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ABSTRACT 
 

 

The goal of this research was to test commercially viable alternative methods to fungicides 

for controlling storage diseases of melons that are safe for human health and the 

environment.  Initially, experiments were conducted on melons to develop a protocol for 

optimum conditions of disease development during storage for different pathogens and for 

different stages of fruit maturity. For all pathogens tested, the study found that humidity 

greater than 90% and temperatures above 20° C support infection and rapid growth of 

disease. 

  

Differences in the rate of infection and extent of disease development after the inoculation 

of different storage pathogens was observed between rockmelon and honeydew melons, 

indicating differences in host pathogen interactions. Among the tested pathogens, 

Alternaria spp. was the least aggressive in infection and disease severity, growing 

considerably slower than Fusarium acuminatum which was moderately aggressive and 

Rhizopus spp. which was very aggressive, in comparison. Green half-slip melons showed 

greater resistance to pathogen attack than green full-slip fruit, while yellow full-slip melons 

were highly susceptible to pathogen attack. Therefore, the laboratory experiments for 

postharvest treatments of rockmelons were performed using green full-slip fruit challenged 

with F. acuminatum.  

 

Evaluation of physical and safe chemical methods of postharvest treatment to control 

postharvest diseases of melons showed that none of the treatments alone was as effective as 

the commercially available fungicide. Hot water solutions of safe compounds considerably 

increase their efficacy against postharvest rots, however, symptoms of phytotoxicity on the 
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rind after dipping made their use unacceptable. Iodine was the only safe chemical tested 

which did not cause any phytotoxicity on melons. When combined with hot water, iodine 

showed the best control of storage rots and was as good as the fungicides carbendazim or 

guazatine. Hot water iodine dipping of fruit also delayed ripening and fruit were firmer 

during storage for a longer period of time. 

 

Systemic acquired resistance (SAR) was evaluated as a method of controlling powdery 

mildew in glasshouse grown rockmelon seedlings by treating with the activators 2,6-

dichloroisonicotinic acid (INA) or  benzothiadiazole (BTH) or water. Increased resistance 

due to application of INA or BTH, was observed by the reduction of powdery mildew on 

pre-inoculated detached leaves and also on intact leaves from natural infections. Heightened 

resistance due to spraying with elicitors of SAR, was further evident by the increased 

activities of the pathogenesis related proteins (PR proteins), peroxidase and accumulation of 

phenolics or antifungal compounds during and after challenge inoculation. 

 

Field grown rockmelons were treated with INA or BTH or BABA (�-aminobutyric acid) or 

water at various stages of plant growth and evaluated for increased resistance against pre 

and postharvest diseases.  Both powdery mildew and downy mildew were significantly less 

on the SAR elicitor treated plants. Preharvest treatment with SAR elicitors also reduced 

storage diseases of the harvested rockmelon fruit. The reduction in postharvest disease was 

similar whether plants were treated once, three weeks before harvest, or given four sprays 

during the growing season beginning at anthesis.  A further postharvest dip with 500 ppm of 

guazatine gave substantial reduction of storage rots of melons. Enhanced activities of 

chitinase and peroxidase, two major PR-proteins, compared to the control, indicated 

induction of defence had occurred in the foliage and fruit as a result of SAR. Over the 

course of four field and one glasshouse experiments slight phytotoxicity was observed in 
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plants frequently sprayed with INA or BTH, but no phytotoxicity was seen after a single 

spray during the late stages of fruit development. 

 

The combination of SAR elicitor treatment and use of a safe postharvest dip provided 

substantial control of storage rots of rockmelons. The best treatment for control of storage 

rots involved application of BTH (50 ppm) two weeks before harvest, combined with a hot 

iodine dip (55° C) of fruit, achieving equivalent or better disease control than use of 

guazatine fungicide dip.  
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CHAPTER  I 
 

INTRODUCTION 

Melon production is an important horticultural industry in Australia, with a wide variety of 

melons grown throughout the country (Possingham, 1998). Melons are grown year round, 

across the country during the warmer seasons of the different regions, mostly for the 

domestic market (Morris et al., 2001). With increased production, export markets have 

begun to develop. However, overproduction and oversupply of melons in the local market 

has caused price fluctuations which has discouraged growers in recent years (ABS, 2004). 

A lack of economically feasible transport, unreliable postharvest storage technology and the 

relatively short storage life of melons are hindering the development of a solid export 

market (Sykes, 1990). Exporting melons to distant markets where it takes more than 3 

weeks to transport them is of particular concern (Mayberry and Hatz, 1992). 

 

Australian melons are popular in foreign markets and can attract high prices because of the 

superior fruit quality (Edwards and Blennerhassett, 1990). However, postharvest 

deterioration of melons caused by storage rots is a major concern especially during long 

distance transport to export markets (Wilson and Pusey, 1985). In Australia, postharvest 

decay of melons mainly occurs from infection by Fusarium spp., Geotrichum, Rhizopus 

spp., Cladosporium spp., Alternaria spp. and Pseudomonas spp. (Morris and Wade, 1983). 

Disorders in storage may also occur such as desiccation, chilling injury, over ripening, and 

loss of firmness, which all result in loss of marketability of melons. 

 

Postharvest research into the development of technologies that enable produce to reach 

export markets without deterioration in quality, can be profitable to the industry, as well as 
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benefit consumers (Johnson et al., 2001). The current practice of control of storage rots of 

melons is through dipping harvested fruit in fungicides. Continuous use of fungicides has 

faced two major obstacles; increasing public concern regarding contamination of 

perishables with fungicidal residues, and proliferation of resistance in the pathogen 

populations (Tripathi and Dubey, 2004). Moreover, many countries do not allow 

importation of produce that has been treated with fungicides (Droby et al., 1998). These 

issues suggest there is an urgent need to develop safe, effective, non-pesticide treatments for 

disease control in fresh horticultural produce (Fallik, 2004). 

  

With the present change in emphasis on the use of fungicides, hot water dipping of 

postharvest produce has been explored as one of the possibilities for controlling storage rot 

pathogens (Klein and Lurie, 1991). Hot water treatment is relatively easy to implement 

because of the short duration of its treatment. The hot water can be recycled effectively as 

most of the pathogens cannot survive at a temperature range above 50°C (Barkai-Golan and 

Phillips, 1991; Lurie, 1998). Hot water treatments are thought to be partly dependent on the 

elimination of incipient infections by removing spores from the wounds of fresh produce, as 

well as reducing their viability (Couey, 1989). The reduction of decay incidence from hot 

water treatment is also due to the induction of biochemical molecules in the host tissues 

which are responsible for inhibition of fungal growth (Ben-Yehoshua, 2003; Schirra et al., 

2000). Hot water treatment keeps the fruit firmer, causes less weight loss and maintains 

fruit quality under storage (Fallik et al., 1999; Paull and Chen, 2000; Lingle et al., 1987). 

 

Many chemicals which are used as food additives or for food processing have been reported 

to control the postharvest storage rots of fruit and vegetables (Palou et al, 2002). Some of 

the promising chemicals are bicarbonate salts (Smilanick et al, 1999), acetates and 
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molybdate salts (Palou et al, 2002) and iodine (Morris and Bokshi, 2002). These chemicals 

have shown broad-spectrum antimicrobial properties and are Generally Regarded As Safe 

(GRAS) compounds that do not require expensive testing and validation by regulatory 

agencies (Aharoni et al, 1997). However, none of the alternative physical or non-pesticide 

chemical treatments can, by themselves, provide equivalent control to that of synthetic 

fungicides (Palou et al., 2002). A combination of various alternatives could be a suitable 

technology that could equal the effectiveness of synthetic chemicals (Conway et al., 2004). 

 

As a fungicide alternative, biological control of postharvest diseases using antagonists has 

been extensively studied (Nunes et al., 2001; Wei et al., 1999). However, the possible 

adverse effect of the microorganisms on the physiology of the plants and the expense of 

development has limited their use (Nunes et al., 2002). Another alternative is the 

development of disease resistant varieties either by conventional breeding or genetic 

engineering (transgenic plants). Both of these breeding processes take a long time and need 

a thorough study of target genes, the pathogens and host plant (Mount and Berman, 1994). 

Furthermore, there are still questions about the commercialisation of transgenic varieties 

due to public concern in many countries. 

 

In recent years much attention has been given to the control of plant disease through 

induction of resistance by means of physical, biological or chemical elicitors. After 

treatment by an elicitor, a plant is stimulated to activate its defence mechanisms, such as 

formation of physical and chemical barriers, and so minimise disease incidence.  (Kombrink 

and Schmelzer, 2001). Natural resistance mechanisms of the plant are mostly activated in 

response to pathogen attack; however, they also can be induced or accelerated by physical 

treatment or application of a biological agent or a chemical activator (Kuc, 1982; Ryals et 
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al., 1994). The mechanism of inducing systemic resistance in plants against pathogens 

works on the same principle both for biological and chemical inducers (Lucas, 1999).  

 

Induction of systemic resistance, by the use of a pathogenic or a non-pathogenic 

microorganism, has been reported for many crops (Jenns and Kuc, 1980;  Kroon et al., 

1991;  Kuc, 1982). Although induction of systemic resistance in plants using biological 

elicitors may not yet have been useful for commercial purposes of disease control in the 

field, it has provided researchers with a basis for investigation and a platform for the 

development and selection of chemical agents that induce resistance (Owen, 1995). 

 

Induction of natural disease resistance in harvested horticultural crops using chemical 

elicitors has received increasing attention over recent years (Terry and Joyce, 2004). There 

are a number of reports in recent times on induction of systemic resistance by spraying 

chemical activators on horticultural crops for the control of postharvest diseases (Bokshi et 

al., 2003; Huang et al., 2000; Terry and Joyce, 2000; Willingham et al., 2002). The 

induction of systemic acquired resistance (SAR) has mainly focused on the treatment of 

intact plants for the control of pre and postharvest diseases. However, in a recent report it is 

suggested that application of benzothiadiazole (BTH), an SAR inducer, to freshly harvested 

apples can lead to resistance against storage diseases (Liu et al., 2005).  

 

A number of chemicals having no direct antifungal action have been reported to induce 

systemic resistance to pathogens when applied to plants (Kessmann et al., 1994).  Recently, 

a number of chemical activators have been identified that confer broad spectrum efficacy 

against pathogens on a wide variety of crops including cucurbits (Tally et al., 2000). The 

functional analogues of salicylic acid such as 2,6-dichloroisonicotinic acid (INA) have been 
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reported to induce resistance by mimicking some aspects of pathogen attack, possibly 

accelerating the normal responses to further infection (Uknes et al., 1992). �-aminobutyric 

acid (BABA) is another compound rarely found naturally in plants but also a potent inducer 

of systemic resistance (Jakab et al., 2001). The resistance induced in INA or BTH or 

BABA-treated tissues correlated well with the accumulation of a number of enzymes such 

as chitinase and peroxidase; the antifungal potential of these enzymes has been 

demonstrated before (Ippolito et al., 2000; Mauch et al., 1988). 

 

Research conducted on chemical or biological elicitors shows potential for controlling field 

as well as postharvest diseases through induction of resistance in the host plant. After many 

years since the first report on SAR using the treatment of inducers, and many more 

publications around the world, the stage has been reached to utilise the technology for 

disease control on a commercial scale (Kuc, 2001). However, for their commercial use in a 

wider varieties of crops, a range of issues still needs to be addressed. Attention should be 

given to individual plant-pathogen interactions, to determine the effective inducers, their 

optimum concentration, as well as the putative defence compounds induced and the timing 

of their appearance (Kuc, 2001). In addition, more applied and basic research is required to 

fully understand the role systemic resistance can play in controlling postharvest diseases 

commercially (Terry and Joyce, 2004). 

 

This study aims to assist in the expansion of local and export markets of Australian melons 

for the benefit of the growers as well as to increase customer satisfaction. The study 

investigates ways in which the use of conventional fungicides can be reduced as a 

postharvest treatment of melons, and can be replaced with safe compounds of low or no 

residual effect. In this study we investigated use of GRAS chemicals as well as different 



 6 

temperature hot water treatments and compared them with current commercial application 

procedures. 

 

Systemic induced resistance as a means of disease control strategy against field and storage 

diseases of melons was also investigated. We selected chemicals which had been reported 

to have no residual or fungicidal effect, to induce natural resistance and assess their efficacy 

in protecting against field and postharvest disease in melons. Studies sought to find the 

appropriate stages of plant growth for the development of systemic resistance in plants 

without compromising crop yield and quality. The concentration of the SAR elicitors were 

also investigated to enable maximum expression of induced resistance at the time of harvest 

for disease resistance of fruit in storage. 
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CHAPTER  II 
 

LITERATURE REVIEW 

 

2.1 THE MELONS 

Melons are well-known members of the Cucurbitaceae family, especially watermelons, 

rockmelons and honeydew melons. In addition to particular plant, fruit and seed 

characteristics and physiology, melons with excessive moisture are called watermelon and 

those with a pleasant flavour are called muskmelon (Mallick and Masui, 1986). 

Watermelons are grouped under the genus Citrullus and muskmelons under the genus 

Cucumis. The muskmelon (Cucumis melo) is a polymorphic species that historically has 

been divided into a number of botanical subspecies (Sykes, 1990). However, there are a 

number of other varieties, the main ones being Galia melons, Musk melons and Hami 

melons (Agri. Notes, 1998). Melons generally occupy a prestigious position in the vegetable 

market because of their attractive appearance and pleasant flavour (Mallick and Masui, 

1986). ‘Rockmelon’ (also known as Cantaloupe) and ‘honeydew’ are the two main types of 

melons in Australia and are available year round (ABS, 2004). 

 

2.2 AUSTRALIAN MELON INDUSTRY  

With the rapid increase in melon production since the early ‘70s, Australia now has an 

important melon industry, providing produce for domestic and for export markets 

(Possingham, 1998). In the year 2005, there were about 300 commercial growers in the 

industry producing about 217,000 tonNes from 8,500 hectares of land (Aust. Melon Ass., 

2005), 30% of which was rockmelons (Table 2.2.1). The production areas for cantaloupe 

and honeydew melons move across the country following the warmer seasons. Melons are 

therefore available all year round for the domestic market (Morris et al., 2001). The main 
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producing areas are the Burdekin Valley in Queensland, the Murrumbidgee Irrigation area 

in NSW, the Murray Valley region in NSW and Victoria and the Ord River area in Western 

Australia. The industry is estimated to be worth in the vicinity of about $100 million during 

the production year 2001/02 (ABS, 2004).  

