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Abstract 

This study uses the Johansen test for cointegration to select trading pairs for use within a 

pairs trading framework.  A long-run equilibrium price relationship is then estimated for 

the identified trading pairs, and the resulting mean-reverting residual spread is modeled 

as a Vector-Error-Correction model (VECM).  The study uses 5 years of daily stock 

prices starting from the beginning of July, 2002.  The search for trading pairs is restricted 

to 17 financial stocks listed on the ASX200.  The results show that two cointegrated 

stocks can be combined in a certain linear combination so that the dynamics of the 

resulting portfolio are governed by a stationary process.  Although a trading rule is not 

employed to access the profitability of this trading strategy, plots of the residual series 

show a high rate of zero crossings and large deviations around the mean.  This would 

suggest that this strategy would likely be profitable.  It can also be concluded that in the 

presence of cointegration, at least one of the speed of adjustment coefficients must be 

significantly different from zero.   
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1.  Introduction 
 

Pairs trading is a statistical arbitrage hedge fund strategy designed to exploit short-term 

deviations from a long-run equilibrium pricing relationship between two stocks.  

Traditional methods of pairs trading have sought to identify trading pairs based on 

correlation and other non-parametric decision rules.  However, as we will show, these 

approaches are inferior to the technique applied in this study because they do not 

guarantee the single most important statistical property which is fundamental to a 

profitable pairs trading strategy, namely, mean reversion.  This study selects trading pairs 

based on the presence of a cointegrating relationship between the two stock price series.  

The presence of a cointegrating relationship then enables us to combine the two stocks in 

a certain linear combination so that the combined portfolio is a stationary process.  The 

portfolio is formed by longing the relative under-valued stock and shorting the relative 

over-valued stock.  If two cointegrated stocks share a long-run equilibrium relationship, 

then deviations from this equilibrium are only short-term and are expected to return to 

zero in future periods.  To profit from this relative mis-pricing, a long position in the 

portfolio is opened when its value falls sufficiently below its long-run equilibrium and is 

closed out once the value of the portfolio reverts to its expected value.  Similarly, profits 

may be earnt when the portfolio is trading sufficiently above its equilibrium value by 

shorting the portfolio until it reverts to its expected value.   

Typical questions which must be answered when developing a pairs trading strategy 

include (1) how to identify trading pairs, (2) when is the combined portfolio sufficiently 

away from its equilibrium value to open a trading position, and (3) when do we close the 

position.  From a risk management perspective, it is also important to specify maximum 

allowable time to maintain open trading positions, maximum allowable Value at Risk 

(VaR), and further possible risk reducing measures such as stop-loss triggers.   

The purpose of this study is to develop a method for implementing a pairs trading 

strategy - it does not attempt to access its profitability.  Firstly, we illustrate a method for 

the identification of trading pairs using the Johansen test for cointegration.  We can then 

estimate the cointegrating relationship between our pairs by regressing one on the other.  

This study uses Granger Causality to specify the order of regression.  The residual series 
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from the cointegrating equation describes the dynamics of the mean-reverting portfolio 

which we then choose to model as a Vector-Error-Correction model (VECM).  This is a 

natural choice since we know through the “Granger Representation Theorem” (Engle and 

Granger, 1987) that in the presence of a cointegrating relationship this is an equivalent 

representation.  We choose to model the residual series to extract as much information as 

we can about the co-movement between our trading pairs, which would be valuable in 

developing a trading rule.  For example, estimating the “speed of adjustment” coefficients 

within the VECM provide us with some idea of how quickly the system reverts to 

equilibrium following a short-term deviation as well as which stock is responsible for the 

“error-correction” function.  Lastly, a natural extension of estimating our VECM is to 

plot impulse response functions and conduct variance decomposition analysis.  These 

variance analysis tools provide us with knowledge of how each stock price series 

responds to shocks to itself and the other stock sequence, as well as the degree to which 

each stock series evolves independently of the other.    

This study proceeds in the following 5 sections.  In section 2 we discuss some key issues 

surrounding pairs trading and its implementation.  Section 3 consists of a brief outline of 

the existing pairs trading approaches and a summary of the limited academic literature.  

Section 4 and 5 describe the data used in this study and the method the study employs.  

We present our findings in section 6 and conclude in section 7.     

2.  Discussion of key issues 

2.1 Long/Short Equity Investing: Profit from both Winner and Losers 

The traditional focus of equity investing has been on finding stocks to buy long that offer 

opportunity for appreciation.  Institutional investors have given little if any thought to 

incorporating short-selling into their equity strategies to capitalize on over-valued stocks.  

More recently however, a growing number of investors have begun holding both long and 

short positions in their equity portfolios. 

Short-selling is the practice of selling stock at current prices, but delaying the delivery of 

the stock to its new owner.  The idea is that the seller can then purchase the stock at a 

later date for delivery at a cheaper price than they collected for the stock.  The difference 
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between the sale price and the purchase price is the profit made by the short-seller.  

Obviously an investor is only willing to open a short position in a stock when they expect 

the price of that stock to fall.   

Jacobs and Levy (1993) categorize long/short equity strategies as market neutral, 

equitized, and hedge strategies.  The market neutral strategy holds both long and short 

positions with equal market risk exposures at all times.  This is done by equating the 

weighted betas of both the long position and the short position within the portfolio.  This 

approach eliminates net equity market exposure so that the returns realised should not be 

correlated with those of the market portfolio.  This is equivalent to a zero-beta portfolio.  

Returns on these portfolios are generated by the isolation of alpha, which is a proxy for 

excess return to active management, adjusted for risk (Jensen, 1969).  The funds received 

from the short sale are traditionally used to fund the long side, or invested at the cash 

rate.  

The equitized strategy, in addition to holding stocks long and short in equal dollar 

balance, adds a permanent stock index futures overlay in an amount equal to the invested 

capital.  Thus, the equitized portfolio has a full equity market exposure at all times.  

Profits are made from the long/short spread, which is contingent upon the investors’ stock 

selection abilities, as well as profits made from the portfolios exposure to systematic risk. 

The hedge strategy also holds stocks long and short in equal dollar balance but also has a 

variable equity market exposure based on a market outlook.  The variable market 

exposure is achieved using stock index futures.  Once again, profits are made from the 

long/short spread as well as the exposure to the changing stock index futures position.  

This approach is similar to typical hedge fund management but is more structured.  

Hedge funds sell stocks short to partially hedge their long exposures and to benefit from 

depreciating stocks.  This differs from investing the entire capital both long and short to 

benefit from the full long/short spread and then obtaining the desired market exposure 

through the use of stock index futures.   

Do, Faff and Hamza (2006) structure the different approaches to long/short equity 

investing slightly differently to Jacobs and Levy (1993) and, in doing so, attempt to 

clarify the position of a pairs trading strategy amongst other seemingly related hedge 

fund strategies.  Do et al (2006) note that due to the strategies’ fundamentals, which 
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involve the simultaneous purchase of under-valued stocks and the shorting of over-valued 

stocks, pairs trading is essentially a form of long/short equity investing.  After consulting 

academic sources and informal, internet-based sources, they declare that long/short equity 

strategies can be classified as either market neutral strategies or pairs trading strategies.  

This interpretation can be reconciled to that proposed by Jacobs and Levy (1993) since all 

three of their long/short strategies include elements of market neutrality, even if the 

resulting portfolio may exhibit some market risk.   

Ultimately, the difference between the strategies originates from their definition of 

“mispricing”.  The long/short strategies described by Jacobs and Levy (1993) refer to an 

absolute mispricing.  Those strategies require the identification of stocks that are either 

over-valued or under-valued relative to some risk-return equilibrium relationship such as 

the Arbitrage Pricing Theory (APT) model or the Capital Asset Pricing Model (CAPM).  

A pairs trading strategy also requires the identification of mis-priced securities.  

However, it seeks to identify relative mispricing, where the prices of two stocks are away 

from some known long-run equilibrium relationship.   

Both classes of strategies, as defined by Do et al (2006) require the simultaneous opening 

of long and short positions in different stocks and thus, fall under the “umbrella of 

long/short equity investments” (Do et al, 2006 p.1).  Debate continues amongst 

academics and practitioners alike regarding the role, if any, of market neutrality for a 

successful pairs trading strategy.  We will discuss this debate in section 2.3.   

 

2.2 Why Long/Short Investing Strategies? 

Jacobs and Levy (1993) and Jacobs, Levy and Starer (1999) suggest that investors who 

are able to overcome short-selling restrictions and have the flexibility to invest in both 

long and short positions can benefit from both winning and losing stocks.  Traditional 

fund management does not allow investment managers to utilise short positions in their 

portfolio construction and so the investment decision-making process focuses on 

identifying undervalued stocks which can be expected to generate positive alpha.  In 

effect, managers can only profit from those over-performing stocks, and any firm-specific 

information which suggests future under-performance is essentially worthless – investors 

can only benefit from half the market.   
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Jacobs and Levy (1993) describe the major benefit of long/short strategies with the 

following analogy.  Suppose you expect the Yankees to win their game and the Mets to 

lose theirs.  If you wager on baseball you would certainly not just bet on the Yankees to 

win.  You would also “short” the Mets.  The same logic can be applied to equity 

investing.  Why only bet on winners?  Why avail yourself to only half the opportunity?  

Profits can be earnt from both winning and losing stocks simultaneously, earning the full 

performance spread, or what Alexander and Dimitriu (2002) refer to as “double alpha”.   

The fact that long/short equity strategies ensure a more efficient use of information than 

long-only strategies is the result of not restricting the weights of the undervalued assets to 

zero1.  By allowing portfolio returns to be borne by both the short set under-performing 

the market and the long set over-performing the market, the strategy generates double 

alpha.   

Another benefit of long/short investing is that, potentially, short positions provide greater 

opportunities than long positions.  The search for undervalued stocks takes place in a 

crowded field because most traditional investors look only for undervalued stocks.  

Because of various short-selling impediments, relatively few investors search for 

overvalued stocks.   

Furthermore, security analysts issue far more buy recommendations than sell 

recommendations.  Buy recommendations have much more commission-generating 

power than sells, because all customers are potential buyers, but only those customers 

having current holdings are potential sellers, and short-sellers are few in number.   

Analysts may also be reluctant to express negative opinions.  They need open lines of 

communication with company management, and in some cases management has cut them 

off and even threatened libel suits over negative opinions.  Analysts have also been 

silenced by their own employers to protect their corporate finance business, especially 

their underwriting relationships (Jacobs and Levy, 1993 p.3).   

Shorting opportunities may also arise from management fraud, “window-dressing” 

negative information, for which no parallel opportunity exists on the long side.   

                                                 
1 In a long-only portfolio, the investor is only able to under-weight over-valued or poor-quality stocks.  
Effectively, the investor cannot profit from this mis-pricing, they can only reduce losses.  A long/short 
strategy allows the investor to explicitly profit from this type of mis-pricing.   



Page 12 of 130 
 

2.3 A role for market neutrality in a pairs trading strategy? 

Do et al (2006) categorize the set of long/short equity strategies as either belonging to a 

“market neutral” or a “pairs trading” sub-category.  Consequently, does this apparent 

mutual-exclusivity render the constraint of market neutrality irrelevant to a successful 

pairs trading strategy? 

To answer this question what is required is classification of what is meant by “market 

neutrality”.  According to Fund and Hsieh (1999), a strategy is said to be market neutral 

if it generates returns which are independent of the relevant market returns.  Market 

neutral funds actively seek to avoid major risk factors, and instead take bets on relative 

price movements.  A market neutral portfolio exhibits zero systematic risk and is 

practically interpreted to possess a market beta equal to zero. 

Lin, McCrae and Gulati (2006) and Nath (2003) implicitly describe pairs trading as an 

implementation of market neutral investing.  Both sets of authors repeatedly describe 

pairs trading as “riskless”, suggesting that the riskless nature of pairs trading stems from 

the simultaneous long/short opening market positions and that the opposing positions 

ideally immunize trading outcomes against systematic market-wide movements in prices 

that may work against uncovered positions. 

To some extent both authors are correct, however as Alexander and Dimitriu (2002) 

explain the reasoning proposed is not substantial enough to guarantee a market neutral 

portfolio.  Although long/short equity strategies are often seen as being market neutral by 

construction, unless they are specifically designed to have zero-beta, long/short strategies 

are not necessarily market neutral.  To illustrate, in a recent paper Brooks and Kat (2001) 

find evidence of significant correlation of classic long/short equity hedge funds indexes 

with equity market indexes such as S&P500, DJIA, Russell 2000 and NASDAQ, 

correlation which may still be under-estimated due to the auto-correlation of returns.   

Alexander and Dimitriu (2002) provide an alternative explanation which suggests that 

market neutrality in long/short equity strategies is derived from proven interdependencies 

within the chosen stocks.  Such interdependencies, which can take the form of 

convergence (i.e. pairs trading), ensure that over a given time horizon the equities will 

reach an assumed equilibrium pricing relationship.  In this case, the portfolio does not 

require a beta of zero to immunize it against systematic risk.  This is handled by the 
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assumed equilibrium pricing relationship, for example, a cointegrating relationship.  To 

summarize, Lin et al (2006) and Nath (2003) were correct in describing pairs trading as a 

market neutral investment strategy, however, this market neutrality is derived from 

proven interdependencies within the chosen stocks combined with a portfolio beta equal 

to zero.  Simply holding a combination of long and short positions is not sufficient to 

guarantee market neutrality.   

What are the implications for portfolio risk if the proven interdependent relationship 

between the paired stocks does not hold into the future?  Any investment strategy is faced 

with certain risks.  The fundamental risk facing pair trading strategies is that the long-run 

equilibrium, mean-reverting relationship on which profitability is contingent upon does 

not hold into the future.  If investors were faced with this occurrence, possibly due to a 

certain structural change in one of the stocks, then the portfolio would face both 

systematic and firm-specific risks.  A key aim of any risk-adverse investor is to minimize 

risk for a given return, and it can be reasonably expected that through holding sufficient 

trading pairs the firm-specific risk component can be diversified away.  The portfolio will 

however, remain subject to systematic risk factors, since its beta is unlikely to be zero by 

default (Alexander and Dimitriu, 2002).  We propose that a pairs trading portfolio with 

zero beta can be used as a risk-management device to minimize the adverse effects of 

systematic risk in the case of structural change.         

 

2.4 Cointegration and correlation in long/short strategies 

Following the seminal work of Markowitz (1959), Sharpe (1964), Lintner (1965), and 

Black (1972), the fundamental statistical tool for traditional portfolio optimization is 

correlation analysis of asset returns.  Optimization models for portfolio construction 

focus on minimizing the variance of the combined portfolio, for a given return, with 

additional constraints concerning certain investment allowances, short-sale restrictions 

and associated transaction costs of rebalancing the portfolio.   

In the last decade the concept of cointegration has been widely applied in financial 

econometrics in connection with time series analysis and macroeconomics.  It has 

evolved as an extremely powerful statistical technique because it allows the application 

of simple estimation methods (such as least squares regression and maximum likelihood) 
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to non-stationary variables.  Still, its relevance to investment analysis has been rather 

limited thus far, mainly due to the fact that the standard in portfolio management and risk 

management is the correlation of asset returns.   

However as Alexander and Dimitriu (2002) note, correlation analysis is only valid for 

stationary variables.  This requires prior de-trending of prices and other levels of financial 

variables, which are usually found to be integrated of order one or higher.  Taking the 

first difference in log prices is the standard procedure for ensuring stationarity and leads 

all further inference to be based on returns.  However, this procedure has the 

disadvantage of loosing valuable information.  In particular, de-trending the variables 

before analysis removes any possibility to detect common trends in prices.  Furthermore, 

when the variables in a system are integrated of different orders, and therefore require 

different orders of differences to become stationary, the interpretation of the results 

becomes difficult.  By contrast, the aim of the cointegration analysis is to detect any 

stochastic trend in the price data and use these common trends for a dynamic analysis of 

correlation in returns (Alexander, 2001). 

The fundamental remark justifying the application of the cointegration concept to stock 

price analysis is that a system of non-stationary stock prices in level form can share 

common stochastic trends (Stock and Watson, 1991).  According to Beveridge and 

Nelson (1981), a variable has a stochastic trend if it has a stationary invertible 

ARMA(p,q) representation plus a deterministic component.  Since ARIMA(p,1,q) models 

seem to characterize many financial variables, it follows that the growth in these 

variables can be described by stochastic trends.   

The main advantage of cointegration analysis, as compared to the classical but rather 

limited concept of correlation, is that it enables the use of the entire information set 

comprised in the levels of financial variables.  Furthermore, a cointegrating relationship 

is able to explain the long-run behaviour of cointegrated series, whereas correlation, as a 

measure of co-dependency, usually lacks stability, being only a short-run measure.  

While the amount of history required to support the cointegrating relationship may be 

large, the attempt to use the same sample to estimate correlation coefficients may face 

many obstacles such as outliers in the data sample and volatility clustering (Alexander 

and Dimitriu, 2005).  The enhanced stability of a cointegrating relationship generates a 
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number of significant advantages for a trading strategy.  These include the reduction of 

the amount of rebalancing of trades in a hedging strategy and, consequently, the 

associated transaction costs.   

When applied to stock prices and stock market indexes, usually found to be integrated of 

order one, cointegration requires the existence of at least one stationary linear 

combination between them.  A stationary linear combination of stock prices/market 

indexes can be interpreted as mean reversion in price spreads.  The finding that the spread 

in a system of prices is mean reverting does not provide any information for forecasting 

the individual prices in the system, or the position of the system at some point in the 

future, but it does provide the valuable information that, irrespective to its position, the 

prices in the system will evolve together over the long term.   

