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Abstract 
BCC is the commonest cancer in European-derived populations and Australia has the 

highest recorded incidence in the world, creating enormous individual and societal cost in 

management of this disease. The incidence of this cancer has been increasing 

internationally, with evidence of a 1 to 2% rise in incidence in Australia per year over the 

last two decades. 

The main four epidemiological risk factors for the development of BCC are ultraviolet 

radiation (UVR) exposure, increasing age, male sex, and inability to tan. The pattern and 

timing of UVR exposure is important to BCC risk, with childhood and intermittent UVR 

exposure both associated with an increased risk. The complex of inherited characteristics 

making up an individual’s ‘sun sensitivity’ is also important in determining BCC risk. 

Very little is known about population genetic susceptibility to BCC outside of the rare 

genodermatosis Gorlin syndrome. Mutations in the tumour suppressor gene patched 

(PTCH) are responsible for this BCC predisposition syndrome and the molecular 

pathway and target genes of this highly conserved pathway are well described. 

Derangments in this pathway occur in sporadic BCC development, and the PTCH gene is 

an obvious candidate to contribute to non-syndromic susceptibility to BCC. 

The melanocortin 1 receptor (MC1R) locus is known to be involved in pigmentary traits 

and the cutaneous response to UVR, and variants have been associated with skin cancer 

risk. Many other genes have been considered with respect to population BCC risk and 

include p53, HPV, GSTs, and HLAs. There is preliminary evidence for specific familial 

aggregation of BCC, but very little known about the causes. 

56 individuals who developed BCC under the age of 40 in the year 2000 were recruited 

from the Skin and Cancer Foundation of Australia’s database. This represents the 

youngest 7 – 8% of Australians with BCC from a database that captures approximately 

10% of Sydney’s BCCs. 212 of their first degree relatives were also recruited, including 

89 parents and 123 siblings of these 56 probands.  
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All subjects were interviewed with respect to their cancer history and all reports of cancer 

verified with histopathological reports where possible. The oldest unaffected sibling for 

each proband (where available) was designated as an intra-family control. All cases and 

control siblings filled out a questionnaire regarding their pigmentary and sun sensitivity 

factors and underwent a skin examination by a trained examiner. Peripheral blood was 

collected from these cases and controls for genotyping of PTCH. All the exons of PTCH 

for which mutations have been documented in Gorlin patients were amplified using PCR.  

PCR products were screened for mutations using dHPLC, and all detectable variants 

sequenced. 

Prevalence of BCC and SCC for the Australian population was estimated from incidence 

data using a novel statistical approach. Familial aggregation of BCC, SCC and MM 

occurred within the 56 families studied here. The majority of families with aggregation of 

skin cancer had a combination of SCC and BCC, however nearly one fifth of families in 

this study had aggregation of BCC to the exclusion of SCC or MM, suggesting that BCC-

specific risk factors are also likely to be at work. Skin cancer risks for first-degree 

relatives of people with early onset BCC were calculated: sisters and mothers of people 

with early-onset BCC had a 2-fold increased risk of BCC; brothers had a 5-fold increased 

risk of BCC; and sisters and fathers of people with early-onset BCC had over four times 

the prevalence of SCC than that expected. For melanoma, the increased risk was 

significant for male relatives only, with a 10-fold increased risk for brothers of people 

with early-onset BCC and 3-fold for fathers. 

On skin examination of cases and controls, several phenotypic factors were significantly 

associated with BCC risk. These included increasing risk of BCC with having fair, easy-

burning skin (ie decreasing skin phototype), and with having signs of cumulative sun 

damage to the skin in the form of actinic keratoses. Signs reflecting the combination of 

pigmentary characteristics and sun exposure - in the form of arm freckling and solar 

lentigines - also gave subjects a significantly increased risk BCC. Constitutive red-green 

reflectance of the skin was associated with decreased risk of BCC, as measured by 

spectrophotometery. Other non-significant trends were seen that may become significant 

in larger studies including associations of BCC with propensity to burn, moderate tanning 
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ability and an inability to tan. No convincing trend for risk of BCC was seen with the 

pigmentary variables of hair or eye colour, and a non-significant reduced risk of BCC 

was associated with increasing numbers of seborrhoeic keratoses. 

Twenty PTCH exons (exons 2, 3, 5 to 18, and 20 to 23) were screened, accounting for 

97% of the coding regions with published mutations in PTCH. Nine of these 20 exons 

were found to harbour single nucleotide polymorphisms (SNPs), seen on dHPLC as 

variant melting curves and confirmed on direct sequencing. SNPs frequencies were not 

significantly different to published population frequencies, or to Australian general 

population frequencies where SNP database population data was unavailable. Assuming a 

Poisson distribution, and having observed no mutations in a sample of 56, we can be 

97.5% confident that if there are any PTCH mutations contributing to early-onset BCC in 

the Australian population, then their prevalence is less than 5.1%. 

