brought to you by CORE

Structural Studies of Lanthanide Double Perovskites

by

Paul James Saines

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Chemistry The University of Sydney 2008 All the work presented here is my own unless otherwise stated.

Paul James Saines

Acknowledgements

First and most significantly I would like to thank my supervisor Associate Professor Brendan Kennedy for his experience and expertise in all things that are solid state chemistry and particularly in regards to Rietveld refinement and planning major facility experiments. This project would not have been possible with much help and patience from him over the years. I would also like to thank my associate supervisors; Dr Siegbert Schmid and Dr Christopher Howard for their advice during this work.

The assistance and friendship of my past and present fellow members of the University of Sydney solid state chemistry cohort has also been crucial to this work. In particular I would like to thank Qingdi and René, for the help that only experience can provide, and Neeraj who has helped me in various ways in the last half of this project.

There are numerous people who have helped me with individual experiments at major facilities and with various other techniques. I would like to thank, Drs James Hester, Margaret Elcombe, Maxim Avdeev, Sarah Poulton, Ron Smith, Yoshiki Kubota, Chiharu Minakata, Hiroko Hano, Kenichi Kato and Masaki Takata for their help with various aspects of synchrotron X-ray and neutron diffraction experiments. Similarly I would like to thank Drs Hugh Harris, Zhaoming Zhang, Ling-Yun Jang and Bernt Johannessen for their assistance with XANES experiments and analysis. The help of Dr. Nathan Webster, Mr. David Cassidy, Mr. Tony Romeo and Mr. Adam Sikorski with other techniques has also been important. I would also like to thank Mr. Fernando Barasoain for the indispensable assistance from the level 4 service room.

I would like to thank DEST, ARC, AINSE and other arms of the Australian government for funding this research, my PhD scholarships and for funds to access and travel to major facilities.

To my fellow postgraduate and honours students at the school, and in particular those level 4 students from my year, I would like to thank you for the friendship that has attempted to keep me sane. In a similar vein I would like to thank all my friends outside chemistry for ensuring that this all did not get too much at times.

Finally I would like to thank my family for being there for support over the years. To my parents and sisters thank you for putting up with my eccentricities. Lastly to my grandparents, to my father's parents for the escape that visiting them provides and to my mother's who I miss dearly, thank you very much for being there over the years.

Abstract

This project focuses on the examination of the structures of lanthanide containing double perovskites of the type Ba₂LnB'O_{6-δ} (Ln = lanthanide or Y³⁺ and B' = Nb⁵⁺, Ta⁵⁺, Sb⁵⁺ and/or Sn⁴⁺) using synchrotron X-ray and neutron powder diffraction. The first part of this project examined the relative stability of $R\overline{3}$ rhombohedral and *I*4/*m* tetragonal structures as the intermediate phase adopted by the series Ba₂LnB'O₆ (Ln = lanthanide (III) or Y³⁺ and B' = Nb⁵⁺, Ta⁵⁺ or Sb⁵⁺). It was found that *I*4/*m* tetragonal symmetry was favoured when B' was a transition metal with a small number of *d*-electrons, such as Nb⁵⁺ or Ta⁵⁺. This is due to the presence of π -bonding in these compounds. In the Ba₂LnNbO₆ and Ba₂LnTaO₆ series $R\overline{3}$ rhombohedral symmetry was, however, favoured over *I*4/*m* tetragonal symmetry when Ln = La³⁺ or Pr³⁺ due to the larger ionic radius of these cations. The incompatibility of the *d*⁰ and *d*¹⁰ B'-site cations in this family of compounds was indicated by significant regions of phase segregation in the two series Ba₂Eu_{1-x}Pr_xNb_{1-x}Sb_xO₆ and Ba₂NdNb_{1-x}Sb_xO₆.

In the second part of this project the compounds in the series $Ba_2LnSn_xB'_{1-x}O_{6-\delta}$ (Ln = Pr, Nd or Tb and $B' = Nb^{5+}$ or Sb^{5+}) were examined to understand the relative stability of oxygen vacancies in these materials compared to the oxidation of the lanthanide cations and to determine if any oxygen vacancy ordering occurred. It was found, using a combination of structural characterisation, X-ray Absorption Near-Edge Structure and Ultra-Violet, Visible and Near-Infrared spectroscopies, that with Ln = Pr or Tb increased Sn^{4+} doping results in a change in the oxidation state of the Ln^{3+} cations to Ln⁴⁺. This leads to those series containing little or no oxygen vacancies. A loss of B-site cation ordering was found to accompany this oxidation state change and phase segregation was found to occur in the $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ series most likely due to the Pr^{3+} and Pr^{4+} cations segregating into different phases. The Nd³⁺ cations in the series Ba₂NdSn_xSb_{1-x}O_{6-δ}, however, can not oxidise to the tetravalent state so the number of oxygen vacancies rises with increasing x. It was found that oxygen vacancies concentrate onto the axial site of the compounds with x = 0.6 and 0.8 at ambient temperature. In Ba₂Sn_{0.6}Sb_{0.4}O_{5.7} the oxygen vacancies were found to change to concentrating on the equatorial site at higher temperatures and it is suggested that this oxygen vacancy ordering plays a role in the adoption of I2/m monoclinic symmetry.

List of Publications

Parts of the work published in this thesis have been, or are in the process of being, published in several scientific journals. These publications are listed below in the order in which they were published.

