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Abstract 

Gene expression is known to be regulated at the level of transcription. Recently, 

however, there has been a growing realisation of the importance of gene regulation at 

the post-transcriptional level, namely at the level of pre-mRNA processing (5’ capping, 

splicing and polyadenylation), nuclear export, mRNA localisation and translation. 

 

Erythroid krüppel-like factor (Eklf) is the founding member of the Krüppel-like factor 

(Klf) family of transcription factors and plays an important role in erythropoiesis. In 

addition to its nuclear presence, Eklf was recently found to localise to the cytoplasm 

and this observation prompted us to examine whether this protein has a role as an 

RNA-binding protein, in addition to its well-characterised DNA-binding function. In this 

thesis we demonstrate that Eklf displays RNA-binding activity in an in vitro and in vivo 

context through the use of its classical zinc finger (ZF) domains. Furthermore, using two 

independent in vitro assays, we show that Eklf has a preference for A and U RNA 

homoribopolymers. These results represent the first description of RNA-binding by a 

member of the Klf family. 

 

We developed a dominant negative mutant of Eklf by expressing its ZF region in murine 

erythroleukaemia (MEL) cells.  We used this to investigate the importance of this 

protein in haematopoietic lineage decisions by examining its effect on the multipotent 

K562 cell line. We provide evidence that Eklf appears to be critical not only for the 

promotion of erythropoiesis, but also for the inhibition of megakaryopoiesis. 
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Chapter 1 – General Introduction 

1.1  Transcriptional regulation of gene expression 

All large complex multicellular organisms originate from a single cell containing a set of 

genomic DNA.  Proliferation of this cell and the consequent differentiation into the 

different cell types, as well as maintenance of the normal function within a cell is 

brought about by expressing the appropriate sets of genes in a temporally- and 

spatially-controlled manner. Control of gene expression can be carried out at several 

stages, the best characterised being at the level of transcription. 

 

1.1.1  Cis-acting elements 

Cis-acting elements are DNA sequences that influence gene activation or repression 

through the recruitment of various proteins to the site of transcription. They are 

categorised as either proximal or distal elements. Promoters that contain proximal 

elements are typically located up to a few hundred base pairs upstream of a gene. CAAT 

and CACCC sequences found upstream of the ß-globin gene are two examples of 

proximal promoter elements (Myers et al., 1986). These sequences are responsible for 

the direct recruitment of trans-acting transcription factors, which recognise and bind to 

these sequence elements. Transcription factors can activate gene expression through 

recruitment of the basal transcriptional machinery, which consists of RNA polymerase II 

and its associated general transcription factors TFIIA, -B, -D, -E, -F and –H  

(Lemon and Tjian, 2000; Muller and Tora, 2004). The general transcription factor TFIID 
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is composed of TATA-binding protein (TBP) and approximately ten TBP-associated 

factors (Woychik and Hampsey, 2002). Alternatively, transcription factors repress gene 

expression through the recruitment of transcriptional co-repressors (Thiel et al., 2004). 

 

The distal elements comprise a diverse class of regulatory sequences, which are located 

further away from the proximal promoter and the gene. These elements include 

enhancers, which activate transcriptional activity at the promoter and are thought to do 

so by looping to a position that is physically close to the promoter (Dean, 2004); 

silencers, which repress transcriptional activity through the recruitment of one or more 

repressor proteins or a repression complex (Harju et al., 2000); and insulators, which 

can block spurious contact between enhancers/silencers and the promoters of other 

genes in close proximity (West and Fraser, 2002). 

 

1.1.2  Trans-acting elements 

Gene control at the level of transcription is primarily facilitated by regulatory 

transcription factors that bind to sequences at promoters, enhancers or silencers to 

activate or repress expression of their target genes. Frequently these transcription 

factors possess two distinct domains; a DNA-binding domain that recognises the  

cis-acting element and a regulatory domain, which allows for the recruitment of  

co-regulator proteins to mediate gene activation or repression (Patikoglou and Burley, 

1997). Many different types of DNA-binding domains have been described in the 

literature, including heliex-turn-helix motifs that are found in homeodomain proteins 
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(Otting et al., 1990), basic leucine zipper domains found in proteins such as C/EBP 

(Ellenberger et al., 1992) and zinc fingers, found in proteins such as transcription factor 

IIIA (TFIIIA) (Lee et al., 1989; Miller et al., 1985) and the related Sp/Krüppel-like factor 

(Klf) family. The zinc finger proteins will be discussed in greater detail later in the 

chapter. 

 

The regulatory domain of a transcription factor that activates gene expression is 

frequently referred to as an activation domain. Some activation domains act through 

the recruitment of a mediator, which in turn recruits RNA polymerase II and the general 

transcription factors to form the basal transcriptional machinery (Kornberg, 2005). 

Alternatively, activation domains function through the recruitment of histone modifying 

proteins such as Histone Acetyltransferases (HATs). The addition of acetyl groups to 

histone tails, catalysed by HATs, relieves internucleosomal contacts, thereby resulting in 

a transcriptionally active chromatin state (Roeder, 2005). Conversely, the regulatory 

domain of a transcription factor that represses gene expression is often referred to as a 

repression domain.  This domain functions either passively through competition with 

transcriptional activators for DNA-binding sites (Thiel et al., 2004), or actively through 

the recruitment of co-repressor proteins such as DNA methyltransferase 3 (Dnmt3) and 

C-terminal binding protein (CtBP) (Gaston and Jayaraman, 2003).  Co-repressors 

function to repress transcription through inhibition of the assembly of the basal 

transcriptional machinery or the compaction of chromatin through the recruitment of 

histone modifying enzymes, such as histone deacetylases (HDACs) (Gaston and 

Jayaraman, 2003). It must be noted that the expression of most genes is regulated in a 
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co-ordinated fashion by different types of activators and repressors, and that some 

transcription factors have the ability to recruit co-activators or co-repressors depending 

on the promoter or cellular context (Lemon and Tjian, 2000). 

 

1.2  Post-transcriptional regulation of gene expression 

The control of gene expression at the level of transcription has been intensively studied. 

However, there is now a growing appreciation of the importance of gene regulation at 

the post-transcriptional level (Maniatis and Reed, 2002). Post-transcriptional control of 

gene expression is mediated by various combinations of RNA-binding proteins (RBPs), 

which function to control the processing (mRNA capping, alternative splicing and 

polyadenylation), export, localisation, stability and translation of the mRNA transcripts 

within a cell (Mata et al., 2005). The structures of proteins that bind RNA are diverse, 

but can be classified through a few characteristic protein motifs. The most common are 

the RNA recognition motif (RRM) (Query et al., 1989), the KH domain  

(Siomi et al., 1993a), the dsRNA binding domain (St Johnston et al., 1992), the arginine-

rich motif (Calnan et al., 1991), and the three classes of ZF (Laity et al., 2001). 

Regulation at the post-transcriptional level adds substantial complexity to gene 

expression. In addition, a multitude of evidence suggests that the processes involved in 

post-transcriptional regulation are physically and functionally coupled to each other, as 

well as to other steps in the gene expression pathway (Maniatis and Reed, 2002). Some 

of the stages where post-transcriptional gene regulation occurs will be described in this 

section. 
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1.2.1  mRNA processing and export 

During transcription, nearly all pre-mRNA transcripts are post-transcriptionally modified 

at their 5’ and 3’ ends. The pre-mRNA is capped at its 5’ end, introns are removed 

through splicing, and the 3’ end is cleaved and polyadenylated (Maniatis and Reed, 

2002). 5’ capping has important effects on mRNA maturation, translation and stabililty 

and is the first of the pre-mRNA processing events, as it occurs on RNA polymerase II 

nascent transcripts that are 20-25 nucleotides in length (Shatkin and Manley, 2000). 

Phosphorylation of serine 5 of the C-terminal domain (CTD) of RNA polymerase II 

changes its conformation, allowing it to recruit the three capping enzymes, namely RNA 

5’-triphosphatase (RT), guanylyltransferase (GT) and N7G-methyltransferase (MT), 

which act sequentially to modify the exposed end of the pre-mRNA transcript  

(Shatkin and Manley, 2000).  As is the case with capping, transcription is also coupled to 

splicing, endonucleolytic cleavage and polyadenylation through interactions between 

the CTD and the respective processing complexes (Bentley, 1999; McCracken et al., 

1997). Splicing requires a set of splicing-related proteins and various components of the 

splicing machinery to associate with the CTD. For instance, Prp40 associates with the 

CTD and is thought to function in bringing the 5’ and 3’ splice sites together during the 

splicing reaction (Morris and Greenleaf, 2000). As is the case with 5’ capping, 

polyadenylation is also important for the stability of the mRNA. However, unlike 

capping, the protein machinery required for poly(A) synthesis is much greater in its 

complexity, requiring more than a dozen polypeptides (not including RNA polymerase 

II), while capping requires only the proteins mentioned above (Shatkin and Manley, 

2000). 
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Release of the mature mRNA for nuclear export is another process that is tightly 

coupled to splicing (Luo and Reed, 1999). Evidence for this came from the observation 

that mRNA transcripts produced by splicing are more efficiently exported out of the 

nucleus than their unspliced counterparts transcribed from a complementary DNA  

(Luo and Reed, 1999). This increased export efficiency is thought to be due to the 

recruitment of the mRNA export factor ALY to the exon-exon boundaries of the 

transcript during the splicing reaction (Zhou et al., 2000). The ALY protein forms a 

complex with other proteins, including TAP, a protein that associates with the nuclear 

pore and is thought to be an mRNA export receptor (Le Hir et al., 2001). 

 

1.2.2  Regulation of mRNA stability 

Another level of post-transcriptional control exerted on transcripts is mRNA turnover. 

The decay rate of a particular mRNA transcript is specified by control elements that are 

usually found within its 3’ untranslated region (UTR) and are recognised by various RBPs  

(Parker and Song, 2004; Wilusz and Wilusz, 2004). Although the majority of expression-

profiling studies focus on transcriptional control, it is actually the mRNA steady-state 

levels that are measured; these not only reflect the production but also the stability of 

the transcripts. Thus, techniques were recently developed in order to globally assess 

mRNA stability and these are revealing important information about this level of 

regulation. Recently, genome-wide mRNA transcript turnover has been determined in 

various organisms, including bacteria (Bernstein et al., 2002; Selinger et al., 2003) and 

yeast (Grigull et al., 2004; Wang et al., 2002) by measuring transcript levels at various 

times following RNA polymerase II inactivation. Interestingly, decay rates appear to be 
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precisely controlled, as functionally related genes demonstrate co-ordinated changes in 

mRNA transcript stability, hence bringing up the notion of decay regulons, a term 

coined due to the similarity to bacterial operons (Keene, 2007). For example, mRNA 

transcripts encoding core metabolic proteins were found to have long half-lives, 

whereas transcripts encoding transcription factors or members of the ribosome-

biogenesis machinery were frequently observed to have short half-lives  

(Yang et al., 2003). Short transcript half-lives enable rapid and dramatic changes in 

mRNA levels in response to changing conditions and this may be an advantage for 

transcripts encoding regulatory proteins. 

 

1.2.3  Regulation of translation 

An additional level of post-transcriptional gene control takes place during translation 

and involves both global and transcript-specific mechanisms to regulate protein 

synthesis (Gebauer and Hentze, 2004). Global regulation of translation, which affects 

the translation of most transcripts, usually occurs through changes in the 

phosphorylation state of translation initiation factors and through adjustment of the 

number of available ribosomes (Gebauer and Hentze, 2004). In contrast, transcript-

specific regulation involves the modulation of the translation of a distinct group of 

mRNA species and is mediated by a number of mechanisms (Gebauer and Hentze, 

2004). It involves RBPs that bind to particular secondary structures or regulatory 

sequences present in the UTRs of target transcripts, and is similar to the control of 

mRNA decay in that transcripts are modulated through functionally related regulons 

(described in the previous subsection) (Keene, 2007). The regulation of translation is 
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particularly important under conditions that require sudden and precise changes in 

protein levels, such as cellular responses to stress and apoptosis (Holcik and Sonenberg, 

2005), regulation of cell growth and its co-ordination with mitosis (Jorgensen and Tyers, 

2004), and during differentiation and development (Kuersten and Goodwin, 2003). 

 

1.2.4  mRNA localisation 

Messenger RNA transcripts can be localised to the appropriate region of the cell by four 

basic processes; local synthesis, local protection from degradation, diffusion and local 

trapping, or active transport along the cytoskeleton (St Johnston, 2005). Local synthesis 

is the simplest mechanism by which an mRNA can be localised in the cell, although this 

is rare. For instance, the transcripts for the δ- and ε- subunits of the acetylcholine 

receptor are transcribed in the nuclei directly below the neuromuscular junctions of 

mammalian myofibres, but not in the other nuclei of these syncytial cells, thereby 

concentrating the transcripts in close proximity to the synapses where the receptors are 

required to function (Brenner et al., 1990). Transcripts can also be localised through 

degradation of the mRNAs that are not in the correct place. For example, this 

mechanism has been shown for localisation of the hsp83 mRNA to the posterior end of 

the Drosophila melanogaster oocyte (Bashirullah et al., 1999). This localisation requires 

two cis-acting elements in the 3’-UTR of the mRNA; a degradation element that targets 

the transcript for destruction in all regions of the oocyte and a protection element that 

stabilises the transcript at the posterior end (Bashirullah et al., 1999). Another 

mechanism through which mRNAs can be localised is by passive diffusion through the 

cytoplasm until they become entrapped by a localised anchor. One such example of this 
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mechanism occurs with localisation of the nanos mRNA transcript to the posterior end 

of the D. melanogaster oocyte (Forrest and Gavis, 2003). Finally, the best-characterised 

mechanism of mRNA localisation is through active transport along the cytoskeleton. For 

instance, the ASH1 mRNA is localised to the bud tip of Saccharomyces cerevisiae 

through active transport along actin microtubules, which results in the repression of 

mating type switching in the daughter cell (Takizawa et al., 1997). 

 

1.3  Classical C2H2 zinc fingers 

The zinc finger is a common structural motif found in transcription factors and is known 

to function in sequence-specific DNA recognition. Classical zinc fingers (also known as 

C2H2 or CCHH zinc fingers) are a subset of this group and are the most common motif in 

eukaryotes, accounting for approximately 3% of genes in the human genome  

(Beerli and Barbas, 2002; Lu et al., 2003; Tupler et al., 2001). This motif of 

approximately 30 amino acid residues consists of an α-helix at its C-terminal end and a 

β-hairpin at its N-terminal end, which is referred to as a ßßα structure (Figure 1.1) 

(Mackay and Crossley, 1998) and has a the consensus sequence X2-C-X2-4-C-X12-H-X2-8-H, 

where X is any amino acid (Iuchi and Kuldell, 2005). Its secondary structures are 

stabilised by the tetrahedral co-ordination of a single zinc ion via pairs of cysteine and 

histidine residues (Figure 1.1) (Matthews and Sunde, 2002). 
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Figure 1.1  Structure of a classical C2H2 zinc finger. 

Classical TFIIIA-type zinc finger (PDB code 1ZNF), showing the α-helix and β-hairpin (ßßα structure) in 

orange. The cysteine (yellow) and histidine (green) residues co-ordinating the zinc ion (grey sphere) are 

shown. Adapted from Laity et al, 2001. 

 

In addition to its well-characterised DNA-binding function, the classical zinc finger has 

also been reported to mediate interactions with RNA, suggesting a possible role in  

post-transcriptional gene regulation. Furthermore, this domain was shown to interact 

with proteins (Matthews and Sunde, 2002) and to act as zinc sensors (Bird et al., 2003). 

Thus, the classical zinc finger motif appears to be an adaptable structure for molecular 

recognition and for connecting the various steps in the gene expression pathway. 
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1.3.1  DNA-binding 

Classical zinc fingers achieve sequence specificity when binding DNA through variations 

in key amino acid residues. The basic and hydrophobic side chains on the N-terminal 

surface in the α-helix of the ßßα structure interact specifically with two to four bases in 

the major groove of DNA (Matthews and Sunde, 2002). Binding occurs through primary 

hydrogen-bond interactions from helical positions (amino acid position relative to the 

start of the α-helix) -1, 3 and 6 of each zinc finger to one strand of DNA, and through a 

secondary interaction from helical position 2 to the other strand (Beerli and Barbas, 

2002). There is no strict binding code, as residues flanking those at positions -1, 2, 3 and 

6 may also make contacts and contribute to specificity. In addition, there are wide 

variations in this canonical binding arrangement among the known zinc finger-DNA 

complexes. Many zinc finger proteins contain multiple zinc fingers that can make 

tandem contacts along the DNA, so that the α-helices of the fingers make sequence-

specific contacts along a continuous stretch of the major groove. Contact is made by 

the first N-terminal zinc finger with the 3’ end of the binding site (Pabo et al., 2001). The 

binding of multiple fingers generally increases the specificity of binding. 

 

Approximately half of the known classical zinc fingers possess the highly conserved 

short amino acid linker region of sequence TGEKP between adjacent zinc fingers  

(Laity et al., 2000; Laity et al., 2001; Wolfe et al., 2000). This is thought to increase 

binding affinity by contacting the C-terminus of the adjacent α-helix upon binding to 

DNA, thereby stabilising the zinc finger-DNA complex (termed C-capping) (Laity et al., 
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2000). Furthermore, the linker is thought to regulate DNA-binding, as phosphorylation 

of the threonine residue inhibits binding during mitosis (Dovat et al., 2002).  

 

In a number of transcriptional regulators, tandem arrays of three or more closely 

spaced classical zinc fingers have been shown to mediate sequence-specific   

DNA-binding (Pavletich and Pabo, 1991), and these proteins have generally been shown 

to act as conventional transcription factors. Thus, the function of the zinc finger region 

in such proteins is to localise the regulator to its specific target genes. The remaining 

domains within the protein then act to regulate gene expression, typically through the 

recruitment of chromatin-modifying enzymes or the basal transcriptional machinery. 

 

DNA-binding of the classical zinc finger has been characterised to the extent that it is 

possible to predict DNA-binding site of the zinc finger on the basis of its amino acid 

sequence composition. Alternatively, it is possible to design and construct zinc fingers 

with altered specificity by altering key amino acid residues. Artificial transcription 

factors that target a particular sequence of interest have been designed and this is 

referred to as zinc finger engineering (Choo and Isalan, 2000). 
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1.3.2  RNA-binding 

Despite DNA-binding by classical zinc fingers being a well-understood interaction, many 

aspects of the molecular basis of RNA-binding remain elusive. In contrast to the 

relatively uniform helical structure of DNA, RNA exhibits more complex secondary and 

tertiary structures (Lu et al., 2003) and presents distinct challenges for protein 

recognition. Segments of intramolecularly formed double helix that exist are scattered 

between complex secondary structures, namely bulges and hairpin loops  

(Draper, 1995). In addition, the A-form conformation adopted by duplex RNA (as 

opposed to the B-form, which is the predominant conformation of DNA in solution) 

affects protein recognition (Draper, 1995). Although both A- and B-form helices are 

right-handed, the pitch, or the distance required to complete one helical turn, differs 

between the two forms. The B-form requires 10-10.6 bp or 3.4 nm to complete one 

turn, whereas the A-form requires 11 bp or 2.46 nm (Watson, 1983). Consequently, the 

A-form helix adopted by RNA has a relatively narrow and deep major groove  

(Figure 1.2), thereby resulting in steric restriction and limiting accessibility to proteins 

(Cheng et al., 2001). 

 

 Over a dozen classical zinc finger proteins are documented in the literature to bind RNA  

(Table 1.1), which is small in comparison to the number shown to bind DNA. Of these 

zinc finger proteins, the most extensively studied of these is transcription factor IIIA 

(TFIIIA) from Xenopus laevis and this will be described in greater detail in the following 

subsection. 
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Figure 1.2  Comparison of RNA and DNA structure. 

Duplex forms of RNA (PDB code 1RNA) and DNA (PDB code 1BNA) are shown. The major groove (M) of 

the RNA duplex is deeper and narrower than that of DNA and restricts protein accessibility. However, 

despite the minor groove (m) being more accessible, hydrogen bond contacts may limit sequence 

recognition of AU or GC base-pairs. 
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Table 1.1  RNA-binding classical C2H2 zinc finger proteins. 

Listed are all the known classical zinc finger proteins reported to interact with RNA. 

 

Protein No. of 
zinc 

fingers 

Comments Reference 

TFIIIA 9  binds 5S RNA (7S RNP) and 5S RNA gene; transcription factor Romaniuk, 1985 

p43 9  binds 5S RNA isolated from 42S RNP in Xenopus oocytes Joho et al, 1990 

WT1 4  +KTS form associated with splicing factors; transcription factor Caricasole et al, 1996 

Wig-1 3  p53 induced; localised to nucleoli Méndez-Vidal et al, 2002 

dsRBP-Zfa 7  binds dsRNA through 3 N-terminal fingers or 3 C-terminal zinc fingers Finerty and Bass, 1999 

JAZ 4  long linkers between zinc fingers; binds dsRNA or DNA/RNA hybrids Yang et al, 1999 

MOK2 2  long linkers between zinc fingers; binds RNA and DNA (brain and testis) Arranz et al, 1997 

NUFIP 1  associates with FMR RNA-binding protein Bardoni et al, 1999 

XFO-5,   
XFG-6 

5-15  members of FAR family proteins Klocke et al, 1994 

ZNF74 12  deleted in DiGeorge syndrome; preferentially binds poly(U) Grondin et al, 1996 

PEP 4  co-precipitates in a complex including hnRNPK Amero et al, 1993 

ZFP100 18  binds to SLBP/SL RNA complex using fingers 2-8 Dominski et al, 2002 

Xfin 31  preferentially binds poly(G) Andreazzoli et al, 1993 

 

 

1.3.2.1  TFIIIA 

Of the dual DNA- and RNA-binding zinc finger transcription factors, TFIIIA is the most  

well-characterised and thus can be used to exemplify the role of DNA-binding zinc 

fingers in post-transcriptional gene regulation (Lu et al., 2003). TFIIIA consists of nine 

tandem classical zinc fingers (Figure 1.3A) and is an essential RNA polymerase III 

transcription factor for the activation of the 5S rRNA gene in Xenopus oocytes. In 

addition, TFIIIA binds directly to the 5S rRNA gene product, resulting in the formation of 

a 7S ribonucleoprotein (7S RNP) storage particle that stabilises the RNA until it is 

required for ribosome assembly (Searles et al., 2000). Furthermore, TFIIIA facilitates the 

export of the 5S rRNA molecule out of the nucleus (Hall, 2005).  
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Structural studies have revealed that TFIIIA has a DNA-binding site extending over 55 bp 

of the 5S rRNA promoter (Figure 1.3B). More specifically, zinc fingers 1-3, 5 and 7-9 of 

TFIIIA bind to three sequence elements within the 5S rRNA promoter, namely a 10 bp 

‘Box C’ sequence, a 3 bp ‘intermediate element’ (IE) and an 11 bp ‘Box A’ sequence, 

respectively (Nolte et al., 1998) (Figure 1.3B). Fingers 4 and 6 were found not to interact 

with DNA and are thought to function primarily as spacer elements with respect to 

DNA-binding. This brought up the possibility that these zinc fingers may play an 

important role in RNA recognition and indeed this was found to be the case. 

 

The recently obtained crystal structure of zinc fingers 4-6 of TFIIIA bound to a  

61-nucleotide fragment of 5S rRNA demonstrates that the RNA-binding interactions of 

TFIIIA differ markedly from its DNA-binding interactions (Lu et al., 2003). This can be 

expected, due to the substantial structural differences that exist between DNA and 

RNA, as described earlier in this section. The zinc fingers of TFIIIA must overcome the 

challenges presented by the structural complexity of RNA in order to form a successful 

molecular interaction. In the TFIIIA-RNA structure, each zinc finger of fingers 4-6 was 

found to interact with a distinct element of the RNA molecule (Figure 1.3C). More 

specifically, zinc fingers 4 and 6 were found to recognise loops E and A, respectively, 

through the contact of residues that protrude from the RNA structure; while finger 4 

contacts a single protruding guanosine residue, finger 6 interacts with an adenosine and 

a cytosine residue. The specificity of these interactions was achieved through side chain 

contacts from α-helices at positions -1, 1 and 2. In addition, a stacking interaction 

between a tryptophan residue present in finger 6 and a protruding adenosine residue 



17 

 

was also found to be important for TFIIIA RNA-binding. Zinc finger 5, which is a  

bi-functional DNA- and RNA-binding domain, demonstrates a different mode of RNA 

recognition. This finger interacts with a short double helix in 5S rRNA through multiple 

contacts between the basic amino acids in its α-helix and the sugar-phosphate 

backbone of the RNA molecule. These interactions have been confirmed in various 

independent mutagenesis studies. One example of such a study involved alanine 

substitutions in the RNA-binding residues of zinc fingers 4 and 6 of TFIIIA, which 

resulted in a substantial reduction in its RNA-binding affinity (Friesen and Darby, 1997). 

Such mutagenesis studies highlight the importance of these residues in the tight 

nanomolar affinity binding of 5S rRNA. 
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Figure 1.3  Dual DNA- and RNA-binding functions of the C2H2 zinc finger protein TFIIIA. 