Overall, this study provides evidence that familial aggregation of BCC is occurring, that 

first-degree relatives are at increased risk of all three types of skin cancer, and that a 

combination of environmental and genetic risk factors are likely to be responsible. The 

PTCH gene is excluded as a major cause of this increased susceptibility to BCC in 

particular and skin cancer in general. The weaknesses of the study design are explored, 

the possible clinical relevance of the data is examined, and future directions for research 

into the genetics of basal cell carcinoma are discussed. 
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Chapter 1: Introduction and Background 
 

1.1. Introduction 

Basal cell carcinoma (BCC) is the commonest cancer in fair-skinned populations. Non-

melanoma skin cancers (NMSC) make up 80% of all new cancers in Australia, presenting 

an enormous individual and financial cost to Australians: treating these cancers 

accounted for 42% of cancer related medical costs in 1993 and cost the Australian 

community $280 million that year. Great gains have been made over recent decades 

regarding the understanding of epidemiological associations and risks for BCC, with 

much of this research based in Australia where the incidence is the highest in the world. 

Yet, unlike other common cancers such as breast and colon cancer, very little is known 

about population genetic susceptibility to BCC outside one rare familial syndrome. This 

project studies early-onset cases and their relatives in an attempt to further elucidate the 

causes of BCC, the commonest of cancers. 

The term NMSC encompasses both BCC and squamous cell carcinoma (SCC): both are 

common tumours derived from the same keratinocyte cell population in the skin, 

although they have distinct biological and pathological features. There are other NMSCs 

apart from these including Merkel’s cell carcinoma and atypical fibroxanthoma, however 

as these are so rare, the term NMSC is usually used to refer to BCC and SCC only. 

BCC is more than twice as common as SCC in Australia [1], and although very locally 

destructive, rarely metastasizes. SCC does metastasize, usually after a long latency, and is 

responsible for nearly all the 400 deaths per year attributable to NMSC. Neither cancer 

has any direct biological relationship with malignant melanoma (MM), which arises 

instead from neural crest-derived pigment producing cells that migrate into the skin 

during early development. 

Sunlight is known to be one of the major causes of all three types of skin cancer, through 

the mutagenic effects of ultraviolet radiation (UVR). Other major epidemiological 

associations include advancing age, male sex (especially in older groups), and a 
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decreased ability to tan. Pigmentary characteristics such as skin, hair, and eye colour also 

contribute to risk. The timing and pattern of sun exposure are known to be important for 

BCC risk: exposure in childhood and teenage years increase an individual’s later risk, and 

intermittent exposure such as that received on summer holidays increases risk more than 

continuous exposure such as that encountered in an outdoor occupation. Knowledge of 

these important epidemiological associations allowed the Australian government to 

mount an important public health preventative campaign in the early 1980’s called ‘slip, 

slop, slap’ that encouraged awareness of the dangers of sun exposure, and the importance 

of preventative measures (‘slip on a t-shirt, slop on some sunscreen and slap on a hat’). 

This message appears to have permeated the community’s consciousness over the last 

few decades: some attribute the decline of skin cancer in younger age groups to the 

success of such campaigns [1]. 

Most chronic diseases are found to have both genetic and environmental aetiological 

components, with multiple factors interacting in complex ways and often expressed as 

risk phenotypes. There is no reason to believe why BCC would not be subject to the same 

aetiological forces. Familial aggregation studies have been important bases to explore the 

combination of inherited and exogenous risk factors in cancer [2]. Historically, there 

seems to have been a reluctance to approach family studies of NMSC. Perhaps the 

obvious importance of sun exposure in the aetiology of BCC has discouraged interest in 

additional genetic influences, or it has been assumed that any familial aggregation of 

BCC would merely reflect sharing of high-risk skin types. There are also methodological 

difficulties in such studies. First, the high burden of disease makes mandatory reporting 

of NMSC to cancer registries cumbersome, and makes it harder to demonstrate increased 

incidence in relatives. Second, the fact that NMSC are often destructively treated reduces 

the available data from histological confirmation, which is important in verifying cancer 

reports in probands and relatives. 

Although much work has been done on rare genodermatoses involving BCC, very little is 

known about genetic susceptibility to BCC outside these settings. A small Australian 

study looking at familial clustering of NMSC that noted apparent differences in 

susceptibility to BCC versus SCC between NMSC pedigrees, suggesting differing genetic 
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influences [3]. However, there have been no larger-scale studies of this phenomenon. 

Gorlin syndrome is one of the rare familial syndromes that has received research 

attention, and involves autosomal dominant inheritance of marked susceptibility to BCC 

and a range of developmental defects. Mutations in the cell growth regulatory gene 

patched (PTCH), when present in the germline are responsible for this disorder. They 

have also been found in a high percentage of sporadic tumours, suggesting a critical 

involvement of this pathway in BCC tumour development generally. Furthermore, mice 

with Gorlin syndrome-like knockouts of one copy of PTCH develop BCCs if exposed to 

UVR, mimicking the human situation [4]. No studies have yet investigated whether 

germline mutations or less highly penetrant variants of this gene might account for part of 

non-syndromic BCC susceptibility in the general population. 

1.2. BCC and its management 

1.2.1. Cell of origin 

BCCs are composed of lobules of basaloid cells with hyperchromatic nuclei and scant 

cytoplasm that are pluripotential cells derived, or closely related to, basal keratinocytes 

and follicular or epidermal stem cells [5]. The cell of origin of the basal cell carcinoma 

has been contentious however typing of cytokeratins within tumour cells suggests a 

follicular origin [6, 7]. Metastasis occurs rarely, at a rate of 1 in 1000 to 35000 and this 

infrequency is probably due in part to the dependency of the tumour for a specific dermal 

connective tissue stroma for its growth [8, 9]. 