- Saines, Paul J.; Elcombe, Margaret M.; Kennedy, Brendan J.; Structural studies of oxygen deficient lanthanide containing double perovskites. Physica B (2006), 385-386(Pt. 1), 187
- Saines, Paul J.; Kennedy, Brendan J.; Elcombe, Margaret M.; Structural phase transitions and crystal chemistry of the series Ba₂LnB'O₆ (Ln = lanthanide and B' = Nb⁵⁺ or Sb⁵⁺). Journal of Solid State Chemistry (2007), 180, 401
- Kennedy, Brendan J.; Saines, Paul J.; Kubota, Yoshiki; Minakata, Chiharu; Hano, Hiroko; Kato, Kenichi; Takata, Masaki; Crystal structures and phase transitions in Ba₂HoTaO₆. Materials Research Bulletin (2007), 42, 1875
- Saines, Paul J.; Spencer, Jarrah R.; Kennedy, Brendan J.; Avdeev, Maxim; Structures and crystal chemistry of the double perovskites Ba₂LnB'O₆ (Ln = lanthanide and B' = Nb⁵⁺ and Ta⁵⁺): Part I. Investigation of Ba₂LnTaO₆ using synchrotron X-ray and neutron powder diffraction. Journal of Solid State Chemistry (2007), 180, 2991
- Saines, Paul J.; Spencer, Jarrah R.; Kennedy, Brendan J.; Kubota, Yoshiki; Minakata, Chiharu; Hano, Hiroko; Kato, Kenichi; Takata, Masaki; Structures and crystal chemistry of the double perovskites Ba₂LnB'O₆ (Ln = lanthanide and B' = Nb⁵⁺, Ta⁵⁺): Part II - Temperature dependence of the structures of Ba₂LnB'O₆. Journal of Solid State Chemistry (2007), 180, 3001
- Saines, Paul J.; Kennedy, Brendan J.; Phase segregation in mixed Nb-Sb double perovskites Ba₂LnNb_{1-x}Sb_xO₆. Journal of Solid State Chemistry (2008), 181, 298
- Saines, Paul J.; Kennedy, Brendan J.; Elcombe, Margaret M.; Harris, Hugh H.; Jang, Ling-Yun; Zhang, Zhaoming; Phase and Valence Transitions in Ba₂LnSn_xSb_{1-x}O_{6-δ} (Ln = Pr and Tb). Journal of Solid State Chemistry, *In Press*

- Saines, Paul J.; Kennedy, Brendan J.; Johannessen, Bernt; Poulton, Sarah; Phase and Valence Transitions in Ba₂LnSn_xNb_{1-x}O_{6-δ}. Journal of Solid State Chemistry, *In Press*
- 9. Saines, Paul J.; Kennedy, Brendan J.; Smith, Ronald I.; Structural Phase Transitions in BaPrO₃. Materials Research Bulletin, *In Press*

Outline of Contents

Chapter 1

The ternary and double perovskite structures are introduced with an explanation of the various ways in which perovskites can distort from the ideal cubic structure. The relative stability of perovskites with different octahedral tilt systems is examined and the applications and features of oxygen deficient perovskites detailed.

Chapter 2

The experimental techniques used to study the compounds examined in this thesis are considered. This includes discussion of the basic theory behind the instruments as well as the specific experimental conditions used. The theory involved in determining the structures of the compounds studied in this work, including the use of the Rietveld method, is detailed.

Chapter 3

The synthesis and characterisation of compounds in the series $Ba_2LnB'O_6$ (Ln = lanthanide or Y^{3+} and B' = Nb⁵⁺, Ta⁵⁺ or Sb⁵⁺) is discussed. A particular focus is placed on the structural characterisation, carried out at, above and below ambient temperature, using synchrotron X-ray and neutron diffraction. This leads to a discussion about why different compounds in these series adopt different structures.

Chapter 4

A structural study of the two series $Ba_2Eu_{1-x}Pr_xNb_{1-x}Sb_xO_6$ and $Ba_2NdNb_{1-x}Sb_xO_6$ is conducted using synchrotron X-ray diffraction. An understanding of the differences in the structures adopted by compounds containing the d^0 Nb⁵⁺ and d^{10} Sb⁵⁺ cations is further developed.

Chapter 5

Compounds in the series $Ba_2LnSn_xB'_{1-x}O_{6-\delta}$ (Ln = Pr or Tb and B' = Sb⁵⁺ or Nb⁵⁺) are examined using a combination of synchrotron X-ray and neutron diffraction, X-ray Absorption Near-Edge Structure and Ultra-Violet, Visible and Near-Infrared spectroscopies. The focus is on examining the relative stability of oxygen vacancies in the structure of these compounds compared to the oxidation of the Ln^{3+} cations to Ln^{4+} . The effect this has on the structures of these compounds is also examined.

Chapter 6

The structures of compounds in the series $Ba_2NdSn_xSb_{1-x}O_{6-\delta}$ are examined using synchrotron X-ray and neutron diffraction at, above and below ambient temperature. A focus is placed on evidence for these compounds featuring oxygen vacancy ordering and the absorption of water in the crystal structure of compounds in this series.

Table of Contents

Acknowledgements	iii
Abstract	iv
List of Publications	v
Outline of Contents	vii
Table of Contents	ix
List of Figures	xiv
List of Tables	XXV
List of Equations	xxix
List of Abbreviations	XXX

Chapter 1

General Introduction

Introduction	1
The Perovskite Structure	2
Physical and Chemical Influences on the	11
Perovskite Structure	
Comparison between Tilted Structures in Ternary	19
and Double Perovskites	
Oxygen Deficient and Mixed Valence Perovskites	22
References	28
	Introduction The Perovskite Structure Physical and Chemical Influences on the Perovskite Structure Comparison between Tilted Structures in Ternary and Double Perovskites Oxygen Deficient and Mixed Valence Perovskites References

Chapter 2

Experimental Techniques

2.1	Introduction	31
2.2	Diffraction Techniques	31
2.2.1	Conventional X-ray Diffraction	32
2.2.2	Synchrotron X-ray Diffraction	32
2.2.2.1	The Australian National Beamline Facility	33

