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Abstract

This project focuses on the examination of thecstires of lanthanide containing
double perovskites of the type BaB'Oss (Ln = lanthanide or ¥ and B' = NB*,
Ta", Sb* and/or SA" using synchrotron X-ray and neutron powder déffi@n. The

first part of this project examined the relativatslity of R3 rhombohedral ant4/m
tetragonal structures as the intermediate phaggtedidy the series BleanB'Og (Ln =
lanthanide (I1) or ¥*and B' = NB*, T&" or SB™). It was found that4/m tetragonal
symmetry was favoured when B' was a transition hmeith a small number of

d-electrons, such as Rbor Ta*. This isdue to the presence ofbonding in these

compounds. In the BanNbQs and BalLnTaO; seriesR3 rhombohedral symmetry
was, however, favoured ovet/m tetragonal symmetry when Ln ={'aor PF* due to
the larger ionic radius of these cations. The ingatibility of thed® andd™® B'-site
cations in this family of compounds was indicatgd dignificant regions of phase
segregation in the two seriesBay «PrxNb;.xShOs and BaNdNb; ,SbOe.

In the second part of this project the compoundbé series BAnSnB'1.«Os.5 (LN =

Pr, Nd or Th and B' = NB or SB™) were examined to understand the relative stgbilit
of oxygen vacancies in these materials comparetig¢coxidation of the lanthanide
cations and to determine if any oxygen vacancyrargeccurred. It was found, using
a combination of structural characterisation, X-fsysorption Near-Edge Structure
and Ultra-Violet, Visible and Near-Infrared spestropies, that with Lnh = Pr or Tb
increased SH doping results in a change in the oxidation stétéhe Lr#* cations to
Ln*". This leads to those series containing little oraxygen vacancies. A loss of
B-site cation ordering was found to accompany tixislation state change and phase
segregation was found to occur in theB&nSh Os5 series most likely due to the
PrP* and Pt* cations segregating into different phases. Th& Nations in the series
BaxNdSnSh.,Os5, however, can not oxidise to the tetravalent statéhe number of
oxygen vacancies rises with increasing x. It waantb that oxygen vacancies
concentrate onto the axial site of the compoundt wi= 0.6 and 0.8 at ambient
temperature. In B&n ¢Sk 4Os7 the oxygen vacancies were found to change to
concentrating on the equatorial site at higher tmeorres and it is suggested that this

oxygen vacancy ordering plays a role in the adopbid 2/m monoclinic symmetry.
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