Table 2.2.1 Production of rockmelon (tonnes) by year for each state 

Year NSW VIC QLD WA SA NT Total 

1998  16,500   6,232  42,427  14,523   4,016  1,418  85,115 

1999  21,470   8,413  54,581  12,900   2,792     889 101,045 

2000  16,381   5,429  49,012  12,470   2,726  1,046  87,064 

2001  34,983   7,304  31,129  12,972   5,212     352  91,952 

2002  21,480   5,159  36,163   9,656      773     870  74,101 

2003  16,798   5,742  30,242  10,868      455       45  64,150 

2004  14,801   5,028  43,154  11,850      375   1,460  76,667 

2005  10,695   5,413  39,407  10,645      201   1,705  68,066 

         Source: ABS, 2007 
 

 

2.3 PROSPECT OF EXPORTING AUSTRALIAN MELONS 

The Australian melon industry is predominantly focused on local markets, however, in 

recent years the export market has grown considerably (Aust. Melon Ass., 2005). Australia 

has the potential to expand melon exports to countries of the northern hemisphere especially 

Asian markets and also to Europe. However, the distance from these potential export 

markets makes it difficult to maintain quality during shipment, because of their 

susceptibility to disease and the relatively short postharvest life. Despite these constraints 

Australia is developing a strong export market for melons in Hong Kong, Singapore and 
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New Zealand (Aust. Melon Ass., 2005). Expansion of the industry depends on minimising 

postharvest losses and quality deterioration during storage and long-distance transport 

(Morris et al., 2001). 

 

The current situation within the melon industry of Australia is one of overproduction and 

over supply (ABS, 2004). During the last several years, production has been increasing 

more than 40% each year, but there has not been a corresponding rise in exports (ABS, 

2004). In fact, the last few years’ exports have decreased by about 5% in tonnage and 14% 

in currency (Table 2.3.1). This is largely because of the lack of an economically feasible 

transportation system for this perishable product which needs precise storage conditions to 

control losses (Sykes, 1990). 

 

Table 2.3.1 Australia’s major rockmelon export markets 

2001/02 2002/03 %variance   Country of 

  destination tonnes $000 tonnes $000 tonnes $000 

Hong Kong 4,694 7,396 3,142 4,584 -33 -38 

Singapore 3,842 5,637 3,642 4,927 -5 -13 

New Zealand 3,605 3,038 4,510 4,089 25 35 

UAEM 1,271 2,052 1,543 1,968 21 -4 

Malaysia 406 558 224 312 -45 -44 

Brunei 85 246 92 272 8 11 

Mauritius 45 43 49 60 9 40 

Bahrain 119 181 80 146 -33 -19 

Maldives 87 101 57 83 -34 -18 

India 57 74 64 96 12 30 

Others 140 208 221 250 58 20 

Total 14,351 19,534 13,624 16,787 -5 -14 

         Source: ABS, 2004 
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Australian melons are very popular in foreign markets and can attract high prices providing 

the melons are of premium quality and are free of spoilage or any rind disorder (Edwards 

and Blennerhassett, 1990). A successful export market is dependent on development of 

technologies that improve quality, packaging and storage conditions. 

 

2.4 PROBLEMS ASSOCIATED WITH EXPORTING AUSLRALIAN MELONS 

Postharvest losses can be greater in export rather than domestic markets and often deter 

industries engaging in the export of fresh commodities (Wilson and Pusey, 1985). 

Postharvest disease management, which reduces shelf life and quality, is the main constraint 

on the Australian melon industry and is the major issue limiting the progress of export 

markets for Australian melons (Morris et al., 2001). 

 

Shipment of honeydew melons to Europe and South East Asia is serviced by air freight 

which is costly and often difficult due to space limitations (Edwards and Blennerhassett, 

1994). Sea freight is less costly and would allow larger consignments of melons enabling 

greater financial returns to growers. However, the relatively short storage life of melons 

(Mayberry and Hatz, 1992) limits the possibility of exporting to long distance markets via 

sea, since transport to those destinations takes more than three weeks. The lack of a well 

accepted and established postharvest handling method for shipment by sea, coupled with the 

poor understanding of cultural and varietal impacts on storage quality, often results in poor 

product outturn (Mayberry and Hartz, 1992).  
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2.5 POSTHARVEST LOSSES OF MELONS 

2.5.1 Losses from diseases and storage conditions 

Rockmelon fruit has a relatively shorter storage life than honeydew fruit. At temperatures 

between 2 and 5° C with a humidity level around 90%, rockmelon can be stored for two to 

three weeks, whereas honeydew melons for up to four to five weeks at a temperature of 8° 

C (Carr. Corp., 1995). In horticultural produce, postharvest disease caused by fungi usually 

begins as either latent infections established in the field or from infection through wounds 

during postharvest handling (Terry and Joyce, 2004). 

 

A substantial loss of marketability may occur within a few weeks of storage if timely 

postharvest treatments have not been applied. Development of fungal rots is a key factor in 

postharvest deterioration of melons. In Australia, melon postharvest decay mainly occurs 

from development of the fungal pathogens Fusarium spp., Geotrichum spp., Rhizopus spp., 

Cladosporium spp., Alternaria spp. and the bacterial pathogen Pseudomonas spp. (Morris 

and Wade, 1983). It has also been estimated that the average disease loss after transport to 

distant markets on the east coast is 30-50% and has even reached 80% in extreme cases 

(Morris, 1977). Heavy postharvest losses may occur due to cultivar susceptibility to disease, 

rough handling after harvest, inadequate packaging and temperature management and long 

transport times (Mayberry and Hartz, 1992).  

 

In addition to fungal rots, desiccation is another major limiting factor of melons in storage 

life (Lester and Bruton, 1986). Postharvest water loss in rockmelon is relatively rapid under 

low humidity conditions. For example, rockmelon stored at 4° C in 85-95% relative 

humidity, which are typical commercial storage conditions, may lose up to 5.7% of fresh 
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weight in 20 days of storage. The extent of this water loss causes a decrease in firmness and 

loss of membrane integrity which results in loss of visual quality and marketability. 

 

2.5.2 Losses from field diseases 

In cucurbits, powdery mildew (Podosphaera xanthii) is a major disease, attacking both field 

and glasshouse grown plants (Reuveni et al., 1997). Downy mildew (Pseudoperonospora 

cubensis) diseases have also been reported on several economically important crops, 

including cucurbits, causing severe economic losses in some regions and seasons (Thakur 

and Mathur, 2002). These diseases are prevalent in production areas during periods of high 

humidity often accompanied by frequent rainfall (Thomas and Caniglia, 1997), and are 

normally controlled by using protective fungicides. Disease outbreak in the field may cause 

defoliation of vines and it is suspected to cause premature ripening of fruits. The fruit is 

thus less sweet than fruit harvested from healthy vines (Vawdry, 1994).  

 

Disease outbreak is difficult to control without a standard fungicide, especially powdery 

mildew which has demonstrated a high potential for developing resistance against common 

fungicides (DPI Notes, 2005). However, good control of powdery mildew is possible by 

using low toxic biocompatible controls that have low animal toxicity and less potential risk 

to the environment such as potassium salts early in the disease development stage (McGrath 

and Shishkoff, 1999). Cultivation of a resistant variety or use of protectant fungicides has 

been recommended for resistance management. However, the difficulty of adequate 

coverage of protectant fungicides on the plant limits the control of the fungus. Therefore, 

use of a resistant variety or inducted plant materials could be a practical strategy for the 

control of the disease. 
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2.6 POSTHARVEST STORAGE DISEASES: FACT AND FACTORS 

The presence or penetration of pathogens on harvested fruits does not automatically ensure 

disease development. Rather, certain conditions are needed to establish the infection process 

and to aid further development of disease in stored produce. These conditions include 

appropriate temperature and humidity, available nutrients for the pathogens and other 

environmental conditions (Barkai-Golan, 2001). Temperature and humidity are the two 

basic or even limiting factors for infection development on postharvest produce. However, 

the growing conditions of various storage fungi can differ even among the fungus of 

different species isolates.  

 

In order to choose the appropriate strategy for disease control, we require an understanding 

of the mode of infection of the pathogen, the biology of the host and the environmental 

factors that affect disease development. Temperature is usually the most important factor 

limiting the postharvest life of fruit and vegetables; fruit held at lower temperature have 

better appearance and maintain qualities such as flesh colour and firmness, than those held 

at higher temperatures (Yang et al., 2003). Lower temperatures significantly increase the 

storage life of rockmelons by reducing the breakdown of fruit caused by disease, 

dehydration and fruit ageing (Salvestrin, 1988). 

 

2.6.1 Effect of temperature on disease development 

Some pathogenic fungi can grow on the host tissue at low temperatures. It has been reported 

that Alternaria alternata, a pathogen of apples, can develop disease in storage at 0° C or 

below, and can be active at temperatures as low as -3° C (Sommer, 1985). On the other 

hand some pathogenic fungi cannot grow at all and do not survive at low storage 

temperatures. Rhizopus stolonifer for example, cannot generally develop spores at 



 14 

temperatures below 5° C, although a certain percentage of the spores can germinate at 

temperatures as low as 2° C, but their germ tubes cannot continue growth (Dennis and 

Cohen, 1976). Therefore, these fungi are not active on the host tissue and cannot develop 

disease (Barkai-Golan, 2001). However, most of the storage pathogens can grow and 

develop rots over a range of 15 to 25° C, with a significant increase in rot severity at higher 

temperatures (Stephens et al., 1997). Temperature levels of 20-30° C were found to support 

many storage pathogens leading to development of postharvest diseases (Pardo et al., 2004, 

2005).  

 

Extremely low temperature in storage does not always guarantee prevention of fungal 

development. There is also a danger in exposing fresh produce to conditions that may cause 

tissue damage to the fresh produce, yet do not inhibit infection or disease development, and 

possibly even enhance the infection and the disease development on the host tissues (Segall, 

1967). For instance, an extremely low temperature, below 2.5° C for longer than two weeks, 

is believed to damage the skin tissues of melons, causing surface decay and the 

development of pitting like symptoms (Evensen, 1983). Increased incidence of decay also 

occurs with increase in storage temperature, indicating a need to critically manage the 

storage temperature. The industry standard temperature for melon storage in Australia has 

been recommended at 5-8° C (Agric. Notes, 1998). However, different types of melons 

have different recommended safe temperatures; for rockmelons it is 2-5° C and for 

honeydew it is 8° C (Morris, 1992). 

 

2.6.2 Effect of humidity on disease development 

A pathogen is much more damaging to plant tissue in conditions of high humidity. Plant 

tissues, even those considered to be resistant to pathogens, may become completely 
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susceptible with excessive water around the tissues during inoculation (Johnson, 1947). 

High humidity at ambient temperatures around harvested fruit, even for a short period of 

time, helps to establish infection by the pathogens (Bonnardeaux and Robinson, 1994). 

However, every fungal spore or bacterial cell that reaches the harvested product can not 

develop to cause decay, even when conditions are favourable. Only a small group of 

pathogens can develop rots on harvested fruit and vegetable and each fruit and vegetable 

has typical fungal or bacterial strains that can grow on the product. The two abiotic factors 

and their interaction (humidity x temperature) significantly affect the infection and growth 

of rots in fresh produce (Pardo et al., 2005). 

 

Maintenance of a high humidity micro-atmosphere is also needed to prevent changes related 

to senescence, such as deterioration of membrane integrity and softening (Ben-Yehoshua, 

1985). Good appearance and marketability of melon fruit requires a saturated atmosphere in 

cold storage to keep the weight loss less than 1% (Lester and Bruton, 1986). Weight loss of 

more than 5% reduces marketability of most fruit because of shrinkage. It is reported that a 

low level of humidity contributes to the relatively short storage life of netted melons due to 

high transpiration rate, with fruit becoming soft and shrivelled even stored under cool 

conditions (Ryall et al., 1979). On the other hand a high relative humidity in storage 

encourages most of the postharvest diseases of melons (Wadia et al., 1986). Hence, proper 

surface disinfection, performed prior to storage, becomes a significant factor in limiting 

storage losses arising from infections (Halloran et al., 1999) especially when the produce 

has to be stored at high humidity. 
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2.6.3 Effect of harvest maturity on disease development 

A mature melon is defined as one that has reached the stage of physio-biochemical maturity 

which will ensure proper completion of the normal ripening process (Forbus et al., 1991). 

Melons should be harvested as soon as they reach maturity to enable produce to reach the 

consumer in a good quality. On the other hand storage quality of melons is significantly 

affected by maturity at harvest and it is recommended that for a superior quality and longer 

storage life, rockmelons should be harvested at green full-slip (Evensen, 1983). Harvesting 

melons at green half-slip maintains superior appearance and quality in storage, but results in 

lack of flavour. In contrast, yellow full-slip melons are the most affected by changes in the 

measurement of quality during storage and marketing. Therefore, green full-slip melons 

have superior flavour, sugar and acid content and attractive appearance compared to other 

stages of maturity (Evensen, 1983). 

 

Harvest maturity is also a determining factor in the susceptibility of fruit and vegetable to 

storage diseases (Eckert, 1975). Most fruit are more susceptible to pathogen attack as 

ripening progresses and when host tissue characteristics change during senescence. With 

ripening, acidity level, turgor state of the tissues and nutrient availability are the main 

factors that might separately, or in combination, enhance susceptibility to disease (Barkai-

Golan, 2001). As the fruit ripens, tissues soften due to the solubility of cell wall compounds 

such as pectin or hemicellulose (Paull et al., 1999; Eckert, 1978). This softening of tissues 

adds to the breakdown of the defence mechanism that makes fruit more susceptible to the 

invasion of pathogens. 

 

During ripening the ability of tissues to produce antimicrobial compounds which inhibit the 

pathogenic infections and their growth diminishes (Verhoeff and Liem, 1975). Conditions 
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that reduce the concentration of antimicrobial compounds in the host tissues, result in 

increased infection and disease development. The increased availability of nutrients, 

softening of the tissues and reduced activity of antifungal compounds in the ripe fruit, make 

them prone to attack by the pathogen. Therefore, harvesting fruit at its optimum stage of 

maturity, before softening has occurred and when levels of antifungal compounds have not 

totally declined, helps to inhibit development of storage rots and provides longer storage of 

the fruit. Furthermore, treatments and conditions that lead to delayed ripening and 

senescence can thereby indirectly suppress postharvest disease development. Therefore, 

knowledge of biological and environmental factors for the development of storage rots in 

melon would help optimisation of postharvest techniques for storage. 