If two stocks price series are cointegrated, then a combination of these may be formed 

such that their spread is stationary, or mean-reverting.  Pairs trading seeks to identify 

stocks whereby some form of relative pricing measure can be approximated by a long-run 

equilibrium relationship.  It is important to note that the identification of cointegrated 

pairs is not a fundamental requirement for a successful pairs trading strategy, indeed 

several approaches outlined in the next section make no mention of cointegration.  

However, pairs trading approaches which are based on cointegration can guarantee mean 

reversion, which is the single most important feature of a successful pairs trading 

strategy.  No other approach can guarantee this property.   

In section 3 we will provide a brief review of the different approaches to pairs trading 

proposed in the literature, both from the non-parametric and cointegrating frameworks.   

 

3.  Literature Review 
 

In this section we introduce four studies which collectively describe the main approaches 

used to implement pairs trading, which we label: the distance method, the stochastic 

spread method, the more extensive stochastic residual spread method and the 

cointegration method.  The non-parametric distance method is adopted by Gatev, 

Goetzmann and Rouwenhorst (1999) and Nath (2003) for empirical testing.  The 



Page 16 of 130 
 

stochastic spread and the stochastic residual spread approaches are proposed more 

recently by Elliot, Van Der Hoek and Malcolm (2005) and Do, Faff and Hamza (2006), 

respectively.  Finally, the cointegration approach is outlined in Vidyamurthy (2004).  

These latter approaches represent an attempt to parameterize pairs trading by explicitly 

modeling the mean-reverting behaviour of the spread.   

 

3.1 The distance approach 

Under the distance approach, the co-movement in a pair is measured by what is referred 

to as the distance, or the sum of squared differences between the two normalized price 

series.  Gatev et al (1999) construct a cumulative total returns index for each stock over 

the formation period and then choose a matching partner for each stock by finding the 

security that minimizes the sum of squared deviations between the two normalized price 

series.  Stock pairs are formed by exhaustive matching in normalized daily “price” space, 

where price includes reinvested dividends.  In addition to “unrestricted” pairs, the study 

also provides results by sector, where they restrict stocks to belong to the same broad 

industry categories defined by S&P.  This acts as a test for robustness of any net profits 

identified using the unrestricted sample of pair trades.   

Gatev et al (1999) base their trading rules for opening and closing positions on a standard 

deviation metric.  An opening long/short trade occurs when prices diverge by more than 

two historical deviations, as estimated during the pair formation period.  Opened 

positions are closed-out at the next crossing of the prices.   

Nath (2003) also uses a measure of distance to identify potential pair trades, although his 

approach does not identify mutually exclusive pairs.  Nath (2003) keeps a record of 

distances for each pair in the universe of securities, in an empirical distribution format so 

that each time an observed distance crosses over the 15 percentile, a trade is opened for 

that pair.  Contrary to Gatev et al (1999) it is possible under Nath’s approach that one 

particular security be traded against multiple securities simultaneously.  A further 

discrepancy between the two approaches is that Gatev et al (1999), simplistically make 

no attempt to incorporate any risk management measures into their trading approach.  

Nath (2003) incorporates a stop-loss trigger to close the position whenever the distance 

moves against him to hit the 5 percentile.  Additionally, a maximum trading period is 
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incorporated, in which all open positions are closed if distances have not reverted to their 

equilibrium state inside a given time-frame, as well as a rule which states that if any 

trades are closed early prior to mean reversion, then new trades on that particular pair are 

prohibited until such time as the distance or price series has reverted.   

The distance approach purely exploits a statistical relationship between a pair of 

securities, at a price level.  As Do et al (2006) notes, it is model-free and consequently, it 

has the advantage of not being exposed to model mis-specification and mis-estimation.  

However, this non-parametric approach lacks forecasting ability regarding the 

convergence time or expected holding period.  What is a more fundamental issue is its 

underlying assumption that its price level distance is static through time, or equivalently, 

that the returns of the two stocks are in parity.  Although such an assumption may be 

valid in short periods of time, it is only so for a certain group of pairs whose risk-return 

profiles are close to identical.  In fact it is a common practice in existing pairs trading 

strategies that mispricing is measured in terms of price level.   

 

3.2 The stochastic spread approach 

Elliot et al (2005) outline an approach to pairs trading which explicitly models the mean 

reverting behaviour of the spread in a continuous time setting.  The spread is defined as 

the difference between the two stock prices.  The spread is driven by a latent state 

variable x, which is assumed to follow a Vasicek process: 

 

dxt = k(θ-xt)dt + σdBt  (4.1) 

 

where dBt is a standard Brownian motion in some defined probability space.  The state 

variable is known to revert to its mean θ at the rate k.  By making the spread equal to the 

state variable plus a Gaussian noise, or: 

 

yt = xt + Hωt  (4.2) 

 

the trader asserts that the observed spread is driven mainly by a mean reverting process, 

plus some measurement error where ωt~N(0,1). 
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Elliot et al (2005) suggest that this model offers three major advantages from the 

empirical perspective.  Firstly, it captures mean reversion which underpins pairs trading.  

However, according to Do et al (2006) the spread should be defined as the difference in 

logarithms of the prices:  

 

ωt = log(pt
A) - log(pt

B)  (4.3) 

 

Generally, the long term mean of the level difference in two stocks should not be 

constant, but widens as they increase and narrows as they decrease.  The exception is 

when the stocks trade at similar price points.  By defining the spread as log differences, 

this is no longer a problem.  We have issues with both of these remarks.  If the spread 

series does not exhibit mean reversion then simply taking the logarithms should not result 

in a mean reverting series.  This transformation simply forces the spread series to appear 

to converge, whereby large deviations appear less pronounced.  In effect, it gives the 

spread series the appearance of a mean reverting property without providing any solid 

justification for its occurrence.  Generally speaking, the spread of an arbitrary pair of 

stocks is not expected to exhibit a long-run relationship (equivalently known as mean 

reversion) unless those stocks are cointegrated.   

The second advantage offered by Elliot et al (2005) is that it is a continuous time model, 

and, as such, it is a convenient vehicle for forecasting purposes.  Importantly, the trader 

can compute the expected time that the spread converges back to its long term mean, so 

that questions critical to pairs trading such as the expected holding period and expected 

return can be answered explicitly.  In fact, there are explicit first passage time results 

available for the Ornstein-Uhlenbeck dynamics for which the Vasicek model is a special 

case, and one can easily compute the expectation E[ґ|xt] where ґ denotes the first time the 

state variable crosses its mean θ, given its current position.   

A third advantage is that the model is completely tractable, with its parameters easily 

estimated by the Kalman filter in a state space setting.  The estimator is a maximum 

likelihood estimator and optimal in the sense of minimum mean square error (MMSE).  

To facilitate the econometric estimation in a state space setting, one can represent 
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equation (4.1) in a discrete time transition equation, motivated by the fact that the 

solution to (4.1) is Markovian: 

 

xk = E[xk|xk-1] + εk 

 

k=1,2…, and ε is a random process with zero mean and variance equal to υk=VAR[xk|xk-

1].  Both conditional expectation and variance can be computed explicitly, and the above 

can be written as: 

 

xk = θ(1-e-ĸΔ) + e-ĸΔxk-1 + εk 

 

where Δ denotes the time interval (in years) between two observations, and the variance 

of the random process ε happens to be a constant υ=σ2/2ĸ(1-e-2ĸΔ).  It also turns out that 

the conditional distribution of xk is Gaussian.  As the discrete time measurement equation 

becomes: 

 

yk=xk + ωk 

 

we now have a state space system that is linear and Gaussian in both transition and 

measurement equations, such that the Kalman filter recursive procedure provides optimal 

estimates of the parameters Ψ={ θ, ĸ, σ, ћ}2. 

Despite the several advantages, this approach does have a fundamental limitation in that 

it restricts the long-run relationship between the two stocks to one of return parity (Do et 

al, 2006).  That is, in the long-run, the stock pairs chosen must provide the same return 

such that any departure from it will be expected to be corrected in the future.3  This 

severely limits this models generality as in practice it is rare to find two stocks with 

identical return series.  While the risk-return models such as Arbitrage Pricing Theory 

(APT) and Capital Asset Pricing Model (CAPM) could suggest that two stocks with 

similar risk factors should exhibit identical expected returns, in reality it is not necessarily 

                                                 
2 For an introduction to the state space model and Kalman filter, see Durbin and Koopman (2001). 
3 Do, Faff and Hamza (2006) p.8 provide a proof of this. 
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the case because each stock is subject to firm-specific risks which differentiate the return 

series of the two firms.  It is also important to note that the Markovian concept of 

diversification does not apply here since a pairs trading portfolio is not sufficiently 

diversified.   

Given this fundamental limitation, in what circumstances can this approach be 

applicable?  One possibility is the case where companies adopt a dual-listed company 

(DLC) structure; essentially a merger between two companies domiciled in two different 

countries with separate shareholder registries and identities.  Globally, there are only a 

small number of dual listed companies, with notable examples including Unilever 

NV/PLC, Royal Dutch Petroleum/Shell, BHP Billiton Ltd/PLC and Rio Tinto Ltd/PLC.  

In a DLC structure both groups of shareholders are entitled to the same cash flows, 

although shares are traded on two separate exchanges and often attract different 

valuations.  The fact that the shares cannot be exchanged for each other preclude riskless 

arbitrage although there is a clear opportunity for pairs trading.  Another candidate for 

pairs trading assuming returns parity is companies that follow cross listing.  A cross 

listing occurs when an individual company is listed in multiple exchanges, the most 

prominent form being via American Depository Receipts (ADRs).  Companies may also 

cross list within different exchanges within a country, such as the NASDAQ and NYSE 

in America4. 

 

3.3 The stochastic residual spread 

Do, Faff and Hanmza (2006) propose a pairs trading strategy which differentiates itself 

from existing approaches by modeling mispricing at the return level, as opposed to the 

more traditional price level.  The model also incorporates a theoretical foundation for a 

stock pairs pricing relationship in an attempt to remove ad hoc trading rules which are 

prevalent in previous studies.   

This approach begins with the assumption that there exists some equilibrium in the 

relative valuation of the two stocks measured by some spread.  Mispricing is therefore 

construed as the state of disequilibrium which is quantified by a residual spread function 

                                                 
4 See Badi and Tennant (2002) for more information on DLC’s and cross listing. 
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G(Rt
A, Rt

B, Ut) where U denotes some exogenous vector potentially present in 

formulating the equilibrium.  The term “residual spread” emphasizes that the function 

captures any excess over and above some long term spread and may take non-zero values 

depending on the formulation of the spread.  Market forces are assumed to play an 

important role in the process of mean-reversion of the spread in the long-run.  Similar to 

previous studies, trading positions are opened once the disequilibrium is sufficiently large 

and the expected correction time is sufficiently short.   

The proposed model adopts the same modeling and estimation framework as Elliot et al 

(2005).  It utilises a one factor stochastic model to describe the state of mispricing or 

disequilibrium and to let noise contaminate its actual observation being measured by the 

above specification function G.  To recap, let x be the state of mispricing, or residual 

spread, with respect to a given equilibrium relationship whose dynamic is governed by a 

Vasicek process: 

 

dxt = k(θ-xt)dt + σdBt (4.4) 

 

The observed mispricing is: 

 

yt = Gt = xt + ωt  (4.5) 

 

These two equations constitute a state space model of relative mispricing, defined with 

respect to some equilibrium relationship between two assets.  The equilibrium 

relationship, or alternatively, the residual spread function G, is motivated by the 

Arbitrage Pricing Theory (APT) model (Ross, 1976).  The APT model asserts that the 

return on a risky asset, over and above a risk free rate, should be the sum of risk 

premiums multiplied by their exposure.  The specification of the risk factors is flexible, 

and may, for instance, take the form of the Fama-French 3-factor model: 

 

Ri = Rf + βrm + ηi 
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where β = [β1
iβ2

i…βn
i) and rm = [(R1-rf)(R2-rf)…(Rn-rf)]T, with Ri denoting the raw return 

on the ith factor.  The residual η has expected value of zero, reflecting the fact that the 

APT works on a diversified portfolio such that firm-specific risks are unrewarded, 

although its actual value may be non-zero.  A “relative” APT on two stocks A and B can 

then be written as: 

 

RA = RB + Гrm + e 

 

where Г = [(β1
A-β1

B) (β2
A-β2

B)…(βn
A-βn

B)] is a vector of exposure differentials and e is a 

residual noise term.  In addition, it is assumed that the above relationship holds true in all 

time periods, such that: 

 

Rt
A = Rt

B + Гrt
m + et 

 

Embracing the above equilibrium model allows the specification of the residual spread 

function, G: 

Gt = G(pt
A, pt

B, Ut) = Rt
A – Rt

B – Гrt
m  (4.6) 

 

If Г is known (and rt
m is specified), Gt is completely observable and a completely 

tractable model of mean-reverting relative pricing for two stocks A and B exists, which is 

then ready to be used for pairs trading.  Similar to the Elliot et al (2005) formulation, this 

model may be reproduced in a state space form where the transition equation is 

represented by (4.4) and the measurement equation is represented by (4.5) where Gt is 

specified in equation (4.6).  In a discrete time format, we have: 

 

The transition equation: 

xk = θ(1-e-ĸΔ) + e-ĸΔxk-1 + εk  (4.7) 

The measurement equation: 

yk = xk + Hωt  (4.8) 
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This model can be reconciled to that model presented in Elliot et al (2005) when Г is a 

zero vector.  This state space model remains problematic with the observation function 

Gk being still unobserved as Г is unknown.  One may estimate Г first using a standard 

linear regression with the dependent variable being (RA-RB) and the regressors being the 

excess return factors.  The residual spread time series are then constructed using the 

calculated residuals from the regression.  This time series becomes the observation for 

the above state space model.   

An alternative solution is to redefine the observation y=RA-RB such that the 

measurement equation is rewritten as: 

 

yk = xk + Гrk
m + Hωk  (4.9) 

 

This formulation allows the mispricing dynamics and the vector of exposure factor 

differentials Г to be identified simultaneously by estimating the state space model, and 

helps avoid doubling up estimation errors from the two step procedure.  Equation (4.7) 

and (4.9) constitute a model of stochastic residual spread for a pairs trading stratgey.  

This is a linear and Gaussian state space model, which can be estimated by Maximum 

Likelihood Estimation (MLE) where the likelihood function is of a error prediction 

decomposition form.5   

To summarize, Do et al (2006) formulate a continuous time model of mean reversion in 

the relative pricing between two assets where the relative pricing model has been 

adopted from the APT model of single asset pricing.  An econometric framework, 

similar to that proposed in Elliot et al (2005) has also been formulated to aid in the 

estimation process.  It is important to note that this model does not make any 

assumptions regarding the validity of the APT model.  Rather it adapts the factor 

structure of the APT to derive a relative pricing framework without requiring the validity 

of the APT to the fullest sense.  Therefore, whereas a strict application of the APT may 

mean the long-run level of mispricing, or θ, should be close to zero, a non-zero estimate 

does not serve to invalidate the APT or the pairs trading model as a whole.  Rather it 

may imply that there is a firm specific premium commanded by one company relative to 

                                                 
5 See Durbin and Koopman (2001) 
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another, which could reflect such things such as managerial superiority.  This could 

easily be incorporated into the model by simply adding or subtracting a constant term in 

the equilibrium function, Gt. 

 

3.4 The Cointegration Approach 

The cointegration approach outlined in Vidyamurthy (2004) is an attempt to parameterise 

pairs trading, by exploring the possibility of cointegration (Engle and Granger, 1987).  

Cointegration is a statistical relationship where two time series that are both integrated of 

same order d can be linearly combined to produce a single time series which is integrated 

of order d-b, where b>0.  In its application to pairs trading, we refer to the case where 

I(1) stock price series are combined to produce a stationary, or I(0), portfolio time series.  

This is desirable from the forecasting perspective, since regression of non-stationary 

variables results in spurious regression6 (Lim and Martin, 1995).  Cointegration 

incorporates mean reversion into a pairs trading framework which is the single most 

important statistical relationship required for success.  If the value of the portfolio is 

known to fluctuate around its equilibrium value then any deviations from this value can 

be traded against.  Cointegrated time series can equivalently be represented in a Vector 

Error Correction model (“Granger Representation Theory”) in which the dynamics of 

one time series is modeled as a function of its own lags, the lags of its cointegrated pair, 

and an error-correction component which corrects for deviations from the equilibrium 

relationship in the previous period.  The significance of this is that forecasts can be made 

based on historical information.   

To test for cointegration Vidyamurthy (2004) adopts the Engle and Granger’s 2-step 

approach (Engle and Granger, 1987) in which the log price of stock A is first regressed 

against log price of stock B in what we refer to as the cointegrating equation: 

 

log log    (4.10) 

                                                 
6 Spurious regression arises from the static regression of non-stationary processes.  There are two types of 
spurious regression: type 1 that involves falsely rejecting an existent relation, and type 2 that falsely accepts 
a non-existent relation.  This study is concerned with avoiding type 2 spurious regressions which occur 
when variables are differenced to make the time series stationary.  For more information refer to Chiarella 
et al (2008). 
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where γ is the “cointegrating coefficient” and the constant term μ captures some sense of 

“premium” in stock A versus stock B.  The estimated residual series is then tested for 

stationarity using the augmented Dickey-Fuller test (ADF).  Under this procedure, results 

are sensitive to the ordering of the variables.  For example, if instead  is 

regressed against  then a different residual series will be estimated from the 

same sample.  This issue can be resolved using the t-statistics from Engle and Yoo 

(1987). 

