be confidently attributed to pathology.

This technique of tibiofemoral contact point mapping

provides a tool which has been previously used only for

research, but is practical in the clinical situation, using

available technology. MRI analysis of knee kinematics

as described by this study provides a robust and reliable

method of recording the tibiofemoral contact pattern of
the knee. This method is reliable using FSE and GE

sequences (with the latter having advantages in effi-

ciency), and has produced results consistent with other

methods used to map tibiofemoral contact patterns.
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Abstract 

Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal 

motion in the injured knee by mapping tibiofemoral contact. Twenty subjects with a unilateral 

ACL injury performed a leg-press against resistance. MRI scans of both knees at 15° intervals 

from 0° to 90° of flexion were used to record the tibiofemoral contact pattern. 

The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau 

than the healthy contralateral knees (p = 0.012). The tibiofemoral contact pattern of the loaded 

knees did not differ from the unloaded knees (p = 0.46). The difference in the tibiofemoral 

contact pattern in the ACL-injured knee was more pronounced in patients with more severe 

knee symptoms (r = 0.40), irrespective of the passive anterior laxity of the knee (r = 0.12). 
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Introduction  

Anterior cruciate ligament (ACL) injuries are common, the incidence being 30 per 100,000 of 

the population per year in the United States of America (Miyasaka et al. 1991). Unfortunately, 

the risk of developing osteoarthritis after ACL injury is 60 - 90%, with the highest incidence 

being in those who return to sport (Otto et al. 1998; Clatworthy et al. 1999; Gillquist et al. 

1999). Degenerative change in the ACL-injured knee is due in part to instability leaving the 

knee vulnerable to repeat trauma, and in part to altered kinematics including shearing at the 

articular cartilage (Friden et al. 1993; Vergis et al. 1997; Osternig et al. 2000). An 

understanding of how the kinematics of the knee are altered by ACL injury is important in 

order to relate the aberrant kinematics to the process of degeneration. 

Kinematics of the ACL-injured knee have been studied using plain films to measure anterior 

instability in patients performing a standing lunge (Friden et al. 1993) and fluoroscopy 

(Dennis et al. 1996). However, 2-dimensional data have limited application for analysis of the 

complex 3-dimensional motion of the knee. 3-dimensional analysis using electro goniometry 

(Vergis et al. 1997; Vergis et al. 1998) and roentgen stereophotogrammetric analysis (RSA) 

(Brandsson et al. 2001) has demonstrated anterior translation and external rotation of the tibia 

in the ACL-injured knee, but these are complex, expensive and invasive techniques and are 

impractical in the clinical situation.  

Magnetic Resonance Imaging (MRI), like RSA, enables visualisation of the bony structures 

and is consequently able to record the position and hence the motion of the knee with 
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precision. Advantages of MRI are that it is non-invasive and is readily accessible in the 

clinical situation. Open field (Vedi et al. 1999; Hill et al. 2000) and standard closed MRI 

(Smith et al. 1999; Todo et al. 1999; Scarvell et al. 2003a) have been used to analyse knee 

kinematics in three dimensions. The kinematics have been described in terms of a tibiofemoral 

contact pattern (Chapter 4). This allows the roll/glide characteristics and the longitudinal 

rotation of the knee to be visualised and quantified. In healthy subjects studied using this 

technique, a high degree of variation has been demonstrated, but with good right to left 

consistency within individuals, indicating that the uninjured knee may be reliably used as a 

control (Smith et al. 1999; Scarvell et al. 2003a). The purpose of this study was to record the 

motion of the ACL-injured knee using MRI, in order to assess the characteristics of abnormal 

motion in the ACL-injured knee that may contribute to progressive degenerative change. 

Finally this technique may be useful in predicting those patients at risk of osteoarthritis due to 

the kinematic behaviour. 

Method 

Twenty subjects aged between 21 and 52 years, with a unilateral ACL injury were recruited. 

The exclusion criteria were the same as for Chapter 4, including subjects contraindicated to 

MRI and subjects over 180cm tall. Subjects were also excluded if history of injury or 

symptoms were present in the contralateral knee, so that the uninjured knee could act as the 

control. Eight subjects were male and 12 were female. All ACL injuries were sustained within 

3 years of testing. All subjects provided informed consent. This study was approved by the 
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Australian Capital Territory Department of Health and Community Care and the University of 

Sydney Human Ethics Committees. 

Tibiofemoral contact point measurement from MRI scans  

To study kinematic effects of ACL injury, subjects performed a supine leg-press between 0° 

and 90° knee flexion in the same manner as described in Chapter 4. The leg-press was 

weighted by a 150N load via a rope and pulley to resist leg extension. Sagittal images were 

generated through both knees simultaneously using MRI. The position of the tibiofemoral 

contact was recorded as the distance from the posterior tibial cortex to the point of 

tibiofemoral contact for both the medial and lateral femoral condyles respectively (Scarvell et 

al. 2003a; Chapter 4).  

Knee injury variables recorded 

In addition to recording the pattern of tibiofemoral contact, the passive anterior laxity, 

function and knee damage visible at arthroscopy were recorded for each subject. The KT 1000 

arthrometer was used to measure passive anterior laxity, by quantifying the anterior 

displacement in the Lachman’s manoeuvre (Daniel et al. 1985). We measured anterior 

displacement of the tibial tubercle in both knees five times: at 15lb, 20lb, 30lb of anterior 

drawer, during an unloaded straight leg raise and with a maximum manual anterior drawer 

using the KT 1000 (Figure 5.1). A side-to-side difference of 3mm or more on a manual 

maximum anterior drawer is considered indicative of an ACL injury, with a sensitivity of 85% 

(Daniel et al. 1985). 
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Figure 5.1: Passive anterior laxity at the knee was measured using the KT 1000 arthrometer. An 

anterior force was applied to the knee via the calibrated handle and the displacement was measured 

as the difference between the patella pad and tibial tubercle pad. 

The Cincinnati knee score (Barber-Westin et al. 1999) was used to measure the symptoms, 

functional limitations, activity levels of subjects and details of the physical examination. The 

result was a score out of 100, where 100 was normal, with full function. The Cincinnati knee 

rating score has high reliability and is sensitive to changes in the ACL-injured population 

(Barber-Westin et al. 1999).  

Injuries to the ACL are frequently associated with injuries to other structures of the knee, 

either at the time of injury or subsequent to the injury. These associated injuries may impose 

confounding effects on the kinematics of the injured knee. All subjects in this study underwent 

arthroscopic knee reconstruction within two months of testing. At arthroscopy, visible joint 

damage, meniscal damage and cartilage wear were recorded according to the location, area 

and depth of cartilage lesion (Noyes et al. 1989). The presence of meniscal damage and 
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damage to other knee ligaments was also recorded. Thus, the effects of meniscal damage and 

articular cartilage damage on knee kinematics could be tested. 

Statistical Analysis  

The tibiofemoral contact points recorded for the healthy and ACL-injured knees were 

compared using repeated measures ANOVA. Factors included in the analysis included the 

angle of knee flexion, the injured or contralateral knee, the loaded and unloaded condition, and 

the medial and lateral compartments of the knee.  

Difference between the passive anterior laxity of the injured and the contralateral knee was 

analysed using a paired student’s t-test. 

The deviation from the healthy knee contact pathway exhibited by the injured knee is 

quantified as the side-to-side difference in the tibiofemoral contact points. Articular cartilage 

damage recorded at arthroscopy was compared to the mean of the side-to-side difference 

recorded at each knee flexion angle, using one-way ANOVA. Passive anterior laxity and 

Cincinnati knee score were analysed for their correlation with the mean of the side-to-side 

difference in the contact points, using Pearson’s r. 
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Results 

The mechanism of injury for the twenty ACL-injured subjects included 18 playing sports and 

one fall from a height of 1 metre and one cycling accident. Sports participation included 7 

injured playing soccer, 5 at netball, 2 at martial arts, 2 at basketball, 2 skiing and one at 

Australian Rules football. There were 9 left knees injured and 11 right knees.  

At arthroscopy, internal knee joint damage was present in 9 subjects. Damage included 

femoral cartilage fibrillation of the medial femoral condyle in 2 subjects, (1b, 2a and 2b 

changes) and patellofemoral cartilage damage in 2 subjects (1a and 1b; Noyes et al. 1989). 

There was no tibial cartilage damage in any of the subjects. In 3 subjects there was damage to 

the medial meniscus, including one small tear of the posterior horn, one large displaced tear of 

the posterior horn and one bucket handle tear. In 3 subjects there was damage to the lateral 

meniscus, including one mild crush, one small tear and one old partial meniscectomy seen, all 

of the posterior horn. There were 11 subjects with ACL tears with no other associated joint 

damage. 

Passive anterior laxity at 30lb, the straight leg raise and maximum manual anterior drawer, of 

the injured knee were each significantly greater than the healthy knee (p < 0.01). In 19 of the 

20 subjects passive anterior laxity of ≥ 3mm side-to-side difference at manual maximum 

anterior drawer supported the clinical diagnosis of ACL injury. The side-to-side difference in 

anterior displacement of the tibia for the 30lb anterior drawer was 2.7 ± 2.7 mm (mean.±.SD), 
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for the straight leg raise test was 3.9.±.2.6 mm and for the manual maximum anterior drawer 

was 5.5.±.3.3 mm. ACL tear was confirmed at arthroscopy for all 20 subjects. 

 

Figure 5.2: Sagittal images of the lateral compartment of the A) healthy contralateral and B) ACL-

injured knee of a subject at 75° knee flexion, in the loaded condition. The tibiofemoral contact occurred 

more posteriorly in the ACL-injured knee than the healthy knee. 

MRI knee kinematics  

The tibiofemoral contact pattern was located posteriorly on the tibial plateau in the ACL-

injured knee (F (1, 152) = 6.5, p.= .0.012) than the healthy knee (Figure 5.2). In the medial 

compartment of the knee this difference was most pronounced at 0° and 15° (Figure 5.3). At 

0° the medial femoral condyle was located 32.2.±.5.1 mm from the posterior tibial cortex 

landmark in the ACL-injured knee and 33.2 ± 3.9 mm in the healthy knee. Further into knee 

flexion the medial compartment of the injured knee followed a similar pattern to the healthy 

knee. In the lateral compartment of the knee, the femur was more posteriorly positioned on the 

tibial plateau throughout the range of knee flexion. The lateral femoral condyle was located 
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24.7.± 4.5 mm from the posterior tibial cortex landmark in the injured knee and 25.9 ± 3.1 mm 

in the healthy knee. The posterior femoral contact position appeared more pronounced in the 

lateral than the medial compartment of the knee (Figure 5.3), but this was not significant (F 

(1,152) = 1.3, p = 0.25). To achieve 80% power a sample size of 144 subjects would have been 

required, due to the wide variation between individuals. The femoral contact point was on 

average 1.3mm more posterior than the healthy knee in the lateral compartment of the loaded 

knee and 0.5mm more posterior in the medial compartment of the loaded knee (Figure 5.4). 

However, individuals exhibited as much as 9.7mm of posterior femoral contact displacement 

in the medial compartment and 9.5 mm in the lateral compartment. 

In healthy contralateral knees the medial and lateral tibiofemoral contact patterns were 

distinctly different, reflecting the longitudinal rotation of the knee through flexion. The 

mediolateral asymmetry of the contact point pattern was preserved in the injured knees (F 

(1,152) = 310, p < 0.001). The healthy contralateral and ACL-injured knees both exhibited 

internal tibial rotation about the longitudinal axis during knee flexion from 0º to 90°. 
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Figure 5.3: Diagram of the tibial plateau indicating the tibiofemoral contact pattern from 0° to 90° knee 

flexion for the loaded condition in the healthy contralateral (solid line) and ACL-injured knees (dotted 

line). 

 

 

Loading the injured and healthy knees did not alter the tibiofemoral contact pattern (F (1,152) = 

0.557, p = 0.46). There was no difference in the contact pattern between subjects when 

pressing down through the weighted footplate and when relaxed. 
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Figure 5.4: Tibiofemoral contact patterns for the A) medial and B) lateral compartments, in the ACL-

injured and healthy contralateral knees. The tibiofemoral contact pattern on the tibial plateau in the 

ACL-injured knees was slightly posterior compared to the healthy contralateral knees, but profile of the 

curve was preserved. 

A 

B 
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Kinematics and knee injury variables 

The difference in tibiofemoral contact pattern due to injury was moderately correlated with the 

Cincinnati knee score. The average score for the ACL-injured subjects was 57 ±10 (range 35 

to 76/100). The average pain score was 6 ± 1.7 out of 10 and self-reported grade was 5 ± 1.8 

(range: 2 to 8/10), which is defined as fair/good. The difference in tibiofemoral contact pattern 

due to injury for each subject was measured as the mean of the side-to-side difference in the 

contact points, at each knee flexion angle. The Cincinnati knee scores were weakly correlated 

with the mean of the side-to-side difference in the contact points in the unloaded knee 

(Pearson’s r = 0.40, p = 0.07), but not in the loaded knees (r=0.25, p= 0.28). The reported knee 

symptoms taken in isolation (scored out of 20) were also weakly correlated with the mean of 

the side-to-side difference (r=0.37, p=0.10). Thus, there is some indication that the subjects 

with poorer knee scores have greater difference in contact pattern in the injured knee.  

Damage to the articular cartilage and menisci were not correlated with a greater difference in 

the tibiofemoral contact pattern of the knee. The subjects with meniscal damage did not have a 

significantly different mean side-to-side difference in contact points (F (1,19) = 2.48, p= 0.133), 

nor did the subjects with chondral damage (F (1,19) = 3.69, p= 0.71).  

Increased passive anterior laxity of the knee did not correlate with a greater difference in 

contact pattern. Side-to-side difference at manual maximum anterior drawer, quantified by the 

KT 1000 measurement did not correlate with side-to-side difference in the contact pattern (r = 

0.12, p = 0.60). Hence, neither passive instability nor damage to the knee joint was related to 

the active instability demonstrated on MRI. 
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Discussion 

The tibiofemoral contact pattern of the ACL-injured knees was significantly different to the 

healthy contralateral knees. The high right to left consistency within subjects (Smith et al. 

1999, Scarvell et al. 2003a), indicates that the contralateral knee can reliably be used as a 

control for tibiofemoral contact pattern analysis. The difference in contact pattern between the 

ACL-injured knee and the healthy contralateral knee can therefore be attributed to the knee 

pathology. 

The posterior tibiofemoral contact pattern due to ACL injury has been reported by other 

authors. Dennis et al (1996) used videotaped fluoroscopic images to examine the tibiofemoral 

contact patterns in the ACL-deficient knee in standing deep knee flexion. They described the 

ACL-injured subjects moving from posterior tibiofemoral contact positions in knee extension, 

to variations in normal and posterior contact positions through flexion. Three subjects 

demonstrated paradoxical roll-forward of the femoral condyles on knee flexion. The average 

difference in contact position between the injured and intact knee was only 1.6mm, but the 

difference ranged from 0.5mm to 13.7mm in some knees. That study used 2-dimensional 

imaging at low resolution, so was unable to draw out information regarding rotation. Our 

study shows a more consistent tibiofemoral contact pattern, with preservation of the roll/glide 

characteristics, but a more posterior pattern overall. 

The shift in the axis of longitudinal rotation of the knee due to ACL deficiency was not 

confirmed in our study, due to the wide variations in the kinematics of subjects. It appeared, 
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however, that the effect of the ACL injury tended to generate a tibiofemoral contact pattern 

more posterior in the lateral compartment than the medial compartment of the knee. This 

might indicate that the axis of longitudinal rotation of the knee had shifted medially. It was 

observed by Brandsson et al (2001) using RSA that while there was no difference in 

anteroposterior displacement of the medial compartment, there was a difference in the lateral 

compartment of the injured knees. The injured knees also maintained more external tibial 

rotation than the healthy knees. The reference points used in the analysis by Brandsson et al. 

are different to the reference points used in our MRI study, so parallel analysis is difficult. 

However, the medial/lateral characteristics of the injured knee motion are similar. The role of 

the ACL in the control of longitudinal rotation of the knee is recognised (Grood et al. 1988; 

Buckland-Wright et al. 1994; Anderson et al. 1997; Benvenuti et al. 1999; Woo et al. 2002), 

so it is reasonable to suspect that having lost the primary restraint of the ACL, the secondary 

restraint of the medial collateral ligament may play a greater role in controlling knee rotation. 

The magnitude of the difference in tibiofemoral contact between the healthy contralateral and 

ACL-injured knees (1.3 ± 1.64 mm) was similar to that reported by Brandsson et al (2001), in 

subjects performing a step-up activity. In subjects performing a standing lunge the anterior 

tibial displacement recorded using plain radiography was 12mm (Friden et al. 1993) and in a 

step up activity measured by electrogoniometry was 5mm (Vergis et al. 1997; Vergis et al. 

1998). A study of passive anterior displacement of the tibia confirmed that the magnitude of 

the difference measured using RSA is smaller than that measured using a KT 1000 arthrometer 

or plain radiography (Fleming et al. 2002). This discrepancy in measurement between the 

different tools may be because plain radiography and KT 1000 arthrometry, being 2-

dimensional, are unable to account for longitudinal rotation of the knee and describe anterior 
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tibial shift as a 2-dimensional feature of the ACL-deficient knee. RSA and MRI techniques are 

able to analyse rotation and anterior translation independently. Consequently MRI and RSA 

record the difference in displacement of similar magnitude. 

In our study, loading the knees did not change the tibiofemoral contact pattern. Hill et al 

(2000), using open field MRI, reported rotation was suppressed in subjects performing a 

standing squat.. However, there are several biomechanical differences between a supine leg 

press and a standing weight-bearing activity (Friden et al. 1993; Dennis et al. 1996; Hill et al. 

2000). Subjects in supine experience different proprioceptive feedback to standing subjects. 

Additionally, joint compression in standing is greater and contact occurs over a wider area. 

Our subjects were pressing down against a 150N load, substantially less than the body weight 

supported in a standing lunge, although we found no difference when the weight was 

increased to 300N (Scarvell 2003a). This protocol is in intended to be suitable for clinical 

application. As such, it has been designed to use a clinically available closed tunnel MRI unit 

and weights sustainable by an injured population. Thus, comparison of findings between a 

supine leg press and standing lunge may be inappropriate. 

Closed-chain resisted exercises have been advocated for rehabilitation after ACL injury and 

reconstruction (McGinty 2000; Toutoungi 2000), in which the foot is fixed and the axial force 

in line with the tibia. Closed-chain exercises minimise stress on the ACL, theoretically by 

increasing joint compression, decreasing tibiofemoral shear forces and increasing muscular 

co-contraction (Beynnon et al. 1995; MacWilliams et al. 1999). The supine leg-press exercise 

is therefore one that has been commonly prescribed. The present study showed that the 

tibiofemoral contact pattern of the ACL-injured knee was different from the healthy 
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contralateral knee performing a supine leg-press. In effect, that to press down through the feet 

did not normalise the tibiofemoral contact pattern. It may be that further testing of the ACL 

strain in vivo is necessary to clarify the relative “safety” of the leg-press exercise. 

It has been suggested that increasing knee symptoms correlate with instability during activity, 

regardless of passive anterior laxity (Friden et al. 1993). Friden et al (1993) suggested that 

subjects with less displacement had learnt to actively control the instability of the knee and 

therefore experienced fewer symptoms. Our study has also shown a relationship between 

symptoms and active instability, reflected by the tibiofemoral contact pattern, but no 

relationship between passive anterior laxity and difference in the tibiofemoral contact pattern. 

The tibiofemoral contact appears to occur over a more posterior region of the tibial plateau in 

the ACL-injured knee, and this may be implicated in the degeneration of the articular cartilage 

of the knee. While it is difficult to isolate damage to the knee joint caused by repeat episodes 

of trauma over time from damage caused by aberrant kinematic behaviour, there is an 

increasing body of evidence that aberrant knee kinematics contribute to articular cartilage 

damage. Damage to the medial articular cartilage has been associated with time since ACL 

injury (Myers et al 2001). Harman et al (1998) also found ACL deficiency was associated with 

articular cartilage wear over a more posterior area of the tibial plateau. The menisci suffer 

from chronic loading and repeat trauma in the ACL-deficient knee (Finsterbush et al. 1990; 

Irvine et al. 1992; Keene et al. 1993; Bellabarba et al. 1997; Allen et al. 2001). Damage to the 

menisci contributes to the development of osteoarthritis (Fairbank 1948). In this manner, the 

aberrant kinematic behaviour of the knee is responsible for the degeneration of the menisci 

and the consequential osteoarthritis. Our study shows that there is a change in the tibiofemoral 
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contact pattern resulting from ACL injury, which is likely to contribute to accelerated wear 

over the long term (Bellabarba et al. 1997; Clatworthy et al. 1999; Gillquist et al. 1999). 

Conclusion 

The characteristics of abnormal motion in the ACL-injured knee are firstly, that the 

tibiofemoral contact in the ACL-injured knee occurs over a posterior area on the tibial plateau. 

Secondly, that the longitudinal rotation evident in the healthy knee does occur in the ACL-

injured knee, however, the axis of rotation may have shifted medially. The difference in the 

tibiofemoral contact pattern in the ACL-injured knee is more pronounced in patients with 

more severe knee symptoms, especially pain, irrespective of the passive anterior laxity of the 

knee. 
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CHAPTER 6 

 

COMPARISON OF KINEMATIC ANALYSIS BY MAPPING 

TIBIOFEMORAL CONTACT WITH MOVEMENT OF THE 

FEMORAL CONDYLAR CENTRES IN HEALTHY AND 

ANTERIOR CRUCIATE LIGAMENT INJURED KNEES. 
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Abstract

Two methods of analysis of knee kinematics from magnetic resonance images (MRI) in vivo have been developed independently:

mapping the tibiofemoral contact, and tracking the femoral condylar centre. These two methods are compared for the assessment of

kinematics in the healthy and the anterior cruciate ligament injured knee.

Sagittal images of both knees of 20 subjects with unilateral anterior cruciate ligament injury were analysed. The subjects had

performed a supine leg press against a 150 N load. Images were generated at 15� intervals from 0� to 90� knee flexion. The tibi-

ofemoral contact, and the centre of the femoral condyle (defined by the flexion facet centre (FFC)), were measured from the

posterior tibial cortex.

The pattern of contact in the healthy knee showed the femoral roll back from 0� to 30�, then from 30� to 90� the medial condyle

rolled back little, while the lateral condyle continued to roll back on the tibial plateau. The contact pattern was more posterior in the

injured knee ðp ¼ 0:012Þ, particularly in the lateral compartment. The medial FFC moved back very little during knee flexion, while

the lateral FFC moved back throughout the flexion arc. The FFC was not significantly different in the injured knee ðp ¼ 0:17Þ.
The contact and movement of the FFC both demonstrated kinematic events at the knee, such as longitudinal rotation. Both

methods are relevant to design of total knee arthroplasty: movement of the FFC for consideration of axis alignment, and contact

pattern for issues of interface wear and arthritic change in ligament injury.

� 2004 Published by Elsevier Ltd. on behalf of Orthopaedic Research Society.
Introduction

Since the introduction of interventional MRI there
has been renewed interest in the study of in vivo knee

kinematics that MRI has made possible. The develop-

ment of knee arthroplasty has fuelled the need for better

understanding of the location and governance of the

axes of knee rotation and the tibiofemoral (TF) interface

dynamics due to issues of component wear. Thus, the

analysis and interpretation of the MRI recordings can

be approached from a variety of ways. Emphasis on the
axis of rotation for knee prosthetic design has lead to

analysis of knee kinematics by tracking the axis through

the femoral condyles [8,15,21,31]. Researchers studying
* Corresponding author. Tel.: +61-2-6244-2122; fax: +61-2-6244-

2334.
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the effects of motion on wear at the TF component

interface have examined the TF contact dynamics

[2,5,18,30,33,37]. This study compares the two ap-
proaches to interpretation of knee kinematics in vivo.

The flexion axis of the knee was described in early

documents as a fixed axis passing through the centre of

the posterior femoral condyles [35]. This view was re-

vised later, as cadaveric studies described sagittal sec-

tions through the femoral condyles as spirals, not circles,

and the axis thus defined as an instant centre of rotation

at any moment during the flexion arc [4,16,34]. The
three dimensional nature of MRI has enabled the plane

of sagittal sections to be redefined as perpendicular to

the line through the centres of the posterior femoral

condyles [13,15,19,23,25]. This alignment of the sagittal

plane to the posterior condylar centres has demon-

strated the femoral condyles to be indeed circular, and

the theory of the fixed flexion axis has been re-examined.
of Orthopaedic Research Society.
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Tracking the movement of the femoral condyles
during the knee flexion arc has enabled a description of

knee kinematics based on the reference position of the

femoral condyles over the tibial plateau [31]. In vivo

studies have compared the movement of the femoral

condyles in passive and active knee extension in side-

lying [31] and in a standing squat [13]. The centre of the

posterior femoral condyle has been termed the flexion

facet centre (FFC) since it is this facet that articulates
with the tibia during the flexion arc [8]. Tracking the

FFC has been particularly useful to describe the longi-

tudinal rotation of the knee during the flexion arc [13–

15,17].

Independent researchers have analysed knee kine-

matics from the perspective of the TF contact areas

[26,29,37]. Standard closed field MRI machines have

been used for these studies, to examine the TF contact
pattern of the knee when passively repositioned, or ac-

tively pressing down through the feet. Fluoroscopic

analysis of contact areas in standing and walking has

also been reported [2,6,18]. The contact areas provide

information regarding the roll/glide motion at the joint

surface, and the pattern of loading through the joint

[10,20]. There has not yet been a study combining these

two methods of kinematic analysis in order to compare
both characteristics of knee motion.

In order to compare the two characteristics of knee

kinematics described by the tracking of the FFCs with

the TF contact pattern, a third variable is introduced,

that of anterior cruciate ligament (ACL) deficiency. The

ACL has been described as an essential part of the

governance of the roll/glide motion of the knee [22,24],

and a major determinant of both the flexion axis and the
longitudinal axis of rotation [24,36]. Thus, the impact of

ACL deficiency on the motion of the femoral condylar

centres and TF contact pattern may be examined.