 

2.7 CURRENT PRACTICES OF POSTHARVEST TREATMENT OF MELONS 

After harvest and throughout the handling chain, fruit are exposed to a huge number of 

fungal and bacterial pathogens. To ensure a healthy storage life, postharvest washing of 

melons must be done as soon as possible after harvest (Bonnardeaux and Robinson, 1994). 

The current practice to control storage rots of melons is dipping harvested fruit in 

fungicides. There are a number of recommended synthetic fungicides such as benomyl and 

guazatine, used by growers as postharvest treatments. Since no single chemical has a 

sufficiently wide spectrum of activity to control all postharvest diseases of rockmelons, a 

mixture of fungicides is recommended at particular concentrations for effective control of 

rots (Edwards and Blennerhassett, 1990). The current fungicide recommendation is a 

mixture of benomyl (Benlate ) and guazatine (Panoctine ) both at 500 ppm (Dimsey, 1995). 

 

Washing fruit in chlorine solution is a relatively safe method that is commonly used for 

postharvest washing of melons to control pathogenic micro-organisms during storage, 
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transportation and marketing (Bonnardeaux and Robinson, 1994). However, the 

antimicrobial activity and stability of the chlorine solution depends on the pH, the 

temperature and organic matter in the solution. Fungicide dips are commonly used also and 

the concentration can be reduced if used in combination with hot water.  One such practice 

is hot water drench with fungicides like imazalil which appears to be more effective than 

cold water application for postharvest treatments and is already being implemented in many 

packaging houses (Ben-Yehoshua, 2003). 

 

2.8 PROBLEMS WITH CURRENT PRACTICES OF POSTHARVEST 

TREATMENTS 

Many synthetic chemicals are employed today for postharvest treatment of fruit and 

vegetables throughout the world. Fungicide residues often represent a major threat to human 

health, with unpredictable consequences for the trade, the economy and the environment 

(Schirra et al., 2000). However, without their use the production and marketing of these 

fresh produce would not be possible (Ragsdale and Sisler, 1994). Fungicides used for the 

control of postharvest rots of fruit and vegetable are potentially more harmful to humans 

than on-farm fungicide application. Postharvest pesticides are detected at relatively high 

frequencies and high concentrations because they are applied later than pesticides applied 

on-farm, and their residues are usually not exposed to rain, wind, high temperature or 

sunlight which reduces the residue levels (Kuchler et al., 1997). Furthermore, they are 

applied directly to edible products, sometimes with wax to ensure that they remain in 

contact with fruit and vegetable surfaces. 

 

Continuous use of fungicides has faced two major obstacles; firstly, increasing public 

concern regarding contamination of perishables with fungicidal residues, and secondly, 
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proliferation of resistance in the pathogen populations (Tripathi and Dubey, 2004).  

Problems have arisen in many countries with regards to the use of synthetic fungicides on 

melons when residual levels of the fungicides were found to be several times higher than 

the maximum permissible levels (Anon. 1991). The use of imazalil fungicide as part of a 

wax application on ‘Galia’ melon cultivar has been shown to prevent development of 

Fusarium spp. and Alternaria alternata, but the treatment resulted in a high level of residue 

measuring 4-5 ppm, and persisted after the storage period (Aharoni et al., 1993). This 

amount of residue exceeds the acceptable tolerance of some European countries that have a 

residue tolerance below 0.5 ppm (Aharoni et al., 1992). 

 

Consequently, there is renewed interest in alternative postharvest disease management 

practices that can reduce consumer and environmental risks (Droby et al., 1998). Because 

of increasing public demand to reduce the use of synthetic fungicides there is an urgent 

need to develop effective, non-damaging physical or non-pesticide treatment for disease 

control in fresh horticultural produce (Fallik, 2004). 

 

Efforts to reduce reliance on fungicides in postharvest treatments of fresh produce have 

included dipping in hot water for short periods. Coates and Johnson (1993) showed that the 

combination of hot water and a fungicide is more effective in preventing fungal 

development in mangoes during postharvest storage. Although hot imazalil at 250 ppm 

reduced decay to the same level as cold imazalil at 1000 ppm (Ben-Yehoshua, 2003), 

residues from hot water are five to eight times higher in citrus fruit than residues on fruit 

treated in cool temperatures (Schirra et al., 1996, 1998). For melons, postharvest dipping in 

hot imazalil is not always more effective than normal cool application (Mayberry and Hartz, 

1992).  
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Countries importing agricultural commodities have great concerns about the health risk and 

the environment, in relation to pesticide operations in field crops as well as postharvest 

treatments (Kuchler et al., 1997). Australian melons which are mostly dependent on 

fungicide for postharvest disease control are facing strict guidelines from importing 

countries. For these reasons there is an urgent need to find an alternative for storage disease 

control of melons. Australia has favourable geographical and climatic conditions for 

growing melons and the product is renowned for its excellent fruit quality (Sykes, 1990). 

The demand for Australian product is therefore very high and can be further expanded by 

using a safe and effective alternative to fungicides for postharvest treatment.  

 

2.9 ALETRNATIVES TO FUNGICIDE FOR POSTHARVEST TREATMENT 

2.9.1 Biological agents 

In last fifteen years biological control of postharvest diseases has been extensively studied 

by using yeast and bacteria as antagonists (Filnonow et al., 1996; Janisiewicz, and Marchi, 

1992; Madrigal et al., 1994; Nunes et al., 2001; Vinas et al., 1998; Wei et al., 1999). 

However, microorganisms as biological agents have a relatively narrow spectrum of activity 

compared to synthetic fungicides (Janisiewicz et al., 1992), and use of an antagonist for 

biological control is less economical (Nunes et al., 2002). These organisms can have 

adverse effects on the physio-metabolic processes of the plant or plant parts and also might 

face legislative objections (Marquenie et al., 2002). Therefore, physical methods that do not 

leave any residue on the treated products are more appropriate as alternatives to the use of 

chemicals. 

 

Commercialisation of biological agents for use as postharvest treatment of fresh produce 

involves costly and thorough taxonomical studies on the antagonists. Huang et al. (1992, 
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1993, 1995) conducted trials for biological control of storage diseases of oranges using 

different isolates in the laboratory as well as a commercial packaging line. They found that 

antagonists can provide significant control of the disease, often as good as fungicides. 

However, for commercialization, companies are reluctant to invest because these biocontrol 

agents are linked taxonomically to pathogenic strains and further extensive investigation 

should be necessary to develop the technology for commercial practice (Huang et al., 

1993). Also, the introduction of exogenous microorganisms into the food chain for 

biocontrol would require a number of safety procedures which would still need to gain 

public acceptance (Wilson and Pusey, 1985). 

 

There are reports on decreased efficacy and lack of consistency of biological agents over 

generations; hence, application as a stand-alone treatment limits their use in commercial 

conditions (Droby et al., 2001). These drawbacks in the use of biological antagonists have 

increased interest in developing alternative control methods, particularly those which are 

environmentally sound and biodegradable (Tripathi and Dubey, 2004). Thus replacement of 

synthetic fungicides by non-toxic treatments specific in action, is gaining considerable 

attention. 

 

2.9.2 Physical treatment (heat/ hot water treatment) 

With the present change in emphasis on the use of chemical treatments, interest in heat 

disinfection has been revived (Spotts and Chen, 1987). Among several physical and non-

pesticide technologies that are being investigated to extend the storage life of fresh produce, 

postharvest heat treatment has been shown to be an effective physical method for the 

control of a wide range of pathogens for storage rots (Lurie, 1998; Palou et al., 2001; 

Schirra et al., 2000; Teitel et al., 1989). High temperatures inhibit fungal germination and 
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growth. This is the basis of hot water dips which have been developed as a method of 

disinfection (Klein and Lurie, 1991). In recent times there has been increasing interest in the 

use of heat treatments on postharvest fresh produce to control insect pests, prevent fungal 

rots and manipulate the ripening of the commodity. Interest is mostly promoted because of 

increased public demand for the decrease of postharvest use of fungicides against insects 

and diseases (Fallik, 2004). 

 

2.9.2.1  Postharvest disease control by treatment with hot water 

Hot water dipping of postharvest produce has been explored as one of the possibilities for 

controlling storage rot pathogens (Klein and Lurie, 1991). The advantages of hot water 

treatment are that it is an efficient medium for heat transfer and is relatively easy to use.  

The water used for heat treatment can be recycled effectively as most of the pathogens 

cannot survive at the temperature range recommended for variouscrops (Barkai-Golan and 

Phillips, 1991; Lurie, 1998). In addition to killing the pathogens, hot water treatment helps 

in maintaining fruit quality during prolonged storage and marketing (Fallik, 2004). 

 

Treatments with hot water for the control of postharvest decay are often applied for only a 

few minutes because only the surface of the commodity requires heating (Lurie, 1998). 

However, many fruit and vegetables tolerate exposure to water temperatures of 50-60°C for 

up to 10 min. However, such a long duration of dipping is not required for the control of 

most postharvest pathogens (Barkai-Golan and Phillips, 1991). Melons treated with hot 

water for as little as 15 sec had significantly less disease than untreated fruit, after a 

prolonged period of storage and marketing (Fallik et al., 2000). The efficiency of hot water 

treatment is dependent on the temperature and time of exposure of the product to hot water. 
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Therefore, a higher water temperature (about 60°C) for the treatment of fruit can 

compensate for a short time of exposure (10 sec.) to heat (Ben-Yehoshua, 2003). 

 

Postharvest treatment with hot water is thought to reduce decay incidence by limiting the 

sites of fungal penetration into the fruit and to keep fruit firmer due to less weight loss 

(Fallik et al., 1999). Reduced fungal infection after hot water application may be due to 

recrystallization or melting of the wax layer, which seals the micro-openings through which 

pathogens could get entry. Improvement of the physical barrier due to heat treatment 

through redistribution of the epicuticular wax layer resulting in a significant reduction in 

cuticular cracks, has also been reported by Schirra and D’Hallewin, (1997), Fallik et al. 

(2000) and Porat et al. (2000a). 

  

2.9.2.2  Hot water treatment enhances quality of fresh produce 

Heat treatment not only reduces the incidence of diseases but also improves the quality of 

fruit under prolonged and controlled storage conditions. A two min dip of citrus at 53°C has 

been found to markedly reduce the sensitivity of citrus and other fruit to chilling injury 

(Ben-Yehoshua, 2003). Heat treatment has been found to induce activities of catalase, 

ascorbate peroxidase and superoxide dismutase. Catalase is thought to be a major 

antioxidant operating in the heat-induced chilling tolerance of cold-stored mandarin (Sal 

and LaFuente, 1999). Postharvest dipping of some commodities, such as muskmelons in hot 

water improves the sugar content by preventing the loss of sucrose that occur in non-heated 

fruit during storage (Lingle et al., 1987).  

 

Heat treatment has been reported to affect the ripening of climacteric fruits. Ripening of 

most climacteric fruit is characterised by softening of the flesh, an increase in the sugar/acid 
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ratio, enhanced colour development, increase in ethylene production and respiratory 

activity, and elevated rate of protein synthesis. Exposing fruit to high temperatures 

attenuates some of these processes, and enhances others (Klein and Lurie, 1991). Ripening 

of climacteric fruit is known to be inhibited or accelerated by heat treatment following an 

alteration of gene expression (Paull and Chen, 2000). However, they also reported that the 

extent of the alteration of fruit ripening is a function of the exposure temperature and 

duration, and how quickly the commodity is cooled following the heat treatment. 

 

Ripening of green tomatoes is inhibited by heat treatment (Lurie, 1998), however, ripening 

of mangoes is accelerated (Prusky, 1996). Paull (1990) also reported delay in ripening and 

increase of storage life of fruit and vegetables treated with hot water. The delay in ripening 

of heat treated mature green tomatoes was because the degradation rate of peroxidase was 

delayed, which maintained resistance against decay pathogens (Lurie et al., 1997). 

Similarly, Sherf and Kolattukudy (1993) reported an association between increased 

susceptibility of tomatoes to decay and decrease or disappearance of peroxidase. 

Postharvest heat treatment actually delays other important ripening characteristics involved 

with maintaining fruit quality in storage by transiently inhibiting volatile production (Fallik 

et al., 1997). Hence, mature green fruit are more resistant to infection than ripe yellow fruit.  

 

Hot water treatment also helps to maintain fruit firmness and freshness during storage. The 

sealing of cracks by melting waxes reduces weight loss, thus maintaining fruit firmness 

after prolonged storage (Fallik, 2004). One report shows that melons lost their firmness 

when treated in hot water at 55°C for 90 sec (Halloran et al., 1999). However, others did 

not show any loss of firmness in respect to hot water treatments (Barkai-Golan et al., 1994; 

Lester and Tyrley, 1992; Yahia and Rivera, 1994). 
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2.9.2.3  Mode of action of hot water treatment 

2.9.2.3.1 Effects on pathogen from hot water treatment: 

Hot water treatments are thought to be partly dependent on the elimination of incipient 

infections by removing spores from wounds of the fresh produce and acting directly on their 

viability (Couey, 1989). The mode of action of hot water dips on decay of fresh produce has 

been reported to be a direct interaction with the fungi, perhaps by killing ungerminated 

spores and slowing germ tube elongation, thus slowing disease development in storage 

(Fallik et al., 1996). Previously it has been reported that failure or delay in rot development 

is a result of slow growth of distorted hyphae germinated from the inoculated spores of heat 

treated fruit (Fallik et al., 1995). Similar observations have been made by Schirra et al. 

(2000) and Wijeratnam et al. (2005) who stated that heat treatments have a direct effect of 

slowing germ tube elongation or of inactivating or outright killing germinating spores.  

 

Hot water treatment for postharvest dipping is not always a reliable disinfection method for 

the fresh produce. It has been reported that hot water dips at 50-53°C have proven to be 

ineffective in killing dormant spores but can reduce superficial pathogens effectively 

(Barkai-Golan and Phillips, 1991; Dettori et al., 1996). In contrast, germinating spores were 

found to be more sensitive to heat treatment than was mycelial growth (Fallik et al., 1993). 

An investigation by Schirra et al. (2000) found a negligible amount of fungal spores were 

eliminated or removed from wound inoculated fruit following a two min wash with hot 

water at 52°C. However, the reduction of rot development following hot water treatment 

was explained as a reduction of spore survival of various decay causing pathogens 

(Williams et al., 1994). The water is recycled, but because temperatures used are more than 

50°C, organisms which are washed off the product into the water do not survive (Lurie, 

1998). 
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2.9.2.3.2 Induction of resistance in the host tissue from hot water treatment: 

The mode of action of the heat treatment has been attributed to inhibiting fungal penetration 

of the host tissue as well as to the host tissue developing resistance via the formation of 

physical and chemical barriers against fungal growth (Ben-Yehoshu, 2003; Schirra et al., 

2000). The formation of chemical barriers includes inducing antifungal substances that 

inhibit fungal development in the fruit tissue, and enhancing wound healing. The heat shock 

response is manifested in most living organisms as induction or enhanced synthesis of heat 

shock proteins (Ferguson et al., 2000). Heat treatment can induce PR-proteins such as 

chitinase and �-1,3-glucanase, stabilise membranes, elicit antifungal compounds, or inhibit 

the cell wall degrading enzymes and delay the degradation rate of antifungal compounds 

that are present in freshly harvested fruit (Schirra et al., 2000). 