A. Schematic representation of the classical zinc finger protein TFIIIA.  Relevant sequence and structural 

features of the protein are shown. The nine zinc fingers are numbered and their arrangement within the 

protein is indicated. The areas critical for nuclear import (NLS; in red) and export (NES; in yellow) are 

shown. Transcriptional activation is mediated by the C-terminal region of the protein, as indicated by the 

bracket. B. The DNA target of TFIIIA, the 5S rRNA promoter. Upregulation occurs through binding of zinc 
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fingers 1-3, 5 and 7-9 to Box C (cyan), intermediate elements (IE; green), and Box A (purple) sequences, 

respectively, by wrapping around the major groove in the canonical binding arrangement of DNA-binding 

transcription factors. C. Three-dimensional structure of zinc fingers 4-6 of TFIIIA bound to 61-nucleotides 

of the 5S rRNA molecule (reproduced from Stefl et al, 2005). Finger 4 binds to loop E, finger 5 interacts 

with helix V and finger 6 binds to loop A. The protruding bases recognised by fingers 4 and 6 are shown in 

yellow. The zinc ions stabilising the zinc finger structures are represented as cyan spheres. 

 

1.3.3  Protein-protein interactions 

Although the majority of classical zinc fingers are known to bind nucleic acids, a number 

of these proteins containing these motifs have been identified to function by mediating 

protein-protein interactions using their zinc fingers. For instance, Roaz, GL1, SW15, 

Ikaros, TRPS-1 and Zac form homodimers using their classical zinc fingers  

(Mackay and Crossley, 1998; McCarty et al., 2003; Sun et al., 1996; Tsai and Reed, 1998; 

Wang et al., 2001). GL1 forms a homodimer through the hydrophobic surface of its first 

zinc finger that is not involved in DNA-binding. Similarly, SW15 forms homodimers using 

the hydrophobic surface of both the β hairpin and the C-terminal end of the α-helix of 

its first zinc finger. The Ikaros family of transcription factors, which play an important 

role in lymphoid differentiation (Georgopoulos, 2002), contain two clusters of zinc 

fingers. The N-terminal cluster consists of four classical zinc fingers and mediates  

DNA-binding activity. The C-terminal cluster consists of two zinc fingers and mediates 

protein dimerisation through zinc finger association. The latter cluster of zinc fingers 

can mediate either homodimerisation or heterodimerisation with other family 

members, which can result in different patterns of DNA-binding and transcriptional 

activity (Morgan et al., 1997). Mutagenesis studies of the two C-terminal zinc fingers of 
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Ikaros revealed that the amino acid residues on the α-helix are responsible for the 

finger-finger interactions necessary for Ikaros homodimerisation (McCarty et al., 2003). 

 

1.3.4  Zinc sensing 

Another recently discovered role for classical zinc fingers is the regulation of gene 

expression in response to fluctuations in cellular zinc concentrations. The response of 

mammalian cells to excess zinc is mediated by metallothionein, which chelates and 

sequesters surplus metal ions from the cellular environment. Metallothionein 

expression is regulated through the metal-response element (MRE) by the MRE-binding 

transcription factor 1 (MTF-1), which contains six classical zinc fingers (Bittel et al., 

2000; Chen et al., 1999). In yeast, the cellular response to changes in zinc concentration 

is mediated by the transcriptional activator Zap1, which contains seven classical zinc 

fingers (Bird et al., 2003). Both proteins contain a core DNA-binding domain, consisting 

of a subset of the zinc fingers. In Zap1, the five C-terminal zinc fingers are involved in 

DNA-binding, while the first two zinc fingers appear to function as unique metal-sensing 

domains that control the activation domain of this protein in response to zinc levels  

(Bird et al., 2003). On the other hand, fingers two to four of MTF-1 bind DNA, while 

finger one appears to function as a metal sensor, which prevents MTF-1 from binding to 

the MRE in the absence of zinc (Bittel et al., 2000). In both cases it appears that zinc 

levels affect the structure of the zinc-sensing domain, which in turn either hinders or 

exposes the activation domain, thereby controlling interaction with downstream 

transcription factors. 
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1.4  Sp/Krüppel-Like Factor (Klf) family of transcription factors 

Sp1 is the founding member of the Sp/Krüppel-like factor (Klf) family, and was one of 

the first transcription factors to be characterised in mammalian cells. It preferentially 

binds GC-rich DNA sequences using its three classical zinc fingers and is involved in the 

activation of gene transcription (Kaczynski et al., 2003). The DNA-binding region of Sp1 

is related to a region of the Drosophila melanogaster segmentation gene Krüppel, and is 

present in many other developmental regulators. This DNA-binding domain defines a 

class of nine Sp proteins and seventeen Krüppel-like factors (Klfs); namely the Sp 

proteins, Sp1 to Sp9, and Klf family members, Klf1 to Klf17 (Kaczynski et al., 2003;  

van Vliet et al., 2006) (Figure 1.4). Beyond the DNA-binding zinc finger region, members 

of this family share little homology and also generally have differing expression profiles. 

This diversity allows them to carry out distinct physiological activities using their varied 

N-terminal activation or repression domains (Lomberk and Urrutia, 2005). Many are 

ubiquitously expressed, such as Sp1 to Sp4 (Lania et al., 1997), as well as Klf7  

(also known as ubiquitous krüppel-like factor, or Uklf) (Matsumoto et al., 1998) and Klf3 

(also known as basic krüppel-like factor, or Bklf) (Crossley et al., 1996). However, other 

members of this family have more-restricted expression profiles and are typically 

named according to the primary location of their expression. For instance, Klf1  

(also known as Erythroid krüppel-like factor, or Eklf) (Miller and Bieker, 1993), Klf2  

(also known as Lung krüppel-like factor, or Lklf) (Anderson et al., 1995), and Klf4  

(also known as Gut krüppel-like factor, or Gklf) (Shields et al., 1996) are predominantly 

expressed in the tissues indicated by their names. Members of the Klf family of 

transcription factors can function as either gene activators or repressors, and 
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interestingly some members have the dual capacity to function as either an activator or 

a repressor, depending on the promoter and cellular context (Kaczynski et al., 2003). In 

addition, some Klf family members can regulate their own expression or the expression 

of other family members. For example, Eklf was found to directly activate Bklf 

expression in murine erythroid cells (Funnell, 2008; Funnell et al., 2007), while Klf4 

autoactivates itself and is thought to be repressed by Klf5 (Dang et al., 2002). Sp/Klf 

transcription factors have been found to play important roles in a range of biological 

processes (Bieker, 2001; Dang et al., 2000), including erythropoiesis (Basu et al., 2005; 

Matsumoto et al., 2006; Nuez et al., 1995; Perkins et al., 1995; Van Loo et al., 2003; 

Wani et al., 1998), adipogenesis (Banerjee et al., 2003; Mori et al., 2005;  

Oishi et al., 2005) and carcinogenesis (Black et al., 2001; Ghaleb et al., 2005;  

Narla et al., 2001; Wang and Zhao, 2007). 

 

 

Figure 1.4  Schematic representation of the Sp/Klf family of transcription factors. 

Depicted are the three C-terminal classical DNA-binding zinc fingers and the N-terminal domain that 

mediates either activation or repression activity (shown in purple). 
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1.4.1  Eklf/Klf1 

Eklf is the founding member of the Klf family and was originally isolated in a subtractive 

cloning approach used to identify genes that are important for erythroid differentiation 

(Miller and Bieker, 1993). It is the best characterised member of the family  

(Perkins, 1999) and is a potent transcriptional activator so named because its 

expression is restricted mainly to erythroid cells, although expression has also been 

detected in mast cells (Luo et al., 2004; Miller and Bieker, 1993). This protein recognises 

CACCC boxes and related DNA sequence elements of the general form  

5’-NCNCNCCCN-3’ (Feng et al., 1994). These sequence motifs are found abundantly in 

the promoter regions of many erythroid genes (Feng et al., 1994; Miller and Bieker, 

1993; Raich and Romeo, 1993). A particularly well-studied target of activation is the 

adult ß-globin promoter, which contains an Eklf recognition site that is critical for  

β-globin expression (Donze et al., 1995; Feng et al., 1994). Consequently, Eklf knockout 

mice die at approximately embryonic day 15 (E15) from severe anaemia, which reflects 

a β-globin deficiency (Nuez et al., 1995; Perkins et al., 1995). Eklf was found to activate 

gene expression through the recruitment of the transcriptional co-activators p300 and 

CBP (Zhang and Bieker, 1998), which acetylate both histones and Eklf itself. In addition, 

acetylation of Eklf is thought to interfere with its ability to interact with components of 

the SWI/SNF ATP-dependent chromatin remodelling complex, thereby allowing the 

chromatin to remain in a transcriptionally active state (Armstrong et al., 1998). Recent 

evidence shows that in addition to its nuclear localisation, Eklf was found to localise to 

the cytoplasm (Quadrini et al., 2008; Shyu et al., 2007), suggesting this protein may 

have an additional function that is yet to be determined. 
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A recent study has established that, in addition to its important role in driving erythroid 

differentiation, Eklf has an inhibitory effect on megakaryocyte differentiation  

(Frontelo et al., 2007). This finding suggests that Eklf plays a key role in haematopoietic 

bipotential lineage decisions in the megakaryocyte-erythroid progenitor (MEP). Thus, 

this unique role for Eklf distinguishes it from other transcription factors that are 

common to megakaryocytes and erythroid cells that play positive roles in both lineages, 

such as GATA1 (Pevny et al., 1991; Shivdasani et al., 1997), FOG1 (Tsang et al., 1997), 

SCL (Hall et al., 2003; Mikkola et al., 2003) and Gfi-1b (Saleque et al., 2002). The 

molecular mechanism for these lineage decisions is thought to occur because of the 

functional cross-antagonism that exists between Eklf and friend leukaemia integration 1 

(fli-1), an Ets transcription factor critical for megakaryocyte differentiation  

(Starck et al., 2003). 

 

1.4.2  Lklf/Klf2 

Lklf is a transcription factor that was originally named by virtue of its high level of 

expression in the lung (Anderson et al., 1995), however, relatively little is known about 

this protein. Lklf null mice were found to have defects in blood vessel organisation, due 

to a deficiency in the recruitment of pericytes and smooth muscle cells, and died at an 

early stage of embryonic development from severe haemorrhaging (Kuo et al., 1997a). 

In order to circumvent the embryonic lethality, chimeric mice were generated through 

the injection of Lklf-deficient embryonic stem (ES) cells into recombinase-deficient 

blastocysts (Kuo et al., 1997b). Analysis of these chimeric animals revealed that the 

mature, single-positive T cells were susceptible to apoptosis, suggesting a role for Lklf in 
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quiescent T cells. In addition, histopathological analysis of the lungs of highly chimeric 

mice that died at birth revealed an abnormal pathology and demonstrated a deficiency 

in the late stages of development (Wani et al., 1999), suggesting an important role for 

Lklf in the development of the cells of the lung. 

 

1.4.3  Bklf/Klf3 

As mentioned earlier, Bklf is a ubiquitously expressed protein and is especially 

abundant in the yolk sac and foetal liver of developing mice (Crossley et al., 1996), 

suggesting a putative role in haematopoiesis. This protein has a high frequency of basic 

amino acid residues, hence the name basic krüppel-like factor. Bklf functions as a 

transcriptional repressor (Perdomo et al., 2005; Turner and Crossley, 1998;  

Turner et al., 2003) and within its repression domain resides a five amino acid  

PXDLS-like motif (PVDLT in Bklf), which is utilised to interact with the co-repressor  

C-terminal binding protein (CtBP), allowing recruitment of the repression protein 

complex. Bklf was originally isolated in a screen using a CACCC probe specific for the 

zinc finger domains of Eklf and Sp1 and a relaxed-stringency hybridisation against a 

murine erythroleukaemia (MEL) cDNA library (Crossley et al., 1996). In vitro, Bklf has 

been shown to bind to the CACCC-boxes within the promoters of various genes, 

including adult ß-globin, foetal Aγ-globin, Gata-1, carbonic anhydrase I, porphobilinogen 

deaminase (Pbgd) and pyruvate kinase (Crossley et al., 1996; Perdomo et al., 2005; 

Turner and Crossley, 1998; Turner et al., 2003). A straightforward physiological role for 

this protein has been difficult to establish, and Bklf knockout mice display a mild 

phenotype, such as reduced size and weight (Sue et al, unpublished data). However, 
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recent work in our laboratory has identified the Klf8 gene as a direct biological target of 

Bklf (see next subsection). 

 

1.4.4  Klf8 

The human Klf8 protein (van Vliet et al., 2000) shares a considerable degree of 

homology with Bklf. Similar to Bklf, Klf8 has a PXDLS-like motif (PVDLS in Klf8), which is 

required for its interaction with CtBP. In addition, Klf8 also binds to CACCC sequences in 

EMSA experiments (van Vliet et al., 2000). In addition to its repressor function, Klf8 has 

also been reported to function as a transcriptional activator and has been implicated in 

cell cycle control (Zhao et al., 2003).  It is an oncogene that is upregulated in various 

human cancer cell lines and tumours (Wang and Zhao, 2007) and is a downstream 

target of focal adhesion kinase (FAK), an important mediator of various signalling 

pathways, including cell adhesion, cell survival and proliferation (Zhao et al., 2003). In 

addition, transient assays suggest that Klf8 activates the cyclin D1 promoter. A mutant 

lacking the PXDLS-like motif could not activate cyclin D1 expression and a truncation 

mutant lacking the three DNA-binding zinc fingers also did not activate expression 

(Zhao et al., 2003). Furthermore, chromatin immunoprecipitation (ChIP) assays 

demonstrated that Klf8 binds directly to the cyclin D1 promoter in vivo  

(Wei et al., 2006). 

 

Recent work in our laboratory demonstrates that Klf8 is directly repressed by Bklf. 

Microarray analysis showed that Klf8 expression is upregulated in Bklf knockout mice, 
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and ChIP assays confirm that Bklf directly associates with the Klf8 promoter (Eaton et al, 

unpublished data). Our current working model is that Bklf represses Klf8 expression and 

Klf8 compensates for the loss of Bklf in the Bklf knockout mice, as the functions of these 

two proteins may overlap due to their similarity. This provides a plausible explanation 

for the mild phenotype observed and for the inability to identify alternative Bklf target 

genes using microarray analysis. 

 

1.5  Project aims 

The observation that Eklf localises to the cytoplasm (Quadrini et al., 2008; Shyu et al., 

2007) suggests that Eklf has a novel role that is yet to be identified. This observation led 

us to hypothesise that in addition to its transcription factor function in the nucleus, Eklf 

may function to regulate gene expression at the post-transcriptional level when present 

in the cytoplasm. In other words, it is hypothesised that Eklf is an RNA-binding protein. 

In this thesis the RNA-binding activity of the classical zinc fingers of Eklf, through the 

use of various in vitro assays, is examined. In addition, the activity of the zinc finger 

region of Eklf is examined in a cellular context. Thus, the recombinant expression of the 

zinc fingers of Eklf in two independent mammalian cell lines is described and evidence 

is presented that this region behaves as a dominant negative mutant. 
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Chapter 2 – Materials and Methods 

2.1  Materials 

2.1.1  Chemicals and reagents 

Below is a list of important chemicals and reagents used, along with their suppliers 

indicated in italics. All chemicals and reagents used were of molecular biology grade 

unless specified otherwise. 

 Acetic acid  Asia Pacific Specialty (APS) Chemicals, Seven Hills, NSW, Australia 

 Acrylamide, 30% (37.5:1 Protogel) (electrophoresis grade)  National Diagnostics, 

Atlanta, Georgia, USA 

 Acrylamide, 40% (19:1) (electrophoresis grade)  National Diagnostics 

 Adenosine triphosphate (ATP)  Sigma-Aldrich Company 

 Adenosine 5’-*γ-32P] triphosphate (10 mCi/mL)  Geneworks, Adelaide, SA, 

Australia 

 Agarose (DNA grade)  Progen Industries, Darra, QLD, Australia 

 Albumin, bovine serum, fraction V powder (BSA)  Sigma-Aldrich Company 

 Ammonium acetate  Univar, APS Finechem, Seven Hills, NSW, Australia 

 Ammonium persulfate (APS)  Sigma-Aldrich Company 

 Ampicillin sodium salt  Progen Industries 
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 Aprotinin  Sigma-Aldrich Company 

 Boric acid  APS Chemicals 

 3’,3’’,5’,5’’-tetrabromophenolsulfonepthalein (bromophenol blue)  Sigma-

Aldrich Company 

 Chloroform  Biolab Scientific, Clayton, VIC, Australia 

 Coomassie® Brilliant Blue-R  Sigma-Aldrich Company 

 Complete, EDTA-free protease inhibitor tablets  Roche Molecular Biochemicals, 

Mannheim, Germany 

 Complete Mini, EDTA-free protease inhibitor tablets  Roche Molecular 

Biochemicals 

 Deoxynucleotide triphosphates (dNTPs)  Roche Molecular Biochemicals 

 Diethylpyrocarbonate (DEPC)  Sigma-Aldrich Company 

 Dimethyl sulfoxide (DMSO)  Sigma-Aldrich Company 

 Dithiothreitol (DTT)  Sigma-Aldrich Company 

 Dulbecco’s Modified Eagle Medium (DMEM)  Gibco-BRL Life Technologies 

 Ethidium bromide  Amresco Inc.,Solon, Ohio, USA 

 Ethylenediaminetetraacetic acid disodium dehydrate (EDTA)  Ajax Laboratory 

Chemicals, Auburn, NSW, Australia 
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 Ficoll®-400  Sigma-Aldrich Company 

 Foetal bovine serum, heat-inactivated  Gibco-BRL Life Technologies 

 Formaldehyde  Sigma-Aldrich Company 

 Formamide  Sigma-Aldrich Company 

 GeneRuler™ DNA ladder mix  Fermentas, Ontario, Canada 

 Glutathione-agarose beads  Sigma-Aldrich Company 

 Glutathione, reduced form  Sigma-Aldrich Company 

 Glycerol  Ajax Laboratory Chemicals 

 Glycogen  Roche Molecular Biochemicals 

 4-(2-Hydroxyethyl)-1-piperazin-ethan-sulfonsäure (HEPES)  Sigma-Aldrich 

Company 

 IGEPAL CA-630  Sigma-Aldrich Company 

 Isopropanol  Biolab Scientific, Northcote, New Zealand 

 Isopropyl-1-thio-β-D-galactopyranoside (IPTG)  Sigma-Aldrich Company 

 Leupeptin  Sigma-Aldrich Company 

 Magnesium chloride  Sigma-Aldrich Company 

 Mark-12™ protein standards  Invitrogen 

 β-mercaptoethanol  Sigma-Aldrich Company 
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 3-(N-Morpholino)-propanesulfonic acid (MOPS)  Sigma-Aldrich Company 

 Penicillin, streptomycin and glutamine solution (1%)  Gibco-BRL Life 

Technologies 

 Phenol:choloroform:isoamyl alcohol (25:24:1)  Sigma-Aldrich Company 

 Phenylmethylsulfonylfluoride (PMSF)  Sigma-Aldrich Company 

 Phosphate buffered saline (PBS) tablets  Sigma-Aldrich Company 

 Poly (dI·dC)  GE Healthcare Life Sciences Biotech, Little Chalfont, 

Buckinghamshire, UK 

 Polyoxyethylenesorbitanmonolaurate (Tween™-20)  Sigma-Aldrich Company 

 Potassium chloride  Sigma-Aldrich Company 

 Quick Spin® G-25 columns  Roche Molecular Biochemicals 

 Rainbow™ protein standards  GE Healthcare Life Sciences 

 RNasin® recombinant ribonuclease (RNase) inhibitor  Promega, Madison, WI, 

USA 

 Roswell Park Memorial Institute (RPMI) 1640 medium  Gibco-BRL Life 

Technologies 

 Sodium acetate  Ajax Laboratory Chemicals 

 Sodium borate  Ajax Laboratory Chemicals 
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 Sodium chloride  Ajax Laboratory Chemicals 

 Sodium dodecyl sulphate (lauryl sulphate sodium salt) (SDS)  Sigma-Aldrich 

Company 

 Sodium hydroxide  APS Chemicals 

 Spin-X® centrifuge tube filters  Trace Biosciences, Castle Hill, NSW, Australia 

 N,N,N’,N’-tetramethylethylenediamine (TEMED) (electrophoresis grade)  Eastern 

Organic Company, Rochester, NY, USA 

 Tris-hydroxymethyl-methylamine (Tris)  Ajax Laboratory Chemicals 

 t-octylphenoxypolyethoxyethanol (Triton® X-100)  Sigma-Aldrich Company 

 Vanadyl ribonucleoside complexes  New England Biolabs, Beverly, MA, USA 

 Xylene cyanole FF  Sigma-Aldrich Company 

 Zinc sulfate  Ajax Laboratory Chemicals 

 

2.1.2  Enzymes 

 Alkaline phosphatase (from calf intestine) [phosphate-monoester 

phosphohydrolase (alkaline optimum), EC 3.1.3.1]  Roche Molecular 

Biochemicals 

 Lambda protein phosphatase (λ-PPase, EC 3.1.3.16)  New England Biolabs 



33 

 

 Pfu polymerase [deoxynucleotide-triphosphate:DNA 

deoxynucleotidyltransferase (DNA-directed), EC 2.7.7.7]  Stratagene, La Jolla, 

CA, USA 

 Ribonuclease A (RNase, EC 3.1.27.1)  Roche Molecular Biochemicals 

 T4 DNA ligase (poly[deoxyribonucleotide]:poly[deoxyribonucleotide] ligase,  

EC 6.5.1.1)  Roche Molecular Biochemicals 

 T4 polynucleotide kinase (ATP: 5’-dephosphopolynucleotide  

5’-phosphotransferase, EC 2.7.1.78)  New England Biolabs 

 Type II restriction endonucleases (EC 3.1.21)  New England Biolabs 

 

2.1.3  Bacterial strains and culture media 

The bacterial strain used for all plasmid manipulations, including sub-cloning and 

plasmid isolation was Escherichia coli DH5α (genotype: supE44 ∆lacU169 

*ф80lacZ∆M15+ hsdR17 recA1 endA1 gyrA96 thi-1 relA1) (Bethesda Research 

Laboratories, Gaithersburg, MD, USA). 

 

The bacterial strain used for expression of GST fusion proteins was Epicurian coli® BL21 

[Escherichia coli, genotype: B F-dcm ompT hsdS (rB- mB-) gal] (Stratagene). 
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Both bacterial strains were cultured in Luria-Bertani (LB) broth, or on LB agar plates: 

 10 g/L casein peptone  Amyl Media, Dandenong, VIC, Australia 

   5 g/L yeast extract  Amyl Media 

 10 g/L sodium chloride  Ajax Laboratory Chemicals 

15 g/L bacteriological agar  Amyl Media (for plates only) 

 

All media were made up in Milli-Q® water (MQW) and sterilised by autoclaving for  

15 min at 121°C. Filter-sterilised ampicillin (50 mg/mL in MQW) was added to cooled 

autoclaved broth to a final concentration of 100 µg/mL. In the preparation of agar 

plates, this step was performed prior to pouring. All media was stored at 4°C. 

 

2.1.4  Mammalian cell lines and culture media 

Murine erythroleukaemia (MEL) cells were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) (Gibco BRL Life Technologies) that was supplemented with 10% (w/v) 

foetal bovine serum (heat-inactivated) (Gibco BRL Life Technologies) and 1% penicillin, 

streptomycin, glutamine (Gibco BRL Life Technologies). Cells were incubated at 37°C 

with 5% CO2 in a CO2 water-jacketed incubator. 

 

Human K562 cells were maintained in Roswell Park Memorial Institute (RPMI) 1640 

medium that was supplemented with 10% (w/v) foetal bovine serum (heat-inactivated) 
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(Gibco BRL Life Technologies) and 1% penicillin, streptomycin, glutamine (Gibco BRL Life 

Technologies). Cells were incubated at 37°C with 5% CO2 in a CO2 water-jacketed 

incubator. 

 

2.1.5  Antibodies 

 Anti-Bklf (α-Bklf) polyclonal antibody raised in rabbit was supplied by  

M. Crossley. 

 Anti-Eklf (α-Eklf) polyclonal antibody raised in rabbit was supplied by  

M. Crossley. 

 Anti-β-actin (α-β-actin) monoclonal antibody was supplied by Sigma-Aldrich 

Company. 