1.2.2. Body sites affected 

BCC virtually never arises in stratified squamous epithelium other than the skin and only 

extremely rarely affects the mucosal surfaces of the body [10, 11]. All over the world, 

BCC is most commonly seen on the skin of the head and neck [12, 13] and is almost 

always more common in men than in women [14]. In fact, in light-skinned European-

derived populations the rate is between 18% and 40% higher in men than women [15, 

16]. Recent studies in Australia have shown that rates of BCC may be higher in women 

of younger age groups and in men of older age groups [1]. Detailed body-site specific 
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rates of BCC incidences are usually adjusted for the actual surface proportion covered by 

the site to allow comparison and are thus also called ‘relative body densities’ [14]. The 

relative body densities of BCC incidences in Australia can be seen in a large series from a 

population based study in Townsville in Northern Queensland [17]. Highest densities of 

BCC for both genders in this series were on the lip, orbit, and nasolabial fold. The next 

highest were on the ear, nose, and cheek, then forehead, eyebrow, chin, jaw and pre-

auricular region. Following these regions, the neck and shoulders showed high densities 

as did the posterior trunk in men and the sun-exposed surface of the arms in women. For 

both genders the less sun-exposed body sites such as heels and thighs showed the lowest 

incidence rates. For all body sites except buttocks and genital region, incidence rates for 

women were lower than for men. Male preponderance was especially noticeable for the 

scalp which may be reasonably attributed to hair loss in men giving rise to increased 

exposure of the scalp to solar radiation. The near absence of BCC from the backs of the 

hands has generally assumed to be due to the nature of the skin rather than to complex 

effects of sun exposure.  

1.2.3. BCC classification 

There is no generally agreed classification of BCC in Australia however the commonest 

subtypes reported are grouped by histological growth pattern [18]; nodular, superficial, 

and morpheaform/sclerosing. BCCs are more likely to be nodular on the head and neck 

and superficial spreading on the trunk and upper limbs [19, 20].  The most common is the 

nodular type which appears as a dome-shaped shiny transluscent (pearly) papule with a 

telangiectatic surface, often with surrounding actinic damage. It may become crusted, 

ulcerated or pigmented, and usually has a firm consistency.  Superficial BCC presents as 

a bright pink, shiny, usually well defined erythematous scaly plaque, with a rolled edge 

that shows slow centrifugal growth; areas of erosion or crusting may also arise in these 

lesions. Morpheaform or sclerosing BCC tends to be more aggressive with a whitish 

colour, poorly defined margins and an indurated consistency. It is often more difficult to 

detect clinically and therefore more extensive upon diagnosis, often with wide subclinical 

extension [21]. 
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1.2.4. BCC treatment 

1.2.4.1. Treatment options 

BCCs often become more aggressive with recurrence and therefore the first priority in the 

treatment of BCC is complete eradication of the tumour. This is done with the additional 

goals of restoration of function and optimal cosmetic result. Shave or punch biopsies may 

be obtained for a tissue diagnosis prior to destructive or excisional therapy, however in 

practice, a prior tissue diagnosis is often not obtained. Surgical excision remains the gold 

standard treatment against which other treatments are judged, and may be done with or 

without Moh’s micrographic surgery. Other surgical treatments include curettage and 

diathermy, and cryotherapy. Non-surgical treatment options include radiotherapy, topical 

treatments such as 5-fluorouracil, photodynamic therapy, laser therapy, imiquimod 5% 

cream, and intralesional/perilesional cytokines. The choice of therapy depends on the 

characteristics of the individual tumour, patient preference, and the resources available 

[19, 21]. 

1.2.4.2. Surgical treatments 

Surgical excision can often be done by excising a simple ellipse around the tumour under 

local anaesthetic with a margin of 3-4mm. Moh’s microscopically controlled excision is 

considered the treatment of choice if the tumour is very large, recurrent, poorly defined, 

or displays an aggressive histological pattern. It is also indicated for tumours in locations 

associated with a high risk of recurrence such as the periorbital and facial areas, and for 

those in areas of cosmetic importance. In this technique, frozen sections of the lesion 

undergo histopathological examination during surgery allowing the entire excision 

margin to be visualised. These are interpreted by the operator to better allow for complete 

excision and to minimise removal of normal surrounding tissue [21]. Curettage and 

diathermy give good results when reserved for small, well-defined, relatively superficial 

tumours and its success is highly operator-dependent. Cryotherapy also tends to be used 

on small superficial tumours. These destructive treatments are simpler than excision 

however they prevent the histopathological verification of these cancers and also 

verification of the adequacy of excision by visualization of tumour margins. Furthermore, 
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destructive treatments and the concomitant uncertainty of diagnosis make the estimation 

of true incidence of this type of cancer very difficult. The resulting wound can take 

longer to heal from curettage or cryotherapy than wounds resulting from excision. Five 

year cure rates for primary BCC with surgical techniques are in the order of 95% [22, 

23], and closer to 99% for Moh’s micrographic surgery on a primary tumour [24]. 

1.2.4.3. Non-surgical treatments 

Non-surgical techniques are increasingly employed for the treatment of BCC. 