The aim of this study was therefore to examine the

differences in kinematic terms of the behaviour of TF
Fig. 1. Subjects’ position in the MRI scanning tunnel. The knees were posit

down through the feet against a 150 N load.
contact points versus the FFC in both healthy and
ACL-injured knees.
Method

Twenty subjects aged between 21 and 52 years, with a unilateral
ACL injury were recruited for a study of kinematic effects of ACL
injury [27]. Eight subjects were male, 12 female. Subjects were excluded
if there were any contraindications to MRI, may have been pregnant,
or they were over 180 cm tall (to permit knee flexion in the MRI
tunnel, Fig. 1). Subjects were also excluded if history of injury or
symptoms were present in the contralateral knee, so that the uninjured
knee could act as the control. All ACL injuries were sustained within 3
years of testing. A complete ACL tear was diagnosed for all subjects at
examination by an orthopaedic surgeon, and confirmed at arthroscopy
for knee reconstruction following the study. All subjects provided in-
formed consent. Ethics approval for the study was obtained from the
local University and Department of Health Committees.
MRI imaging procedure

For the study of kinematic effects of ACL injury the subjects had
performed a supine leg-press between 0� and 90� knee flexion (Fig. 1)
[27]. To enable standardisation of knee flexion positions between 0�
and 90� a wooden frame with a sliding footplate was fitted to the MRI
couch. The leg-press was weighted by a 150 N load via a rope and
pulley to resist leg extension. Elastic straps stabilised the thighs, feet
and ankles. Imaging of both knees simultaneously was performed
using a 1.5 T Siemens Magnetron Vision (Erlangen, Germany). A body
coil was used to generate parasagittal images, defined as perpendicular
to the tibial plateau. Using spoiled gradient echo sequences, eight
sagittal slices were generated through each knee, approximately 10 mm
apart (TR¼ 160.0, TE¼ 2.3/1, TA¼ 00:46), with a 256· 256 matrix.
Images were saved as digital image files in Dicom and Bitmap formats.
Tibiofemoral contact point measurement

The position of the TF contact with the tibial plateau was recorded
as the distance from the posterior tibial cortex to the point of TF
contact of the medial and lateral femoral condyle (Fig. 2) [28]. Where
contact occurred over a wide area, the area centroid was used. To
account for variation in the size of subjects, cortex to contact distance
measurements were normalised in proportion to mean tibial dimen-
sions. The mean AP diameter of the medial tibial plateau was 50± 4.4
mm, and the lateral tibial plateau was 42± 2.17 mm. The TF contact
map was scaled onto a tibial plateau of standard dimensions.
ioned at 15�-intervals between 0� and 90� flexion, relaxed, or pressing



Fig. 2. Sagittal images through the centre of the medial and lateral compartment of the knee were used to measure the tibiofemoral contact. The

distance was measured from the posterior tibial cortex to the centre of the area of contact (arrows).
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Flexion facet centre measurement

The position of the FFC over the tibial plateau was located by a
three-stage procedure with a computer assisted design program (Fig. 3)
(IntelliCAD� Technology Consortium, Portland Oregon). First, the
FFC was identified by fitting a circle to define the flexion arc of the
posterior condyle. Second, the tibial plateau was defined by a line from
the posterior tibial cortex to the anterior tibial cortex, parallel to the
tibial plateau. Lastly, a line was drawn through the FFC perpendicular
to the tibial plateau line to measure the distance from the posterior
tibial cortex to the intersection of the perpendicular line.
Reliability

The reliability of both methods of measurement was tested by
repeating measurements from the original scan images of seven sub-
jects on two occasions at least 24 h apart. The reliability of mapping
the contact points for the medial and lateral compartments was very
Fig. 3. The position of the flexion facet centre over the tibial plateau was mea

were defined (1), the tibial plateau was defined, and the distance from the

measured. (A) Distance from the flexion facet centre to the posterior tibial co

the limits of the tibial plateau.
high with intra class correlationð2;1Þ 0.94 (99% confidence interval was
0.91–0.97). The reliability of measurement of the FFC was also very
high with intra class correlationð2;1Þ of 0.94 (95% confidence interval
was 0.83–0.97). The distances from the posterior tibial cortex to the
contact point, or FFC, for the 20 subjects records a 95% confidence
interval of the measurement of 1.30 mm.
Results

The contact for the healthy knee in the medial and

lateral compartments was anterior in knee extension,

and then moved posteriorly during the flexion arc

(Fig. 4A). The medial condyle began 33± 3.8 mm from

the posterior cortex, which was just 17 mm from the
sured in three steps: the arc and centre of the posterior femoral condyle

perpendicular through the centre to the posterior tibial cortex was

rtex and (B) anterior and posterior tibial cortex defined the angle and



Table 1

The position of the flexion facet centre and the tibiofemoral contact

point in the healthy and ACL-injured knees of 20 subjects (mean and

standard deviation), measured in millimetres from the posterior tibial

cortex

Flexion facet centres Tibiofemoral contact

ACL-injured ACL-injured

Mean SD Mean SD

Lateral compartment

0� 22.0 5.1 25.0 4.5

15� 22.8 3.6 20.9 3.4

30� 21.2 4.1 18.2 3.3

45� 18.8 4.2 15.5 3.4

60� 17.3 3.5 13.7 3.5

75� 15.5 3.9 13.1 3.0

90� 15.4 2.6 12.3 3.0

Medial compartment

0� 21.2 4.0 32.0 5.0

15� 23.4 3.9 29.0 3.5

30� 24.4 3.0 23.4 3.2

45� 23.1 2.8 21.2 2.4

60� 22.9 1.4 19.7 1.8

75� 22.3 2.3 19.4 2.1

90� 22.9 1.8 19.2 2.3

Healthy Healthy

Lateral compartment

0� 24.1 3.3 26.1 3.1

15� 23.7 3.4 22.5 2.8

30� 21.7 3.8 18.6 2.4

45� 19.7 3.2 16.5 2.0

60� 18.2 2.4 15.3 2.9

75� 16.8 2.3 14.4 2.8

90� 15.9 2.4 14.2 2.8

Medial compartment

0� 22.5 3.4 33.0 3.8

15� 24.8 3.3 29.6 3.7

30� 24.3 2.7 23.6 3.5

45� 23.4 2.5 21.3 2.9

60� 22.8 2.4 20.1 2.6

75� 22.6 2.4 20.0 2.9

90� 22.9 2.2 19.8 2.8
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anterior edge of the tibial plateau (Table 1). The lateral

condyle began 26.1 ± 3.1 mm from the posterior tibial
cortex. Both the medial and lateral femoral condyles

then rolled back along the tibial plateau. Between 0� and
30�, the medial condyle covered 9.6 mm, which was 0.3

mm per degree. Between 0� and 30� the lateral condyle

covered 7.5 mm, which was 0.25 mm per degree. Be-

tween 45� and 90� the medial condyle did not move

posteriorly as much, 1.5 mm in 45�, or 0.03 mm per

degree. The lateral condyle moved a further 2.3 mm
posteriorly, which was 0.05 mm per degree. The lateral

condyle at 90� knee flexion was situated 14.2 ± 2.8 mm

from the posterior tibial cortex. The medial femoral

condyle was situated 19.8 ± 2.8 mm from the posterior

tibial cortex, so the lateral TF contact had moved more
posteriorly than the medial TF contact. Between 0� and
30� the TF contact pattern was demonstrating roll of the

condyles, beyond 30� the condyles were demonstrating

more glide, especially the medial condyle.

The TF contact in the injured knee had similar roll/

glide characteristics to the healthy knee, but was located

significantly more posteriorly on the tibial plateau

(Fð1;152Þ ¼ 6.5, p ¼ 0:012) (Fig. 4B). In the medial com-

partment of the knee the difference was most pro-
nounced at 0� and 15�. At 0� the medial femoral condyle

was located 32.2 ± 5.1 mm from the posterior tibial

cortex landmark in the ACL-injured knee, compared to

33.2 ± 3.9 mm in the healthy knee. Further into knee

flexion the TF contact of the medial compartment of the

injured knee followed closely the healthy knee. In

the lateral compartment of the knee, the TF contact of

the injured knee was more posterior on the tibial plateau
than the healthy knee throughout the range of knee

flexion (Fig. 5A). The femoral contact point was on

average 1.3 mm more posterior than the healthy knee in

the lateral compartment of the loaded knee, and 0.5 mm

more posterior in the medial compartment of the loaded

knee (Fig. 5A). However, individuals exhibited as much

as 9.7 mm of posterior femoral contact displacement in

the medial compartment and 9.5 mm in the lateral
compartment.

The FFCs of the healthy knee were positioned over

the centre of the tibial plateau in knee extension. The

medial FFC moved forward slightly as the knee flexes to

15� (Fig. 4C). The medial FFC moved from 22.5 ± 3.3

mm at 0� to 24.8 ± 3.4 mm from the posterior tibial

cortex, at 15� knee flexion. Beyond 30� the medial FFC

remained centrally located over the medial tibial pla-
teau, at 90� it was 22.9 ± 2.2 mm from the posterior

tibial cortex. The lateral FFC moved posteriorly at a

steady rate during the flexion arc to 90�, from 24.1 ± 3.3

mm at 0�, to 15.9 ± 2.4 mm at 90� flexion. The move-

ment of the FFC in the ACL-injured knee was not sig-

nificantly different to the healthy knee (Fð1;76Þ ¼ 1.86,

p ¼ 0:17) (Fig. 5B).
The characteristics of the FFC and TF contact were

similar in the medial and lateral compartments, that

from 15� to 90� the medial condyle and contact re-

mained central on the tibial plateau while the lateral

condyle and contact continued to move back on the

tibial plateau. This axial rotation of the knee around a

medially located axis was demonstrated by both the

motion of the FFC and TF contact.

The FFC was not positioned directly above the TF
contact. Between 0� and 15�, the FFC was posterior to

the TF contact (Fig. 5C). Between 30� and 90� the FFC
was anterior to the TF contact. The greatest difference

between the TF contact and FFC position was in knee

extension, when the difference between the FFC and TF

contact was 10.5 mm in the medial compartment, and

2.0 mm in the lateral compartment.



Fig. 4. Comparison of flexion facet centre position with tibiofemoral contact, between 0� and 90� knee flexion. Tibiofemoral contact in the: (A)

healthy knee and (B) in the ACL-injured knee. Flexion facet centre position over the tibial plateau in the: (C) healthy knee and (D) ACL-injured

knee. (L) lateral and (M) medial.
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Discussion

Kinematic events are recognisable in the movement

of the FFC and TF contact pattern, including the screw-

home in knee extension, longitudinal rotation during
flexion, and the effect of ACL injury on the control of

rotation. The behaviour of the knee from 0� to 15� was
different from the behaviour between 30� and 90� for

both the TF contact pattern and position of the FFC.

The medial TF contact rolled to its anterior limit in knee

extension, and the FFC demonstrated a paradoxical

backward rock. This paradoxical backward rock of the

FFC is considered to be due to the axis of flexion
shifting from the flexion facet to the extension facet

centre [8].

The longitudinal axis of rotation of the knee was

demonstrated by the TF contact and the FFC move-

ment in the healthy and ACL-injured knees. In the

medial compartment, the TF contact and FFC pos-

terior excursion was limited, compared to the greater

range of excursion for the lateral TF contact and FFC.
The difference between the medial and lateral FFC

movement has been described as evidence of the lon-

gitudinal rotation of the knee during the flexion arc,

the axis of which lies through the medial compartment

[13].
The effect of ACL injury over the control of the axis

of longitudinal rotation is clearer in the TF contact than

the FFC movement. The lateral femoral condyle traced

a posterior pathway on the lateral tibial plateau, but the

medial condyle was unchanged [27]. The effect of ACL
injury on TF contact may be greater than its effect over

FFC movement. ACL injury results in both laxity to

anterior displacement forces at the knee and also rotary

instability. TF contact is able to reflect both of these

features.

Knee kinematics exhibited by the pattern of TF

contact was been described differently by Wretenberg et

al. [37] who performed a study of 16 healthy subjects,
where the sagittal MR images were aligned with the long

axis of the femur and tibia. A customised knee splint

held the knee position. It may be that the orientation of

the MR images and the constraints imposed by the knee

splint account for the differences between his results and

those we have reported. Wretenberg et al. describe

similar contact points to those in our study at 0�, but
then the contact moves backward at 30� and forward
again at 60�. The contact pattern is almost parallel be-

tween the medial and lateral compartments. The pilot

study of Smith et al. [29] reports the TF contact points

moving posteriorly during knee flexion, but more so in

the lateral than the medial compartment of the knee.



Fig. 5. Graphs comparing tibiofemoral contact and flexion facet centre

position in the healthy and ACL-injured knee, performing a leg press

against a 150 N load. (A) Tibiofemoral contact positions in healthy

and ACL-injured knees, demonstrating the similarity of medial com-

partment contact in the healthy and ACL-injured knees, but difference

in the lateral compartment contact. (B) Position of the flexion facet

centre over the tibial plateau in healthy and ACL-injured knees. There

was no significant difference between the healthy and injured knees. (C)

Comparison of tibiofemoral contact with flexion facet centre position

in healthy knees. At 0� flexion the FFC is posterior to the TF contact,

but from 30� to 90� the FFC was anterior to the TF contact.
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Wretenberg aligned the sagittal imaging plane from the

long axis of the femur, rather than from the tibial pla-

teau, as in this study, however, this is unlikely to have

made such a difference to the reported contact pattern.
It is more likely the kinematics were indeed different in

his study.

The movement of the femoral condyles referenced

from the FFC has been widely reported in vivo, in a

variety of kinematic activities [1,12,13,31]. During most

knee flexion activities the medial FFC remains essen-

tially central on the tibial plateau, while the lateral FFC

moves posteriorly with regard to the tibial plateau as the
knee flexes [32]. It has been shown that the axis of
rotation of the knee can be constrained by loading the

knee and fixing the foot in subjects performing a

standing squat [17]. Indeed there are a variety of

movement patterns available to the knee within the

envelope of passive motion, depending on the loading,

dynamic forces and constraints of particular kinematic

events [3]. The movement of the FFC seen in this study

is consistent with that seen by Hill et al. [13] Iwaki et al.
[15] and Karrholm et al. [17] within the constraints of

the supine leg press activity performed.

To describe kinematic events at the knee by measur-

ing the TF contact pattern was useful in both knee

flexion and extension. However the FFC is most useful

beyond 30� flexion, when the flexion axis of the knee

is through the FFC [8,9,25]. Between 0� and 30� the

extension facet is in contact with the tibia: the knee
rotates about an axis through the extension facet centre

and the FFC is therefore not relevant in this arc [8]. This

may be why there appears to be a paradoxical backward

rock of the FFC at 0–30�, because the axis of rotation of

the knee has shifted from the FFC to the extension facet

centre at that time.

The shift of the axis of rotation between the extension

facet centre and FFC may explain why the FFC is
positioned posteriorly to the TF contact in knee exten-

sion, but it does not explain why the FFC would not be

directly above the TF contact point at deeper knee

flexion angles. One reason for this could be the method

of measuring the distance from the FFC to the posterior

tibial cortex is dependent on the angle of the tibial

plateau, so the perpendicular intersecting line can be

drawn. The tibial plateau, however is not orientated
horizontally, but rather 13� posteriorly. Therefore the

natural weight bearing line is not perpendicular to the

tibial plateau, but at 77� to it [24]. If measurement of

the FFC position were referenced from a plumb line

through the knee, then perhaps the TF contact points

would lie directly underneath the FFC.

Measurement of TF contact permits examination of

events at the TF interface. These interface events are
clinically important to patients and of practical impor-

tance to surgeons. Arthritis is an event occurring at the

TF interface. One study of 450 tibial plateau specimens

resected during knee arthroplasty procedures linked

wear patterns to attenuation or loss of integrity of the

ACL [11]. Fluoroscopy has been used to concentrate on

TF contact because of the relevance to wear in total

knee arthroplasty [2,5,6,30]. The goal of total knee
arthroplasty has been to replicate the kinematics of the

healthy knee. Studies have examined anterior and pos-

terior cruciate retaining and sacrificing prosthesis de-

signs in vivo to see how analogous the TF contact

pattern is to that of the healthy knee [5]. Fluoroscopic

mapping of TF contact patterns have enabled prediction
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of wear patterns for different total knee arthroplasty
designs [7].

The two methods for examining knee kinematics,

measurement of TF contact patterns and movement of

the FFC both describe kinematic events at the knee.

Both methods are applicable and valid but the differ-

ences between them need to be noted. The TF contact

pattern was more sensitive to the effects of ACL injury.

The movement of the FFC has limited application be-
tween 0� and 30� knee flexion, when the tibia is articu-

lating with the extension facet of the femoral condyles.

The position of the extension facet centre may be more

usefully examined at these flexion angles. The ability to

study kinematic events at the TF interface may be useful

in a range of knee pathologies that are vulnerable to

degenerative change due to kinematic disturbance.
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CHAPTER 7 

 

KINEMATICS FOLLOWING KNEE RECONSTRUCTION 
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Abstract 

It is unclear whether ACL reconstruction prevents the natural history of degeneration in 

the ACL-deficient knee or whether normal knee kinematics are restored. This prospective 

study used MRI to measure knee kinematics before and after reconstruction.  

20 ACL-injured subjects performed a closed-chain leg-press, relaxed and against a 150N 

load. MRI recorded the tibiofemoral contact position at 15º intervals from 0º to 90° 

degrees of knee flexion. Surgical outcomes were measured as passive laxity using a 

KT1000 arthrometer and Cincinnati rating. All measures were performed preoperatively, 

at 12 weeks and 2 years postoperatively. 

Surgical outcomes were “excellent” or “very good” in 15/20 subjects; 5 were fair, none 

were poor. Preoperatively the contact patterns for the ACL-injured knees were different to 

the healthy contralateral knees (p = 0.014), but were not significantly different at 12 

weeks (p = 0.117) or at 2 years postoperatively (p = 0.909). However, the lateral 

compartment contact pattern of the healthy and the reconstructed knees of injured subjects 

provided some evidence of less tibiofemoral rollback at 2 years than in healthy control 

subjects (p.<.0.01).  

The knee reconstruction restored the tibiofemoral contact pattern to that of the healthy 

contralateral knee, but both the healthy contralateral and reconstructed knees showed 

changes over time. 
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Introduction 

Anterior cruciate ligament injury alters the kinematics of the knee, and this may be 

responsible for the natural history of degeneration of the ACL-deficient knee. It is not 

clear whether knee reconstruction surgery restores normal knee kinematics. There is no 

evidence yet that reconstruction prevents, osteoarthritis. In fact reconstructed patients may 

have a higher incidence of osteoarthritis than those unoperated (Gillquist 1993; Daniel et 

al. 1994; Maletius and Messner 1999). A 7% - 18% incidence of osteoarthritis was 

reported 7 years after bone-patella tendon-bone reconstructions (Jomha et al. 1999; 

O'Neill 2001) and a 4% - 16% incidence 5 years after hamstrings graft reconstructions 

(O'Neill 2001; Pinczewski et al. 2002). Incidence of osteoarthritis as evident on x-ray has 

been reported to be as high as 50% 7 years after hamstrings graft reconstruction (Ruiz et 

al. 2002). The consequence of the recent rapid advances in knee reconstruction techniques 

is that longitudinal prospective studies are not yet available beyond 7 years.  

Since abnormal kinematics of the ACL-deficient knee have been considered partly 

responsible for the high incidence of late osteoarthritis (Gillquist 1993), research has 

emphasised kinematics of the knee before and after knee reconstruction surgery. In vitro 

studies have demonstrated that the anterior stability of the reconstructed knee is similar to 

the normal knee (Papergeorgiou et al. 2001; Yagi et al. 2002), but the rotary stability is 

not restored by reconstruction (Woo et al. 2002). In vitro studies of reconstructed knees 

have limited application to in vivo knee kinematics, as the motions and forces of normal 

activity are not reproduced. 
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In vivo studies of knee kinematics before and after reconstruction surgery have used 

electrogoniometry (Bulgheroni et al. 1997; De Vita et al. 1998), biplanar video analysis 

(Georgoulis et al. 2003) and roentgen stereophotogrammetric analysis (RSA) (Brandsson 

et al. 2001; Brandsson et al. 2002). Knee kinematics do not appear to be restored to 

normal, as the altered rotation reported preoperatively is maintained (Brandsson et al. 

2002) and increased sagittal plane motion sometimes persists (Beard et al. 2001). These 

studies have included subjects who underwent a variety of different reconstruction 

techniques. All studies examined weight-bearing activity, such as walking or stepping up. 

Kinematics of non-weight-bearing activities have not been compared to weight-bearing 

activities after knee reconstruction. This is relevant given the prescription of open and 

closed chain exercises for this group of patients. 

The characteristics of knee kinematics described by the tibiofemoral contact pattern have 

not been examined in subjects following knee reconstruction. Recently ACL-injured 

knees have been shown to demonstrate different contact patterns to healthy knees, 

particularly in the lateral compartment (Chapter 5; Scarvell et al. 2002a, 2003c). In the 

chronic ACL-deficient knee it is the medial compartment contact pattern that is affected, 

as the secondary restraints to anterior translation are attenuated by chronic loading 

(Chapter 8; Scarvell et al. 2003b). Whether these abnormal contact patterns are corrected 

by knee reconstruction surgery is not known. 

A method has been established using MRI to record the tibiofemoral contact pattern 

bilaterally, in subjects performing a closed-chain leg-press (Chapter 4; Scarvell et al. 

2003a). This study aimed to use the established MRI method to record the tibiofemoral 

contact pattern preoperatively in injured and healthy contralateral knees and 



 

110

postoperatively at 12 weeks and 2 years, to determine whether knee reconstruction 

restores normal knee kinematics. 

Method 

Twenty subjects with a unilateral ACL injury were recruited. Eight subjects were male, 12 

were female. Subjects were aged 19 to 52 years (33 ± 7yrs; mean ± SD). The injuries 

were sustained 1 to 36 months earlier (7 ± 10 months). There were 12 right knees injured 

and 8 left knees. Subjects were injured at soccer (7), netball (4), basketball (2), skiing (2), 

martial arts (2), football (1), motor bike accident (1) and a fall from 1m height (1). All 

ACL injuries were diagnosed clinically by an orthopaedic surgeon and confirmed later at 

arthroscopy. Eighteen of these subjects were included in the study of ACL-injured knees 

(Chapter 5; Scarvell et al. 2003c). Because two subjects from the group in Chapter 5 

declined knee reconstruction surgery, two additional subjects were recruited to the study. 

All subjects were available for follow up at 12 weeks postoperatively and 18 were 

available at 2 years. Of the two subjects lost to follow up at 2 years, one had moved 

internationally and one had further surgery for cartilage transplantation and was therefore 

excluded from the study. Subjects were excluded if there were any contraindications to 

MRI, may have been pregnant or they were over 180cm tall (to permit knee flexion in the 

MRI tunnel). Subjects were also excluded if history of injury or symptoms were present in 

the contralateral knee, so that the healthy contralateral knee could act as the control.  

Twelve healthy subjects were used as controls for the comparison of knee kinematics at 2 

years. These subjects are described in Chapter 4. These healthy subjects were aged 20 to 
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50 years, 7 were male and 5 female. None had any symptoms or history of injury in either 

knee. 

All subjects provided informed consent. Ethics approval for the study was obtained from 

the University of Sydney and Australian Capital Territory Department of Health Human 

Research Ethics Committees. 

Surgical procedure 

Knee reconstruction was performed by four orthopaedic surgeons using the same 

technique. A quadrupled graft of semitendinosus and gracilis was harvested and the 

intraarticular procedure performed arthroscopically. The loops of tendon were anchored 

proximally by suspension over a transverse femoral pin within the femoral tunnel and 

anchored in the tibial tunnel by a bioabsorbable interference screw and finished with two 

tibial staples. Postoperative rehabilitation enabled full weight-bearing as tolerated, with 

accelerated rehabilitation in physiotherapy to encourage full range of motion, hamstrings 

and quadriceps strengthening via closed-chain exercises and proprioception training. 

Return to sport was permitted at 6 months (Shelbourne and Nitz 1990; Fu et al. 1992; 

Escamilla et al. 1998; Beynnon et al. 2002).  

Surgical outcomes 

Surgical outcomes for this study were measured by the passive anterior laxity of the knee 

and the Cincinnati knee rating scale. Passive anterior laxity was measured for each subject 

preoperatively, at 12 weeks and 2 years postoperatively using a KT1000 knee arthrometer 

(Medmetric, San Diego, California). The difference between the injured knee and healthy 
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contralateral knee was recorded at 15, 20 and 30lb of anterior drawer, on activation of the 

quadriceps muscles and on a maximum manual anterior drawer (by the same tester JMS), 

according to the protocol established by Daniel et al (1985). Pathological anterior laxity 

both before and after surgery is defined by a side-to-side difference of 3mm or greater on 

maximal manual application of anterior drawer (Daniel et al. 1985). Passive laxity of 

greater than 3mm side-to-side difference is considered a poor surgical outcome 

(Shelbourne and Nitz 1990). 

The Cincinnati knee rating system includes measures of symptoms, difficulty with 

activities of daily living, examination findings, quantified ligament laxity, pivot shift and 

radiological findings. The result is a total score out of 100, where 100 indicates a fully 

functional and healthy knee. There is also a rating of excellent through good, fair and 

poor, and this indicates the surgical outcome. If a subject has a rating of “poor” for any 

one of the aspects, for example, passive laxity measurement, a final rating of “poor” is 

found. The Cincinnati rating system has been validated for use in ACL-injured and 

reconstructed populations (Barber-Westin et al. 1999). Subjects also reported the 

perceived condition of their knee on a 10 point Likert scale, with descriptors of poor (0-

1/10) through good (5/10) to excellent (9/10).  