 Horseradish peroxidase linked anti-rabbit and anti-mouse secondary antibodies 

were supplied by GE Healthcare Life Sciences. 
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2.2  Plasmids and oligonucleotides 

2.2.1  Vectors 

Vector Provided by Description 

NpGEX2T José Perdomo Bacterial expression vector for expressing 
recombinant GST fusion proteins - contains a 
thrombin cleavage site following the GST tag 

pEFIRES-P Alexis Verger Mammalian bicistronic expression vector containing 
an internal ribosome entry site (IRES) element 
between the puromycin resistance (pac) gene and the 
recombinant gene of interest 

pGEX6P-1 Roland Gamsjaeger Bacterial expression vector for expressing 
recombinant GST fusion proteins - contains a 
PreScission™ protease cleavage site following the GST 
tag 

 

2.2.2  Gift plasmids 

Plasmid Provided by Description 

pc3HA.Lklf Jane van Vliet Mammalian expression vector encoding full length 
Lklf fused to a haemagglutinin (HA) tag 

pEFIRES-P.GST-
Bklf 241-344 

Noelia Nunez Mammalian expression vector encoding the zinc 
fingers (ZFs) of Bklf fused to the GST tag 

pMT3.mKlf8 Alister Funnell Mammalian expression vector encoding full length 
Klf8 

pSG5.Eklf James Bieker Mammalian expression vector encoding the full-
length Eklf protein 

 

 

 

 

 

 



37 

 

2.2.3  Constructs 

Plasmid Template Cloning primers Restriction sites (5', 
3') 

NpGEX2T.Eklf 261-376 murine spleen cDNA A2169, A2170 EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C295A 

NpGEX2T.Eklf 261-376 A3138, A3139 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C325A 

NpGEX2T.Eklf 261-376 A3140, A3141 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C355A 

NpGEX2T.Eklf 261-376 A3142, A3143 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C295A/C325A 

NpGEX2T.Eklf 261-376 
C325A 

A3138, A3139 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C325A/C355A 

NpGEX2T.Eklf 261-376 
C355A 

A3140, A3141 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C295A/C355A 

NpGEX2T.Eklf 261-376 
C355A 

A3138, A3139 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-376 
C295A/C325A/C355A 

NpGEX2T.Eklf 261-376 
C325A/C355A 

A3138, A3139 (one-
step mutagenesis) 

EcoRI, BamHI 

NpGEX2T.Eklf 261-348 NpGEX2T.Eklf 261-376 A2169, A3230 EcoRI, BamHI 

NpGEX2T.Eklf 261-318 NpGEX2T.Eklf 261-376 A2169, A3231 EcoRI, BamHI 

NpGEX2T.Eklf 261-294 NpGEX2T.Eklf 261-376 A2169, A3232 EcoRI, BamHI 

NpGEX2T.Eklf 289-376 NpGEX2T.Eklf 261-376 A3227, A2170 EcoRI, BamHI 

NpGEX2T.Eklf 319-376 NpGEX2T.Eklf 261-376 A3228, A2170 EcoRI, BamHI 

NpGEX2T.Eklf 349-376 NpGEX2T.Eklf 261-376 A3229, A2170 EcoRI, BamHI 

NpGEX2T.Eklf 289-318 NpGEX2T.Eklf 261-376 A3227, A3231 EcoRI, BamHI 

NpGEX2T.Eklf 319-348 NpGEX2T.Eklf 261-376 A3228, A3230 EcoRI, BamHI 

NpGEX2T.Eklf 289-348 NpGEX2T.Eklf 261-376 A3227, A3230 EcoRI, BamHI 

pEFIRES-P.GST NpGEX2T A2156, A2254 NcoI, NdeI 

pEFIRES-P.GST NpGEX2T A2156, A2255 NcoI, SpeI 

pEFIRES-P.GST-Eklf 
261-376 

NpGEX2T.Eklf 261-376 A2252, A2253 NdeI, SpeI 

pEFIRES-P.GST-Eklf 
261-376 C295A 

NpGEX2T.Eklf 261-376 
C295A 

A2252, A2253, 
A3138, A3139 

NdeI, SpeI 

pEFIRES-P.GST-Eklf 
261-376 C325A 

NpGEX2T.Eklf 261-376 
C325A 

A2252, A2253, 
A3140, A3141 

NdeI, SpeI 

pEFIRES-P.GST-Eklf 
261-376 C355A 

NpGEX2T.Eklf 261-376 
C355A 

A2252, A2253, 
A3142, A3143 

NdeI, SpeI 

pEFIRES-P.GST-Lklf 
253-354 

pc3HA.Lklf A3043, A3044 NdeI, SpeI 

pEFIRES-P.GST-Klf8 
252-355 

pMT3.mKlf8 A3086, A3087 NdeI, SpeI 

pGEX6P-1.GST-Eklf 
289-376 

NpGEX2T.Eklf 289-376 A3285, A3286 BamHI, EcoRI 
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2.2.4  Oligonucleotides for cloning and mutagenesis 

Database 
reference 

Sequence 

A2156 AGACCATGGC CTCCCCTATA CTAGGTTAT 

A2169 CCGGAATTCG GGGCCACTGC GATCGCC 

A2170 CGCGGATCCT CAGAGGTGAC GCTTCATGTG 

A2252 GGTTTTCCAT ATGTTGGGGC CACTGCGATC GCC 

A2253 GGACTAGTTC AGAGGTGACG CTTCATGTG 

A2254 GGTTTTCCAT ATGATTTTGG AGGATGGTCG CC 

A2255 GGACTAGTTC ATTTTGGAGG ATGGTCGCC 

A3043 GGTTTTCATA TGTTGAGGCC AAGCCCAAAC GC 

A3044 GGACTAGTCT ACATGTGTCG CTTCATGTG 

A3086 GGTTTTCATA TGTTACAATG GTCCACATGC AG 

A3087 GGACTAGTTC ACATGGTGTC ATGACGCC 

A3138 CAGGCGGCAC ATACGGCCGG GCACGAAGGC TGC 

A3139 GCAGCCTTCG TGCCCGGCCG TATGTGCCGC CTG 

A3140 GAGAAGCCTT ATGCCGCCTC CTGGGACGGC TGT 

A3141 ACAGCCGTCC CAGGAGGCGG CATAAGGCTT CTC 

A3142 CATCGTCCCT TCTGCGCTGG CCTCTGCCCA CGT 

A3143 ACGTGGGCAG AGGCCAGCGC AGAAGGGACG ATG 

A3227 CCGGAATTCA GGCAGGCGGC ACATACG 

A3228 CCGGAATTCG GAGAGAAGCC TTATGCC 

A3229 CCGGAATTCG GACATCGTCC CTTCTGC 

A3230 CGGATCCTCA AGTGTGCTTC CGGTAGTG 

A3231 CGGATCCTCA CGTGTGCGTG CGCAGGTG 

A3232 CGGATCCTCA CGTATGTGCC GCCTGCCTC 

A3285 CGGATCCAGG CAGGCGGCAC ATACG 

A3286 CCGGAATTCT CAGAGGTGAC GCTTCATGTG 

 

2.2.5  Oligonucleotides for real-time PCR 

Primer Database 
reference 

Sequence 

18S rRNA primers A1560 CACGGCCGGT ACAGTGAAAC  

  A1561 AGAGGAGCGA GCGACCAA 

Albumin ChIP 
primers 

A2850 GGGATGAACA ACCTATGCAA TTC 

  A2851 TGGGCCTTGG CATGGA 

Fli-1 primers A2896 ATCAGCCAGT GAGGGTCAAC 

  A2897 GGCCATTCTT CTCGTCCATA 

Fli-1 ChIP primers A2983 CCGATCGCAA AGTGAAGTCA 

  A2984 GCGGATCGAA AAAGAGACAG TT 

Control fli-1 ChIP 
primers 

A2985 AGGCCTCAAG GGCAACCT 

  A2986 GCCCTGACCC CCATCTTT 
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2.3  Methods 

2.3.1  General molecular biology techniques 

Protocols for the commonly used molecular biology techniques employed in this 

investigation are outlined in Sambrook et al, 1989 (section references are provided 

below). Techniques that involved the use of a commercial kit were carried out as 

instructed in the manufacturers’ protocols and are also listed below. 

 Agarose gel DNA electrophoresis: 6.1-6.19 

 Agarose gel DNA purification: 6.22-6.23 

 Automated DNA sequencing: provided by the Automated DNA Sequencing 

Service, Sydney University Prince Alfred Macromolecular Analysis Centre 

(SUPAMAC), University of Sydney, Camperdown, Sydney 

 DNA ligation: 1.53-1.69 

 DNA sub-cloning: F.1-F.11 

 Ethanol precipitation of DNA/RNA: E.10-E.14 

 FastPlasmid® Miniprep Kit protocol for the mini-preparation of plasmid DNA 

(Eppendorf AG, Hamburg, Germany) 

 JETstar Plasmid Purification System: Plasmid Midi/Maxi Kit protocol used for the 

midi- or maxi- preparation of plasmid DNA (Astral Scientific) 

 Phenol/chloroform extraction: E.3-E.4 

 Polymerase Chain Reaction (PCR): 14.1-14.5, 14.14-14.21 
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 Restriction endonuclease digestion of DNA: 5.24-5.32 

 SDS-polyacrylamide gel electrophoresis (SDS-PAGE): 6.36-6.43, 6.45, 18.47-

18.55 

 SuperScript™ First Strand Synthesis System protocol for cDNA synthesis 

(Invitrogen) 

 Transformation of competent bacterial cells: 1.74, 1.76, 1.86 

 Western blots: 18.60-18.61, 18.64-18.66, 18.69-18.74 

 Western Lightning™ Chemiluminescence Reagent Plus Kit: protocol used for 

antibody detection in Western blots (Perkin Elmer Life Sciences) 

 

2.3.2  One-step PCR site-directed mutagenesis 

The one-step PCR site-directed mutagenesis technique was employed to generate the 

NpGEX2T.Eklf 261-376 single, double and triple zinc finger (ZF) point mutants. This 

technique uses the same principle as the QuikChange® II Site-Directed Mutagenesis Kit 

(Stratagene) and is based on the work of Fisher and Pei (1997). It involves the use of the 

high-fidelity Pwo polymerase and does not require subcloning. A pair of long 

complementary mismatch primers was used to introduce the desired point mutation on 

both strands of the plasmid. The entire plasmid is amplified by Pwo polymerase, 

resulting in unmethylated PCR product containing the base substitution. The restriction 

enzyme DpnI was used to preferentially digest the methylated DNA template, while 

leaving the PCR product intact. The method is outlined in Figure 2.2. 
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Figure 2.1  One-step PCR site directed mutagenesis technique. 

A schematic representation of the one-step PCR site-directed mutagenesis technique used to generate 

the NpGEX2T-Eklf 261-376 ZF point mutants in this study. The methylated plasmid DNA template that is 

selectively digested by DpnI is shown in green. The unmethylated PCR product with the incorporated 

point mutation is shown in blue. 
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2.3.3  Overlap PCR site-directed mutagenesis 

Overlap PCR was used to generate the pEFIRES-P.GST-Eklf 261-376 single ZF point 

mutants used in this investigation, as the one step PCR site-directed mutagenesis 

technique was unsuccessful for this larger-sized construct. Overlap PCR site-directed 

mutagenesis was carried out as previously described (Bishop, 2001), and as illustrated 

in Figure 2.2. A pair of mismatch primers was used to introduce a substitution on both 

strands of the DNA, while a second set of primers bound to the sites flanking the insert. 

Two separate PCR reactions were performed to produce two different fragments with 

the same mutation; present on the 5’ end of one fragment and on the 3’ end of the 

other. These PCR products were then used as templates for a subsequent round of PCR 

using the flanking primers that contain restriction sites for cloning. The overlapping 

regions were allowed to anneal, thereby allowing extension to occur using the 

complementary strand as a template. The insert is regenerated in this second round of 

PCR to contain a nucleotide substitution within the sequence. The PCR products were 

digested with the appropriate restriction enzymes and sub-cloned into the vector of 

interest, in this case pEFIRES-P.GST. 
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Figure 2.2  Overlap PCR site-directed mutagenesis technique. 

A schematic representation of the overlap PCR site-directed mutagenesis technique used for the 

generation of the pEFIRES-P.GST-Eklf 261-376 point mutants used in this study. 
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2.3.4  Bacterial expression of recombinant GST fusion proteins 

2.3.4.1  Expression of protein 

Constructs were overexpressed in the bacterium Epicurian coli® BL21, which was grown 

in LB broth containing ampicillin (100 µg/mL) (LB+amp). A single colony containing the 

appropriate NpGEX2T or pGEX6P-1 plasmid was used to inoculate 10 mL LB+amp and 

the culture was allowed to grow through incubation for 16-18 h at 37°C with shaking at 

180 rpm. An appropriate amount of culture was inoculated into 200 mL LB+amp to 

produce an A600 reading of 0.05. The culture was incubated at 37°C with shaking at 180 

rpm until an A600 reading of approximately 0.6 was reached, and then protein 

overexpression was induced through the addition of IPTG (0.4 mM).  After shaking at 

180 rpm for 16-18 h at 20°C, cells were harvested by centrifugation (6,000 rpm, 15 min, 

4°C) and the resultant cell pellets were stored at -20°C until lysis. The volume of culture 

used was scaled up or down as required. 

 

2.3.4.2  Cell lysis and affinity purification 

Cell pellets obtained from a 200 mL culture were resuspended in 8 mL of lysis buffer  

(50 mM Tris, pH 7.5, 150 mM NaCl, 5 mM EDTA, 0.5% IGEPAL CA-630; supplemented 

prior to use with 1% Triton® X-100, 1 mM DTT, 10 mM MgCl2, 0.2 mM PMSF, 5 µg/mL 

aprotinin and 5 µg/mL leupeptin) and sonicated (5× 15 s pulses at 40 W). The soluble 

fraction was separated from the insoluble fraction by centrifugation (15,000 rpm,  

15 min, 4°C) and then incubated for 1 h at 4°C with a pre-swollen 50% (v/v) glutathione-

agarose bead slurry (at a ratio of 5 mL bead slurry per L of culture used). The beads 

were washed 3× with 10 bead volumes of PBS-T (PBS containing 1% Triton® X-100) and 
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pelleted (500 g, 5 min, 4°C) between washes. Where elution of the protein was 

required, the beads were incubated at room temperature 3× 2 min with one bead 

volume of reduced glutathione solution (40 mM reduced glutathione, 100 mM Tris  

pH 7.5, 120 mM NaCl; the pH of this solution was adjusted to 9.5). Removal of the 

reduced glutathione was accomplished through the use of a 10 K Microsep™ centrifugal 

device (Pall Gelman Sciences, Ann Arbor, MI, USA) (7,500 g, 2× 60 min spins, 4°C). The 

eluted protein was stored at -80°C until use. 

 

2.3.5  RNA trapping 

2.3.5.1  Maintaining a ribonuclease-free environment 

A ribonuclease (RNase)-free environment was maintained for all experiments requiring 

the handling of RNA (including this section and subsequent sections 2.3.6, 2.3.7 and 

2.3.8) to minimise RNA degradation. All MQW and salt solutions were subjected to 

overnight treatment with 0.1% (v/v) diethylpyrocarbonate (DEPC) to deactivate RNases, 

prior to autoclaving. Surfaces were swabbed with a 1 M NaOH solution and allowed to 

dry. Cuvettes, pH-probes and stirrer bars were rinsed with 1 M NaOH, followed by 

thorough rinsing with DEPC-treated MQW. Glassware was baked at 160°C for 4 h or 

overnight, and spatulas and tweezers were flamed before use. RNase-free plasticware 

was used wherever possible, and all chemicals and disposable materials were obtained 

from supplies dedicated to RNase-free use. 
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 2.3.5.2  Preparation of lysate from murine erythroleukaemia (MEL) cells 

MEL cells were grown in low-glucose DMEM (to a cell density of approximately  

2.2 ×106 cells/mL) and harvested by centrifugation (3,200 g, 4 min, 4°C). Cell pellets 

were washed several times with ice-cold DEPC-treated PBS, resuspended in 1.5 volumes 

of lysis buffer (100 mM KCl, 25 mM EDTA, 5 mM MgCl2, 10 mM HEPES, pH 7.0,  

0.5% IGEPAL CA-630, 1% Triton® X-100, 0.1% SDS, 10% glycerol; and supplemented 

prior to use with 2 mM DTT, 1 tablet/10 mL Complete Mini® protease inhibitor,  

100 U/mL RNasin® and 0.2% vandyl ribonucleoside complexes), and then centrifuged 

(14,000 g, 10 min, 4°C). The supernatant was collected and the pellet was resuspended 

in an additional 1 volume of lysis buffer and centrifuged. The resulting supernatant was 

pooled with the previous one and frozen in 400 µL aliquots at -80°C until use. Extracts 

typically had a concentration of 50 mg/mL total protein. 

 

2.3.5.3  Expression of recombinant GST fusion proteins and affinity purification 

GST-Eklf 261-376 was bacterially expressed and subjected to glutathione affinity 

purification, as described in Section 2.3.4. However, in this case, the proteins were 

retained on the glutathione-agarose beads (in other words, the elution step was 

omitted). 
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2.3.5.4  RNA trapping and isolation of bound RNA 

The glutathione-agarose bead slurry, containing the recombinant GST-Eklf 261-376 

protein, was equilibrated by washing (4× 500 µL) with NT2 buffer (50 mM Tris, pH 7.4, 

150 mM NaCl, 1 mM MgCl2, 0.05% IGEPAL CA-630) prior to incubation with the MEL cell 

lysate. The bead slurry (containing approximately 0.7 mg protein) was resuspended in 

NT2 buffer (supplemented prior to use with 100 U/mL RNasin®, 0.2% vanadyl 

ribonucleoside complexes, 1 mM DTT and 20 mM EDTA) and 450 µL MEL lysate was 

added (all to a final volume of 10 mL). Following overnight incubation at 4°C with 

rocking, the samples were centrifuged (3,200 g, 1 min, 4°C) to pellet the beads, then 

washed (8× 1 mL) with supplemented NT2 buffer. The beads were resuspended in  

600 µL proteinase K digestion buffer (100 mM Tris, pH 7.5, 10 mM EDTA, 50 mM NaCl 

and 1% SDS) and incubated with 500 µg proteinase K at 50°C for 30 min, with occasional 

mixing. The RNA was extracted with an equal volume of phenol:chloroform:isoamyl 

alcohol, vortexed for 1 min and centrifuged (22,000 g, 10 min, 4°C), then re-extracted 

with an equal volume of chloroform. Extracted RNA was precipitated with 1 volume 

isopropanol, 60 µL 4 M ammonium acetate, 3 µL 1 M MgCl2 and 8 µL glycogen at -20°C 

overnight. The RNA precipitate was collected by centrifugation (14,000 g, 30 min, 4°C). 

The pellet was washed with 80% ethanol, resuspended in DEPC-treated MQW and 

stored at -80°C. Formaldehyde agarose gel electrophoresis was employed for the 

visualisation of enriched RNA species. 
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2.3.6  Fluorescence Anisotropy 

Fluorescence Anisotropy assays can be used to monitor binding interactions between 

two molecules. The technique relies upon the existence of transition moments for 

absorption and emission which lie along specific directions within the fluorophore 

structure (Valeur, 2001). 

 

When samples capable of emitting fluorescence are illuminated with polarised light at 

an appropriate wavelength, fluorophores with their absorption transition moments 

aligned parallel to the direction of polarisation have the highest probability of 

absorption. As a result, the excited-state population within the illuminated sample is 

not randomly oriented, but instead has a larger proportion of excited molecules with 

their transition moments aligned parallel to the polarised exciting light (Figure 2.3). A 

short time (1–10 ns) passes before the excited fluorophores return to the ground state 

by emission of light. During this time the fluorophores in solution are not static, but 

undergo rotational diffusion. The extent of this diffusion is dependent on a number of 

parameters, including the viscosity of the solvent, and importantly, the size and shape 

of the rotating molecules (Lakowicz, 1999).  

 

This technique was used to investigate the binding of the ZFs of Eklf to the four RNA 

homoribopolymers, each with a 5’ fluorescein tag (Fl-RNAs). Short Fl-RNA molecules 

rotate rapidly when free in solution due to their small size. Thus, when free Fl-RNA 

molecules are illuminated with polarised light, by the time the excited state population 
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begins to relax to the ground state, the molecules will have undergone significant 

rotational diffusion, become randomised, and consequently emit depolarised light 

(Figure 2.3A). If however a large protein binds to the Fl-RNA, the larger complex will 

rotate much more slowly, retaining some degree of polarisation at the time of emission, 

hence resulting in emission of polarised light (Figure 2.3B). 

 

 

Figure 2.3  Schematic representation of fluorescence anisotropy. 

A. Free 
Fl-

RNA molecules tumble rapidly in solution, becoming randomised by the time of emission, hence 

resulting in depolarised emitted light. B. Larger 
Fl-

RNA:protein complexes tumble more slowly in solution, 

retaining some degree of polarisation by the time of emission, hence resulting in polarised emitted light. 
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The degree of polarisation of a population of molecules is known as the anisotropy, r, 

and is given by the following equation: 

hvvv

vvvv

GII

GII
r

2


  

where  

Ivv  = Fluorescence intensity when both the excitation and emission light are vertically 

polarised 

       Ivh  = Fluorescence intensity when the excitation light is vertically polarised and the 

emission light is horizontally polarised 

       Ihv  = Fluorescence intensity when the excitation light is horizontally polarised and emission 

light is vertically polarised 

Ihh = Fluorescence intensity when both the excitation and emission light are vertically 

polarised  

       G  = Ihv/Ihh 

 

The G value is included to correct for any intensity bias of the fluorescence 

spectrophotometer towards vertically or horizontally polarised light. By calculating the 

anisotropy of a solution containing Fl-RNA over a range of protein concentrations, a 

binding curve can be constructed, and from this a binding constant can be calculated 

using non-linear least squares regression. 
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2.3.6.1  Preparation of fluorescein-labelled RNAs 

Fluorescein-labelled RNAs (Fl-RNAs) were constructed for each of the four RNA 

homoribopolymers, each sequence consisting of a string of 17 nucleotides [poly(A), 

AAAAAAAAAAAAAAAAA; poly(G), GGGGGGGGGGGGGGGGG; poly(U), 

UUUUUUUUUUUUUUUUU; poly(C), CCCCCCCCCCCCCCCCC]. The Fl-RNAs were 

resuspended to a concentration of 1 mM in DEPC-treated MQW. 5 μL aliquots were 

deprotected by diluting the Fl-RNA 20-fold using the supplied deprotection buffer  

(100 mM acetic acid, adjusted to pH 3.8 with TEMED) and vortexing for 10 s before 

incubation at 60°C for 30 min. The Fl-RNA was then filtered through 0.22 μm Spin-X 

centrifuge tube filters (10,000 rpm, 30 min, 4°C) and quantified by A260 and A493 using 

the extinction coefficient ( ) supplied with each Fl-RNA and corrected for fluorescein 

absorbance by the equation: 

 

FlRNA

FlFl AA
RNA

493260

260493493260][







  

 

where Fl

493 74 600 M-1cm-1 and Fl

260 26 000 M-1cm-1 (Heyduk et al., 1996). Aliquots of 

Fl-RNA were stored at -20°C until required. Exposure of the Fl-RNAs to light was avoided 

wherever possible. 
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2.3.6.2  Preparation of proteins 

Following elution of the recombinant GST-Eklf 289-376 protein off the glutathione-

agarose beads (using PreScission™ buffer containing reduced glutathione; 50 mM Tris, 

pH 7.0, 100 mM NaCl, 2 mM DTT and 50 mM reduced glutathione), the GST tag was 

cleaved off the protein by the addition of 200 U PreScission™ protease/L of culture (GE 

Healthcare Life Sciences) and incubated for 1 h at 4°C. The reaction was stopped by a 

brief incubation at room temperature and the protein was purified using cation 

exchange chromatography, using the UnoS1 column with a gradient of 0-50% Buffer B 

(1 M NaCl) in 4 mL and a gradient of 50-100% Buffer B in 16 mL. Proteins were dialysed, 

against two separate volumes of fluorescence buffer, each for 4-16 h at 4°C. Aliquots of 

the purified protein were stored at -80°C until use. 

 

The protein concentration was determined using the A280 and the extinction coefficient 

( ), which was calculated from the amino acid sequence using the web-based program 

ProtParam on the ExPASy proteomics server (Swiss Institute of Bioinformatics, 

http://www.isb-sib.ch/). RNasin® was added to the protein solution to a concentration 

of 6.7 U/μL and incubated at 4°C for 5 min before dilution of the protein for the assays 

described in the next section. 
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2.3.6.3  Fluorescence anisotropy assays 

Prior to use, all solutions used in fluorescence spectroscopy were filtered through  

0.22 μm filters in order to remove light-scattering particles. Fluorescence intensity 

measurements were recorded at 520 nm following excitation at 475 nm, using a 

fluorescence spectrophotometer (Cary Eclipse, Varian Instruments, Mulgrave VIC) fitted 

with a manual polariser (Varian Instruments, Mulgrave, VIC) and long pass filters 

(Coherent Scientific Pty. Ltd. Hilton, SA) of 475 nm and 515 nm for excitation and 

emission, respectively. Temperature was maintained at 25°C using a block temperature 

controller (Varian Instruments, Mulgrave, VIC), slit widths were set to 10 nm and each 

recording was averaged over 15 s. 

 

The reaction solution was prepared by the addition of 0.05 mg/mL heparin and 50 nM 

Fl-RNA to fluorescence buffer in a starting volume of 300 μL. Measurements of Ihv 

(fluorescence intensity when the excitation light is horizontally polarised and emission 

light is vertically polarised) and Ihh (fluorescence intensity when both the excitation and 

emission light are vertically polarised) were obtained for this starting solution in order 

to correct for any intensity bias of the fluorescence spectrophotometer for vertically or 

horizontally polarised light. The stock protein solution was serially diluted into LoBind 

microfuge tubes, titrated into the reaction solution and mixed by inversion before the 

measurement of Ivv (fluorescence intensity when both the excitation and emission light 

are vertically polarised) and Ivh (fluorescence intensity when the excitation light is 

vertically polarised and the emission light is horizontally polarised) at each 

concentration of protein. 
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2.3.7  RNA homoribopolymer pulldown assay 

Approximately 20 µg of recombinant GST fusion protein was incubated for 1 h at 4°C 

with approximately 3 µg of the homoribopolymers, poly(A), poly(G), poly(U) and 

poly(C), bound to Sepharose (Sigma-Aldrich), equilibrated in binding buffer (10 mM 

MOPS, pH 7.0, 50 mM KCl, 5 mM MgCl2, 5% glycerol; supplemented prior to use with 

0.1% Triton® X-100, 1 mM DTT, 0.1 mM PMSF and 400 U/mL RNasin®). The beads were 

washed 4× in binding buffer and the final pellet was drained and boiled for 5 min in  

10 µL SDS-PAGE loading buffer and the bound protein separated by SDS-PAGE, and 

detected by Coomassie staining. 