Equation (4.10) says that a portfolio comprising long 1 unit of stock A and short γ units 

of stock B has a long-run equilibrium value of μ and any deviations from this value are 

merely temporary fluctuations (εt).  The portfolio will always revert to its long-run 

equilibrium value since εt is known to be an I(0) process.  Vidyamurthy (2004) develops 

trading strategies based on the assumed dynamics of the portfolio.  The basic trading 

idea is to open a long position in the portfolio when it is sufficiently below its long-run 

equilibrium (μ-∆) and similarly, short the portfolio when it is sufficiently above its long-

run value (μ+∆).  Once the portfolio mean reverts to its long-run equilibrium value the 

position is closed and profit is earned equal to $∆ per trade7.  The key question when 

developing a trading strategy is what value of ∆ is going to maximise the profit 

function8.  Vidyamurthy (2004) presents both a parametric approach and a non-

parametric empirical approach for conducting this analysis.   The first approach models 

the residuals as an ARMA process and then uses Rice’s formula (Rice, 1945) to calculate 

the rate of zero crossings and level crossings for different values of ∆ in order to plot the 

profit function.  The value ∆ which maximises the profit function is chosen as the trading 

trigger.  The alternative non-parametric approach constructs an empirical distribution of 

zero and level crossings based on the estimation sample.  The optimal ∆ is chosen so as 

to maximise the profit function from the estimation sample.  This value is then applied to 

real time portfolio construction.  A fundamental assumption of this non-parametric 

approach to determining ∆ is that the observed dynamics of εt continue into the future.  

                                                 
7 This is gross profit assuming no transaction costs, market impact costs or costs associated with illiquidity.  
Any proprietary implementation of this strategy must account for these costs.   
8 Profit function (п)=∆*n where n=f(∆) is the expected number of trading opportunities over a given period 
of time for a given ∆. 
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This approach appears to be favored by Vidyamurthy (2004) due to its simplicity and 

avoidance of model mis-specification.   

Apart from being rather ad hoc, Vidyamurthy’s approach may be exposed to errors 

arising from the econometric techniques employed.  Firstly, the 2-step cointegration 

procedure renders results sensitive to the ordering of variables, therefore the residuals 

may have different sets of statistical properties.  Secondly, if the bivariate series are not 

cointegrated, the “cointegrating equation” results in spurious estimators (Lim and 

Martin, 1995).  This would have the effect of making any mean reversion analysis of the 

residuals unreliable.  To overcome these problems this study uses the more rigorous 

Johansen test for cointegration which is based on a Vector-Error-Correction model 

(VECM).   

4.  Data 
 

The data used for this study comprises of the daily stock prices of 17 financial stocks 

listed on the Australian Stock Exchange (ASX).  All of the 17 stocks are listed on the 

ASX200 which means that they are amongst the largest and most actively traded stocks 

in Australia.  This feature is important for pairs trading since illiquidity on both the long 

and short side of the market is a fundamental risk when implementing this trading 

strategy.  We believe that only searching for pairs from the most actively traded stocks on 

the ASX will ensure that we remain “price-takers”.   
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Table 1: A list of financial stocks used in this study 

 

Trading name (stock code) 

Australia and New Zealand Bank (ANZ) 

Westpac Banking Corporation (WBC) 

Bank of Queensland (BOQ) 

Lendlease Corporation (LLS) 

Suncorp Metway (SUN) 

National Australia Bank (NAB) 

Perpetual (PPT) 

QBE Group (QBE) 

Commonwealth Bank of Australia (CBA) 

St George Bank (SBG) 

Bendigo Bank (BEN) 

FKP Property Group (FKP) 

Macquarie Group (MAC) 

AXA Asia Pacific Holdings (AXA) 

AMP Group (AMP) 

Australian Stock Exchange (ASX) 

Insurance Australia Group (IAG) 

 

 

The sample itself consists of daily stock prices over a 5 year period starting from 1st July, 

2002.  The sample included Saturday and Sunday price observations which had to be 

removed from the sample prior to its analysis.  Since the market is not open on the 

weekends, including price observations for both Saturday and Sunday could bias our 

results.  Once the weekend price observations were removed from the sample we were 

left with 1285 daily price observations which could be used to identify our trading pairs.   

There are several motivations for restricting our search for trading pairs to only stocks 

from within the same industry classification.  Traditionally pairs trading has been seen as 

a market neutral strategy by construction.  However unless the portfolio is actually 

constructed to have a zero beta it is likely that it will inhibit some market risk.  Ideally we 
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would like to immunize our combined portfolio against all systematic risk so that all 

returns generated by our positions are those that arise from convergence of the residual 

spread.  We do not want to earn profits from holding long positions in a bull market since 

this would defeat the purpose of developing a trading strategy that was not conditioned 

upon the absolute value of the stocks traded.  By restricting our trading pairs to stocks 

from within the same industry we assume that it is likely that those stocks will have 

similar exposures to systematic risk, or beta.  Thus, the resulting portfolio should have a 

beta close to zero.  Ideally we would choose stocks with the same betas so that the 

combined portfolio had a beta of exactly zero, but because we are working with a limited 

sample the current constraint will suffice.   

The second motivation for choosing stocks belonging to the same industry classification 

stems from an attempt to align those observed statistical relationships with some 

theoretical reasoning.  Although cointegration does indeed offer some very attractive 

properties with which to develop a trading strategy, it is necessary to understand what is 

driving the fundamental relationship between the trading pairs.  Stocks that are 

cointegrated must be driven by the same underlying factors so that they share a long-run 

equilibrium relationship.  It is more likely that stocks within the same industry 

classification will be driven by the same fundamental factors than two stocks from 

different industries.  For example, consider the stock price reactions of two banks to the 

news of a removal of import tariffs in the automotive industry, as opposed to the 

reactions of a bank and a local car manufacturer.  It could reasonably be expected that the 

local car manufacturers’ share price would decrease, especially if it was widely known 

that it was relying on those protectionist policies to remain feasible.  It is likely that the 

share p[rice of the bank would be relatively immune from the removal of any 

protectionist policies relating to the automotive industry.  For this reason we require our 

trading pairs to be from the same industry.   

A cointegrating relationship which can be explained by some theoretical reasoning, such 

as that described above, is more robust than a cointegrating phenomena without sound 

justification.  If we identify a cointegrating relationship in-sample and know that both 

stocks are driven by the same set of fundamental factors, then we could reasonably argue 

that the observed equilibrium relationship will likely persist into the future – i.e. the 
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cointegrating relationship would likely remain significant out-of-sample.  However, if we 

were to randomly identify a cointegrating relationship between, say, a financial stock and 

a resource stock, then this relationship would be more statistical phenomena as opposed 

to a fundamental relationship deriving from both stocks being driven by a unique set of 

factors.  Thus, there is no economic justification to suggest this statistical relationship 

will remain significant out-of-sample.  For these reasons we require our trading pairs to 

belong to the same industry classification. 

Pairs trading is best suited to bear markets, characterized by uncertain fundamental 

values and high volatility – who would want to remain market neutral in a bull market?  

If one considers the trading history of the financial services sector over the past 18 

months it becomes clear why this study has chosen financial stocks to identify trading 

pairs.  Market uncertainty surrounding the valuation of intricate, derivative laden 

mortgage-backed securities has resulted in the demise of several banks and the 

pummeling of many more.  Combine this with the woes of the credit-lending business 

and it has created an environment which has made it very difficult to accurately value 

financial stocks.  Consequently, the financial services sector has seen large fluctuations in 

recent times – a perfect recipe for a profitable pairs trading strategy.   

The data was sourced from the ASX.     

 

5.  Method 
 

The method used in this study can be divided into two broad sections.  The first section is 

concerned with the process of selecting the trading pairs.  A detailed discussion is 

conducted which is concerned with the idea of cointegration and the various tests we use 

to identify cointegrating relationships between time series variables.  We also introduce 

our modeling procedure, a Vector Error Correction model (VECM) and illustrate how in 

the presence of cointegration these are essentially equivalent representations (Granger 

Representation Theorem).  We conclude this section by discussing the method we use to 

obtain the residual spread which we then model as a mean reverting VECM.   
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The second component of this study is concerned with the identification and estimation 

of our model and the how we overcome the problem of overparameterization in our 

VECM.  We conclude by estimating impulse response functions and variance 

decomposition analysis which we hope will shed light on the dynamic behaviour and 

inter-relationships between our stock pairs.   

 

5.1 The process of selecting trading pairs – an introduction to cointegration 

and the associated VECM. 

The first and arguably most important decision within a pairs trading strategy is which 

stocks to trade.  The fundamental property in any long/short trading strategy is the 

presence of a statistically significant mean reverting relationship between the assets 

traded.  This study uses cointegration as the decision rule for selecting pairs of stocks.  

Cointegration was first attributed to the work of Engle and Granger (1987) for which 

helped earn them the Nobel Prize (2003) for statistics.  Cointegration has since found 

many applications in macroeconomic analysis and more recently it has played an 

increasingly prominent role in funds management and portfolio construction.  It is the 

statistical properties that cointegration offers which make it such an attractive possibility 

across a range of applications for academics and practitioners alike.  Let us now 

introduce cointegration and illustrate why we employ it in this study.   

 

Consider a set of economic variables in long-run equilibrium when 

 

   . . .    0  

 

For notational simplicity, an identical long-run equilibrium can be represented in matrix 

form as 

 = 0 

Where: 

=(β1, β2, β3,…, βn) 
′=(X1t, X2t, …, Xnt) 



Page 31 of 130 
 

 

The equilibrium error is the deviation from the long-run equilibrium, and can be 

represented by  

 

̃ =  

 

The equilibrium is only meaningful if the residual series ( ̃ ) is stationary. 

 

5.1.1 What is stationarity? 

A time series {yt} is a stationary series if its mean, variance and autocorrelations are well 

approximated by sufficiently long time averages based on a single set of realisations.  

When this study refers to stationarity it can be interpreted as that the time series is 

covariance stationary.  Covariance stationary means that for a given time series, its 

mean, variances and autocovariances are unaffected by a change in time origin.  This can 

be summarised by the following conditions: 

 

 

  

 

 

 ,      . 

 

5.1.2 A definition of cointegration  

We say that components of the vector t are cointegrated of order d,b, which is denoted 

by t ~ CI(d,b) if: 

 

1. All components of t are integrated of order d9. 

                                                 
9 A series is integrated of order d if it must be differenced d times in order to become stationary.  Many 
macroeconomic and stock price series are integrated of order 1, or I(1).  A stationary series is by definition 
an I(0) process.   
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2. There exists a vector  such that the linear combination 

 

       

 

 is integrated of order (d-b), where b>0 and  is the cointegrating vector (CV). 

 

Let us now consider a few important aspects of cointegration 

 

1. Cointegration refers to a linear combination of non-stationary variables.  The CV 

is not unique.  For example, if (β1, β2,…, βn) is a CV, then for non-zero λ, (λβ1, 

λβ2,…, λβn) is also a CV.  Typically the CV is normalised with respect to x1t by 

selecting λ=1/βn. 

2. All variables must be integrated of the same order.  This is a prior condition for 

the presence of a cointegrating relationship.  The inverse is not true – this 

condition does not imply that all similarly integrated variables are cointegrated, in 

fact it is usually not the case.    

3. If the vector t has n components, there may be as many as (n-1) linearly 

independent cointegrating vectors.  For example, if n=2 then there can be at most 

one independent CV. 

 

To allow us to prove (3) consider the simple vector auto-regression (VAR) model 

 

    

    

 

We have limited the lag length to just one for simplicity, but in practice lag length should 

be set so that the error terms are white noise processes.  It is important to note that 

correlation between these error terms is allowable.   

 

Applying lag operators and rearranging we get  
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1  –    

  1    

 

which can be represented in matrix form as 

 

1
1  =  

 

 

Using Cramer’s rule or matrix inversion 

 

  
1    

1 1  

 

  
   1  

1 1  

 

The two-variable first-order system has been converted into two univariate second order 

difference equations, where both have the same inverse characteristic equations.  That is, 

setting 

 

1 1   0  1  

 

Then this implies that 

 

 –    –   0 

 

whereby the characteristic roots λ1 and λ2 determine the time paths of both variables. 
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1. If (λ1, λ2) lie inside the unit circle then stable solutions for the series {yt} and {zt} 

exist and the variables are stationary.  An important implication of this is that they 

cannot not be cointegrated of order (1,1).   

2. If either root lies outside the unit circle then the solutions are explosive: 

 

  
1   

1 1  

 

       
1    

1 1  

  

 Roots of the characteristic equation 

 

1 1   0     

 

If | | < 1, i=1,2 then the solution is stable, however if at least one | | > 1, for 

i=1,2, or if either root lies outside the unit circle then the system is explosive.  

Neither variable is difference stationary which implies that the variables cannot 

be cointegrated of order (1,1). 

 

3. If  =  = 0, then 

 

 = +  

 =  +  

 

and the solution is trivial.  If = =1, then {yt} and {zt} are unit root 

processes.  This implies that λ1= λ2=1 and  

 

     

 

That is, the two variables evolve without any long-run equilibrium relationship. 
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4. For {yt} and {zt} to be CI(1,1) it is necessary for one characteristic root to be 

unity and the other less than unity in absolute value.  In this case, each variable 

will have the same stochastic trend and the first difference of each variable will be 

stationary.  For example, If λi=1 then; 

 

  
1   

1 1  

 

1     
1   

1   

 

which is stationary if | | < 1.   

 

Thus, to ensure variables are CI(1,1), we must set one of the characteristic roots equal to 

unity and find the other less than unity in absolute value. 

 

For the larger of the two roots to be unity it must be the case that 

 

0.5   0.5√  –  2   4   1 

 

   
1

1  

 

Now consider second characteristic root – since  and/or  must differ from zero if 

the variables are cointegrated, 

 

|  |     1      1 

 

Let us see how these coefficient restrictions bear on the nature of the solution.  Recall the 

simple VAR model 
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Taking differences 

 

1    

 1   

 

Which can be expressed in matrix form as 

 

∆
∆  = 

1
1  +  

 

Now a11-1 =  

 

therefore 

 

  / 1    

 

   – 1    

 

If ≠0 and ≠0, we can normalise the cointegrating vector with respect to either 

variable.  Therefore normalising with respect to yt-1 

 

 –    

 –     

where 

  1  
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1

 

 

This is referred to as an Error-Correction model (ECM) and {yt} and {zt} change in 

response to the previous periods deviation from long-run equilibrium: . 

 

If = β  then both {yt} and {zt} change only in response to εyt and εzt shocks.    

If αy<0 and αx>0, then {yt} decreases and zt increases in response to a positive deviation 

from the long run equilibrium.   

 

The conditions a22>-1 and a12a21 + a222<1 ensure that β≠0.  At least one of the speed of 

adjustment parameters (i.e. αy and αz) must be significantly different from zero.   

 

A special case arises when either a12 or a21 equals zero.  To illustrate, set a12=0 so that 

αy=0.  When this occurs the error correction component drops out completely and {yt} 

changes only in response to shocks to the system (εyt) since Δyt= εyt.  The sequence {zt} 

does all the correction to eliminate any deviation from long-run equilibrium.   

 

We will now consider some important implications of this simple model: 

 

1. The restrictions necessary to ensure that the variables are CI(1,1) guarantee that 

an error correction model exists. 

 

The individual series {yt} and {zt} are unit root processes, but the linear combination 

 is stationary, with the normalised CV given by 1, .  The variables 

have an error-correction representation with speed of adjustment coefficients given by 

αy = (-a12a21)/(1-a22), and αz = a21 

 

We have also shown that an error-correction model for I(1) variables necessarily 

implies cointegration.  This illustrates the Granger Representation Theorem which 
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states that for any set of I(1) variables, error-correction and cointegration are 

equivalent representations.   

 

2. Cointegration necessitates coefficient restrictions in a VAR model. 

 

Recall that the simple VAR model 

 

      

 

      

 

can be written in matrix form as: 

 

∆
∆  = 

1
1  +  

 

or 

  П  ̃   (5.1) 

 

It is appropriate to estimate a VAR of cointegrated variables using only first 

differences.  Estimating equation 5.1  without П  eliminates the error-correction 

component from the model.   

Also, the rows of П are not linearly independent if the variables are cointegrated – 

multiplying row 1 by –  yields the corresponding element in row 2.  This 

illustrates the very important insights of Johansen (1988) and Stock and Watson 

(1988) which says that the rank of П can be used to determine whether or not two 

variables {yt} and {zt} are cointegrated.   

 

3. It is necessary to reinterpret Granger causality in a cointegrated system. 
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In the simple two variable case - {yt} and {zt}, Granger Causality determines how 

much of the current value of yt can be explained by past values of yt, and whether 

lagged values of zt improve the explanation.  To illustrate, take the simple VAR in 

differences 

 

    ′  

 

   ′  

 

New interpretation: {zt} does not Granger Cause {yt} if lagged values of Δ  do 

not enter the Δyt equation, i.e. b12=0.  Similarly, {yt} does not Granger cause {zt} if 

lagged values of Δyt-1 do not enter the Δzt equation, i.e. b21=0.   

 

Now, if {yt} and {zt} are cointegrated, by the Granger Representation Theorem the 

VAR model becomes the following Vector-Error-Correction (VECM) model. 

 

       

 

       

 

5.1.3 Testing for Cointegration: The Engle-Granger Methodology  

Engle and Granger (1987) propose a straightforward test to determine whether two given 

time series, say {yt} and {zt} and cointegrated of order CI(1,1).  Unfortunately, this 

approach suffers from several drawbacks which will be discussed in more detail in 

section 4.1.4.  As a result, this study utilises the alternative Johansen test (1988) which 

overcomes these issues.  Nevertheless, in order to appreciate the benefits of the Johansen 

approach it is critical to understand the method employed by Engle and Granger.   

 

1. The first step is to test each series individually for their order of integration.  The 

augmented Dickey-Fuller test can be used to test for the presence of a unit-root 
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and hence whether a series is stationary.  If the individual time series are 

integrated of different orders then it can be concluded with certainty that they are 

not cointegrated.  A cointegrating relationship may be only present between 

variables integrated of the same order. 