Tibiofemoral contact point measurement from MRI scans  

To study kinematic effects of ACL injury, subjects performed a supine leg-press between 

0° and 90° knee flexion in the same manner as described in Chapter 4. The leg-press was 

weighted by a 150N load via a rope and pulley to resist leg extension. Sagittal images 

were generated through both knees simultaneously using MRI. The position of the 

tibiofemoral contact was recorded as the distance from the posterior tibial cortex to the 
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point of tibiofemoral contact for both the medial and lateral femoral condyles respectively 

(Scarvell et al. 2004).  

Statistical Analysis 

Tibiofemoral contact patterns of healthy contralateral and injured knees were compared 

using a repeated measures ANOVA model. The model was complex, with repeated 

measures performed at the seven intervals of knee flexion (0º, 15º, 30º, 45º, 60º, 75º, 90º) 

and at three time frames (including preoperatively, 12 weeks and 2 years postoperatively). 

To analyse the effects of surgery on tibiofemoral contact patterns three separate analyses 

were performed. The ACL-injured knees were compared to the contralateral knees at the 

preoperative time point. The ACL-reconstructed knees were compared to the contralateral 

knees at the 12 weeks time point. Finally, the ACL-reconstructed knees were compared to 

the contralateral knees at the two years time point.  

To compare the tibiofemoral contact pattern of the injured and healthy knees 

longitudinally two analyses were performed. For this analysis the tibiofemoral contact 

point data at seven intervals from 0º to 90º was collapsed to a single mean of tibiofemoral 

contact. The mean contact of ACL-injured knees were compared at the preoperative, 12 

weeks and 2 years time points. The contralateral knees were compared at preoperative, 12 

weeks and 2 years time points. The data recorded for 12 healthy control subjects reported 

in Chapter 4 (Scarvell et al. 2003a) were included for analysis of changes in the healthy 

knee over time. Performing separate analyses enabled the effects of time and surgery to be 

examined independently, but increased the likelihood of type 1 error. If differences in 

kinematics were found, a Bonferroni comparison was used for post hoc analysis. The 
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significance level was set at p = 0.05. Data analysis was performed on Statistical Package 

for the Social Sciences version 11.5.  

Results 

Surgical outcomes  

The outcome of knee reconstruction surgery was measured using the passive anterior 

laxity of the knee and the Cincinnati knee rating scale. KT 1000 showed a side-to-side 

difference in passive anterior laxity of 5.1 ± 2.6mm (mean ± SD) preoperatively, 2.5 ± 

2.2mm at 12 weeks and 2.1 ± 2.3mm at 2 years (Figure 7.1). Preoperatively there were 18 

subjects with ≥ 3mm anterior laxity on manual maximum anterior drawer, at 12 weeks 

there were 8 subjects with ≥ 3mm side-to-side difference and at 2 years postoperatively 

there were 6 subjects with ≥ 3mm side-to-side difference.  

The preoperative Cincinnati scores averaged 57 ± 11 out of 100, with 8 knees rated as 

“poor” and 12 as “fair” (n = 20). No subjects rated “good” or “excellent”. At 12 weeks 

postoperatively the mean score was 76 ± 10, with 4 knees rated as “poor”, 12 as rated 

“fair”, 4 rated as “good” (n = 20). No subjects rated “excellent”. At 2 years 

postoperatively the mean Cincinnati score was 90 ± 11. At 2 years, the surgical outcome 

defined by the Cincinnati rating scale rated 5 subjects as “fair”, 5 subjects as “good” and 8 

subjects as “excellent” (n = 18). The reasons for 5 subjects being rated as “fair” at 2 years 

included passive anterior laxity measures of ≥ 5mm side-to-side difference (n = 2), 

restricted activity levels (n = 2) and medial compartment narrowing on x-ray (n = 1).  
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Figure 7.1: Passive anterior laxity measurements recorded preoperatively, at 12 weeks and 2 

years postoperatively (mean and range). Side-to-side differences were measured with a KT1000 

using a 30lb force, active quadriceps muscle contraction and a maximum manual anterior force. 

For the self-reported condition of their knee 2 years postoperatively, 12 subjects rated the 

knee as “excellent” (9 or 10/10), 4 as “very good” (8 - 6/10) and 2 as “good” (5/10). No 

subjects rated the knee less than 5/10. Preoperatively 58% were participating in sports at 

least once per week. At 2 years, 69% of subjects were participating in sports at least once 

per week. There were no professional players in this group, however, those playing 

competitive amateur sports had all returned to their preferred sport. 

Preoperative tibiofemoral contact patterns in healthy contralateral knees 

The tibiofemoral contact pattern of the healthy contralateral knees differed between the 

medial and lateral compartments (F (1,156) = 321.6, p < 0.001). At 0º flexion, the medial 

femoral condyle contacted the anterior tibial plateau 33 ± 3.9 mm from the posterior tibial 

cortex reference point. From 0º to 30º, the femoral condyle rolled back on the tibial 
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plateau so that at 30º it was 23.3 ± 3.3mm from the posterior tibial cortex. Between 45º 

and 90º posterior movement was minimal (0.4mm) remaining centred on the tibial 

plateau.  

The lateral contact pattern showed more posterior excursion than the medial contact 

pattern. The femur did not contact the tibial plateau as far anteriorly as the medial 

condyle, the contact point being 25.8 ± 3.1 mm from the posterior tibial cortex. Between 

0º and 90º the femur rolls back steadily across the tibial plateau. At 30º knee flexion the 

femur had rolled back 7mm and was 18.8 ± 2.0mm from the posterior tibial cortex and at 

90º it was 14.4 ± 2.7mm from the posterior tibial cortex.  

Preoperative tibiofemoral contact patterns in ACL-injured knees 

The ACL-injured knee had a similar contact pattern to the healthy contralateral knee, but 

it occurred more posteriorly on the tibial plateau (F (1,152) = 6.2, p = 0.014) (Figure 7.2). 

The medial compartment was similar to the healthy contralateral knee; at 0º knee flexion 

the femur was positioned anteriorly on the tibial plateau 32.5 ± 5.0mm from the posterior 

tibial cortex, and rolled back to the centre of the tibial plateau to 22.8±2.9mm from the 

posterior tibial cortex at 30º knee flexion and rolled back a further 2.7mm between 30º 

and 90º knee flexion, so that at 90º flexion it was positioned 19.1 ± 2.3 mm from the 

posterior tibial cortex.  

The lateral condyle rolled further back on the tibial plateau than did the medial condyle. 

At 0º the femoral condyle was positioned 24.7 ± 4.3mm from the posterior tibial cortex, 

then rolled posteriorly to 18.2 ± 2.3mm at 30º knee flexion. It continued rolling back to 

finish 12.5 ± 2.8mm from the posterior tibial cortex at 90º.  
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In ACL-injured and healthy contralateral knees, the medial and lateral compartments of 

the knee had different contact patterns, demonstrating longitudinal rotation of the knee 

(F(1,136) = 315.42, p < 0.001). The effect of ACL injury on the contact pattern was not 

significantly more pronounced in the medial or lateral compartments (F(1,152) = 1.2, p = 

0.27). The mean difference in the tibiofemoral contact points between the ACL-injured 

knee and the healthy contralateral knee was 0.5mm for the medial compartment and 

1.3mm for the lateral compartment.  

The loaded condition did not produce a different tibiofemoral contact pattern to the 

unloaded condition, in either the healthy contralateral or ACL-injured knees (F(1,136) = 

0.76, p = 0.386).  

Tibiofemoral contact patterns in knees at 12 weeks after reconstruction  

Twelve weeks after knee reconstruction surgery, the tibiofemoral contact pattern in the 

ACL-reconstructed knees was no longer different from the healthy knees (F(1,152) = 2.5, p 

= 0.117). The medial compartment was different from the lateral compartment (F (1,152) = 

122.6, p < 0.001). There was no difference in the tibiofemoral contact pattern of the 

reconstructed knees between the loaded and unloaded conditions at 12 weeks post surgery 

(F (1,152) = 1.3, p = 0.256) (Figure 7.3). 

Tibiofemoral contact patterns 2 years after reconstruction 

Two years after ACL reconstruction, the tibiofemoral contact pattern in the ACL-

reconstructed knees was the same as that of the healthy contralateral knees (F(1,136) = 

0.013, p = 0.909) (Figure 7.4). The medial compartment was different from the lateral 
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compartment (F (1,136) = 122.6), p < 0.001). The loaded and unloaded knees’ tibiofemoral 

contact patterns were not different (F (1,136) = 1.3, p = 0.256). 

Changes in tibiofemoral contact patterns to healthy knees over time  

There was a significant difference in the contact pattern of the healthy contralateral knees 

at the three time points, pre-operatively, at 12 weeks and 2 years post knee reconstruction 

(F(1,204) = 11.5, p < 0.001). Post hoc tests showed the difference to be between 12 weeks 

and 2 years in the healthy contralateral knees (p = 0.003). There was no significant 

difference between the tibiofemoral contact patterns preoperatively and 12 weeks 

postoperatively (p = 0.559). The lateral compartment was most affected by the changes 

over time (F(2,204 = 42.5, p = 0.021).  

The preoperative contact pattern in the lateral compartment of healthy contralateral knees 

was similar to the contact pattern at 2 years at 0º and 15º knee flexion. However, from 45º 

to 90º knee flexion the lateral femoral condyle did not roll back as far on the tibial plateau 

as it had at preoperative testing. Preoperatively, the healthy knee contact position at 45º 

knee flexion was 16.0 ± 2.0 and at 2 years was 18.5 ± 2.3mm from the posterior tibial 

cortex reference point. At 90º knee flexion the preoperative position was 14.4 ± 2.8mm 

and at 2 years was 16.8 ± 2.3mm from the posterior tibial cortex. At 2 years the lateral 

femoral condyle did not roll back as far on the tibial plateau as it had preoperatively, but 

the rollback of the medial femoral condyle was unchanged. This indicates that the knees 

had lost some of the longitudinal rotation evident during knee flexion at the preoperative 

measurement. 
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ACL-injured knees preoperatively: 
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Figure 7.2: Tibiofemoral contact points in the ACL-injured and healthy contralateral knees 

preoperatively (Pre op) when A) loaded and B) unloaded (mean ± SE).  
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ACL- reconstructed knees at 12 weeks: 
loaded
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ACL- reconstructed knees at 12 weeks: 
unloaded
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Figure 7.3: Tibiofemoral contact patterns in ACL-reconstructed and healthy contralateral knees 

12 weeks after reconstruction (12 weeks recon.) (mean ± SE) when A) loaded and B) unloaded. 

The difference between the ACL-reconstructed and healthy contralateral knees was not 

significant. 
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ACL- reconstructed knees at 2 years: 
loaded
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ACL- reconstructed knees at 2 years: 
unloaded
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Figure 7.4: Tibiofemoral contact patterns in the ACL-reconstructed knees (2 years recon.) were 

the same as the healthy contralateral knees at 2 years (mean ± SE) when A) loaded and B) 

unloaded.  
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Changes in tibiofemoral contact patterns to reconstructed knees over time 

Changes over time also occurred in the reconstructed knees. Post hoc analysis showed 

difference in the contact pattern preoperatively and at 2 years postoperatively in the ACL-

reconstructed knees (p.<.0.01). The medial compartment contact pattern was unchanged 

but the lateral compartment progressively lost femoral roll back over the two years of the 

study. Preoperatively the femur rolled back to 12.5 ± 2.8mm from the posterior tibial 

cortex at 90º knee flexion and at 2 years the femur rolled back to 16.5 ± 2.5mm from the 

posterior tibial cortex.  

Discussion 

To examine whether the knee reconstruction surgery restored the kinematics of the 

operated knees, it is first necessary to know that the surgery was successful, ie. outcomes 

were similar to the international benchmarks. The generally accepted measure of surgical 

outcome is restoration of passive anterior laxity values to within the normal range, that is 

a side-to-side difference of ≤.3mm with an applied manual maximum anterior force 

(Daniel et al. 1985). Nevertheless, passive laxity is reported in a variety of different ways. 

Pinczewski et al (1997) reported that 75% of subjects had anterior laxity of ≤ 3mm after 

reconstruction by hamstrings graft. O’Neill (2001) reported 75% of subjects with 

hamstrings graft reconstruction had ≤.2mm side-to-side difference. Shaieb et al (2002) 

reported 45% subjects had a side-to-side difference of ≤ 3mm. Our result of 14/20 (70%) 

subjects with ≤.3mm side-to-side difference on maximum manual testing is consistent 

with international benchmarks for successful outcomes in hamstrings reconstruction. 
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Changes over time
ACL-reconstructed knees and control subjects:
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Figure 7.5: Changes over time in A) the healthy contralateral knees and B) ACL-reconstructed 

knees (mean ± SE). This figure compares the healthy control subjects from Chapter 4 with the 

ACL-reconstructed subjects. 
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The Cincinnati scores for this study compare favourably with similar groups reported. The 

Cincinnati scores in our study were 76 ± 10 preoperatively and 90 ± 11 at 2 year follow 

up. This compares favourably with a similar group of ACL-reconstructed subjects (n = 

250) who had 56 ± 9 preoperatively and 89 ± 11 at 2 year follow up (Barber-Westin et al. 

1999); a group of patients with patella tendon reconstructions (n = 44) of whom 32 scored 

over 86/100 (Hrubesch et al. 2000); a group with ACL and high tibial osteotomy who 

scored 63 (mean) preoperatively and 82 at follow up (Noyes et al. 2000) and a group of 

subjects with chronic ACL deficiency (mean 7 years since injury) and consequent 

articular cartilage damage who scored 56 (mean) preoperatively and 86 at follow up 

(Noyes and Barber-Westin 1997). Our study included 6 subjects with side-to-side 

difference in passive anterior laxity >.3mm which indicates the knee reconstruction was 

unsuccessful in restoring passive stability, according to Daniel’s criteria (1985), however, 

the functional recovery of these subjects was very good, consequently they scored highly 

on the Cincinnati score, a measure of both functional and instrumented outcomes.  

Kinematics results 

Preoperatively the ACL-injured knees had a more posterior tibiofemoral contact pattern 

than the healthy contralateral knees. This shows that anterior laxity of the knee reported in 

vitro (Butler et al. 1980, Sakane et al. 1999) and measured in vivo by passive arthrometry 

(Daniel et al. 1985), is also present in the activity of a leg press and expressed in the 

altered contact pattern. Altered kinematics in the sagittal plane have also been described 

during walking (Dennis et al. 1996) and stepping up activities (Vergis et al. 1997 and 

Brandsson et al. 2001). It was important to confirm a difference in the tibiofemoral 
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contact patter pre-operatively in order to provide a baseline from which to measure the 

effect of reconstruction surgery in normalising the knee kinematics. 

Rotary instability of the ACL-injured knees, as reported in vitro (Sakane et al. 1997) and 

in vivo (Rudolf et al. 2001), could be expected to produce a difference in the 

medial/lateral contact patterns. The difference between the medial and lateral 

compartment contact patterns is evidence of the longitudinal rotation of the knee during 

flexion (Hill et al. 1999; Scarvell et al. 2003a), therefore, changes to the medial and lateral 

contact patterns indicate rotary aberrations. In the present study the difference between 

the healthy contralateral knee and injured knee appeared to be more pronounced in the 

lateral compartment than the medial compartments of the ACL-injured knees, though this 

failed to reach significance (Chapter 5; Scarvell et al. 2003c). Examples of the dynamic 

rotary instability have been reported in other activities, including a step up activity 

(Brandsson et al. 2001) and during swing phase of gait in ACL-injured subjects 

(Georgoulis et al. 2003), and this was reported as internal tibial rotation. As the tibia 

internally rotates the femur moves posteriorly on the tibial plateau, accordingly, our 

finding of a posterior tibiofemoral contact pattern in the lateral compartment could be a 

description of the same internal rotation. 

Twelve weeks after ACL reconstruction the tibiofemoral contact pattern of the operated 

knee was not different from that of the contralateral healthy knee. There are no other 

studies that have examined kinematics at 12 weeks, however, gait analysis at 3 weeks 

after knee reconstruction has shown decreased flexion/extension range of motion during 

swing phase and decreased knee flexion during stance phase (De Vita et al. 1998), which 

had normalised by 6 months post surgery. Aberrant kinematics at 3/52 post surgery may 



 

126

be a result of the acute healing process. In our study the kinematics of the reconstructed 

knee were no different to the contralateral knee 12 weeks post surgery.  

The tibiofemoral contact pattern of the reconstructed knees at 2 years was the same as the 

healthy contralateral knees. This indicated that the knee kinematics, as assessed using this 

method, were restored to that of the contralateral knee by reconstruction surgery. The 

established MRI method we used demonstrated the difference in tibiofemoral contact 

pattern between injured and healthy contralateral knees preoperatively and this difference 

was no longer present at 2 years. The medial/lateral asymmetry of the knee was still 

evident in the difference in tibiofemoral contact patterns of the two compartments, 

demonstrating that longitudinal rotation occurred during knee flexion. These aspects of 

knee kinematics are consistent with the patterns of healthy control subjects (Chapter 4).  

Other studies have not found that knee kinematics were restored by reconstruction 

(Brandsson et al. 2002; Beard et al. 2001). In an RSA study of 9 subjects 12 months 

following bone-patella tendon-bone reconstruction the tibial rotation and femoral 

translation still exhibited the same abnormal characteristics that had been present 

preoperatively; that is, the knees exhibited increased internal rotation at 55º and 0º flexion 

compared to the contralateral knee. Postoperatively, average internal rotation had 

decreased, however the change was not statistically significant. Brandsson et al (2002) 

concluded that knee reconstruction did not correct the aberrant knee kinematics exhibited 

preoperatively. 

Several studies have reported normal kinematics after knee reconstruction (Bulgheroni et 

al. 1997; De Vita et al. 1998; Georgoulis et al. 2003). Kinematics recorded in these 
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studies included knee flexion /extension and longitudinal rotation. A cross-sectional study 

by Bulgerhoni et al (1997) compared healthy controls, matched for age and sex to ACL-

injured and reconstructed subjects, finding that at 17 months, that kinematics of injured 

knees were different from healthy controls and reconstructed knees at were the same as 

healthy controls. These findings were supported by Georgoulis et al (2003), in a similar 

cross sectional study.  

Knee kinematics, measured by anterior translation of the tibial tubercle during gait 

analysis, were not corrected by reconstruction surgery (Beard et al. 2001). Preoperatively 

there was no difference between the healthy and injured knee, but at 6 months 

postoperatively there was significantly more anterior tibial translation in the reconstructed 

knees. Of the 11 subjects, 6 had semitendinosus autografts and 5 had bone-patella tendon-

bone autografts. The increase in tibial translation did not correlate with clinical outcomes 

of surgery, in this case the Lachman’s test. There are several possible reasons for the 

increase in tibial translation postoperatively. At 6 months postoperatively the graft tissue 

may still be undergoing revascularisation and new collagen synthesis, and the anterior 

laxity of the knee consequently increased, though this should have been reflected in the 

Lachman’s test results. Six months following surgery may be too soon to reflect the true 

outcome of surgery, because rehabilitation is still in progress in most cases and muscle 

strengthening and sensorimotor re-education is not likely to be complete (Neitzel et al. 

2002). The finding of increased anterior tibial translation during gait in reconstructed 

knees is important because it may have implications for the choice of knee reconstruction 

for the long-term protection of the knee from degenerative sequellae and warrants further 

investigation. 
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Changes to kinematics over time 

Changes to the healthy knee over the two-year period of the study are interesting. No 

other studies have examined kinematics of the healthy contralateral knees in the 

postoperative analysis. There is a suggestion that the kinematics of healthy contralateral 

knees of ACL-injured subjects are not the same as normal control subjects, implying that 

ACL-injured subjects have some intrinsic kinematic anomaly (Andriacchi and Birac 

1992). However, this is the first reported longitudinal study of the healthy knee of ACL-

deficient or reconstructed subjects with which to examine the long term change to the 

healthy knee.  

The loss of lateral femoral condyle roll back in the lateral compartment of healthy 

contralateral knees over the 2 year period appears similar to the loss of roll back in the 

lateral compartment of knees with early osteoarthritis (Chapter 10). However, there were 

no symptoms of osteoarthritis or evidence on MRI in the healthy contralateral knees to 

suggest that this might be the case. Further study of the healthy contralateral knees over 

the long-term may clarify whether these changes are indeed indicative of early 

osteoarthritis. 

Conclusion  

Knee reconstruction by hamstrings autograft restored the tibiofemoral contact pattern to 

that of the healthy contralateral knee. The medial/lateral asymmetry of the knee indicated 

that longitudinal rotation occurred during the flexion movement. Loading does not alter 

the contact pattern of the knee. These kinematic characteristics are consistent with those 
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of the healthy knee. However, there appear to be changes to the kinematics of the ACL-

reconstructed and healthy contralateral knees which may indicate that long-term changes 

to the kinematics of the knee occur as a result of ACL injury and subsequent surgery. 
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CHAPTER 8 

 

KINEMATIC CONSEQUENCES OF CHRONIC ACL INJURY 
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Abstract 

Late degeneration of the anterior cruciate ligament (ACL) deficient knee may be due in part 

to repeat injury, but also to aberrant kinematics altering the wear pattern at the tibiofemoral 

interface. Twenty-three subjects with a history of > 10 years (18 ± 8 years; mean ± SD) ACL 

deficiency without knee reconstruction performed a closed-chain leg-press resisting a 150 N 

load. MRI scans were performed at 15° intervals from 0º to 90° knee flexion. The ACL-

deficient knees had a posterior tibiofemoral contact pattern on the tibial plateau compared to 

the healthy knees (p = 0.003). The difference was most evident in the medial compartment 

(p.<.0.01) and at 0º and 15º knee flexion. Articular cartilage damage in the medial 

compartment was related to the variation of the tibiofemoral contact pattern (r = -0.53). 

Articular cartilage damage was not related to time since injury. The kinematic consequences 

of chronic ACL injury may in part be responsible for the pattern of degenerative change in the 

knee, especially in the medial compartment  
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Introduction 

It has long been recognised that anterior cruciate ligament (ACL) injury initiates a cascade of 

events frequently terminating in osteoarthritis of the injured knee (McDaniel and Dameron 

1980; Clatworthy and Amendola 1999; Gillquist and Messner 1999). Factors responsible for 

degeneration of the knee may include chondral damage at the time of the original injury, 

repeated episodes of trauma due to instability of the knee and changes to the kinematics of the 

knee during routine activities. However, although several studies have examined the 

kinematics of the acute ACL-deficient knee (Vergis et al. 1997; Dennis et al. 1998; Vergis 

and Gillquist 1998; Brandsson et al. 2001), there is little known regarding the kinematics of 

chronic ACL-deficient knees (Wexler, 1998). 

The cause of knee degeneration may be identified by its nature and location. Chondral impact 

injuries in association with ACL injury appear frequently as a kissing injury in the lateral 

compartment from a valgus blow to the knee (Myers et al. 2001). In animal models chondral 

impact injury has been used to precipitate degeneration of the chondral surface (Thompson et 

al. 1991a). Bone bruises visible on magnetic resonance imaging (MRI) scan are evidence that 

impact injuries in conjunction with ACL injuries may occur with sufficient force to cause 

bleeding in the subchondral bone (Johnson et al. 1998; Lahm et al. 1998; Johnson et al. 2000). 

It is not yet clear whether these bone bruises underlie areas of future chondral damage in 

humans (Stein and Fischer 1995). It may be that lateral compartment degeneration is due to 

chondral injury at the time of the original injury (Myers et al. 2001), but that medial 
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compartment degeneration is the result of other factors such as aberrant kinematics or 

subsequent knee injury (McDaniel and Dameron 1980; Finsterbush et al. 1990).  

In the medial compartment of chronic ACL-deficient knees, degeneration of the menisci has 

been described as a major risk factor for osteoarthritis (Segawa et al. 2001). The medial 

meniscus has been shown in vitro to act as a secondary stabiliser of the knee during 

application of an anterior tibial force, resulting in additional load and shear forces on the 

meniscus (Allen et al. 2000). These increased loads may lead to degenerative failure and 

render the meniscus incapable of fulfilling the roles of shock absorption, cartilage nutrition 

and load distribution which protect the chondral surface (Keene et al. 1993; Bellabarba et al. 

1997; Allen et al. 2000). A chronic ACL-deficient knee with medial meniscus incompetency 

is assured of pre-osteoarthritic change 27 years after injury and has an 80% risk of medial 

compartment osteoarthritis (Dejour et al. 1994). 

Degeneration of the unstable ACL-deficient knee may also be due to aberrant kinematics 

altering loads and shear forces at the tibiofemoral interface. Even in routine daily activities 

such as stepping up, walking and lunging, the kinematics of the ACL-deficient knee are 

changed (Karrholm et al. 1988a; Karrholm et al. 1988b; Friden et al. 1993; Vergis and 

Gillquist 1998; Brandsson et al. 2001; Georgoulis et al. 2003). Altered kinematic patterns may 

change the area of loading and magnitude of shear forces at the tibiofemoral (TF) contact 

interface, enough to produce a repetitive micro trauma to the knee (Lane et al. 1994; 

Anderson and Dyhre-Poulsen 1997; Sakane et al. 1999; Allen et al. 2000). While ACL 

deficiency has been linked to patterns of tibial wear (Frankel et al. 1971; Harman et al. 1998), 
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it has not been shown specifically that TF contact patterns are related to areas of wear at the 

articular surface.  

Studies of kinematics in the acute phase after ACL injury have described changes in the 

sagittal translation and longitudinal rotation of the injured knee during flexion (Karrholm et 

al. 1988a; Karrholm et al. 1988b; Friden et al. 1993; Vergis and Gillquist 1998; Brandsson et 

al. 2001; Georgoulis et al. 2003). A gait analysis study describes sagittal translation associated 

with time since injury in chronic ACL-deficient knees (Wexler et al. 1998). The tibiofemoral 

contact pattern has not been studied. Measurement of knee kinematics by tibiofemoral contact 

mapping is particularly suitable in the case of chronic ACL deficiency, as events at the 

tibiofemoral contact surface have relevance to cartilage wear patterns and shearing.  