2.2.2.2	Beamline BL-02B2	36
2.2.3	Neutron Diffraction	38
2.2.3.1	High Resolution Powder Diffractometer (HRPD)	39
2.2.3.2	Medium Resolution Powder Diffractometer (MRPD)	41
2.2.3.3	BT-1	42
2.2.3.4	Polaris	43
2.2.4	X-rays versus Neutrons	44
2.3	Structural Analysis	49
2.3.1	Visual Inspection	50
2.3.2	Rietveld Method	52
2.4	X-ray Absorption Near-Edge Structure (XANES)	57
	Spectroscopy	
2.4.1	XANES at the Australian National Beamline Facility	57
2.4.2	Beamline 16A1 NSRRC	58
2.5	Scanning Electron Microscopy (SEM) and Energy	59
	Dispersive X-ray (EDX) Analysis	
2.6	X-ray Fluorescence (XRF) Spectroscopy	60
2.7	Thermogravimetric Analysis (TGA)	60
2.8	Impedance Spectroscopy	60
2.9	Ultra-Violet, Visible and Near-Infrared (UV-Vis-	61
	NIR) Spectroscopy	
2.10	Density Functional Theory (DFT) Calculations	61
2.11	ISOTROPY	61
2.12	References	62

Structural Characterisation of $Ba_2LnB'O_6$ (Ln = Lanthanide (III) or Y³⁺ and B' = Nb⁵⁺, Ta⁵⁺ or Sb⁵⁺)

3.1	Introduction	65	
3.2	Synthesis of Ba ₂ LnB'O ₆	68	
3.2.1	Synthesis of Ba ₂ LnTaO ₆	68	
3.2.2	Synthesis of Ba ₂ LnNbO ₆	69	
3.2.3	Synthesis of Ba ₂ LnSbO ₆	69	

3.3	Experimental Method	69
3.4	Results and Discussion	70
3.4.1	Ambient Temperature Structures of Ba ₂ LnB'O ₆	70
3.4.1.1	Ba_2LnTaO_6	71
3.4.1.2	Structure of Ba ₂ LaTaO ₆	74
3.4.1.3	Ba_2LnNbO_6	84
3.4.1.4	Ba_2LnSbO_6	89
3.4.2	Crystal Chemistry of Ba2LnB'O6 at Ambient	93
	Temperature	
3.4.2.1	Bonding Environments in Ba ₂ LnB'O ₆	<i>93</i>
3.4.2.2	π -bonding in Ba ₂ LnB'O ₆	<i>98</i>
3.4.3	Variable Temperature Structures of Ba ₂ LnB'O ₆	102
3.4.3.1	Ba_2LnSbO_6	102
3.4.3.2	Ba_2LnNbO_6 and Ba_2LnTaO_6	104
3.4.3.3	Ba_2YTaO_6 and the Effect of Ionic Radii on the	118
	Ba ₂ LnB'O ₆ Intermediate Structure	
3.5	Conclusions	121
3.6	References	124

Phase Segregation in Mixed Nb-Sb Double Perovskites Ba₂LnNb_{1-x}Sb_xO₆

4.1	Introduction	127
4.2	Synthesis of Ba ₂ LnNb _{1-x} Sb _x O ₆	129
4.3	Experimental Method	129
4.4	Results and Discussion	130
4.4.1	Structures of Ba ₂ Eu _{1-x} Pr _x Nb _{1-x} Sb _x O ₆	130
4.4.2	Structures of Ba2NdNb1-xSbxO6	135
4.4.3	Phase Segregation	139
4.5	Conclusions	141
4.6	References	143

Characterisation of $Ba_2LnSn_xB'_{1-x}O_{6-\delta}$ (Ln = Pr or Tb and B' = Nb⁵⁺ or Sb⁵⁺)

5.1	Introduction	144
5.2	Synthesis	145
5.2.1	Synthesis of $Ba_2LnSn_xSb_{1-x}O_{6-\delta}$	145
5.2.2	Synthesis of $Ba_2LnSn_xNb_{1-x}O_{6-\delta}$	146
5.2.3	Synthesis of Oxidation State Standards	146
5.2.3.1	$Ln_2Sn_2O_7$	146
5.2.3.2	$BaLnO_3$	146
5.3	Experimental Method	147
5.4	Results and Discussion	148
5.4.1	Characterisation of $Ba_2LnSn_xSb_{1-x}O_{6-\delta}$	148
5.4.1.1	Structures of $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$	149
5.4.1.2	Structures of $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$	159
5.4.1.3	Structural Analysis of XANES Standards	166
5.4.1.4	Analysis of Oxygen Vacancies and Oxidation States	173
	of Cations in $Ba_2LnSn_xSb_{1-x}O_{6-\delta}$	
5.4.2	Characterisation of Ba2LnSnxNb1-xO6-8	192
5.4.2.1	Structures of $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$	193
5.4.2.2	Structures of $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$	200
5.4.2.3	Analysis of Oxygen Vacancies and Oxidation States	204
	of Cations in $Ba_2LnSn_xNb_{1-x}O_{6-\delta}$	
5.5	Conclusions	212
5.6	References	214

Chapter 6

Structural Characterisation of Ba₂NdSn_xSb_{1-x}O_{6-δ}

6.1	Introduction	217
6.2	Synthesis of $Ba_2NdSn_xSb_{1-x}O_{6-\delta}$	218
6.3	Experimental Method	219

6.4	Results and Discussion	220
6.5	Conclusions	242
6.6	References	244
	Appendix	246
	Appendix CD	Inside
		Back
		Cover

List of Figures

Chapter 1 General Introduction

		Page No.
Figure 1.1	Two depictions of the unit cell of the ideal cubic	3
perovskite structure highlighting the A-site cation		
	environment (left) and the B-site cation environment	
	(right).	
Figure 1.2	Depictions of the ideal perovskite and the three	4
	common types of distortion.	
Figure 1.3	Crystal structure of <i>Cmcm</i> (tilt system $a^0b^+c^-$) viewed	5
	along the b - (left) and c -axis (right) highlighting the	
	in- and out-of-phase tilting present in the structure.	
Figure 1.4	Diagram indicating the 15 space groups that	8
	encompass the possible symmetries caused by	
	octahedral tilting in perovskites.	
Figure 1.5	The two alternate types of ordering known to occur	9
	in $A_2BB'O_6$ perovskites; the untilted variant of the	
	rock salt ordered structure (left) and the layered	
	ordering first found to be adopted by La_2CuSnO_6	
	(right).	
Figure 1.6	Diagram indicating the 12 space groups that	11
	encompass the possible symmetries caused by	
	octahedral tilting in double perovskites.	
Figure 1.7	Images of the octahedral face sharing structures of	12
	ilmenite (left) and 2H hexagonal perovskite (right)	
	structures.	