2. The second step is to estimate the long-run equilibrium relationship between the 

time series.  If {yt} and {zt} are both I(1) processes then the long-run relationship 

takes the form 

 

      

 

If the variables are in fact cointegrated then OLS regression yields “super-

consistent” estimates of the cointegrating parameters β0 and β1 (CV).  It has been 

shown by Stock (1987) that OLS coefficient estimates converge faster towards 

their parameter values in the presence of a cointegrating relationship compared 

with regressions involving stationary variables.  If deviations from the long-run 

equilibrium {et} are found to be stationary, I(0), then the {yt} and {zt} sequences 

are cointegrated of order (1,1).  The augmented Dickey-Fuller test can be used to 

determine the stationarity of the residual series {et}.   

 

The Engle and Granger approach is relatively straight forward and easily implemented in 

practice.  For this reason it remains useful as a secondary source of evidence for the 

presence of any cointegrating relationships between time series.  However this study 

acknowledges and appreciates the significant drawbacks of the Engle and Granger 

approach and consequently employs an alternative method to detect the presence of 

cointegration.  The main drawbacks can be summarised as follows: 

 

1. The Engle and Granger test for cointegration uses residuals from either of the 

two “equilibrium” equations. 
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As the sample size increase indefinitely, asymptotically a test for a unit root in 

{e1t} is equivalent to that for {e2t}.  This is not applicable to smaller sample sizes. 

 

2. The major problem regarding the Engle and Granger procedure is that it relies 

on a two-step estimator. 

 

1st step: Generate the residual series from one of the equilibrium equations { ̂ t} 

2nd step: Use generated errors to estimate a regression of the following form; 

 

∆ ̂  ∆ ̂  ∆ ̂  . . . . ∆ ̂             

 

The coefficient b1 is obtained by regressing the residuals from another regression 

on lagged differences of itself.  This two-stage test means that any errors 

introduced in the first step are now carried forward to the second step.  

Essentially, this approach is subject to twice the estimation error.   

 

 

5.1.4 An alternative approach: The Johansen test for Cointegration (1988) 

This study uses the Johansen test (1988) to identify cointegrating relationships between 

stock price series.  The Johansen and Stock & Watson maximum likelihood estimators 

circumvent the use of a two-step estimator and in doing so avoid the drawbacks faced by 

Engle and Granger.  Instead, the Johansen (1988) procedure relies heavily on the 

relationship between the rank of a matrix and its characteristic roots.  One intuitive 

explanation suggests that the Johansen procedure is nothing more than a multivariate 

generalisation of the Dickey-Fuller test.  We will now illustrate the reasoning behind the 

Johansen approach: 

 

Consider the univariate case: 
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 ∆   1   

 

If (a1-1)=0 then we conclude that {yt} has a unit root which we know to be a non-

stationary process.  If (a1-1)≠0 then {yt} is a stationary process. 

 

Generalizing to the two variable case: 

 

   
      

      
        (5.2) 

 

 ∆   ∏  ̃  

 

Where ∆ = ∆
∆       =       ∏=

1
1  

 

Recall our previous statement that the rows of ∏ are not linearly independent if the 

variables are cointegrated.  Let us now explore this statement a little further assuming the 

∏ matrix has two rows. 

 

I. If the ∏ matrix is of full rank, then its rank is equal to the number of linearly 

independent rows and that should equal the number of rows (i.e. 2). 

 

Suppose ∏ is of full rank.  Then the long run solution to (5.2)  

 

̃
0
0

 

 

is given by two independent equations 
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1   ̃   0 

  1 ̃   0 

 

Or alternatively, 

 

П   П ̃   0 

П   П ̃   0 

 

Each of the above equations is an independent restriction on the long-run solution 

to the variables: 

• The two variables in the system face two long-run constraints 

• The two variables contained in  must be stationary with long-run values 

given by the above independent equations. 

 

II. If the rank of ∏ is zero, then the elements of ∏ must be zero.  This implies that 

 

1) ∆ = ̃  

2) ∆yt and ∆zt are both now I(0) processes 

 

(4.1) becomes: 

 

  1 0  1 

  1 0  1 

0 

 

and {yt} and {zt} are both unit root processes with no linear combination that is 

stationary. 

 

III. If the rank of ∏ is ґ where ґ=1, then the rows of ∏ are not linearly independent.  

There is a single CV given by any row of the matrix ∏.  Each {xit} sequence can 

be written in error-correction form.  For example,  
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∆   п   п    

 

Normalising with respect to , we can set = п  and = п
п

 to obtain: 

 

∆        

 

In the long run, the series {xit} will satisfy the relationship 

 

    0 

 

The normalised CV is given by (1, β12) and the speed of adjustment parameter by 

α1. 

 

A slight but important digression 

As with the augmented Dickey-Fuller test, the multivariate model given by (5.1) can be 

generalized to allow for higher-order autoregressive processes.  Consider the 

generalization of (5.1) incorporating three lags 

 

               

              

 

 = + +  

 

 =  +  +  + ̃  

∆  = ( - )  + +  + ̃  

 

Add and subtract ( - ) : 
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∆       –    ̃  

 

         ∆       ̃  

 

Add and subtract (  +  – ) : 

 

∆   ∆      –  

 ̃      

 

∆  ∆   ∆    ̃  

 

Continuing in this fashion for p=3: 

 

∆   п  ∆   п   ̃  

 

 п     п    

 

The number of distinct cointegrating vectors can be obtained by checking the significance 

of the characteristic roots of ∏.  The rank of a matrix is equal to the number of 

characteristic roots that differ from zero.  Suppose we order the n characteristic roots of 

∏ such that λ1>λ2>…>λn.  If the variables are not cointegrated, the rank of ∏ is zero as 

are the characteristic roots.  Since ln(1)=0, each of ln(1-λi)=0 if the variables are not 

cointegrated.  Similarly, if the rank of ∏ is unity, then 0<λ1<1 so that the first expression 

ln(1-λ1) will be negative and all other λi=0 so that ln(1-λ2)=ln(1-λ3)=…=ln(1-λn)=0. 

  In practice, we can only obtain estimates of ∏ and the characteristic roots.  The test for 

the number of characteristic roots that are insignificantly different from unity can be 

conducted using the following two test statistics: 
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ґ ln 1
ґ

 

ґ, ґ 1   1 ґ  

 

 Where =estimator of characteristic roots (eigenvalues from ∏ matrix) 

  T= number of usable observations 

 

 

ґ  tests the null hypothesis that the number of distinct cointegrating vectors is 

less than or equal to ґ against a general alternative.   

ґ 0 when all i=0 

The further the estimated characteristic roots are from zero, the more negative is ln(1- i) 

and the larger the trace statistic. 

 

Johansen and Juselus (1990) provide critical values of the  statistic which was 

obtained from simulation studies.   

 

5.1.5 Obtaining the residual spread 

Once we have identified two stock price series which are cointegrated the next step is to 

obtain the residual series {εt} from the cointegrating equation.  Let us suppose that yt and 

zt are found to be cointegrated and we know that zt leads yt from our Granger Causality 

testing.  This leads us to estimate the following cointegrating equation 

 

 

 

which can be rearranged to give 
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where  is an intercept term and  is referred to as the “cointegrating coefficient”.  

Recall that for the cointegrating relationship to be meaningful the residual series  

must now be a stationary, or an I(0) process.  It can also be helpful when interpreting  

by realising that it shares identical dynamics to the underlying long/short portfolio which 

is represented by { }.  The mean-reverting long/short portfolio is created 

by longing 1 unit of yt for every  units short of zt.  The portfolio fluctuates around its 

long-run equilibrium value of .    

For completeness if not necessitation we then subjected the estimated residual series { } 

to the augmented Dickey-Fuller test to clarify its stationarity.   

 

We are now in a position where we can calibrate the VECM to fit the residual series.  We 

hope that this will provide us with a valuable insight into the finer dynamics of the 

residual series and expose some of the complex inter-relationships between our stock 

pairs.   

 

5.2 Modeling procedure and variance analysis 

 

5.2.1 Deriving a usable VAR model 

When we are not confident that a variable is actually exogenous, a natural extension of 

transfer function analysis is to treat each variable symmetrically.  In our pairs trading 

strategy which involves two variables, we can let the time path of ∆yt be a function of 

lagged differences of yt, combined with current and past realizations of the ∆zt sequence.  

The dynamics of the ∆zt sequence is simply a mirror image of that described for the ∆yt 

sequence.  This can be represented by the system shown below, where lags are set at 

unity for simplicity: 

 

∆ ∆ ∆  ∆  (5.3a) 

∆ ∆  ∆  ∆   (5.3b) 
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Note here that we choose to model differences rather than levels to avoid spurious 

regressions.  Spurious regressions occur when one attempts to model non-stationary 

variables.  Since our stock price series are known to be integrated of order one, taking 

first differences yields a stationary sequence which we can then accurately fit to a given 

model.   

This bivariate VAR also assumes that the error terms (εyt and εzt) are white noise 

processes with standard deviations given by σy and σz respectively.  They are assumed to 

be uncorrelated with each other.   

Equations (5.3a) and (5.3b) constitute a first-order VAR since the lag length is set at 

unity.  We will proceed to use this simple model to illustrate some of the issues we face 

when estimating our model.  It should be remembered that we actually estimate a VECM 

in this study which incorporates an error-correction component to account for the 

presence of a cointegrating relationship.  However for simplicity, this simple VAR will 

suffice to aid an explanation of our ideas. 

To begin with, it is important to note that the structure of the system incorporates 

feedback since ∆yt and ∆zt are allowed to affect each other.  For example, -b12 is the 

contemporaneous effect of a unit change in ∆zt on ∆yt and γ21 the effect of a unit change 

in ∆yt-1 on ∆zt.  The error terms εyt and εzt are pure innovations (or shocks) in the ∆yt and 

zt sequences, respectively.  Furthermore, it is evident that when b21 is significantly 

different from zero, εyt has an indirect contemporaneous effect on ∆zt, and if b12 is 

significantly different from zero then εzt also has an indirect contemporaneous effect on 

∆yt.  It could very well be plausible that such a system could be used to describe the stock 

price dynamics in this study. 

Equations (5.3a) and (5.3b) are not reduced-form equations since ∆yt has a 

contemporaneous effect on ∆zt and ∆zt has a contemporaneous effect on ∆yt.  There is a 

certain simultaneity present which inhibits the direct estimation of the bivariate VAR in 

its structural form.  Fortunately, it is possible to transform the system of equations into a 

more usable form.  The present system can be represented in matrix form as: 

 

1
1

∆
∆

∆
∆  
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or 

  

 

where 

 

1
1 , , , ∆

∆ ,  

 

Premultiplication by the inverse of B (B-1) allows us to obtain the vector autoregressive 

(VAR) model in standard form: 

 

      (5.4) 

Where 

 

 

 

 

For notational purposes, we can define aio as element i of the vector Ao, aij as the element 

in row i and column j of the matrix A1, and eit as the element i of the vector et.  Using this 

new notation, we can rewrite (4.2.3) in expanded format as: 

 

∆ ∆ ∆  (5.5a) 

∆ ∆ ∆  (5.5b) 

 

To distinguish between the different representations we will refer to the initial system 

(5.3a/b) as a structural VAR of the primitive system, while the new system derived above 

will be called a VAR in standard form.  It should be noted that that the error terms (i.e. 

e1t and e2t) in the standard VAR are composites of the two shocks (εyt and εzt) from the 

primitive system.  Since , we can compute e1t and e2t as: 

 

/ 1  (5.6) 
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/ 1     (5.7) 

 

Since the new error terms are simply linear combinations of those error terms from the 

structural VAR then it will be the case that they share similar statistical properties.  Given 

that the residuals from the primitive system are white noise processes, it follows that both 

e1t and e2t have zero means, constant variances, and are individually serially 

uncorrelated10.  It is critical to acknowledge however that although e1t and e2t are both 

stationary processes they will also be correlated.  The covariance of the two terms is 

 

 
1  

 

1  

 

In general, it can be expected that this covariance term will not be zero, so that the two 

shocks will be correlated.  In the special case where 0 (i.e. if there are no 

contemporaneous effects of ∆  on ∆  and ∆  on ∆ ), the shocks will be uncorrelated. 

 

 

5.2.2 The problem of identification 

In this section we discuss some of the issues faced when we come to estimating our VAR 

as well as the statistical techniques that we can use to overcome these problems.  For 

simplicity, we will use the structural form of the bivariate VAR equations (5.3a/b) 

introduced earlier to aid this discussion.  Recall the primitive system is the model we are 

essentially trying to estimate and is given by: 

 

∆ ∆ ∆  ∆  (5.3a) 

∆ ∆  ∆  ∆   (5.3b) 

                                                 
10 See Enders (1995) p. 302 for proofs 



Page 51 of 130 
 

 

Due to the feedback inherent in the system, these equations cannot be estimated directly 

using OLS.  The reason is that ∆zt is correlated with the error term εyt and ∆yt with the 

error term εzt.  One of the fundamental assumptions of the Classical Linear Regression 

Model (CLRM) is that the explanatory variables are independent of the error terms.  Note 

that there is no such problem in estimating the VAR system in the standard form 

represented by (5.5a) and (5.5b).  OLS can provide estimates of the two elements of A0 

and four elements of A1.  Furthermore, by obtaining the residual series [{e1} and {e2}] 

from the regression we can calculate estimates of var(e1), var(e2) and cov(e1e2).  The 

issue then is whether it is possible to recover all of the information present in the 

structural form of the VAR from the information estimated from the standard form.  

Alternatively worded, is the primitive form identifiable given the OLS estimates from the 

standard form of the VAR model represented by equations (5.5a) and (5.5b)? 

At face value the answer to this question is unequivocally no!  In order to make this 

system identifiable we must appropriately restrict one of the coefficients in the primitive 

system.  To understand why this is the case let us compare the number of coefficients 

required by each system.  Using OLS to estimate the standard system represented by 

equations (5.5a) and (5.5b) yields six parameter estimates (a10, a20, a11, a12, a21, and a22) 

and the calculated values of var(e1t), var(e2t), and cov(e1te2t).  However, the primitive 

system represented by equations (5.3a) and (5.3b) contains ten parameter estimates.  In 

addition to the two intercept coefficients (b10 and b20), the four autoregressive coefficients 

(γ11, γ12, γ21, and γ22), and the two contemporaneous feedback coefficients (b12 and b21), 

there are the two standard deviation estimates (σy and σz).  In all, the primitive system 

requires the specification of ten coefficient estimates whereas the standard VAR 

estimation yields us only nine parameters.  Unless one of the parameters is restricted, it is 

not possible to identify the primitive system – we say that the primitive form of the VAR 

is underidentified.   

To make certain that our system is properly identified we employ the type of recursive 

system proposed by Sims (1980).  Essentially we must choose to restrict one of the 

parameters in the primitive system to equal zero.  For example, suppose we set the 

constraint b21=0.  Writing (5.3a) and (5.3b) with the constraint imposed gives us: 
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∆     ∆   ∆   ∆     (5.8) 

∆     ∆   ∆     (5.9) 

 

Given the restriction it is clear that ∆zt has a contemporaneous effect on ∆yt, but ∆yt only 

affects ∆zt through a lagged response, that is, there is no contemporaneous effect of ∆yt 

on ∆zt.  Imposing the restriction b21=0 means that B-1 is given by: 

 

B-1= 1
0 1  

 

Now, premultiplication of the primitive system by B-1 yields: 

 

1
0 1

1
0 1

1
0 1  

 

or 

 

 (5.10) 

 

Estimating the system using OLS yields the theoretical parameter estimates: 

 

 

 

 

 

 

11  

12  

 

 



Page 53 of 130 
 

 

 

Since  and , we can calculate the parameters of the 

variance/covariance matrix as 

 

 (5.11a) 

 (5.11b) 

,  (5.11c) 

 

Thus, we have nine parameter estimates a10, a11, a12, a20, a21, a22, var(e1), var(e2), and 

cov(e1e2) that can be substituted into the nine equations above in order to simultaneously 

solve for b10, b12, γ11, γ12, b20, γ21, γ22, , and .   

Note also that the estimates of the {εyt} and {εzt} sequences can be recovered.  The 

residuals from the second equation (i.e. the {e2t} sequence) are estimates of the {εzt} 

sequence.  Combining these estimates along with the solution for b12 allows us to 

calculate an estimate of the {εyt} sequence using the relationship . 

Let us now examine some of the practical implications this restriction poses for our 

interpretation of the dynamics of this model.  In (5.9) the constraint b21=0 means that ∆yt 

does not have a contemporaneous effect on ∆zt.  In (5.10), the restriction manifests itself 

such that both εyt and εzt shocks affect the contemporaneous value of ∆yt, but only εzt 

shocks affect the contemporaneous value of ∆zt.  The observed values of e2t are 

completely attributed to pure shocks to the {∆zt} sequence.  Decomposing the residuals 

in this triangular fashion in referred to as a Choleski decomposition.   

 

An obvious question is how do we decide which parameter within the primitive system to 

constrain? Our decision is based on our results from the Ganger Causality tests which we 

conducted earlier in our method.  These tests tell us which stock price sequence in the 

pair is leading the other stock price sequence.  The feedback coefficient in the primitive 

system which is not responsible for any explanatory power in the model is then 

constrained to equal zero.  For example, if it was determined that ∆zt could significantly 

help to explain movements in ∆yt, but values of ∆yt could not help explain values of ∆zt 
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then we conclude that ∆zt leads ∆yt and that the relationship is uni-directional.  In the 

primitive system we would represent this by constraining b21 to equal zero. 