Radiotherapy has been used on all stages of BCC with results comparable to surgery [25-

27]. It requires a number of weeks for receiving then healing, and is associated with some 

long term sequelae including scarring and increased neoplasia risk. It is therefore usually 

reserved for either: (a) extensive lesions where major surgery is not appropriate, or (b) 

elderly patients in sites that are difficult to reconstruct and would be associated with 

considerable morbidity, as the concerns regarding long term sequelae of radiotherapy are 

small [28]. Radiotherapy can be also be used to complement surgery for cases of 

persistent, recurrent or advanced tumours [5]. Topical treatments for BCC can give good 

cosmetic results and can be effective treatment in superficial BCCs. 5-fluorouracil cream 

is useful in the management of multiple superficial BCCs on the trunk and limbs [29]. 

Imiquimod functions as an immune system modulator and has recently shown to be 

efficacious in the treatment of superficial BCC [27, 30, 31]. Its antitumour properties are 

related to its stimulation of interferons and other cytokines, and of antigen presenting cell 

function. Intralesional injection of recombinant interferon-α has been only partially 

successful with reported cure rates varying between greatly [5, 31, 32]. Topical 

photodynamic treatment may be useful for the treatment of superficial BCC where 

standard surgical intervention poses difficulties, for example in patients who have 

bleeding disorders or pacemakers. It involves the application of a systemic or topical 

photsensitising chemical which leads to photodestruction when the skin is subsequently 

exposed to light [33]. Laser therapy may offer some advantages in the precision of tissue 

removal; however the majority of tumours are better managed by the less expensive 

commonly available techniques. Intralesional interferon, photodynamic therapy, and laser 



25 

therapy should be considered investigational until confirmed and reproducible outcomes 

are established in prospective trials [5]. 

1.3. Incidence 

1.3.1. World burden of NMSC 

Basal cell carcinoma of the skin is the most common malignancy in populations of 

European origin including North America and Australia. The world burden of 

nonmelanoma skin cancer (NMSC; BCC and squamous cell carcinoma or SCC) is 

enormous: worldwide, NMSC is three times more common than lung cancer, the next 

most common cancer [34]; the incidence of NMSC alone in the United States is 

approximately equal to that of all non-cutaneous cancers combined [35]. Nonmelanoma 

skin cancer is by far the most common cancer in Australia where it outnumbers all other 

forms of cancer by 3 to 1. We spend more on treating NMSC than any other cancer, 

costing the Australian health sector $280 million in 1993/1994 [36]. Australia has the 

highest incidence of NMSC in the world with Western Australia having the highest ever 

recorded incidence [16].  

1.3.2. Australian incidence and prevalence data 

1.3.2.1. Methods of data collection 

Data on the prevalence and incidence of NMSC in Australia has been collected using a 

variety of methodologies and with different subsections of the Australian population, 

making the results very difficult to compare directly. These include national surveys, 

state-based surveys, analysis of state-based cancer registry data, and smaller regional 

community studies. One of the most important differences in methodology between 

studies is the decision to include lesions treated destructively prior to histopathological 

confirmation. The inclusion of lesions treated destructively reduces the risk of 

underestimation of incidence figures, but it does so at an increased risk of inclusion of 

misdiagnosed lesions; the misdiagnosis rate by experienced Australian dermatologists has 

been estimated at as high as 41% for BCC and even higher for SCC [37, 38]. 
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Periodic surveys such as the Australia-wide survey of NMSC by Staples [1] can provide 

good estimates of incidence and prevalence in broad groupings of histological type and 

population characteristics. The series by Staples et al [1] is the most recent and extensive 

national survey of NMSC incidence in Australia giving figures for the incidence of BCC 

and SCC age-adjusted to the World standard population. This series also allows data 

analysis by individual States and by three zones of latitude. It looked at all cancers 

reported over one year including those with a clinical diagnosis only. National telephone 

surveys of households randomly selected by the electoral roll were performed in 1985, 

1990, and 1995, and reports of treated skin cancer in the previous 12 months were 

verified clinically and histopathologically if possible.  

Cancer registries provide a sufficient sample size over extended time periods to permit a 

detailed description of skin cancer patterns and time trends at specific body sub sites, 

within narrow demographic categories and at different latitudes. Unfortunately, NMSC is 

unsuitable for routine cancer registration in Australia due to the sheer numbers of them 

within the Australian community, the way that many lesions are treated destructively 

without histopathological confirmation, and the fact that this often occurs outside a 

hospital setting. The only cancer registries to have recorded NMSC in Australia were 

State based and have since ceased recording these cancers [39-41]. The Tasmanian 

Cancer Registry collected data between 1978 and 1987 [39]. It only included 

histopathologically confirmed lesions or those referred for radiotherapy, and only the first 

BCC treated per year. The Queensland state-based study involved reporting all treated 

NMSCs during a six month period in 1984 by general practitioners and hospital 

outpatient departments in four representative areas of the State [40]. Cancers that were 

confirmed histopathologically as well as those treated destructively were included.  

Studies of small communities such as those performed in Townsville in Queensland [17], 

Maryborough in Victoria [42], and Geraldton in Western Australia [16] have the 

advantage of allowing longitudinal assessment including detailed skin examination and 

risk factor assessments. Individuals can be screened and then followed up over time to 

detect any incident malignant lesions. This method may give a more accurate assessment 

of the incidence within that population than relying on subjects’ recall of treated lesions 
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because it less likely to miss unreported or undiagnosed tumours. It is an expensive and 

time consuming method of data collection and therefore impractical for larger studies.  