- Figure 1.8 Illustration of the effect of decreased B-O-B bond 18 angle on the bonding and anti-bonding orbital bandwidths (left) and the effect of increasing electronegativity of the B-cation from B1 to B2 on the energy of the π and π^* -orbitals (right).
- Figure 1.9 Representation of a SOFC where the electrolyte is an 23 oxygen ion conductor and the circles represent oxide anions conducting through the electrolyte.
- Figure 1.10 Depictions of the oxygen vacancy ordered 24 brownmillerite structure adopted by $Sr_2Fe_2O_5$ (left) and the square pyramidal network of $Ca_2Mn_2O_5$ (right).
- Figure 1.11 High temperature crystal structure of 25 $La_{0.64}Ti_{0.92}Nb_{0.08}O_{2.99}$.

Experimental Techniques

Figure 2.1	A schematic of beamline 20B, the ANBF at the	33
	Photon Factory, KEK, Tsukuba Japan.	
Figure 2.2	Diagram of the diffractometer in image plate mode.	34
Figure 2.3	Photograph of the diffractometer at beamline 20B	35
	with the custom built furnace in place.	
Figure 2.4	Picture of the Debye-Scherrer camera at BL-02B2	37
	SPring-8.	
Figure 2.5	Photograph of the High Resolution Powder	39
	Diffractometer at HIFAR, Lucas Heights showing the	
	blue coloured detector bank.	
Figure 2.6	Photograph of the cryofurnace attachment in	40
	operation on the High Resolution Powder	
	Diffractometer at HIFAR.	
Figure 2.7	Picture of the Medium Resolution Powder	41
	Diffractometer at HIFAR.	

- Figure 2.8Picture of the BT-1 High Resolution Neutron Powder42Diffractometer.
- Figure 2.9Photograph of the Polaris diffractometer at ISIS43indicating the large solid angle covered by detectors.
- Figure 2.10 Comparison of the resolution (measured as the fullwidth of peaks at half maximum intensity) available from different diffraction sources.
- Figure 2.11 Comparison between the change in scattering 48 strengths of X-rays (squares) and neutrons (circles), as measured by the X-ray form factor and neutron scattering length respectively, with changing atomic number.
- Figure 2.12 Picture of the equipment used to measure the 58 XANES spectra of compounds at the ANBF in transmission mode.

Structural Characterisation of $Ba_2LnB'O_6$ (Ln = Lanthanide (III) or Y³⁺ and B' = Nb⁵⁺, Ta⁵⁺ or Sb⁵⁺)

Figure 3.1	Synchrotron X-ray diffraction pattern of Ba ₂ PrTaO ₆ .	71
Figure 3.2	Selected regions of diffraction patterns for several of	72
	the tantalate compounds illustrating the various	
	symmetries adopted in this series.	
Figure 3.3	Synchrotron X-ray diffraction pattern of Ba ₂ LaTaO ₆ .	75
Figure 3.4	Secondary electron (left) and backscattered electron	76
	(right) images of Ba ₂ LaTaO ₆ .	
Figure 3.5	Neutron diffraction pattern of Ba ₂ LaTaO ₆ obtained at	77
	36 K fitted by $P2_1/n$ symmetry.	
Figure 3.6	Lattice parameters and unit cell lengths of the	80
	monoclinic and tetragonal structures of Ba ₂ SmTaO ₆	
	samples quenched from various temperatures.	
Figure 3.7	Tilt angles calculated for Ba ₂ LaTaO ₆ from neutron	81
	diffraction measurements.	

Figure 3.8	Reduced unit cell parameters for Ba ₂ LnTaO ₆ showing	83
	the increase in symmetry of the various members of	
	this series with decreasing lanthanide ionic radius.	
Figure 3.9	Reduced unit cell volumes for Ba2LnTaO6 showing	84
	the continuous decrease in the size of the unit cell	
	with decreasing lanthanide ionic radius.	
Figure 3.10	Selected regions of synchrotron X-ray diffraction	85
	patterns of compounds in the series Ba2LnNbO6	
	indicating the cubic (400) and (444) peaks.	
Figure 3.11	Neutron diffraction pattern of Ba ₂ NdNbO ₆ .	86
Figure 3.12	Reduced lattice parameters of members of the series	88
	Ba2LnNbO6 at ambient temperature indicating the	
	reduced deviation from the metrically cubic structure	
	as the size of the lanthanide ion decreases.	
Figure 3.13	Reduced unit cell volume of members of the series	88
	Ba_2LnNbO_6 at ambient temperature.	
Figure 3.14	Selected regions of synchrotron X-ray diffraction	89
	patterns of compounds in the series Ba2LnSbO6	
	indicating the cubic (400) and (444) peaks.	
Figure 3.15	Reduced lattice parameters of members of the series	90
	Ba2LnSbO6 at ambient temperature indicating the	
	reduced deviation from the metrically cubic structure	
	as the size of the lanthanide ion decreases.	
Figure 3.16	Reduced unit cell volume of members of the series	90
	Ba_2LnSbO_6 at ambient temperature.	
Figure 3.17	The tetragonal B-site vacancy ordered structure of	92
	Ba ₂ Ce _{0.75} SbO ₆ viewed slightly offset from parallel to	
	the <i>c</i> -axis (above) and <i>b</i> -axis (below).	
Figure 3.18	Temperature dependence of the reduced lattice	102
	parameters for Ba ₂ LaSbO ₆ obtained from analysis of	
	synchrotron X-ray diffraction data.	
Figure 3.19	Synchrotron X-ray diffraction pattern of Ba ₂ LaSbO ₆	104
	at 100 K.	