The aim of this study was to compare the kinematics of chronic ACL-deficient knees with 

healthy contralateral knees, using magnetic resonance imaging (MRI). The relationship 

between kinematic changes, as reflected by the TF contact pattern, time-since-injury, articular 

cartilage damage and meniscal damage were explored.  

Method 

Subjects  

Twenty-five subjects were recruited with a history of ACL injury at least 10 years previously. 

Two subjects were excluded following diagnostic MRI, one because an ACL tear was not 

visible and one with a concomitant posterior cruciate ligament tear. The remaining 23 subjects 
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were aged between 31 and 67 years (45 ± 9.8 years) and 11 were male, 12 were female (Table 

8.1). The injury was sustained between 10 and 35 years previously (17.8 ± 1.5 years). 

Twenty-one subjects were injured during sports and 2 in low level falls. Four were injured 

while skiing, 6 while playing various codes of football, 2 during netball, 3 during basketball 

and one each while dancing, wrestling, tobogganing, playing tennis, gymnastics and hockey. 

Six injuries were classified as contact injuries, in that the knee had been struck by an object or 

another person. The remaining 17 were non-contact injuries. Twelve subjects had 

arthroscopic reconstruction of the ACL at the conclusion of the study. ACL tear was 

confirmed by MRI scan for every subject. 

Subjects were excluded if there were any contraindications to MRI, if they may have been 

pregnant or they were over 180cm tall (to permit knee flexion in the MRI tunnel). Subjects 

were also excluded if history of injury or symptoms were present in the contralateral knee, so 

that the uninjured knee could act as a matched control. All subjects provided informed 

consent. Ethics approval for the study was obtained from the Australian Capital Territory 

Department of Health and University of Sydney Ethics Committees. 

 



 
 

Table 8.1: Demographic and injury characteristics of subjects.  All subjects had chronic ACL deficiency of at least ten years standing. 

  

Age 
 
 

Sex 
 
 

Injured 
knee 

 

Time since  
Injury (yrs) 

 

Injuring sport 
 
 

Mechanism of 
injury 

 

Arthroscopy 
following 

study 

Total Cincinnati 
knee score /100 

 

Symptoms 
/40 

 

Sports 
Participation 

 

Self-reported 
grade/10 

 

KT1000 
Side-to-side 
difference 

1 55 F R  18 Netball Non contact No 61 26 75 8 8.0 mm
2 49 F R 35 Running fall Non contact No 74 30 75 9 5.5 mm
3 33 M L 14 AFL football Contact No 74 32 85 8 2.0 mm
4 34 F L 11 Netball Non contact Yes 64 28 55 4 3.5 mm
5 33 M R 11 Rugby league Contact Yes 51 16 55 2 7.0 mm
6 41 M L 19 Dance /landing Non contact Yes 51 14 95 2 4.0 mm
7 47 F R 26 Tobogganing Non contact Yes 59 20 75 5 0.5 mm
8 42 F R 17 Hockey Non contact Yes 81 16 95 4 0.0 mm
9 37 M L 22 Jump / landing Non contact Yes 64 28 55 8 4.5 mm
10 38 M L 24 Wrestling Contact Yes 46 16 85 2 3.5 mm
11 39 M L 18 Basketball Non contact Yes 52 22 80 3 7.0 mm
12 31 F L 16 Gymnastics Non contact Yes 63 34 100 4 4.0 mm
13 62 F R 15 Tennis Non contact Yes 47 12 40 4 2.0 mm
14 67 M L 16 Skiing Non contact No 80 39 95 9 11.0 mm
15 38 M R 23 Rugby Contact Yes 55 20 40 3 4.0 mm
16 49 M L 18 AFL football Contact No 54 28 75 6 3.0 mm
17 53 M R 20 Touch football Non contact No 56 34 80 6 5.5 mm
18 45 M L 21 Rugby league Non contact No 47 20 55 2 10.6 mm
19 50 F L 19 Basketball Non contact Yes 66 28 75 7 5.3 mm
20 46 F R 10 Skiing Non contact No 60 22 90 6 6.0 mm
21 36 F R 17 Basketball Contact No 76 32 80 7 3.8 mm
22 59 F R 10 Skiing Non contact No 44 7 90 6 4.3 mm
23 46 F R 10 Skiing Non contact No 74 24 60 6 1.5 mm
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MRI procedure  

The kinematics of the ACL-deficient knee was compared to the contralateral knee for each 

subject by taking an MRI of both knees while the subject performed a leg-press within the 

MRI field (Chapter 4; Scarvell et al. 2003a). Images were generated from 0º to 90º flexion at 

15º intervals, with the legs relaxed (unloaded) and repeated with the legs resisting a 150 load. 

Elastic straps at the ankles and thighs maintained neutral tibial rotation and thigh adduction.  

Imaging of both knees simultaneously was performed using a 1.5T Siemens Magnetron Vision 

(Erlangen, Germany). Spoiled gradient echo sequences were used to generate sagittal images 

in the same manner as described in Chapter 4. Reliability of this method of MR imaging of TF 

contact maps was previously tested in control subjects (ICC = 0.94; Scarvell et al. 2003a).  

Tibiofemoral contact measurement 

The position of the femoral condyle on the tibial plateau was recorded as the distance from the 

posterior tibial cortex to the point of contact of the tibia with the femur on both the medial and 

lateral condyles (Chapter 4; Scarvell et al. 2003a). Where contact occurred over a wide area, 

the area centroid was used. To account for variation in the size of subjects, the measurements 

of the tibial cortex to femoral contact point were normalised to mean tibial dimensions.  
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Clinical variables for knee injury 

The passive anterior laxity of both knees, the functional level and the current level of sports 

participation of the subjects were recorded. The KT 1000 arthrometer was used to measure 

passive anterior laxity by quantifying the anterior displacement produced by the Lachman’s 

manoeuvre (Daniel et al. 1985). Anterior tibial displacement was measured in both knees five 

times: at 15lb, 20lb, 30lb of force during anterior drawer, with a maximum manual force 

during anterior drawer and on active quadriceps muscle contraction (Chapter 5; Scarvell et al. 

2003c). The passive laxity of the knee under a maximal manual anterior load demonstrated a 

side-to-side difference ranging from 0 to 11 mm (4.6 ± 2.8 mm, mean ± SD). Four subjects 

had a side-to-side difference of less than 3 mm (Table 8.1), but all subjects had ACL tear 

confirmed by MRI. It is recognised that subjects with chronic ACL deficiency may guard the 

knee from displacement during testing by contraction of the hamstrings, despite careful 

application by the examiner.  

The Cincinnati knee rating system (Barber-Westin et al. 1999) was used to measure the 

symptoms, functional level and details of the physical examination. The maximum Cincinnati 

knee score is 100 for normal knees with full function. Cincinnati scores averaged 60.2 ± 11 

(range 44 to 81/100). The symptoms component of the score averaged 23 ± 8 (range 7 to 

34/40). At this functional level a subject would be able to do light work or sports without 

symptoms, but no running, twisting or jumping. The subjects also rated the perceived 

condition of their knee on a visual analogue scale from 0 to 10, where 10 is normal, 5 is fair 

and 0 extremely poor. Subject self-rated scores were 5 ± 2 (range 2 to 9/10). 
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The level of sports participation was defined according to the frequency of participation and 

the type of sport: ranging from sport involving cuts, pivots and contact with other players, to 

swimming, cycling and walking. The highest score possible was 100, for sport of high demand 

played 4-7 times per week. A score of 20/100 indicated that activities of daily living were 

difficult and no sport participation and 0/100 indicated severe problems with activities of daily 

living, ie. on crutches and with full disability (Barber-Westin et al. 1999).  

Details of joint damage  

Joint damage in the ACL-deficient knees was measured from diagnostic MRI scan or at 

arthroscopy. Twelve subjects had knee surgery following participation in the study, enabling 

the area and depth of articular cartilage lesions to be documented at arthroscopy. Meniscal and 

ligament damage was also recorded. All 23 subjects had a diagnostic MRI. Damage was 

recorded using Noyes’ system for recording articular cartilage damage out of 100, where 100 

is no articular cartilage damage and 0 is full thickness lesions of at least 1.5cm diameter in all 

3 compartments, ie. eburnated bone (Noyes and Stabler 1989).  

The diagnostic MRI scans used were standard diagnostic sequences, including sagittal T1 and 

T2 weighted fast spin echo sequences, proton density, STIR, axial T2 and coronal T2 

sequences. The images were reported by radiologists with particular expertise in MRI. For the 

12 subjects who had both arthroscopic and MRI assessment of joint damage, the scores from 

the MRI and arthroscopic examinations were combined to give the worst case. Some partial 

thickness chondral damage may be missed or underestimated on an MRI scan, whereas 

arthroscopy is considered the gold standard for assessment of chondral and meniscal integrity 
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(Spiers et al. 1993; MacKenzie et al. 1996a; MacKenzie et al. 1996b; Carmichael et al. 1997; 

Lundberg et al. 1997; Potter et al. 1998; McCauley and Disler 2001). Therefore, damage 

reported by both MRI and arthroscopic examination was recorded as the worst scenario. For 

example, a partial depth lesion of 1cm diameter recorded at arthroscopy, but not visible on the 

MRI scan, was included in the combined score or where a lesion was recorded as 1.5cm 

diameter on MRI but 2.0cm at arthroscopy, was recorded as 2.0cm in the combined score. 

 

Statistical analysis  

Differences in the TF contact pattern between the loaded and unloaded conditions, the injured 

and healthy knee and between medial and lateral compartments of the knees were tested using 

repeated measures ANOVA, for knee flexion at 0º, 15º, 30º, 45º, 60º, 75º and 90º. 

An association was sought between TF contact pattern in the healthy contralateral and chronic 

ACL-deficient knees and the damage evident in the chronic ACL-deficient knees, using a 

Pearson’s r correlation. Relationships between sports participation and difference in kinematic 

pattern and joint wear were also examined using a Pearson’s r.  
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Results 

Kinematics of chronic ACL-deficient knees  

The effect of loading on TF contact patterns in medial and lateral compartments 

There was no difference in TF contact pattern between the relaxed condition and while 

performing a leg press against a 150N load, in either the injured or the healthy knees (p = 

0.247). In both the healthy and ACL-deficient knees the medial TF contact pattern was 

different from the lateral pattern (F (1, 176) = 196.4, p < 0.001).   

TF contact patterns in chronic ACL-deficient vs. healthy contralateral knees 

The injured knees showed a different TF contact pattern to the healthy contralateral knee 

(F(1,176) = 9.2, p = 0.003; Figure 8.1). The difference was more pronounced in the medial 

compartment. In the medial compartment with the knee loaded, the mean difference in contact 

points between the injured and healthy knees was 1.8 ± 3.2 mm (p < 0.01). This difference 

was largest at 0° and 15° knee flexion with differences of 2.9 mm and 2.8 mm respectively. In 

the lateral compartment, the mean difference between the healthy and injured knees was 

0.24.± 3.1 mm (p = 0.19), with the difference remaining negligible throughout knee flexion to 

90° (Figure 8.2). A similar pattern was seen in the unloaded knees, the medial compartment of 

the injured knee demonstrating a more posterior contact area than the healthy contralateral 

knee (p.<.0.01). This was less so in the lateral compartment (p = 0.01). 
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Tibiofemoral contact pattern of Chronic ACL-deficient 
knees

0

5

10

15

20

25

30

35

40

0 15 30 45 60 75 90
Knee flexion (degees)

D
is

ta
nc

e 
po

st
er

io
r 

tib
ia

l c
or

te
x 

to
 

co
nt

ac
t p

oi
nt

 (
m

m
)

Medial healthy

Medial injured

Lateral healthy

Lateral injured

 

Figure 8.1: Tibiofemoral contact pattern for the loaded condition, comparing the healthy contralateral 

knees (black solid line) and chronic ACL-deficient knees (red broken line; mean ± SE). The difference 

between healthy contralateral and chronic ACL-deficient knees was more pronounced in the medial 

compartment, with a more posterior position of contact on the tibial plateau. 
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Figure 8.2: Diagram of the tibial plateau mapping tibiofemoral contact points between 0º and 90º of 

knee flexion for the loaded condition. The chronic ACL-deficient knees (broken line) showed a more 

posterior pattern of contact in the medial compartment than the healthy knees (solid line). In contrast, 

the lateral compartment showed a posterior contact pattern from 0º to 30º, but further into flexion, the 

TF contact was similar in chronic ACL-deficient and healthy contralateral knees. 

Association between kinematic changes and joint damage  

Damage to the articular cartilage in the chronic ACL-deficient knees reported from on MRI 

and arthroscopy was recorded as the combined joint damage scores of 72 ± 26 (range, 20 to 

100). Five subjects had scores of 100, ie. no evidence of degenerative change. Sixteen subjects 

had degenerative changes in the medial compartment and 12 had degenerative changes in the 

lateral compartment. There was no significant difference between medial and lateral 
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compartments in the incidence or severity of degenerative change (p = 0.788). Medial 

meniscal damage (including tears, previous meniscectomy and degenerative tears) was 

identified in 16 subjects and lateral meniscal damage in 15 subjects. 

Damage to the articular cartilage recorded at arthroscopy was associated with the side-to-side 

difference in TF contact points between the healthy contralateral and chronic ACL-deficient 

knees. In the medial compartment of the loaded knees (n = 12), the difference in contact 

pattern of the chronic ACL-deficient knees was moderately negatively correlated with the 

Noyes’ scores for articular cartilage damage to the knees (r = - 0.45). This indicates that the 

subjects with less joint damage (and higher Noyes’ scores) had a tibiofemoral contact pattern 

similar to the healthy contralateral knee, while subjects with greater joint damage had a greater 

difference between the contact pattern of the ACL-deficient knee and the healthy contralateral 

knee. 

Damage to the articular cartilage recorded from examination of diagnostic MRI scans 

combined with arthroscopic assessment was poorly correlated with the side-to-side difference 

in TF contact points between the healthy contralateral and chronic ACL-deficient knees    

(r.=.-0.24, p = 0.26; Figure 8.3). However, there were 3 outliers in this group of subjects. 

Three subjects had Noyes scores ≤ 40 /100, indicating marked osteoarthritic changes. For 

example, one subject with a Noyes score of 20 had a total knee replacement within 3 months 

of the study. With these 3 outliers excluded, there was a strong correlation between kinematic 

changes and knee joint damage (r = -0.53, p = 0.01). The 3 subjects with advanced 

osteoarthritis had a smaller magnitude of side-to-side difference in tibiofemoral contact pattern 

than the other chronic ACL-deficient subjects.  
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Figure 8.3: Correlation of knee kinematics in the medial compartment with articular cartilage damage 

in chronic ACL-deficient knees. The difference in contact pattern in the medial compartment between 

the chronic ACL-deficient and healthy contralateral knees was moderately correlated with joint damage 

recorded at arthroscopy (r = -0.45). There was a poor correlation with combined MRI and arthroscopy 

scores (r = -0.24). However, the association between joint damage scores and kinematic changes was 

stronger if 3 subjects with Noyes’ scores ≤ 40 (hollow diamonds ◊) were excluded  (r = -0.53).  
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Association between kinematic changes and clinical variables 

Passive anterior laxity did not correlate with total Cincinnati knee scores, subjects’ self-

reported scores or with the component of the Cincinnati score that indicates severity of 

symptoms (pain, giving-way etc). There were moderate correlations for components of the 

Cincinnati knee score. The total Cincinnati score correlated with the symptoms score (r = 

0.63) and with subject self-reported score (r = 0.63). Symptoms correlated with subjects’ self- 

reported score (r = 0.62; Table 8.2).  

Time since the original ACL injury did not correlate with subjects’ symptoms (r= -0.26, 

p=0.458), self-reported score (r = 0.11, p= 0.770) or total Cincinnati score (r = -0.23, 

p=0.519). Time since injury was not correlated with degenerative damage to the knee, 

measured from MRI (r = -0.373, p = 0.323), arthroscopy (r = -0.009, p = 0.981) or total score 

for knee damage (r = -0.16, p = 0.650).  

A higher Noyes score for joint damage from arthroscopy was strongly correlated with a lower 

sports participation level (r = -0.60, p=0.060), that is, subjects with more joint damage 

currently played less sport.  
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Table 8.2: Correlations (Pearson’s r) between knee joint damage, subjects’ symptoms and sports 

participation. The Cincinnati score is a composite score including assessment of symptoms, self-report 

of condition of the knee and passive anterior laxity of the knee on a manual maximum anterior drawer, 

measured using a KT 1000 arthrometer.  

 

Variable Joint Damage   Cincinnati Score Components 

 MRI Arthroscopy 

Time 
since 
injury 

Sports 
partici-
pation 

Total 
Cincinnati 

score 
Symptoms 

 
Subjects’ 
self-report 

Passive 
laxity 

Total Damage score  0.98** 0.88** 0.12 0.03 0.39 0.20 0.15 0.11 

           MRI score x 0.58 0.12 0.10 0.39 0.22 0.08 0.10 

           Scope score  x -0.01 -0.60* -0.46 -0.35 -0.50 -0.01 

Time since injury   x -0.05 0.03 0.15 0.11 0.03 

Sports participation     x 0.27 0.20 0.20 0.01 

Cincinnati score     x 0.63** 0.63** -0.14 

         Symptoms         x 0.62** 0.26 

         Subjects’  

         self-report       x 0.09 

 

Features of subjects with no joint damage  

Five subjects (four female and one male) had no evidence of articular cartilage damage or 

meniscal damage. They were aged 46 ± 8 years. They had sustained the original injury 19 ± 10 

years ago (range 10 to 35 years). Their current sports level was 66 ± 10 (range 55 to 75 out of 

a possible 100) ie. they ran, cycled or swam 1- 3 times per week, to 1-3 times per month. They 
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had all ceased sports requiring cutting, pivoting and running after the original ACL injury, but 

continued to keep fit in non-pivoting sports. The Cincinnati knee scores for this group were 66 

± 8 (range 61 to 74/100) i.e. “fair”. Their symptom levels ranged from 24 to 30 / 40, i.e. 

moderate work or sports involving running/ twisting or turning produced swelling, pain or 

giving way. Self-reported knee condition was 6.8 ± 2 out of 10 (range 4 (“fair”) to 9 (“almost 

normal”). The three subjects who were happy to continue with conservative management for 

the long term were health professionals. The two subjects who were not happy with the 

repeated episodes of instability and pain on activity subsequently had knee reconstruction 

surgery. The fourth subject with no joint damage was a chef and sustained the injury 10 years 

ago and the fifth was engaged in homeduties and sustained the original injury 11 years ago. 

 

Discussion 

Chronic ACL-deficient knees had an altered tibiofemoral contact pattern compared to healthy 

contralateral knees, particularly in the medial compartment of the knee. There are no other 

studies of tibiofemoral contact patterns in chronic ACL-deficient knees. In the recent ACL-

injured knees, the tibiofemoral contact pattern was different from the healthy contralateral 

knees (Chapter 5; Scarvell et al. 2003c). However, the changes to the tibiofemoral contact 

pattern in the recent ACL-injured knees appeared to be greater in the lateral compartment, 

suggesting a shift in the axis of rotation towards the medial side of the knee or increased 

internal rotation of the tibia during flexion. Increased internal rotation of the ACL-injured 
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knee compared to the contralateral healthy knee was also noticed in subjects studied using 

roentgen stereophotogrammetric analysis (RSA) while stepping up onto a box (Brandsson et 

al. 2001). However, the present study is the first to describe altered tibiofemoral contact 

patterns in the medial compartment of chronic ACL-deficient knees in vivo. 

Differences in contact pattern between the recent and chronic injuries could reflect long-term 

damage to the knee resulting from chronic ACL-deficiency. In the recently injured knees, the 

posterior TF contact pattern was more pronounced in the lateral compartment (Scarvell et al. 

2003c) and in the chronic ACL-deficient knees the contact pattern changes were more 

pronounced in the medial compartment. One explanation for greater contact pattern changes in 

the lateral compartment of recent ACL-injured knees, is that in the absence of the ACL, the 

MCL becomes the primary restraint to both anterior motion and rotation of the tibia (Butler et 

al. 1980), together with a contribution from the medial meniscus. Thus, the long axis of 

rotation of the knee appeared to shift towards the MCL. The increased internal rotation of the 

knee is evidenced by the lateral femoral condyle contacting the tibial plateau in a more 

posterior position than in healthy knees. In chronic ACL-deficient knees, the secondary 

restraints to anterior and rotary tibial movement, the MCL and the medial meniscus, have 

probably assumed this role for many years (Butler et al. 1980; Allen et al. 2000) and it is 

possible that they have become attenuated. The TF contact pattern might have been more 

altered in the medial compartment than the lateral compartment, because the attenuation of the 

secondary restraints has reduced the structural stability of the medial compartment.  

We did not find a correlation between time since injury and changes in knee kinematics. There 

is one other study of kinematics in chronic ACL-deficient knees, in which gait analysis 
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demonstrated increased anterior translation of the tibia in stance phase of walking and the 

magnitude of translation was associated with time since injury (Wexler et al. 1998). It was 

suggested that increased anterior translation indicated the attenuation of the secondary 

restraint structures of the joint. In our study the changes in kinematics were not associated 

with time since injury, but rather with articular cartilage damage.  

The kinematic changes seen in the medial compartment contact pattern may produce more 

wear in the medial compartment, of both articular cartilage and medial meniscus. In the 

present study, there was an association between the extent of joint damage and the deviation of 

TF contact from that of the healthy knee in the medial compartment. This study cannot 

however, show causality. The pattern of damage in the medial compartment of the knee could 

be the result of increased load on secondary restraints in the ACL-deficient knee, causing 

shearing of the articular cartilage and trauma to the medial meniscus (Allen et al. 2000; Smith 

and Barrett 2001). One large meta-analysis found that the ratio of medial:lateral meniscal 

damage in chronic ACL-deficient knees was 70%:30% (Bellabarba et al. 1997). When the 

menisci are incompetent for load distribution, shock absorption or cartilage nutrition, the 

articular cartilage surface is subject to damage and the consequent degeneration is well 

described (Fairbank 1948; Tapper and Hoover 1969; Kettlekamp and Jacob 1972; Casscells 

1978; Kurosawa et al. 1980). Thus, it appears that the changes over time occurring in the 

medial compartment are associated with altered medial compartment kinematics. 

The role of shear forces in degeneration is poorly understood. There is controversy regarding 

the relative importance of joint load and shear forces at the joint surface in osteoarthritis. 

Some researchers deny that instability causes osteoarthritic changes (Burr et al. 1990), arguing 
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that the ACL-deficient knee does not develop osteoarthritic changes unless the menisci are 

damaged, i.e. an ACL injury in isolation does not initiate the osteoarthritic changes (Burr and 

Radin 1990; Radin et al. 1991). Others found using a dog model of ACL deficiency, 

osteoarthritic changes were present in all dogs at 34 weeks (Lopez 2003). Dejour et al (1994) 

concluded that osteophytes and superficial destruction of the cartilage are likely at 10 years 

after ACL injury and significant osteoarthrosis by 20 to 30 years. These rates are influenced 

by the damage to the menisci; that if both the ACL and medial meniscus are damaged, the rate 

of degeneration is higher than if only one structure is damaged. In order to identify the 

contribution of altered TF contact to the degenerative process independently of meniscal 

damage, a prospective longitudinal study recording details of meniscal damage and chondral 

damage is required. The incidence of chondral damage in the absence of meniscal pathology 

could then be measured. 

The association between altered kinematics and wear in the medial compartment was much 

stronger after removal of 3 subjects with established osteoarthritic changes, indicating that the 

kinematic characteristics of osteoarthritic knees are different from chronic ACL-deficient 

knees. Indeed, the stages of knee injury and degeneration that have been studied in this thesis 

each have different characteristics. Recently inured knees, chronic ACL-deficient knees and 

knees with established osteoarthritic changes have distinctly different kinematic 

characteristics. In this study of chronic ACL-deficient knees, the medial compartment contact 

pattern is more posterior on the tibial plateau, but roll back of the lateral compartment is 

preserved. In knees with established osteoarthritis, reported in Chapter 10, the medial 

compartment contact pattern was more anterior on the tibial plateau; furthermore, the lateral 

compartment had lost roll back. Wada et al (1996) found that knee laxity was associated with 
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ACL deficiency in early osteoarthritis, but as the osteoarthritis progressed, knee laxity was no 

longer affected by ACL deficiency. While passive laxity does not correlate with the 

kinematics represented by the TF contact pattern (Chapter 5; Scarvell et al 2003c), the laxity 

may indicate that the ACL influences the osteoarthritic knee stability less as the disease 

progresses. The changes in TF contact patterns may indicate that the process of degeneration 

in ACL-deficient knees is marked by various stages, with different kinematic characteristics.  

The correlation between kinematic changes and joint damage was much stronger using 

arthroscopic assessment of joint damage than MRI assessment. The sensitivity for detecting 

articular cartilage lesions with arthroscopy is better than MRI, so MRI scores underestimate 

the prevalence of articular cartilage damage. Arthroscopy has been considered the gold 

standard for assessment of articular cartilage damage, whereas MRI developed more recently 

for diagnosis of soft tissue injury and pathology. Early MRI sequences reported a sensitivity of 

18% and specificity of 100% (Spiers et al. 1993). With the development of sequences and 

techniques better suited to articular cartilage imaging, sensitivity is now reported as 83-87% 

and specificity as 94-99% (Potter et al. 1998; Bredella et al. 2000; Murphy 2001). However, 

these techniques have been more successful for detection of focal cartilage defects occurring 

in conditions such as osteochondritis dissecans and less successful in assessment of chronic 

degenerative and generalised cartilage damage evident in osteoarthritis. In degenerative 

conditions the sensitivity of MRI is reported as 60% and specificity as 93.7% (Kawahara et al. 