1.3.2.2. Comparison of Australian incidence data 

Important information about the incidence, epidemiology and risk factors for BCC have 

been obtained by combining information from all of these studies. A comparison of the 

figures can be seen in table 1.1, with a summary of the national survey data in figure 1.1. 

These incidence figures are alarmingly high and differ quite dramatically according to 

location, sex, and methodology of the study. The figures from the carefully-screened 

community studies include the largest reported incidence for BCC in the world to date 

from Geraldton in Western Australia. Where incidence was measured over time it is clear 

that incidence figures of both BCC and SCC in Australia have been increasing, with a 

rise of 1 to 2% per year over the periods studies. Interestingly, the national survey 

showed a slight decrease in incidence of BCC in people under 40 years of age which may 

reflect changes in attitude and behaviour towards sun exposure, perhaps due in part to 

extensive public health campaigns operating in Australia for the last 20 years [43]. 

All of the Australian studies show increasing incidence with age and higher incidences 

for men than for women with the exception of a slightly larger incidence in women than 

men in the under-40s. This sex difference may be influenced by differences in ultraviolet 

radiation (UVR) exposure between younger men and women and/or by differences in rate 

of presentation for medical treatment. All studies also showed higher incidence of BCC 

than SCC, with incidence of BCC ranging from between 2.5 and 4 times the incidence of 

SCC. A latitudinal gradient emerged within the national survey and between the State-

based surveys where incidence is clearly greater for populations closer to the equator.  
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Table 1.1 Comparison of measured incidences of BCC found in Australian studies 
Population studied Type of study Time period  Males per 

100,000* 

Females per 

100,00* 

Australia [1] National survey 1995 955 629 

Tasmania [39] State cancer registry 1978-1987 219 110 

Queensland [40] State cancer registry 1984 1474 713 

Nambour, QLD [44] Community survey 1986 2074 1579 

Townsville, North 

QLD [17] 

Community survey 1996-1997 2058 1195 

Maryborough, VIC 

[42] 

Community survey 1982-1986 2244 1069 

Geraldton, WA [16] Community survey 1987-1992 7067 3379 

*age-standardised rate 

 

Figure 1.1 Observed rates and age-specific incidence curves with 95% confidence intervals for BCC and 
SCC for males and females from 1995 Australia. 
 (Created with permission from corrected raw data by M Staples from data reported in [1]) 
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1.3.3. International incidence and prevalence data 

1.3.3.1. International cancer registry data 

There are more cancer registries that include NMSC in countries other than Australia 

which is likely to be due to the lower incidence and therefore reduced burden of 

diagnosis and reporting. Despite this reduced burden, these registries sometimes still have 

difficulty obtaining accurate records for NMSC [45]. The incidence figures for NMSC 

determined internationally are universally lower than those seen in Australian populations 

although a trend towards increasing incidence is also seen in these disparate populations. 

Cancer registries that include data on NMSC have operated in Nordic countries[46], 

Southern European regions [47], Slovakia [13], New Hampshire [48] and Southeastern 

Arizona [49]in the United States, the Swiss canton of Vaud [50], Singapore[51], and the 

Netherlands [52]. Smaller population based incidence studies have also been performed 

on populations in every continent.  

Table 1.2 Comparison of incidence BCC worldwide per 100,000 * 
Location BCC Men BCC Women 
Australia [1] 955 629 
United States [53] 247 150 
United Kingdom [54] 128 105 
Finland [55] 49 45 
Switzerland [50] 52 38 
Netherlands [52] 53 38 
Slovakia [13] 38 29 
Hawaii [56] 576 298 
*World age-standardised rate 
 
 

1.3.3.2. Differences between Australian and International incidence 

data 

The most dramatic difference between the data collected in these countries compared 

with Australian data is the 5-100 times lower rate of BCC incidence seen in European-

derived populations outside Australia (see table 1.2). For instance the incidence of BCC 

in Slovakia in the period 1993 to 1995 was estimated at 38 per 100,000 for men and 29 
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for women [13]. In Finland from 1991 to 1995 it was 49 per 100,000 for men and 45 for 

women [55]. We can compare this to the national Australian survey which reported a 

combined (men and women) figure of 788 for the same time period. The Australian 

national survey figures are likely to be larger than Australian cancer registry figures by a 

factor of three. For BCC in 1985 Staples et al [1] report an overall age-standardised 

incidence of 333 per 100,000 for greater than 37°S latitude. Tasmania lies in a region 

entirely greater than 40°S latitude and the registry’s comparable total incidence figure 

from a similar time in history was 111, exactly one third the nationally estimated figure. 

We should therefore reduce the survey figure from 788 to 263 to make it comparable to 

any cancer registry estimate. This estimate still remains at least five-fold larger than those 

seen in Northern Europe.  

Another difference between the Australian and international data on incidence is the 

variation in male to female ratios. Most studies conducted on Australian populations 

show greater male than female incidence, although there is evidence that this ratio is 

reversing in younger cohorts [1, 57]. The only populations to record incidences greater in 

women than in men are in Asia, and include studies on Korean [58] and Japanese 

populations [12]. This may be due to differences in genetic or environmental risk factors 

between the different populations, or more likely, a combination of both. 