 

It is also thought that heat treatment can delay the incidence of decay for a few days by 

arresting the growth of pathogens and enabling the fruit to build up its mechanism of 

resistance (Ben-Yehoshua, 2003). Whatever the mechanism involved, it is obvious that 

employing hot water treatments has significantly reduced decay development on several 

fresh harvested commodities (Ben-Yehoshua et al., 2000; Fallik et al., 2000; Porat et al., 

2000a). However, the defence mechanisms against the pathogens are complex interactions 

with various types of response such as formation of physical barriers to pathogens and/or 

induction of antimicrobial compounds like PR-proteins (Bell, 1981; Couey, 1989). 

Evidence suggests that heat treatments are fungistatic but not fungicidal where pathogens 

are inhibited by both thermal inhibitions, and by the enhanced resistance of the fruit against 

the pathogen (Schirra et al., 2000). 
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Heat treatment may be effective either by directly inhibiting pathogen development, or by 

inducing natural resistance in the fruit (Klein and Lurie, 1991). Induction of resistance 

against decay due to hot water treatment of ‘Star Ruby’ grapefruit for two min at 62°C 

before inoculation has been reported by Porat et al. (2000b). The resistance was found to be 

most effective when inoculation was carried out one day after hot water treatment. Less 

effective resistance was observed when inoculation was carried out on the same day or 

seven days after heat treatment. 

 

2.9.2.3.3 Changes in physiology from hot water treatment: 

Hot water treatments are thought not only to retard pathogenic infection, but also to develop 

resistance in fruit due to changes of the physiological state of the peripheral cells (Schirra et 

al., 2000). Temperatures which inhibit the growth and penetration of fungal cells are also 

likely to disturb adjacent pericarp cells (Olesen et al., 2004). Moreover, Lurie (1998) 

suggested that hot water treatment inhibits pectic hydrolysis because of reduced level of cell 

wall degrading enzyme activity and ethylene production due to a reduction in the activity of 

ethylene-forming enzymes. Klein and Lurie (1991) suggested that treating fruit in hot water 

results in limited damage to the respiratory mechanism, which in turn delays ripening and 

ultimately extends the storage life of hot water treated produce. Hot water treatment of 

harvested fruit before storage reduces respiration and ethylene evolution and thus inhibits 

ripening and increases the shelf life of fruit (Fallik et al., 1999, 2000, 2001; Ilic et al., 

2001). 

 

2.9.2.4  Factors affecting the efficacy of hot water treatment 

Dipping melons in hot water not only reduces pathogens causing storage disease but can 

also significantly improve the storage life and marketability of fruit (Fallik et al., 2000). 
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The effectiveness of dipping fruit in hot water against storage pathogens depends on the 

temperature and/or duration of dip time of fresh produce in hot water. It was observed that a 

higher water temperature could compensate for a shorter dip time of fresh produce (Ben-

Yehoshua, 2003). But a higher water temperature for dipping fresh produce even for a short 

period of time can damage the rind tissues. Teitel et al., (1991), showed that ‘Galia’ melons 

were damaged when dipped in hot water at 60° C for 30 sec only; however, this did not 

significantly compromise marketability. 

 

On the other hand Mayberry and Hartz (1992) found that dipping muskmelon at 60° C for 3 

mins controls surface mould development in storage without any heat injury to the rind. 

They also stated that a lower temperature and/or shorter exposure treatments were less 

effective. They suggested a hot water dip at 55° C for 1-2 min as optimum for a postharvest 

anti-fungal treatment for ‘Galia’ melons. However, ‘Galia’ melon fruit dipped in hot water 

above 55o C and for more than two mins, damaged the skin of the fruit due to overheating 

and longer dip time (Mayberry and Hartz, 1992). Dipping fruit for less than half a minute 

under 55o C has been shown to be least effective for the control of storage rots. 

 

There are discrepancies regarding the effect of hot water dip of melons for the control of 

storage rots even within the same species, which may be largely because of variations in 

growing areas (Mayberry and Hartz, 1992). Carter (1981), in his study on postharvest decay 

of muskmelon, did not find significant differences in the incidence of Fusarium rot, stem 

scar and rind decay fungi, when dipped in water at 24° C and 57° C for 30 sec. However, 

Teitel et al. (1989) found that with a longer immersion time, a hot water dip may have 

provided effective protection for melon fruit against storage rots. They observed that a 

reduced temperature of 52° C and a longer dip time of two min controlled decay from 
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Alternaria spp., Fusarium spp., Rhizopus spp.  and Mucor spp. without causing external 

heat injury. Furthermore, there was no evidence of heat effect on the quality and ripening 

variates. Similar observation made by Barkai-Golan et al. (1994), who reported that hot 

water treatment of ‘Galia’ melon at 52-55° C can effectively prevent storage losses caused 

by Alternaria alternata, Fusarium spp. and Trichothecium roseum. 

 

2.9.2.5  Prospects and problems of hot water treatment 

Hot water treatments of fresh produce remove not only soil and dust, but also fungal spores 

from the fruit surface more efficiently than washing at room temperature. The simple 

technique of hot water treatment of fresh produce should be explored on a broader range to 

reduce our current reliance on synthetic fungicides as it is environmentally friendly and 

involves no risk to health. Hot water treatment would reduce production costs and, in turn, 

would cost less for the consumers (Lurie, 1998). With the trend toward less reliance on 

chemical control, postharvest use of heat treatment warrants greater study and further 

development (Barkai-Golan and Phillips, 1991). A better understanding of the physiology, 

pathology, biochemistry and molecular biology of hot water-treated produce will enable the 

development of more precise and effective procedures in the near future (Fallik, 2004). 

 

Postharvest heat treatment of fresh fruit and vegetable can provide good control of decay 

but does not provide the same protection of fruit quality as postharvest fungicides (Barkai-

Golan and Phillips, 1991). One should not infer that hot water treatment alone would 

provide acceptable decay control in commercial packaging situations (Mayberry and Hartz, 

1992). Carter (1981) suggested a longer dipping time (more than 30 sec.) and/or a mixture 

of fungicides and heated water for effective postharvest treatments of muskmelon. 

Similarly, the addition of nonpesticidal chemicals such as food additives to hot water may 
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increase the effectiveness of heat treatment; however, more effort is needed to find out the 

effective methods for the various commodities. 

 

Although most reports have focused on the positive response of commodities to heat 

treatment, it is not without problems. There is always a danger of tissue damage (Lurie, 

1998). This is one reason why there are a multitude of treatments and why there is a need to 

find a time-temperature regime which will produce the desired effect on decay control, 

whilst maintaining quality in storage. Tissue damage caused by heat may also result in 

increased decay development and may result in a poor quality commodity (Jacobi and 

Wong, 1992; Jacobi et al., 1993). Moreover, hot water at high temperatures may cause 

damage to the rind tissue that may affect the marketability of the fresh produce (Teitel et 

al., 1991). 

 

 The efficacy of hot water treatment on the pathogens is usually measured by reduced 

viability of the heated propagules (Schirra et al., 2000). The response of a pathogenic agent 

to heat can be influenced by the state of the pathogens such as maturity of the spores and 

amount of inoculum (Barkai-Golan and Phillips, 1991), but it does not always necessarily 

depend on these factors (Schirra et al., 2000). Although a linear relationship between the 

logarithms of reduction of fungal spores and time and temperature of heat treatment have 

been reported (Pullman et al., 1981; Roebroeck et al., 1991), the kill rate of the pathogen 

and the time and temperature treatment are not always proportional. Similarly fungal spores 

vary considerably in sensitivity to heat treatments (Rappel et al., 1991; Fallik et al., 2000). 

 

Postharvest treatments of fresh produce with hot water only are reported to be about half as 

effective as a hot conventional fungicide like benomyl (Olesen et al., 2004; Johnson et al., 
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2002). However, mixed results comparing the relative effectiveness of hot water and 

synthetic fungicides were observed by McGuire and Campbell (1993). Almost equivalent 

control of anthracnose on ‘Tommy Atkins’ mangoes was obtained from hot water dip for 3 

min at 53°C and 2000 ppm of imazalil at room temperature, but the hot water treatment in 

similar conditions was not effective on ‘Keitt’ mangoes. 

 

If a long period of dipping fresh produce is not required then a short hot water treatment by 

rinsing and brushing can be used to maintain fruit quality during prolonged storage (Fallik, 

2004). In Australia, spray is the preferred option for washing fresh produce in the sheds and 

already hot water treatments by spray is practised in a number of horticultural industries 

such as mangoes and apples. Although dips and spray are likely to have different heat 

transfer characteristics, there is little difference in their effect. The concept is supported by 

Olesen et al. (2004), who compared hot water dip and hot water spray for the control of rots 

in lychee, and found that the hot water spray was equally effective as hot water dip. 

 

2.9.3 Postharvest disease control by the treatment with safe chemicals 

2.9.3.1  Safe chemicals for postharvest dip 

In recent years, many chemicals which are used as food additives or for food processing 

have been evaluated for their efficacy to control the postharvest storage rots of fruit and 

vegetable (Palou et al., 2002). Some promising chemicals include bicarbonate salts 

(Smilanick et al., 1999), acetates and molybdate salts (Palou et al., 2002) and iodine 

(Morris and Bokshi, SPL internal report). These have shown broad-spectrum antimicrobial 

properties and are generally regarded as safe (GRAS) compounds that do not require 

expensive testing and validation by regulatory agencies (Aharoni et al., 1997). 
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Sodium bicarbonate is classified as GRAS by the United States Food and Drug 

Administration and is also proposed as exempt from residue tolerances on all agricultural 

commodities by the USA Environmental Protection Agency (Palou et al., 2001). Also 

sodium bicarbonate has been listed as an approved ingredient on products labelled 

‘organic’, proposed by the United States Department of Agriculture. This salt can be a 

useful tool to manage postharvest decay as it is inexpensive, readily available, and can be 

used with minimal risk of injury to the fruit. Smilanik et al. (1997) stated that sodium 

bicarbonate solution, when used correctly, approached the effectiveness of common 

synthetic fungicides for the control of Penicillium digitatum on oranges. Although salts 

containing carbonate and bicarbonate anions reduced disease development compared to the 

water control, control was not at the level that would be considered commercially 

acceptable (Punja and Gaye, 1993). 

 

A substantial reduction of blue mould incidence on oranges was reported by Palou et al. 

(2001) after a postharvest dip with 2-4% of sodium bicarbonate solution for 150 sec at room 

temperature, following a challenge inoculation of the pathogen. However, a high proportion 

of inoculum of P. italicum and P. digitatum conidia remained viable even after 5 min of 

exposure in a highly concentrated (10%) solution of sodium bicarbonate (Marloth, 1931). 

Although sodium bicarbonate more effectively controls naturally inoculated citrus fruit than 

artificially inoculated fruit (Smilanick et al., 1997), the effect is primarily fungistatic and 

not very persistent. Control may be due to the presence of salt residues in the wound 

infection courts occupied by the fungus (Palou et al., 2001) and therefore, the compound 

probably is not lethal. 
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Although bicarbonate salts are widely used in the food industry and have broad-spectrum 

antimicrobial activity, a higher concentration (>3%) may significantly reduce fruit quality 

(Fallik et al., 2004; Aharoni et al., 1997). Sodium carbonate and bicarbonate were equal and 

superior to the other carbonate and bicarbonate salts for the control of green mould on 

lemons and oranges (Smilanick et al., 1999); however, sodium bicarbonate was not 

recommended for use with hot water. The pH of sodium bicarbonate solutions rises rapidly 

at high temperatures because of carbon dioxide evolution in the air; therefore, only room 

temperature is advisable for use of this compound for the postharvest treatment of fruit 

(Smilanick et al., 1999).  

 

The ability of molybdate salts such as sodium and ammonium molybdate to affect the 

metabolic process in several organisms and to control disease development has been 

reported (Grangeasse et al., 1998; Nunes et al., 2002; Wang et al., 1995). In laboratory 

conditions, the potential to control blue and grey moulds of pears by the antagonist Candida 

sake, was enhanced with the application of ammonium molybdate (Nunes et al., 2002). The 

same authors conducted a field trial where a preharvest application of ammonium 

molybdate followed by a postharvest treatment with the antagonist, showed a significant 

reduction of blue mould on pear in storage. However, preharvest applications of sodium 

molybdate only, without any further antagonist treatment, did not reduce blue mould on 

harvested pear. 

 

The molybdate salts of sodium and ammonium gave satisfactory control of green and blue 

mould of lemon and oranges when treated in hot water at 48 or 50° C (Palou et al., 2002). 

The effectiveness of the salts was not increased with a further increase of temperature to 

53° C. In a screening trial of low-toxic chemicals for the control of green and blue moulds, 

Palou et al. (2002) found that sodium molybdate at 24.2 mM and ammonium molybdate at 



 34 

1.0 mM were effective. It was found that molybdate salts at higher concentrations were 

phytotoxic and stained the fruit. They also found that at non-phytotoxic concentrations, the 

effectiveness of these chemicals was more influenced by temperature than by concentration. 

The study stated that the inhibitory effects of these salts were not fungicidal but fungistatic 

and not very persistent. However, Nunes et al. (2001) found that 5 mM solutions of 

ammonium molybdate at room temperature were effective in controlling postharvest decay 

on apples caused by Penicillium, Botrytis and Rhizopus spp.  

 

Organic acid salts such as sodium acetate were found to be as effective as sodium carbonate 

for the control of green and blue moulds of lemons and oranges (Palou et al., 2002). The 

salt has been reported to control postharvest diseases on lemons and oranges and have the 

added advantage of not being phytotoxic to the rind. However, the acid salts appear to show 

some selective control in that they were comparatively more effective in controlling green 

mould on lemons than on oranges (Palou et al., 2002). Like carbonate or bicarbonate salts, 

the inhibitory effects of the organic acid salts have been suggested to be dependent on the 

presence of residue within the wound infection court occupied by the fungus and on 

interactions between this residue and constituents of the rind.  