1998), but MRI is more sensitive to full thickness cartilage lesions. Sensitivity is greatly 

reduced for partial thickness lesions (Kawahara et al. 1998). The specificity of MRI for 

detection of cartilage lesions is higher than the sensitivity, indicating that lesions are more 

likely to be underestimated by MRI, than arthroscopy (Balkisoon 1996; Blackburn et al. 1996; 
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McCauley et al. 2001). With these factors taken into account the relationship between 

kinematic changes and articular cartilage damage may in fact be underestimated in this study. 

We did not find a correlation between time since injury and joint damage. Myers et al. (2001) 

found in a retrospective study of 541 subjects, that chondral impact at the time of injury could 

account for lateral compartment damage, but that medial compartment changes, either to 

chondral cartilage or menisci, were proportional to time since injury. Bellabarba et al. (1997) 

also related medial compartment changes to time since injury. These retrospective studies 

support the association between chronicity of ACL deficiency and medial compartment 

degeneration and appear to give credence to the concept of disturbance in TF contact 

influencing degenerative change. The present study suggests that it is not time that influences 

degenerative change. It is altered kinematics. 

Articular cartilage damage in chronic ACL-deficient knees is likely to be due to events at the 

tibiofemoral interface rather than secondary to meniscal impingement and attrition. The TF 

contact pattern of the ACL-deficient knees was approximately 2mm posterior to the pattern in 

healthy knees (1.8 ± 3mm) in the medial compartment. The mobility of the medial meniscus is 

such that 2 mm of posterior femoral displacement should not cause meniscal impingement, 

because MRI studies have demonstrated 5.1mm posterior movement in vitro and 4mm in vivo 

during knee flexion (Thompson et al. 1991b; Vedi et al. 1999). The magnitude of the 

difference in TF contact pattern is too small to have impinged on the medial meniscus during 

this leg-press activity. The altered TF contact patterns and possibly the shift of rotation axis of 

the knee may be responsible for the long-term wear of the articular cartilage. It is likely that 
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the aberrant TF contact pattern influences degenerative changes in the knee independently of 

meniscal damage.  

The level of sports activity was correlated with severity of degeneration, but this could be that, 

as a result of developing osteoarthritis, the subjects had reduced their level of participation. 

Several authors have recommended that ACL injury be treated conservatively if the patient is 

willing to cease competitive sports (Clatworthy et al. 1999; Gillquist et al. 1999). It may be 

that cutting and pivoting sports should be ceased as there is a higher risk of osteoarthritis once 

the menisci are damaged, especially in combination with ACL injury. However, there is 

insufficient evidence that swimming, cycling and other non-contact sports are associated with 

increased risk of osteoarthritis in ACL injury.  

Conclusion 

The TF contact pattern of chronic ACL-deficient knees was different from healthy knees. This 

difference was particularly evident in the medial compartment of the knee and particularly at 

0° and 15° of knee flexion. These kinematic consequences of chronic ACL deficiency may in 

part be responsible for the pattern of degenerative change, but could be the result of 

degenerative change, particularly in the medial compartment of the knees.  
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CHAPTER 9 

 

BONE MINERAL DENSITY CHANGES IN THE ANTERIOR 

CRUCIATE LIGAMENT INJURED KNEE. 
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Abstract 

Testing of fixation devices in knee reconstruction has assumed that the injured knee has the 

bone mineral density (BMD) of the healthy adult knee. However, BMD in the injured knee 

is reduced due to inflammatory and biomechanical processes.  

Dual energy x-ray absorptiometry (DEXA) was used to measure BMD in both knees of 20 

adults with unilateral anterior cruciate ligament (ACL) injury (time since injury: 1-48 

months). The test-re-test reliability of DEXA used for BMD measurement at the knee had 

a mean coefficient of variation of 18%. Femoral and tibial BMD was measured adjacent to 

the articular surface, and at the sites used for fixation in knee reconstruction in the tibia and 

femur.  

BMD at the site of tibial fixation of the injured knees was 0.51 ± 0.3g/cm2, which reflects a 

loss of density of 17% (+9 to –57%), p=0.001. The medial tibia recorded mean loss of 12% 

(+17% to –45%), p= 0.005, and the lateral tibia mean loss of 16% (+5% to.-58%), 

p.=.0.001. Femoral bone density loss was similar. Loss was correlated with time since 

injury, but not sex or age. At the site of tibial graft fixation 11/20 subjects had BMD below 

the critical value of 0.6g/cm2 identified as the threshold for reliable graft fixation.   

There is rapid and profound BMD loss in the ACL-injured knee. 
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Introduction 

Bony fixation of the ACL graft is considered the weakest point of the quadrupled 

hamstrings tendon knee reconstruction in the early postoperative period. The autologous 

graft material itself is similar or stronger than the original ACL tissue (Brown et al. 1993; 

Fu et al. 1999; Hamner et al. 1999), and failure tends to occur instead at the graft/host bone 

interface (Steiner et al. 1994; Brown et al. 1996; Weiler et al. 2000). Early and accelerated 

rehabilitation trends have emphasised the need for reliable fixation in the initial weeks 

following surgery (Pena et al. 1996; Weiler et al. 1998; Brand et al. 2000). 

Strength of the fixation is dependent on several factors, including type of fixation, and 

bone quality. Bone quality can be quantified by measurements of insertion torque of the 

interference screw and bone mineral density (BMD) of the regional cancellous bone (Pena 

et al. 1996; Brand et al. 2000). There is a demonstrated correlation between BMD and 

strength of fixation (Pena et al. 1996; Brand et al. 2000). However, much of the research in 

strength of graft/ bone fixation has been performed on elderly cadavers, and results 

adjusted to estimate fixation strength in young healthy adults (Brown et al. 1993; Steiner et 

al. 1994; Caborn et al. 1998). Calf femur and tibia sections, chosen for their resemblance to 

young bone have also been used (Butler et al. 1994; Brown et al. 1996; Weiler et al. 1998). 

Several studies have attempted to match the bony quality of cadaveric specimens to the age 

and physical characteristics of the population at risk of ACL injury (Rowden et al. 1997; 

Magen et al. 1999). Researchers have assumed that ACL-injured knees have the BMD of 

healthy adult knees and attempted to reproduce this bone quality in testing of fixation 

devices. 
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The assumption that ACL-injured knees have the BMD of healthy adult knees may be 

incorrect. For example, BMD in injured knees may be reduced due to inflammatory and 

biomechanical processes (Jarvinen et al. 1997). BMD of ACL-injured knees has been 

reported in only two studies, and was reported to have fallen following injury (Sievannen 

et al. 1994) and following surgery (Leppala et al. 1999). The study by Sievannen et al 

(1994) was a single case study, using a Norland DEXA scanner. The study by Leppala et al 

(1999), was a prospective study, comparing BMD in reconstructed knees with knees with a 

partial ACL tear, conservatively managed, so there was no pre-op measure of knees with a 

complete ACL tear. It appears, however, that extrapolation of data for graft fixation 

strength based on healthy BMD may overestimate the BMD of the injured knee (Jarvinen 

et al. 1997; Wohl et al. 2001). For correct estimation of the strength of fixation, it is 

important to know the BMD of the ACL-injured knee. 

Dual energy x-ray absorptiometry (DEXA) provides a non-invasive and low radiation 

exposure method to quantify BMD in vivo. DEXA of the hip, wrist and lumbar spine is 

routinely used to assess BMD in patients at risk of osteoporosis with chronic illness 

(Mottet et al. 1996), post transplantation (Hamburg et al. 2000; Spira et al. 2000) and post 

menopause (Petley et al. 2000; Iki et al. 2001; Cure-Cure et al. 2002). Population data 

enables recorded BMD for a patient to be defined by the deviation from the young adult or 

age matched scores (Abrahamsen et al. 2001). DEXA is also used to evaluate the 

progression of osteoarthritis at the knee (Hurwitz et al. 1998; Andriacchi et al. 2000; Wada 

et al. 2001; Hulet et al. 2002), and bone remodelling processes after total knee arthroplasty 

(Petersen et al. 1996; Li et al. 2000; 2000; 2001). Forearm software is commonly used to 

analyse knee scans, as it accommodates for soft tissue, bone and air inclusion in the scan 
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field (Casez et al. 1994; Hurwitz et al. 1998; Leppala et al. 1999; Hurwitz et al. 2001), and 

has been shown to provide valid data.  

The aim of this study was to examine changes in the BMD of the ACL-injured and 

contralateral healthy knee and in particular at the sites of fixation for knee reconstruction 

by autologus hamstrings graft.  

 

Method 

Twenty adults with ACL injury awaiting reconstruction were recruited and provided 

informed consent. Subjects were 6 male and 14 female, aged 19-38 years. Nine injuries 

were on the right side, and 11 on the left. Time since injury was 1-48 months (mean 8 

months), and average time to reconstruction surgery was 10 weeks. Subjects were excluded 

if there was any history of injury or symptoms in the contralateral knee, tibia or femur, if 

they had past knee injury or reconstruction surgery or if they were pregnant. Passive 

anterior laxity was quantified by arthrometry using a KT 1000 (Medmetric, San Diego, 

California). ACL injury was confirmed at the time of surgery. This study was approved by 

the Human Research Ethics Committees of the University of Sydney, and the Australian 

Capital Territory Department of Health and Community Care. 

A Lunar DEXA scanner (General Electric, Madison, USA) was used to measure BMD at 

the knee, using software designed for the forearm. The subjects were positioned in supine 

with the knees in extension, and neutral rotation (measured by alignment of the infrared 

beam of the scanner with the anterior tibial spine). Knee position was maintained by the 
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use of rice bags, rather than thermoplastic splinting (Murphy et al. 2001) as the splinting 

generated an artefact in the raw data collection. Each scan took nine minutes to complete.  

Reliability of the BMD measurement was tested by repeating BMD measurements on 2 

separate days, in six healthy control subjects. The coefficient of variation in BMD 

measurements was 18 ± 30% (range 3% to 78%). Reasons for this wide variation in 

measurement was examined by testing in one subject (the author JMS) against a range of 

factors considered to have influenced the ability of the DEXA scanner to sample and 

compare the tissues (muscle, bone and air). These factors included comparing 

thermoplastic splinting to rice bags for positioning, using rice bags against the knee as a 

tissue substitute and using windows of various widths and lengths. The Lunar DEXA 

machine was tested with a phantom and had a coefficient of variation of < 2%. It was 

tested again with forearm BMD measurements using the forearm software, and had a 

coefficient of variation of < 2%. Lunar GE representatives in Australia and in the USA 

determined that the forearm software required samples of all tissues, ie. bone, muscle and 

air in each scan for comparison of density, in order to determine BMD. If the sample of 

muscle tissue, for example, was insufficient, the BMD would be inaccurate. Personal 

communication with other research teams (Murphy et al.2001, and Li and Nilsson 2001) 

had also described problems with reliability of the technique, and these teams had since 

had ceased to Lunar GE DEXA scanners for BMD of the knee.   

BMD was calculated at six regions of interest: centrally below the intercondylar eminence 

of the tibia, at the femur and tibia adjacent to the articular surface of the medial and lateral 

condyles, and at the lateral epicondyle of the femur (Figure 9.1). The regions measured 

below the intercondylar eminence of the tibia, and at the lateral epicondyle of the femur 

represent the sites of fixation of the ACL graft in reconstruction surgery. The intercondylar 
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eminence of the tibia is the site for the tibial tunnel and tibial interference screw. The 

lateral epicondyle is the site for femoral fixation using a femoral suspensory pin. To 

control for the confounding variables of age, sex, weight and medical history the injured 

knee was compared to the healthy contralateral knee. 

A         B   

Figure 9.1: A: Image retrieved from a Lunar DEXA scanner used to measure bone mineral density 

at six regions of interest: 1. Central tibia, 2. Lateral tibial condyle, 3. Medial tibial condyle, 4. Lateral 

femoral condyle, 5. Medial femoral condyle, 6. Lateral femoral epicondyle.  

B: Diagram of the knee showing the fixation system used at The Canberra Hospital for hamstrings 

autograph reconstruction of the ACL. The tibial interference screw is located at BMD measurement 

region 1 and the femoral suspensory pin is located at BMD region 6. 

Statistical Analysis  

A student’s t-test was used to compare the BMD of the injured knee to the healthy knee for 

each of the six regions of interest.  A Pearson’s r correlation coefficient was used to 

examine the relationship of BMD and the variables of age, sex and time since injury, and 

side of injury. 
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Results 

Significant BMD loss was demonstrated at all six regions of interest (Table 9.1). At the 

central tibia, below the intercondylar eminence, a mean loss of 17% was recorded in the 

BMD of the injured knees. The mean BMD for the healthy knee was 0.61 ± 0.29g/cm2 

(mean ± SD) and for the injured knee was 0.51 ± 0.27g/cm2. This demonstrates a 

significant bone loss (p= 0.001) at the site of tibial fixation of the tissue graft.  

At the regions close to the articular surface on the tibia a mean bone loss was found of 16% 

(p = 0.001) at the lateral tibial condyle and 12% (p = 0.007) at the medial tibial condyle. At 

the regions close to the femoral articular surface similar BMD loss was seen. At the lateral 

femoral condyle there was a mean loss of 17% (p = 0.005), and loss of 21% (p = 0.002) at 

the medial femoral condyle. That is, the medial and lateral compartments of the knee both 

demonstrated a significant loss of BMD in the condylar bone. 

At the femur a wide range of the bone density values was recorded, from extremely low 

bone density values, (for the injured knee 0.13 g/cm2 on the lateral femoral condyle and 

0.18 g/cm2 at the medial femoral condyle) to high BMD values (1.43 g/cm2 to 1.23 g/cm2 

respectively). Similarly, side-to-side differences varied widely at the femoral regions of 

interest, from a gain in BMD of 38% to a loss of 64% at the medial femoral condyle. 

The lateral epicondyle of the femur demonstrated a mean loss of BMD of 24% in the 

injured knee, from 0.53 ± 0.31 g/cm2 in the healthy knee to 0.39 ± 0.26 g/cm2 in the 

injured knee. This region recorded the lowest individual bone density scores for the knee. 
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Table 9.1:  Bone mineral density (g/cm2; mean ± SD) changes in the ACL-injured knee. 

 
Region 
measured 

 
Healthy knee 
BMD (g/cm2) 

 
ACL-injured knee 
BMD (g/cm2) 

 
% Loss BMD 

 
Significance 
level 

Central tibia 0.61 ± 0.29 

 

 

0.51 ± 0.27 

 

Mean      17% 

Range: +9 to –57% 

 

ρ= 0.001 

Lateral tibial 
condyle 

0.91 ± 0.30 

 

 

0.76 ± 0.28 

 

Mean     16% 

Range:+5 to –57% 

 

ρ = 0.001 

Medial tibial 
condyle 

1.18 ± 0.31 

 

 

1.01 ± 0.25 

 

Mean     12% 

Range:+17 to –45% 

 

ρ = 0.007 

Lateral 
femoral 
condyle 

0.91 ± 0.38 

 

 

0.75 ± 0.36 

 

Mean     17% 

Range:+36 to –56% 

 

ρ = 0.005 

Medial 
femoral 
condyle 

0.83 ± 0.31 

 

 

0.65 ± 0.31 

 

Mean     21% 

Range:+38 to –64% 

 

ρ = 0.002 

Lateral 
epicondyle 
femur 

0.53 ± 0.31 

 

0.39 ± 0.26 

 

Mean    24% 

Range:+28 to –78% 

ρ = 0.001 
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Figure,9.2: Difference in bone mineral density data between the ACL-injured and contralateral 

knee at the six regions of interest (mean ± SD). 
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Case study: Of particular interest was a 27 year old carpenter with a recorded BMD of 

0.05 g/cm2  at the healthy lateral femoral condyle and 0.04 g/cm2  at the injured lateral 

femoral condyle, and 0.20g/cm2 and 0.16 g/cm2  at the healthy and injured central tibia. 

Because of these low recorded results, this subject was recalled for repeat scanning, which 

resulted in a variation of less than 2% from the original calculation. His lumbar spine and 

hip BMD were then tested. The lumbar spine was 0.7 standard deviations below the age-

matched population, and the proximal femur was 0.2 standard deviations below the age-

matched mean. This example illustrates the normal variation in BMD values within 

individuals. 

BMD data were analysed for correlations with age, sex, right or left knee or time since 

injury. Time since injury was moderately correlated with BMD of the central tibia 

(Pearson’s r = 0.51, p = 0.022; Figure 9.3). BMD loss appeared to persist in the injured 

knee for approximately two years before beginning to reverse (Figure 9.3). To more 

closely examine the effects of time since injury on BMD loss, and remove the influence of 

the chronic ACL-injured subjects, the data were extracted for those 16 subjects who 

injured the knee within the last 12 months.  There was a moderately strong correlation at 

the central tibia (Pearson’s r = 0.60, p= 0.014) and a trend at the medial tibial and femoral 

condyles (tibial condyle r = 0.44, p= 0.09; femoral condyle r = 0.42, p=0.011). Thus, it 

appeared that the BMD of the tibia of the injured knee decreased with time since injury. 

The BMD at the medial tibial and femoral condyles followed the same pattern. The BMD 

of the lateral condyles did not appear to be related to time since injury. There were no 

correlations with age, sex, or side of injury. 
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Bone Mineral Density loss versus time since 
injury: recorded at the central tibia
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Figure 9.3: Analysis of the correlation between BMD at the central tibia (Region 1) and time since 

injury. BMD loss appeared rapidly after injury, and may persist for 2 years before recovering. 

 

Discussion 

Significant BMD loss in the ACL-injured knee at the graft fixation sites indicates that bone 

quality required for secure fixation may be compromised. At the centre of the tibia, 11 of 

the 20 subjects recorded BMD of less than 0.6 g/cm2 in the injured knee, the level 

described by Brand et al (2000) as the critical BMD for reliable fixation. At the lateral 

femoral condyle BMD measurements in 13 / 20 subjects were below this critical value in 

the injured knee. Testing of the strength of fixation devices needs to be re-evaluated using 
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tissue specimens with BMD values more similar to those of the ACL-injured population, 

and should include the worst-case scenario. Meanwhile, it is important to recognise that 

currently established values for strength of fixation at the knee are based on young healthy 

bone stock and are therefore not necessarily applicable to the ACL-injured population. The 

values that were recorded from elderly cadaver studies (Steiner et al. 1994; Caborn et al. 

1998; Brand et al. 2000) may be more relevant than previously assumed. 

Our finding of decreased BMD in ACL-injured knees is consistent with previous studies. 

Sievannen et al (1994) reported a single case study of a 26-year-old student who injured 

the ACL while participating in a trial of strength training effects on BMD. This accidental 

event enabled longitudinal recording of premorbid and postoperative BMD, though not 

post injury BMD. BMD at the femur and tibia reached their lowest point at 15 weeks post 

surgery (18.5% at the distal femur, and 17.4% at the proximal tibia). Twelve months later 

muscle performance was completely recovered but BMD values were still below the 

subject’s baseline (9.6% at the distal femur and 13.9% at the proximal tibia). This 

accidental finding was followed by a prospective study of 21 patients. BMD fell 21% at the 

femur and 14% at the proximal tibia 12 months after bone-patella tendon-bone 

reconstruction for ACL injury (Leppala et al. 1999). However, this study did not report the 

preoperative BMD of patients with a complete ACL tear. Though these studies both record 

postoperative rather than post injury BMD loss, and postoperative BMD loss could be 

expected to be greater due to the additional inflammation in the knee due to surgery, the 

results are of similar magnitude to those reported here. 

Time from injury correlated well with BMD loss at the central tibia, but it was not possible 

to predict the optimal time for knee reconstruction surgery based on the BMD changes. It 
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is apparent however, that BMD falls rapidly in the first weeks post injury and may remain 

low for 2 years. This study was a cross sectional cohort study, and as such, conclusions 

about BMD changes over time are speculative. It would be necessary to perform a 

longitudinal study of ACL-injured subjects in order to confirm these findings.  

It would be useful to isolate the risk factors for BMD loss. Age, sex, or side of injury were 

not identified in this study as risk factors for post injury osteopaenia at the knee. It may be 

possible that bone turnover is slower in older people, or slower in older women. There is 

some evidence that it is more difficult to increase bone density in older women (Frost, 

2000). In our study the sample may have been too small, or too homogeneous to 

demonstrate the effects of age and sex on bone density loss. 

In this study of ACL-injured knees a wide range of values for side-to-side difference in 

BMD was recorded from 86% increase to 79% decrease with an overall mean loss of 15%. 

Likewise, in the test-retest reliability study the coefficient of variation for the measurement 

varied widely from 78% to 3%. The wide range of BDM values may reflect heterogeneity 

of the subject group in terms of confounding joint trauma, bone bruising, and mechanism 

of injury. It is also possible, however, that the wide range in BMD values resulted from the 

unsolved reliability issues with this method of BMD measurement at the knee. The 

problems of reliability originate from the software used to compare the X-ray absorption of 

sampled tissues. However, the problems with recorded BMD were random, so while the 

standard deviation was increased, the population means were maintained. The significant 

level of BMD loss that occurred in the ACL-injured knees was clear despite the large 

standard deviation of the population sampled. 
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The role of BMD in graft fixation failure requires further detailed examination in vivo. In 

vitro studies have demonstrated failure of fixation, and graft slippage around the fixation as 

the common reason for failure, rather than midsubstance rupture of the graft (Pena et al. 

1996; Weiler et al. 1998; Brand et al. 2000; Weiler et al. 2000). No clinical studies have 

separated fixation failure from graft tissue failure as a reason for failure of reconstruction 

surgery.  

Accelerated rehabilitation programs demand adequate fixation strength in the postoperative 

period. A significant frequency of graft failure in the early postoperative period has been 

reported (Salmon et al. 2002), and this may in fact be due to fixation failure in this critical 

period. Planning for rehabilitation and progression of weight bearing, both post injury and 

postoperatively must take the BMD loss into account. Perhaps early weight bearing and 

strength training will be able to minimise the BMD loss at the critical postoperative period 

before graft incorporation. 

 

Conclusion 

BMD was found to be significantly lower in the ACL-injured knees than the healthy 

contralateral knees, and potentially posed a threat to secure fixation. BMD was reduced in 

subjects as early as three weeks following injury, and was also reduced in subjects twelve 

months following injury. Despite problems with the reliability of Lunar (GE) DEXA 

scanning and software at the knee, it is apparent the loss of BMD in ACL-injured knees is 

rapid and profound.  



 

169

Compromise in fixation is an important consideration in accelerated rehabilitation 

programs following ACL reconstruction. BMD at fixation sites is critical to choice and 

integrity of fixation, and planning of rehabilitation schedules. In order to make an informed 

decision about surgical management, an assessment of BMD is recommended as routine 

workup for reconstruction surgery. It is a simple, inexpensive, and low risk procedure, and 

would enable choice of fixation appropriate to the patients’ bone quality. Development of a 

reliable system for measurement of BMD at the knee is required. Current systems 

developed by Lunar GE for measurement of BMD at the lumbar spine and forearm have 

limited application for use at the knee.  
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CHAPTER 10 

 

KINEMATICS OF OSTEOARTHRITIC KNEES 
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Abstract 

Osteoarthritis of the knee is a widespread problem, yet little is known about the kinematics 

of osteoarthritic knees or the tibiofemoral (TF) contact pattern.  

Fourteen subjects with symptomatic osteoarthritis in one knee and no pain or injury in the 

contralateral knee performed a supine leg-press from 0º to 90° flexion against a 150N load. 

The tibiofemoral contact pattern was recorded for both knees using MRI. Bone mineral 

density (BMD) was recorded using dual energy x-ray absorptiometry close to the 

subchondral bone. Pain and disability were recorded using a WOMAC questionnaire.  

Severity of osteoarthritis in the knees ranged from grade 2 to 4 (8 subjects had grade 4) in 

the symptomatic knee and from 0 to 3 (8 subjects had grade 0 or 1) in the contralateral 

knee. TF contact in the lateral compartment of symptomatic knees was more anterior on 

the tibial plateau than healthy knees (p < 0.01) and this was associated with severity of 

osteoarthritis (p < 0.01). TF contact in the medial compartment was also more anterior on 

the tibial plateau and this was more pronounced at grade 3 than grade 4 osteoarthritis (p = 

0.014). Abnormality in lateral compartment tibiofemoral contact patterns was correlated 

with disability (WOMAC score; r = 0.54, p = 0.047). There was no difference in BMD 

between the osteoarthritic and contralateral knees, but the BMD was correlated with pain (r 

= 0.63, p < 0.01) and physical function (r = 0.63, p = 0.03) of the WOMAC score, ie. as 

function decreased, bone density increased. 

Loss of tibiofemoral roll back and longitudinal rotation in osteoarthritic knees is associated 

with loss of range of motion and patterns of wear in the knee. 
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Introduction 

Osteoarthritis of the knee is a widespread problem, yet very little is known about the 

kinematics of the osteoarthritic knee. In Australia, about 12% of the population and 34% of 

people over 50 years of age, suffer from osteoarthritis (Chapman and Feller 2003). The 

knee is commonly affected (Segal et al. 2002). The incidence of total knee arthroplasty 

(TKA) in Australia has risen from 56.4 per 100 000 in 1994 to 76.8 per 100 000 population 

in 1998 (Wells et al. 2002). Internationally the demand for TKA is also increasing, with the 

Swedish Arthroplasty Register reporting a five-fold increase in TKA performed annually 

since 1976 (Robertsson et al. 2000). The social and economic impact of knee osteoarthritis 

to the community is expected to increase as the general population age rises, both in terms 

of health costs and lost quality of life (Hurwitz et al. 2001). However, research into the 

kinematics of osteoarthritic knees is very limited.  