 

5.2.3 Choosing an appropriate lag length: Akaike Information Criterion 

The Akaike Information Criterion (AIC) is the method used to determine the lag length in 

many of the models estimated in this study.  It can be interpreted as a selection criterion 

between competing models.  When choosing a certain model specification the aim is 

usually to maximise the goodness-of-fit in-sample (R2) which is done by minimizing the 

sum of squared residuals (RSS).  The AIC says that in addition to being a good fit, it is 

also beneficial if that model is parsimonious.  Thus, instead of simply trying to minimise 

RSS the AIC imposes a penalty for including regressors in the model which do not 

significantly improve the explanatory power of the model.  It is the aim of AIC to 

minimise the following AIC statistic: 

 

/  

 

where k is the number of regressors (including the intercept term) and n is the number of 

observations.   

5.2.4 Impulse Response functions 
The impulse response function (given above) is critical for analyzing the inter-

relationships between price series represented in a VAR.  The impulse response function 

is essentially the vector moving average representation of the VAR (5.12) in that the 

variables (∆yt and ∆zt) are expressed in terms of the current and past values of the two 

types of shocks (i.e. e1t and e2t).   

 

∑     (5.12) 

 

   

 
1

∆ ,
1

∆  
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∆ 1 1   

 

The VMA representation allows you to trace out the time path of the various shocks to 

the variables contained in the VAR system.  From a pairs trading perspective it would be 

interesting to know how shocks to one of the variables are filtered through each of the 

individual price series and how long it would take for equilibrium to be restored within 

the system.   

Let us now recall the simple VAR model we have been using up to this point to show 

how we estimate the impulse response functions.  Writing the standard form of the VAR 

in matrix notation gives us: 

 
∆
∆

∆
∆   (5.13) 

 

Or, using (5.12), we obtain 

 

∆
∆

∆
∆

∑  (5.14) 

 

Equation (5.14) expresses ∆yt and ∆zt in terms of the {e1t} and {e2t} sequences.  

However, it is insightful to rewrite (5.14) in terms of the {εyt} and {εzt} sequences.  From 

(5.6) and (5.7), the vector of errors can be written as 

 

1/ 1 1
1                             (5.15) 

 

So that (5.14) and (5.15) can be combined to form 

 

∆
∆

∆
∆

1
1

1
1  

 

To simplify, let us define 2 x 2 matrix Φi, with elements Φjk(i): 
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1
1

1  

 

Hence, the MVA representation of (5.14) and (5.15) can be written in terms of the {εyt} 

and {εzt} sequences: 

 

∆
∆

∆
∆  

 

Or more compactly 

 

∑                                             (5.16) 

 

The impulse response function (VMA representation) is an especially useful tool to 

examine the interaction between the {∆yt} and {∆zt} sequences.  The coefficients of Φi 

can be used to generate the effects of εyt and εzt shocks on the entire time paths of the 

{∆yt} and {∆zt} sequences.  It can be seen from the notation that the four elements Φjk(0) 

are impact multipliers.  For example, the coefficient Φ12(0) is the instantaneous impact 

of a one-unit change in εzt on ∆yt.  In the same way, the elements of Φ11(1) and Φ12(1) are 

the one period responses of unit changes in εyt-1 and εzt-1 on ∆yt, respectively.  Updating 

by one period indicates that Φ11(1) and Φ12(1) also represent the effects of unit changes in 

εyt and εzt on ∆yt+1.   

The accumulated effects of unit impulses in εyt and εzt can be obtained by the appropriate 

summation of the coefficients of the impulse response functions.  For example, note that 

after n periods the effect of εzt on the value of ∆yt+n is Φ12(n).  Thus, after n periods, the 

cumulated sum of the effects of εzt on the {∆yt} sequence is 
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Letting n approach infinity yields the long-run multiplier.  Since the {∆yt} and {∆zt} 

sequences are assumed to be stationary, it must be the case that for all j and k, 

 

  . 

 

The four sets of coefficients Φ11(i), Φ12(i), Φ21(i), and Φ22(i) are called the impulse 

response functions.  Plotting the impulse response functions (i.e. plotting the coefficients 

of Φjk(i) against i) is a practical way to visually represent the behaviour of the {∆yt} and 

{∆zt} series in response to the various shocks.   

 

5.2.4 Variance Decomposition 

Since unrestricted VARs are overparameterized, they are not particularly useful for short-

term forecasts.  However, understanding the properties of the forecast errors is 

exceedingly helpful in uncovering the intricate inter-relationships between the variables 

in the system.  Suppose that we knew the coefficients A0 and A1 and wanted to forecast 

the various values of xt+i conditional on the observed value of xt.  Updating (5.4) one 

period (i.e., xt+1=A0+A1xt+et+1) and taking the conditional expectation of xt+1, we obtain 

 

 

 

Note that the one step ahead forecast error is .  Similarly, updating 

two periods we get 

 

 

          

 

 

If we take conditional expectations, the two step ahead forecast of xt+2 is 
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The two-step ahead forecast error (i.e. the difference between the realization of xt+2 and 

the forecast) is .  More generally, it is easily verified that the n-step ahead 

forecast is 

 

 

 

And the associated forecast error is 

 

                      (5.17) 

 

We can also consider these forecast errors in terms of (5.16) (i.e. the VMA form of the 

model).  Of course, the VMA and VAR models contain exactly the same information but 

it is helpful to describe the properties of the forecast errors in terms of the {εt} sequence.  

If we use (5.16) to conditionally forecast xt+1, the one-step ahead forecast error is Φ0εt+1.  

In general, 

 

 

 

So that the n period forecast error  is 

 

 

 

 

Focusing solely on the {∆yt} sequence, we see that the n-step ahead forecast error is  
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∆ ∆ 0 1 1

0 1 1   

 

Denote the variance of the n-step ahead forecast error variance of ∆yt+n as σy(n)2 

 

0 1 1 0 1

1  

 

Since all values of Φjk(i)2 are necessarily non-negative, the variance of the forecast error 

increases as the forecast horizon n increases.  Note that it is possible to decompose the n-

step ahead forecast error variance due to each one of the shocks.  Respectively, the 

proportions of σy(n)2 due to shocks in the {εyt} and {εzt} sequences are: 

 

0 1 1
 

and 

0 1 1
 

 

The forecast error variance decomposition tells us the proportion of the movements in 

a sequence due to its “own” shocks versus shocks to other variable.  If εzt shocks explain 

none of the forecast error variance of {∆yt} at all forecast horizons, we can say that the 

{∆yt} sequence is exogenous.  In such a circumstance, the {∆yt} sequence would evolve 

independently of the εzt shocks and {∆zt} sequence.  At the other extreme, εzt shocks 

could explain all the forecast error variance in the {∆yt} sequence at all forecast horizons, 

so that {∆yt} would be entirely endogenous.  In applied research, it is typical for a 

variable to explain almost all its forecast error variance at short horizons and smaller 

proportions at longer horizons.  We would expect this pattern if εzt shocks had little 

contemporaneous effect on ∆yt, but acted to affect the {∆yt} sequence with a lag.      
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6. Results 
 

In this section of the study we present and interpret our results.  We first present our 

findings relating to the identification of the trading pairs, including output from the 

cointegration tests and Granger Causality tests.  This then allows us to obtain the residual 

spread.  For completeness, we then present the findings of the augmented Dickey-Fuller 

tests run on the residual series.  If the cointegrating relationship is meaningful we expect 

it to show the residual series is stationary.  We then present and interpret the findings of 

our estimated VECM and seek to determine whether the speed of adjustment coefficients 

conform to expectations regarding sign and statistical significance.  Finally, we present 

the findings of the impulse response functions and variance decomposition analysis in an 

attempt to understand what these tools tell us regarding the short-term dynamic behaviour 

of the individual price series in response to shocks.   

 

6.1 Identifying Trading Pairs 

6.1.1 Cointegration Test Output 

The first step in this study was to test each potential pair in our sample of 17 financial 

stocks listed in the ASX for the presence of a cointegrating relationship.  Implementing 

the Johansen test meant that for 17 individual stocks there were (172-17)/2=136 potential 

trading pairs.  The Johansen test was initially implemented using daily data from the five 

years of data with an acceptable occurrence of type one errors set at one per cent.  

Although this level of significance is relatively unforgiving, it was deemed necessary 

when one considers what is potentially at stake.  The single most important feature of a 

successful pairs trading strategy is the presence of a mean-reverting equilibrium 

relationship between the pairs.  Cointegration provides us with this necessary condition, 

and, as such, we have decided to set α=1% so that we can be as sure (as possible) that any 

detected cointegrating relationship is robust.   

In a test of robustness, the identified pairs were then re-tested using weekly data.  The 

data sample was filtered to include only prices from the Wednesday of each week over 

the five years.  The choice on which day to base this test is not critical.  However, this 
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study uses Wednesday because it was thought that this day was most insulated from 

certain market irregularities such as thin-trading earlier and later in the week which could 

potentially bias pricing patterns.   

Trading pairs were retained if their p-values, which were calculated from the 

cointegration tests using weekly data, were less than 10%.  This means that on average 

the likelihood of rejecting the null hypothesis of “no cointegrating relationship” when in 

fact it is true will be less than 10 in every 100.  This secondary test for cointegration 

using the weekly data was deemed important in separating those pairs which were truly 

cointegrated, from those which were only mildly or weakly cointegrated.  It should be the 

aim of every pairs trading strategy to only base trades on pairs of stocks which exhibit an 

extremely strong and robust cointegrating relationship.   

 

Diagram 1: Estimation output from cointegration test for WBC and BOQ. 

 
Date: 09/03/08   Time: 13:11   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: WBC BOQ     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.017693  23.14649  15.49471  0.0029 

At most 1  0.000232  0.296424  3.841466  0.5861 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Diagram 1 clearly illustrates the presence of a statistically significant cointegrating 

relationship between the stocks WBC and  BOQ.  When we consider the p-value of 

0.0029 associated with the trace statistic for the null hypothesis of “no cointegrating 

relationships”, it is clear that this can be rejected at the 1% level.  Thus, we can conclude 

that there exists one statistically significant cointegrating equation. 

 

Alternatively, consider the output from the cointegration test for the stocks BOQ and 

SUN in diagram 2 below. 

 
Diagram 2: Cointegration test output for stocks BOQ and SUN  

 

Date: 10/14/08   Time: 13:00   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: BOQ SUN     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None  0.002637  3.462530  15.49471  0.9420 

At most 1  6.41E-05  0.082109  3.841466  0.7744 

 Trace test indicates no cointegration at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

 

 

It can be seen that the reported p-value for the trace statistic is only 0.9420.  This is 

obviously larger than 0.01 and so we accept the null hypothesis that there is no 

cointegrating relationship present.   
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This study identifies 14 potential trading pairs which conform to the filters outlined 

above.  These pairs are summarized, along with their p-values from both tests in table 2 

below.  

 

Table 2: Summary of trading pairs and associated p-values from both cointegration tests.  

 

Trading Pairs P-value: daily sample P-value: weekly sample 

ANZ/AMP >1% >5% 

BOQ/WBC >1% >10% 

SGB/WBC >1% >1% 

FKP/WBC >1% >10% 

LLC/ASX >1% >5% 

ASX/CBA >1% >1% 

ASX/SGB >1% >10% 

BEN/AMP >1% >1% 

ASX/BEN >1% >1% 

AXA/AMP >1% >5% 

ASX/AMP >1% >1% 

PPT/AMP >1% >5% 

QBE/AMP >1% >1% 

CBA/AMP >1% >1% 

 

 

The results of the tests for cointegration for our 14 pairs identified in table 1 are included 

in Appendix A.   

 

6.1.2 Testing for Granger Causality 

Granger Causality plays an important role in this study and in some sense links the 

trading pairs identification problem with the modeling procedure.  For each of the 14 

potential trading pairs which have now just been identified, we ran Granger Causality 

tests on each pair to determine which stock price series informationally led the other.  

This insight into the dynamics of the cointegrating relationship for a given pair of stocks 
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was important for two reasons.  Firstly, it tells us which stock is the dependent variable in 

the cointegrating equation, and which stock is independent, or responsible for driving 

price changes in the dependent variable.  Secondly, it provides us with a theoretical 

model for justifying which coefficient in the primitive form of the VAR to constrain to 

zero.  This is known as the problem of identification when estimating a VAR and was 

introduced in the method section.   

 

Following on from our example, consider the Granger Causality output presented in 

diagram 3 (below) for the trading pair WBC/BOQ. 

 

Diagram 3: Output from the Granger Causality test for WBC and BOQ 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:21 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  BOQ does not Granger Cause WBC 1283  11.8526  7.9E-06 

  WBC does not Granger Cause BOQ  1.69379  0.18423 

  

 

With a p-value (7.9E-06) of effectively zero, we can reject the null hypothesis that BOQ 

does not Granger Cause WBC and instead conclude that it does.  We conclude that 

explaining the contemporaneous value of WBC can be significantly improved by 

incorporating past values of BOQ, in addition to just past values of itself.  The results 

presented here show an example of uni-directionality.  If both p-values were less than 

0.05 then we would conclude that both stock price sequences Granger Cause each other.  

This is not a helpful result for this study because we wish to constrain the 

contemporaneous effects of one series equal to zero so that the VAR system becomes 

identifiable.     
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Granger Causality tests were conducted for each of the 14 pairs and the output from these 

tests are reported in Appendix B.  For those pairs where it was found both stocks led each 

other, these pairs were removed from the study.   

 

Table 3: A summary of the results from the Granger Causality tests 

Trading Pair Direction of Causality (p-value) Direction of Causality (p-value) 

ANZ/AMP ANZ does not lead AMP (0.00016)* AMP does not lead ANZ (0.12127) 

BOQ/WBC BOQ does not lead WBC (7.9E-06)* WBC does not lead BOQ (0.18423) 

SGB/WBC SGB does not lead WBC (0.0073)* WBC does not lead SGB (0.08434) 

FKP/WBC FKP does not lead WBC (0.00032)* WBC does not lead FKP (0.19337) 

LLC/ASX LLC does not lead ASX (0.00879)* ASX does not lead LLC (0.07776) 

ASX/CBA ASX does not lead CBA (1.3E-05)* CBA does not lead ASX (0.88194) 

ASX/SGB ASX does not lead SGB (0.02394)* SGB does not lead ASX (0.02662)* 

BEN/AMP BEN does not lead AMP (0.00014)* AMP does not lead BEN (0.03938)* 

ASX/BEN ASX does not lead BEN (6.0E-05)* BEN does not lead ASX (7.1E-05)* 

AXA/AMP AXA does not lead AMP (0.0002)* AMP does not lead AXA (0.51577) 

ASX/AMP ASX does not lead AMP (0.00028)* AMP does not lead ASX (0.41104) 

PPT/AMP PPT does not lead AMP (6.3E-05)* AMP does not lead PPT (0.37082) 

QBE/AMP QBE does not lead AMP (0.00075)* AMP does not lead QBE (0.56121) 

CBA/AMP CBA does not lead AMP (3.2E-05)* AMP does not lead CBA (0.01437)* 

* indicates rejection at 5% level 

 

Once we removed the trading pairs for which a bi-directional Granger Causality 

relationship exists, we are then left with ten trading pairs.  These trading pairs together 

with their direction of Granger Causality are summarized in table 4. 
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Table 4:  Summary of trading pairs and direction of Granger Causality 

Trading Pair (→ = “Granger Causes”) 

ANZ→AMP 

BOQ→WBC 

SGB→WBC 

FKP→WBC 

LLC→ASX 

ASX→CBA 

AXA→AMP 

ASX→AMP 

PPT→AMP 

QBE→AMP 

 

6.1.3 Cointegrating Equation and Residual Spread 

Once we know the direction of causality we are now in a position to estimate the long-run 

equilibrium relationship.  For two stocks yt and zt, the equilibrium relationship takes the 

following form 

 

 

where  is a stationary process if the cointegrating relationship is a meaningful one.  Lets 

now consider the estimation output from our BOQ/WBC example and interpret the 

coefficients.   
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Diagram 4: Estimation output from the cointegrating equation for BOQ/WBC 

 
Dependent Variable: WBC   

Method: Least Squares   

Date: 09/03/08   Time: 13:12   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

BOQ 1.123173 0.007511 149.5391 0.0000 

C 6.442180 0.088783 72.56082 0.0000 

R-squared 0.945739     Mean dependent var 19.22138 

Adjusted R-squared 0.945697     S.D. dependent var 3.703152 

S.E. of regression 0.862948     Akaike info criterion 2.544632 

Sum squared resid 955.4245     Schwarz criterion 2.552660 

Log likelihood -1632.926     F-statistic 22361.95 

Durbin-Watson stat 0.069961     Prob(F-statistic) 0.000000 

 

The cointegrating coefficient (1.123173) is practically interpreted to as the number of 

units of BOQ held short, for every single unit of WBC held long so that the resulting 

portfolio is mean reverting.  The value of the portfolio, which can essentially be 

represented by [C + ] has an equilibrium value of 6.442180 and fluctuates around this 

value with dynamics governed by those of .  Thus, an insight into the dynamic 

behaviour of  provides us with an insight into the dynamic behaviour of the total 

portfolio.   

If the cointegrating relationship is meaningful, then  is stationary.  If  is indeed 

stationary then it will have constant (in this case equal to zero) mean, constant variance 

and constant autocorrelations, and its dynamic behaviour should be well described as 

exhibiting a strong level of mean-reversion.  It should be recognized that these properties 

of  are all extremely important for any trading rule based on this pairs trading strategy.   
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Diagram 5: Plot of WBC/BOQ residual series against time 

 
Diagram 5 illustrates a great example of the types of dynamic behaviour we want to see 

present in our residual series.  The key features are the lack of any trend, high levels of 

volatility and mean reversion around an apparent equilibrium value of zero.  This series 

certainly appears stationary.  For completeness, we can subject the residual series from 

each of our cointegrating equations to the augmented Dickey-Fuller (ADF) test to 

determine whether the residual series has a unit-root.  A unit-root is a key feature of a 

random walk model which we know to be non-stationary.  We want to be able to reject 

the null hypothesis that there exists a unit root so that we may instead conclude that the 

residual series is stationary.  