Figure 3.20	Regions of the synchrotron X-ray diffraction patterns	105
	of Ba ₂ LaTaO ₆ at various temperatures illustrating the	
	phase transitions this compound undergoes.	
Figure 3.21	Reduced lattice parameters versus temperature plot	106
	for Ba_2LaTaO_6 .	
Figure 3.22	Plot of spontaneous strain [represented by $(\alpha-60)$]	106
	versus temperature for Ba_2LaTaO_6 (left) and	
	Ba ₂ LaNbO ₆ (right) indicating the phase transitions of	
	these compounds from rhombohedral to cubic	
	symmetry to be second order.	
Figure 3.23	Reduced unit cell parameter versus temperature plot	108
	for Ba_2LaNbO_6 .	
Figure 3.24	Reduced lattice parameter versus temperature plot for	109
	Ba_2PrNbO_6 .	
Figure 3.25	Reduced lattice parameter plot versus temperature for	110
	$Ba_2PrTaO_6.$	
Figure 3.26	Plot of the square of spontaneous strain, represented	110
	by (α -60), versus temperature for Ba ₂ PrTaO ₆ .	
Figure 3.27	Reduced lattice parameter versus temperature plot for	111
	$Ba_2NdNbO_6.$	
Figure 3.28	Reduced lattice parameter versus temperature plot for	112
	$Ba_2NdTaO_6.$	
Figure 3.29	Square of tetragonal strain versus temperature plot	113
	for Ba_2NdNbO_6 .	
Figure 3.30	Reduced lattice parameter plot of Ba ₂ SmNbO ₆ versus	114
	temperature.	
Figure 3.31	Reduced lattice parameter plot of Ba ₂ SmTaO ₆ versus	115
	temperature.	
Figure 3.32	Spontaneous tetragonal strain of Ba ₂ SmNbO ₆ versus	116
	temperature.	
Figure 3.33	Reduced unit cell parameters versus temperature plot	117
	for Ba_2HoTaO_6 .	

- Figure 3.34 Plot of tetragonal strain (e_t) and the square of 118 tetragonal strain (e_t^2) versus temperature for Ba₂HoTaO₆.
- Figure 3.35Selected sections of the diffraction patterns of119 Ba_2YTaO_6 at various temperatures.
- Figure 3.36 Reduced unit cell parameters versus temperature for 120Ba₂YTaO₆.
- Figure 3.37 Spontaneous tetragonal strain of Ba₂YTaO₆ plotted 120 versus temperature.

Phase Segregation in Mixed Nb-Sb Double Perovskites Ba₂LnNb_{1-x}Sb_xO₆

Figure 4.1	Synchrotron X-ray diffraction pattern of Ba ₂ EuNbO ₆ .	130
Figure 4.2	Selected regions of patterns belonging to compounds	131
	in the series $Ba_2Eu_{1-x}Pr_xNb_{1-x}Sb_xO_6$ indicating the	
	various symmetries adopted by these materials.	
Figure 4.3	Variation of the unit cell lengths and volumes for	133
	compounds in the series $Ba_2Eu_{1-x}Pr_xNb_{1-x}Sb_xO_6$.	
Figure 4.4	Selected regions of diffraction patterns of compounds	136
	in the series $Ba_2NdNb_{1-x}Sb_xO_6$ illustrating the various	
	symmetries adopted.	
Figure 4.5	Reduced lattice parameters for $Ba_2NdNb_{1-x}Sb_xO_6$	138
	indicating the large two phase region formed in this	
	series.	
Figure 4.6	Synchrotron X-ray diffraction pattern of	139
	Ba ₂ NdNb _{0.5} Sb _{0.5} O ₆ at 500 °C.	
Figure 4.7	Secondary (left) and backscattered (right) electron	140
	images of $Ba_2Eu_{0.8}Pr_{0.2}Nb_{0.8}Sb_{0.2}O_6$.	

Characterisation of $Ba_2LnSn_xB'_{1-x}O_{6-\delta}$ (Ln = Pr or Tb and B' = Nb⁵⁺ or Sb⁵⁺)

Figure 5.1	Synchrotron X-ray diffraction pattern of Ba ₂ PrSbO ₆ .	149
Figure 5.2	Selected portions of synchrotron X-ray diffraction	150
	patterns of compounds in the series	
	$Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ indicating the different structures	
	adopted.	
Figure 5.3	Synchrotron X-ray diffraction pattern of	155
	Ba ₂ PrSn _{0.3} Sb _{0.7} O _{6-δ} at 760 °C.	
Figure 5.4	Secondary (left) and backscattered (right) electron	156
	images of $Ba_2PrSn_{0.8}Sb_{0.2}O_{6-\delta}$.	
Figure 5.5	Lattice parameters for compounds in the series	159
	$Ba_2PrSn_xSb_{1-x}O_{6-\delta}$.	
Figure 5.6	Synchrotron X-ray diffraction pattern of	160
	$Ba_2TbSnO_{6-\delta}$.	
Figure 5.7	Selected regions of diffraction patterns of members	161
	in the series $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ indicating the lack of	
	peak splitting revealing that these compounds are all	
	cubic.	
Figure 5.8	Reduced unit cell length and volume of members in	164
	the series $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$.	
Figure 5.9	Synchrotron X-ray diffraction pattern of BaPrO ₃ at	169
	ambient temperature.	
Figure 5.10	Reduced unit cell parameters for BaPrO3 over a	170
	temperature range of 150-800 °C.	
Figure 5.11	Selected regions of diffraction patterns of BaPrO ₃	171
	collected at different temperatures indicating the	
	various phases it adopts.	
Figure 5.12	Near-Infrared spectra of selected compounds in the	175
	series $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ in the region 1150-1900 nm.	