Kinematic studies of the knee have shown that some characteristics of normal knee motion 

are lost in osteoarthritic knees. Osteoarthritic knees lose some of the longitudinal rotation 

that normally occurs with terminal extension (Nagao et al. 1998). In healthy knees the 

longitudinal rotation of the knee during knee flexion has been described in vitro (Shaw and 

Murray 1974; Blankevoort et al. 1988; Hollister et al. 1993; Pinskerova et al. 2000) and in 

vivo (Todo et al. 1999; Hill et al. 2000b; Iwaki et al. 2000). Koga (1998) found variation 

from normal of the longitudinal rotation axis to be associated with the severity of 

osteoarthritis in the knee. The loss of normal longitudinal rotation during flexion in 

osteoarthritic knees could be either due to contracture and thickening of synovial and 

capsular tissues that limits joint mobility or due to attrition of the anterior cruciate ligament 
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(ACL) (Allain et al. 2001) and this has a role in controlling longitudinal rotation (Lane et 

al. 1994). 

Gait analysis studies have demonstrated an increased adduction moment in osteoarthritic 

compared to healthy knees (Sharma et al. 1998; Andriacchi et al. 2000). Varus thrust was 

initially described during stance phase of gait as weight was transferred onto the medial 

compartment of the knee. In the knee with medial compartment osteoarthritis, the medial 

joint space width was reduced, causing varus angulation, with a resultant adduction 

moment as weight was applied (Maquet 1976). This concept has been further developed 

with the calculation of directional forces recorded by a force platform during gait analysis 

(Andriacchi et al. 2000). The adduction moment of osteoarthritic knees not only 

characterises the unusual kinematics of osteoarthritic knees (Andriacchi et al. 2000), but 

also is associated with severity of disease (Sharma et al. 1998; Sharma et al. 2001), is 

correlated with subchondral bony sclerosis (Hurwitz et al. 1998; Sharma et al. 1998; 

Hurwitz et al. 1999; Hurwitz et al. 2000; Hurwitz et al. 2001; Baliunas et al. 2002) and is 

an indicator of disease progression (Sharma et al. 1998; Baliunas et al. 2002).  

The relationship between the knee kinematics described by tibiofemoral contact and the 

process of osteoarthritis has not been examined. There is no published data on the 

tibiofemoral contact pattern in osteoarthritic knees. The contact area of the knee in 

extension has been described in a cadaver study, using silicon extrusion to demonstrate the 

area of contact (Fukubayashi and Kurosawa 1980). The contact area of the knee in 

extension was wider than the normal knee and the menisci made little contribution to the 

load sharing of the knee. This is consistent with the flattened shape of the condyles 

(Fairbank 1948; Kawahara et al. 2001) and pattern of degeneration of the menisci that 
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characterise the osteoarthritic knee (Kawahara et al. 2001). However, the study by 

Fukubayashi and Kurosawa (1980) was limited to knee extension in vitro and does inform 

us about the contact pattern of osteoarthritic knees during active motion. 

Magnetic Resonance Imaging (MRI) has been used to examine active motion of healthy 

knees, but not the motion of osteoarthritic knees (Todo et al. 1999; Hill et al. 2000a; Hill et 

al. 2000b; Nakagawa et al. 2000). In healthy knees, recording the motion of the flexion 

facet centre of the femoral condyle has demonstrated that longitudinal rotation of the knee 

occurs during knee flexion from 0º to 120º through an axis occurring through the medial 

compartment of the knee (Todo et al. 1999; Hill et al. 2000a). Thus MRI has been able to 

consistently and accurately describe kinematics of healthy knees, but this technique has not 

yet been used to describe the tibiofemoral contact pattern of osteoarthritic knees.  

Osteoarthritis is assessable by MRI because changes to bone, soft tissue and cartilage 

structures are all visible (Zanetti et al. 2000; McCauley and Disler 2001) and areas of 

damage to the articular cartilage can be recorded reliably (Lundberg et al. 1997; Potter et 

al. 1998; Duchateau and Vande Berg 2002). Bone features that are visible on MRI include 

osteophytes, subchondral sclerosis, subchondral haematoma and cysts (Zanetti et al. 2000). 

MRI can be used to also assess ligament integrity. As many as 50% of osteoarthritic knees 

may have a complete ACL tear, with an additional 25% having a partial ACL tear (Wada 

et al. 1996; Allain et al. 2001). In the present study, MRI was used to assess the articular 

cartilage, ligament and meniscal damage present in the osteoarthritic knees. 

Increase in bone mineral density (BMD) at the distal femur and proximal tibia has been 

used as a very early indicator of osteoarthritis (Buckland-Wright et al. 2000; Messner et al. 
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2000) and has been associated with disease progression (Madsen et al. 1994; Wada et al. 

2001). The medial compartment has higher BMD than the lateral compartment in healthy 

knees, and in osteoarthritic knees the ratio is higher due to the sclerosis of the subchondral 

bone (Madsen et al. 1994; Hurwitz et al. 1998). Dual energy x-ray absorptiometry (DEXA) 

provides a reliable and accessible means to measure BMD at the knee (Petersen 2000), 

with low radiation exposure to subjects (Ott 1998). It has been assessed for accuracy and 

precision at the distal femur and proximal tibia (Sievanen et al. 1992; Petersen 2000; 

Murphy et al. 2001; Nilsson 2001). DEXA has been shown to be sensitive to changes in 

BMD at the knee due to high tibial osteotomy (Akamatsu et al. 1997), knee injury and 

reconstruction (Sievannen and Kannus 1994; Leppala et al. 1999). DEXA has also been 

used to assess progression and severity of knee osteoarthritis (Hurwitz et al. 1998; 

Andriacchi et al. 2000; Hurwitz et al. 2001; Wada et al. 2001; Hulet et al. 2002). 

The aim of this study was to map, for the first time, the tibiofemoral contact pattern in 

osteoarthritic knees between 0º and 90º knee flexion and describe the differences between 

the contralateral asymptomatic knees and healthy knees. The associations between 

differences in the tibiofemoral contact pattern and severity of osteoarthritis were also 

examined.  

Method 

Subjects 

Fourteen subjects with symptomatic osteoarthritis in one knee and no symptoms or history 

of osteoarthritis in the contralateral knee (Table 10.1), were recruited to participate and 

provided voluntary informed consent. Three subjects were male and eleven were female, 
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which reflected the population distribution of gender in osteoarthritis (Segal et al. 2002). 

Subjects were aged 54 to 81 years (65 ± 9.1 years; mean ± SD). Ten subjects had primary 

idiopathic arthritis and four had osteoarthritis secondary to injury. Three subjects had 

sustained anterior cruciate ligament injuries 16, 21 and 23 years ago, including one subject 

who had an extraarticular knee reconstruction 12 years ago. One subject had osteoarthritis 

secondary to patella fracture through the articular surface. Eight had osteoarthritis in the 

right knee and six in the left. Subjects were excluded if they had any symptoms in the 

contralateral knee, including pain, stiffness or swelling indicative of osteoarthritis or any 

injury to the ligaments, menisci or bones of the contralateral knee. Subjects were excluded 

if they had contraindications to MRI. The principle contraindications to MRI that were 

encountered were ferrous metal implants (including pacemakers) and claustrophobia. 

Pregnancy was also a contraindication to MRI and DEXA in this study, but the female 

subjects recruited were postmenopausal.  

Twelve healthy subjects were used as controls for the comparison of knee kinematics. 

These subjects are described in Chapter 4. These healthy subjects were aged 20 to 50 

years, 7 were male and 5 were female. None had any symptoms or history of injury in 

either knee.  

The study was approved by the University of Sydney and Australian Capital Territory 

Health Department Human Research Ethics Committees.  

  



 

Table 10.1: Details of the osteoarthritic subjects. Details of joint damage were recorded from MRI and operation reports. 

     
Kellgren Lawrence Grade 

 
Ligament Status 

 
Compartment 
most affected 

Meniscal damage 
 

 Age Sex Side OA Type Symptomatic Asymptomatic  ACL PCL MCL LCL  Medial  Lateral 

1 63 F R 2 4 3  absent    both macerated tear 

2 75 F R 1 4 3      both macerated  

3 74 F R 1 4 1  absent    medial macerated macerated 

4 54 F L 2 3 0  absent  old tear   both d.tear d.tear 

5 65 F L 1 4 1      medial macerated  

6 77 M R 1 4 0      both macerated macerated 

7 54 F R 1 4 2      medial PAM.  

8 58 F R 1 3 0     tear medial  tear 

9 61 F L 1 2 2      lateral P/F   

10 58 F L 1 4 2  absent    both  macerated 

11 71 M R 2 3 0  absent    both macerated macerated 

12 70 F L 1 4 2  v frayed    medial macerated  

13 80 F L 1 3 1      medial d. tear  

14 54 M R 2 3 0  absent d.tear d.tear  both  macerated 

“ ”  indicates normal appearance 

“d.tear”  indicates degenerative tear, seen at surgery or abnormal signal intensity indicative of a tear 

“macerated” indicates severe late stage degeneration with extensive tissue damage 

“PAM”   previous arthroscopic meniscectomy 
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Kinematic MRI 

Kinematic MRI scans were performed using the technique described in Chapter 4 (Scarvell 

2003c). Subjects performed a leg-press in supine. Images were taken of both knees at 

seven 15° intervals from full knee extension to 90° flexion. Subjects were scanned at each 

knee flexion angle twice, once while relaxed (unloaded) and again pressing down against a 

footplate weighted with a 150N load (loaded). Sixteen slices were generated (eight through 

each knee) approx 10 mm apart (TR = 160.0, TE = 2.3/1, TA = 00:46), with a 256 x 256 

matrix using a spoiled gradient echo sequence. The digital images were analysed using 

Osiris® software (Université de Genève, Switzerland). 

 

Figure 10.1: Sagittal MRI scan of the medial compartment of an osteoarthritic knee at 90° knee 

flexion. The medial compartment contact point was recorded as the distance from the posterior 

tibial cortex to the tibiofemoral contact.  
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The tibiofemoral contact point was measured as described in Chapter 4. The distance was 

measured from the posterior tibial cortex to the point at which the femoral condyle 

contacted the tibial plateau (Figure 10.1). 

Range of motion, measured by a goniometer in sitting, was restricted in the symptomatic 

osteoarthritic knee of all subjects, with none recording over 135° knee flexion. Knee 

flexion was 107 ± 9° (mean ± SD; range 83º to 135°). Extension was 2 ± 3.8° (range -5° to 

10° flexion). Six subjects were unable to extend the knee to 0°. During the procedure for 

kinematic MRI, the measure recorded as the 0° position is the limit of knee extension for 

each subject. 

  

Details of osteoarthritis and damage in the knee joint  

The symptomatic and contralateral knees of subjects were graded for severity of 

osteoarthritis according to the criteria described by Kellgren and Lawrence (1957) (Table 

10.2).  

Table 10.2: Definitions of the Kellgren Lawrence grades for knee osteoarthritis. 

Grade Summary Definition 

Grade 0 None Normal appearance 

Grade 1 Doubtful Possible osteophytic lipping 

Grade 2 Minimal Definite osteophytes and possible joint space 

narrowing 

Grade 3 Moderate Moderate or multiple osteophytes, definite joint space 

narrowing and some sclerosis and possible bony 

attrition 

Grade 4 Severe Large osteophytes, marked joint space narrowing, 

severe sclerosis and definite bony attrition. 
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Diagnostic MRI scans of the symptomatic osteoarthritic knee were used to record details of 

articular cartilage damage, meniscal damage and ligament integrity in the knee joint. Six 

sequences for examination of the knee joint were used: proton density sequences were used 

to image cartilage defects, STIR sequences to image articular cartilage, T2 sagittal, coronal 

and axial sequences to assess bony structures and soft tissue structures around the knee and 

T1 sequences to examine soft tissue and ligamentous structures, because fat appears as 

high signal intensity. These six sequences were used to generate slices 4mm apart. A 

radiologist experienced in MRI techniques and image interpretation for musculoskeletal 

conditions reported the images. 

For subjects with total knee replacement, details of ligament integrity, articular cartilage 

damage and meniscal damage were obtained from operating theatre records. Details of 

joint damage are reported in Table 10.1. 

A self-administered functional disability score was used to record the limitations to 

activities of daily living and experience of pain. The Western Ontario and Mcmaster 

Universities Osteoarthritis Index (WOMAC) was used. The WOMAC records self-reported 

pain, stiffness, physical function, social function and emotional function on a five-point 

Likert scale (Bellamy et al. 1988; Bellamy 1989). The scores for pain, stiffness and 

physical function have been well validated for construct reliability in subjects with knee 

osteoarthritis (Bellamy 1989). The scores for pain were found to be the most responsive to 

change and also the most important to subjects (Bellamy 2003). Prior to generating a total 

WOMAC score, it is recommended that the scores for pain, stiffness and physical function 

be normalised as a percentage, then weighted according to their relative importance to the 

subject, prior to totalling. The relative importance assigned to the scores was pain 0.42, 
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stiffness 0.21 and physical function 0.37 (Bellamy 2003). Emotional and social scores are 

not recommended to be included in the total WOMAC score.  

Cincinnati knee score (Bellamy et al. 1988; Bellamy 1989; Barber-Westin et al. 1999) was 

also completed for each subject. The Cincinnati knee score was designed to measure 

severity of knee injuries and postoperative outcomes and therefore tends to have floor 

effects in groups of more severely disabled and elderly individuals. However, in this thesis 

the Cincinnati knee score has been used throughout to record the symptoms, examination 

findings and radiological findings in acute and chronic ACL-injured subject groups and 

gives an indication of the severity of dysfunction in osteoarthritic subjects also.  

Subchondral bone density measurement 

BMD of the subchondral bone regions of the tibia and femur were measured using dual 

energy x-ray absorptiometry, as described in Chapter 9. A Lunar DEXA scanner (General 

Electric, Madison, USA) was used throughout, using software designed for the forearm, 

because the forearm software also allowed for inclusion of regions of air in the scan field. 

The size of the soft tissue sample was small around the knee, so the inclusion of rice bags 

beside the knee provided a soft tissue sample substitute. The subjects were positioned in 

supine with the knees in extension and neutral rotation measured by alignment of the 

infrared beam of the scanner with the anterior tibial spine and the patella centred. Knee 

position was maintained by the use of rice bags at the ankle and beside the knee to control 

rotation. Each scan took 9 mins to complete.  

BMD was calculated at five regions of interest; centrally below the intercondylar eminence 

of the tibia, adjacent to the articular surface of the medial and lateral tibial condyles and 
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adjacent to the articular surface of the medial and lateral femoral condyles (Figure 10.2). 

The region of interest at the intercondylar eminence of the tibia was chosen to provide a 

baseline measure, consistent with the regions used in Chapters 8 and 9. The regions of 

interest adjacent to the articular surface of the knee joint were chosen to measure changes 

to subchondral bone, for example subchondral sclerosis. 

 

Figure 10.2: Bone mineral density was measured using dual energy x-ray absorptiometry at 1) the 

central tibia, 2) the lateral tibial plateau, 3) the medial tibial plateau, 4) the lateral femoral condyle 

and 5) the medial femoral condyle close to the subchondral bone of the knee. 

Statistical Analysis  

The tibiofemoral contact pattern of the symptomatic osteoarthritic knees was compared to 

the contralateral knee and to the knees of 12 healthy subjects (reported in Chapter 4), using 

repeated measures ANOVA. Differences between tibiofemoral contact patterns were 

compared for the medial and lateral compartments of the knee, for the loaded and unloaded 

conditions and for differences between osteoarthritic and contralateral knees of both 

osteoarthritic subjects and healthy subjects.  
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Associations between differences in the tibiofemoral contact pattern in the osteoarthritic 

knee and contralateral knee and Kellgren Lawrence grade, type of osteoarthritis and 

differences in BMD were tested for correlation using a Pearson’s correlation co-efficient.  

Results  

Severity of disease in the osteoarthritic knees  

For the osteoarthritic knees, no subject had grade 0 or grade 1 osteoarthritis on the 

Kellgren Lawrence scale. One subject had grade 2 osteoarthritis, 5 subjects had grade 3 

osteoarthritis and 8 subjects had grade 4 osteoarthritis. MRI reports described severe 

tricompartmental osteoarthritis with full-thickness cartilage wear in 7 subjects. Six subjects 

had full thickness cartilage wear in the medial compartment only, with less severe 

osteoarthritis in the lateral and patellofemoral compartments. No subject had 

predominantly lateral compartment osteoarthritis. One subject had patellofemoral 

osteoarthritis, with minor changes only in the tibiofemoral compartments. In terms of 

meniscal damage, 10 subjects had medial meniscal damage, including one with a previous 

meniscectomy, 2 with degenerative tears and 7 with macerated menisci. Eight subjects had 

lateral meniscus damage, including 3 with tears and 5 with macerated menisci. Five 

subjects had damage to both menisci. Eight subjects had ligament damage to the knee 

including 7 with ACL deficiency defined at surgery. One ACL-deficient subject had 

concomitant PCL degeneration and degenerative MCL and LCL tears. Another ACL-

deficient subject had a concomitant old MCL tear. One subject had an isolated LCL tear 

seen at surgery (Table 10.1).  
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Severity of disease in the asymptomatic knee  

In 7 of the 14 subjects, the asymptomatic knees showed the appearance of osteoarthritis on 

x-ray. Five subjects had grade 0 (normal) and three had grade 1 (doubtful) radiographs on 

the Kellgren Lawrence scale. However, 4 subjects had grade 2 (minimal) and 3 subjects 

had grade 3 (moderate) osteoarthritis on x-ray. These 7 subjects with evidence of 

osteoarthritis on x-ray but no symptoms, included 6 with primary idiopathic osteoarthritis 

and one with osteoarthritis secondary to ACL injury in the symptomatic knee.  

Self-report questionnaire results 

Pain was reported on the WOMAC questionnaire as 9 ± 3.5 (range, 3 to 15; worst possible, 

20). Subjects’ reported experience of stiffness was 4 ± 2.2 (range, 0 to 6; worst possible,  

8), including two subjects who experienced no stiffness. Physical function was reported as 

33 ± 12.1 (range, 15 to 58; worst possible, 68). Social function was reported as 13 ± 6.9 

(range, 0 to 24; worst possible, 28). Emotional function was reported as 12 ± 9.2 (range, 1 

to 27; worst possible, 40). The total WOMAC score was 50 ± 14% (range, 28% to 75%). 

There was a very high correlation between components of the WOMAC scores, in 

particular the association between pain and other components of the WOMAC score (Table 

10.3). 

Table 10.3: Correlations (Pearson’s r) among aspects of the WOMAC self-report questionnaire. 

Scores for pain, stiffness physical and social function were highly correlated. Emotional function 

was correlated to pain, but not the other components. 

Variables Pain Stiffness Physical function 

Stiffness 0.78 -  

Physical function  0.69 0.70 - 

Social function 0.82 0.76 0.83 

Emotional function 0.61 0.40 0.34 
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Tibiofemoral contact patterns 

The symptomatic and contralateral asymptomatic knees of osteoarthritic subjects did not 

have a significantly different tibiofemoral contact pattern (F(1,10 4) = 1.475, p = 0.227) 

(Figure 10.5). However, the knees of osteoarthritic subjects had a different tibiofemoral 

contact pattern to that of healthy control subjects (F(1,1884) = 19.3, p < 0.001). When post 

hoc analysis was employed to examine the difference, it was found that the symptomatic 

osteoarthritic knee had a different TF contact pattern to the healthy control subjects (p < 

0.001) and the asymptomatic contralateral knee of the osteoarthritic subject was also 

different to the healthy control subjects (p < 0.001) (Figure 10.5).  

In the medial compartment of the knee of healthy subjects the tibiofemoral contact pattern 

in knee extension began anteriorly on the tibial plateau (mean distance from the posterior 

tibial cortex 34 ± 4mm (Figure 10.6). The femur then rolled back on the tibial plateau to 

30° knee flexion (to be 21 ± 3 mm from the posterior tibial cortex). For the remainder of 

knee flexion to 90°, the healthy knee moved little, moving back to 19 ± 2mm from the 

posterior tibial cortex at 90° knee flexion. In this respect the healthy medial condyle could 

be described as predominantly rolling between 0° and 30° and gliding between 45° and 

90°. The medial compartment of the symptomatic osteoarthritic knees had similar contact 

in knee extension, but the femur did not move back on the tibial plateau as far, remaining 

26 ± 5mm from the posterior tibial cortex, ie. a difference of 5mm more anteriorly than the 

healthy knee contact position (Figures 10.3 and 10.4).  
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In the lateral compartment of the symptomatic osteoarthritic knees the tibiofemoral contact 

did not move posteriorly during flexion as far as healthy control subjects. In the healthy 

knees the femur moved from an anterior position on the tibial plateau in knee extension (27 

± 4 mm from the posterior tibial cortex reference point), to a posterior position at 90° knee 

flexion (11 ± 2mm from the posterior tibial cortex), fairly steadily. The femoral contact 

pattern of the osteoarthritic knees did not move back as far on the tibial plateau: in knee 

extension the contact point was 29 ± 5mm from the posterior tibial cortex and at 90° knee 

flexion it had only rolled back to 19 ± 4mm from the posterior tibial cortex. Thus, there 

was less roll back in both the medial and lateral compartments of the symptomatic 

osteoarthritic knees (Figures 10.5 and 10.6).  

The tibiofemoral contact pattern of the osteoarthritic knees when loaded was the same as 

the contact pattern when unloaded (F(1,10 4) = 0.095, p < 0.759). There was no interaction 

between the symptomatic knee and asymptomatic knee of osteoarthritic subjects when the 

knee was loaded or unloaded (F(1,10 4) = 1.184, p < 0.909).  

 



 

Figure 10.3: Gradient echo images of the A) medial and B) lateral compartments of the knee of a typical healthy subject, from 0° to 90° flexion. The medial 
femoral condyle was anterior on the tibial plateau in extension, then during flexion remained centred on the tibial plateau. The lateral femoral condyle 
continued to roll back through flexion. 

A 

B 



 

Figure 10.4: Gradient echo images of the A) medial and B) lateral compartments of the osteoarthritic knee of a typical subject, from 0° to 90°. The medial 
femoral condyle was fixed anteriorly on the tibial plateau. The lateral femoral condyle did not roll back through flexion, but remained centred on the tibial 
plateau. 

 

A 

B 
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Tibiofemoral contact patterns of symptomatic and 
contralateral knees of OA subjects and healthy knees:

 Medial, loaded
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Figure 10.5: The tibiofemoral contact points for symptomatic knees and the contralateral knees of 

osteoarthritic subjects for the A) medial and B) lateral compartments during a loaded leg press.

A 
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Figure 10.6: Diagram of the tibial plateau demonstrating the mean tibiofemoral contact points 

between 0° and 90° in the loaded knees, for A) symptomatic osteoarthritic knees (red), B) 

asymptomatic contralateral knees (yellow) and healthy control subjects (black). 

B 

A 
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Tibiofemoral contact was different for knees of different severity of osteoarthritis, as 

recorded by the Kellgren Lawrence grades (F(1,4) = 8.6, p<0.001). Post hoc analysis 

established that contact patterns were not different between knees with Kellgren Lawrence 

grades 0 and 1 (minimal and doubtful osteoarthritis), but grade 0 was different from grade 

3 (p < 0.001) and from grade 4 (p = 0.014; Figure 10.7). Knees with Kellgren Lawrence 

grade 2 had a different tibiofemoral contact pattern from those with grade 3 (p = 0.012). 

Knees with Kellgren Lawrence grades 3 and 4 did not have a significantly different contact 

pattern (p = 0.689).  

There was an interaction between the tibiofemoral contact pattern and severity of 

osteoarthritis and the medial or lateral compartments (F(1,2) = 3.2, p = 0.014), indicating 

that disease severity affected the contact pattern in lateral compartment more than in the 

medial compartment (Figure 10.7).  
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Kellgren Lawrence Grades 2, 3, 4: Medial Loaded
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Kellgren Lawrence Grades 2, 3, 4: Lateral Loaded
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Figure 10.7: Tibiofemoral contact patterns according to the severity of osteoarthritis in the A) 

medial and B) lateral compartments of the knee. Kellgren Lawrence grades 2, 3 and 4 were 

different to healthy knee contact patterns. 
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ACL integrity and kinematics.  The 7 subjects with ACL-deficient knees did not have a 

significantly different contact pattern to the ACL-intact knees (F (1,1) = 1.062, p = 0.304). 

When the medial and lateral compartments were considered separately, there was no 

significant difference (F (1,1) = 2,89, p = 0.092) in contact pattern between ACL-deficient 

and ACL-intact knees.  

Associations between pain, function and knee kinematics.  The WOMAC scores for 

pain were weakly correlated with severity of osteoarthritis in the symptomatic knee (r = 

0.45, p = 0.09). Total WOMAC scores were moderately correlated with severity of 

osteoarthritis (r = 0.55, p = 0.05), indicating that more severe osteoarthritis was associated 

with more severe pain and poorer function. 

WOMAC scores were associated with kinematic changes in the lateral compartment of the 

knees. To quantify the difference in the contact patterns between the knees of healthy 

subjects and osteoarthritic knees, the difference between the group mean contact point of 

healthy subjects and the contact point of the osteoarthritic knee was calculated at each knee 

flexion angle and then added to give the sum of the difference. In the lateral compartment 

of the knee in the loaded condition, the sum of the difference between the normal knee and 

the osteoarthritic knee contact pattern was not correlated with the (total) WOMAC score (r 

= 0.41, p = 0.14). In the unloaded condition, the WOMAC score was correlated with the 

difference in contact pattern (r = 0.54, p = 0.047). This indicated that as the lateral contact 

pattern became less like the healthy subjects, the functional level reported by osteoarthritic 

subjects worsened. The contact pattern of the lateral compartment was more affected by 

knee osteoarthritis than the medial compartment of the knees and it was in the lateral 
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compartment of the knees that the association between the WOMAC score and kinematics 

was evident. 

Bone mineral density  

There was no significant difference between the osteoarthritic and contralateral knees at 

the 5 regions of interest examined (p = 0.891) (Table 10.4). The mean BMD of each region 

in the osteoarthritic knees was slightly lower than the contralateral knees, however this was 

not significant (Figure 10.8). There was similarly no difference in the ratio of bone density 

in the medial compartment compared to the lateral compartment of the osteoarthritic and 

contralateral knees. The mean ratio of medial to lateral BMD at the tibia was 1 : 1.5 (± 0.5) 

at the tibia and 1 : 1.0 (± 0.5) at the femur in the osteoarthritic knees; and 1 : 1.36 (±0.4) at 

the tibia and 1: 0.96 (±0.4) at the femur in the contralateral knee.  