 

Let us now interpret the output from the ADF test on the WBC/BOQ residuals. 

 

  

-3

-2

-1

0

1

2

3

250 500 750 1000 1250

WBCBOQRES



Page 69 of 130 
 

Diagram 6: Output for the ADF test on the WBC/BOQ residual series. 

 
Null Hypothesis: BOQWBCRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -4.857536  0.0004 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  

 

 

The p-value corresponding to the t-statistic of -4.858 is 0.0004 which is certainly less 

than 0.05.  Thus we are able to reject the null hypothesis that there exists a unit root and 

we conclude that the WBC/BOQ residual series is in fact a stationary series.  This is 

consistent with our expectations.   

Estimation output, plots of the residual series and ADF test output for each pair are 

reported in Appendix C.  Upon visual and statistical inspection of the residual series, 

those clearly lacking mean reverting behaviour, or failing the ADF test at 5% are omitted 

from the study.   

One of the trading pairs which failed both the visual inspection and the ADF test was 

PPT and AMP.  Consider the residual plot and the ADF test output below. 
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Diagram 7: Plot of the residual series for PPT/AMP 

 
 

Diagram 8: ADF test output for PPT/AMP residual series 

 
Null Hypothesis: PPTAMPRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -2.803079  0.1963 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  
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A fundamental question that must be asked when considering diagram 7 is whether it 

exhibits sufficient levels of mean reversion so that the portfolio could be traded regularly 

enough to make money.  If the first 250 observations were removed it appears as though 

there is a strong positive trend in the data.  This is strong evidence to suggest that the 

residual series is (1) not stationary, and (2) not a good candidate for pairs trading.  The 

statistical output for the ADF test supports this observation with a p-value (0.1963) far 

greater than 0.05.  Thus we are not able to reject the null hypothesis and instead conclude 

that the residual series does possess a unit-root and is not stationary.    

 

A summary of the final trading pairs is presented in table 5 below. 

 

Table 5: Summary of final trading pairs 

 

Final Trading Pairs

BOQ→WBC 

SGB→WBC 

FKP→WBC 

LLC→ASX 

ASX→CBA 

 

6.2 Calibrating a Vector Error-Correction model (VECM) 

 

In this section we present the estimation output from our modeling procedure.  We have 

chosen to model the residual series as a vector-error-correction model (VECM) which is 

essentially a vector-autoregression model with an error-correction component.  The 

VECM is the correct specification of the VAR model when the component series are 

cointegrated (Granger Representation Theorem).  Let us now consider the VECM 

estimated for the residual series belonging to the WBC/BOQ example. 
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Diagram 9: VEMC output for WBC/BOQ 

 

 
 

 Vector Autoregression Estimates 

 Date: 10/02/08   Time: 11:49 

 Sample (adjusted): 4 1285 

 Included observations: 1282 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

 ∆BOQ ∆WBC 

∆BOQ (-1) -0.163967 -0.086787 

  (0.02877)  (0.03498) 

 [-5.69827] [-2.48121] 

   

∆BOQ (-2) -0.028951 -0.008412 

  (0.02928)  (0.03560) 

 [-0.98863] [-0.23632] 

   

∆WBC(-1)  0.023823  0.015252 

  (0.02377)  (0.02889) 

 [ 1.00240] [ 0.52794] 

   

∆WBC(-2)  0.059918 -0.031605 

  (0.02373)  (0.02885) 

 [ 2.52462] [-1.09551] 

   

C  0.009796  0.008912 

  (0.00441)  (0.00536) 

 [ 2.22277] [ 1.66374] 

   

BOQWBCRESID -0.020684  0.014732 

  (0.00518)  (0.00629) 

 [-3.99538] [ 2.34114] 

 R-squared  0.037150  0.011005 

 Adj. R-squared  0.033377  0.007130 

 S.E. equation  0.157135  0.191007 

 F-statistic  9.846461  2.839783 

 Log likelihood  556.4598  306.2106 

 Akaike AIC -0.858752 -0.468347 
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To begin with, it is interesting to notice that lags of ∆WBC offer no significant explanatory 

power in predicting the contemporaneous value of itself.  The only independent variable which has 

significant explanatory power in predicting ∆WBC is the first lag of ∆BOQ (∆BOQ -1).  This finding is 

consistent with the results for Granger Causality which indicates that ∆BOQ informationally leads ∆WBC.  

Although the model does not explain much of the variation in ∆WBC, in fact it explains little more than 

1%, the F-statistic (2.84) tells us that the probability of each coefficient being (jointly) insignificantly 

different from zero is very close to zero.  Furthermore, the goodness of fit (R2) for each equation is not of 

concern since we are dealing with a system of equations and are more concerned with the estimated sign 

and significance of certain key coefficients.   

 

Unlike ∆WBC, lags of ∆BOQ do offer significant explanatory power in predicting the contemporaneous 

value of itself, especially the first lag with a t-statistic of -5.7.  It is also apparent that lags of ∆WBC do not 

offer much in terms of helping to explain variation in ∆BOQ.  This is also consistent with the results of 

Granger Causality which suggest uni-directional causality from ∆BOQ → ∆WBC.   

 

The most important finding from these results is that the sign and significance of the speed of adjustment 

coefficients (BOQWBCRESID in diagram 9) conform to those hypothesized by cointegration.  

Cointegration says that in a VECM one or both of these parameters must be significantly different from 

zero.  These coefficients tell us which stock is responsible for returning the system to its long-run 

equilibrium relationship.  If both of these terms were no different from zero then we have actually just 

estimated a bivariate VAR as there is no term in the model which would cause the stock prices to return to 

some long-run equilibrium relationship.   

In understanding the dynamics of the relationship between ∆BOQ and ∆WBC it is interesting to note that 

both sequences actively move in opposite directions to restore equilibrium following a shock to the system.  

An alternative might be the case where both sequences move in the same direction, only one at a faster rate 

than the other to restore equilibrium. 

 

Let us now consider the VECM output for another of our identified pairs where we hope the estimated 

coefficients of the VECM better reflect our expectations based on the Granger Causality testing.  The pair 

under consideration here is FKP/WBC where FKP informationally leads WBC and the causality is uni-

directional.  Thus, we should expect that the lags of ∆FKP have some significant explanatory power for 

∆WBC, but lags of ∆WBC should not be significantly different from zero when explaining ∆FKP. 
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Diagram 10: VECM output for FKP/WBC  

 

  

 

 

Consistent with our expectations the lags of ∆FKP (∆FKP-1 and ∆FKP-2) are individually 

statistically significant in helping explain contemporaneous variation in ∆WBC.  Also aligned with our a-

priori expectations the lags of ∆WBC (∆WBC-1 and ∆WBC-2) do not individually contribute to the models 

 Vector Autoregression Estimates 

 Date: 10/02/08   Time: 12:04 

 Sample (adjusted): 4 1285 

 Included observations: 1282 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

 ∆FKP ∆WBC 

∆FKP(-1) -0.147828  0.069899 

  (0.02839)  (0.06812) 

 [-5.20716] [ 1.02615] 

   

∆FKP(-2) -0.082727 -0.153082 

  (0.02843)  (0.06822) 

 [-2.90959] [-2.24388] 

   

∆WBC(-1)  0.002461 -0.005100 

  (0.01184)  (0.02842) 

 [ 0.20782] [-0.17947] 

   

∆WBC(-2)  0.008626 -0.021119 

  (0.01181)  (0.02834) 

 [ 0.73026] [-0.74511] 

   

C  0.005837  0.008553 

  (0.00223)  (0.00536) 

 [ 2.61351] [ 1.59602] 

   

FKPWBCRESID -0.008607  0.014394 

  (0.00243)  (0.00584) 

 [-3.53750] [ 2.46542] 

 R-squared  0.031899  0.011307 

 Adj. R-squared  0.028106  0.007433 

 S.E. equation  0.079593  0.190978 

 F-statistic  8.408992  2.918471 

 Log likelihood  1428.454  306.4060 

 Akaike AIC -2.219117 -0.468652 
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ability to explain ∆FKP.  Together these observations conform to the results of the Granger Causality test 

(see Appendix B) where we identified a uni-directional lead from ∆FKP to ∆WBC.   

The speed of adjustment coefficients (FKPWBCRESID in diagram 10) also conform to the constraints of 

cointegration.  Importantly both coefficients are statistically significant and are of opposite signs so that 

they will move in opposite directions to restore equilibrium following a shock to the system.   

 

VECM output for the 4 remaining final trading pairs are reported in Appendix D.   

 

 

6.3  Results of variance analysis 

 

6.3.1  Impulse response functions 

In the previous section we estimated a VECM which amongst other things provided 

estimates of the speed of adjustment coefficients.  These parameters describe the longer-

term dynamic behaviour of the individual sequences relative to divergences from the 

long-run equilibrium relationship.  A professional investor implementing a pairs trading 

strategy would also be interested in the short-term dynamics of the system.  The impulse 

response functions maps out the short-term behaviour of each sequence in response to 

shocks to the system.  These shocks are applied to each sequence individually and its 

impact on both itself and the other sequence are then plotted against time.  It is important 

to remember that since both sequences are assumed to be stationary processes, the 

cumulative impact of the shock must be finite i.e. the marginal impact of the shock in 

each subsequent time period must progressively reach zero. 
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Diagram 11: Impulse response functions for ∆BOQ/∆WBC 

 

 
 

 

Let us now proceed to interpret the impulse response functions for ∆BOQ/∆WBC in 

diagram 11.  The top left (bottom right) panel plots the dynamic reaction of ∆BOQ 

(∆WBC) in response to a one standard deviation shock to ∆BOQ (∆WBC).  The blue line 

represents the estimated impulse response function while the surrounding red lines are the 

95% confidence intervals.  In the top left (TL) panel we can see that, on average, ∆BOQ 

increases after one period by 0.157 units and decreases by 0.025 units following one 

standard deviation shock to ∆BOQ, both of which are statistically significant.  However 

any movement in response to the shock after two periods is not significant and so we say 
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that the dynamic effects of the shocks last two periods and after that it dies out.  We have 

used diagram 12 to verify the exact values in the TL panel in diagram 11.     

 

Diagram 12: Response of ∆BOQ in period d 

 

 ∆BOQ ∆WBC 

 1  0.157135  0.000000 

  (0.00310)  (0.00000) 

 2 -0.024633  0.004407 

  (0.00441)  (0.00440) 

 3  0.002029  0.010430 

  (0.00447)  (0.00445) 

 4 -0.000414 -0.001816 

  (0.00142)  (0.00081) 

 5 -3.36E-05 -0.000402 

  (0.00036)  (0.00044) 

 6  4.43E-05  5.69E-05 

  (0.00011)  (0.00012) 

 7 -3.25E-06  1.93E-05 

  (4.7E-06)  (3.3E-05) 

 8 -1.25E-06  3.59E-07 

  (3.6E-06)  (9.0E-06) 

 9 -2.02E-08 -1.22E-06 

  (6.5E-07)  (2.2E-06) 

 10  4.83E-08 -1.16E-07 

  (1.4E-07)  (5.7E-07) 

 

 

Similarly, the bottom right (BR) panel in diagram 11 plots the dynamic behaviour of 

∆WBC following a one standard deviation shock to itself.  Diagram 13 tells us that 

∆WBC increases by 0.185 units following this shock which is statistically significant but 

all subsequent impacts are not significantly different from zero.  Thus, on average, a one 

standard deviation shock to ∆WBC impacts on the dynamic behaviour of ∆WBC for only 

a single time period following the shock before wilting away to insignificance.   
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Diagram 13: Response of ∆WBC in period d 

 

  ∆WBC ∆BOQ 

 1  0.047510  0.185004 

  (0.00525)  (0.00365) 

 2 -0.012913  0.002822 

  (0.00533)  (0.00534) 

 3 -0.000883 -0.006186 

  (0.00536)  (0.00535) 

 4  0.000426 -0.001126 

  (0.00097)  (0.00070) 

 5  5.33E-05  0.000248 

  (0.00014)  (0.00057) 

 6 -6.25E-06  8.95E-05 

  (2.9E-05)  (0.00010) 

 7 -5.34E-06 -8.04E-06 

  (1.0E-05)  (3.8E-05) 

 8  2.52E-08 -5.11E-06 

  (3.2E-06)  (8.0E-06) 

 9  3.05E-07 -1.73E-08 

  (7.3E-07)  (2.5E-06) 

 10  1.61E-08  2.64E-07 

  (1.9E-07)  (6.1E-07) 

 

 

 

The truly interesting feature of these functions is how each sequence responds to shocks 

to the other variable.  Let us now recall the primitive form (5.3a/b) of the VAR 

introduced in the method section which will hopefully help us to illustrate some of the 

non-trivial inter-relationships between these sequences.  

 

  (5.3a) 

     (5.3b) 
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Remember that the primitive system cannot be estimated directly due to the feedback 

inherent the system.  Because  is correlated with  and  is correlated with , these 

equations need to be transformed into a more usable form.  Rearranging the primitive 

system yields the standard form of the VAR: 

          

 (5.5a) 

 (5.5b) 

 

The important point to realize is that there remain no feedback issues with this new form 

of the VAR and OLS can be directly applied to estimate both of these equations.  

However, as described in the method section we must constrain one of the variables in 

the primitive system in order to make it identifiable.  This study uses the Granger 

Causality test to determine which one of the contemporaneous coefficients (b12 or b21) to 

constrain to zero in the primitive system.  We then estimate the coefficients from the 

standard form of the VAR and “back-out” the parameter values of the primitive system.  

This is called a Choleski decomposition.  To illustrate, let us suppose that we set the 

constraint b21=0 in the primitive system so that the contemporaneous value of yt does not 

have a contemporaneous effect on zt.  In terms of equation (5.15), the error terms can be 

decomposed as follows: 

 

     (6.1) 

      (6.2) 

 

It can be seen as a result of the Choleski decomposition that although a  shock has no 

direct impact on zt, there is an indirect effect in that lagged values of yt affect the 

contemporaneous value of zt.  The key point is that the decomposition forces a potentially 

important asymmetry on the system since an  shock has contemporaneous effects on 

both yt and zt.  For this reason (6.1) and (6.2) are said to imply an ordering of the 

variables.  A  shock directly affects  and  but an  shock does not affect .  

Hence, zt is “prior” to yt.   
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Let us now replace the variables “yt” and “zt” in our theoretical equation with those 

stocks ∆BOQ and ∆WBC respectively.  Since we have constrained the system so that 

∆WBC does not have a contemporaneous effect on ∆BOQ, the same way yt does not 

contemporaneously effect zt, can we identify patterns in the impulse response functions 

which comply with how we expect them to behave.  

Consider the TR panel of diagram 11 which plots the impact a one standard deviation 

shock to ∆WBC has on ∆BOQ.  We can see that a shock to ∆WBC has no 

contemporaneous affect on ∆BOQ which is consistent with our expectations.  This is 

because we know that BOQ Granger Causes WBC so that we constrain the primitive 

form of the VAR so that the contemporaneous value of ∆WBC has no impact on the 

contemporaneous value of ∆BOQ.  The shock has no significant effect on ∆BOQ in the 

first or second periods after the time of the shock, but does show a statistically significant 

positive effect in the third period.  The effects have totally died out by the fourth period.  

We expect this since for stationary variables the total effect of a shock must be finite.    

This is also consistent with our expectations since lagged values of ∆WBC are allowed to 

have an impact on the contemporaneous value of ∆BOQ.  It is only the coefficient 

relating the contemporaneous value of ∆WBC in the primitive system that we constrain 

to zero, we allow the lagged coefficients to be determined by the model.   

Now consider the BL panel in diagram 11 which plots the impact a one standard 

deviation shock to ∆BOQ has on ∆WBC.  Consistent with our expectations the effects are 

statistically significant contemporaneously and also in both of the first lagged time 

periods.  By the third time period after the shock the effects to ∆WBC have died out.  

This is also consistent with the stationarity of our variables.  The contemporaneous effect 

of the shock is derived from two sources.  Firstly, since we know that ∆BOQ 

informationally drives ∆WBC we allow the contemporaneous value of ∆BOQ to have a 

significant effect on the contemporaneous value of ∆WBC.  The second source of the 

impact can be best described with reference to equation (6.1).  A shock to ∆BOQ, 

through positive correlation, also results in a shock to ∆WBC.  Thus, shocking ∆BOQ is 

going to contemporaneously impact the value of ∆WBC.  Following a shock to the 

system, εit+1 returns to zero, but the autoregressive nature of the system ensures the 

individual series do not immediately return to zero.  The subsequent values of the 
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{∆BOQ} and {∆WBC} sequences converge to their long-run levels.  This convergence is 

assured by the stability of the system.   

 

6.3.2 Variance decomposition   

Diagram 14 tells us the proportion of the movements in the ∆BOQ sequence due to its 

“own” shocks versus the shocks to ∆WBC.  It is quite clear that shocks to ∆WBC explain 

effectively none of the forecast error variance of ∆BOQ at any of the forecast horizons 

reported in diagram 14.  It is accurate to conclude that ∆BOQ is effectively exogenous of 

∆WBC and the ∆BOQ sequence evolves independently of ∆WBC and those shocks to 

∆WBC.   