 

2.3.8  Systematic Evolution of Ligands by EXponential enrichment 

(SELEX) 

The SELEX technique was first described by Tuerk and Gold (1990) and allows for the 

amplification and selection of the strongest binding ligands of a protein of interest. This 

method was used to select the best RNA ligands bound by recombinant, affinity-

purified GST-Eklf 261-276 and is outlined in Figure 2.4. 

 

A random RNA library was prepared using the synthetic oligonucleotide template  

5’-CGCGGATCCTAATACGACTCACTATAGGGGCCACCAACGACATT [25N] TCTAGAATAAATAGTGCCCATGGATCCGCGGGTGTCGGG-3’, 

where ‘N’ indicates random incorporation of all four nucleotides. This library was 

prepared for first round transcription by PCR amplification of the random N25 template, 

using the T7 (CGCGGATCCTAATACGACTCACTATAGGGGCCACCAACGACATT) and Rev 
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(CCCGACACCCGCGGATCCATGGGCACTATTTATTCTAGA) primers. RNA was transcribed using the RiboMax™ 

kit for T7 promoter (Promega) to yield approximately 5 nmol of full-length product (and 

approximately 1.1 ×1012 unique RNA molecules – equivalent to the coverage of a  

20-mer sample space) for first round selection. Selection-amplification was performed 

essentially as described by Tuerk and Gold (1990). Binding reactions were carried out by 

incubating the RNA and GST-Eklf 261-376 bound to glutathione-agarose beads in SELEX 

binding buffer (10 mM MOPS, pH 7.0, 50 mM KCl, 5 mM MgCl2, 5% glycerol; 

supplemented prior to use with 0.1% Triton® X-100, 1 mM DTT, 0.1 mM PMSF and  

400 U/mL RNasin®) for 1 h at 4°C. RNA:protein molar ratios were varied from 5:1 at the 

beginning of selection to 20:1 at the end of selection. Following 5× 400 µL washes, the 

protein and bound RNA was eluted from the beads by incubating at room temperature 

for 15 min in 50 µL reduced glutathione (10 mM reduced glutathione, 50 mM Tris  

pH 8.0 – pH was adjusted to 9.5). The protein was separated from the RNA in the 

supernatant by three consecutive phenol-chloroform extractions, and the RNA was 

precipitated by overnight incubation at -80°C in 0.5 volumes of 7.5 M ammonium 

acetate and 2.5 volumes absolute ethanol. The precipitated RNA was collected by 

centrifugation (22,000 g, 30 min, 4°C), resuspended in 16 µL DEPC-treated MQW and 

reverse transcribed into cDNA using the Rev primer and the SuperScript™ III First-Strand 

Synthesis System for cDNA (Invitrogen). Half of the cDNA was used as template for a 

subsequent round of PCR. Following twelve rounds of binding and selection, the cDNA 

was digested with BamHI, sub-cloned into the pBS-KS vector and sequenced using the 

T7 primer.  
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Figure 2.4  Schematic overview of the systematic evolution of ligands by exponential 

enrichment (SELEX) procedure.  

After multiple rounds of protein binding, selection and amplification of the ligand RNAs for Eklf 261-376, 

isolated sequences are cloned and sequenced. 
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2.3.9  Electrophoretic Mobility Shift Assay (EMSA) 

2.3.9.1  Probe preparation 

The DNA probe used in this study is sequence from the murine ß-major globin promoter 

CACCC-box, using oligonucleotides MC132 (TAGAGCCACACCCTGGTAAG) and MC133 

(CTTACCAGGGTGTGGCTCTA) as previously described (Crossley et al., 1996). Briefly, 

oligonucleotides were 5’ end-labeled with *γ-32P]-ATP using T4 polynucleotide kinase 

for 30 min at 37°C. To generate the double-stranded DNA probes, complementary 

oligonucleotides were annealed in TNE buffer (50 mM Tris, pH 8.0, 50 mM NaCl, 1 mM 

EDTA). 

 

2.3.9.2  DNA-binding  assays 

Gel retardation assay reactions were set up in a total volume of 30 µL, comprising 

approximately 0.2 pmol of 32P-labeled probe (final concentration 6 nM), 2 µg 

recombinant GST-fusion protein or 5 µL nuclear extract and gel-shift buffer (10 mM 

HEPES, pH 7.8, 50 mM KCl, 5 mM MgCl2, 1 mM EDTA, 0.5 mM DTT, 5% glycerol and  

25 µg/mL poly[dI·dC]) and 1 µL of the relevant antibody for antibody supershifting 

reactions. After incubation at 4°C for 20 min, samples were loaded onto a 6% native 

polyacrylamide gel (acrylamide:bisacrylamide ratio of 19:1 in 0.5× TBE). The gel was 

subjected to electrophoresis in a Sturdier™ vertical slab gel unit (Hoefer, San Francisco, 

CA, USA) in TBE (45 mM Tris, 45 mM boric acid, 1 mM EDTA) at 15 V/cm (250 V) for 1 h 

50 min at 4°C. The gel was then dried under vacuum and analysed using a 

PhosphorImager™ (Molecular Dynamics, Sunnyvale, CA, USA). 
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2.3.10  Stable transfections 

MEL and K562 cells were rinsed in HEPES buffered saline pH 7.05 (HeBS; 20 mM HEPES, 

137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4 and 6 mM glucose) and approximately  

3 ×107cells were used for each electroporation. One hundred micrograms of the 

appropriate pEFIRES-P plasmid was linearised with 200 U of the restriction enzyme AseI 

and added to cells resuspended in 1 mL of HeBS in an electroporation cuvette (Bio-Rad 

Laboratories; 0.4 cm gap width). Cells were electroporated under the following 

conditions for both cell lines: 975 µF and 0.280 kV. Following electroporation, cells were 

incubated in 20 mL pre-warmed DMEM (for MEL cells) or RPMI (for K562 cells) for 48 h. 

Cells were serially diluted 10- and 100-fold and plated in 24 well plates in 1 µg/mL (MEL 

cells) or 0.5 µg/mL (K562 cells) puromycin, at 1 mL per well. Clones were picked and 

expanded once individual colonies were visible (after approximately one week) and 

maintained under puromycin selection.  

  

2.3.11  Chemical induction of erythroid differentiation with dimethyl 

sulfoxide (DMSO) 

Stable MEL cell lines were seeded at a concentration of approximately 2 ×105 cells/mL 

and were chemically induced to undergo erythroid differentiation with 1.8% DMSO. 

Approximately 72 h post-induction, cells were harvested, washed twice in PBS to 

remove traces of media and enhance visualisation of the cell pellets and pelleted in a 

microfuge (22,000 g, 5 min, 4°C). 
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2.3.12  Nuclear extracts 

Nuclear extracts were obtained from 100 mm culture dishes of MEL or K562 cells stably 

transfected with pEFIRES-P constructs. Cells were harvested and rinsed in 10 mL  

ice-cold phosphate-buffered saline (PBS). After centrifugation (10,000 g, 30 s), cells 

were resuspended in 400 µL buffer A (10 mM HEPES, pH 7.8, 1.5 mM MgCl2, 10 mM KCl; 

supplemented with the following just before use: 1 mM DTT, 50 ng/µL PMSF, 5 µg/mL 

aprotinin and 5 µg/mL leupeptin), incubated at 4°C for 10 min and vortexed for 10 s. 

Following centrifugation (10,000 g, 10 s), the supernatant containing the cytosolic 

fraction was discarded and the pellet containing the nuclei was resuspended in 30 µL 

buffer C (20 mM HEPES, pH 7.8, 25% (v/v) glycerol, 420 mM NaCl, 1.5 mM MgCl2,  

0.2 mM EDTA; supplemented with the following just before use: 1 mM DTT, 50 ng/µL 

PMSF, 5 µg/mL aprotinin and 5 µg/mL leupeptin). Samples were incubated on ice for  

20 min and then debris of the lysed nuclei were pelleted by centrifugation (22,000 g,  

3 min, 4°C). The supernatants containing the nuclear extracts were collected and stored 

at -80°C until use. 

 

2.3.13  SDS-PAGE 

All protein preparations used in this study (mammalian and bacterial extracts) were 

separated by electrophoresis on polyacrylamide resolving gels (12% acrylamide from a 

30% acrylamide stock [acrylamide:bisacrylamide ratio of 37.5:1], 0.375 M Tris [pH 8.8], 

0.1% SDS, 0.1% APS and 0.1% TEMED). Stacking gels (4% acrylamide from a  

30% acrylamide stock [acrylamide:bisacrylamide ratio of 37.5:1], 0.375 M Tris [pH 6.8], 

0.1% SDS, 0.1% APS and 0.1% TEMED) were used for all SDS-PAGE runs. Prior to 
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electrophoresis, protein samples were heated to 95°C with an equal volume of  

2× SDS-PAGE loading buffer (125 mM Tris [pH 6.8], 4% SDS, 20% glycerol, 40 µg/mL 

bromophenol blue and 100 mM DTT [added just prior to use]) for 5 min. Gels were run 

using either Mighty Small™ or Tall Mighty Small™ apparatus with 1 mm spacers (Hoefer, 

San Francisco, CA, USA) in protein running buffer (2.5 mM Tris, 0.192 M glycine,  

0.1% SDS, pH 8.3) at 20 mA. 

 

2.3.14  Western blotting 

Nuclear extracts from MEL or K562 cells were separated by SDS-PAGE and transferred 

onto Biotrace™ nitrocellulose membranes (Pall Gelman Sciences, Ann Arbor, MI, USA), 

pre-soaked in Western transfer buffer (25 mM Tris, 0.19 M glycine, 20% (v/v) 

methanol). Transfer took place at 50 mA for 16-18 h at 4°C. 

 

Following transfer, membranes were blocked twice in 50 mL skim milk solution (3 g 

skim milk powder in 100 mL TBST [50 mM Tris (pH 7.5), 150 mM NaCl,  

0.05% Tween®-20] and washed twice in 50 mL TBST for 8 min each time. Membranes 

were then incubated for 1 h in primary antibody solution (diluted in 15 mL TBST). 

Following five washes in 50 mL TBST (8 min per wash), the membranes were incubated 

with the secondary antibody solution (2 µL horseradish peroxidise-linked anti-rabbit or 

anti-mouse secondary antibodies in 15 mL TBST). Membranes were washed an addition 

five times using 50 mL TBST (8 min per wash). Membranes were gently shaken 

throughout the washing and antibody incubation steps.  Antibody detection was carried 
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out using the Western Lightning™ Chemiluminescence Reagent Plus Kit (Perkin Elmer, 

Boston, MA, USA) and exposure to X-ray film (Eastman Kodak Company, Rochester, NY, 

USA). The films were developed using an AGFA CP-1000 X-ray film processor using the 

developer and fixer supplied by the manufacturer. 
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Chapter 3 – Eklf binds RNA in vitro 
and in vivo 

3.1  Introduction 

Determining whether Eklf has the capacity to bind RNA will allow us to assess whether 

the family of Krüppel-like factors can regulate gene expression by binding directly to 

RNA. To date, only a small number of classical C2H2 zinc finger (ZF) proteins have been 

reported to bind RNA, including TFIIIA, JAZ, dsRBP-ZFa and wig-1 (Finerty and Bass, 

1997; Honda and Roeder, 1980; Mendez-Vidal et al., 2002; Pelham and Brown, 1980; 

Picard and Wegnez, 1979; Yang et al., 1999). Furthermore, in addition to its nuclear 

function, Eklf was recently reported to localise to the cytoplasm (Quadrini et al., 2008; 

Shyu et al., 2007), thereby suggesting an important role for this protein other than 

through transcriptional regulation.  Therefore, the aim of this chapter is to investigate 

whether Eklf has the capacity to bind RNA using its ZFs. We demonstrate that the ZFs of 

Eklf not only have the capacity to bind cellular RNA, but also display sequence 

specificity in homoribopolymer pulldown, fluorescence anisotropy and systematic 

evolution of ligands by exponential enrichment (SELEX) assays. 

 

3.2  The ZFs of Eklf bind cellular RNA 

To establish whether the Eklf ZFs bind RNA, a recombinant GST fusion protein 

containing the region spanning the ZFs of Eklf (amino acid residues 261-376; referred to 

as GST-Eklf 261-376) was used in the RNA pulldown experiment. Total murine 
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erythroleukaemia (MEL) cell extracts were used as a source of RNA. As can be seen in 

Figure 3.1, there was a significant enrichment in RNA levels for GST-Eklf 261-376 when 

compared to the GST negative control.  Furthermore, the nucleic acid isolated was 

confirmed to be RNA by RNase digestion of the extracted nucleic acid (Figure 3.2). 

 

 

Figure 3.1  The ZFs of Eklf bind endogenous cellular RNA.  

Recombinant GST and a GST-fusion protein containing the three ZFs of Eklf, spanning amino acid residues 

261-376 (GST-Eklf 261-376), bound to glutathione-agarose beads (beads volumes containing 

approximately 0.7 mg of protein were used), were incubated with 400 µL MEL cell extract. After washing 

the beads, bound RNA was extracted and quantified using A260 readings. Results are expressed as a 

percentage of the input RNA used and are representative of three independent experiments. Data are 

presented as mean ± standard error of the mean (SEM), n=3. *p<0.05 (paired Student’s t-test). 
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Figure 3.2  Formaldehyde agarose gel of RNA bound to GST-Eklf 261-376. 

Recombinant GST and GST-Eklf 261-376 protein bound to glutathione-agarose beads, were used to 

pulldown RNA from MEL cell extracts (lanes 1 and 2). Approximately 5 µg of RNA bound by  

GST-Eklf 261-376 was treated with 30 U RNase ONE™ ribonuclease (compare lanes 2 and 3). Results 

shown are representative of two independent experiments. 

 

Having established that the ZFs of Eklf are capable of binding RNA, we sought to 

characterise this binding in more detail using additional in vitro assays. This was 

accomplished through the use of RNA homoribopolymer pulldown assays and 

fluorescence anisotropy studies. 
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3.3  The ZFs of Eklf bind RNA homoribopolymers in vitro 

In many instances, RNA-binding proteins have been identified by their ability to bind 

RNA homoribopolymers [poly(A), poly(G), poly(U) and poly(C)]. Proteins identified in 

such a manner include Polypyrimidine Tract Binding Protein (PTB), Mammalian Splicing 

Factor 1 (SF1) and Fragile X Mental Retardation Protein (FMRP) (Arning et al., 1996; 

Brown et al., 1998; Irwin et al., 1997; Siomi et al., 1993b). 

 

In this study, a homoribopolymer pulldown assay was used to determine whether the 

ZFs of Eklf bind RNA in vitro and to allow us to determine whether this occurred in a 

sequence specific manner. The procedure involves incubating a recombinant protein 

with beads containing the homoribopolymers. Following multiple washes, the protein is 

eluted from the beads and visualised after SDS-polyacrylamide gel electrophoresis and 

Coomassie staining. 

 

3.3.1  Eklf has a preference for poly(A) and poly(U) RNA 

homoribopolymers 

Recombinant GST-Eklf 261-376 was incubated with beads containing 

homoribopolymers [either poly(A), poly(G), poly(U) or poly(C) (Figure 3.3; lanes 2-5, 

respectively)]. Following multiple washes, any bound protein was eluted from the beads 

by boiling in SDS-PAGE loading buffer. As shown in Figure 3.3, GST-Eklf 261-376 displays 

a clear preference for poly(A) and poly(U) (lanes 2 and 4, bottom panel) and weaker 

binding to poly(G) and poly(C) RNA sequences (lanes 3 and 5, bottom panel). These 
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results show that the ZFs of Eklf are capable of binding to RNA and suggest they may 

bind with sequence specificity, with a preference for strings of A or U. Thus, we sought 

to quantitate binding to the homoribopolymers and verify these results using an 

independent technique, as will be described in the following sub-section. 

 

 

Figure 3.3  The ZFs of Eklf bind RNA homoribopolymers.  

Recombinant GST and GST-Eklf 261-376 (20 µg) were incubated with ~3 µg poly(A), poly(G), poly(U) or 

poly(C) RNA (lanes 2-5, respectively) linked to agarose beads in binding buffer (10 mM MOPS pH 7.0,  

50 mM MgCl2, 5% glycerol, 0.1% Triton X-100, 1 mM DTT, 0.1 mM PMSF, 0.4 U/L RNasin®) in a total 

volume of 100 µL. Beads were washed with 4× 400 µL binding buffer, loaded onto a 12% SDS-PAGE gel 

and stained with Coomassie Blue. Lane 1 shows 10% of the input (2 µg) used for each recombinant 

protein. Results shown are representative of three independent experiments. 
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We next sought to corroborate these results using a different technique, known as 

fluorescence anisotropy. In these quantitative assays, 17-nucleotide single-stranded 

RNA oligonucleotides were labelled with a 5’ fluorescein moiety and their fluorescence 

anisotropy measured during the stepwise addition of purified ZFs of Eklf (this time with 

the GST moiety removed). As shown in Figure 3.4 and Table 3.1, relatively strong 

binding was observed for poly(A) and poly(U), with affinities of  3 µM and  

0.3 µM, respectively (Table 3.1). In addition, no detectable level of binding was seen for 

poly(C), as binding was more than 100-fold weaker than that observed for poly(U) 

(Table 3.1). Furthermore, the poly(G) homoribopolymer displayed an uncharacteristic 

anisotropy binding curve (data not shown). Therefore, the binding constant could not 

be reliably calculated for poly(G) binding and thus the affinity for this homoribopolymer 

was not clearly established using this technique. One possible explanation for the 

unusual observation made for poly(G) is that the structure of this homoribopolymer 

may have interfered with the anisotropy readings, as strings of G residues are known to 

form planar G-quartet secondary structures (Williamson et al., 1989). Nevertheless, the 

remaining results obtained using this technique are consistent with the aforementioned 

homoribopolymer experiments and confirm that the ZFs of Eklf have a preference for 

strings of A or U sequences. Although poly(A) binding was observed to be stronger than 

poly(U) binding in the previous experiment (Figure 3.3), the former technique used was 

quantitative, as the amount of ribopolymer present on the beads was only 

approximately known. Thus, these two distinct experiments show the result that the 

classical ZFs of Eklf can bind to single-stranded RNA and suggest they bind with 

sequence specificity. 
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Figure 3.4  Comparison of the fluorescence anisotropy binding curves for the poly(A), 

poly(U) and poly(C) RNA homoribopolymers. 

In each experiment, Eklf 289-376 was titrated into a 50 nM solution of fluorescein-labelled RNA and the 

anisotropy was calculated at each protein concentration. A. Fluorescence anisotropy binding curves for 

poly(A) and poly(U). B. Fluorescence anisotropy binding curve for poly(C). Curves were fitted using  

non-linear least squares regression. Data shown are representative of two independent experiments. The 

results obtained from this experiment were from a collaboration with J.Font. 

 

Table 3.1  Relative binding affinities of Eklf 289-376 for RNA homoribopolymers 

Average KA values were calculated from two fluorescence anisotropy assays for each RNA species. Values 

less than 0.05 are indicative of weak or no binding. The results obtained from this experiment were from 

a collaboration with J. Font. 

RNA substrate Binding constant (KA, ×10
6
 M

-1
) 

poly(A) 0.26 ± 0.14 

poly(U) 3.56 ± 0.63 

poly(C) <0.05 
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3.3.2 Point mutations in the ZFs of Eklf do not abolish  

RNA-binding 

To investigate the mechanism of RNA-binding by Eklf 261-376, a number of point 

mutants were generated. A panel of mutants was generated, having the first cysteine 

residue of each of the three ZFs of Eklf (cysteine residues 295, 325 and 355) replaced 

with an alanine residue (Figure 3.5; combinations of C295A, C325A and C355A). It was 

anticipated that disruption of the ZF structure(s) caused by these point mutations might 

abolish or substantially weaken RNA-binding activity, as these mutations disrupt  

DNA-binding activity (data not shown). As ZFs are usually found in clusters, such 

mutational analysis is generally used to elucidate which of the ZFs are most important 

for nucleic acid binding. 
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Figure 3.5  Schematic representation of GST-Eklf 261-376 point mutants.  

Point mutations were generated using overlap PCR site-directed mutagenesis and then cloned into 

NpGEX-2T constructs, which were used to bacterially express these proteins. Each red cross depicts a 

mutation of the first cysteine residue within the ZF domain to an alanine residue. 
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Although the point mutations were predicted to disrupt the ZF structures and therefore 

disrupt binding, none of the point mutants generated substantially reduced binding 

(Figure 3.6, panels 2-9). This finding, namely that the zinc finger structures are not 

required for RNA-binding, is intriguing, given the importance of zinc finger binding 

implicated by the TFIIIA-RNA crystal structure (Figure 1.3). However, these results may 

suggest that the point mutations were not an effective means of disrupting RNA-

binding activity. A number of possibilities exist that may explain the inability of the 

point mutations to abolish binding of the ZFs. The first possibility is that some or all of 

the point mutations partially disrupted the ZF structures and as a result, binding is not 

completely abolished. This is supported by the observation that binding appears to be 

slightly reduced with the double and triple ZF mutants (Figure 3.6, panels 6-9; 

C295A/C325A, C325A/C355A, C295A/C355A and C295A/C325A/C355A). The second 

possibility is that the ZFs are binding RNA in a non-specific manner, regardless of 

whether an intact structure is present or not. Furthermore, the possibility exists that 

the residues critical to RNA-binding lie outside the ZF domains, as 34 amino acid 

residues N-terminal to the first ZF are expressed in the recombinant protein (amino acid 

residues 261-294). However, fluorescence anisotropy experiments described in the 

previous subsection demonstrated high-affinity binding to poly(A) and poly(U), despite 

the protein lacking most of the residues preceding the ZFs (Eklf 289-376; Figure 3.4 and 

Table 3.1). Thus, these observations suggest that residues important for RNA-binding 

may exist both within the ZF domains and in the region preceding the first ZF. The 

above possibilities were examined through bioinformatics analysis and deletion mutant 

experiments, and are described in the following two subsections of this chapter.  
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Figure 3.6  Point mutations in the ZFs of Eklf marginally disrupts binding to RNA 

homoribopolymers.  

Recombinant GST (panel 1), GST-Eklf 261-376 (wild-type; panel 2) and GST-Eklf 261-376 point mutants 

(panels 3-9) (20 µg) were incubated with 3 µg poly(A), poly(G), poly(U) or poly(C) RNA (lanes 2-5, 

respectively) linked to agarose beads in binding buffer (10 mM MOPS pH 7.0, 50 mM MgCl2, 5% glycerol, 

0.1% Triton X-100, 1 mM DTT, 0.1 mM PMSF, 0.4 U/L RNasin®) in a total volume of 100 µL. Beads were 

washed with 4× 400 µL binding buffer, loaded onto a 12% SDS-PAGE gel and stained with Coomassie. 

Lane 1 shows 10% of the input (2 µg) used for each recombinant protein. Results shown are 

representative of two independent experiments. 

 

3.3.3  Bioinformatics analysis predicts the majority of RNA-binding 

residues are located within Eklf 261-376 

In order to predict the residues within the Eklf protein that are important for  

RNA-binding, the amino acid sequence of Eklf was analysed using a number of 

bioinformatics programs (Kumar et al., 2007; Terribilini et al., 2006; Terribilini et al., 

2007; Wang and Brown, 2006).  

 

The RNABindR (Terribilini et al., 2006; Terribilini et al., 2007) program uses a Naïve 

Bayes classifier to predict the RNA-binding residues within proteins. Predictions are 

based on observed interactions from structures of protein-RNA interactions present in 

the protein data bank (PDB). It was reported that on the training set used to develop 

this program, 80% of the residues predicted to be RNA-binding were actually  

RNA-binding (Terribilini et al., 2006; Terribilini et al., 2007). The RNABindR prediction of 
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the RNA-binding residues within the Eklf (GenBank accession number NP_034765) 

protein sequence is shown in Figure 3.7. From the figure it is evident that the majority 

of the residues (45 out of 49 residues; approximately 92% of residues) predicted to bind 

RNA lie within amino acid residues 261-376. Furthermore, more than half of the 

residues predicted to bind RNA lie within the region 261-294 (the region immediately 

preceding the ZFs). 

 

 

Figure 3.7  RNABindR optimal prediction of RNA-binding residues within the Eklf 

(GenBank accession number NP_034765) protein.  

Residues predicted to bind RNA are in bold red and indicated by a ‘+’. The amino acid sequences of the 

three ZF domains of Eklf are shown in boxes. RNABindR (Terribilini et al., 2006; Terribilini et al., 2007) is a 

program available for use at http://bindr.gdcb.iastate.edu/RNABindR/RNABindR.aspx. 
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Prediction of protein-RNA interaction (Pprint) (Kumar et al., 2007) is another program 

that predicts RNA-binding residues within a protein sequence. It accomplishes this by 

using a support vector machines (SVM) model, which is trained on multiple sequence 

alignments. The SVM model was trained and tested on a set of 86 various RNA-binding 

protein chains with five-fold cross-validation.  

 

The Pprint program assigns each amino acid residue within the protein sequence of 

interest an SVM value. A threshold SVM value, arbitrarily set by the user, is then used to 

predict the RNA-binding residues, with higher threshold values reducing the number of 

false positives predicted. This program is reported to have a prediction accuracy of 76%, 

using the default threshold SVM value of -0.2 (Kumar et al., 2007). As shown in Figure 

3.8, the majority of the residues predicted to bind RNA (with an SVM value >0.2) lie at 

the C-terminal end of Eklf, within the region 261-376 (80 out of 91 residues have an 

SVM value >0.2; approximately 88% of residues). Taken together, the bioinformatics 

predictions made using two independent strategies suggest that the majority of  

RNA-binding residues exist within amino acid residues 261-376 of the Eklf protein. 