1.3.3.3. Similarities between Australian and international incidence data 

Similarities also exist between Australian and international studies, the most striking of 

which is a trend towards increasing incidence of BCC. Annual percentage increases of 

three to 6% have been reliably recorded across a number of studies of European-derived 

populations, with similar rates of increase for BCC and SCC [59]. The New Hampshire 

Skin Cancer Study Group from the United States of America report an increase of more 

than 80% in incidence from 1979 to 1994 in both men and women [60]. Incidence data 

from the Eindhoven Cancer Registry in the Netherlands collected between 1973 and 2000 

also show a rapid increase in incidence for both sexes with figures doubling over this 

period [61]. Over these last few decades, figures have doubled in Sweden [62], increased 

by 70% in men and 65% in women in Slovakia [13], and increased steadily in Singapore 

at a rate of 3% per year for nearly 30 years [63].  



31 

It is clear that people with darker pigmentation have a lower incidence of BCC than 

lighter-skinned people living in the same environment. For example, in Kenya the 

incidence of BCC is 0.65 per 100,000 for residents with darkly pigmented skin and 585 

per 100,000 for the European-derived Africans living in the same community, indicating 

a substantially increased risk in the fairer-skinned residents [64]. In Qatar in the Middle 

East, the incidence of BCC is also higher in Europeans living in there compared with 

locally born residents [65]. Non-Hispanic whites in Southeastern Arizona have 11 times 

the incidence of BCC compared with Hispanic whites [49]. 

An obvious trend that emerges from incidence studies is that the risk of BCC increases as 

one gets closer to the equator. Within Australia, the nationwide survey by Staples et al [1] 

gives the most conclusive evidence of this as it samples population from the entire 

continent of Australia and looks specifically at this question. Over the decade studied, a 

latitudinal gradient in incidence of BCC remains evident with a trend to significantly 

higher BCC incidence as latitude decreases. Incidence in latitudes less than 29°S 

remained approximately three times higher than those greater than 37°S, and in 1995 this 

difference was 3.1:1 for men and 4.2:1 for women. Other within-study latitudinal trends 

are evident in the Queensland state-based study [40] which shows a significantly 

increased incidence of BCC in the Northern as opposed to the Southern parts of the State. 

The only exception to this is the Gold Coast which has been estimated to have an 

incidence similar to that of the Northern part of the State. This is likely to be due to the 

complex nature of the Gold Coast population which is affected by the selective migration 

of sun-lovers and by year-round tourism with the sun and beach the main attractions. The 

differences in incidences quoted in the separate community studies also display a 

latitudinal gradient although these studies are not ideally suited to looking at such 

relationships due to the vast differences in collection and measurement between them.  

This inverse relationship between latitude and BCC incidence is also evident overseas, 

with greater incidences reported with lower latitudes in Sweden, Norway and Finland 

[66]. The incidence in Southeastern Arizona is estimated to be between three and six 

times higher than that in Northern parts of the country [49]. Japanese studies also show a 

latitudinal difference however the numbers here are small [67]. Very convincing data 

from the United States in the 1970s show a latitudinal gradient of NMSC incidence 
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across the country [53]. The study involved ten USA metropolitan populations from 

47.5°N (Seattle) to 30.0°N (New Orleans) with a statistically significant gradient of 

incidence rates inversely related to latitude across the cities studied.  

NMSC is an immensely common and costly tumour to European-derived populations, 

and incidence is increasing internationally at an alarming rate. A better understanding the 

complex causes of these cancers should translate into valuable gains in the quality of life 

of millions of people worldwide. 

1.4. Epidemiology and Risk Factors 

Much has been learned about epidemiological risk factors for BCC in the last few 

decades. The main four epidemiological risk factors for the development of skin cancers 

(including basal cell carcinomas) are ultraviolet radiation exposure, increasing age, male 

sex, and inability to tan. Increasing age is one of the strongest risk factors for the 

development of BCC, and as with other cancers, the risk of developing the disease each 

year of life combines to give a rising cumulative risk. Increasing age could be considered 

an indicator of cumulative exposure to environmental risk factors [39, 68-71]. In addition 

to the the likely effect of cumulative UV exposure, increasing risk with age may reflect 

the normal decline in DNA-repair capacity [72] and the effect of age on the ability of 

immune surveillance to eliminate micro-tumours [73]. It is evident from international 

incidence data already described, that in most countries at most points in time measured, 

men have a greater incidence of BCC than women, but that in younger persons (< 40 

years old) with BCC there may be a reversal of this sex ratio [1, 57, 74], a phenomenon 

also seen in measures of melanoma incidence [75]. It is possible that the reduction in 

incidence in the younger age groups has been influenced by public health campaigns on 

skin cancer prevention. 

1.4.1. Ultraviolet radiation 

1.4.1.1. Aetiological role in skin cancer 

Exposure to ultraviolet radiation (UVR) is associated with the incidence of all three 

major types of skin cancer; BCC, SCC, and melanoma. As an aetiological factor in skin 



33 

cancer initiation, its role is inferred indirectly from a variety of sources. One of the first to 

associate BCC with UVR exposure was Molesworth [76], a Sydney Dermatologist at 

Royal Prince Alfred Hospital in 1927 who noticed that there was a much greater 

incidence of “rodent disease” (as BCC was also known) in Australia as compared with 

England. He noted that the Australian “loves the sunshine and glories in it and is very 

liable to regard any precaution against sunburn as womanish and ridiculous”. He 

suggested that sun exposure, not heat, dust, or trauma as previously hypothesized, was 

the primary reason for this difference in incidence. He also put forward the hypothesis 

that it is the ionizing radiation in sunlight that is responsible for causing these tumours.  