 

Diagram 14: Variance decomposition of ∆BOQ 
    

 Time S.E. ∆BOQ ∆WBC 

 1  0.157135  100.0000  0.000000 

 2  0.159115  99.92327  0.076727 

 3  0.159470  99.49588  0.504124 

 4  0.159481  99.48298  0.517022 

 5  0.159481  99.48235  0.517653 

 6  0.159481  99.48233  0.517665 

 7  0.159481  99.48233  0.517667 

 8  0.159481  99.48233  0.517667 

 9  0.159481  99.48233  0.517667 

 10  0.159481  99.48233  0.517667 

 

 

Diagram 15 tells us the proportion of the movements in the ∆WBC sequence due to its 

“own” shocks versus the shocks to ∆BOQ.  We can see that shocks to the sequence 

∆BOQ are partly responsible for explaining the forecast error variance of ∆WBC.  We 

conclude that ∆WBC evolves endogenously with ∆BOQ.   
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Diagram 15: Variance Decomposition of ∆WBC 
    

Time S.E. ∆BOQ ∆WBC 

 1  0.191007  6.186837  93.81316 

 2  0.191463  6.612191  93.38781 

 3  0.191565  6.607277  93.39272 

 4  0.191569  6.607510  93.39249 

 5  0.191569  6.607506  93.39249 

 6  0.191569  6.607505  93.39250 

 7  0.191569  6.607505  93.39250 

 8  0.191569  6.607505  93.39250 

 9  0.191569  6.607505  93.39250 

 10  0.191569  6.607505  93.39250 

   

 

At this stage a reasonable question is whether these findings are consistent with what we 

expect given our previous results?  The results of the variance decomposition analysis are 

consistent with our previous results.  The Granger Causality tests tell us that ∆BOQ does 

informationally lead ∆BOQ, and so we would expect to find that shocks to ∆BOQ are 

responsible for explaining some of the forecast error variance of ∆WBC.  Similarly, we 

know that ∆WBC does not Granger Cause ∆BOQ and thus, we are not skeptical as to 

why ∆WBC evolved exogenously of ∆BOQ.   

 

6.4  Is the assumption of error term normality critical? 

 

6.4.1 The issue of normality 
The results provided in this study are useful to gauge an insight into the co-movement 

between our trading pairs.  By modeling the residual spread we gain some understanding 

into the dynamic behaviour of the mean-reverting portfolio.  It is important to note, 

however, that what we are attempting to calibrate to the VECM, a residual series which 

has been derived from an OLS regression.  Gujarati (2003) notes that when performing 

OLS the researcher must assume that the error term is normally distributed, has an 



Page 83 of 130 
 

expected value of zero, constant variance, and constant covariances.  Gujarati (2003) 

continues to say that if autocorrelation persists within the residual series, then this will 

lead to bias in the estimator.  If we have biased estimators then any conclusions that have 

been drawn from those estimated coefficients are incorrect.  Thus, a logical question to 

ask is what do we do if it is found that autocorrelation persists in the residual series?   

 

6.4.2 Common trends model and APT   
 

Common trends cointegration model 

In order to avoid the issues relating to biased estimators, we will now attempt to analyse 

the cointegrating relationships via the use of the Common Trends Model (CTM) (Stock 

and Watson,1991) and reconcile it to the Arbitrage Pricing Theory (APT) (Ross, 1976).  

The common trends model says that given two series yt and zt, these stock price series 

can be decomposed as follows 

 

 (6.3) 

 

 

where nyt and nzt represent the so-called common trends or random walk components of 

the two time series; εyt, εzt are the stationary and firm-specific components of the time 

series.  If the two time series are cointegrated, then their common trends must be identical 

up to a scalar, 

 

     (6.4) 

 

where γ is the cointegrating coefficient.   

 

In a cointegrated system with two individual time series, the innovations sequences 

derived from the common trend components must be perfectly correlated.  This can be 

practically interpreted as the correlation coefficient (ρ) being equal to positive or negative 

unity.  We will denote the innovation sequences derived from the common trends of the 
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two series as ryt and rzt.  The innovation sequence for a random walk is obtained by 

simply taking first differences.  In equation form, we have: 

 

     (6.5) 

 

 

According to the common trends model, cointegration requires that the common trend 

component of each stock price must be identical up to a scalar: 

 

     (6.6) 

 

Moving forward a single period this relationship should still hold so that 

 

     (6.7) 

 

and now it should be clear that from (6.6) and (6.7) that 

 

     (6.8) 

 

This means that if two time series are cointegrated, then according to the common trends 

model, their innovations must also be identical up to a scalar.  Now, if two variables are 

identical up to a scalar (in this case the cointegrating coefficient (γ)), they must be 

perfectly correlated.   

Thus, in a cointegrated system the innovation sequences derived from the common trends 

must also be perfectly correlated.      

 

Based on our discussion so far, we have established a method for determining the 

cointegrating coefficient (γ).  The cointegrating coefficient may be obtained from 

regressing the innovation sequences of the common trends against each other.  Up to this 

point, we have established that we have a linear relationship between the innovation 

sequences, given as 
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     (6.9) 

 

Simply regressing one innovation sequence against the other yields the cointegrating 

coefficient 

 
,      (6.10) 

 

In summary, there are two key conditions which must be satisfied for the existence of a 

cointegrating relationship in a common trends model.  Firstly, the innovation sequences 

derived from the common trends of the two series must be identical up to a scalar.  

Secondly, the firm-specific components of the individual stock price series must be 

stationary.  The common trends component may be stationary, or non-stationary in the 

presence of cointegration.  

 

Common Trends Model and APT 

We start this analysis by realising that the log of stock prices can also be decomposed 

into a random walk component (non-stationary) and a stationary component: 

 

log  (6.11) 

 

where  is the random walk, and  is the stationary component.  Differencing the log of 

stock price yields the sequence of returns.  Therefore, based on equation (6.11), the return 

rt, at time t may also separated into two parts 

 

log log  (6.12) 

 

       (6.13) 
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where  is the return due to the non-stationary trend component, and  is the return due 

to the stationary component.    

It is interesting to note that the return due to the trend component ( ) is identical to the 

innovation derived from the trend component.  Therefore, the cointegration requirements 

pertaining to the innovations of the common trend may be rephrased as follows: If two 

stocks are cointegrated, then the returns from their common trends must be identical up to 

a scalar.   

At this stage, one may naturally query why we would ever expect two individual stocks 

to have the same return?  The Arbitrage Pricing Theory (APT) model (Ross, 1976) can be 

used to explain why certain stocks can be expected to generate identical return payoffs.  

The APT model says that stock returns can be separated into common factor returns 

(returns based on the exposure of stocks to different risk factors)11.  If two stocks share 

the same risk factor exposure profile, then the common factor returns for both the stocks 

must be the same.  This provides us with an economic rationale for the circumstances 

under which we might expect stocks to share a common return component.   

We are now in a position where we can reconcile the APT model with the common trends 

model.  According to APT, stock returns for a single time period can be decomposed into 

two types: common factor returns and firm-specific returns.  Let these correspond to the 

common trend innovation and the first difference of the specific component in the 

common trends model (6.12).  For the correspondence to be valid, the integration of the 

specific returns must be a stationary process.   

Alternatively, as we saw earlier, the specific returns ( ) must not be white noise.  Since 

the APT is a static model and cannot provide us with any guarantee pertaining to the 

dynamic behaviour of the time series of specific returns.  As a result, we must make this 

assumption that the specific returns are not white noise.  It is reassuring, to a certain 

extent, to know that the validity of this assumption is tested when running the 

cointegration tests and pairs where the specific component is non-stationary are 

eliminated.  We can now interpret the inferences from the common trends model in APT 

terms.  The correlation of the innovation sequence is the common factor correlation.   
                                                 
11 Factors to use in the APT are extensive and varied, however, should be set so that the unexplained 
component, the firm-specific return is relatively small.  See Fama and French (1993) 3-factor model for a 
widely used combination of factors used in the literature.   
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It can now be said that a pair of stocks with the same risk factor exposure profiles, 

satisfies the necessary conditions for cointegration.  Consider two stocks A and B with 

risk factor exposure vectors γβ and β, respectively.  The factor exposure vectors in this 

case are identical up to a scalar.  We denote the factor exposures as 

 

Stock A:     , , , … ,  

Stock B:       , , , … ,  

 

Geometrically, it may be interpreted that the factor exposure vectors of the two stocks 

point towards the same direction; that is, the angle between them is zero.   

 

If x=(x1,x2,x3,…xn) is the factor returns vector, and  and are the specific returns 

for stocks A and B, then the returns for the stocks rA and rB are given as 

 

, … ,  

, … ,  

 

The common factor returns for the stocks are therefore 

 

, … ,  

, … ,  

 

Thus, = .  The innovation sequences of the common trend are identical up to a 

scalar.  This satisfies the first condition for cointegration.  Additionally, the spread series 

must be stationary for cointegration (rA-γrB).   

As we established previously, a necessary condition of cointegration is that the two 

stocks share an identical risk factor vector.  Geometrically, this can be interpreted as the 

requirement that the vectors point towards the same direction.  Thus, a key area to look at 
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for a measure of cointegration is the risk factor exposure profiles of the individual stocks 

and how closely aligned they are. 

 

The Distance Measure 

Recall from the discussion on the common trends model that the necessary condition for 

cointegration is that the innovation sequences derived from the common trends must be 

perfectly correlated.  We also established that the common factor return of the APT 

model might be interpreted as the innovations derived from the common trends.  The 

correlation between the innovation sequence sequences is therefore the correlation 

between the common factor returns.  The closer the absolute value of this measure is to 

unity, the greater will be the degree of co-movement.  The distance measure proposed in 

Vidyamurthy (2004) is exactly that: the absolute value of the correlation of the common 

factor returns.  The formula for the distance measure is therefore given as 

 

| |     (6.14) 

 

where xA and xB are the factor exposure vectors of the two stocks A and B, and F is the 

covariance matrix.   

 

Interpreting the Distance Measure 

In subsequent sections it was hinted that perfect alignment of the factor exposure vectors, 

that is, a zero angle between them, is indicative of cointegration.  Vidyamurthy (2004) 

transforms the factor exposure vectors from the space of factor exposures to the space of 

returns and then measures the angle between the transformed vectors.  This is necessary 

since all the factors in the multi-factor model are not created equal.  Returns are more 

sensitive to changes in some factors versus others.  Vidyamurthy (2004) shows that  

 
,     (6.15) 
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Thus, it is clear that when θ=0, then ρ=1 and we have a cointegrating relationship 

between the two stocks.      

7.  Conclusion 
The purpose of this study was to develop a method for selecting trading pairs which 

could then be used in a pairs trading strategy.  Upon the identification of the pairs, an 

analysis of the co-movement between the stocks was conducted with the aim of providing 

insight into the dynamic behaviour of the stocks, which would be valuable to an 

institutional investor.   

This study employed the Johansen test (1988) to identify cointegrated stock pairs which 

share a long-run equilibrium pricing relationship.  The search for trading pairs was 

limited to 17 financial stocks trading on the ASX200.  We restricted our trading pairs to 

the most liquid segment of the ASX to reduce the adverse effects associated with 

“moving” illiquid shares, such as increased transactions costs and market impact costs.  

By constraining the search to include only stocks from within the same industry group, it 

was likely that their prices were driven by a common set of fundamental factors.  As a 

result, it is more likely that any cointegrating relationships identified in-sample, will also 

remain significant out-of-sample.   

The study identified 5 (from a possible 136) trading pairs which were cointegrated using 

both daily prices, and weekly prices.  We then estimated the long-run equilibrium 

relationship between each of the pairs and obtained the residual series.  These residual 

series were all tested for stationarity using the ADF test.  For each of these tests, the null 

hypothesis that the residual series had a unit root (which implies non-stationarity) was 

rejected, and thus, we concluded that each of the residual series was a stationary process.  

This finding was consistent with our hypothesis since a cointegrating relationship 

between two I(1) processes is only meaningful if the resulting residual spread is 

stationary.   

Each of these residual series was modeled as a Vector-Error-Correction model (VECM) 

and variance analysis conducted for each.  It can be concluded that in the presence of a 

cointegrating relationship between two time series, at least one of the speed of 

adjustments coefficients must be significantly different from zero.  This ensured that the 
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system mean-reverted following a deviation from its long-run equilibrium.  It can also be 

concluded that shocks to one of the time series can also have an effect on the other time 

series.  This impact is generally only statistically significant when shocking the leading 

variable.  For example, suppose xt leads yt, then shocking xt obviously effects its own 

future time path, but also the time path of yt since xt is a key factor explaining the 

dynamics of yt.  However, we generally find that the impact on xt from shocking yt is 

little different from zero.  The contemporaneous impact on xt from a shock to yt is always 

zero as this is a straight forward result of the Choleski decomposition.   

There are two main directions for future research which could extend this study.  The 

purpose of any trading strategy should be to maximise return, for a given risk tolerance.  

The purpose of this study was not to access the profitability of this pairs trading 

approach.  Nevertheless, this remains its ultimate goal. It would be interesting to discuss 

trading rules and risk management devices to determine if this approach to pairs trading 

could be used by professional money managers to profit.  Secondly, a key assumption of 

the analysis conducted in this study is that the error terms from the cointegrating equation 

conformed to the assumptions of OLS.  These assumptions can be summarised by stating 

that the error term is required to be normally distributed.  This study introduced the idea 

of a Common Trends Model (CTM) and attempted to reconcile it to the Arbitrage Pricing 

Theory (APT).  Future research could look at the ability of the CTM and APT to 

overcome the issue of autocorrelation in the residual series and the problems it provides 

for coefficient interpretation.   
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8. Appendix 

Appendix A – Results for Johansen Tests 

 

 
 

 

Date: 09/03/08   Time: 13:07   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: AMP ANZ     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.015383  19.97145  15.49471  0.0099 

At most 1  0.000100  0.128265  3.841466  0.7202 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

 

 

 

    

Date: 09/03/08   Time: 13:15   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: SGB WBC     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.018584  24.28758  15.49471  0.0018 

At most 1  0.000216  0.276517  3.841466  0.5990 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Date: 09/03/08   Time: 13:34   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: WBC FKP     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.015380  19.98666  15.49471  0.0098 

At most 1  0.000116  0.147868  3.841466  0.7006 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

 

 
Date: 09/03/08   Time: 13:38   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: ASX LLC     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.014721  20.76646  15.49471  0.0073 

At most 1  0.001393  1.784160  3.841466  0.1816 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Date: 09/03/08   Time: 11:43   

Sample (adjusted): 3 1285   

Included observations: 1283 after adjustments  

Trend assumption: Linear deterministic trend  

Series: CBA ASX     

Lags interval (in first differences): 1 to 1  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.018280  26.56725  15.49471  0.0007 

At most 1  0.002255  2.897072  3.841466  0.0887 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

 

     

Date: 09/03/08   Time: 13:48   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: SGB ASX     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.013258  20.58040  15.49471  0.0078 

At most 1  0.002728  3.496438  3.841466  0.0615 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  



Page 98 of 130 
 

     

Date: 09/03/08   Time: 14:12   

Sample (adjusted): 3 1285   

Included observations: 1283 after adjustments  

Trend assumption: Linear deterministic trend  

Series: BEN AMP    

Lags interval (in first differences): 1 to 1  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.016535  21.39979  15.49471  0.0057 

At most 1  6.37E-06  0.008178  3.841466  0.9275 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

Date: 09/03/08   Time: 14:28   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: AMP ASX     

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.014006  20.31862  15.49471  0.0087 

At most 1  0.001767  2.263994  3.841466  0.1324 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Date: 09/03/08   Time: 10:39 

Sample (adjusted): 3 1285   

Included observations: 1283 after adjustments  

Trend assumption: Linear deterministic trend  

Series: AMP PPT     

Lags interval (in first differences): 1 to 1  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.014517  19.32169  15.49471  0.0126 

At most 1  0.000437  0.560491  3.841466  0.4541 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

 

 

Date: 09/03/08   Time: 11:22   

Sample (adjusted): 6 1285   

Included observations: 1280 after adjustments  

Trend assumption: Linear deterministic trend  

Series: AMP QBE    

Lags interval (in first differences): 1 to 4  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.015424  20.93675  15.49471  0.0068 

At most 1  0.000812  1.039983  3.841466  0.3078 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  
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Date: 09/03/08   Time: 11:38   

Sample (adjusted): 3 1285   

Included observations: 1283 after adjustments  

Trend assumption: Linear deterministic trend  

Series: AMP CBA     

Lags interval (in first differences): 1 to 1  

     

Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.015126  19.79985  15.49471  0.0105 

At most 1  0.000191  0.245404  3.841466  0.6203 

 Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

Appendix B – Estimation output for Granger Causality testing 

 
 

Pairwise Granger Causality Tests 

Date: 10/21/08   Time: 10:52 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  AMP does not Granger Cause ANZ 1283  2.11324  0.12127 

  ANZ does not Granger Cause AMP  8.79338  0.00016 
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Pairwise Granger Causality Tests 

Date: 10/21/08   Time: 10:45 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  WBC does not Granger Cause SGB 1283  2.47773  0.08434 

  SGB does not Granger Cause WBC  4.93901  0.00730 

 

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:23 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  FKP does not Granger Cause WBC 1283  8.10548  0.00032 

  WBC does not Granger Cause FKP  1.64525  0.19337 

 

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:24 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  ASX does not Granger Cause LLC 1283  2.55930  0.07776 

  LLC does not Granger Cause ASX  4.75226  0.00879 
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Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 11:42 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  ASX does not Granger Cause CBA 1283  11.3852  1.3E-05 

  CBA does not Granger Cause ASX  0.12564  0.88194 

 

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:28 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  ASX does not Granger Cause SGB 1283  3.74302  0.02394 

  SGB does not Granger Cause ASX  3.63622  0.02662 

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:29 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  AMP does not Granger Cause BEN 1283  3.24258  0.03938 