These predictions may explain the observations made in the point mutation 

experiments described in the previous subsection, as it appears that the residues 

preceding the ZFs, along with the ZFs, contribute to RNA-binding. In other words, 

introduction of the point mutations does not abolish RNA-binding, as the region 

immediately upstream of the ZFs may also be contributing to binding. The deletion 

mutant studies described in the next subsection will allow us to discern which regions 

are most critical for RNA-binding. 
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Figure 3.8  Prediction of protein-RNA interaction (Pprint) software prediction of  

RNA-binding residues within the Eklf protein.  

Each residue is assigned a support vector machines (SVM) score. Residues predicted to interact with RNA 

have an SVM score greater than the threshold value of 0.2 (indicated by the solid red line). Pprint (Kumar 

et al., 2007) is a web program available for use at http://www.imtech.res.in/raghava/pprint/. 

 

3.3.4  At least two ZFs are required for RNA-binding 

In order to map the minimal region(s) within Eklf 261-376 that are critical for  

RNA-binding in finer detail, a series of deletion mutants was generated (Figure 3.9). 

These deletion mutants were then used in RNA homoribopolymer pulldown 

experiments in the same manner as described in subsections 3.3.1 and 3.3.2.  

 

Figure 3.10 shows the results obtained from these experiments. Interestingly, the 

region containing all three ZFs, but lacking 28 of the preceding amino acid residues 
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shows binding which is similar to that of wild-type Eklf 261-376 (Figure 3.10, compare 

panels 2 and 6; i.e. GST-Eklf 261-376 and GST-Eklf 289-376). Furthermore, it appears 

that the region preceding the ZFs is not sufficient for binding, as binding is not strong 

when it alone is present in the absence of the ZFs (panel 5; GST-Eklf 261-294). Two 

tandem ZFs demonstrate similar binding to wild-type (compare panels 3, 7 and 11 with 

panel 2; i.e. compare GST-Eklf 261-348, GST-Eklf 319-376 and GST-Eklf 289-348 with 

GST-Eklf 261-376). However, in the presence of a single ZF, binding is dramatically 

reduced (panels 8-10; i.e. GST-Eklf 349-376, GST-Eklf 289-318 and GST-Eklf 319-348), 

although it is enhanced when ZF 1 is present in combination with the region preceding 

the ZFs (panel 4; GST-Eklf 261-318). Intriguingly, neither the region preceding the ZFs 

(panel 5; GST-Eklf 261-294) nor ZF 1 (panel 9; GST-Eklf 289-318) can bind poly(A) unless 

the two regions are present together (panel 4; GST-Eklf 261-318). Similarly, although ZF 

3 appears to be the only region that is capable of binding poly(A) (panel 8;  

GST-Eklf 349-376), its binding is greatly enhanced when present in combination with 

the other two ZFs (panels 6 and 7; GST-Eklf 289-376 and GST-Eklf 319-376).  Moreover, 

although ZF 2 cannot bind RNA in isolation (panel 10; GST-Eklf 319-348), it greatly 

enhances binding when present with either of the other two ZFs (panels 7 and 11;  

GST-Eklf 319-376 and GST-Eklf 289-348).  

 

In order to test whether the mechanism of RNA-binding by the ZFs of Eklf is similar to 

DNA-binding, an electrophoretic mobility shift assay (EMSA) experiment was performed 

with some of the ZF deletion mutants (Figure 3.11). In this experiment, a DNA probe 

containing the ß-major globin promoter CACCC box was incubated with all three ZFs 
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(lane 3; GST-Eklf 289-376), ZFs 2-3 (lane 4; GST-Eklf 319-376), ZF 1 (lane 5;  

GST-Eklf 289-318) or ZF 2 (lane 6; GST-Eklf 319-348). In contrast to the previous 

experiment (Figure 3.10), only the protein containing all three ZFs was observed to bind 

to DNA (Figure 3.11, lane 3; GST-Eklf 289-376). Despite showing relatively strong  

RNA-binding (Figure 3.10, panel 7; GST-Eklf 319-376), no DNA-binding was observed for 

ZFs 2-3 (Figure 3.11, lane 4; GST-Eklf 319-376). These results suggest that the ZFs of Eklf 

bind to RNA using a mechanism that is different to DNA-binding. 

 

Taken together, the above results demonstrate that the minimal region required for  

RNA-binding by Eklf is two ZF domains or one finger in combination with the 34 amino 

acid region preceding the fingers. In addition, the results above show that the ZFs act 

synergistically to enhance binding. Finally, the mechanism used for RNA-binding by the 

ZFs appears to differ from DNA-binding. 
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Figure 3.9  Schematic representation of GST-Eklf 261-376 deletion mutants. 

N-terminal and C-terminal truncations of ZF domains of Eklf 261-376 were produced by bacterial 

overexpression from NpGEX-2T constructs generated to contain the desired deletions (by sub-cloning). 

Amino acid residues marking the N-terminal and C-terminal ends of each deletion mutant are indicated. 
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Figure 3.10  The ZFs of Eklf display RNA sequence specificity.  

Recombinant GST (panel 1), GST-Eklf 261-376 (panel 2) and GST-Eklf deletion mutants  

(panels 3-11) (20 µg) were incubated with 3 µg poly(A), poly(G), poly(U) or poly(C) RNA (lanes 2-5, 

respectively) linked to agarose beads in binding buffer (10 mM MOPS pH 7.0, 50 mM MgCl2, 5% glycerol, 

0.1% Triton® X-100, 1 mM DTT, 0.1 mM PMSF, 0.4 U/L RNasin®) in a total volume of 100 µL. Beads were 

washed with 4× 400 µL binding buffer, loaded onto a 12% SDS-PAGE gel and stained with Coomassie 

Blue. Lane 1 shows 10% of the input (2 µg) used for each recombinant protein. Results shown are 

representative of two independent experiments. 
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Figure 3.11  Eklf ZF deletion mutants lack the ability to bind DNA. 

GST and GST-Eklf ZF deletion mutants (2 µg) were produced by bacterial overexpression (lanes  

2-6). GST-Eklf 289-376 (lane 3) contains all three ZF domains; GST-Eklf 319-376 (lane 4) contains the 

second and third ZF domains; GST-Eklf 289-318 (lane 5) contains the first ZF domain; GST-Eklf 319-376 

(lane 6) contains the second ZF domain. The recombinant proteins were incubated with a radiolabeled 

probe containing the ß-major globin promoter CACCC box. The reaction mixtures were then separated in 

a non-denaturing polyacrylamide gel in an electrophoretic mobility shift assay (EMSA). The interaction of 

GST-Eklf 289-376 with the DNA probe is shown by a shifted band. 
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3.4  Eklf does not appear to have a clear RNA-binding consensus 

sequence 

As described in the previous section, the ZFs of Eklf display some degree of sequence 

specificity, with a preference for A or U homoribopolymers. Therefore, we carried out a 

selection experiment to define in detail the sequence specificity of the ZFs of Eklf and, if 

possible, to identify a consensus RNA-binding sequence. This involved the use of the 

systematic evolution of ligands by exponential enrichment (SELEX) technique (also 

referred to as SAAB – selected and amplified binding site imprint assay, or CASTing – 

cyclic amplification and selection of targets) (Blackwell and Weintraub, 1990;  

Wright et al., 1991).  SELEX is a protocol for isolating from a pool of variant RNA 

sequences high-affinity ligands to a particular protein. Basically, this procedure involves 

cycles of affinity selection by a protein from a heterogeneous population of RNAs, 

replication of the bound species and in vitro transcription to generate an enriched pool 

of RNA.  

 

A library of random 25-mer single-stranded RNA sequences, in which sequences of up 

to 20 bases in length were represented, was constructed. This random library was 

bound to the ZFs of Eklf immobilised on glutathione-agarose beads (Figure 3.12, lane 2). 

RNA sequences that were retained were subjected to multiple cycles of amplification 

and re-binding to the Eklf ZFs, until only the strongest binding sequences remained. 

These sequences were then identified through cloning and sequencing. 
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Following 12 rounds of binding and selection, sequences were obtained from 116 

clones.  Figure 3.13 shows the average frequency of each nucleotide within each 

sequence obtained. As can be seen, there is a significant enrichment in C residues 

present within each sequence. Furthermore, analysis of the nucleotide frequencies 

within the pooled sequences shows a clear enrichment of C residues (Table 3.2). 

Further analysis of the frequencies of dinucleotide, trinucleotide, tetranucleotide and 

pentanucleotide sequences was carried out (Tables 3.3-3.6) with the aim of identifying 

a consensus RNA-binding sequence for Eklf. The rationale for undertaking this type of 

analysis was the fact that RNA-binding proteins are generally found to bind short 

consensus sequences, since RNA-binding does not only involve recognition of specific 

sequences, but also the recognition of secondary structures. For instance, the Nova 

protein uses its K-homology (KH)-type domain to recognise a UCAY tetranucleotide 

element within the context of a 20-base hairpin RNA (Jensen et al., 2000). Despite there 

being a clear enrichment in C residues, an obvious consensus sequence could not be 

derived from these data (Tables 3.3-3.6). The data from this experiment appear to 

conflict with the earlier findings, in that the ZFs of Eklf appear to have a preference for 

C residues, whereas the previous experiments suggest a preference for A or U residues. 
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Figure 3.12  Recombinant GST-Eklf 261-376 protein used in SELEX experiments.  

Coomassie stained 12% SDS-PAGE gel showing bacterially overexpressed GST (lane 1) and the GST fusion 

protein (lane 2), both of which were affinity-purified on glutathione agarose beads. 
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Figure 3.13  SELEX results showing significant enrichment for C residues.  

Recombinant GST-Eklf 261-376 was mixed with RNA synthesised in vitro from oligonucleotides containing 

a randomised 25-mer central domain flanked by constant regions used for transcription and PCR. Bound 

RNAs were eluted and the binding and selection process was repeated for 12 rounds before cloning and 

sequencing. The average frequency of each residue from the 25-mer sequence of each isolated clone is 

shown. Average frequencies were obtained from the sequences of 116 isolated clones. Data are 

presented as mean ± SEM, n=116. *p<0.05 (paired Student’s t-test). 
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Table 3.2  Nucleotide frequencies obtained from SELEX using the GST-Eklf 261-376 

protein.  

Recombinant GST-Eklf 261-376 was mixed with RNA synthesised in vitro from oligonucleotides containing 

a randomised 25-mer central domain flanked by constant regions used for transcription and PCR. Bound 

RNAs were eluted and the binding and selection process was repeated for 12 rounds before cloning and 

sequencing. Frequencies were obtained from a pool of 116 sequences following 12 rounds of binding and 

selection. 

Nucleotide Observed Frequency Expected Frequency 

C 1089 723.5 

G 760 723.5 

A 608 723.5 

U 437 723.5 
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Table 3.3  Dinucleotide frequencies obtained from SELEX using the protein  

GST-Eklf 261-376. 

Recombinant GST-Eklf 261-376 was mixed with RNA synthesised in vitro from oligonucleotides containing 

a randomised 25-mer central domain flanked by constant regions used for transcription and PCR. Bound 

RNAs were eluted and the binding and selection process was repeated for 12 rounds before cloning and 

sequencing. Frequencies were calculated from the 116 sequences obtained following 12 rounds of 

binding and selection. Sequences are shown in order of decreasing frequency.  

Dinucleotide Observed Frequency Expected Frequency 

CC 330 173.6 

GC 308 173.6 

CG 307 173.6 

AC 262 173.6 

CA 253 173.6 

UC 164 173.6 

GA 154 173.6 

CU 149 173.6 

AG 145 173.6 

GG 141 173.6 

UG 136 173.6 

AA 107 173.6 

GU 107 173.6 

AU 82 173.6 

UA 74 173.6 

UU 59 173.6 
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Table 3.4  Trinucleotide frequencies obtained from SELEX using the protein  

GST-Eklf 261-376. 

Recombinant GST-Eklf 261-376 was mixed with RNA synthesised in vitro from oligonucleotides containing 

a randomised 25-mer central domain flanked by constant regions used for transcription and PCR. Bound 

RNAs were eluted and the binding and selection process was repeated for 12 rounds before cloning and 

sequencing. Frequencies were calculated from the 116 sequences obtained following 12 rounds of 

binding and selection. Sequences are shown in order of decreasing frequency, with the trinucleotide 

sequences possessing the smallest frequencies in italics. A selection of the sequences with the highest 

and lowest frequencies is shown.  

Trinucleotide sequence Observed Frequency Expected Frequency 

CAC 107 41.6 

GCC 105 41.6 

CGC 105 41.6 

CCG 95 41.6 

ACC 88 41.6 

CCC 87 41.6 

GCA 80 41.6 

AAA 15 41.6 

AAU 14 41.6 

UUA 9 41.6 

UUU 9 41.6 

AUU 7 41.6 

UAU 5 41.6 
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Table 3.5  Tetranucleotide frequencies obtained from SELEX using the protein  

GST-Eklf 261-376. 

Recombinant GST-Eklf 261-376 was mixed with RNA synthesised in vitro from oligonucleotides containing 

a randomised 25-mer central domain flanked by constant regions used for transcription and PCR. Bound 

RNAs were eluted and the binding and selection process was repeated for 12 rounds before cloning and 

sequencing. Frequencies were calculated from the 116 sequences obtained following 12 rounds of 

binding and selection. Sequences are shown in order of decreasing frequency, with the tetranucleotide 

sequences possessing the smallest frequencies in italics. A selection of the sequences with the highest 

and lowest frequencies is shown.  

Tetranucleotide sequence Observed Frequency Expected Frequency 

GCCC 40 9.9 

CACC 38 9.9 

ACGC 36 9.9 

CGCA 34 9.9 

GCAC 32 9.9 

CCGC 30 9.9 

CGCC 30 9.9 

CACG 28 9.9 

CCAC 28 9.9 

CCUC 28 9.9 

CGAC 28 9.9 

AUAU 0 9.9 

AUGU 0 9.9 

AUUU 0 9.9 

CUAU 0 9.9 

UAUU 0 9.9 

UUAU 0 9.9 
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Table 3.6  Pentanucleotide frequencies obtained from SELEX using the protein  

GST-Eklf 261-376. 

Recombinant GST-Eklf 261-376 was mixed with RNA synthesised in vitro from oligonucleotides containing 

a randomised 25-mer central domain flanked by constant regions used for transcription and PCR. Bound 

RNAs were eluted and the binding and selection process was repeated for 12 rounds before cloning and 

sequencing. Frequencies were calculated from the 116 sequences obtained following 12 rounds of 

binding and selection. Sequences are shown in order of decreasing frequency, with the pentanucleotide 

sequences possessing the smallest frequencies in italics. A selection of the sequences with the highest 

and lowest frequencies is shown.  

Pentanucleotide sequence Observed Frequency Expected Frequency 

ACGCA 16 2.4 

CACAC 14 2.4 

CCUCG 14 2.4 

ACCAC 13 2.4 

GCCCG 13 2.4 

CACCG 12 2.4 

CACGC 12 2.4 

CGCAC 12 2.4 

CGGCC 12 2.4 

GCACC 12 2.4 

GCCGC 12 2.4 

CGACG 11 2.4 

GACGC 11 2.4 

GCCCU 11 2.4 

GCCUC 11 2.4 

UGCCC 11 2.4 

UUGCU 0 2.4 

UUGGU 0 2.4 

UUGUU 0 2.4 

UUUAG 0 2.4 

UUUAU 0 2.4 

UUUCA 0 2.4 

UUUCG 0 2.4 

UUUCU 0 2.4 

UUUGC 0 2.4 

UUUGG 0 2.4 

UUUUA 0 2.4 

UUUUG 0 2.4 
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3.5  Discussion 

The experiments described in this chapter show that the classical ZFs of Eklf can bind to 

single-stranded RNA and display some sequence specificity. These results represent the 

first description of RNA-binding by a member of the Klf family of transcription factors. 

 

In this chapter we established that Eklf has the capacity to bind RNA in a cellular 

context and showed using two independent in vitro assays that Eklf has a preference for 

A or U homoribopolymers and displays high affinity binding to these sequences  

(Figures 3.3, 3.4 and Table 3.1). This preference for A or U may be of biological 

significance if it can be demonstrated that Eklf can bind to AU-rich elements (AREs). 

These sequence elements are typically present in the 3’ untranslated region (3’ UTR) of 

mRNA transcripts that are rapidly degraded (often with half-lives of less than one hour), 

including those encoding oncoproteins and signaling proteins such as cytokines, 

chemokines and inflammatory mediators (Barreau et al., 2005). ARE sequences are 

highly variable, although they usually contain one or more AUUUA pentameric motifs 

within or near a U-rich region (Fialcowitz-White et al., 2007). Their length is also 

variable, ranging between 30 and 120 nucleotides (Chen and Shyu, 1995). There are 

three known classes of ARE-binding proteins that can yield varying consequences when 

binding to their mRNA targets. For instance, AUF1, tristetraprolin and K homology 

splicing regulatory protein (KSRP) can direct the rapid degradation of RNA  

(Carballo et al., 1998; Chen et al., 2001; Gherzi et al., 2004; Lu et al., 2006; Raineri et al., 

2004). Conversely, members of the Hu family of proteins inhibit the degradation of 

many ARE-containing mRNAs, presumably by antagonising recruitment of competing 
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mRNA-destabilising factors (Chen et al., 2002; Dean et al., 2001; Mobarak et al., 2000; 

Peng et al., 1998). Finally, members of the TIA-1/TIAR family do not appear to directly 

influence mRNA degradation; rather, they control the subcellular localisation and 

translational efficiency of bound transcripts (Lopez de Silanes et al., 2005; Piecyk et al., 

2000). The RNA-binding activity demonstrated by the ZFs of Eklf may account for its 

unexplained presence in the cytoplasm (Quadrini et al., 2008; Shyu et al., 2007). Thus, 

the findings presented in this chapter could have interesting implications in uncovering 

a novel role for Eklf in the regulation of gene expression at the post-transcriptional 

level. To date, no classical ZF protein has yet been reported to bind ARE sequences 

within mRNA transcripts. Therefore, further work in this area may reveal a new family 

of proteins, the Klf family, as RNA-binding proteins. 

 

In addition, deletion mutant studies, shown in Figure 3.10, revealed that Eklf requires at 

least two ZFs for RNA-binding or one ZF, when present in combination with the short 

amino acid peptide preceding the fingers. Moreover, EMSA studies shown in Figure 

3.11 suggest that the mechanism of RNA-binding of the ZFs appears to differ from  

DNA-binding, since while two ZFs have the ability to bind RNA, they cannot bind DNA to 

an extent that can be detected in EMSA experiments. Further studies employing more 

quantitative approaches, such as Biacore, may allow for further elucidation of the 

mechanism of RNA-binding. 
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While the SELEX data appear to conflict with the findings described in the 

homoribopolymer pulldown and fluorescence anisotropy assays, there are two 

possibilities that may explain the seemingly contradictory data obtained using this 

technique. First of all, it is a well established fact that Eklf binds to C-rich sequences 

within the ß -globin promoter region of DNA, known as CACCC-boxes, with high affinity 

(Miller and Bieker, 1993). In addition, the deletion mutant and EMSA analyses described 

in this chapter provide preliminary evidence that the mode of RNA-binding of the ZFs of 

Eklf differs to the mode of DNA-binding, as mutants that possess the ability to bind RNA 

cannot bind DNA (Figures 3.9 and 3.10). Therefore, the C-rich sequences obtained using 

the SELEX technique may have resulted from DNA-binding and not RNA-binding. This is 

most likely due to the inadvertent carryover of trace amounts of DNA at the end of the 

in vitro transcription step, as a result of incomplete DNase digestion of the template 

DNA. This explanation could hold true especially if Eklf has a higher affinity for DNA 

than RNA, which means that even the slightest level of DNA contamination could lead 

to the unintended selective amplification of these species due to the high sensitivity of 

PCR. The second explanation is the possibility of sequence bias that may exist at both 

the PCR amplification and cloning steps, as this is one of the major limitations of the 

SELEX technique. Although in theory, the random library has a sample space 

representing all the possible 20-base combinations, in practice this is not necessarily 

the case. Some sequences are favoured over others as they are amplified and/or 

sequenced more efficiently. In light of the current findings, it appears that the former 

explanation is the more likely of the two. Nonetheless, further work is necessary to 
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elucidate the mechanism of Eklf RNA-binding in greater detail. The next two chapters 

will focus on examining the ZFs of Eklf using in vivo studies. 
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Chapter 4 – The ZF domain of Eklf 
behaves as a dominant negative 
mutant 

4.1  Introduction 

Having investigated the RNA-binding of the ZFs of Eklf using in vitro assays as described 

in the previous chapter, we sought to examine this in a more biological system. 

Specifically, we embarked on a procedure for identifying RNAs that might bind the ZF 

region of Eklf. In order to accomplish this, a cell line stably expressing the ZF region of 

Eklf, was produced. The major advantage of constructing such a stable cell line for these 

experiments is the ease of purification of overexpressed protein, particularly when an 

N-terminal GST purification tag is incorporated in the construct. In addition, use of 

overexpressed protein was preferred over endogenous Eklf protein for two reasons; 

firstly, due to the inability to reduce background signal under various 

immunoprecipitation conditions of endogenous Eklf using the existing Eklf antibody 

(data not shown) and secondly, in order to facilitate the isolation of RNA bound by the 

ZFs of Eklf and not by any other region within the protein. 

 

In this chapter we describe the generation of a murine cell line that stably expresses a 

GST tag fused to the ZF region of Eklf (GST-Eklf 261-376). In addition, we provide 

evidence that expression of the ZFs within this stable cell line leads to an unexpected 

behaviour characteristic of a dominant negative mutant of Eklf. Moreover, we briefly 
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examine the specificity of the ZFs between members of the Klf family through the 

construction of various stable cells lines expressing the region containing the ZFs of 

some of these family members. 

 

4.2  Generation of MEL stable cell line expressing GST-Eklf 261-376 

This work was carried out in murine erythroleukaemia (MEL) cells. These cells are 

erythroid progenitors derived from the spleens of mice infected with the Friend virus 

complex (Friend, 1957). These virally transformed cells are arrested at the 

proerythroblast stage of development (Singer et al., 1974). Upon treatment with 

various chemical agents, MEL cells can be induced to undergo erythroid differentiation 

(between 30-100% of cells differentiate upon induction). Thus, this cell line was utilised 

due to its relevance to erythroid differentiation. 

 

To construct the stable MEL cell line, the GST tag and the region encoding amino acids 

261-376 of Eklf were sequentially sub-cloned into the bicistronic pEFIRES-P vector to 

produce a GST-Eklf 261-376 fusion protein. Using the pEFIRES-P vector, both the 

recombinant cDNA and the puromycin resistance gene (pac) are transcribed as a single 

mRNA transcript driven by the strong human polypeptide chain elongation factor 1α 

promoter (Hobbs et al., 1998). The presence of an internal ribosome entry site (IRES) 

within the message ensures that the majority of clones that are resistant to puromycin 

also express the recombinant protein. MEL cells were electroporated with either 
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pEFIRES-P.GST or pEFIRES-P.GST-Eklf 261-376 and expressing clones were selected by 

plating the cells in media containing puromycin. Recombinant protein obtained from 

the nuclear extracts of positive clones is shown in Figure 4.1. 

 

 

Figure 4.1  Expression of GST and GST-Eklf 261-376 in MEL nuclear extracts.  

MEL cells were electroporated with either 100 g pEFIRES-P.GST or pEFIRES-P.GST-Eklf 261-376. To 

generate the stable cell lines, puromycin was added to a final concentration of 1 g/mL, 48h  

post-transfection. Individual puromycin resistant clones were picked, expanded and then harvested.  

Proteins were detected in a Western blot probed with the polyclonal Eklf antibody. Results shown are 

representative of four independent experiments. 

 

4.3  The DNA-binding activity of endogenous Bklf is reduced 

Using the stable cell lines described in the previous section, an EMSA experiment was 

conducted in order to determine whether the ZFs in the GST-Eklf fusion retained  

DNA-binding activity, thereby providing an indication that the recombinant protein was 

correctly folded. As shown in Figure 4.2, overexpression of GST-Eklf 261-376 in MEL 
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cells results in a strong band shift of the β-globin CACCC probe (lane 4, arrow), which is 

absent in the control stable cell line expressing the GST tag (lanes 1-3). The identity of 

the band in lane 4 is confirmed by antibody supershifting using an Eklf antibody  

(lane 5). Unexpectedly, the DNA-binding activity of Bklf was observed to be dramatically 

reduced in the GST-Eklf 261-376 stable cell line (compare the intensities of the bands 

corresponding to the Bklf-probe DNA complexes in lanes 1 and 4). This unusual 

observation led us to postulate that the decrease in Bklf protein may reflect a drop in 

Bklf mRNA transcript, since it is known that the Bklf gene is directly activated by Eklf 

(Funnell et al., 2007). In contrast, the DNA-binding activity of the Sp1/3 proteins 

appears to remain unaffected under these conditions (compare lanes 1 and 4). This 

observation could be attributed to the fact that these proteins are not known to be 

regulated by Eklf and therefore are unaffected. Furthermore, the reduction in 

endogenous Bklf DNA-binding activity was not observed in stable MEL cell lines 

expressing point mutations in the ZFs of Eklf (Figure 4.3A and B). Thus, these 

observations led us to speculate that the GST-Eklf fusion is behaving as a dominant 

negative mutant, thereby inhibiting the endogenous Eklf protein from activating its 

target genes. Therefore, these findings prompted us to further examine Bklf protein 

and transcript levels in this stable cell line, as described in the next section of this 

chapter.  
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Figure 4.2  Expression of GST-Eklf 261-376 in MEL cells substantially reduces the  

DNA-binding activity of endogenous Bklf.  