There was no correlation between BMD and severity of osteoarthritis as indicated by the 

Kellgren Lawrence scores, in either the symptomatic osteoarthritic knee or contralateral 

knee of osteoarthritic subjects. BMD was, however, associated with pain, stiffness and 

physical function derived from the WOMAC scores. BMD at regions 1,2,3 and 5 was 

correlated to pain (r = 0.46 to 0.63, p < 0.01) and stiffness (r = 0.46 to r = 0.51, p.<.0.01). 

BMD at all five regions was correlated with physical function (r = 0.40 to r = 0.69, 

p.<.0.03 to p.<.0.001). These correlations indicate that as bone density increased WOMAC 

scores for pain, stiffness or physical function worsened. 
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Table 10.4: Bone mineral density (Mean ± SD; g/cm2) of the symptomatic osteoarthritic knees and 

contralateral knees for each region of interest (RIO). 

 
 

Bone mineral 
density 

 

 ROI 1 
Central 

tibia 

ROI 2 
Lateral 

tibia 

ROI 3 
Medial 
tibia 

ROI 4 
Lateral 
femur 

ROI 5 
Medial 
femur 

Osteoarthritic knee mean 0.51 0.73 1.00 0.78 0.74 
 SD 0.18 0.29 0.31 0.24 0.33 
       

Contralateral knee mean 0.52 0.79 1.01 0.83 0.75 
 SD 0.22 0.29 0.31 0.24 0.23 
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Figure 10.8: Comparison of bone mineral density (BMD; mean ± SD) in the symptomatic (OA) and 

contralateral (Contra) knee of osteoarthritic subjects at each region of interest.  
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Discussion 

This study has demonstrated how the kinematic characteristics of osteoarthritic knees 

differ from healthy knees. Roll back was markedly reduced in the medial and lateral 

compartments of the osteoarthritic knees. The difference in the tibiofemoral contact pattern 

that indicates longitudinal rotation in healthy knees was also reduced in the osteoarthritic 

knees. These kinematic changes were associated with severity of osteoarthritis, as 

indicated by Kellgren Lawrence grades from x-rays. The magnitude of change in the 

tibiofemoral contact pattern of the lateral compartment was also associated with symptoms 

of pain, stiffness and limitations to function. 

Kinematic characteristics of osteoarthritic knees 

Loss of normal roll back in the osteoarthritic knees demonstrated the change to the normal 

roll/glide characteristics of knee motion. In the healthy knee the femur predominantly rolls 

across the tibial plateau between 0º and 30º, then from 30º onwards the femur combines 

roll with glide on the surface of the tibial plateau, otherwise it would reach the posterior 

the tibial plateau rim before flexion was completed (Muller 1983). In addition, insufficient 

roll back would cause the shaft of the femur to impinge on the posterior tibial rim, also 

limiting knee flexion. Control of the roll/glide behaviour was attributed to the cruciate 

ligaments (Muller 1983). In the osteoarthritic knee the amount of roll back was reduced 

and tibiofemoral contact occurred anteriorly on the tibial plateau. This loss of normal roll 

back may be a contributor to reduced flexion range of motion. 

Reduced range of knee flexion often accompanies osteoarthritis (Walker et al. 2001). In 

healthy knees studied in deep flexion, the position of the femur on the posterior rim of the 
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tibial plateau has been described (Hefzy et al. 1998; Nakagawa et al. 2000; Komistek et al. 

2003). The medial femoral condyle rides up onto the posterior horn of the meniscus and 

the lateral femoral condyle rolls back to the posterior rim of the tibial plateau, displacing 

the posterior horn of the meniscus posteriorly also (Nakagawa et al. 2003). In total knee 

arthroplasty, loss of normal femoral roll back has been considered a limiting factor in 

achieving knee flexion and cruciate retaining prostheses have been designed to facilitate 

roll back (Bellemans et al. 2002). In the osteoarthritic knees, the posterior translation of the 

femur on the tibial plateau was markedly restricted. It could be anticipated that this could 

be a reason for compromised flexion range of motion in osteoarthritic knees. 

The loss of the normal roll back in the osteoarthritic knees was more apparent in the lateral 

compartment than in the medial compartment, which already has little roll back in the 

healthy knee. In the healthy knees it is the roll back of the lateral femoral condyle while the 

medial femoral condyle remains centred on the tibial plateau that indicates the longitudinal 

rotation of the knee during flexion. The loss of roll back in the lateral compartment in 

particular, demonstrated the loss of longitudinal rotation in the osteoarthritic knees. The 

lateral compartment of the healthy knee has greater mobility than the medial compartment 

(Brantigan and Voschell 1941), which permits the lateral compartment rollback during 

knee flexion. In the osteoarthritic knees the lateral compartment behaved like fixed-axis 

ball-and-socket joint. The loss of longitudinal rotation in osteoarthritic knees has 

previously been described in standing subjects in the last 30° knee extension (Nagao et al. 

1998). Nagao et al (1998) only examined knee flexion from 0° to 30°, but Figure 10.3 

suggests that the difference in kinematics may be greater in deeper knee flexion. The 

present study shows that this loss of longitudinal rotation in osteoarthritic knees may 

continue throughout knee flexion.  
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The kinematic changes are apparent in early stages of osteoarthritis, as evidenced by the 

altered kinematics of asymptomatic knees with radiographic signs of osteoarthritis. Indeed 

asymptomatic knees, with no pain and no stiffness, may already have begun to exhibit 

altered kinematics. Knees with grade 2 osteoarthritis already had a different tibiofemoral 

contact pattern to healthy knees.  

Kinematic characteristics and wear 

Medial compartment contact patterns may be related to the pattern of wear in the medial 

tibial plateau. At total knee replacement, anteromedial wear areas have been described on 

the tibial plateau (White et al. 1991) and these wear areas increase in size and depth as 

osteoarthritis progresses (Fukubayashi and Kurosawa 1980; Harman et al. 1998). In the 

present study, there was increasing kinematic abnormality in the medial compartment as 

severity progressed between grade 2 and grade 3 osteoarthritis (Figure 10.7). In knees with 

grade 3 osteoarthritis, the tibiofemoral contact pattern was more anterior on the tibial 

plateau throughout knee flexion than in other grades of osteoarthritis. It is possible that the 

area of wear in the medial compartment of knees with grade 3 osteoarthritis tends to hold 

the femur in the wear cupola, anteriorly on the tibial plateau. 

The severity of knee osteoarthritis of our subjects ranged from minimal to severe in the 

symptomatic knees and from none to moderate in the asymptomatic knee. The high 

incidence of asymptomatic radiographic osteoarthritis in the contralateral knees was 

probably because many of these subjects had primary idiopathic osteoarthritis, which is 

most commonly bilateral (Radin 1987). One subject had an ACL injury in the symptomatic 

knee, but may have had concurrent primary idiopathic osteoarthritis. Therefore it is not 
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surprising that 7 out of 14 subjects had asymptomatic osteoarthritis in the contralateral 

knee.  

Role of the ACL in kinematic changes 

The loss of longitudinal rotation could be due to attrition of the ACL or changes to the soft 

tissue structures of the knee limiting the extension range of motion (Nagao et al. 1998). 

The ACL is considered important to guide the rotation of the knee in terminal extension 

(Hallen and Lindahl 1966; Fuss 1992) and the incidence of ACL abnormality in 

osteoarthritic knees has been reported to be 50% to 75% (Allain et al. 2001). In our study, 

while 7 subjects had ACL deficiency, loss of longitudinal rotation was not associated with 

ACL deficiency, but rather was associated with severity of disease. 

The incidence of ACL deficiency in the present study was similar to that previously 

reported (Wada et al. 1996; Allain et al. 2001). However, conclusions about the attrition of 

the ACL in knee osteoarthritis cannot be drawn from this small sample of convenience. 

Wada et al (1996) found 50% of knees had a completely absent ACL, 25% partly torn and 

only 25% had an intact ACL (Wada et al. 1996). The PCL, however, was intact in all the 

knees. Allain et al (2001) found similar incidence of ACL damage in osteoarthritic knees, 

but in 75% of cases where the ACL was torn the PCL also had histological evidence of 

degeneration. They suggested that the absence of the ACL indicated that the quality of the 

PCL as a viable restraint structure was probably also compromised. The menisci also, are 

frequently found to be macerated or absent in advanced knee osteoarthritis (Buckwalter 

and Mankin 1997). In our sample of 14 subjects, only one had no meniscal damage. Thus, 

the evidence of joint damage in this sample of osteoarthritic subjects is consistent with that 

reported by others. 
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BMD, function scores and radiographs as indicators of osteoarthritis 

In the present study there was no difference in BMD between the symptomatic and 

contralateral knees of osteoarthritic subjects and no observed relationship between 

radiological severity of osteoarthritis and BMD. This could be due to the wide standard 

deviation and wide spread of results. BMD has been used to indicate severity of disease in 

osteoarthritis and disease progression (Hurwitz et al. 1998; Andriacchi et al. 2000; Hurwitz 

et al. 2001; Wada et al. 2001; Hulet et al. 2002). In studies of osteoarthritic subjects, 

subchondral BMD increases measured by dual photon absorptiometry and DEXA has been 

associated with progression of the radiological stage of osteoarthritis (Madsen et al. 1994). 

In a group with severe osteoarthritis BMD was correlated with the varus/valgus angulation 

of the knee, clearly demonstrating the relationship between medial compartment 

osteoarthritis and increased BMD (Hurwitz et al. 2000). In the present study, increased 

BMD was associated with worsening pain stiffness and function of the osteoarthritic 

subjects. The WOMAC questionnaire was designed to be an indicator of the effect of 

osteoarthritis on quality of life and as such is an indicator of severity of symptoms of 

osteoarthritis. It is interesting, however, that BMD increase was associated with disease 

severity in terms of symptoms but not radiographic changes. Measures of severity in terms 

of impact on function and quality of life were developed because there is poor agreement 

between radiographic measures of severity of osteoarthritis and symptoms (Peat et al. 

2001). 

We have shown that altered tibiofemoral contact patterns in osteoarthritic knees were 

associated with severity of osteoarthritis graded from x-rays. We have also shown that 

change in the tibiofemoral contact pattern in the lateral compartment of the unloaded knee 

was associated with worse symptoms and poorer function. Kinematic changes appear to 
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occur early in the disease process, frequently before the onset of symptoms. A question 

arises from this work as to whether kinematic changes can be used as an early predictor of 

osteoarthritis, so that early intervention or prevention of deterioration might be possible. 

The loss of longitudinal rotation and in particular lateral compartment roll back was 

associated with poor pain and function scores. It may be that interventions to restore the 

longitudinal rotation may provide relief of symptoms. This warrants further investigation. 

There is still much to learn regarding the characteristics of knee kinematics expressed by 

tibiofemoral contact patterns in the osteoarthritic knee, but this study has provided a 

description of osteoarthritic knee kinematics that was previously unknown. 

Conclusions 

The kinematics of osteoarthritic knees were different from healthy knees and the kinematic 

abnormalities were a function of the severity of osteoarthritis. The difference in the knee 

kinematics of osteoarthritic knees was greatest in the lateral compartment of the knee, but 

both medial and lateral compartments exhibited a loss of the normal posterior translation of 

the femur, which normally occurs during knee flexion. In the healthy knees the lateral 

compartment contact pattern demonstrated that the femur moved posteriorly during knee 

flexion from 30º – 90°, more than in the medial compartment and this indicated the 

occurrence of longitudinal rotation of the knee during flexion. In the osteoarthritic knees 

this longitudinal rotation was markedly reduced. This loss of longitudinal rotation was 

related to the severity of osteoarthritis.  
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CHAPTER 11 

 

CONCLUDING REMARKS 
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Prior to the research work presented in this thesis, the field of knee kinematics had 

concentrated on understanding the normal knee, knowledge that was required for 

development of knee prostheses, and understanding the kinematics of the prosthetic knee in 

vivo. The relationship between abnormal kinematics and degenerative change had not been 

examined since the early experiments in the 1970’s using rudimentary 2-dimensional imaging 

(Frankel et al. 1971). Three-dimensional kinematics had been examined in terms of the 

flexion/extension axis using MRI (Todo et al. 1999; Hill et al. 2000), and in terms of the 

relative motion of the femur and tibia, in normal, recently injured or reconstructed knees 

(Niitsu et al. 1991; Beard et al. 2001; Brandsson et al. 2001; Brandsson et al. 2002; Hollman 

et al. 2002; Georgoulis et al. 2003). Of events occurring at the tibiofemoral interface very 

little was known, despite this interface being the site of degeneration, and in particular, little 

was known about the kinematics of chronically injured or osteoarthritic knees. Consequently, 

there was poor understanding of the relationship between the aberrant knee kinematics of 

injured knees and the consequent degenerative changes.  

Synthesis of findings 

Healthy knee kinematics 

We established and validated a technique using MRI to reliably plot the position of contact of 

the femoral condyle with the tibial plateau. Using this technique, we were able to complete 

the first successful mapping of the tibiofemoral contact pattern of normal knees during 

flexion. The kinematic characteristics derived from the contact pattern included the nature of 
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roll and glide occurring at the tibiofemoral interface: the femoral condyles rolled on the tibial 

plateau between 0º and 30º, but between 30º and 90º the medial condyle remained centred on 

the tibial plateau and predominantly glided in place, whereas the lateral femoral condyle 

continued to roll back across the tibial plateau during flexion. This difference between the 

medial and lateral tibiofemoral contact patterns described the longitudinal rotation of the knee 

during flexion. While the medial condyle remained in place during flexion, the lateral condyle 

continued to roll back, indicating that the axis of rotation is probably located at the center of 

the medial compartment.  

The lack of difference we found in the contact pattern between the loaded and unloaded 

conditions in healthy knees was not predicted by previous work in this area. While 

tibiofemoral contact patterns have not been described, other kinematic characteristics have 

been reported as different in loaded knees. These differences include suppression of 

longitudinal rotation (Hill et al 1999), unloading of the ACL (Tountoungi et al 2000) and an 

increase in the tibiofemoral contact area (Fukubayashi and Kurosawa 1980). However, in our 

study of healthy control subjects there was no difference between tibiofemoral contact 

patterns in loaded and unloaded knees. We did not find a change in the tibiofemoral contact 

pattern to indicate suppression of rotation, but our experiment was more strictly controlled 

than that of Hill et al (1999). Hill et al (1999) compared knee flexion/extension in sitting 

(which is an open-chain exercise) with a standing squat position (which is a closed-chain 

exercise). Thus, there are two changed variables; the body position changed from sitting to 

standing and the exercise changed from open to closed-chain, in addition to loaded versus 

unloaded conditions. It may be the closed-chain conditions that suppressed rotation in the 

knee when compared to the open-chain (sitting) condition. In our study, the body position was 
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controlled and remained supine, with the feet on the footplate (closed-chain), and the load of 

150N was much less than body weight. There are many variations in kinematics within the 

available envelope of passive motion of the knee (Blankevoort et al 1988). Our experiment in 

healthy knees demonstrated that with other variables controlled, the tibiofemoral contact 

pattern was unchanged when the subjects pressed down through the feet against a 150N load. 

The lack of difference we found in healthy controls may change the way we describe the 

influence of loading and muscular activity on knee kinematics.  

The new findings presented in this thesis provide a clear description of the normal 

tibiofemoral contact pattern, and form a basis from which to explore the effect of injury on 

kinematics. Exploration of changes in tibiofemoral interface events is relevant to 

understanding the process of articular cartilage degeneration in injured knees and is also 

relevant to issues of wear in knee prostheses. Tibiofemoral contact patterns can be used to 

quantify and analyse the changes in kinematics due to knee injury and pathology now that the 

normal contact pattern has been mapped.  

Pathological knee kinematics 

The tibiofemoral contact patterns were mapped for three stages of knee pathology; recent 

ACL-injured knees, chronic ACL-deficient knees and osteoarthritic knees, finding distinctly 

different characteristics at each stage. The tibiofemoral contact pattern in ACL-injured knees 

demonstrated that although the characteristic longitudinal rotation of the knee was 

maintained, the contact occurred more posteriorly on the tibial plateau. The difference 

between the contact pattern in chronic ACL-deficient knees and contralateral healthy knees 
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was associated with the degree of degeneration and damage to the articular surface of the 

knees. In addition, the difference in tibiofemoral contact patterns in osteoarthritic knees was 

associated with the severity of osteoarthritis in the knees.  

In the ACL-injured knees, the contact pattern occurred more posteriorly on the tibial plateau, 

but with the posterior tibiofemoral contact pattern more pronounced in the lateral 

compartment. This indicated that the roll and glide characteristics were maintained, but with a 

more medial axis of rotation compared to the normal knee. This shift in axis could suggest an 

increased role for the MCL in maintaining stability of the ACL-injured knee. In the loaded 

condition the contact pattern was still significantly different to the contact pattern in healthy 

contralateral knees. The abnormal contact pattern in the loaded condition suggests that using a 

closed-chain condition for exercises, rather than an open-chain exercise, is not sufficient to 

normalise the contact pattern in ACL-injured knees. Thus, it could be dangerous to assume 

closed-chain exercises are benign for unstable and reconstructed knees. 

The chronic ACL-deficient knees showed a pattern of tibiofemoral contact that was more 

posterior than the healthy contralateral knee, and particularly in the medial compartment, not 

the lateral compartment as in the recently ACL-injured knees This posterior pattern in the 

medial compartment results from the secondary restraints to anterior tibial translation in the 

ACL-deficient knee, the MCL and medial meniscus, becoming attenuated or stretched or from 

degenerative changes influencing their effectiveness as restraints. The altered kinematics of 

the medial compartment were associated with severity of joint damage in the chronic ACL-

deficient knee. In contrast, time since injury was not associated with degenerative change, 
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indicating that it is not time, but kinematics that is associated with the degenerative change 

process.  

Osteoarthritis produced pronounced changes to the tibiofemoral contact pattern. The lateral 

femoral condyle no longer rolled back on the tibial plateau and the knee behaved like a hinge, 

rather than a multiaxial joint. The loss of femoral roll back in osteoarthritic knees is likely to 

be responsible for the loss of flexion range of motion in the knees. The relationship between 

loss of roll back and loss of flexion should be further investigated, particularly because these 

impairments are potentially remediable by physiotherapy.  

At the late stages of the degenerative process ACL deficiency was not associated with altered 

kinematics. That is, although ligament damage in early osteoarthritis may have affected the 

kinematics early in the process of degeneration, it did not appear to influence the kinematics 

of severely osteoarthritic knees. The relationship between ligament integrity and kinematics in 

the osteoarthritic knee is integral to the issue of ligament retention or sacrifice in knee 

arthroplasty. However, kinematics in late-stage osteoarthritis were not affected by ACL 

integrity. This is likely to be because other changes associated with knee osteoarthritis, for 

example, changes to bony structure, and fibrous thickening of the synovium and capsule are 

having a greater role in controlling knee kinematics. In the light of these findings the 

arguments for ACL retention in knee arthroplasty need to be re-evaluated.  

Hamstrings autograft reconstruction of ACL-injured knees appears to restore the normal 

contact pattern to that of the healthy contralateral knee, though neither the reconstructed nor 

contralateral knees of injured subjects had a normal healthy contact pattern at 2 years. 
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Longitudinal studies following subjects after knee reconstruction are required to examine the 

effect of time on changes in the tibiofemoral contact pattern. There appear to be changes with 

time in both the reconstructed knee and the healthy contralateral knee, which may be clarified 

by a prospective, controlled study. While the tibiofemoral contact pattern of the reconstructed 

knee was the same as the healthy contralateral knee, it was not restored to the contact pattern 

of healthy control subjects. The long-term outcome of this variation in the tibiofemoral 

contact pattern is unclear. While altered tibiofemoral contact patterns have been associated 

with the degenerative process, the degenerative consequences of these altered tibiofemoral 

contact patterns shown at 2 years following knee reconstruction are not known. Studies of 

knee reconstruction are limited to 7-year follow-up, so the incidence of osteoarthritis in the 

reconstructed knee over the long-term is not yet clear (Jomha et al. 1999; Pinczewski et al. 

2002; Ruiz et al. 2002). Until subjects with hamstrings autografts can be followed-up for the 

long term, knowledge about the ability of knee reconstruction to correct the tibiofemoral 

contact pattern is an incremental advance in predicting whether knee reconstruction will be 

able to prevent the sequellae of degenerative change that are evident in the unoperated ACL-

deficient knee.  

Tibiofemoral contact mapping using MRI, may have potential for development as a screening 

tool to indicate which patients are best advised to have surgery. There may be patients with 

good neuromuscular coordination, who have minimal side-to-side difference in contact 

pattern, and may avoid degenerative sequellae from ACL-deficiency. There may be others 

with a greater side-to-side difference, for whom surgery may be indicated. Knowledge about 

kinematic behaviour of a patient’s knee may in the future inform decisions about whether 

surgery is indicated, as well as optimal time-frames for intervention. 
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There were characteristic changes in the tibiofemoral contact pattern for recently injured 

knees, that were different from chronic ACL-deficient knees, and associated with the extent 

of degenerative changes present in the knee. It is not possible to determine from this cross 

sectional study whether the altered tibiofemoral contact pattern causes the degenerative 

changes evident in chronic ACL-deficient, or even osteoarthritic knees, or whether the 

tibiofemoral contact pattern is reflecting the structural and mechanical changes that are 

occurring as a result of the degenerative process. Either way, tibiofemoral contact pattern 

mapping provides a robust method to quantify and compare kinematic changes and is 

sensitive to altered kinematics in a variety of pathological states.  

Questions arising from the work 

Major questions that have arisen from this body of work include:  

 Should closed chain exercises continue to be recommended for rehabilitation, given 

that the loaded ACL-injured knee exhibited an abnormal tibiofemoral contact pattern?  

 Does the lack of difference in the contact pattern between the unloaded and loaded 

knees in all stages of pathology studied infer that subjects were effectively stabilising 

the knee by contracting the hamstrings and quadriceps muscle groups?  

 Can the degenerative consequences of chronic ACL-deficiency be avoided by training 

dynamic stability?  

The prescription of closed-chain exercises for strengthening unstable knees has a strong basis 

from both in vitro and in vivo studies which show that the anterior translation resulting from 

quadriceps activity is reduced during joint compression. Our study did not examine the 
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tibiofemoral contact pattern produced during open-chain quadriceps exercises, nor compare 

open with closed-chain exercises, instead we compared the relaxed (unloaded) condition with 

a closed-chain condition (the leg-press). We found that the tibiofemoral contact pattern for 

both unloaded and loaded (closed-chain) conditions were abnormal in the ACL-injured knee. 

Therefore, performing closed-chain exercises did not normalise the contact pattern, so it can 

not be assumed that exercising using only closed-chain exercises will protect the knee from 

degenerative sequellae. 

The tibiofemoral contact pattern did not differ between the unloaded and loaded conditions in 

either healthy or ACL-injured knees, suggesting that muscular activity could have been 

controlling the knee kinematics. EMG could not be used to measure muscle activity during 

this kinematic analysis, as the MRI field would induce a current in the leads. There are 

already many EMG studies of muscle recruitment and timing of muscle activation during a 

variety of functional tasks that suggest ACL-deficient subjects can develop very effective 

dynamic stability skills (Steele and Brown 1999). In order to perform a loaded leg-press, 

subjects balance the muscle activity of quadriceps and gastrocnemius muscles, both of which 

produce a vector component of anterior tibial translation, with hamstrings muscles, which 

have a component of posterior tibial translation due to the insertion posterior and distal to the 

knee. In order for no net translation effect to be measured at the tibiofemoral contact, it is 

likely subjects have developed neuromuscular coordination skills required to stabilise the 

knee. However, the tibiofemoral contact pattern in the ACL-injured knees was significantly 

different from the intact knees, both when relaxed and when loaded. The dynamic stability 

produced by neuromuscular coordination skills is effective, but perhaps the muscles cannot 

quite compensate for the loss of the ACL as a passive restraint in the joint. 
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The question concerning whether neuromuscular training, as used to improve dynamic 

stability, can prevent the degenerative sequellae of chronic ACL-deficiency would need to be 

examined over a prolonged period. An intervention study should be conducted to examine 

whether training in dynamic stability and neuromuscular re-education normalises the TF 

contact pattern I the short and the long term. Although it would be interesting to measure the 

neuromuscular characteristics of our group of subjects with no degenerative changes, this was 

outside the scope of our study. The three subjects who coped well with chronic ACL-

deficiency and with no degenerative changes participated in non-pivoting sports to maintain 

strength and fitness. However, this sample is too small to enable determination of risk factors 

for degeneration. Whether kinematic stability can prevent degenerative change is still to be 

tested, but it is known that aberrant kinematics are associated with degenerative change. 

Understanding of normal and pathological tibiofemoral contact patterns may be useful for 

knee prosthetic design, as it is commonly understood that interface wear determines lifespan 

of the prosthesis. Yet biomechanists involved in design of knee prostheses have been aiming 

to replicate the kinematics of a normal healthy knee, rather than an osteoarthritic knee 

(Freeman 1998; Stiehl et al. 2000; Banks et al. 2003). However, the contact pattern of 

osteoarthritic knees is not a normal contact pattern, its dysfunction may be responsible for the 

loss of flexion range of motion, and the loss of rotational mobility important to activities of 

daily living. It may be that implanting a prosthetic knee designed to replicate normal 

kinematics is not optimal. The osteoarthritic knee has altered bony and soft tissue features, 

including a thickened synovium, weak muscles, and frequently attenuated cruciate and 

collateral ligaments. Perhaps this is the reason that kinematics of the replaced knee are far 

from normal, and exhibit paradoxical roll-forward and condylar lift-off in vivo (Dennis et al. 
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2001; Bellemans et al. 2002). A better understanding of kinematics of osteoarthritic knees 

provides a better framework from which to anticipate how kinematics might behave with a 

replaced knee. 