  BEN does not Granger Cause AMP  8.96944  0.00014 
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Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:30 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  ASX does not Granger Cause BEN 1283  9.78929  6.0E-05 

  BEN does not Granger Cause ASX  9.62176  7.1E-05 

 

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:31 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  AMP does not Granger Cause AXA 1283  0.66245  0.51577 

  AXA does not Granger Cause AMP  8.59394  0.00020 

 

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 12:32 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  ASX does not Granger Cause AMP 1283  8.24753  0.00028 

  AMP does not Granger Cause ASX  0.88969  0.41104 
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Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 10:38 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  PPT does not Granger Cause AMP 1283  9.73983  6.3E-05 

  AMP does not Granger Cause PPT  0.99281  0.37082 

 

 

 

Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 11:23 

Sample: 1 1285  

Lags: 5   

  Null Hypothesis: Obs F-Statistic Probability 

  QBE does not Granger Cause AMP 1280  4.26516  0.00075 

  AMP does not Granger Cause QBE  0.78398  0.56121 

    

 

 
Pairwise Granger Causality Tests 

Date: 09/03/08   Time: 11:38 

Sample: 1 1285  

Lags: 2   

  Null Hypothesis: Obs F-Statistic Probability 

  CBA does not Granger Cause AMP 1283  10.4315  3.2E-05 

  AMP does not Granger Cause CBA  4.25640  0.01437 
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Appendix C – Output from cointegrating equation, plot of residuals and ADF 

test  

 

 
 

 

Dependent Variable: AMP   

Method: Least Squares   

Date: 10/20/08   Time: 15:11   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

ANZ 0.359272 0.008397 42.78823 0.0000 

C -1.062734 0.184118 -5.772041 0.0000 

R-squared 0.587968     Mean dependent var 6.660409 

Adjusted R-squared 0.587646     S.D. dependent var 2.028269 

S.E. of regression 1.302448     Akaike info criterion 3.367924 

Sum squared resid 2176.444     Schwarz criterion 3.375952 

Log likelihood -2161.891     F-statistic 1830.832 

Durbin-Watson stat 0.009208     Prob(F-statistic) 0.000000 
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Null Hypothesis: ANZAMPRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.224803  0.0800 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  

 
 

 

Dependent Variable: WBC   

Method: Least Squares   

Date: 10/20/08   Time: 15:20   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

C 2.037958 0.080508 25.31372 0.0000 

SGB 0.693041 0.003176 218.2066 0.0000 

R-squared 0.973761     Mean dependent var 19.22138 

Adjusted R-squared 0.973741     S.D. dependent var 3.703152 

S.E. of regression 0.600085     Akaike info criterion 1.818063 

Sum squared resid 462.0101     Schwarz criterion 1.826092 

Log likelihood -1166.105     F-statistic 47614.12 

Durbin-Watson stat 0.090896     Prob(F-statistic) 0.000000 
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Null Hypothesis: SGBWBCRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -5.236605  0.0001 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  
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Dependent Variable: WBC   

Method: Least Squares   

Date: 10/20/08   Time: 15:21   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

C 11.66849 0.060435 193.0760 0.0000 

FKP 2.056036 0.014863 138.3292 0.0000 

R-squared 0.937163     Mean dependent var 19.22138 

Adjusted R-squared 0.937114     S.D. dependent var 3.703152 

S.E. of regression 0.928641     Akaike info criterion 2.691366 

Sum squared resid 1106.425     Schwarz criterion 2.699394 

Log likelihood -1727.202     F-statistic 19134.97 

Durbin-Watson stat 0.061816     Prob(F-statistic) 0.000000 
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Null Hypothesis: FKPWBCRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -4.815558  0.0004 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  

 

 

 
 

Dependent Variable: ASX   

Method: Least Squares   

Date: 10/20/08   Time: 15:23   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

LLC 3.238890 0.026917 120.3284 0.0000 

C -18.35087 0.348484 -52.65920 0.0000 

R-squared 0.918601     Mean dependent var 22.41877 

Adjusted R-squared 0.918538     S.D. dependent var 10.23579 

S.E. of regression 2.921457     Akaike info criterion 4.983597 

Sum squared resid 10950.29     Schwarz criterion 4.991626 

Log likelihood -3199.961     F-statistic 14478.92 

Durbin-Watson stat 0.039223     Prob(F-statistic) 0.000000 
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Null Hypothesis: LLCASXRESID has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.459715  0.0093 

Test critical values: 1% level  -3.435231  

 5% level  -2.863583  

 10% level  -2.567907  

*MacKinnon (1996) one-sided p-values.  
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Dependent Variable: CBA   

Method: Least Squares   

Date: 09/03/08   Time: 11:43   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

ASX 0.761352 0.004831 157.6086 0.0000 

C 19.19414 0.119043 161.2370 0.0000 

R-squared 0.950887     Mean dependent var 36.26271 

Adjusted R-squared 0.950849     S.D. dependent var 7.991758 

S.E. of regression 1.771778     Akaike info criterion 3.983400 

Sum squared resid 4027.591     Schwarz criterion 3.991428 

Log likelihood -2557.334     F-statistic 24840.48 

Durbin-Watson stat 0.043269     Prob(F-statistic) 0.000000 
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Null Hypothesis: ASXCBARES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.894820  0.0125 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

 

 

 

 
Dependent Variable: AMP   

Method: Least Squares   

Date: 10/20/08   Time: 18:46   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

AXA 0.895630 0.022182 40.37627 0.0000 

C 2.861072 0.101319 28.23829 0.0000 

R-squared 0.559597     Mean dependent var 6.660409 

Adjusted R-squared 0.559254     S.D. dependent var 2.028269 

S.E. of regression 1.346541     Akaike info criterion 3.434511 

Sum squared resid 2326.302     Schwarz criterion 3.442540 

Log likelihood -2204.673     F-statistic 1630.243 

Durbin-Watson stat 0.007529     Prob(F-statistic) 0.000000 
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Null Hypothesis: AXAAMPRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.398617  0.0519 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  
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Dependent Variable: AMP   

Method: Least Squares   

Date: 10/20/08   Time: 18:48   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

ASX 0.142731 0.003837 37.19484 0.0000 

C 3.460546 0.094566 36.59395 0.0000 

R-squared 0.518837     Mean dependent var 6.660409 

Adjusted R-squared 0.518462     S.D. dependent var 2.028269 

S.E. of regression 1.407475     Akaike info criterion 3.523027 

Sum squared resid 2541.606     Schwarz criterion 3.531056 

Log likelihood -2261.545     F-statistic 1383.456 

Durbin-Watson stat 0.007795     Prob(F-statistic) 0.000000 
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Null Hypothesis: ASXAMPRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.321495  0.0632 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  

 

 

 
Dependent Variable: AMP   

Method: Least Squares   

Date: 10/20/08   Time: 18:49   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

PPT 0.087008 0.002509 34.67915 0.0000 

C 1.975508 0.141081 14.00267 0.0000 

R-squared 0.483836     Mean dependent var 6.660409 

Adjusted R-squared 0.483434     S.D. dependent var 2.028269 

S.E. of regression 1.457769     Akaike info criterion 3.593246 

Sum squared resid 2726.490     Schwarz criterion 3.601275 

Log likelihood -2306.661     F-statistic 1202.644 

Durbin-Watson stat 0.007226     Prob(F-statistic) 0.000000 
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Null Hypothesis: PPTAMPRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -2.803079  0.1963 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  
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Dependent Variable: AMP   

Method: Least Squares   

Date: 10/20/08   Time: 18:51   

Sample: 1 1285   

Included observations: 1285   

Variable Coefficient Std. Error t-Statistic Prob.   

QBE 0.194123 0.004564 42.53079 0.0000 

C -0.379003 0.169482 -2.236241 0.0255 

R-squared 0.585040     Mean dependent var 6.660409 

Adjusted R-squared 0.584717     S.D. dependent var 2.028269 

S.E. of regression 1.307066     Akaike info criterion 3.375002 

Sum squared resid 2191.905     Schwarz criterion 3.383031 

Log likelihood -2166.439     F-statistic 1808.868 

Durbin-Watson stat 0.008541     Prob(F-statistic) 0.000000 
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Null Hypothesis: QBEAMPRES has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.572623  0.0326 

Test critical values: 1% level  -3.965209  

 5% level  -3.413315  

 10% level  -3.128686  

*MacKinnon (1996) one-sided p-values.  
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Appendix D – Estimation output from VECM 

 

 
 

 Vector Autoregression Estimates 

 Date: 10/21/08   Time: 11:24 

 Sample (adjusted): 4 1285 

 Included observations: 1282 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

 DSGB DWBC 

DSGB(-1) -0.077706 -0.007156 

  (0.03228)  (0.02623) 

 [-2.40702] [-0.27279] 

   

DSGB(-2) -0.037789  0.009676 

  (0.03230)  (0.02624) 

 [-1.17001] [ 0.36870] 

   

DWBC(-1)  0.030074 -0.005002 

  (0.03975)  (0.03230) 

 [ 0.75661] [-0.15487] 

   

DWBC(-2)  0.026602 -0.045826 

  (0.03968)  (0.03224) 

 [ 0.67043] [-1.42125] 

   

C  0.015172  0.008326 

  (0.00658)  (0.00535) 

 [ 2.30445] [ 1.55625] 

   

SGBWBCRESID -0.023285  0.035614 

  (0.01121)  (0.00911) 

 [-2.07727] [ 3.90978] 

 R-squared  0.007976  0.013049 

 Adj. R-squared  0.004088  0.009182 

 Sum sq. resids  70.35680  46.45681 

 S.E. equation  0.234816  0.190809 

 F-statistic  2.051757  3.374213 

 Log likelihood  41.48568  307.5368 
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 Vector Autoregression Estimates 

 Date: 10/21/08   Time: 11:30 

 Sample (adjusted): 4 1285 

 Included observations: 1282 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

 DFKP DWBC 

DFKP(-1) -0.147828  0.069899 

  (0.02839)  (0.06812) 

 [-5.20716] [ 1.02615] 

   

DFKP(-2) -0.082727 -0.153082 

  (0.02843)  (0.06822) 

 [-2.90959] [-2.24388] 

   

DWBC(-1)  0.002461 -0.005100 

  (0.01184)  (0.02842) 

 [ 0.20782] [-0.17947] 

   

DWBC(-2)  0.008626 -0.021119 

  (0.01181)  (0.02834) 

 [ 0.73026] [-0.74511] 

   

C  0.005837  0.008553 

  (0.00223)  (0.00536) 

 [ 2.61351] [ 1.59602] 

   

FKPWBCRESID -0.008607  0.014394 

  (0.00243)  (0.00584) 

 [-3.53750] [ 2.46542] 

 R-squared  0.031899  0.011307 

 Adj. R-squared  0.028106  0.007433 

 Sum sq. resids  8.083477  46.53884 

 S.E. equation  0.079593  0.190978 

 F-statistic  8.408992  2.918471 

 Log likelihood  1428.454  306.4060 
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 Vector Autoregression Estimates 

 Date: 10/21/08   Time: 11:33 

 Sample (adjusted): 4 1285 

 Included observations: 1282 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

 DLLC DASX 

DLLC(-1)  0.007376  0.027250 

  (0.02885)  (0.06126) 

 [ 0.25569] [ 0.44480] 

   

DLLC(-2) -0.085669 -0.022473 

  (0.02881)  (0.06119) 

 [-2.97331] [-0.36726] 

   

DASX(-1) -0.006931 -0.018581 

  (0.01360)  (0.02888) 

 [-0.50963] [-0.64329] 

   

DASX(-2)  0.029098 -0.070275 

  (0.01360)  (0.02888) 

 [ 2.14005] [-2.43368] 

   

C  0.006802  0.030894 

  (0.00472)  (0.01003) 

 [ 1.44033] [ 3.08028] 

   

LLCASXRESID -0.006261  0.001263 

  (0.00162)  (0.00345) 

 [-3.85693] [ 0.36625] 

 R-squared  0.018990  0.005878 

 Adj. R-squared  0.015146  0.001982 

 Sum sq. resids  35.99761  162.3596 

 S.E. equation  0.167962  0.356709 

 F-statistic  4.940188  1.508860 

 Log likelihood  471.0371 -494.5404 
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 Vector Autoregression Estimates 

 Date: 10/21/08   Time: 11:36 

 Sample (adjusted): 4 1285 

 Included observations: 1282 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

 DASX DCBA 

DASX(-1) -0.033234 -0.008680 

  (0.02912)  (0.02742) 

 [-1.14124] [-0.31650] 

   

DASX(-2) -0.080606  0.057055 

  (0.02906)  (0.02736) 

 [-2.77404] [ 2.08507] 

   

DCBA(-1)  0.024120  0.000477 

  (0.03090)  (0.02910) 

 [ 0.78063] [ 0.01638] 

   

DCBA(-2) -0.006045 -0.025604 

  (0.03091)  (0.02911) 

 [-0.19559] [-0.87966] 

   

C  0.031146  0.017437 

  (0.00997)  (0.00939) 

 [ 3.12337] [ 1.85680] 

   

ASXCBARESID -0.022865  0.006386 

  (0.00567)  (0.00534) 

 [-4.03439] [ 1.19654] 

 R-squared  0.018417  0.004435 

 Adj. R-squared  0.014570  0.000534 

 Sum sq. resids  160.3117  142.1707 

 S.E. equation  0.354452  0.333795 

 F-statistic  4.788144  1.136897 

 Log likelihood -486.4039 -409.4250 
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Appendix E – Impulse Response Functions 
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Appendix F – Variance decomposition  

 

Variance decomposition of DSGB 

    

Period S.E. DSGB DWBC 

1 0.234816 100.0000 0.000000 

2 0.235372 99.95538 0.044621 

3 0.235463 99.92675 0.073254 

4 0.235466 99.92574 0.074263 

5 0.235466 99.92558 0.074416 

6 0.235466 99.92558 0.074424 

7 0.235466 99.92558 0.074425 

8 0.235466 99.92558 0.074425 

9 0.235466 99.92558 0.074425 

10 0.235466 99.92558 0.074425 

 

Variance decomposition of DWBC 

 
Period S.E. DSGB DWBC 

1 0.190809 24.92960 75.07040 

2 0.190823 24.93872 75.06128 

3 0.190985 24.90716 75.09284 

4 0.190985 24.90715 75.09285 

5 0.190985 24.90705 75.09295 

6 0.190985 24.90705 75.09295 

7 0.190985 24.90705 75.09295 

8 0.190985 24.90705 75.09295 

9 0.190985 24.90705 75.09295 

10 0.190985 24.90705 75.09295 
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Variance decomposition of DFKP 

 
Period S.E. DFKP DWBC 

1 0.079593 100.0000 0.000000 

2 0.080447 99.99670 0.003302 

3 0.080590 99.95975 0.040247 

4 0.080607 99.95852 0.041482 

5 0.080607 99.95830 0.041702 

6 0.080607 99.95827 0.041728 

7 0.080607 99.95827 0.041728 

8 0.080607 99.95827 0.041729 

9 0.080607 99.95827 0.041729 

10 0.080607 99.95827 0.041729 

 

Variance decomposition of DWBC 

 
 Period S.E. DFKP DWBC 

 1  0.190978  3.301606  96.69839 

 2  0.191056  3.378386  96.62161 

 3  0.191591  3.875416  96.12458 

 4  0.191596  3.880746  96.11925 

 5  0.191600  3.883879  96.11612 

 6  0.191600  3.884095  96.11590 

 7  0.191600  3.884098  96.11590 

 8  0.191600  3.884100  96.11590 

 9  0.191600  3.884100  96.11590 

 10  0.191600  3.884100  96.11590 
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Variance decomposition of DLLC 

 
Period S.E. DLLC DASX 

1 0.167962 100.0000 0.000000 

2 0.167980 99.97962 0.020377 

3 0.168702 99.62186 0.378144 

4 0.168702 99.62162 0.378382 

5 0.168711 99.61292 0.387081 

6 0.168711 99.61292 0.387081 

7 0.168711 99.61281 0.387193 

8 0.168711 99.61281 0.387193 

9 0.168711 99.61281 0.387194 

10 0.168711 99.61281 0.387194 

 

 

Variance decomposition of DASX 

 
 Period S.E. DLLC DASX 

 1  0.356709  5.941635  94.05837 

 2  0.356779  5.946186  94.05381 

 3  0.357740  5.991207  94.00879 

 4  0.357742  5.991232  94.00877 

 5  0.357747  5.991825  94.00818 

 6  0.357747  5.991824  94.00818 

 7  0.357747  5.991829  94.00817 

 8  0.357747  5.991829  94.00817 

 9  0.357747  5.991829  94.00817 

 10  0.357747  5.991829  94.00817 
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Variance decomposition of DASX 

 
Period S.E. DASX DCBA 

1 0.354452 100.0000 0.000000 

2 0.354663 99.95259 0.047408 

3 0.355845 99.94912 0.050876 

4 0.355853 99.94868 0.051318 

5 0.355859 99.94863 0.051370 

6 0.355860 99.94863 0.051372 

7 0.355860 99.94863 0.051373 

8 0.355860 99.94863 0.051373 

9 0.355860 99.94863 0.051373 

10 0.355860 99.94863 0.051373 

 

Variance decomposition of DCBA 

 
 Period S.E. DASX DCBA 

 1  0.333795  8.004691  91.99531 

 2  0.333809  8.012277  91.98772 

 3  0.334390  8.270573  91.72943 

 4  0.334390  8.270592  91.72941 

 5  0.334397  8.274299  91.72570 

 6  0.334397  8.274308  91.72569 

 7  0.334397  8.274335  91.72567 

 8  0.334397  8.274335  91.72567 

 9  0.334397  8.274335  91.72566 

 10  0.334397  8.274335  91.72566 

 

 

 