Nuclear extracts were prepared from MEL cells stably transfected with pEF-IRES-P.GST  

(lanes 1-3) or pEF-IRES-P.GST-Eklf 261-376 (lanes 4-6). The nuclear extracts were then incubated with a 

radiolabeled probe containing the ß-major globin promoter CACCC box, in the presence or absence of 

Bklf or Eklf antibody, as indicated. The reaction mixtures were then separated in a non-denaturing 

polyacrylamide gel in an EMSA. The interaction of GST-Eklf 261-376 with the DNA probe is shown by a 

shifted band, which is confirmed by antibody supershifting. Results shown are representative of three 

independent experiments. 
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Figure 4.3  Point mutations in the ZFs of Eklf show little effect on endogenous Bklf 

DNA-binding activity 

MEL cell lines were stably transfected with pEFIRES-P.GST, pEFIRES-P.GST-Eklf 261-376 C295A  

(ZF1 mutant) and pEFIRES-P.GST-Eklf 261-376 C355A (ZF3 mutant) and maintained under puromycin 

selection (in 1 µg/mL puromycin). A. Western blot showing GST (lane 1), ZF1 mutant (lane 2) and ZF3 

(lane 3) expression in the nuclear extracts. B. EMSA experiment showing the MEL nuclear extracts 

incubated with a radiolabeled probe containing the ß-major globin promoter CACCC box, in the presence 

or absence of the Eklf antibody, as indicated. Results shown are representative of four independent 

clones. 
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4.4  Bklf mRNA and protein levels are substantially decreased 

As described in the previous section, the MEL stable cell line expressing  

GST-Eklf 261-376 showed reduced endogenous Bklf DNA-binding activity. This reduction 

in binding could be the result of the downregulation of Bklf expression, caused by the 

GST-Eklf ZF fusion protein. In order to test this hypothesis, endogenous Bklf mRNA and 

protein levels were examined. Real-time PCR was used to measure endogenous Bklf 

transcript levels and the result is shown in Figure 4.4 (Funnell, 2008). This experiment 

demonstrated that Bklf mRNA levels are reduced approximately 5-fold in the MEL 

stable cell line expressing GST-Eklf 261-376 relative to untransfected MEL cells, or cells 

stably expressing GST (Figure 4.4). In addition, Western blot analysis of nuclear extracts 

showed that Bklf protein levels are reduced considerably in the cells expressing GST-Eklf 

261-376 (Figure 4.5; compare lanes 1 and 2 to lane 3). Furthermore, ß-major globin 

transcripts were found to be decreased approximately 15-fold, relative to both 

untransfected MEL cells and cells stably expressing GST (Funnell, 2008). Taken together, 

these results show that the observed reduction in DNA-binding is due to the 

downregulation of Bklf gene expression. Moreover, the results suggest that the GST-Eklf 

ZF fusion may be directly affecting the expression levels of Eklf target genes by 

behaving as a dominant negative mutant, since the Bklf and ß-major globin genes are 

directly activated by Eklf (Bieker and Southwood, 1995; Funnell et al., 2007). Since Eklf 

plays a critical role in erythropoiesis, we hypothesise that overexpression of its ZFs will 

lead to a block in erythroid differentiation. This will be explored in the next section of 

this chapter. 
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Figure 4.4  Expression of GST-Eklf 261-376 in MEL cells reduces Bklf mRNA levels.  

Analysis of Bklf mRNA was performed by quantitative real-time RT-PCR using cDNA of untransfected and 

cultures stably transfected with pEF-IRES-P.GST or pEF-IRES-P.GST-Eklf 261-376. Bklf mRNA levels were 

normalised to 18S rRNA levels. Results shown are representative of four independent experiments. Data 

are presented as mean ± SEM, n=4. *p<0.05 (paired Student’s t-test). Experimental data reproduced with 

permission from A. Funnell (Funnell, 2008). 
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Figure 4.5  Expression of GST-Eklf 261-376 in MEL cells reduces Bklf protein levels.  

Bklf protein levels were monitored in the nuclear extracts of untransfected (lane 1) and cultures stably 

transfected with pEF-IRES-P.GST (lane 2) or pEF-IRES-P.GST-EKLF 261-376 (lane 3). Proteins were 

detected in a Western blot probed with the Bklf or -actin antibodies.  

 

4.5  MEL: GST-Eklf 261-376 cell line fails to differentiate 

In order to test the hypothesis that the GST-Eklf ZF fusion is behaving as a dominant 

negative mutant, the stable MEL cell line was chemically induced to undergo erythroid 

differentiation. Among the numerous known potent inducers of differentiation of MEL 

cells, dimethyl sulfoxide (DMSO), a polar-planar compound, was used as the chemical 

inducer in this experiment (Friend et al., 1971). The stable MEL cell line expressing  

GST-Eklf 261-376 was cultured in media containing DMSO. Cells that undergo erythroid 

differentiation turn red in colour, due to the production of haemoglobin, and this is 

noticeable in the colour of the cell pellet.  Figure 4.6 shows that while untransfected 

MEL cells successfully undergo erythroid differentiation, this behaviour was absent in 

the GST-Eklf 261-376 cell line. Altogether, the results described in the previous sections 

of this chapter suggest that the GST-Eklf ZF fusion is behaving as a dominant negative 



105 

 

mutant (of Eklf) within MEL cells by interfering with the expression of its downstream 

target genes and as a result, blocking erythroid differentiation. 

 

 

Figure 4.6  MEL cells expressing GST-Eklf 261-376 fail to differentiate into erythrocytes 

upon chemical induction with dimethyl sulfoxide (DMSO).  

Cells, seeded at a concentration of 2 ×10
5
 cells/mL, were incubated for 48 h in DMEM containing 1.8% 

DMSO. Results shown are representative of three independent experiments. 
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4.6  The ZFs of Lklf also appear to behave as a dominant negative 

mutant 

Due to the results observed in the MEL stable cell line expressing GST-Eklf 261-376 

(Sections 4.3-4.5), additional stable cells lines were constructed, expressing the ZF 

regions of various members of the Klf family. More specifically, GST-tagged ZF regions 

of Lklf, Bklf and Klf8 were expressed in these cell lines. The purpose of such an 

experiment was to determine whether any specificity exists in the recognition of the 

target sequences of the ZFs. As these regions are highly conserved (67.9% identity 

between the ZF regions of Eklf, Lklf, Bklf and Klf8), it was predicted that each of these 

cell lines would behave in a similar manner to the one expressing the GST-Eklf ZF fusion. 

In other words, it was hypothesised that a GST fusion of the ZF region of each member 

of the Klf family has the capacity to function as a dominant negative mutant. However, 

differing effects were observed among the different family members. In the case of 

Klf8, no positive clones were obtained, suggesting that expression of the GST-tagged 

ZFs results in a lethal phenotype. In addition, although clones expressing the  

GST-tagged ZFs of Bklf were obtained, they were obtained with difficulty following 

several electroporation attempts. Furthermore, the majority of protein was found to be 

degraded in the positive clones and EMSA results did not show a noticeable decrease in 

endogenous Bklf DNA-binding activity (data not shown).  However, unlike the ZFs of 

Klf8 and Bklf, cells expressing the GST-Lklf ZF fusion were viable. In this section, the 

results obtained from the stable cell line expressing the ZFs of Lklf are presented.   
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4.6.1  Generation of MEL cells stably expressing GST-Lklf 253-354 

The stable cell line expressing the GST tag fused to the ZFs of Lklf was constructed in the 

similar manner as that described in Section 4.2. In brief, the GST tag and the region 

encoding amino acids 253-354 of Lklf were sequentially sub-cloned into the pEFIRES-P 

vector to produce a GST-Lklf 253-354 fusion protein. Following electroporation of MEL 

cells with the construct and selection for puromycin resistance, clones were picked and 

screened for recombinant protein expression. Figure 4.7 presents a Western blot 

showing the level of expressed protein (lane 2).  

 

 

Figure 4.7  Expression of GST-Lklf 253-354 in MEL nuclear extracts.  

MEL cells were electroporated with either 100 g pEF-IRES-P.GST or pEF-IRES-P.GST-Lklf 253-354. To 

generate the stable cell lines, puromycin was added to a final concentration of 1 g/mL, 48h after 

transfection. Individual puromycin resistant clones were picked, expanded and then harvested. Proteins 

were detected in a Western blot probed with the Eklf or -actin antibodies. Results shown are 

representative of four independent experiments. 
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4.6.2  Bklf DNA-binding activity is reduced also 

Using nuclear extracts obtained from the MEL stable cell line expressing  

GST-Lklf 253-354, an EMSA experiment was undertaken, in the same manner as 

outlined in Section 4.3. As can be seen in Figure 4.8, expression of the GST-Lklf ZF fusion 

results in a strong band shift (lane 3), similar to that observed for the GST-Eklf ZF fusion 

(Figure 4.8, lane 4). The identity of this band was confirmed with antibody supershifting 

(Figure 4.8, lane 4), as the Eklf polyclonal antibody recognises the GST tag of the 

expressed protein (the antibody was raised against GST fused to the region of Eklf 

excluding the ZFs; namely GST-Eklf 1-114). Once again, endogenous Bklf DNA-binding 

activity was found to be reduced (Figure 4.8; compare lanes 3 and 4 to lanes 1 and 2). 

This observation suggests that the ZFs of Lklf are behaving in a similar fashion to the ZFs 

of Eklf. In other words, this result shows, that like the GST-Eklf ZF fusion, the GST-Lklf ZF 

fusion appears to behave as a dominant negative mutant (of Eklf) also. 
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Figure 4.8  Expression of GST-Lklf 253-354 in MEL cells reduces endogenous Bklf  

DNA-binding activity.  

Nuclear extracts were prepared from MEL cells stably transfected with pEF-IRES-P.GST  

(lanes 1-2) or pEF-IRES-P.GST-Lklf 253-354 (lanes 3-4). The nuclear extracts were then incubated with a 

radiolabeled probe containing the ß-major globin promoter CACCC box, in the presence or absence of 

Eklf antibody, as indicated. The reaction mixtures were then separated in a non-denaturing 

polyacrylamide gel in an EMSA. The interaction of GST-Lklf 253-354 with the DNA probe is shown by a 

shifted band, which is confirmed by antibody supershifting. Results shown are representative of four 

independent experiments. 
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4.7  Effects of the dominant negative mutant are diminished 

following multiple passages of the cell line 

As demonstrated in the previous sections of this chapter, the GST-Eklf ZF fusion 

behaves in a manner characteristic of a dominant negative mutant. However, the 

effects observed appeared to diminish following multiple passages of the stable cell 

line, at times after as few as five passages. More specifically, after numerous passages, 

the DNA-binding activity observed by the recombinant GST-Eklf 261-376 protein was 

diminished and Bklf DNA-binding activity was restored (Figure 4.9A, lanes 1-4). 

Examination of the protein levels revealed that in the nuclear extracts where  

DNA-binding was absent, GST-Eklf 261-376 expression was still present at comparable 

levels (Figure 4.9B; compare lanes 1 and 2). This observation suggests that a  

post-translational modification of the ZFs may inhibit its DNA-binding and dominant 

negative capabilities. Therefore, we hypothesised that phosphorylation of the ZFs of 

Eklf may abolish its DNA-binding activity, as phosphorylation of the threonine residue 

within the conserved TGEKP linker between C2H2 ZFs is known to have this effect  

(Dovat et al., 2002). In order to test this hypothesis, a phosphatase assay was 

performed. It is suspected that if phosphorylation of the ZFs was responsible for the 

loss of the DNA-binding activity, then removal of the inhibitory phosphate groups 

should restore this activity. Thus, nuclear extracts obtained from cells passaged 

numerous times were incubated with λ protein phophatase to observe whether  

DNA-binding can be restored. This enzyme is a Mn2+-dependent dual specificity 

phosphatase that releases phosphate groups from phosphorylated serine, threonine 

and tyrosine residues in proteins. The results from this assay are shown in Figure 4.9A. 
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It can be observed that phosphatase treatment of the ‘old extracts’ (referring to nuclear 

extracts obtained from cells passaged multiple times) does not restore DNA-binding 

activity (Figure 4.9A; lanes 2 and 4). Therefore, it appears that phosphorylation is not 

causing the loss of DNA-binding observed for the dominant negative mutant and that 

an alternative post-translational modification may be responsible. 
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Figure 4.9  DNA-binding activity of GST-Eklf 261-376 does not appear to be affected by 

phosphorylation.  

A. DNA-binding activities were compared by EMSA in the absence (lanes 1, 3, 5 and 7) and presence 

(lanes 2, 4, 6 and 8) of λ protein phosphatase. Nuclear extracts were incubated for  

30 min with or without λphophatase. Following phosphatase treatment, extracts were incubated with a 

radiolabeled probe containing the ß-major globin promoter CACCC box, in the presence (lanes 3-4 and  

7-8) or absence (lanes 1-2 and 5-6) of Eklf antibody. The reaction mixtures were then separated in a  

non-denaturing polyacrylamide gel. The interaction of GST-Eklf 261-376 with the DNA probe is shown by 

a shifted band, which is confirmed by antibody supershifting. B. Western blot showing the presence of 

GST-Eklf 261-376 protein in both old (lane 1) and new (lane 2) nuclear extracts. The western blot was 

probed with the Eklf antibody. ‘Old extract’ refers to the nuclear extract obtained from cells passaged 

multiple times and ‘new extract’ refers to nuclear extracts obtained from cells passaged only once. 
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4.8  Discussion 

In this chapter we made the inadvertent discovery that the stable MEL cell line 

expressing the GST-Eklf ZF fusion behaves as a dominant negative mutant.  In this cell 

line, a drastic reduction in the expression of Bklf and β-globin, two direct downstream 

target genes of Eklf, was observed. In addition, erythroid differentiation was found to 

be suppressed in this cell line, an observation supported by the fact that Eklf knockout 

mice die from severe anaemia due to a block in erythroid differentiation  

(Nuez et al., 1995; Perkins et al., 1995). Furthermore, these effects were absent in MEL 

cell lines expressing ZFs containing a single point mutation in one of the fingers. 

Moreover, these results are consistent with the observation that ß-major globin levels 

are decreased in cells expressing the ZF region of Eklf artificially fused to either the 

repression domain from the Drosophila engrailed protein (ENG) or the Sin 3a/Histone 

deacetylase interaction domain (HID) (Manwani et al., 2007). Taken together, these 

results suggest that expression of the GST-Eklf ZF fusion in MEL cells leads to a 

behaviour characteristic of a dominant negative mutant of this protein. 

 

Since the ZF region is highly conserved between members of the Klf family (Figure 4.10; 

67.9% identity between the fingers of Eklf, Lklf, Bklf and Klf8), we sought to investigate 

whether the aforementioned observations were due to the ZF region acting directly on 

Eklf in isolation, or whether the effects were more widespread, involving effects on the 

targets of multiple (or all) members of the Klf family. In other words, we wanted to 

determine whether any specificity was being exhibited by the ZFs of Eklf. In order to 

test this, additional stable cell lines expressing the ZFs of Lklf, Bklf and Klf8 were 
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produced to observe whether they behave in a similar manner to the ZF domain of Eklf. 

Of the four stable cell lines examined in this study, only the one expressing the GST 

fusion protein of the ZF region of Lklf (GST-Lklf 253-354) behaved in a similar fashion to 

the dominant negative mutant of Eklf. This result is not surprising, as phylogenetic 

analysis demonstrates that, of the Klfs examined, the ZFs of Lklf are the most closely 

related to those of Eklf (Figure 4.11). Altogether these results suggest that the effects 

observed by the ZF domain are not as widespread as anticipated and that some degree 

of specificity is involved, despite the highly conserved nature of the ZFs among the 

members of the Klf family.  

 

 

Figure 4.10  Multiple alignment of the Krüppel-like factors used in this investigation. 

The ClustalW program (Thompson et al., 1994), used under the BioManager (by ANGIS) interface 

(http://www.angis.org.au), was used to align the ZF regions of the Klf proteins used in this study. Each 

protein contains three ZFs at its C-terminus. The cysteine and histidine residues involved in the  

co-ordination of zinc are shown in red. Amino acids are colour coded according to the chemical 

properties of their side chains: C, orange (sulphur); D and E, red (acidic); K, R and H, blue (basic); A, P, F, 

W, G, L, M, V and I, black (aliphatic); S, T, Y, N and Q, green (amide and hydroxyl). The consensus 

sequence is shown above the alignment. Numbers indicate amino acid residue positions within the ZF 

region. Shown are amino acid residues 295-376 of Eklf, residues 273-354 of Lklf, residues 261-344 of Bklf 

and residues 272-355 of Klf8. 
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Figure 4.11  Phylogenetic relationship of the ZF domains among members of the Klf 

family examined in this study. 

The ClustalW/Protml/DrawGram programs (Adachi and Hasegawa, 1996; Felsenstein, 1989; Thompson et 

al., 1994), used under the BioManager (by ANGIS) interface (http://www.angis.org.au), were used to 

align the ZF domains of murine Klf proteins and determine their relatedness. Also indicated are 

alternative names used in the literature for the same proteins. GenBank™ accession numbers for protein 

sequences used for this analysis are as follows: Klf1 (Eklf), NP_034765; Klf2 (Lklf), NP_032478; Klf3 (Bklf), 

NP_032479; Klf8, NP_776141. 

 

Following multiple passages of this stable cell line, the effect of the dominant negative 

was noticeably diminished, despite expression of the GST-Eklf 261-376 protein being 

sustained at similar levels.  The most likely explanation for this observation is that a 

post-translational modification was responsible for the loss of DNA-binding and 

dominant negative activity. We suspected that phosphorylation may be responsible, as 
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phosphorylation of the conserved TGEKP amino acid linkers between the ZFs of some 

C2H2 proteins, such as Sp1 and Ikaros, abolishes their DNA-binding activity (Dovat et al., 

2002). The results presented in this chapter suggest that a novel modification other 

than phosphorylation may be responsible for the loss of DNA-binding activity observed, 

such as sumoylation or acetylation. Eklf has been reported to possess these 

modifications (Siatecka et al., 2007; Zhang and Bieker, 1998). For instance, two 

acetylation sites exist within the Eklf 261-376 region, namely K288 and K302  

(Ouyang et al., 1998; Zhang et al., 2001). Nevertheless, further work is necessary in 

order to confirm these findings and to elucidate the mechanism behind the observed 

loss in DNA-binding. Use of mass spectrometry may allow us to determine how the 

recombinant protein is being modified and to identify the modified amino acid 

residues. 

 

Finally, due to the profound effects of this recombinant protein on the physiological 

conditions of the cells, its appropriateness for use in in vivo RNA-binding studies, as 

initially intended, is questionable. In addition, loss of the dominant negative effect 

following multiple passages of the cell line in question may prove problematic if 

applications involving its use require the expansion or passaging of the cells for 

experiments. Nonetheless, the GST-Eklf ZF fusion protein may serve as a powerful tool 

with many potential applications; for instance, in studies that require the use of a cell 

line with a knockdown/knockout of Eklf, or for the identification of proteins that may 

interact with the ZFs of Eklf through the use of mass spectrometry.  
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Chapter 5 – The ZF domain of Eklf 
induces a megakaryocyte morphology 
in K562 cells 

5.1  Introduction 

In the previous chapter we developed a dominant negative mutant of Eklf  

(GST-Eklf 261-376) in MEL cells.  In order to determine whether Eklf plays an important 

role in lineage decisions, the effects of this dominant negative mutant on a multipotent 

haematopoietic cell line were examined. Therefore, a stable cell line expressing  

GST-Eklf 261-376 was generated using human K562 cells. This pluripotent cell line was 

derived from a chronic myeloid leukaemia (CML) patient in blast crisis  

(Klein et al., 1976) and can be chemically induced to undergo either erythroid or 

megakaryocytic differentiation (Tsiftsoglou et al., 2003), making it another model for 

the study of erythropoiesis.  

 

In this chapter we describe another result, where stable expression of the GST-Eklf ZF 

fusion in the K562 cell line results in a noticeable change in the phenotype of these 

cells. Therefore, we set out to characterise this observation in more detail and the 

results are described herein. 
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5.2  GST-Eklf 261-376 overexpression induces a megakaryocyte 

morphology 

K562 cells stably expressing GST-Eklf 261-376 were generated in the same manner as 

outlined in Section 4.2, with the exception that expressing clones were selected in 

media containing 0.5 µg/mL puromycin, approximately 48 hours post-electroporation. 

Surprisingly, it was observed that puromycin-resistant clones positive for  

GST-Eklf 261-376 expression displayed an enlarged morphology, characteristic of 

megakaryocytes, with at least 60% of the cells adhering to the plate in a monolayer 

(Figure 5.1; panel 3). In contrast, this phenomenon was absent in both untransfected 

cells and cells stably expressing the GST tag; the cells were found to be relatively 

smaller in size and were non-adherent, floating in suspension (Figure 5.1;  

panels 1 and 2). This result demonstrates that expression of the ZFs of Eklf in K562 cells 

has a more profound effect than in MEL cells by driving megakaryocyte differentiation, 

without the requirement for chemical induction. In the next section we aim to confirm 

this finding at the molecular level by measuring the expression levels of friend 

leukaemia integration 1 (fli-1), a member of the Ets family of transcription factors and a 

key driver of megakaryopoiesis (Athanasiou et al., 1996; Bastian et al., 1999; Jackers et 

al., 2004). 
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Figure 5.1  Expression of GST-Eklf 261-376 in K562 cells results in an increase in the 

number of cells with megakaryocyte morphology.  

Phase contrast microscopy images show a noticeable increase in the number of cells with megakaryocyte 

morphology (some indicated by arrowheads) in cells stably transfected with pEF-IRES-P.GST-Eklf 261-376 

(panel 3), but not in untransfected cells (panel 1), or cells transfected with pEF-IRES-P.GST (panel 2). 

Results shown are representative of three independent experiments. Original magnification, ×10. 
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5.3  GST-Eklf 261-376 expression increases fli-1 transcript levels 

In order to confirm at the molecular level that the stable K562 cell line expressing  

GST-Eklf 261-376 is undergoing megakaryopoiesis, fli-1 expression levels were 

measured in these cells. To achieve this, real-time PCR was employed to quantitate fli-1 

mRNA transcript levels. As shown in Figure 5.2, fli-1 levels are significantly increased in 

K562 cells stably expressing GST-Eklf 261-376, approximately 4-fold higher than 

untransfected cells and approximately 20-fold higher than cells stably expressing the 

GST tag. This marked increase was evident for at least four independent clones. 

Therefore, this result supports the morphological observations described in the 

previous section and suggests that Eklf may be responsible for repressing fli-1 

expression, either directly or indirectly via Bklf, as Bklf is a potent transcriptional 

repressor that is directly activated by Eklf (Funnell et al., 2007). Thus, we measured the 

level of fli-1 transcripts in Bklf knockout mice to determine whether Bklf regulates fli-1 

expression.           
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Figure 5.2  Fli-1 mRNA levels are increased in K562 cells stably expressing  

GST-Eklf 261-376. 

 Analysis of fli-1 transcripts was performed by quantitative real-time RT-PCR using cDNA of untransfected 

and cultures stably transfected with pEF-IRES-P.GST or pEF-IRES-P.GST-Eklf 261-376. Fli-1 mRNA levels 

were normalised to 18S rRNA levels. Results shown are representative of four independent experiments. 

Data are presented as mean ± SEM, n=4. *p<0.05 (paired Student’s t-test). 

 

 

 

 



122 

 

5.4  Bklf knockout mice have modestly elevated fli-1 transcript 

levels 

Having established that fli-1 expression is increased in K562 cells expressing the 

dominant negative mutant of Eklf, we wanted to determine whether this increase was 

attributed to a decrease in Bklf levels. To achieve this, we again used real-time PCR to 

measure fli-1 mRNA transcript levels in the bone marrow cells of Bklf knockout mice 

and the results are shown in Figure 5.3. As anticipated, fli-1 levels are significantly 

increased in Bklf knockout mice, with transcript levels 2.2-fold greater than that 

observed in wild-type mice. Furthermore, an increase was also observed in Bklf 

heterozygous mice. Therefore, these results support the hypothesis that Bklf may be 

involved in directly regulating fli-1 gene expression.  

 

Furthermore, an analysis of the fli-1 promoter was undertaken, where approximately 

600 bp upstream of the translational start site was scanned for potential Klf  

DNA-binding sites, pertaining to the consensus sequence NCNCNCCCN. Several such 

sites were found in this region and are indicated in Figure 5.4. Taken together, real-time 

PCR data of fli-1 levels in the bone marrow of Bklf knockout mice and analysis of the 

promoter region of fli-1 suggest that Bklf may be directly responsible for the regulation 

of fli-1 expression. Thus, we sought to determine whether Bklf binds directly to the fli-1 

promoter using Chromatin Immunoprecipitation (ChIP), which will be described in the 

subsequent section of this chapter. 
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Figure 5.3  Fli-1 mRNA levels are increased in the bone marrow of Bklf knockout mice.  

Analysis of fli-1 mRNA was performed by quantitative real-time RT-PCR using cDNA synthesised from RNA 

extracted from the bone marrow cells of Bklf
+/+

, Bklf
+/-

 and Bklf
-/-

 mice. Fli-1 mRNA levels were normalised 

to 18S rRNA levels. Results shown are representative of three independent experiments. Data are 

presented as mean ± SEM, n=3. *p<0.05 (paired Student’s t-test). 

 

 

 

 

 

 



124 

 

 

Figure 5.4  The murine fli-1 promoter showing putative Klf binding sites.  