Figure 5.13	UV-Vis spectra of selected compounds in the series	176
	$Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ in the region 250-700 nm.	
Figure 5.14	Near-Infrared spectra of compounds in the series	177
	$Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ in the region of 1500-2250 nm.	
Figure 5.15	Weight loss versus temperature plots for $Ba_2PrSnO_{6-\delta}$	178
	and $Ba_2TbSnO_{6-\delta}$ in an atmosphere of 3.5 % H_2 in	
	N ₂ .	
Figure 5.16	Sn L_{III} -edges of selected samples in the series	180
	$Ba_2PrSn_xSb_{1\text{-}x}O_{6\text{-}\delta}$ and, the Sn^{2+} and Sn^{4+} standards,	
	SnO and SnO ₂ .	
Figure 5.17	Sn L _I -edges of selected samples in the series	181
	$Ba_2PrSn_xSb_{1\text{-}x}O_{6\text{-}\delta}$ and, the $Sn^{2\text{+}}$ and $Sn^{4\text{+}}$ standards,	
	SnO and SnO ₂ .	
Figure 5.18	Sn L _I -edge of as synthesised and reduced samples of	182
	$Ba_2PrSnO_{6\text{-}\delta}$ and $Ba_2TbSnO_{6\text{-}\delta}$ and the $Sn^{2\text{+}}$ and $Sn^{4\text{+}}$	
	standards SnO and SnO ₂ .	
Figure 5.19	Sb L _I -edge for selected compounds in the series	183
	$Ba_2PrSn_xSb_{1\text{-}x}O_{6\text{-}\delta}$ and, the $Sb^{3\text{+}}$ and $Sb^{5\text{+}}$ standards,	
	Sb_2O_3 and Sb_2O_5 .	
Figure 5.20	Pr L_{III} -edge spectra of Ba_2PrSbO_6 and an as	184
	synthesised and reduced sample of $Ba_2PrSnO_{6-\delta}$.	
Figure 5.21	Pr L_{III} -edge spectra of selected compounds in the	185
	series $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ indicating the change in the	
	energy and shape of the edge between 5960-5985 eV	
	with increasing x.	
Figure 5.22	Plot of the $L_{III}\text{-}edge$ of $Ba_2PrSn_{0.6}Sb_{0.4}O_{6\text{-}\delta}$ and the	186
	model spectra fitted to it including the Ba_2PrSbO_6	
	and $Ba_2PrSnO_{6-\delta}$ components of the fit.	
Figure 5.23	Plot of the oxidation state fraction of Pr^{3+} and Pr^{4+} in	187
	each compound examined in the $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$	
	series.	

Figure 5.24 Tb L_{III}-edge spectra of Ba₂TbSbO₆ and an as 189 synthesised and reduced sample of $Ba_2TbSnO_{6-\delta}$. Figure 5.25 190 Tb L_{III}-edge spectra of selected compounds in the series $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ indicating the change in the energy and shape of the edge between 7485-7585 eV with increasing x. Plot of the oxidation state fraction of Tb³⁺ and Tb⁴⁺ Figure 5.26 191 compound examined each in in the $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ series. Figure 5.27 Selected regions of the diffraction patterns of 192 compounds the series $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$ in highlighting different symmetry structures the adopted. Figure 5.28 Neutron diffraction pattern of Ba₂PrNbO₆ collected 194 using BT-1. 195 Figure 5.29 Unit cell parameters of Ba₂PrSn_{0.2}Nb_{0.8}O_{6-δ} versus temperature. Figure 5.30 Plot of the square of rhombohedral strain versus 196 temperature for Ba₂PrSn_{0.2}Nb_{0.8}O_{6-δ}. Figure 5.31 Reduced unit cell parameters for compounds in the 199 series Ba₂PrSn_xNb_{1-x}O_{6-δ}. 201 Figure 5.32 Selected regions of diffraction patterns of compounds in the series $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$. 202 Figure 5.33 Reduced unit cell lengths and volumes for compounds in the series $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$. Figure 5.34 Selected spectra of compounds in the series 205 $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$ in the region 1200-2200 nm. Figure 5.35 Selected spectra of compounds in the series 206 $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$ in the region 1500-2300 nm.

Figure 5.36	Pr L_{III} -edge spectra of selected compounds in the	207
	series $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$ indicating the change in the	
	energy and shape of the edge between 5960-5985 eV	
	with increased Sn ⁴⁺ doping.	
E: 5 27	Transit the method is a fit of the De DeNILO consistent to	200

- Figure 5.37Target transformation fit of the Ba_2PrNbO_6 spectra to208the appropriate component of the PCA analysis.
- Figure 5.38 Plot of the oxidation state fraction of Pr^{3+} and Pr^{4+} in 209 each compound examined in the $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$ series.
- Figure 5.39 Tb L_{III} -edge spectra for selected compounds in the 211 series $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$ indicating the change in shape and energy of the edge with increasing x.
- Figure 5.40 Plot of the oxidation state fraction of Tb^{3+} and Tb^{4+} 212 in each compound examined in the Ba₂TbSn_xNb_{1-x}O_{6- δ} series.

Structural Characterisation of Ba₂NdSn_xSb_{1-x}O_{6-δ}

Figure 6.1	Synchrotron X-ray diffraction pattern of	221
	Ba ₂ NdSnO _{5.5} at ambient temperature.	
Figure 6.2	Lattice parameters for compounds in the series	222
	$Ba_2NdSn_xSb_{1-x}O_{6-\delta}$ determined using synchrotron	
	X-ray diffraction.	
Figure 6.3	Selected portions of synchrotron X-ray diffraction	224
	patterns of compounds in the series	
	$Ba_2NdSn_xSb_{1-x}O_{6-\delta}$ indicating the various structures	
	adopted.	
Figure 6.4	Synchrotron X-ray diffraction pattern of	225
	Ba ₂ NdSn _{0.3} Sb _{0.7} O _{5.85} at 800 °C.	

Figure 6.5Secondary (left) and backscattered (right) electron226images of the single phase sample Ba2NdSnO5.5.