 

Chlorine solutions, especially hypochlorites, are another sanitizer element being used by the 

growers for washing fruits and vegetables (Koponen et al., 1993). Sodium hypochlorite as 

an active chlorine is currently recommended for the postharvest treatment of many fresh 

produce, but it appears to be ineffective against some of the decay pathogens even when 

used with common fungicides like imazalil or benomyl (Carter, 1981). The use of chlorine 

as a sanitizer requires extra care to keep it active because the concentration in the dip tank 

may drop from sequestration by organic matter present in the water (Punja and Gaye, 1993). 

The effectiveness of chlorine compounds usually declines because of the reduced stability 
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of the compound, which is mainly due to interaction with organic substances that modify 

the pH of the solution (Prusky et al., 2001). 

 

Elemental iodine is another general sanitizer and a water purifier (Chang, 1958). The 

biocidally active form of iodine is widely used as a sanitizing compound in the food 

processing industry, especially with dairy. Iodine has been reported to be more active than 

chlorine against a number of organisms in water (Koponen et al., 1993). The efficiency of 

iodine for the control of microorganisms in dirty water was found to increase at a higher 

temperature and pH values (Ellis et al., 1993). Also the effectiveness of iodine on 

pathogenic organisms at low concentration makes it cost effective and less hazardous for 

the users (Oliver et al., 1991). 

 

2.9.4 Combination of hot water and safe chemicals for postharvest dips 

Unfortunately, none of the alternative physical or non-pesticide controls such as food 

additives and low-toxicity chemical treatments that have been evaluated to date can, by 

themselves, provide equivalent control to those of synthetic fungicides (Palou et al., 2002). 

The need for finding suitable alternatives to fungicides to control postharvest decay has 

prompted research aimed at combining various alternatives into a control strategy that 

equals the effectiveness of synthetic chemicals (Conway et al., 2004). Therefore, it is 

important to integrate these alternative technologies to develop a treatment strategy able to 

reach the required levels without compromising the quality of the produce and cost to the 

consumer. 

 

Over the years, combined heat-plus-chemical treatments have been developed in order to 

achieve decay control by using lower temperatures and shortened exposure time on the one 

hand and reduced fungicide concentration, on the other (Barkai-Golan, 2001). The 
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possibility of using hot water in combination with chemicals of low residual effect for the 

control of storage diseases has also been suggested (Marquenie et al., 2002). There are 

several reports on the effects of non-pesticide chemicals that suggest improvement in the 

efficacy by using heated solutions of the chemicals (Palou et al., 2002; Smilanick and 

Sorenson, 2001; Palou et al., 2001). Furthermore, other pre-storage treatments may act 

synergistically with heating (Ferguson et al., 2000). It is speculated that a combination of 

the alternative methods may complement one another to overcome shortcomings of each 

(Conway et al., 2004).  

 

We have taken the initiative to integrate alternative methods of postharvest disease control 

of melons to develop a treatment strategy for the quality of melons in long term storage. In 

our recent studies it was found that iodine as a sanitizing agent is very effective at room 

temperature. Moreover, use of iodine in hot water is even more effective for the control of 

postharvest diseases of fresh products such as melons, mangoes, avocados, oranges and 

many other vegetables (Morris and Bokshi, SPL internal report, 2002). As melon packaging 

uses dip and/or spray to wash the fruit, the addition of an extra hot water tank perhaps in 

lieu of extra machinery needed for the combination of safe chemical(s) would be easy to 

include with a minimum of re-tooling and outlay. 

 

2.10 PLANT RESISTANCE MECHANISMS 

2.10.1  Inherent resistance mechanisms in the plant 

Plants present numerous barriers to inhibit pathogenic invasion. Physical barriers such as 

waxes and cuticles inhibit the penetration of pathogens (Hammerschmidt and Smith, 1997). 

In addition numerous chemical compounds widely present in plant species and toxic to 
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pathogens, are used in the defence mechanism to prevent fungal infection. Some of these 

compounds are already present in plants, while others are formed only in response to certain 

stress situations such as environmental or nutritional stresses or infection by pathogens 

(Kuc, 1987). The activation of chemical defence may occur systemically which spreads to 

other parts of the plant or remains localised and causes accumulation of the defence 

compound at the site of infection or stress (Ryan, 1984). 

 

Plants have evolved a large variety of sophisticated defence mechanisms to resist 

colonisation by microbial pathogens and parasites (Kombrink and Schmelzer, 2001). 

Kombrink and Somssich (1995) described three major categories of plant defence 

mechanisms: 

(i) immediate, early defence responses of directly invaded plant cells, starting 

with signal recognition and transduction and frequently leading to rapid cell 

death, the so-called hypersensitive response (HR); 

(ii) local gene activation in the close vicinity of infection sites, resulting in the 

de novo synthesis of numerous secondary products, including phytoalexins, 

in the reinforcement of structural barriers, such as the cell wall, or in indirect 

inhibition of the pathogens; 

(iii) systemic activation of genes encoding pathogenesis-related (PR) proteins, 

including chitinases and 1,3-�-glucanases, which are directly or indirectly 

inhibitory towards pathogens and have been associated with the phenomenon 

of systemic acquired resistance (SAR). 

 

When plant-pathogen interactions result in disease establishment or successful host 

colonization, it is probably due to delayed plant defence expression, rather than to absence 

or inactivation of defence mechanisms (Benhamou et al., 1994). Plants defend themselves 
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from pathogenic infection through developing resistance by a wide variety of mechanisms 

such as local or systemic, constitutive or inducible (Ryals et al., 1994). However, the 

expression of resistance to a pathogen by a plant requires all mechanisms to be co-

ordinately regulated (Ward et al., 1991). 

 

In response to pathogenic infection, plants rapidly sensitise multicomponent responses. 

Among the responses are rapid lignification in the cell wall and accumulation of 

antimicrobial substances around the site of infection (Kuc, 1987). Several reports suggest 

that lignification is a mechanism for resistance against pathogenic invasion (Massala et al., 

1980; Morris et al., 1989; Pearce and Ride 1980; Ride, 1980; Vance et al., 1980). Through 

lignification the infection process can be restricted in several ways. These occur mostly by 

i) increased mechanical resistance and ii) reduced degradation of host cell wall. The defence 

mechanism developed thus restricts the diffusion of antimicrobial substances and nutrients 

from wounds, and thus inhibits the growth of the pathogen in the host. 

 

The mechanisms which require a plant’s host metabolism to induce resistance during the 

course of pathogenic infection or in response to physical and chemical stresses are 

described as active mechanisms (Keen, 1992). In most plants including fruit and vegetables, 

the mechanisms limiting pathogen aggression are associated with i) pre-formed 

antimicrobial substances (phytoncides), ii)  phytoalexins, enzymes and iii) physically 

resistant structures (Jarvis, 1994). Many of the efforts to understand the components 

forming the basis for disease resistance have revealed plant proteins and phenolic 

compounds accumulating to enhanced levels during the induction of resistance (Stermer, 

1995). A positive correlation between plant resistance and synthesis of several proteins was 

found during pathogenic infection (Binder et al., 1989, Christ and Mösinger, 1989). 
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2.10.2  Induction of resistance in the plant 

The idea that plants might be able to develop a form of acquired immunity to infection 

following exposure to a pathogen has been current ever since discovery of the animal 

immune system in the late nineteenth century (Lucas, 1999). In the early part of the 

twentieth century, Chester (1933) reviewed the history of research on plant immunity and 

revealed that plants can protect against pathogenic infection by initiating local and systemic 

defence. Richmond et al. (1979) and Jenns and Kuc (1980) in their histological studies on 

induced resistance found that Colletotrichum lagenarium (a pathogen of cucumber) is 

inhibited at the point of penetration in a leaf of a plant previously inoculated with the 

pathogen on another leaf. 

 

The phenomenon of induced resistance has been variously described as systemic acquired 

resistance (SAR) or induced systemic resistance (ISR) or systemic induced resistance (SIR). 

Although the terminology is not yet firmly established in this new branch of 

phytoimmunology, a compromise has been made to use the terms ISR and SAR 

synonymously (Hammerschmidt et al., 2001). However, in principle, all these terms denote 

the same phenomenon, that is, an activation of defence mechanisms in plants and several 

ways have been found for inducing resistance in a wide variety of plants (Cohen et al., 

1991; Ozeretskkovskaya, 1995; Stromberg and Brishammar, 1991). Therefore, SAR is 

frequently referred to as immunisation, sensitisation, vaccination, acquired immunity and 

sometimes cross-protection (Hammerschmidt et al., 2001; Lucas, 1999). The term SAR has 

now been established for a long-lasting response typically induced in plants in reaction to 

pathogen infection (Durrant and Dong, 2004). 
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Induction of SAR is taken to mean enhancement of resistance in a plant towards pathogens. 

It may result from previous treatment with a pathogen, an attenuated pathogen or a chemical 

that is not itself a pesticide (Deverall and Dann, 1995). Many recent studies provided 

evidence that immunization of plants with biotic or abiotic inducers could also effectively 

control disease in the field (Tuzun and Kloepper, 1995). Because of the apparent safety and 

broad-spectrum action of induced resistance, research is under way to identify and develop 

microbes, or nontoxic chemicals that can be used to induce resistance in plants and thus 

make this type of resistance directly applicable to disease control in the field (Kessman et 

al., 1994; Kuc, 1995). 

 

A simple model of SAR envisages that the initial inducer treatment (could be a physical or 

chemical or biological elicitor) generates a signal in the exposed tissues, which is then 

translocated to the remote parts of the plant, where cells are somehow primed to resist the 

fungal invasion (Lucas, 1999). Induction of systemic resistance now seems to be an 

encouraging technique for plant protection. This method is based not primarily on pathogen 

suppression as occurs in the application of pesticides, but on stimulating the natural defence 

mechanisms in plant tissues (Ozeretskovskaya, 1995). It is also suggested that a high level 

of resistance can be achieved even without any specific resistance genes. Therefore, SAR 

appears to be an essential component of the defensive repertoire that ensures plant health in 

nature (Uknes et al., 1996). 

 

The mechanisms underlying the expression of plant defence genes indicate that artificial 

manipulation of plant defence could provide a biologically, environmentally and 

commercially viable alternative to existing pathogen control methods (Dixon and Lamb, 

1990). The mechanisms of defence in plants exhibiting induced resistance are more or less 

similar to the mechanisms exhibiting resistance that is controlled by resistance genes or 
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non-host resistance (Hammerschmidt and Yang-Cashman, 1995). Many support the 

hypothesis that the genetic potential for resistance is present in all plants (Kuc, 1982) and 

that the presence of a strain-specific resistance gene is apparently not required for induced 

resistance to develop (Kessmann et al., 1994). For instance, increased resistance to late 

blight from 30% to 70% in potato cultivar Bintji, which has no gene for resistance to 

Phytophthora infestans, was obtained by prior inoculation with an incompatible (cannot 

develop disease) race of Phytophthora (Stromberg and Brishammar, 1991). 

 

Although the defence mechanism of a plant is mostly activated in response to pathogen 

attack, it also could be induced or accelerated by physical treatment or application of a 

biological agent or a chemical activator. Many reports have found that plants enhance 

resistance against pathogens after artificial inoculation or treatment with chemical activators 

(Kuc, 1982; Ryals et al., 1994). Activation of defence responses in harvested crops has also 

been demonstrated in various host-pathogen interactions from physical, chemical and 

biological elicitors (Barkai-Golan, 2001). Inducible resistance in harvested tissues joins the 

general concept that resistance in plants can be enhanced by modulating their natural 

defence mechanisms (Kuc, 1995b). 

 

The mechanism of protection against pathogens by induction of systemic resistance in 

plants works on the same principle both for biological and chemical elicitors (Lucas, 1999). 

Significant advances have been made in understanding the genes involved in regulating the 

resistant state as well as the chemical signals modulating the responses, however, the actual 

mechanism(s) stopping pathogen development has not conclusively been revealed 

(Kombrink and Schmelzer, 2001). However, it is evident that the SAR elicitors are non-

specific, some are more effective against some diseases than others (Kuc, 2001). It is also 

stated that the elicitors may affect different components of the resistance mechanism and 
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that all components are not equally effective against all pathogens. Some of the biological 

characteristics of systemic acquired resistance have been described by Lucas (1999) in the 

Table 2.10.2 below: 

 

Table 2.10.2    Characteristics of systemic acquired resistance (SAR) 

1. Induced by agents or pathogens causing necrosis e.g. local lesions. 

2. Delay of several days between induction and full expression. 

3. Protection conferred on tissues not exposed to inducer inoculation. 

4. Expressed as reduction in lesion number, size, spore production, pathogen 

multiplication etc. 

5. Protection is long-lasting, often for weeks or even months. 

6. Protection is non-specific i.e. effective against pathogens unrelated to 

inducing agents. 

7. The signal for SAR is translocated and graft-transmissible. 

8. Protection not passed on to seed progeny; transmission to vegetatively 

propagated tissues has not been fully resolved. 

 

 

There is a lag period required for the initiation of systemic resistance and for the plant to 

reach its heightened state of resistance following elicitor treatment. Platonova et al. (1982) 

suggested that induction of resistance in plants is the result of a rearrangement of cell 

ultrastructure that requires a certain time interval. They speculated that in potato a period of 

72-96 hours is required for completion of this rearrangement and once these cellular 

changes have occurred they cannot be reversed. To develop complete resistance in potato 

plants against Alternaria leaf spot disease required about seven days after induction 

treatment (Bokshi et al., 2003; Mauch-Mani and Slusarenko, 1994). They observed partial 
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resistance after 4 days of foliar infection but no systemic resistance was found after one 

day. 

 

Although the initial response of pathogen-invaded or elicitor-treated plant cells occurs 

within a few minutes and is rapidly followed by local gene activation (Somssich and 

Hahlbrock, 1998) a minimum time period is required for full expression of systemic 

resistance (Kuc, 1983). Colson and Deverall (1996) suggested that the chemical activators 

required the same lag period as biological agents following application for the appearance 

of resistance in cotton plants. However, a change in the activity of the enzymes such as 

peroxidase and lypoxygenase due to application of inducers, could be detected in cucumber 

within 12 hours of treatment (Fritz et al., 1996). Martinez et al. (2001) found that the 

activities of defence related enzymes in melon seedlings began to increase 8 hours after 

elicitor treatment, reaching a maximum between 48 and 72 hours. 

 

Once plants are induced the resistance symptoms last long beyond the period of pathogenic 

infection or elicitor treatment. Kuc and Richmond (1977) observed that induction of 

cucumber seedlings with a preliminary inoculation by Colletotrichum lagenarium can 

protect the plants against a wide range of pathogens for 4-6 weeks. A further induction after 

2-3 weeks of primary infection led to persistence of resistance throughout the crop season. 