The two major transcriptional initiation sites (reported by Starck et al, 1999) are marked with 

arrowheads. Putative Klf binding sites, pertaining to the consensus Klf binding sequence  

5’-NCNCNCCCN-3’ (or its reverse complement) are underlined.  
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5.5  Eklf and Bklf were not detected at the fli-1 promoter 

In the previous section it was demonstrated that fli-1 expression is modestly increased 

in Bklf knockout mice and analysis of the fli-1 promoter showed the presence of 

putative Klf DNA-binding sites (Figure 5.4). Thus, these observations led us to 

hypothesise that Bklf directly regulates fli-1 gene expression by binding to its promoter 

and recruiting a repression complex, as this protein is known to function as a 

transcriptional repressor (Turner and Crossley, 1998).  In order to test our hypothesis, 

preliminary ChIP experiments were performed using DNA extracted from the foetal 

livers of E14.5 mice and a Bklf antibody. Following elution and extraction, 

immunoprecipitated DNA was analysed by real-time PCR. The primers used for 

amplification were designed to be in close proximity to the putative Klf DNA-binding 

sites, with the amplicon spanning the region -252 to -174 (Figure 5.4).  In contrast to 

our prediction, Bklf was not detected at the fli-1 promoter (data not shown).  

 

This unexpected result prompted us to examine whether Eklf directly represses fli-1 

expression, as Eklf has been reported to function as a repressor (Chen and Bieker, 2004; 

Siatecka et al., 2007), in addition to its well-documented activator function. Thus, 

preliminary ChIP experiments were conducted with an Eklf antibody and  

real-time PCR was used to analyse the immunoprecipitated DNA with the 

aforementioned primer set. Once again, no enrichment was detected for Eklf at the fli-1 

promoter (data not shown). Therefore, the results from these preliminary experiments 

did not provide evidence that either Bklf and/or Eklf directly bind to the fli-1 promoter. 

This raises the possibility that Eklf and Bklf may not responsible for regulating fli-1 
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expression and that its regulation may occur via some other indirect mechanism that is 

yet to be determined. Another possibility is the lack of success of ChIP in this system. In 

any case, further work is necessary to completely exclude the possibility that neither of 

these two Klf proteins directly regulate fli-1 expression, for example through the use of 

primer sets at multiple locations across the fli-1 promoter and the inclusion of robust 

positive controls. 
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5.7  Discussion 

In this chapter we have constructed a human stable cell line that expresses the 

dominant negative mutant of Eklf, which results in the transformation of these cells to 

possess megakaryocyte morphology, without the need for phorbol esters to chemically 

induce differentiation.  In addition, we demonstrated that the expression of fli-1, a key 

driver of megakaryopoiesis, is upregulated in these cells, which is consistent with the 

observed megakaryocyte phenotype. Concomitant with these findings is the 

upregulation of fli-1 expression observed with the foetal liver of E13.5 Eklf knockout 

mice using high-density oligonucleotide microarrays (Frontelo et al., 2007). 

Furthermore, the foetal livers of Eklf knockout mice were found to contain a greater 

number of megakaryocytes than wild-type mice (Frontelo et al., 2007), which again is 

consistent with the aforementioned observations. Moreover, functional  

cross-antagonism was previously reported to occur between Eklf and fli-1, where fli-1 

was found to repress the transcriptional targets of Eklf (for example, ß-major globin 

expression) and vice versa (for example, GPIX expression, a megakaryocyte-specific cell 

surface antigen that is regulated by fli-1) (Starck et al., 2003). Thus, the results 

described in the current and previous chapter strongly suggest that Eklf expression 

leads to the inhibition of megakaryopoiesis (through the repression of fli-1) and the 

promotion of erythropoiesis, which is consistent with the work described by  

Frontelo et al, 2007. 
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Also in this chapter it was demonstrated that fli-1 transcripts were increased in the 

bone marrow of Bklf knockout mice, suggesting that fli-1 transcription could be directly 

regulated by Bklf, which is known to be positively regulated by Eklf  

(Funnell et al., 2007). Preliminary ChIP experiments were performed in order to 

determine whether any Bklf presence could be detected at the fli-1 promoter but were 

inconclusive (data not shown). 
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Chapter 6 – Discussion and 
Conclusions 

6.1  Eklf is an RNA-binding protein 

Prior to the experiments described in this thesis, Klf proteins were known to function as 

DNA-binding transcription factors (Miller and Bieker, 1993). In chapter 3 we 

demonstrated, using various independent in vitro assays, that Eklf possesses  

RNA-binding activity and is capable of binding to A and U homoribopolymers. In 

addition, we showed that Eklf has the capacity to interact with cellular RNA, suggesting 

that this RNA-binding activity may be of biological relevance and may be relevant to its 

role in the cytoplasm (Quadrini et al., 2008; Shyu et al., 2007), particularly if it has a role 

in mRNA subcellular localisation and/or the regulation of translation. Hence, we have 

now identified yet another RNA-binding classical ZF protein that can be added to the 

relatively small number of proteins that have been documented in the literature 

(presented in Table 1.1). This is the first report of a classical ZF protein that has a 

preference for strings of A or U RNA residues. It is evident that poly(A) and poly(U) may 

not be the natural targets of Eklf. Therefore, the true physiological targets of Eklf 

remain to be determined. 

 

Eklf recognises both DNA and RNA and this dual binding capacity has been observed for 

a few other classical ZF proteins, namely TFIIIA, WT1 and Mok2 (Arranz et al., 1997; 

Caricasole et al., 1996; Romaniuk, 1985). These dual-function binding properties and 
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subcellular localisation suggest that Eklf plays roles in transcription as well as in the 

post-transcriptional regulation processes of specific genes. Due to the homology that 

exists in the ZF region across members of the Klf family, it is likely that other members 

of this family of transcription factors have the capacity to bind RNA also. Preliminary 

evidence suggests that this may be the case, as Bklf was found to possess RNA-binding 

activity also (Noelia Nunez, personal communication). 

 

6.2  The ZF region of Eklf behaves as a dominant negative mutant 

In this study we have shown that the ZF region of Eklf behaves as a dominant negative 

mutant when recombinantly expressed as a GST-fusion protein in haematopoietic cell 

lines. In chapter 4 we described the construction of the stable MEL cell line expressing 

GST-Eklf 261-376 and demonstrated the dominant negative activity through the 

reduction of Bklf mRNA transcript levels as well as through the block in erythroid 

differentiation. In addition, it was shown to cause a significant reduction in ß-major 

globin transcript levels (Alister Funnell, personal communication). These results are 

consistent with the work of Manwani et al, 2007, who recently re-designed the Eklf 

transcription factor by replacing the activation domain with a repression domain from 

either the Drosophila engrailed protein (ENG) or the Sin 3a/Histone deacetylase 

interaction domain (HID). Although this protein differed from our dominant negative 

mutant, in that the ZFs were tethered to a repression domain, the effects exhibited by 

both proteins were similar, as ß-major globin transcript levels were found to be 

significantly decreased in both cases. Thus, we have developed a useful tool for 
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experiments where a knockdown of Eklf activity is required. In addition, the dominant 

negative mutant may aid in proteomics studies examining the ZFs, such as the isolation 

and identification of protein partners, due to the facilitation of protein purification due 

to the presence of a tag. The proposed mechanism of the dominant negative mutant 

activity is illustrated in Figure 6.1A and B. 
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Figure 6.1  Proposed molecular mechanism of Eklf dominant negative mutant activity. 

A. Eklf activation through binding of its ZFs to CACCC-box elements present within the promoter 

sequences of its target genes (Gene X - indicated by a purple box). The activation domain (light green 

oval) allows recruitment of the co-activator complex and the subsequent activation of gene expression. 

B. Competition by the dominant negative mutant (GST-Eklf 261-376) for the Eklf DNA-binding sites results 

in a marked reduction of activation, presumably due to lack of a functional activation domain, as was 

replaced by the GST tag (light blue box). 

 



133 

 

6.3  Eklf may play an important role in haematopoietic lineage 

commitment decisions 

In this study we showed that Eklf can inhibit megakaryocyte development through the 

use of the dominant negative mutant in the multipotent haematopoietic K562 cell line. 

We found that stably expressing GST-Eklf 261-376 in these cells results in drastic 

changes in cellular morphology and an increase in both cellular adherence and fli-1 

expression. All of these changes resemble the response of K562 cells to the phorbol 

ester 12-O-tetradecanoylphorbol-13-acetate (TPA) (Athanasiou et al., 1996) and are 

consistent with activation of a megakaryocytic or platelet-specific response. Our results 

are consistent with the recent work of Frontelo et al, 2007, where a significant increase 

in the number of megakaryocyte colonies, cultured using the foetal liver cells of E13.5 

Eklf knockout embryos, was observed. The promotion of erythropoiesis and inhibition 

of megakaryopoiesis by Eklf suggests that this transcription factor plays a critical role in 

lineage decisions from the MEP.  

 

In addition, we demonstrated that fli-1 transcript levels were modestly increased in the 

bone marrow cells of Bklf knockout mice, suggesting that fli-1 expression may be 

directly regulated by the transcriptional repressor Bklf. Preliminary ChIP assays were 

unsuccessful at detecting direct binding of Bklf or Eklf to the fli-1 promoter, suggesting 

the assay may not have worked in this system. Alternatively, Klfs may not bind to this 

region of the promoter and Klf DNA-binding sites may exist at other regions that were 

not examined in this study. In any case, further work is necessary in order to clearly 
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understand the mechanism of fli-1 regulation. Our present understanding of the 

regulation of fli-1 gene expression is depicted in Figure 6.2. 

 

 

Figure 6.2  Model of fli-1 gene regulation by Klfs. 

Study of the dominant negative mutant (DN) implicates the pathway as indicated. Eklf activates Bklf 

expression, which results in a repression of fli-1 levels, either through Bklf or directly through Eklf. Dotted 

lines with a question mark indicate that further examination is necessary in order to clearly establish the 

mechanism of fli-1 repression.  
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6.4  Future studies 

The in vivo data presented in this study was acquired through the use of the 

mammalian MEL and K562 cell lines. One apparent limitation that arises from 

employing such cell lines is the fact that these cells are aberrant and do not possess the 

normal cell differentiation machinery. Therefore, findings obtained using these cells 

may not necessarily be representative of haematopoiesis. Further confirmation of the 

in vivo results could be obtained through the use of primary murine cells. For instance, 

RNA-binding experiments could be pursued further using primary cells through RNA-

ChIP and analysed using microarrays. For instance, the RNA-binding forms of Eklf that 

lack the ability to bind DNA could be used to rescue primary murine B1.6 cells and then 

microarrays conducted to identify the RNA species bound. 

 

6.5  Final summary 

In summary, we have shown that Eklf, the founding member of the Klf family of 

transcription factors, is an RNA-binding protein using its classical ZFs. It has a 

preference of strings of A and U RNA residues, suggesting it may bind to ARE elements 

in mRNA transcripts in a cellular context. Taking into account that approximately 3% of 

genes in the human genome encode classical ZF proteins along with the results 

presented in this study, it appears that a substantial number of classical ZF proteins 

with RNA-binding activity remain to be identified and characterised. With the growing 

realisation of the importance of protein-RNA interactions in gene regulation at the post-
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transcriptional level, this will undoubtedly remain a field of intense research in the 

years to come. 

 

In addition, we have shown that the ZF region of Eklf behaves as a dominant negative 

mutant when expressed as a GST-fusion protein in haematopoietic cell lines. 

Furthermore, using the dominant negative mutant, we have confirmed that Eklf is 

critical for the promotion of erythroid differentiation and the inhibition of 

megakaryocyte differentiation.  



137 

 

Chapter 7 – References 

 

Adachi, J., and Hasegawa, M. (1996). Programs for molecular phylogenetics based on 

maximum likelihood. In Computer Science monographs, Volume 28 (Tokyo, Institute of 

Statistical Mathematics). 

Amero, S.A., Matunis, M.J., Matunis, E.L., Hockensmith, J.W., Raychaudhuri, G., and 

Beyer, A.L. (1993). A unique ribonucleoprotein complex assembles preferentially on 

ecdysone-responsive sites in Drosophila melanogaster. Mol Cell Biol 13, 5323-5330. 

Anderson, K.P., Kern, C.B., Crable, S.C., and Lingrel, J.B. (1995). Isolation of a gene 

encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: 

identification of a new multigene family. Mol Cell Biol 15, 5957-5965. 

Andreazzoli, M., De Lucchini, S., Costa, M., and Barsacchi, G. (1993). RNA binding 

properties and evolutionary conservation of the Xenopus multifinger protein Xfin. 

Nucleic Acids Res 21, 4218-4225. 

Armstrong, J.A., Bieker, J.J., and Emerson, B.M. (1998). A SWI/SNF-related chromatin 

remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by 

EKLF in vitro. Cell 95, 93-104. 

Arning, S., Gruter, P., Bilbe, G., and Kramer, A. (1996). Mammalian splicing factor SF1 is 

encoded by variant cDNAs and binds to RNA. RNA 2, 794-810. 

Arranz, V., Harper, F., Florentin, Y., Puvion, E., Kress, M., and Ernoult-Lange, M. (1997). 

Human and mouse MOK2 proteins are associated with nuclear ribonucleoprotein 

components and bind specifically to RNA and DNA through their zinc finger domains. 

Mol Cell Biol 17, 2116-2126. 

Athanasiou, M., Clausen, P.A., Mavrothalassitis, G.J., Zhang, X.K., Watson, D.K., and 

Blair, D.G. (1996). Increased expression of the ETS-related transcription factor FLI-



138 

 

1/ERGB correlates with and can induce the megakaryocytic phenotype. Cell Growth 

Differ 7, 1525-1534. 

Banerjee, S.S., Feinberg, M.W., Watanabe, M., Gray, S., Haspel, R.L., Denkinger, D.J., 

Kawahara, R., Hauner, H., and Jain, M.K. (2003). The Kruppel-like factor KLF2 inhibits 

peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol 

Chem 278, 2581-2584. 

Bardoni, B., Schenck, A., and Mandel, J.L. (1999). A novel RNA-binding nuclear protein 

that interacts with the fragile X mental retardation (FMR1) protein. Hum Mol Genet 8, 

2557-2566. 

Barreau, C., Paillard, L., and Osborne, H.B. (2005). AU-rich elements and associated 

factors: are there unifying principles? Nucleic Acids Res 33, 7138-7150. 

Bashirullah, A., Halsell, S.R., Cooperstock, R.L., Kloc, M., Karaiskakis, A., Fisher, W.W., 

Fu, W., Hamilton, J.K., Etkin, L.D., and Lipshitz, H.D. (1999). Joint action of two RNA 

degradation pathways controls the timing of maternal transcript elimination at the 

midblastula transition in Drosophila melanogaster. EMBO J 18, 2610-2620. 

Bastian, L.S., Kwiatkowski, B.A., Breininger, J., Danner, S., and Roth, G. (1999). 

Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic Ets 

transcription factor Fli-1. Blood 93, 2637-2644. 

Basu, P., Morris, P.E., Haar, J.L., Wani, M.A., Lingrel, J.B., Gaensler, K.M., and Lloyd, J.A. 

(2005). KLF2 is essential for primitive erythropoiesis and regulates the human and 

murine embryonic beta-like globin genes in vivo. Blood 106, 2566-2571. 

Beerli, R.R., and Barbas, C.F., 3rd (2002). Engineering polydactyl zinc-finger transcription 

factors. Nat Biotechnol 20, 135-141. 

Bentley, D. (1999). Coupling RNA polymerase II transcription with pre-mRNA processing. 

Curr Opin Cell Biol 11, 347-351. 



139 

 

Bernstein, J.A., Khodursky, A.B., Lin, P.H., Lin-Chao, S., and Cohen, S.N. (2002). Global 

analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution 

using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99, 9697-9702. 

Bieker, J.J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 

34355-34358. 

Bieker, J.J., and Southwood, C.M. (1995). The erythroid Kruppel-like factor 

transactivation domain is a critical component for cell-specific inducibility of a beta-

globin promoter. Mol Cell Biol 15, 852-860. 

Bird, A.J., McCall, K., Kramer, M., Blankman, E., Winge, D.R., and Eide, D.J. (2003). Zinc 

fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. 

EMBO J 22, 5137-5146. 

Bishop, D.C. (2001). Investigating the Ability of FHL3 to act as a co-repressor of BKLF. In 

Department of Biochemistry (Sydney, University of Sydney). 

Bittel, D.C., Smirnova, I.V., and Andrews, G.K. (2000). Functional heterogeneity in the 

zinc fingers of metalloregulatory protein metal response element-binding transcription 

factor-1. J Biol Chem 275, 37194-37201. 

Black, A.R., Black, J.D., and Azizkhan-Clifford, J. (2001). Sp1 and kruppel-like factor 

family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188, 

143-160. 

Blackwell, T.K., and Weintraub, H. (1990). Differences and similarities in DNA-binding 

preferences of MyoD and E2A protein complexes revealed by binding site selection. 

Science 250, 1104-1110. 

Brenner, H.R., Witzemann, V., and Sakmann, B. (1990). Imprinting of acetylcholine 

receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature 

344, 544-547. 



140 

 

Brown, V., Small, K., Lakkis, L., Feng, Y., Gunter, C., Wilkinson, K.D., and Warren, S.T. 

(1998). Purified recombinant Fmrp exhibits selective RNA binding as an intrinsic 

property of the fragile X mental retardation protein. J Biol Chem 273, 15521-15527. 

Calnan, B.J., Tidor, B., Biancalana, S., Hudson, D., and Frankel, A.D. (1991). Arginine-

mediated RNA recognition: the arginine fork. Science 252, 1167-1171. 

Carballo, E., Lai, W.S., and Blackshear, P.J. (1998). Feedback inhibition of macrophage 

tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001-1005. 

Caricasole, A., Duarte, A., Larsson, S.H., Hastie, N.D., Little, M., Holmes, G., Todorov, I., 

and Ward, A. (1996). RNA binding by the Wilms tumor suppressor zinc finger proteins. 

Proc Natl Acad Sci U S A 93, 7562-7566. 

Chen, C.Y., Gherzi, R., Ong, S.E., Chan, E.L., Raijmakers, R., Pruijn, G.J., Stoecklin, G., 

Moroni, C., Mann, M., and Karin, M. (2001). AU binding proteins recruit the exosome to 

degrade ARE-containing mRNAs. Cell 107, 451-464. 

Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in 

mRNA degradation. Trends Biochem Sci 20, 465-470. 

Chen, C.Y., Xu, N., and Shyu, A.B. (2002). Highly selective actions of HuR in antagonizing 

AU-rich element-mediated mRNA destabilization. Mol Cell Biol 22, 7268-7278. 

Chen, X., and Bieker, J.J. (2004). Stage-specific repression by the EKLF transcriptional 

activator. Mol Cell Biol 24, 10416-10424. 

Chen, X., Chu, M., and Giedroc, D.P. (1999). MRE-Binding transcription factor-1: weak 

zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of 

the metal-response element complex. Biochemistry 38, 12915-12925. 

Cheng, A.C., Calabro, V., and Frankel, A.D. (2001). Design of RNA-binding proteins and 

ligands. Curr Opin Struct Biol 11, 478-484. 



141 

 

Choo, Y., and Isalan, M. (2000). Advances in zinc finger engineering. Curr Opin Struct 

Biol 10, 411-416. 

Crossley, M., Whitelaw, E., Perkins, A., Williams, G., Fujiwara, Y., and Orkin, S.H. (1996). 

Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-

binding protein in erythroid cells and selected other cells. Mol Cell Biol 16, 1695-1705. 

Dang, D.T., Pevsner, J., and Yang, V.W. (2000). The biology of the mammalian Kruppel-

like family of transcription factors. Int J Biochem Cell Biol 32, 1103-1121. 

Dang, D.T., Zhao, W., Mahatan, C.S., Geiman, D.E., and Yang, V.W. (2002). Opposing 

effects of Kruppel-like factor 4 (gut-enriched Kruppel-like factor) and Kruppel-like factor 

5 (intestinal-enriched Kruppel-like factor) on the promoter of the Kruppel-like factor 4 

gene. Nucleic Acids Res 30, 2736-2741. 

Dean, A. (2004). Chromatin remodelling and the interaction between enhancers and 

promoters in the beta-globin locus. Brief Funct Genomic Proteomic 2, 344-354. 

Dean, J.L., Wait, R., Mahtani, K.R., Sully, G., Clark, A.R., and Saklatvala, J. (2001). The 3' 

untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-

stabilizing factor HuR. Mol Cell Biol 21, 721-730. 

Dominski, Z., Erkmann, J.A., Yang, X., Sanchez, R., and Marzluff, W.F. (2002). A novel 

zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding 

protein in the histone pre-mRNP to stimulate 3'-end processing. Genes Dev 16, 58-71. 

Donze, D., Townes, T.M., and Bieker, J.J. (1995). Role of erythroid Kruppel-like factor in 

human gamma- to beta-globin gene switching. J Biol Chem 270, 1955-1959. 

Dovat, S., Ronni, T., Russell, D., Ferrini, R., Cobb, B.S., and Smale, S.T. (2002). A common 

mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes 

Dev 16, 2985-2990. 

Draper, D.E. (1995). Protein-RNA recognition. Annu Rev Biochem 64, 593-620. 



142 

 

Ellenberger, T.E., Brandl, C.J., Struhl, K., and Harrison, S.C. (1992). The GCN4 basic 

region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal 

structure of the protein-DNA complex. Cell 71, 1223-1237. 

Felsenstein, J. (1989). PHYLIP -- Phylogeny Inference Package (Version 3.2). Cladistics 5, 

164-166. 

Feng, W.C., Southwood, C.M., and Bieker, J.J. (1994). Analyses of beta-thalassemia 

mutant DNA interactions with erythroid Kruppel-like factor (EKLF), an erythroid cell-

specific transcription factor. J Biol Chem 269, 1493-1500. 

Fialcowitz-White, E.J., Brewer, B.Y., Ballin, J.D., Willis, C.D., Toth, E.A., and Wilson, G.M. 

(2007). Specific protein domains mediate cooperative assembly of HuR oligomers on 

AU-rich mRNA-destabilizing sequences. J Biol Chem 282, 20948-20959. 

Finerty, P.J., Jr., and Bass, B.L. (1997). A Xenopus zinc finger protein that specifically 

binds dsRNA and RNA-DNA hybrids. J Mol Biol 271, 195-208. 

Finerty, P.J., Jr., and Bass, B.L. (1999). Subsets of the zinc finger motifs in dsRBP-ZFa can 

bind double-stranded RNA. Biochemistry 38, 4001-4007. 

Fisher, C.L., and Pei, G.K. (1997). Modification of a PCR-based site-directed mutagenesis 

method. Biotechniques 23, 570-571, 574. 

Forrest, K.M., and Gavis, E.R. (2003). Live imaging of endogenous RNA reveals a 

diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr 

Biol 13, 1159-1168. 

Friend, C. (1957). Cell-free transmission in adult Swiss mice of a disease having the 

character of a leukemia. J Exp Med 105, 307-318. 

Friend, C., Scher, W., Holland, J.G., and Sato, T. (1971). Hemoglobin synthesis in murine 

virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by 

dimethyl sulfoxide. Proc Natl Acad Sci U S A 68, 378-382. 



143 

 

Friesen, W.J., and Darby, M.K. (1997). Phage display of RNA binding zinc fingers from 

transcription factor IIIA. J Biol Chem 272, 10994-10997. 

Frontelo, P., Manwani, D., Galdass, M., Karsunky, H., Lohmann, F., Gallagher, P.G., and 

Bieker, J.J. (2007). Novel role for EKLF in megakaryocyte lineage commitment. Blood 

110, 3871-3880. 

Funnell, A.P. (2008). Identification of a regulatory network within the Kruppel-like factor 

family. In School of Molecular and Microbial Biosciences (Sydney, University of Sydney). 

Funnell, A.P., Maloney, C.A., Thompson, L.J., Keys, J., Tallack, M., Perkins, A.C., and 

Crossley, M. (2007). Erythroid Kruppel-like factor directly activates the basic Kruppel-

like factor gene in erythroid cells. Mol Cell Biol 27, 2777-2790. 

Gaston, K., and Jayaraman, P.S. (2003). Transcriptional repression in eukaryotes: 

repressors and repression mechanisms. Cell Mol Life Sci 60, 721-741. 

Gebauer, F., and Hentze, M.W. (2004). Molecular mechanisms of translational control. 

Nat Rev Mol Cell Biol 5, 827-835. 

Georgopoulos, K. (2002). Haematopoietic cell-fate decisions, chromatin regulation and 

ikaros. Nat Rev Immunol 2, 162-174. 

Ghaleb, A.M., Nandan, M.O., Chanchevalap, S., Dalton, W.B., Hisamuddin, I.M., and 

Yang, V.W. (2005). Kruppel-like factors 4 and 5: the yin and yang regulators of cellular 

proliferation. Cell Res 15, 92-96. 

Gherzi, R., Lee, K.Y., Briata, P., Wegmuller, D., Moroni, C., Karin, M., and Chen, C.Y. 

(2004). A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA 

turnover by recruiting the degradation machinery. Mol Cell 14, 571-583. 

Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M.D., and Hughes, T.R. (2004). 

Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays 

reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 24, 

5534-5547. 



144 

 

Grondin, B., Bazinet, M., and Aubry, M. (1996). The KRAB zinc finger gene ZNF74 

encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem 

271, 15458-15467. 

Hall, M.A., Curtis, D.J., Metcalf, D., Elefanty, A.G., Sourris, K., Robb, L., Gothert, J.R., 

Jane, S.M., and Begley, C.G. (2003). The critical regulator of embryonic hematopoiesis, 

SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-

S12. Proc Natl Acad Sci U S A 100, 992-997. 