Figure 6.6	Reduced lattice parameters and unit cell volume of	227
	Ba ₂ NdSnO _{5.5} versus temperature.	
Figure 6.7	Weight loss versus temperature plot for Ba ₂ NdSnO _{5.5}	227
	in an atmosphere of N_2 .	
Figure 6.8	Ambient temperature neutron diffraction pattern of	228
	the deuterated sample of Ba2NdSn0.6Sb0.4O5.7.	
Figure 6.9	Selected portion of the neutron diffraction pattern of	231
	Ba2NdSnO5.5 obtained at ambient temperature	
	illustrating the anisotropic peak shape broadening	
	present in this sample.	
Figure 6.10	Neutron diffraction pattern of Ba2NdSn0.6Sb0.4O5.7	232
	obtained at ambient temperature.	
Figure 6.11	Sn L _I -edges of selected samples in the series	235
	$Ba_2NdSn_xSb_{1\text{-}x}O_{6\text{-}\delta}$ and, the Sn^{2+} and Sn^{4+} standards,	
	SnO and SnO ₂ .	
Figure 6.12	Sb L _I -edges of selected samples in the series	236
	$Ba_2NdSn_xSb_{1\text{-}x}O_{6\text{-}\delta}$ and, the $Sb^{3\text{+}}$ and $Sb^{5\text{+}}$ standards,	
	Sb_2O_3 and Sb_2O_5 .	
Figure 6.13	Oxygen occupancies of Ba2NdSn0.6Sb0.4O5.7	238
	determined at various temperatures using neutron	
	diffraction.	
Figure 6.14	Reduced lattice parameters of Ba2NdSn0.6Sb0.4O5.7	239
	versus temperature.	
Figure 6.15	A neutron diffraction pattern of $Ba_2NdSn_{0.6}Sb_{0.4}O_{5.7}$	240
	collected at 750 °C fitted with $I2/m$ symmetry.	
Figure 6.16	Conductivity in air versus temperature for samples in	241
	the series $Ba_2NdSn_xSb_{1-x}O_{6-\delta}$.	

List of Tables

Chapter 1 General Introduction

		Page No.
Table 1.1	Unit cell descriptions and atomic positions for all the	6
	space groups generated by tilting of the BO ₆	
	octahedra of the primitive cubic structure.	
Table 1.2	Unit cell descriptions and atomic positions for all the	10
	space groups generated by tilting of the BO ₆	
	octahedra of the ideal cubic double perovskite.	
Table 1.3	List of the ternary perovskite tilt systems divided into	14
	those containing one, and those containing more than	
	one, crystallographic A-site.	
Table 1.4	Space groups and relative abundance of each of the	16
	Glazer tilt systems adopted by compounds with the	
	ternary and double perovskite structures.	

Chapter 3

Structural Characterisation of $Ba_2LnB'O_6$ (Ln = Lanthanide (III) or Y³⁺ and B' = Nb⁵⁺, Ta⁵⁺ or Sb⁵⁺)

- Table 3.1Space group and unit cell parameters for each82member of the series Ba2LnTaO6 at ambient
temperature.82Table 3.2Space group and unit cell parameters for each87
- member of the series Ba_2LnNbO_6 at ambient temperature as determined by synchrotron X-ray diffraction patterns collected using the ANBF.
- Table 3.3Space group and unit cell parameters for each91member of the series Ba2LnSbO6 at ambienttemperature as determined by synchrotron X-raydiffraction patterns collected using the ANBF.

Table 3.4	Crystallographic tables for selected members of	94
	$Ba_2LnTaO_6.$	
Table 3.5	Lattice parameters and atomic positions for selected	95
	members of Ba ₂ LnNbO ₆ and Ba ₂ LnSbO ₆ determined	
	using neutron diffraction.	
Table 3.6	Bond lengths and bond valence sums (BVS) for	96
	selected members of Ba ₂ LnTaO ₆ .	
Table 3.7	Bond lengths and bond valence sums (BVS) for	97
	selected members of Ba2LnNbO6 and Ba2LnSbO6	
	determined using neutron diffraction data.	
Table 3.8	Ln-O-B' bond angles for rhombohedral and	99
	tetragonal structures at ambient temperature.	
Table 3.9	Transition temperatures for the niobate and tantalate	108
	double perovskites.	

Phase Segregation in Mixed Nb-Sb Double Perovskites Ba₂LnNb_{1-x}Sb_xO₆

Table 4.1	Phase composition and unit cell parameters for the	132
	$Ba_2Eu_{1-x}Pr_xNb_{1-x}Sb_xO_6$ series of compounds	
	determined using synchrotron X-ray diffraction.	
Table 4.2	Phase composition and unit cell parameters for the	137

Table 4.2Phase composition and unit cell parameters for the137 $Ba_2NdNb_{1-x}Sb_xO_6$ series of compounds determinedusing synchrotron X-ray diffraction.

Chapter 5

Characterisation of $Ba_2LnSn_xB'_{1-x}O_{6-\delta}$ (Ln = Pr or Tb and B' = Nb⁵⁺ or Sb⁵⁺)

Table 5.1Crystallographic details for members of the series152 $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ determined using neutrondiffraction.

Table 5.2 Bond distances and bond valence sums (BVS) for 153 selected members of the series $Ba_2PrSn_xSb_{1-x}O_{6-\delta}$ as determined by neutron diffraction. Table 5.3 Phase composition and unit cell parameters for the 158 Ba₂PrSn_xSb_{1-x}O_{6-δ} series of compounds determined using synchrotron X-ray diffraction. Table 5.4 162 Lattice parameters, atomic positions and displacement parameters for compounds in the series $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ as determined using neutron diffraction. Table 5.5 163 Bond lengths and bond valence sums (BVS) for selected compounds in the $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ series determined from refinements using neutron diffraction patterns. Table 5.6 Unit cell parameters of compounds in the series 165 $Ba_2TbSn_xSb_{1-x}O_{6-\delta}$ determined using synchrotron X-ray diffraction. Table 5.7 167 Lattice parameters, atomic positions and displacement parameters for BaTbO3 at ambient temperature. Table 5.8 Selected bond distances and bond valence sums 168 (BVS) for BaTbO₃ at ambient temperature. Table 5.9 Crystallographic details for the various structures 172 adopted by BaPrO₃ at different temperatures. Table 5.10 Bond distances and bond valence sums (BVS) for 173 BaPrO₃ at various temperatures. Table 5.11 188 Oxygen stoichiometry as determined by the multiple linear regression of the Pr and Tb L_{III}-edges for perovskites in the series $Ba_2LnSn_xSb_{1-x}O_{6-\delta}$ (Ln = Pr or Tb). Unit cell parameters and volume for compounds in Table 5.12 193 the series $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$.