Guedes et al. (1980) reported that induction of systemic resistance is influenced by the age 

of the plants. They suggested that for effective protection plants should be treated for 

induction of resistance before flowering and fruiting. Hence, the conditioning of resistance 

is affected by the physio-chemical factors of the plants. 

 

Although emphasis has been directed towards controlling diseases of growing plants by 

SAR, there are numerous reports in recent times on postharvest diseases (Bokshi et al., 
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2003; Huang et al., 2000; Liu et al., 2005; Terry and Joyce, 2000; Willingham et al., 2002). 

Field application of elicitors on potato plants was found to develop resistance in the tuber 

that can reduce the infection of storage rots (Bokshi et al., 2003). They found that 

application of chemical elicitors during the formation of tuber is more effective for the 

development of systemic resistance than applying them at later stages of crop. Huang et al. 

(2000) also found application of chemical elicitors before flowering and a postharvest dip in 

fungicide reduced storage rots of melons. Similarly, field application of BTH weekly for 

nine successive sprays during flowering and fruit development was found to suppress grey 

mould of strawberry in storage (Terry and Joyce, 2000). A postharvest dip with BTH has 

been reported to induce resistance in peach against Penicillium rots (Liu et al., 2005). 

 

Induction of natural resistance in harvested horticultural crops using physical, biological 

and chemical elicitors has received increasing attention over recent years. It is being 

considered a preferred strategy for disease management (Terry and Joyce, 2004). It is fresh 

produce which elicits most concern over the use of fungicides. More applied and basic 

research is required for understanding the role of SAR and the development of a strategy for 

the control of postharvest diseases that would benefit health and environment.  

 

2.10.3  Mechanisms involving SAR 

2.10.3.1 Systemic signals for induction of systemic resistance 

Research provides strong evidence that a signal for SAR is produced at an induction site 

(Dean and Kuc, 1986a, 1986b) and is translocated throughout the plant, where it conditions 

resistance to disease (Jenns and Kuc, 1979; Tuzun and Kuc, 1985). These signals are 

generated and/or released during lesion development and are phloem transmitted moving 

both above and below the induction site and also into roots. More specific timing of host 
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cell death and generation of the signal were provided by Smith et al. (1991).  They found 

that when a cucumber plant was inoculated with Pseudomonas syringae pv syringae a 

hypersensitive response resulted in a systemic expression of resistance within 24 hours. 

 

Phenolic compounds such as salicylic acid (SA) that accumulate due to induction of 

systemic resistance in plants, are thought to play a role of primary signal (Enyedi et al., 

1992) with some different views seeing them only as inducers of resistance (Rasmussen et 

al., 1991). The primary signal received by the vascular tissue may induce synthesis of SA 

and its transport throughout the plant. SA is a likely natural inducer of disease resistance in 

plants since it acts by stimulating local and systemic accumulation of defence-related 

proteins that are responsible for increased disease resistance of the plant (Raskin, 1998). In 

a classic model of systemic induced resistance, a signal produced by an infected leaf moves 

through the vascular tissue to uninfected leaves, where it induces PR-proteins and 

associated resistance against further pathogens (Smith-Becker et al., 1998).  

 

Correlation of endogenous SA with the onset of systemic induced resistance and 

accumulation of PR-proteins clearly indicates the role of SA in the pathway of systemic 

transduction of resistance (Malamy et al., 1990; Métraux et al., 1990). As a result of 

induction of systemic resistance, SA was detected in the phloem sap of cucumber and 

tobacco plants and appeared to act as a signal. Similar results by Yalpani et al. (1991) also 

suggested that SA functioned as the endogenous signal for accumulation of PR-protein 

involved in development of systemic induced resistance. 

 

It has been reported that the signal for systemic resistance develops within 6 hours after 

inoculation and occurs before any visible sign of host cell necrosis (Smith et al., 1991). 

Immediately after perception of the signal, corresponding changes in metabolic activities, 
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including those leading to secondary product accumulation, provide defence against 

pathogens (Hahlbrock et al., 1998). Madi and Katan (1998), suggested the induction of 

melon and cotton plants, by treatment with biological elicitors triggers the signal 

transduction cascade and activates different genes in the plants resulting in an increase in 

exogenous peroxidase and �-1,3-glucanase. Apparently, signals originating in the leaves 

reach the lower part of the stem and activate the defence mechanisms. 

 

There is strong evidence that a signal for SAR is produced at the induction site (Dean and 

Kuc, 1986a, 1986b) and translocated throughout the plant where it conditions resistance to 

disease (Jenns and Kuc, 1979, Tuzun and Kuc, 1985). Hahlbrock et al. (1998) reported that 

the change in metabolic activities leading to secondary product accumulation that increases 

defence against pathogens is due to perception of a signal. A recent report demonstrated an 

SAR signal can also move to neighbouring plants through an airborne signalling mechanism 

(Lucas, 1999). Methyl salicylate which is a volatile metabolite of SA produced by pathogen 

inoculated parts of plants can activate resistance in adjacent plants to pathogenic infection 

and respond collectively to a perceived biological threat (Shulaev et al., 1997).  

 

Reports by Shulaev et al. (1995) previously suggested the role of SA is as an endogenous 

signal for the development of systemic induced resistance in tobacco plants. In an 

experiment with radio-labelled oxygen, they found that a substantial part of SA 

accumulated in the upper leaves had been transported from the inoculated leaf. They also 

observed that the highest amount of SA accumulated in the youngest leaf directly above the 

induced leaf having a good vascular (phloem) communication. A little accumulation of SA 

occurred in the leaf that was located opposite to the inoculated leaf and which had a less 

direct vascular connection. However, when they detached the inoculated leaf after a definite 

period of induction it was found that the accumulation of SA in the upper leaves was 
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significantly reduced. Similar results shown by Rasmussen et al. (1991) raised doubts about 

the role of SA as a systemic signal for induction of systemic induced resistance. A recent 

development observed that SA-mediated plant immunity plays a central role in the plant 

defence response (Lee et al., 2007). 

 

Two signalling pathways have been described by Thaler et al. (1999), one involving SA and 

another involving jasmonic acid (JA), which participates in the expression of plant 

resistance to pathogens and insect herbivores. SA is thought to be a key compound in the 

regulation of resistance to fungal, bacterial and viral pathogens and provides a signal for 

expression of PR-proteins and other potential protective compounds (Ryals et al., 1996). 

However, exogenous application of JA has been demonstrated to induce SAR in plants by 

stimulating many of the systemic metabolites, similar to that which occurs from challenge 

with pathogens or insects (Kessmann et al., 1994; Maleck and Dietrich, 1999). 

 

The importance of the phytohormones SA and JA as critical signals in induced resistance 

response in plants is recognised (Bostock, 1999). As these chemicals can strongly influence 

other processes in plant growth and development, it would not be unexpected to see 

interactions between the pathways and with other phytohormones and signal molecules 

(Raskin, 1992; Staswick, 1992). There is evidence for a negative interaction between the 

SA and JA pathways in models of defence signalling, however, in some plants the two 

pathways have been reported to be complementary (Bostock, 1999). 

 

The negative interaction between SA and JA signalling pathways has been demonstrated at 

the biochemical level, which may compromise the ability of the plants to coordinate 

defence against simultaneous challenge from pathogens and herbivores (Thaler et al., 

1999). The best evidence for cross-talk between different induced defence responses is seen 
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in the SAR and wound response pathways (Maleck and Dietrich, 1999). Laboratory studies 

have revealed interaction between the salicylate and jasmonate pathways where SA appears 

to inhibit JA biosynthesis and the subsequent chemical responses (Doares et al., 1995). 

Therefore, when plants are sprayed to stimulate both response pathways simultaneously, the 

corresponding biological effects on resistance to the pathogen and the insect are 

compromised (Thaler et al., 1999).  

 

Evidence is accumulating that the various induced defence responses might not be 

controlled by independent linear signalling cascades, but that components of one pathway 

can affect the signalling through other pathways (Maleck and Dietrich, 1999). The nature of 

the systemic signal has been a subject of controversy for many years (Durrant and Dong, 

2004). In simple terms, it could be suggested that a systemic signal(s) is initiated in the 

induced part(s) of the plant and is translocated throughout the plant and conditions for 

resistance (Dean and Kuc, 1986a). It is also thought that the tissue receiving the primary 

signal does not generate more signals. Several signals may be involved as a result of 

systemic induced resistance (Kuc, 1995a). Only the translocatable signal(s) results directly 

or indirectly in the elicitation of defence compounds. Despite a long-standing notion of 

long-distance signals triggering systemic acquired resistance (SAR), the translocation 

pathway and the identity of the signals involved have not been determined with any degree 

of certainty (Van Bell and Gaupels, 2004).�

. 

2.10.3.2 Accumulation of antifungal compounds following SAR 

A number of known and unknown compounds are produced as a result of resistance at the 

infection site of the plant, ultimately determining the outcome of the host response (Pieterse 

et al., 1992). In the past decade, considerable progress has been made in understanding the 
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proteins associated with induced resistance and the genes which encode them. The 

concentration of a particular elicitor influences the level of resistance induced by the 

accumulation of pathogen-resistance compounds on its application (Ozeretskovskaya, 

1995). The plants respond through an increased accumulation of certain group of primary 

proteins such as to display an active defence mechanism that initiates the production of 

secondary metabolites such as phytoalexins and lignin (Lamb et al., 1989). 

 

The interaction of pathogens with plants leads to a disruption in cellular homeostasis, often 

leading to cell death, in both compatible and incompatible pathogens (Gilchrist, 1998). Cell 

death is most commonly followed by necrosis which results from exposure to highly toxic 

compounds that lead to immediate damage to membranes or cellular organelles (Cohen, 

1993). The hypersensitive response that causes cell death is often associated with plant 

resistance to pathogen infection (Morel and Dangl, 1997) and onset of systemic acquired 

resistance (Kombrink and Schmelzer, 2001). 

 

When plants are attacked by pathogens, they accumulate groups of proteins which are 

collectively known as pathogenesis-related proteins (PR-proteins) (Bol and Linthorst, 

1990). PR-proteins are generally induced under a specific condition such as pathogenic 

infection, leading to a hypersensitive response (Van Loon, 1985). Although PR-proteins are 

induced in response to pathogenic infection, they can also be induced by the application of 

chemicals which mimic the effects of pathogenic infection (Buchel and Linthorst, 1999). 

Both biotic and abiotic inducers result in the accumulation of PR-proteins in leaves flowers 

and roots (Fluhr et al., 1991). Also plants grown under unfavourable and artificial 

conditions such as in the glasshouse, stimulated PR-proteins to accumulate, providing 

increased resistance. 
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Plants are able to synthesis a wide diversity of PR-proteins (Monteiro et al., 2007). For 

example, seven different classes of chitinases can be synthesised by a higher plant which 

differs in protein structure, substrate specificity, mechanism of catalysis and sensitivity to 

inhibition (Kasprzewska, 2003). Many of these enzymes do not exhibit in vitro anti-fungal 

activity and this has led to the suggestion that plant chitinases are involved not only in 

defense-related processes or a general stress response, but also in numerous physiological 

events, including growth and development. 

 

2.10.3.3 Chitinase, antifungal activity and evidence for SAR 

When a plant is infected locally, it displays a marked increase in both exo- and endo-

chitinase activities throughout the whole plant (Roby et al., 1988). During the defence 

response, stimulation of chitinase and β-1,3-glucanase activity occurs as well as synthesis 

of  phytoalexins (Matton et al., 1990). The increase in chitinase, reported to begin 

immediately after inoculation, occurs sequentially in non-infected tissues as well. This 

suggests a correlation between increased chitinase activity and increase in resistance 

conferred. However, an elicitor derived from fungal mycelium was found to induce enzyme 

activities faster than the fungus itself when inoculated to a plant (Kombrink et al., 1988). 

This is probably due to the rapid uptake and distribution of the elicitor throughout the plant 

leaf. 

 

Other than pathogen attack, plants can induce PR-proteins in response to a number of 

factors like physical and chemical treatments. Matton and Brisson (1989) reported the 

accumulation of at least two clones of mRNAs at high levels in response to treatment with 

arachidonic acid and eicosapentaenoic acid of tuber disks. A similar response was observed 

in treatment with BTH on rose where enhancement of chitinase occurred due to expression 
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of the same isoforms as those in response to pathogen attack (Suo and Leung, 2001). In 

contrast, BTH treatment on cauliflower was found to induce β-1,3-glucanase activity but 

not chitinase and induction was more prominent after challenge inoculation (Ziadi et al., 

2001). However, the increase in activity of particular enzymes is not correlated with 

induced resistance and varies with the inducer and host plant (Schneider and Ullrich, 1994).  

 

Environmental stresses that cause rapid changes in plants stimulate the accumulation of 

enzymes for synthesis of antimicrobial substances. Pierpoint et al. (1990) detected higher 

activities of PR-proteins like chitinase and β-1,3-glucanase in potato leaves at early stages 

of plant growth grown in glasshouse conditions. However, Fraser (1981) reported the 

accumulation of increased amounts of PR-proteins in healthy plants during flowering and 

senescence. Interestingly, the same enzymes or PR-proteins are not produced as a result of 

pathogenesis or stresses which suggest that different kinds of inducing agents may have 

different effects on plant physiology (Tuzun, 2001). Depending on the particular 

interactions between elicitors and suppressors with their cognate plant targets, defence 

response cascades may or may not become activated during pathogenesis (Thomma et al., 

2001). 

 

The expression of chitinase is regulated by developmental factors of the plant like age of the 

organ and is also regulated in an organ specific manner (Beerhues and Kombrink, 1994). It 

has been suggested that in young leaves and stems, expression of chitinase and β-1,3-

glucanase occurs differently. The activity of chitinase mRNA was abundant in young 

organs whereas β-1,3-glucanase mRNA was absent. Also different varieties of the same 

crop elicit various classes of enzymes; different species of pathogens of the same variety 

elicit various enzymes (Rahimi et al. 1996). Dann and Deverall (1995) stated that the site of 



 52 

local infection is an important factor for induction. They speculated that differences 

between the epidermis and parenchyma near veins in leaves, and the epidermis and cortex 

of roots and stem bases affect the accumulation and distribution of induced resistance. 