Hall, T.M. (2005). Multiple modes of RNA recognition by zinc finger proteins. Curr Opin 

Struct Biol 15, 367-373. 

Harju, S., McQueen, K.J., and Perterson, K.R. (2000). Chromatin structure and control of 

beta-like globin gene switching. Exp Biol Med (Maywood) 227, 683-700. 

Heyduk, T., Ma, Y., Tang, H., and Ebright, R.H. (1996). Fluorescence anisotropy: rapid, 

quantitative assay for protein-DNA and protein-protein interaction. Methods Enzymol 

274, 492-503. 

Hobbs, S., Jitrapakdee, S., and Wallace, J.C. (1998). Development of a bicistronic vector 

driven by the human polypeptide chain elongation factor 1alpha promoter for creation 

of stable mammalian cell lines that express very high levels of recombinant proteins. 

Biochem Biophys Res Commun 252, 368-372. 

Holcik, M., and Sonenberg, N. (2005). Translational control in stress and apoptosis. Nat 

Rev Mol Cell Biol 6, 318-327. 

Honda, B.M., and Roeder, R.G. (1980). Association of a 5S gene transcription factor with 

5S RNA and altered levels of the factor during cell differentiation. Cell 22, 119-126. 

Irwin, N., Baekelandt, V., Goritchenko, L., and Benowitz, L.I. (1997). Identification of two 

proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-

43 mRNA. Nucleic Acids Res 25, 1281-1288. 



145 

 

Iuchi, S., and Kuldell, N., eds. (2005). Zinc finger proteins: from atomic contact to 

cellular function (New York, Landes Bioscience; Kluwer Academic/Plenum Publishers). 

Jackers, P., Szalai, G., Moussa, O., and Watson, D.K. (2004). Ets-dependent regulation of 

target gene expression during megakaryopoiesis. J Biol Chem 279, 52183-52190. 

Jensen, K.B., Musunuru, K., Lewis, H.A., Burley, S.K., and Darnell, R.B. (2000). The 

tetranucleotide UCAY directs the specific recognition of RNA by the Nova K-homology 3 

domain. Proc Natl Acad Sci U S A 97, 5740-5745. 

Joho, K.E., Darby, M.K., Crawford, E.T., and Brown, D.D. (1990). A finger protein 

structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus. Cell 61, 293-

300. 

Jorgensen, P., and Tyers, M. (2004). How cells coordinate growth and division. Curr Biol 

14, R1014-1027. 

Kaczynski, J., Cook, T., and Urrutia, R. (2003). Sp1- and Kruppel-like transcription 

factors. Genome Biol 4, 206. 

Keene, J.D. (2007). RNA regulons: coordination of post-transcriptional events. Nat Rev 

Genet 8, 533-543. 

Klein, E., Ben-Bassat, H., Neumann, H., Ralph, P., Zeuthen, J., Polliack, A., and Vanky, F. 

(1976). Properties of the K562 cell line, derived from a patient with chronic myeloid 

leukemia. Int J Cancer 18, 421-431. 

Klocke, B., Koster, M., Hille, S., Bouwmeester, T., Bohm, S., Pieler, T., and Knochel, W. 

(1994). The FAR domain defines a new Xenopus laevis zinc finger protein subfamily with 

specific RNA homopolymer binding activity. Biochim Biophys Acta 1217, 81-89. 

Kornberg, R.D. (2005). Mediator and the mechanism of transcriptional activation. 

Trends Biochem Sci 30, 235-239. 



146 

 

Kuersten, S., and Goodwin, E.B. (2003). The power of the 3' UTR: translational control 

and development. Nat Rev Genet 4, 626-637. 

Kumar, M., Gromiha, M.M., and Raghava, G.P. (2007). Prediction of RNA binding sites in 

a protein using SVM and PSSM profile. Proteins. 

Kuo, C.T., Veselits, M.L., Barton, K.P., Lu, M.M., Clendenin, C., and Leiden, J.M. (1997a). 

The LKLF transcription factor is required for normal tunica media formation and blood 

vessel stabilization during murine embryogenesis. Genes Dev 11, 2996-3006. 

Kuo, C.T., Veselits, M.L., and Leiden, J.M. (1997b). LKLF: A transcriptional regulator of 

single-positive T cell quiescence and survival. Science 277, 1986-1990. 

Laity, J.H., Dyson, H.J., and Wright, P.E. (2000). DNA-induced alpha-helix capping in 

conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc 

fingers. J Mol Biol 295, 719-727. 

Laity, J.H., Lee, B.M., and Wright, P.E. (2001). Zinc finger proteins: new insights into 

structural and functional diversity. Curr Opin Struct Biol 11, 39-46. 

Lakowicz, J.R. (1999). Principles of Fluorescence Spectroscopy, Second Edition (Kluwer 

Academic / Plenum Publishers). 

Lania, L., Majello, B., and De Luca, P. (1997). Transcriptional regulation by the Sp family 

proteins. Int J Biochem Cell Biol 29, 1313-1323. 

Le Hir, H., Gatfield, D., Izaurralde, E., and Moore, M.J. (2001). The exon-exon junction 

complex provides a binding platform for factors involved in mRNA export and 

nonsense-mediated mRNA decay. EMBO J 20, 4987-4997. 

Lee, M.S., Gippert, G.P., Soman, K.V., Case, D.A., and Wright, P.E. (1989). Three-

dimensional solution structure of a single zinc finger DNA-binding domain. Science 245, 

635-637. 



147 

 

Lemon, B., and Tjian, R. (2000). Orchestrated response: a symphony of transcription 

factors for gene control. Genes Dev 14, 2551-2569. 

Lomberk, G., and Urrutia, R. (2005). The family feud: turning off Sp1 by Sp1-like KLF 

proteins. Biochem J 392, 1-11. 

Lopez de Silanes, I., Galban, S., Martindale, J.L., Yang, X., Mazan-Mamczarz, K., Indig, 

F.E., Falco, G., Zhan, M., and Gorospe, M. (2005). Identification and functional outcome 

of mRNAs associated with RNA-binding protein TIA-1. Mol Cell Biol 25, 9520-9531. 

Lu, D., Searles, M.A., and Klug, A. (2003). Crystal structure of a zinc-finger-RNA complex 

reveals two modes of molecular recognition. Nature 426, 96-100. 

Lu, J.Y., Sadri, N., and Schneider, R.J. (2006). Endotoxic shock in AUF1 knockout mice 

mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20, 3174-

3184. 

Luo, M.J., and Reed, R. (1999). Splicing is required for rapid and efficient mRNA export 

in metazoans. Proc Natl Acad Sci U S A 96, 14937-14942. 

Luo, Q., Ma, X., Wahl, S.M., Bieker, J.J., Crossley, M., and Montaner, L.J. (2004). 

Activation and repression of interleukin-12 p40 transcription by erythroid Kruppel-like 

factor in macrophages. J Biol Chem 279, 18451-18456. 

Mackay, J.P., and Crossley, M. (1998). Zinc fingers are sticking together. Trends Biochem 

Sci 23, 1-4. 

Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene 

expression machines. Nature 416, 499-506. 

Manwani, D., Galdass, M., and Bieker, J.J. (2007). Altered regulation of beta-like globin 

genes by a redesigned erythroid transcription factor. Exp Hematol 35, 39-47. 

Mata, J., Marguerat, S., and Bahler, J. (2005). Post-transcriptional control of gene 

expression: a genome-wide perspective. Trends Biochem Sci 30, 506-514. 



148 

 

Matsumoto, N., Kubo, A., Liu, H., Akita, K., Laub, F., Ramirez, F., Keller, G., and 

Friedman, S.L. (2006). Developmental regulation of yolk sac hematopoiesis by Kruppel-

like factor 6. Blood 107, 1357-1365. 

Matsumoto, N., Laub, F., Aldabe, R., Zhang, W., Ramirez, F., Yoshida, T., and Terada, M. 

(1998). Cloning the cDNA for a new human zinc finger protein defines a group of closely 

related Kruppel-like transcription factors. J Biol Chem 273, 28229-28237. 

Matthews, J.M., and Sunde, M. (2002). Zinc fingers--folds for many occasions. IUBMB 

Life 54, 351-355. 

McCarty, A.S., Kleiger, G., Eisenberg, D., and Smale, S.T. (2003). Selective dimerization 

of a C2H2 zinc finger subfamily. Mol Cell 11, 459-470. 

McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, 

S.D., Wickens, M., and Bentley, D.L. (1997). The C-terminal domain of RNA polymerase 

II couples mRNA processing to transcription. Nature 385, 357-361. 

Mendez-Vidal, C., Wilhelm, M.T., Hellborg, F., Qian, W., and Wiman, K.G. (2002). The 

p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high 

affinity. Nucleic Acids Res 30, 1991-1996. 

Mikkola, H.K., Klintman, J., Yang, H., Hock, H., Schlaeger, T.M., Fujiwara, Y., and Orkin, 

S.H. (2003). Haematopoietic stem cells retain long-term repopulating activity and 

multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547-

551. 

Miller, I.J., and Bieker, J.J. (1993). A novel, erythroid cell-specific murine transcription 

factor that binds to the CACCC element and is related to the Kruppel family of nuclear 

proteins. Mol Cell Biol 13, 2776-2786. 

Miller, J., McLachlan, A.D., and Klug, A. (1985). Repetitive zinc-binding domains in the 

protein transcription factor IIIA from Xenopus oocytes. EMBO J 4, 1609-1614. 



149 

 

Mobarak, C.D., Anderson, K.D., Morin, M., Beckel-Mitchener, A., Rogers, S.L., Furneaux, 

H., King, P., and Perrone-Bizzozero, N.I. (2000). The RNA-binding protein HuD is 

required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent 

neurite outgrowth in PC12 cells. Mol Biol Cell 11, 3191-3203. 

Morgan, B., Sun, L., Avitahl, N., Andrikopoulos, K., Ikeda, T., Gonzales, E., Wu, P., Neben, 

S., and Georgopoulos, K. (1997). Aiolos, a lymphoid restricted transcription factor that 

interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 16, 2004-2013. 

Mori, T., Sakaue, H., Iguchi, H., Gomi, H., Okada, Y., Takashima, Y., Nakamura, K., 

Nakamura, T., Yamauchi, T., Kubota, N., et al. (2005). Role of Kruppel-like factor 15 

(KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280, 12867-12875. 

Morris, D.P., and Greenleaf, A.L. (2000). The splicing factor, Prp40, binds the 

phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 275, 

39935-39943. 

Muller, F., and Tora, L. (2004). The multicoloured world of promoter recognition 

complexes. EMBO J 23, 2-8. 

Myers, R.M., Tilly, K., and Maniatis, T. (1986). Fine structure genetic analysis of a beta-

globin promoter. Science 232, 613-618. 

Narla, G., Heath, K.E., Reeves, H.L., Li, D., Giono, L.E., Kimmelman, A.C., Glucksman, 

M.J., Narla, J., Eng, F.J., Chan, A.M., et al. (2001). KLF6, a candidate tumor suppressor 

gene mutated in prostate cancer. Science 294, 2563-2566. 

Nolte, R.T., Conlin, R.M., Harrison, S.C., and Brown, R.S. (1998). Differing roles for zinc 

fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. 

Proc Natl Acad Sci U S A 95, 2938-2943. 

Nuez, B., Michalovich, D., Bygrave, A., Ploemacher, R., and Grosveld, F. (1995). 

Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. 

Nature 375, 316-318. 



150 

 

Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., 

Maemura, K., Yamauchi, T., Kubota, N., et al. (2005). Kruppel-like transcription factor 

KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1, 27-39. 

Otting, G., Qian, Y.Q., Billeter, M., Muller, M., Affolter, M., Gehring, W.J., and Wuthrich, 

K. (1990). Protein--DNA contacts in the structure of a homeodomain--DNA complex 

determined by nuclear magnetic resonance spectroscopy in solution. EMBO J 9, 3085-

3092. 

Ouyang, L., Chen, X., and Bieker, J.J. (1998). Regulation of erythroid Kruppel-like factor 

(EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site 

within its interaction domain. J Biol Chem 273, 23019-23025. 

Pabo, C.O., Peisach, E., and Grant, R.A. (2001). Design and selection of novel Cys2His2 

zinc finger proteins. Annu Rev Biochem 70, 313-340. 

Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. 

Nat Struct Mol Biol 11, 121-127. 

Patikoglou, G., and Burley, S.K. (1997). Eukaryotic transcription factor-DNA complexes. 

Annu Rev Biophys Biomol Struct 26, 289-325. 

Pavletich, N.P., and Pabo, C.O. (1991). Zinc finger-DNA recognition: crystal structure of a 

Zif268-DNA complex at 2.1 A. Science 252, 809-817. 

Pelham, H.R., and Brown, D.D. (1980). A specific transcription factor that can bind 

either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A 77, 4170-4174. 

Peng, S.S., Chen, C.Y., Xu, N., and Shyu, A.B. (1998). RNA stabilization by the AU-rich 

element binding protein, HuR, an ELAV protein. EMBO J 17, 3461-3470. 

Perdomo, J., Verger, A., Turner, J., and Crossley, M. (2005). Role for SUMO modification 

in facilitating transcriptional repression by BKLF. Mol Cell Biol 25, 1549-1559. 



151 

 

Perkins, A. (1999). Erythroid Kruppel like factor: from fishing expedition to gourmet 

meal. Int J Biochem Cell Biol 31, 1175-1192. 

Perkins, A.C., Sharpe, A.H., and Orkin, S.H. (1995). Lethal beta-thalassaemia in mice 

lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318-322. 

Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D'Agati, V., Orkin, S.H., and 

Costantini, F. (1991). Erythroid differentiation in chimaeric mice blocked by a targeted 

mutation in the gene for transcription factor GATA-1. Nature 349, 257-260. 

Picard, B., and Wegnez, M. (1979). Isolation of a 7S particle from Xenopus laevis 

oocytes: a 5S RNA-protein complex. Proc Natl Acad Sci U S A 76, 241-245. 

Piecyk, M., Wax, S., Beck, A.R., Kedersha, N., Gupta, M., Maritim, B., Chen, S., Gueydan, 

C., Kruys, V., Streuli, M., et al. (2000). TIA-1 is a translational silencer that selectively 

regulates the expression of TNF-alpha. EMBO J 19, 4154-4163. 

Quadrini, K.J., Gruzglin, E., and Bieker, J.J. (2008). Non-random subcellular distribution 

of variant EKLF in erythroid cells. Exp Cell Res. 

Query, C.C., Bentley, R.C., and Keene, J.D. (1989). A common RNA recognition motif 

identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 

57, 89-101. 

Raich, N., and Romeo, P.H. (1993). Erythroid regulatory elements. Stem Cells 11, 95-

104. 

Raineri, I., Wegmueller, D., Gross, B., Certa, U., and Moroni, C. (2004). Roles of AUF1 

isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA 

interference. Nucleic Acids Res 32, 1279-1288. 

Roeder, R.G. (2005). Transcriptional regulation and the role of diverse coactivators in 

animal cells. FEBS Lett 579, 909-915. 



152 

 

Romaniuk, P.J. (1985). Characterization of the RNA binding properties of transcription 

factor IIIA of Xenopus laevis oocytes. Nucleic Acids Res 13, 5369-5387. 

Saleque, S., Cameron, S., and Orkin, S.H. (2002). The zinc-finger proto-oncogene Gfi-1b 

is essential for development of the erythroid and megakaryocytic lineages. Genes Dev 

16, 301-306. 

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory 

Manual (Cold Spring Harbor Laboratory Press, New York). 

Searles, M.A., Lu, D., and Klug, A. (2000). The role of the central zinc fingers of 

transcription factor IIIA in binding to 5 S RNA. J Mol Biol 301, 47-60. 

Selinger, D.W., Saxena, R.M., Cheung, K.J., Church, G.M., and Rosenow, C. (2003). 

Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript 

degradation. Genome Res 13, 216-223. 

Shatkin, A.J., and Manley, J.L. (2000). The ends of the affair: capping and 

polyadenylation. Nat Struct Biol 7, 838-842. 

Shields, J.M., Christy, R.J., and Yang, V.W. (1996). Identification and characterization of 

a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J 

Biol Chem 271, 20009-20017. 

Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A., and Orkin, S.H. (1997). A lineage-selective 

knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte 

growth and platelet development. EMBO J 16, 3965-3973. 

Shyu, Y.C., Lee, T.L., Wen, S.C., Chen, H., Hsiao, W.Y., Chen, X., Hwang, J., and Shen, C.K. 

(2007). Subcellular transport of EKLF and switch-on of murine adult beta maj globin 

gene transcription. Mol Cell Biol 27, 2309-2323. 

Siatecka, M., Xue, L., and Bieker, J.J. (2007). Sumoylation of EKLF promotes 

transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell 

Biol 27, 8547-8560. 



153 

 

Singer, D., Cooper, M., Maniatis, G.M., Marks, P.A., and Rifkind, R.A. (1974). 

Erythropoietic differentiation in colonies of cells transformed by Friend virus. Proc Natl 

Acad Sci U S A 71, 2668-2670. 

Siomi, H., Matunis, M.J., Michael, W.M., and Dreyfuss, G. (1993a). The pre-mRNA 

binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21, 

1193-1198. 

Siomi, H., Siomi, M.C., Nussbaum, R.L., and Dreyfuss, G. (1993b). The protein product of 

the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74, 291-

298. 

St Johnston, D. (2005). Moving messages: the intracellular localization of mRNAs. Nat 

Rev Mol Cell Biol 6, 363-375. 

St Johnston, D., Brown, N.H., Gall, J.G., and Jantsch, M. (1992). A conserved double-

stranded RNA-binding domain. Proc Natl Acad Sci U S A 89, 10979-10983. 

Starck, J., Cohet, N., Gonnet, C., Sarrazin, S., Doubeikovskaia, Z., Doubeikovski, A., 

Verger, A., Duterque-Coquillaud, M., and Morle, F. (2003). Functional cross-antagonism 

between transcription factors FLI-1 and EKLF. Mol Cell Biol 23, 1390-1402. 

Starck, J., Doubeikovski, A., Sarrazin, S., Gonnet, C., Rao, G., Skoultchi, A., Godet, J., 

Dusanter-Fourt, I., and Morle, F. (1999). Spi-1/PU.1 is a positive regulator of the Fli-1 

gene involved in inhibition of erythroid differentiation in friend erythroleukemic cell 

lines. Mol Cell Biol 19, 121-135. 

Sun, L., Liu, A., and Georgopoulos, K. (1996). Zinc finger-mediated protein interactions 

modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 15, 

5358-5369. 

Takizawa, P.A., Sil, A., Swedlow, J.R., Herskowitz, I., and Vale, R.D. (1997). Actin-

dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389, 

90-93. 



154 

 

Terribilini, M., Lee, J.H., Yan, C., Jernigan, R.L., Honavar, V., and Dobbs, D. (2006). 

Prediction of RNA binding sites in proteins from amino acid sequence. RNA 12, 1450-

1462. 

Terribilini, M., Sander, J.D., Lee, J.H., Zaback, P., Jernigan, R.L., Honavar, V., and Dobbs, 

D. (2007). RNABindR: a server for analyzing and predicting RNA-binding sites in 

proteins. Nucleic Acids Res 35, W578-584. 

Thiel, G., Lietz, M., and Hohl, M. (2004). How mammalian transcriptional repressors 

work. Eur J Biochem 271, 2855-2862. 

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence weighting, 

position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-

4680. 

Tsai, R.Y., and Reed, R.R. (1998). Identification of DNA recognition sequences and 

protein interaction domains of the multiple-Zn-finger protein Roaz. Mol Cell Biol 18, 

6447-6456. 

Tsang, A.P., Visvader, J.E., Turner, C.A., Fujiwara, Y., Yu, C., Weiss, M.J., Crossley, M., 

and Orkin, S.H. (1997). FOG, a multitype zinc finger protein, acts as a cofactor for 

transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90, 

109-119. 

Tsiftsoglou, A.S., Pappas, I.S., and Vizirianakis, I.S. (2003). Mechanisms involved in the 

induced differentiation of leukemia cells. Pharmacol Ther 100, 257-290. 

Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential 

enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510. 

Tupler, R., Perini, G., and Green, M.R. (2001). Expressing the human genome. Nature 

409, 832-833. 



155 

 

Turner, J., and Crossley, M. (1998). Cloning and characterization of mCtBP2, a co-

repressor that associates with basic Kruppel-like factor and other mammalian 

transcriptional regulators. EMBO J 17, 5129-5140. 

Turner, J., Nicholas, H., Bishop, D., Matthews, J.M., and Crossley, M. (2003). The LIM 

protein FHL3 binds basic Kruppel-like factor/Kruppel-like factor 3 and its co-repressor C-

terminal-binding protein 2. J Biol Chem 278, 12786-12795. 

Valeur, B. (2001). Molecular Fluorescence: Principles and Applications (Wiley-VCH 

Verlag). 

Van Loo, P.F., Bouwman, P., Ling, K.W., Middendorp, S., Suske, G., Grosveld, F., 

Dzierzak, E., Philipsen, S., and Hendriks, R.W. (2003). Impaired hematopoiesis in mice 

lacking the transcription factor Sp3. Blood 102, 858-866. 

van Vliet, J., Crofts, L.A., Quinlan, K.G., Czolij, R., Perkins, A.C., and Crossley, M. (2006). 

Human KLF17 is a new member of the Sp/KLF family of transcription factors. Genomics 

87, 474-482. 

van Vliet, J., Turner, J., and Crossley, M. (2000). Human Kruppel-like factor 8: a CACCC-

box binding protein that associates with CtBP and represses transcription. Nucleic Acids 

Res 28, 1955-1962. 

Wang, B.S., Grant, R.A., and Pabo, C.O. (2001). Selected peptide extension contacts 

hydrophobic patch on neighboring zinc finger and mediates dimerization on DNA. Nat 

Struct Biol 8, 589-593. 

Wang, L., and Brown, S.J. (2006). BindN: a web-based tool for efficient prediction of 

DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34, W243-248. 

Wang, X., and Zhao, J. (2007). KLF8 transcription factor participates in oncogenic 

transformation. Oncogene 26, 456-461. 



156 

 

Wang, Y., Liu, C.L., Storey, J.D., Tibshirani, R.J., Herschlag, D., and Brown, P.O. (2002). 

Precision and functional specificity in mRNA decay. Proc Natl Acad Sci U S A 99, 5860-

5865. 

Wani, M.A., Means, R.T., Jr., and Lingrel, J.B. (1998). Loss of LKLF function results in 

embryonic lethality in mice. Transgenic Res 7, 229-238. 

Wani, M.A., Wert, S.E., and Lingrel, J.B. (1999). Lung Kruppel-like factor, a zinc finger 

transcription factor, is essential for normal lung development. J Biol Chem 274, 21180-

21185. 

Watson, J.D., ed. (1983). Structures of DNA. Cold Spring Harbor Symposia on 

Quantitative Biology (New York, Cold Spring Harbor Laboratory). 

Wei, H., Wang, X., Gan, B., Urvalek, A.M., Melkoumian, Z.K., Guan, J.L., and Zhao, J. 

(2006). Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle 

regulation. J Biol Chem 281, 16664-16671. 

West, A.G., and Fraser, P. (2002). Remote control of gene transcription. Hum Mol Genet 

14, 101-111. 

Williamson, J.R., Raghuraman, M.K., and Cech, T.R. (1989). Monovalent cation-induced 

structure of telomeric DNA: the G-quartet model. Cell 59, 871-880. 

Wilusz, C.J., and Wilusz, J. (2004). Bringing the role of mRNA decay in the control of 

gene expression into focus. Trends Genet 20, 491-497. 

Wolfe, S.A., Nekludova, L., and Pabo, C.O. (2000). DNA recognition by Cys2His2 zinc 

finger proteins. Annu Rev Biophys Biomol Struct 29, 183-212. 

Woychik, N.A., and Hampsey, M. (2002). The RNA polymerase II machinery: structure 

illuminates function. Cell 108, 453-463. 

Wright, W.E., Binder, M., and Funk, W. (1991). Cyclic amplification and selection of 

targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol 11, 4104-4110. 



157 

 

Yang, E., van Nimwegen, E., Zavolan, M., Rajewsky, N., Schroeder, M., Magnasco, M., 

and Darnell, J.E., Jr. (2003). Decay rates of human mRNAs: correlation with functional 

characteristics and sequence attributes. Genome Res 13, 1863-1872. 

Yang, M., May, W.S., and Ito, T. (1999). JAZ requires the double-stranded RNA-binding 

zinc finger motifs for nuclear localization. J Biol Chem 274, 27399-27406. 

Zhang, W., and Bieker, J.J. (1998). Acetylation and modulation of erythroid Kruppel-like 

factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U 

S A 95, 9855-9860. 

Zhang, W., Kadam, S., Emerson, B.M., and Bieker, J.J. (2001). Site-specific acetylation by 

p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional 

activity via its interaction with the SWI-SNF complex. Mol Cell Biol 21, 2413-2422. 

Zhao, J., Bian, Z.C., Yee, K., Chen, B.P., Chien, S., and Guan, J.L. (2003). Identification of 

transcription factor KLF8 as a downstream target of focal adhesion kinase in its 

regulation of cyclin D1 and cell cycle progression. Mol Cell 11, 1503-1515. 

Zhou, Z., Luo, M.J., Straesser, K., Katahira, J., Hurt, E., and Reed, R. (2000). The protein 

Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407, 401-

405. 

 

 