- Table 5.13Crystallographic information for the series198 $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$.
- Table 5.14Bond lengths and bond valence sums (BVS) for199selected compounds in the $Ba_2PrSn_xNb_{1-x}O_{6-\delta}$ series.
- Table 5.15Unit cell parameters, atomic positions, displacement200and oxygen occupancy parameters as determinedusing neutron diffraction for compounds in the series $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$.
- Table 5.16Unit cell lengths and volumes for compounds in the203series $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$.
- Table 5.17Bond lengths and bond valence sums (BVS) for203selected compounds in the $Ba_2TbSn_xNb_{1-x}O_{6-\delta}$ series
determined using neutron diffraction.
- Table 5.18Oxygen stoichiometry as determined by the least210squared fit of the Pr and Tb L_{III} -edges for perovskitesin the series $Ba_2LnSn_xNb_{1-x}O_{6-\delta}$ (Ln = Pr or Tb).

Structural Characterisation of Ba₂NdSn_xSb_{1-x}O_{6-δ}

- Table 6.1Phase composition and unit cell parameters for the
 $Ba_2NdSn_xSb_{1-x}O_{6-\delta}$ series of compounds determined
using synchrotron X-ray diffraction.223
- Table 6.2Crystallographic information for the series233 $Ba_2NdSn_xSb_{1-x}O_{6-\delta}$ determined using neutrondiffraction.
- Table 6.3Bond lengths and bond valence sums (BVS) for234selected compounds in the $Ba_2NdSn_xSb_{1-x}O_{6-\delta}$ series
determined using neutron diffraction.

List of Equations

Chapter 1 General Introduction

		0
Equation 1.1	Equation for determining the tolerance factor of a	3
	perovskite.	
Equation 1.2	Relationship between the bond length and the bond	13
	valence sum of a particular cation and anion.	

Chapter 2

Experimental Techniques

Equation 2.1	Net calculated intensity of a particular point in a	52
	Rietveld refinement.	
Equation 2.2	Polynomial function for modelling the background.	53
Equation 2.3	Pseudo-Voigt peak profile function used to model	54
	continuous wave diffraction patterns.	
Equation 2.4	Full width at half maximum function used for	54
	modelling continuous wave diffraction patterns.	
Equation 2.5	Pseudo-Voigt peak profile function used to model	55
	time-of-flight neutron diffraction patterns.	
Equation 2.6	R-profile factor.	55
Equation 2.7	Weighted R-profile factor.	55
Equation 2.8	Goodness of fit term.	55

Chapter 3

Structural Characterisation of $Ba_2LnB'O_6$ (Ln = Lanthanide (III) or Y³⁺ and B' = Nb⁵⁺, Ta⁵⁺ or Sb⁵⁺)

Page No.

Page No.

Equation 3.1	Equation for estimating the tetragonal strain of an	112
	I4/m double perovskite.	

List of Abbreviations

Å	Angstrom, 1×10^{-10} m
$\Delta E/E$	Energy resolution expressed as a fraction of the energies being
	resolved
χ^2	Goodness of fit
δ	The number of oxygen vacancies in a compound
ϕ	Out-of-phase tilt
λ	Wavelength
A ₂ BB'O ₆	General formula for a double perovskite where B and B' are the two
	octahedrally co-ordinated cations
ABX ₃	General formula for a ternary perovskite where A is the larger cation
	that occupies the 12-fold co-ordination site, B the smaller cation that
	occupies the octahedral site and X is the anion, usually oxygen
AINSE	Australian Institute of Nuclear Science and Engineering
ANBF	Australian National Beamline Facility
ANSTO	Australian Nuclear Science and Technology Organisation
ARC	Australian Research Council
ASRP	Australian Synchrotron Research Program
B'	Second octahedrally co-ordinated cation in a double perovskite
	structure
BVS	Bond valence sum
CW	Constant wavelength (neutron diffractometer)
DEST	Department of Education, Science and Training
DFT	Density Functional Theory
$E/\Delta E$	Inverse of $\Delta E/E$
EDX	Energy Dispersive X-ray
e_t	Tetragonal spontaneous strain
eV	Electron Volts
EXAFS	Extended X-ray Absorption Fine Structure
FWHM	Full width at half maximum
GGA	Generalized gradient approximation
GSAS	General Structure Analysis Software
HIFAR	High Flux Australian Reactor

HRPD	High Resolution Powder Diffractometer (at HIFAR)
hrs	Hours
ICSD	Inorganic Crystal Structure Database
JCPDS	Joint Committee on Powder Diffraction Standards
Ln	Lanthanide or Y
М	Metal cation
MRPD	Medium Resolution Powder Diffractometer (at HIFAR)
NIST	National Institute of Standards and Technology
NSRRC	National Synchrotron Radiation Research Center
PAW	Projector augmented wave method
PBE	Perdew-Burke-Ernzerhof
PCA	Principle component analysis
PPDA	Python Powder Data Analysis
PTFE	Polytetrafluoroethylene
PZT	$Pb(Zr_{1-x}Ti_x)O_3$
Q	Order parameter of the Landau free energy expansion
r	Ionic radius
RAL	Rutherford Appleton Laboratory
R _p	Profile factor
\mathbf{R}_{wp}	Weighted profile factor
SEM	Scanning Electron Microscopy
SOFC	Solid oxide fuel cell
t	Tolerance factor (of a perovskite)
T _c	Critical temperature
TGA	Thermogravimetric Analysis
TOF	Time-of-flight (neutron diffractometer)
UV-Vis-NIR	Ultra-Violet, Visible and Near-Infrared
VASP	Vienna ab initio simulation package
XANES	X-ray Absorption Near-Edge Structure
XRF	X-ray Fluorescence