 

Efforts made by Beerhues and Kombrink (1994) for isolation and characterisation of 

chitinase and β-1,3-glucanase found that these enzymes are basically strongly and 

coordinately induced in response to infection or elicitor treatment. In a study for 

localization of chitinase and β-1,3-glucanase Keefe et al. (1990) suggested that the basic 

isoforms of these enzymes are intracellular whereas the acidic isoforms are secreted into the 

extracellular space. However, a report made by Boller and Metraux (1988) suggested that in 

cucumber leaves most of the chitinase activity is located in the extracellular space. In the 

case of pathogen attack on an induced plant the accumulated chitinase in the extracellular 

spaces is in a position to directly attack the incoming fungal hyphae. Thus the plants escape 

from infection and disease development by the pathogens. 

 

In vitro trials with different fungi found that chitinase alone or in combination with β-1,3-

glucanase can effectively restrict their growth (Mauch et al., 1988; Schlumbaum et al., 

1986). In the situation of pathogenic attack the activities of both enzymes increased strongly 

and co-ordinately throughout an induction period in response to both compatible and 

incompatible pathogens (Schröder et al., 1992). Meins et al. (1992) reported that the 

products of genes induced by systemic resistance have direct antimicrobial activity. These 

systemic products are closely related to the classes of antimicrobial proteins among which 

β-1,3-glucanase and chitinase are important. It is obvious that these two enzymes are not 

products of so-called resistance genes which determine the specificity of plant-pathogen-

interactions; rather they are the defence-related gene products that are induced in response 
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to pathogens and may contribute to the inhibition of a potential pathogen when the plant 

expresses resistance (Mauch et al., 1988). 

 

2.10.3.4 Peroxidase, antifungal activity and evidence for SAR 

The role of peroxidase activity in plant resistance mechanisms during host-pathogen 

interaction has been described by many authors (Burdon and Marshall, 1983; Reuveni et al., 

1992). Lebeda et al. (1999) indicated that there are differences in peroxidase activity in 

intact and infected cucurbits plants and suggests increased peroxidase activity is a 

biochemical marker for the prediction of resistance mechanism in the plants. A strong 

correlation has been revealed between peroxidase activity and level of disease control due 

to induction of resistance by physical, chemical or biological elicitors (Madi and Katan, 

1998; Stermer and Hammerschmidt, 1984). Measurement of peroxidase activity may denote 

the state of resistance in the plants, although assessment of disease incidence is still needed 

for more accuracy (Reuveni et al., 1990). 

 

Systemic induction of peroxidase by the treatment of chemical activators is thought to be 

the part of the action mechanisms restricting disease development (Reuveni et al., 1997). 

Antifungal activity of peroxidases is considered potentially important in host resistance 

mechanisms (Ippolito et al., 2000). The induction and accumulation of peroxidases is 

correlated with the onset of induced resistance, suggesting an active role for these enzymes 

in defence against pathogenic fungi, expected to retard fungal growth (Van Loon et al., 

1998). 

 

Peroxidase is involved in lignin formation (Conti et al., 1990; Hammerschmidt and Kuc, 

1982; Kuc, 1990), while in combination with other enzymes activities and mechanisms they 

inhibit the growth of pathogenic fungi in the host tissue (Ippolito et al., 2000; Irving and 
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Kuc, 1990). Stimulation of extracellular peroxidase activities in plants during pathogen 

attack and their involvement in cell wall lignification and formation of hydrogen peroxide 

suggest it is the antimicrobial activity of the enzyme which limits the extent of pathogen 

spread (Tuzun, 2001). 

 

Cools and Ishii (2002) demonstrated that benzothiadiazole (BTH) (a product of Syngenta) 

treatment, causes priming of the defence response of the plant, by systemically inducing the 

expression of an acidic peroxidase-encoding gene which, upon subsequent inoculation with 

the pathogen, enhances peroxidase activity. A positive correlation between peroxidase 

activity in non-infected leaves of melon cultivars and their resistance to powdery mildew 

also has been reported by Reuveni and Bothma (1985). Similarly, Smith and 

Hammerschmidt (1988) found that induced resistance in cucumber, muskmelon and 

watermelon is accompanied by a systemic increase in peroxidase activity. They speculated 

that the structural and regulatory similarity of peroxidase in cucumber, muskmelon and 

watermelon may reflect a similar role for the enzymes in the SAR response. 

 

Increase in cell wall-bound peroxidase activity has also been reported to be a result of stress 

or tissue wounding from mechanical damage (Kawaoka et al., 1994) or in response to 

herbivory (Moore et al., 2003). The increase in peroxidase activity is reported to be linked 

with a reduction in leaf growth rate after herbivore grazing, due to a reduction in epidermal 

cell area. In response to wounds caused by mechanical stress increased peroxidase activity 

was found in harvested cucumber (Miller and Kelley, 1989). It is postulated that the 

biological role of peroxidase activity following mechanical stress may involve suberization 

and lignification during the wound healing process. 
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The change in peroxidase activity corresponds to fruit development and is associated with 

susceptibility to fruit rot. Peroxidase activities in muskmelon have been reported to decrease 

with the advancement of fruit maturity and are found at the highest levels in the outer skin 

at all times (Biles et al., 2000). A high level of peroxidase activity during the fruit 

development stage appears to correspond with the latent period of postharvest pathogens 

(Bruton et al., 1998). However, after harvest the fruit peroxidase decreases (Lacan and 

Baccou, 1998), the pathogen becomes active, thus fruits are more susceptible to rots. Hence, 

a less mature fruit is more resistant compared to fruit at an advanced stage of maturity 

(Zhang et al., 1999). 

 

2.11 AGENTS FOR INDUCTION OF SAR 

2.11.1  Biological agents of SAR 

In recent years much attention has been given to the control of plant disease through 

induction of resistance by means of biological elicitors. Induction of systemic resistance by 

the use of a pathogenic or a non-pathogenic microorganism has been reported for many 

crops (Jenns and Kuc, 1980;  Kroon et al., 1991;  Kuc, 1982). Resistance induction by prior 

inoculation with antagonists, mostly results in the formation of a necrotic lesion around the 

point of initial penetration, restricting further spread of the pathogen (Barkai-Golan, 2001). 

The resistance was evident by observing a delay in symptom development and a reduction 

in severity. It was thought that the reduction of disease severity was the result of the 

combined action of several mechanisms. For example an initial response may be increase of 

physical resistance of the cell wall by papillae deposition followed by assembly of 

antifungal metabolites, such as β-glucans in induced plants (Stromberg and Brishammar, 

1993).  
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The enhancement of antimicrobial compounds in the host tissue by antagonistic 

microorganisms, has been commonly reported. Application of Pichia guilliermondii, an 

antagonist yeast, has been found to control a wide range of postharvest diseases of citrus, 

apples and peaches through induction of enhanced levels of phenylalanine ammonia lyase 

in citrus peel (Wisniewski and Wilson, 1992). Also, Ippolito et al. (2000) found that the 

antagonist yeast-like-fungus, Aureobasidium pullulans, reduces apple rot caused by Botrytis 

cinerea and Penicillium expansum,  by inducing the activities of �-1,3-glucanase, chitinase 

and peroxidase. Pre-treatment with Pseudomonas fluorescens has been reported to 

significantly reduce soft rot caused by Erwinia carotovora subsp. carotovora of melon 

seedlings (El-Hendawy et al., 1998). 

 

Application of a culture filtrate of fungal mycelium to plant can induce systemic resistance 

similar to that observed after pre-inoculation with conidia and may even protect the plant 

better from diseases (Madi and Katan, 1998). There was up to 100% reduction in the 

incidence of damping-off caused by Rhizoctonia solani on stems of melon and cotton 

plants, when treated with culture filtrate or conidia of Penicillium janczewskii. Induction of 

systemic resistance was evident by the hypersensitive-reaction-like responses and increase 

in extracellular peroxidase and �-1,3-glucanase. 

 

There is a lag period between inoculation and initiation of the formation of antifungal 

compounds as a result of induction. It was found that the induction of increased enzyme 

activities initiates after 24 hours, and reaches its peak at 48 to 96 hours after inoculation 

(Ippolito et al., 2000). This suggests that the increased levels of the antifungal compounds 

develop structural and chemical barriers and out-compete the pathogens for nutrition and 

development in the host tissue. Similarly systemic resistance in plants was induced within 

one day by the pathogen, the resistance decreasing with increasing time (Murray and 
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Walters, 1991). Prior inoculation of the lower leaves of young broad bean plants against 

rust also induced resistance to rust in the upper leaves and was found to be effective for 9 

days following inoculation (Murray and Walters, 1991). 

 

The response to induced resistance by biological elicitors is not the same for all plants 

(Cohen and Kuc, 1981). It was found that treatment with Peronospora tabacini spores, 

injected into the internal cambium of tobacco stems, severely affects the plant growth, 

causing dwarfing, premature senescence and symptoms resembling nitrogen deficiency in 

plants. However, a subsequent injection into the external cambium results in increased plant 

growth; increase in weight and number of leaves in tobacco (Tuzun and Kuc, 1985). 

Similarly, infiltration of culture filtrates of antagonist to melon plants increases the level of 

peroxidase activity in leaf and stem but not in root. In contrast, infiltration on cotton results 

in increased activity of peroxidase in leaf and root but not in stem (Madi and Katan, 1998). 

This suggests that the differences in induction of different plants are because of their 

differences in physiological and biochemical response to the treatment. 

 

A number of Trichoderma fungi are well known for their antagonism against several soil-

phytopathogens, involving fungi, invertebrates, and bacteria (Verma et al. 2007). In 

addition to the ability of Trichoderma spp. to attack or inhibit the growth of plant 

pathogens, the organism can also induce systemic and localized resistance to a variety of 

plant pathogens and has substantial influence on plant growth and development (Harman et 

al., 2004). However, full-scale application of Trichoderma for biological control of plant 

pathogens has not been widespread because biocontrol agents generally do not perform well 

enough under field conditions to compete with chemical fungicides (Brunner et al., 2005). 
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2.11.2  Chemical elicitors of SAR 

Chemically mediated disease control can be based on compounds that would induce the 

response for developing plant resistance (Kessmann et al., 1994). A chemical is considered 

as an activator of systemic acquired resistance when it induces resistance to the same 

spectrum of pathogens and gives expression to the same biochemical markers as the 

biological model. Furthermore, the chemical should have no antimicrobial activity. 

Treatments with chemicals which have no direct antimicrobial activity are now a well 

established fact for the induction of systemic acquired resistance in plants. Chemicals that 

activate SAR in the field, as well as crop varieties with constitutive SAR gene expression, 

could provide solutions to disease problems for growers (Uknes et al., 1996). 

 

Several chemicals having no direct antibiotic action, have been reported to induce resistance 

to pathogens when applied to plants (Kessmann et al., 1994). Natural and synthetic 

molecules that have such a capacity are already known (Cohen et al., 1991). Over the last 

30 years, a number of compounds have been shown to increase resistance, or at least to 

decrease symptoms in some host-pathogen interactions (Hammerschmidt and Smith, 1997). 

These chemicals have been found to induce either systemic or local resistance in an 

otherwise susceptible host. In the last decades research has focused upon developing novel 

synthetic chemical activators with increased efficacy (Gorlach et al., 1996; Tally et al., 

2000). Many chemical activators that confer broad-spectrum efficacy against pathogens on 

a number of crops, including cucurbits have been identified (Tally et al., 2000). 

 

Although most of the literature has shown positive effects of chemical activators in 

inducing SAR, there are reports that obscure the fact that in some plant pathogen systems or 

environments SAR activators are relatively ineffectual (Terry and Joyce, 2004). There are 

suggestions that the timing of induction by chemical treatment and growth stage of the plant 
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may have important influence on the development of SAR (Bokshi et al., 2003; Huang et 

al., 2000). Multiple applications of SAR chemicals in both field and glasshouse conditions 

are recommended for the effective control of disease (Dann et al., 1998).  Similar results 

have been found by Nielsen et al. (1994) where fewer than three applications of INA were 

ineffective in inducing resistance in glasshouse-grown sugar beets against Cercospora 

beticola. However, there are reports which demonstrate that one application of SAR 

chemicals is sufficient to induce significant disease resistance (Bokshi et al., 2003; Dann 

and Deverall, 1996; Metraux et al., 1991) 

 

2.11.2.1 SA and SA derivatives as chemical activators 

For a long time it has been thought that salicylic acid (SA) plays a role in signal 

transduction of systemic resistance after pathogenic infection as well as being an activator 

of systemic resistance and accumulation of PR-proteins (White, 1979). The application of 

SA to leaves of tobacco plants has been reported to induce SAR and to develop resistance 

against the same diseases as TMV (Ward et al., 1991). Unfortunately, there have been 

problems associated with exogenous application of SA for induction of resistance. 

Kessmann et al. (1994) stated that the use of SA as an inducer is probably not practical 

because of severe crop tolerance problems. The range between the efficacy of the 

compound and its toxicity to the plants is separated only by a narrow safety margin. 

However, failure of induction of systemic resistance by exogenous application of SA has 

also been reported by Siegrist et al. (1994). 

 

A number of other SA derivatives studied by White (1979), Mills and Wood (1984) and 

Walters et al. (1993) were found to be effective in inducing resistance in tobacco, cucumber 

and barley. However, in tomato plants acetylsalicylic acid (ASA) was not effective in 
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inducing systemic resistance or accumulation of PR-proteins (Christ and Mösinger, 1989). 

The low rate of success (50%) for induction of systemic resistance with the application of 

SA has also been reported by Van Loon and Antoniw (1982). They could not find any 

obvious reason for this. According to Yalpani et al. (1993) the variation in sensitivity of SA 

to induce systemic resistance in tobacco might be due to changes in environmental and 

developmental factors of the plants. In contrast, Lopez-Lopez et al. (1995) observed an 

increase in resistance in potato tubers against Erwinia carotovora ssp. carotovora when 

dipped in ASA for 60 min but they did not report any enzymatic changes as evidence of 

systemic induction of resistance. 

 

2.11.2.2 INA as chemical activator 

Publications from several workers have demonstrated that SA and its functional analogues 

like 2,6-dichloroisonicotinic acid (INA) protect many crops against their pathogens. INA is 

weakly fungistatic in vitro, but effectively elicits SAR genes in tobacco prior to TMV 

challenge inoculation (Ward et al., 1991). Vernooij et al. (1995) showed that TMV, INA 

and SA induce the same nine genes in tobacco against five similar pathogens, however, 

INA acts independently of SA where INA itself operates downstream of SA. Nielsen et al. 

(1994) successfully induced resistance in sugar beet against Cercospora beticola by treating 

with INA but they did not find any evidence of PR-protein induction. 