There are abundant epidemiological associations between UVR and BCC linking them 

aetiologically. Genetic diseases involving a greater sensitivity to UVR and a concomitant 

risk of early onset NMSC include the autosomal recessive disorder xeroderma 

pigmentosum [77]. People who live in areas of greater UVR exposure have a much 

greater risk of developing skin cancers than those living in areas of lower UVR as can be 

seen in the change of incidence with latitudinal gradients. BCC is commonest on 

regularly exposed skin sites such as the head, neck and face, and there is a correlation 

between BCC and sun-exposure-related conditions including; presence of actinic 

keratoses, solar elastosis of the neck [78], solar lentigines [79] and degree of sun damage 

to the backs of the hands as measured by cutaneous microtopography [80]. Actinic 

keratoses are premalignant lesions occurring on chronically sun exposed sites that rarely 

may progress to SCC if left untreated. Solar elastosis is a degenerative change in the 

dermis on chronic sun exposed sites. It is characterized by thickened skin with yellow 

discolouration and well-defined furrows. Solar lentigines are permanent macular areas of 

brown pigmentation occurring after either acute or chronic sun exposure. There is 

frequently a history of acute sunburn followed by the sudden appearance of large 

numbers of these lesions. Childhood freckling is also associated with all three types of 

skin cancer, however as this phenotypic characteristic is both genetically and 

environmentally determined, it is difficult to determine whether one or both of these 

factors are responsible for the association [78, 81]. Freckles also appear on sun exposed 

sites but differ from lentigines by fading during periods without sun exposure. 
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1.4.1.2. Effects on DNA 

While animal models exist for the capacity of UV radiation to cause SCC and melanoma, 

there are no comparable models for BCC, other than a knockout mouse model for Gorlin 

syndrome. Unfortunately, there is also no practical way that the action spectrum for skin 

cancer can be measured directly in humans. There is however, direct evidence that UVB 

wavelengths produce ‘UV signature’ mutations in certain genes in BCC lesions, 

providing biological evidence to support the epidemiological observations. These are C to 

T or CC to TT mutations at dipyrimidine sites and peak at around 300nm, suggesting that 

this wavelength of UV (in the UVB range) may be effective in causing skin cancers in 

humans [82]; this does not exclude a role for UVA light in causing BCC. The type of 

DNA damage induced by UVA seems to differ from UVB in the proportion of nondimer 

damage induced, such as DNA strand breaks which increase 100-1000 fold in UVA 

compared to UVB irradiated cells [83, 84]. This is likely to be due to the important role 

that reactive oxygen species play in UVA related damage to cells as opposed to the dimer 

induction in UVB damage that follows direct DNA absorption [85]. The latitude gradient 

seen in skin cancer incidence data around the world tends to be higher for SCC incidence 

than melanoma, with the latitudinal gradient of BCC incidence between the two. There is 

a correspondingly higher latitude gradient for UVB radiation than UVA radiation, an 

association suggesting that melanoma and BCC may be more influenced by UVA than is 

SCC [86]. Artificial sources of UV used for tanning primarily use UVA as this has been 

thought to be the safer part of the UV spectrum. These devices have recently been shown 

to be associated with increased risk of melanoma and SCC, but there is equivocal 

evidence regarding the risk of BCC [87-90]. Recent studies in mice have contradicted this 

earlier work with reports of UVA having no role in the initiation of melanoma [91].  

1.4.1.3. Effects on immune system 

UVR is likely to have an effect on the immune system that results in defective immune 

surveillance. Animal studies show that multiple exposures to UVR have systemic effects 

on the immune system with increased tolerance to transplanted UV-induced skin tumours 

[92]. This susceptibility to tumour growth was explained by the action of suppressor T-
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cells which arose in UVR treated animals and prevented immunological rejection of the 

tumour [93, 94]. Localised, low-dose UVB radiation impairs the induction of contact 

hypersensitivity in humans and susceptibility to this immune impairment may be 

associated with skin cancer risk, as persons with a history of NMSC have been shown to 

be more likely to display this UV-associated impairment than normal controls [95]. UVR 

also has an effect on CD4/CD8 T-lymphocyte ratios in a study following high sun 

exposure in the previous 18 months, although this ratio had no predictive ability for 

development of BCC once sun exposure and previous BCC were accounted for [96]. The 

overall increased incidence of BCC and SCC seen in immunosuppressed transplant 

recipients is evidence for a role of the immune system in tumour surveillance and 

development [97]. In a follow up study in Queensland of renal transplant patients with no 

skin cancer prior to transplantation, over a 25 year period, 50% developed both BCCs and 

SCCs with a cumulative incidence of BCCs approximately 25% at 10 years and 54% at 

20 years [98]. Studies showing that transplant recipients develop more BCCs on the trunk 

and arms than non-immunosuppressed patients supports suggestions that immune 

surveillance has a role in determining tumour site [20]. 