This is the first time the tibiofemoral contact pattern of osteoarthritic knees has been mapped. 

It is evident that loss of longitudinal rotation and loss of roll back in osteoarthritic knees is not 

due to attrition of the ACL, but other structural and mechanical changes to the knee. The role 

of the ACL in guiding the kinematics of the knee is finally ended in the late stages of 

osteoarthritis. 

Conclusion 

These findings describe the effect of ACL injury on knee kinematics, and the relationship 

between kinematics and degenerative change. In a model of ACL injury, the changes to the 

kinematics of the knee and changes to the structure of the knee during the degenerative 

process are reflected in the altered tibiofemoral contact pattern. Only in the late stages of 

osteoarthritis and in the environment of gross structural changes to the knee is the affect of 

ACL-deficiency no longer apparent. This body of work has provided a fresh insight into 

kinematics and degenerative change in ligament-injured knees. 
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Abstract

Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping

tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance.

MRI scans of both knees at 15� intervals from 0� to 90� of flexion were used to record the tibiofemoral contact pattern.

The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly

in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The

difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective

of the passive anterior laxity of the knee.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Abnormal kinematics in the ACL injured knee has
been considered responsible, at least in part, to the
degenerative changes observed (Friden et al., 1993;
Osternig et al., 2000; Vergis et al., 1997). Anterior
cruciate ligament (ACL) injuries are common, the
incidence being 30 per 100,000 of the population per
year in the USA (Miyasaka et al., 1991). Unfortunately,
the risk of developing osteoarthritis after ACL injury
rises to 60–90%, with the highest incidence being in
those who return to sport (Clatworthy and Amendola,
1999; Gillquist and Messner, 1999; Otto et al., 1998).
Degenerative change in the ACL injured knee is due in
part to instability leaving the knee vulnerable to repeat
trauma, and in part to altered kinematics including
shearing at the articular cartilage. An understanding of
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how the kinematics of the knee is altered by ACL injury
is important in order to relate the aberrant kinematics to
the process of degeneration.

Kinematics of the ACL injured knee have been
studied using plain films to measure anterior instability
in patients performing a standing lunge (Friden et al.,
1993) and fluoroscopy (Dennis et al., 1996). However,
two-dimensional data have limited application for
analysis of the complex three-dimensional motion of
the knee. Three-dimensional analysis using electro
goniometry (Vergis and Gillquist, 1998; Vergis et al.,
1997), and radiostereometry (Brandsson et al., 2001,
2002) has demonstrated anterior translation and ex-
ternal rotation of the tibia in the ACL injured knee, but
these are complex, expensive and invasive techniques
and are generally impractical in the clinical situation.

Magnetic Resonance Imaging (MRI), like radioster-
eometry, is a direct visualisation method, which records
the position and hence the motion of the knee with
precision. Advantages of MRI are that it is non-
invasive, and is readily accessible in the clinical
situation. Open field (Hill et al., 2000a; Vedi et al.,
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Fig. 1. Diagram of supine subject in MRI tunnel. Knee flexion angle

was controlled by the position of a sliding wooden footplate. A 150 N

weight and pulley provide resistance to knee extension.
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1999) and standard closed MRI (Scarvell et al., 2001,
2002; Smith et al., 1999; Todo et al., 1999) have been
used to analyse knee kinematics in three dimensions.
The kinematics have been described in terms of a
tibiofemoral contact map. This allows the roll/glide
characteristics and the longitudinal rotation of the knee
to be visualised and quantified. In normal healthy
subjects studied using this technique, a high degree if
variation has been demonstrated, but with good right to
left consistency within individuals, indicating that the
uninjured knee may be reliably used as a control
(Scarvell et al., 2001; Smith et al., 1999). The purpose
of this study was to record the motion of the ACL
deficient knee using MRI, in order to assess the
characteristics of abnormal motion in the ACL injured
knee that may contribute to progressive degenerative
change. Finally this technique may be useful in
predicting those patients at risk of osteoarthritis due
to the kinematic behaviour.
Fig. 2. Sagittal plane MRI scans demonstrating the measurement of

the tibiofemoral contact point, referenced from the posterior tibial

cortex, for the medial (A) and lateral (B) compartments of the knee.
2. Method

Twenty subjects aged between 21 and 52 years, with
a unilateral ACL injury were recruited. Subjects
were excluded if there were any contraindications
to MRI, may have been pregnant, or they were over
180 cm tall (to permit knee flexion in the MRI tunnel).
Subjects were also excluded if history of injury or
symptoms were present in the contralateral knee, so
that the uninjured knee could act as the control. Eight
subjects were male, 12 female. All ACL injuries were
sustained within 3 years of testing. All subjects provided
informed consent. Ethics approval for the study
was obtained from the Australian Capital Territory
Department of Health and Community Care Human
Ethics Committee, and the University of Sydney Human
Ethics Committee

2.1. MRI imaging procedure

To enable standardisation of knee flexion positions
between 0� and 90� a wooden frame with a sliding
footplate was fitted to the MRI couch. For the loaded
and unloaded conditions a rope and pulley weighted
with 150 N was attached to the frame (Fig. 1). Elastic
straps maintained neutral tibial rotation and thigh
adduction by stabilising the feet and ankles. Imaging
of both knees simultaneously was performed using a
1.5 T Siemens Magnetron Vision (Erlangen, Germany).
A body coil was used to generate parasagittal images,
perpendicular to each tibial plateau. Images were taken
of both knees, in the loaded and unloaded conditions, at
seven angles of 15� increments from full knee extension
(0�) to 90� flexion.
2.2. Tibiofemoral contact point measurement

The position of the femoral condyle on the tibial
plateau was recorded as the distance from the posterior
tibial cortex to the point of tibiofemoral (TF) contact of
the medial and lateral femoral condyle (Fig. 2). Where
contact occurred over a wide area, the area centroid was
used. To account for variation in the size of subjects,
cortex to contact point distance measurements were
normalised in proportion to mean tibial dimensions.
The mean AP diameter of the medial tibial plateau was
5074.4 mm, and the lateral tibial plateau was
4272.17 mm.The TF contact points were mapped onto
a tibial plateau of standard dimensions.

2.3. Knee injury variables recorded

In addition to the knee kinematics, the passive
anterior laxity, function, and knee damage visible at
arthroscopy were recorded for each subject. The KT
1000 arthrometer was used to measure anterior laxity,
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by quantifying the anterior displacement in the Lach-
man’s manoeuvre (Daniel et al., 1985). We measured
anterior tibial displacement in both knees five times: at
15, 20, 30 lb of anterior drawer, during an unloaded
straight leg raise, and with a maximum manual anterior
drawer using the KT 1000. A side-to-side difference of
3 mm or more on a manual maximum anterior drawer is
considered indicative of an ACL injury, with a
sensitivity of 85% (Daniel et al., 1985). The Cincinnati
knee score (Barber-Westin et al., 1999) was used to
measure the symptoms, functional limitations, activity
levels of subjects and details of the physical examina-
tion. The result is a score out of 100, where 100 is
normal, with full function. The Cincinnati knee rating
score has high reliability and is sensitive to changes in
the ACL injured population (Barber-Westin et al.,
1999).

Injuries to the ACL are frequently associated with
injuries to other structures of the knee, either at the time
of injury, or subsequent to the injury. These associated
injuries may impose confounding effects on the kine-
matics of the injured knee. All subjects in this study
underwent arthroscopic knee reconstruction within two
months of testing. At arthroscopy, visible joint damage,
meniscal damage and cartilage wear were recorded
(Noyes and Stabler, 1989). Thus, the effects of meniscal
damage and articular cartilage damage on knee kine-
matics could be tested.
3. Reliability of protocol

In order to test the reliability of the protocol, 12
healthy subjects (7 male, 5 female, aged 20–50 years)
with no history of injury or symptoms in either knee or
lower limb were recruited. The technique was evaluated
for reliability by testing the effects of MRI image
quality, distortion, and slice thickness on the accuracy of
the measurement technique for TF contact point
measurement (Scarvell et al., 2001).

We compared two MRI sequences for quality of
image, reliability of TF contact point measurement and
practicality of use. The two sequences were the T1
weighted fast spin echo sequence (SE), and the spoiled
gradient echo (GE) sequence. Five healthy subjects
(1 male, 4 female) were scanned using an SE sequence,
and seven (6 male, 1 female) were scanned using a GE
sequence. The SE sequence had a longer scanning time,
(2.31 min per sequence, totalling 11

2
h session time) but

higher image resolution and narrower slices. Using SE
14 slices were obtained in each knee (slice width 7 mm).
GE scans were faster, being designed for imaging in a
breath hold (Behrens and King, 2000). Each GE
sequence takes 40 s, with a session time of 35 min. Using
GE eight slices were generated through each knee,
approximately 10 mm apart (TR=160.0, TE=2.3/1,
TA=00:46), with a 256� 256 matrix. It was essential
that the subjects did not move during the procedure, or
the images were contaminated. Since fatigue during the
loaded leg press sequence also produced movement or
tremor, the shorter scanning time using GE was
preferred.

The reproducibility of the TF contact point measure-
ments from SE and GE sequences were compared for
both knees at 15� intervals from 0� to 90� flexion, while
unloaded and loaded. The medial and lateral TF contact
points were mapped reliably using both SE sequences
and GE sequences with Intra Class Correlation (2,1) of
0.96 (CI 99% 0.94–0.97) and 0.94 (CI 99% 0.91–0.97),
respectively. The good reliability of both SE and GE
sequences used for the technique of TF contact point
mapping meant that the faster gradient echo sequence
could be used without compromising the reliability of
the measurements.

3.1. Loaded knee images

A comparison between a 150 N and 250 N load was
made in one healthy subject. The TF contact points of
the knee were not altered by the heavier load (p ¼ 0:95).
Since this protocol for imaging knee kinematics is
designed for the clinical situation, where injured subjects
are likely to have muscle weakness the procedure was
continued using a 150 N load.

3.2. Content validity

The recorded TF contact maps were tested for content
validity against three statements drawn from the current
literature on knee kinematics: that the right and left
knees of healthy subjects would be symmetrical (Smith
et al., 1999); that the medial and lateral compartments
of the knee would be different, reflecting the long-
itudinal rotation of the knee (Elias et al., 1990; Hollister
et al., 1993; K.arrholm et al., 2000; Todo et al., 1999);
and that loading the healthy knee would not produce a
different contact map (Hill et al., 2000a, b). The contact
map data were analysed using repeated measures
ANOVA with factors of right and left knee, loaded
and unloaded knee, and medial and lateral side of the
knee. Results were consistent with the three statements:
the left and right knee were consistent for each
individual (F1,80=0.005; p ¼ 0:943); the medial and
lateral TF contact maps were different (F1,80=253.9;
po0:0001), and the loaded and unloaded knees were not
different in the healthy knee (F1,80=0.007; p ¼ 0:935).
The content validity of the contact maps was supported
for each of the three statements. MRI analysis of knee
kinematics as described by this technique of TF contact
point mapping provides a reliable method of recording
the TF kinematics of the knee.
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3.3. Statistical analysis

The TF contact points recorded for the healthy and
ACL injured knees were compared using repeated
measures ANOVA. Factors included in the analysis
included the angle of knee flexion, the injured or
contralateral knee, the loaded and unloaded condition,
and the medial and lateral compartments of the knee.

Difference between the passive anterior laxity of the
injured and the contralateral knee was analysed using a
paired student’s t-test.

The deviation from the healthy knee contact pathway
exhibited by the injured knee is quantified as the side-to-
side difference in the TF contact points. Articular
cartilage damage recorded at arthroscopy was compared
to the mean of the side-to-side difference recorded at
each knee flexion angle, using one-way ANOVA.
Passive anterior laxity and Cincinnati knee score were
analysed for their correlation with the mean of the
side-to-side difference in the contact points, using a
Pearson’s r.
Fig. 3. Diagram represents the tibiofemoral contact pattern in the

normal knees (solid line) and ACL injured knees (dotted line).
4. Results

The mechanism of injury for the twenty ACL injured
subjects included 18 playing sports, 2 by falling from a
height ofE1 m. There were 9 left knees injured and 11
right knees. At arthroscopy, internal knee joint damage
was present in 9 subjects. Damage included femoral
cartilage fibrillation of the medial femoral condyle in 2
subjects, (2a and 2b changes, and 1b changes) (Noyes
and Stabler, 1989), and patellofemoral cartilage damage
in 2 subjects (1a and 1b). There was no tibial cartilage
damage in any of the subjects. In 3 subjects there was
medial meniscal injury including one small stable tear of
the posterior horn, one tear of the posterior horn
requiring partial meniscectomy and one bucket handle
tear. In 3 subjects there was damage to the lateral
meniscus including one mild crush, one small tear which
was trimmed, and one old partial meniscectomy seen, all
of the posterior horn. There were 11 subjects with ACL
tears with no other associated joint damage.

Anterior laxity at 30 lb, the straight leg raise, and
maximum manual anterior drawer, of the injured knee
were each significantly greater than the healthy knee
(po0:001). Passive anterior laxity using the KT 1000
arthrometer supported the clinical diagnosis of ACL
injury in 19 of the 20 subjects by a side-to-side difference
of Z3 mm at manual maximum anterior drawer. The
side-to-side difference in anterior displacement of the
tibia with a 30 lb anterior drawer was 2.772.7 mm.
The side-to-side difference with the straight leg raise test
was 3.972.6 mm, and for the manual maximum anterior
drawer was 5.573.3 mm.The ACL tear was confirmed
at arthroscopy for all 20 subjects.
4.1. MRI knee kinematics

The TF contact pattern was located posteriorly on the
tibial plateau in the injured knee (F(1, 152)=6.5,
p ¼ 0:012) compared to the healthy knee (Fig. 3). In
the medial compartment of the knee this difference was
most pronounced at 0� and 15�. At 0� the medial
femoral condyle was located 32.275.1 mm from the
posterior tibial cortex landmark in the ACL injured
knee, and 33.273.9 mm in the healthy knee. Further
into knee flexion the medial compartment of the injured
knee followed a similar pattern to the healthy knee. In
the lateral compartment of the knee, the femur rested
more posteriorly on the tibial plateau throughout the
range of knee flexion. The lateral femoral condyle was
located at 24.774.5 mm from the posterior tibial cortex
landmark in the injured knee and 25.973.1 mm in the
healthy knee (Fig. 4). The posterior femoral contact
position appeared more pronounced in the lateral than
the medial compartment of the knee, but this was not
significant (Repeated measures ANOVA for interaction
between angle of knee flexion, lateral and medial
compartment and healthy or injured knee F(1,152)=1.3,
p ¼ 0:25:) To achieve 80% power a sample size of 144
subjects would have been required, due to the wide
variation between individuals. The femoral contact
point was on average 1.3 mm more posterior than the
healthy knee in the lateral compartment of the loaded
knee, and 0.5 mm more posterior in the medial
compartment of the loaded knee (Fig. 4). However,
individuals exhibited as much as 9.7 mm of posterior
femoral contact displacement in the medial compart-
ment and 9.5 mm in the lateral compartment.

In the healthy knee the medial and lateral tibiofemor-
al contact patterns are distinctly different, reflecting the
longitudinal rotation of the knee that occurs through
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  Medial tibiofemoral contact pattern:
 ACL-injured vs healthy contralateral  knees
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   Lateral tibiofemoral contact pattern:
 ACL-injured vs healthy contralateral knees
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Fig. 4. Tibiofemoral contact patterns of the medial (A) and lateral (B)

compartments of the knee, in the healthy and injured knees,

demonstrating the slightly posterior position of the tibiofemoral

contact point on the tibia plateau in the ACL injured knee, but

preservation of the profile of the curve.
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flexion. The healthy mediolateral asymmetry of the
contact point pattern was preserved in the injured knees
(Repeated measures ANOVA used to test medial and
lateral patterns (between subjects): F(1,152)=310,
po0:001). The ACL injured knee rotated about the
longitudinal axis throughout flexion from 0 to 90�.

Loading the injured and healthy knees did not alter
the TF contact pattern (F(1,152)=0.557, p ¼ 0:46). There
was no difference in the contact pattern between
subjects when pressing down through the weighted
footplate, and when unloaded.

The difference in TF contact pattern due to injury was
moderately correlated with the Cincinnati knee score.
The scores for the ACL injured subjects ranged from 35
to 76/100, with a mean of 57710.8, which is defined as
fair/good. The difference in TF contact pattern due to
injury for each subject was measured as the mean of the
side-to-side difference in the contact points, at each knee
flexion angle. The Cincinnati knee scores were corre-
lated with the mean of the side-to-side difference in the
contact points in the unloaded knee (Pearson’s r=0.40,
p ¼ 0:07), but not in the loaded knees (r=0.25,
p ¼ 0:28). The reported knee symptoms taken in
isolation (scored out of 20) also correlated with the
mean of the side-to-side difference (r=0.37, p ¼ 0:10).
Thus, there is a weak association between poorer knee
scores and greater difference in contact pattern in the
injured knee.

Damage to the articular cartilage and menisci were
not correlated with a greater difference in the TF
contact pattern of the knee. The subjects with meniscal
damage did not have a significantly different mean side-
to-side difference in contact points (F(1,19)=2.48,
p ¼ 0:133), nor did the subjects with chondral damage
(F(1,19)=3.69, p ¼ 0:71).

Increased passive anterior laxity of the knee did not
correlate with a greater difference in contact pattern.
Side-to-side difference at manual maximum anterior
drawer, quantified by the KT 1000 measure did not
correlate with side-to-side difference in the contact
pattern (r=0.12, p ¼ 0:60). Neither passive instability
nor damage to the knee joint was related to the active
instability demonstrated on MRI.
5. Discussion

The TF contact pattern of the ACL injured knees was
significantly different to the healthy contralateral knees.
The pilot study by Smith et al. (1999), and the study of
12 healthy control subjects reported here, have shown
that while there is wide variation between subjects,
within subjects there is high right to left consistency.
Therefore, the contralateral knee can reliably be used as
a control for TF contact pattern analysis. The difference
in contact pattern between the ACL injured knee and
the healthy contralateral knee can be confidently
attributed to the pathology.

The posterior tibiofemoral contact pattern due to
ACL injury has been reported by other authors. Dennis
et al. (1996) used videotaped fluoroscopic images to
examine the TF contact patterns in the ACL deficient
knee in standing deep knee flexion. They describe the
ACL injured subjects moving from posterior tibiofe-
moral contact positions in knee extension, to variations
in normal and posterior contact positions through
flexion. The average difference in contact position
between the injured and intact knee was only 1.6 mm,
but the difference ranged from 0.5 to 13.7 mm in some
knees. This study used two-dimensional imaging at low
resolution, so was unable to draw out information
regarding rotation.

The shift in the axis of longitudinal rotation of the
knee due to ACL deficiency could not be confirmed in
the current study, due to the wide variations in the
kinematics of individuals. It did appear, however, that
the effect of the ACL injury was to move the
tibiofemoral contact pattern more posteriorly in the
lateral compartment than the medial compartment of
the knee. This would indicate that the axis of long-
itudinal rotation of the knee had shifted medially. It was



ARTICLE IN PRESS
J.M. Scarvell et al. / Journal of Biomechanics ] (]]]]) ]]]–]]]6
observed by Brandsson (Brandsson et al., 2001) using
radiostereometry that while there was no difference in
anteroposterior displacement of the medial compart-
ment, there was a difference in the lateral compartment
of the injured knees. The reference points for the
tantalum beads used in Brandsson’s analysis were
established for the injured knee in neutral supine
extension, rather than using the direct bony landmarks
used in our MRI study, so parallel analysis is difficult.
However, the medial/lateral characteristics of the
injured knee motion are similar. The role of the ACL
in the control of longitudinal rotation of the knee is
recognised (Anderson and Dyhre-Poulsen, 1997; Benve-
nuti et al., 1999; Buckland-Wright et al., 1994; Grood
et al., 1988; Woo et al., 2002), so it is reasonable to
suspect that having lost the primary restraint of the
ACL, the secondary restraint of the MCL may have an
increased role in control knee rotation, from the medial
side of the knee.

The mean side-to-side difference in tibiofemoral
contact was 1.370.3 mm, which is similar to that
reported by Brandsson, using radiostereometry. The
anterior tibial position recorded using plain radiography
in patients performing a standing lunge was mean
12 mm (Friden et al., 1993). Vergis using electrogonio-
metry to analyse anterior tibial shift in a step up activity
describes a 5 mm anterior tibial shift (Vergis and
Gillquist, 1998; Vergis et al., 1997). Fleming compared
KT 1000, plain radiography and radiostereometry to
measure passive anterior displacement of the knee
(Fleming et al., 2002). Plain radiography and KT 1000
arthrometry being two dimensional are not able to
account for longitudinal rotation of the knee, and
describe anterior tibial shift as a two dimensional feature
of the ACL deficient knee. Radiostereometry and MRI
techniques are able to isolate rotation from anterior
translation and hence record side-to-side difference in
displacement of similar magnitude.

In our study, loading the knees did not change the
longitudinal rotation. Hill et al. (2000a), using open field
MRI, saw suppression of rotation in subjects perform-
ing a standing squat. However, there are several
biomechanical differences between a supine leg press
and a standing weight-bearing activity (Dennis et al.,
1996; Friden et al., 1993; Hill et al., 2000a). Subjects in
supine experience different proprioceptive feedback to
standing subjects. Joint compression in standing is
greater, and joint contact occurs over a wider area.
Our subjects were pressing down against a 150 N weight,
substantially less than the body weight supported in a
standing lunge, although we found no difference when
the weight was increased to 250 N.This protocol uses the
available closed tunnel MRI unit, and weights sustain-
able by the injured population. Thus, comparison of
findings between a supine leg press and standing lunge
may be inappropriate.
In the healthy knees the pattern of tibiofemoral
contact is different from the femoral condylar motion
reported by Todo et al. (1999) and Hill et al. (2000b).
They reported that while the lateral femoral condyle
continued to roll posteriorly throughout flexion, the
medial femoral condyle remained central above the
medial tibial plateau from 15� to 90�. However, they
found that the femoral condylar motion could be altered
by imposing either internal or external rotation. In our
study of healthy knees the medial femoral condyle
continued to roll back on the tibial plateau in flexion,
though to a lesser extent than the lateral condyle. The
knee is capable of a wide variety of kinematic
behaviours depending on demands, loads, and restraints
of a particular movement. Blankevoort et al. (1988)
described this as the envelope of passive motion of the
knee, within which a variety of active movement
patterns were available. The supine leg press used in
this study is different in its loads and constraints to the
activities performed by the subjects in the studies of
Todo et al. (1999) and Hill et al. (2000b). The resultant
TF contact pattern is therefore also different.

Closed chain resisted exercises have been advocated
for rehabilitation after ACL injury and reconstruction
(McGinty, 2000; Toutoungi, 2000), in order to minimise
stress on the ACL by decreasing tibiofemoral shear
forces and increasing muscular co-contraction (Beynnon
et al., 1995; MacWilliams et al., 1999). The supine leg
press exercise is therefore one that has been commonly
prescribed, as the foot is fixed, and the axial force in line
with the tibia. This study showed that the tibiofemoral
contact pattern of the ACL injured knee was different
from the healthy contralateral knee performing a supine
leg press. In effect, that to press down through the feet
did not normalise the TF contact pattern. Testing of the
ACL strain in vivo of subjects performing a leg press is
necessary to clarify the relative ‘‘safety’’ of this exercise.

It has been suggested that increasing knee symptoms
correlate with instability during activity, regardless of
passive anterior laxity (Friden et al., 1993). Friden
suggested subjects with less displacement had learnt to
actively control the instability of the knee, and therefore
experienced fewer symptoms. Our study has also shown
a relationship between symptoms and active instability,
reflected by the TF contact pattern, but no relationship
between passive anterior laxity and difference in the TF
contact pattern.

The TF contact appears to occur over a more
posterior region of the tibial plateau in the ACL injured
knee, which may be implicated in the degeneration of
the articular cartilage of the knee. While it is difficult to
isolate damage to the knee joint caused by repeat
episodes of trauma over time, from damage caused by
aberrant kinematic behaviour, there is an increasing
body of evidence that aberrant knee kinematics do
contribute to articular cartilage damage. In a study of
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541 ACL injured subjects, Myers et al. (2001) found that
articular cartilage damage seen at arthroscopy was
correlated with time since injury. Harman also corre-
lated absence of a functional ACL with articular
cartilage wear over a more posterior area of the tibial
plateau (Harman et al., 1998). Damage to the menisci is
also known to contribute to the development of
osteoarthritis (Fairbank, 1948). The menisci act as a
secondary restraint to anterior tibial translation in the
absence of the ACL and suffer from chronic loading and
repeat trauma in the ACL deficient knee (Allen et al.,
2001; Bellabarba et al., 1997; Finsterbush et al., 1990;
Irvine and Glasgow, 1992; Keene et al., 1993). The
damaged menisci are less able to protect the articular
cartilage of the knee by improving load distribution. In
this manner, the aberrant kinematic behaviour of the
knee is responsible for the degeneration of the menisci,
and the consequential osteoarthritis. Our study shows
that there is a change in the TF contact pattern resulting
from ACL injury, which is likely to be a contributor to
accelerated wear over the long term (Bellabarba et al.,
1997; Clatworthy and Amendola, 1999; Gillquist and
Messner, 1999).

The characteristics of abnormal motion in the ACL
injured knee are firstly, that the tibiofemoral contact in
the ACL injured knee occurs over a posterior area on
the tibial plateau. Secondly, that the longitudinal
rotation evident in the healthy knee does occur in the
ACL injured knee, however, the axis of rotation may
have altered. The difference in the tibiofemoral contact
pattern in the ACL injured knee during a closed-chain
leg press was associated with more severe knee
symptoms, irrespective of the passive anterior laxity of
the knee.
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