 

INA has successfully induced systemic resistance in a tobacco plant of a transgenic variety 

which previously was shown unable to be induced following pathogenic infection or with 

application of SA (Vernooij et al., 1995). It was deduced that INA induced resistance 

through the SAR signal transduction pathway at the same step as SA by acting downstream 

of SA accumulation. Similarly, Métraux et al. (1991) have shown that induction of 
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resistance by INA does not require SA to accumulate. They showed that INA can move 

systemically in the plant when injected and then induce pathogen resistance without 

accumulation of SA. It was thought that INA can only compensate in SAR signal 

transduction rather than in the hypersensitive response. Schweizer et al. (1997) suggested 

that INA, aside from activating a pathogen-induced signalling pathway, also induces events 

that are not related to pathogenesis. The roles of SA and INA in disease resistance still 

require further research. 

 

INA has been reported to induce resistance by mimicking some aspects of pathogen attack, 

possibly accelerating normal responses to further infection (Uknes et al., 1992). It has been 

found that the INA-mediated acquired resistance in Arabidopsis was not specific to a given 

pathogen, as manifested by its effectiveness with Pseudomonas syringae tomato infection. 

The reduced pathogenesis observed in INA-treated tissues correlated well with the 

accumulation of a number of PR-proteins such as �-1,3-glucanase and chitinase; the 

increased antifungal potential of these enzymes in combination has been demonstrated 

before (Mauch et al., 1988). Following INA treatment on cotton cotyledons, the activities of 

�-1,3-glucanase were elevated in the true leaves and had a marked effect in decreasing 

susceptibility to Alternaria macrospore.  

 

Whatever mechanisms are involved, it was found that INA can induce resistance in plants 

through induction of a full complement of genes that are associated with biological 

induction (Kessmann et al., 1994). It has also been reported that INA induced resistance in 

bean against rust, anthracnose and halo blight (Dann and Deverall, 1995). In cucumber it 

induces resistance against anthracnose, and the nature of the induction was found to be 

identical to that of biological induction of resistance (Hammerschmidt and Kuc, 1982). Like 

most other biological activators, INA increased the expression of chitinase or glucanase 
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genes of tobacco but not through an accumulation of SA (Vernooij et al., 1995). Dann et al. 

(1998) reported a significant reduction of white mould disease in field-grown soybeans by 

spraying INA, but the molecular basis of the resistance was not known. 

 

However, there are contradictory reports on the effectiveness of INA and SA and their 

derivatives to induce systemic resistance in plants. In a comparative study on the effect of 

INA and SA and their derivatives, Kauss et al. (1992) found SA and its derivatives to be 

more potent than INA for induction of systemic resistance. A reverse result has been 

observed by Neilsen et al. (1994) who found that in sugar beet INA application induced 

systemic resistance, but not SA. Owen (1995) in a series of experiments with INA 

application on wheat found a slight reduction of rust disease over the control plants. 

Application of SA did not induce resistance in any of the experiments whereas its 

derivatives in most of the experiments significantly reduced the rust infection on wheat. 

This study also indicated that the methods of application of SA may be a considerable 

factor. The distribution of induced resistance from the treatment of INA has been reported 

specific to plant parts; relatively less in the stem and roots than the younger leaves and the 

growing points of the plants (Métraux et al., 1991). 

 

2.11.2.3 BTH (benzothiadiazole) as chemical activator 

Benzothiadiazole (BTH), a product of Syngenta, promoted as a safe, reliable and non-

phytotoxic plant protection agent, was identified as a novel class of compound for induction 

of systemic resistance (Görlach et al., 1996). BTH has been introduced on the market by 

Novartis as the first commercial chemical triggering induced resistance in plants under the 

tradenames Actigard® in USA and BION® in Europe (Hammerschmidt et al., 2001). Foliar 

spray of BTH on tomato plants has been reported to induce resistance against root diseases 
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on challenge inoculation with a soil-borne pathogen Fusarium oxysporum f. sp. radicis-

lycopersici (Benhamou and Belanger, 1998). From the evidence of histological and 

biochemical studies of BTH treated tomato roots, they suggested that BTH treatment 

confers increased protection of tomato plants against pathogenic infection by stimulating a 

number of defence reactions. 

 

BTH was developed as a plant activator for commercial use in a wide range of crops by 

acting as a functional analogue of SA in the pathway leading to systemic acquired 

resistance (Kessmann et al., 1996). BTH treatment to tobacco plants was characterised by 

Friedrich et al. (1996) and the disease control was found to act through systemic acquired 

resistance. Like INA, BTH treatment does not cause systemic accumulation of SA but it 

appears to activate the systemic resistance signal transduction pathway at the site of, or 

downstream of, SA accumulation. However, both INA and BTH induced similar patterns of 

gene expression, suggesting that these compounds are functional analogues (Friedrich et al., 

1996). 

 

BTH has the potential of synergistic action with other treatments of disease and pest 

control. Melons induced for resistance from field sprays with BTH, were treated with 

biological control agents after harvest, and found to effectively control postharvest diseases 

and extend the shelf life for two to three weeks (Wei et al., 1999). In combination with 

insecticides, BTH was also used successfully on tomato crops against Bemisa tabaci, the 

vector of the tomato leaf curl virus, resulting in better yields and less disease incidence 

(Hammerschmidt et al., 2001). 

 

BTH can protect a diverse group of both monocot and dicot plants including tobacco, 

Arabidopsis spp., wheat, barley and cotton (Colson-Hanks, 1998; Görlach et al., 1996; 
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Lawton et al., 1996). It is a broad spectrum plant protection compound with respect to both 

plants and pathogen species. The compound induces resistance systemically against 

pathogens by affecting multiple steps in the infection process. Ishii et al. (1999) found BTH 

effective against anthracnose and scab of cucumber and rust of Japanese pear. However, the 

compound did not control all diseases of the above hosts. Ziadi et al. (2001) confirmed that 

BTH induces resistance in cauliflower against downy mildew, and that the induced 

resistance is dose-dependent. 

 

Studies with BTH for the induction of systemic resistance were mainly focused on the 

treatment of intact plants for the control of pre and postharvest diseases (Bokshi et al., 

2003; Huang et al., 2000; Terry and Joyce, 2004). A recent report by Liu et al. (2005) found 

that BTH treatment at a concentration of 200 mg/L on freshly harvested peach fruit can 

significantly enhance resistance against Penicillium expansum. In contrast, a series of 

treatments of BTH on harvested whole potato tubers was not effective for the control of 

Fusarium semitectum even with much higher concentration of up to 500 mg/L and 

prolonged dip time of up to 1 hour (Bokshi, 2000). However, treatment of potato tuber disc 

with a low concentration of 25 or 75 mg/L of BTH was found to significantly control the 

same fungus. Root treatment with BTH was found to activate plant resistance more rapidly 

than a foliar application suggesting a quicker upward translocation of the activator than 

downward (Rohilla et al., 2001). 

 

2.11.2.4 BABA (β-aminobutyric acid) as chemical activator 

Although �-aminobutyric acid (BABA) is only rarely found naturally in plants, like BTH it 

has proved to be a potent inducer of acquired resistance and has a broad spectrum of 

activity against many disease-causing organisms (Cohen, 2002; Jakab et al., 2001), 
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including nematodes (Oka et al., 1999). The protective effect of BABA has been described 

as triggering the potential of natural defence mechanisms against biotic and abiotic stresses. 

BABA has been reported to induce local and systemic resistance against a variety of fungal 

plant diseases in crop plants by strongly and rapidly activating the accumulation of PR-

proteins (Cohen, 1996).  

 

The possibility of a phytotoxic effect of BABA at medium or low concentration has been 

ruled out since no toxic effects have ever been observed (Cohen, 1994; Cohen et al., 1994;; 

1999; 1996; Hong et al., 1999; Tosi et al., 1999). However, a higher dose (10 mM 

compared to 1 mM as previously recommended) was found to cause rapid cell death in 

tobacco leaf tissue after foliar application resulting in the development of small necrotic 

lesions (Siegrist et al., 2000). However, β-aminobutyric acid (BABA) and its derivatives 

have been reported to activate disease resistance in various plants when used at relatively 

high rates (Oostendorp et al., 2001). BABA mediated induced resistance does not always 

involve PR-proteins, but rather primes the defence system to provide required resistance 

under biotic or abiotic stress (Ton et al., 2005). 

 

The mechanisms governing resistance induced by BABA are not yet clear (Silue et al., 

2002). BABA-induced resistance in plants has been suggested to operate through a variety 

of defence mechanisms, including formation of physical barriers and biochemical changes 

leading to resistance (Cohen, 2002). Application of BABA on tomato plants protected 

against late blight development and a positive correlation was found with the accumulation 

of high levels of PR-proteins like P14a, �-1,3-glucanase and chitinase (Cohen et al., 1994). 

Siegrist et al. (2000) suggested an increased level of SA as a consequence of cell death 

following BABA treatment on tobacco plants causes expression of PR-1a, a molecular 
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marker of SAR. The evidence suggests that foliar application of BABA can trigger a 

process which resembles resistance development or a hypersensitive response during 

microbial attack that results in SAR activation. However, the general mechanism of BABA-

mediated priming and the effector genes which confer BABA-induced resistance towards 

pathogens are not known (Si-Ammour et al., 2003). 

 

Experiments performed with radio-labelled BABA helped to show that it is taken up and 

transported through the plants. Cohen and Gisi (1994) tested different methods to determine 

the transportation in tomato plants and found that BABA penetrated through leaves and was 

transported mainly acropetally. They reported that transportation was not totally 

unidirectional since some label was recovered in the roots. When BABA is applied as a soil 

drench, it can be taken up by the roots and translocated through the tomato plantlets. The 

activation of resistance in tobacco by the treatment of BABA has been reported to occur in 

the SA accumulation pathway (Siegrist at al., 2000). However, BABA treatment on 

Arabidopsis did not respond through the SA, jasmonic acid (JA) or ethylene (ET) pathway 

(Mauch-Mani, 1999). 

 

Cohen et al. (1994) and Tosi et al. (1998) have also reported the curative effect of BABA 

but the mode of resistance has not been well described. Inoculation of cauliflower seedlings 

with Peronospora parasitica, downy mildew, three days or one day before BABA 

treatment, significantly controlled disease development (Silue et al., 2002). In contrast 

Zimmerli et al. (2000) suggested that inoculation of Peronospora parasitica in Arabidopsis 

thaliana six days before BABA treatment had no curative effect. They mentioned that such 

a late application of treatment is ineffective even with a systemic fungicide. In general, a 

curative effect is not claimed for SAR or SAR-inducing compounds (Ryals et al., 1996). 

However, the curative effect of fungicide mancozeb was found in BABA-induced plants for 
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the control of late blight or downy mildew under field conditions, suggesting BABA can 

synergistically increase the efficacy of the fungicides (Baider and Cohen, 2003). 

 

Induction of PR1 has been reported (Cohen et al., 1994) to occur within 1 day of treatment 

of BABA at high concentration (2000 ppm) which reached peak levels 3 days afterwards. 

Further, the resistance was found to persist longer than 11 days after BABA treatment. It 

has been observed that relatively high concentrations of BABA are needed for plant 

activation to trigger resistance in almost all systems tested so far (Siegrist et al., 2000). 

BABA has been found much better tolerated when applied to roots, without deleterious 

effects in the concentration range used to induce resistance (Jakab et al., 2001). However, 

through root application only one-third of the applied chemical is taken up by the plants 

whereas through foliar treatments plants can uptake almost the entire chemical applied 

(Cohen and Gisi, 1994). 

 

2.11.3  Potentials and problems of SAR by chemicals 

Although SAR by chemical or biological elicitors has demonstrated potential for controlling 

field as well as postharvest diseases a lot of questions have arisen regarding its wide 

commercialization. The potential cost of induced resistance with BTH in wheat has been 

reported in that it has been shown to produce fewer numbers of lateral shoots and a reduced 

grain yield (Heil et al., 2000). Early senescence of potato plants observed in field and 

glasshouse conditions with the application of BTH at 100 ppm resulted in stunting of plant 

growth and insignificantly lower yield compared to control plants (Bokshi, 2000). However, 

Kuc (2001) described both favourable and unfavourable factors for the development and 

use of SAR for commercial practices. These are listed in Table 2.11.3 below. 

 



 68 

Table 2.11.3     Favourable and unfavourable factors for the development and use of SAR 

 Favourable factors include: 

1. Problems with the resistance of pathogens to classical pesticides 

2. The necessity to remove some pesticides from the market, the increased testing and 

cost of testing to meet requirements of regulatory agencies and the lack of 

substitutes for removed compounds. 

3. Health and environmental problems, real and perceived, associated with pesticides 

and the increased popularity of ‘organic crops’ and ‘sustainable agriculture’. 

4. The inability of pesticides to effectively control some pathogens, e.g., virus and 

soilborne pathogens. 

5. Classical pesticides may not be economically feasible for farmers in developing 

countries. In these countries the level of awareness for the safe and effective 

application of classical pesticides is low, thus creating dangers to human health and 

the environment. 

6. Resistance of the public to genetically modified plants. In SAR, foreign genes are 

not introduced. The ‘traditional’ genes for resistance in the plant are those that are 

expressed. 

7. SAR has a broad spectrum and is effective for a long time. 

8. Since many defences are activated, SAR is less likely to develop resistance in 

pathogens. 

 

 Unfavourable factors include: 

1. Some plant pathologists still ridicule the applicability of SAR. 

2. Only high profit, patented and complex inducers make the major markets. Who 

champions the simple non-patented compounds? 
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3. Lack of sufficient information exchange and financial support for non mega-

agribusiness-oriented scientists and a lack of adequate information flow to farmers 

and the public. 

4. Unlike classical pesticides which directly kill or inhibit development of a pathogen, 

SAR depends upon the expression of genes for resistance in the plant. Therefore, 

SAR is more subject to physiological and environmental influences for 

effectiveness. 

5. Public and farmer apprehension of new technologies. 

 

Factors delaying the commercial use of SAR for postharvest storage diseases need to be 

overcome by increasing research on different commodities under a range of crop 

management practices. Already it has been reported that negative responses of crop growth 

and yield are related to the developmental stage of the plants when treated, as well as to the 

possible available nutrient supply (Hammerschmidt et al., 2001). More attention should be 

given to individual plant-pathogen interactions, to determine the doses of the inducer, as 

well as the putative defence compounds responsible for the SAR with the timing of their 

appearance. These are important for the development of SAR compounds for use 

commercially (Kuc, 2001). Hence, considerably more applied and basic research is required 

to fully understand the role systemic resistance can play in controlling postharvest diseases 

commercially (Terry and Joyce, 2004). 

 

 

 