1.4.1.4. Pattern of UVR exposure 

It had long been believed that risk of NMSC was solely related to total cumulative dose 

of UV. While the latitudinal gradient of risk would suggest this, the smaller gradient for 

BCC compared with SCC suggests a differing relationship with amount of UV exposure. 

Also, although BCC is commonest on the heavily exposed head and neck it also favours 

sites such as the trunk which are not regarded as continuously exposed. It has emerged 

that BCC has a complex non-linear relationship with sunlight exposure, the 

characteristics of which have only begun to be unravelled over the last two decades. It is 

apparent that the amount, timing and pattern of sun exposure causing BCC is quite 

different from that causing SCC and more similar to that associated with melanoma. 

Patterns of personal sun exposure are usually described with reference to total/cumulative 

lifetime exposure, occupational/continuous exposure, or recreational/intermittent 

exposure. Each of these may be estimated over the whole or part of life and new 

validated questionnaires have evolved to enable this. One such questionnaire links recall 
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of sun exposure to a lifetime residence and work history calendar that subjects complete 

[38, 80]. Creating a link with personal history has proven to be a useful tool, but does not 

necessarily completely prevent differential recall bias.  

The timing of sun exposure appears to be particularly important in BCC and melanoma 

risk. In particular, childhood exposure to UVR seems to be more closely associated with 

adult risk of BCC and melanoma than adult exposure. The link between BCC and 

childhood exposure has been demonstrated with evidence that migration to Australia 

before ten years of age is associated with the same risk of BCC as Australian-born 

persons, and that this risk decreases three-fold with arrival to Australia at ten years or 

older [78]. Also, there is evidence that having had two or more painful sunburns in 

childhood or adolescence increases risk of BCC in later life more significantly than 

sunburns in adulthood [81, 99]. International studies confirm these observations [47, 

100]. Furthermore, there is good evidence that occupational UVA exposure after the age 

of twenty years does not increase risk of BCC [81]. 

The pattern of personal sun exposure is also now known to be an important determinant 

of a person’s risk to different types of skin cancer. Intermittent, recreational sun exposure 

has emerged as the most important pattern of exposure for risk of BCC as compared with 

continuous or occupational exposure, with a complex interaction of UV dose and 

response. This was first suggested in a report on NMSC in Maryland watermen by 

Strickland et al in 1989 [101] and subsequently by Hunter et al [102]. Both studies found 

little evidence for increasing risk of BCC with increasing cumulative UV exposure, 

suggesting a possible plateau in risk at higher total doses. This effect has been repeated in 

a number of studies since these seminal studies [81, 99, 103]. Instead, risk of BCC has 

been positively associated with intermittent sun exposure (especially in the teenage 

years), hours of reported sun exposure on holidays or during water sports, and painful 

sunburn, especially in childhood [81, 99, 103]. It has been speculated that the target 

epithelial cells maybe highly mitotic and may require a relatively low threshold of total 

solar radiation for malignant transformation [103]. BCCs tend to be of the superficial 

subtype on the less exposed trunk and upper limbs [19, 20, 104] and occur at a younger 

average age, suggesting that there also may also be a lower threshold for UV 

carcinogenesis of the superficial subtype. People that tan poorly may have an increased 
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risk of BCC that plateaus with increasing intermittency of sun exposure while people 

who tan well have a constant linearly increasing risk with increasing intermittent 

exposure [81, 103, 105]. This supports a hypothesis of a plateau in the dose-reponse 

curve for BCC in relation to UVR exposure. For those who tan well, the effect of tanning 

and epidermal thickening protects their basal cells so that the effective dose received at 

the basal cell level is on the rising part of the dose-response curve. Thus further exposure 

correlates with increasing risk. For those who tan poorly, their basal cells receive a higher 

effective dose with the same actual hours in the sun, placing them on the hypothesised 

plateau of the dose-response curve.  

Public education ‘skin cancer control’ programs have been operating in Australia for over 

25 years and have focused on the importance of reducing sunlight exposure. A fall in 

incidence of malignant melanoma and NMSC in younger people may be evidence that 

these programs are starting to take effect [1, 106]. Despite these probable gains, the 

prevalence of potentially risky amounts and patterns of sun exposure remains high in 

Australia, with studies showing 10-20% of the population having had multiple blistering 

sunburns, frequent sunbathing/intermittent exposure [99], or skin changes suggesting a 

high cumulative amount of exposure [78]. Armstrong and Kricker [14] performed a 

metanalysis of the studies published that have looked at different types of sun exposure 

and sunburn (at any age) in relation to risk for the three types of skin cancer. Relative 

risks (RR) for BCC with different types and amounts of sun exposure remained in the 

low range, but was highest with sunburn (RR 1.40; 95% CI 1.29-1.51) and intermittent 

sun exposure (RR 1.38; 95% CI 1.24- 1.54). Occupational exposure also had a low-range 

association with risk (RR 1.19; 95% CI 1.07-1.32). Cumulative exposure was not 

associated with any increased risk of BCC in this metaanalysis, supporting other evidence 

of the lack of importance of this factor. Melanoma showed a somewhat higher risk 

association with sun exposure than BCC but still in the low range: for intermittent 

exposure the RR is 1.71 (95% CI 1.54- 1.90) and for sunburn it approaches a doubling of 

risk (RR 1.91; 95% CI 1.69-2.17). SCC was the only type of skin cancer in this 

metanalysis that displayed a strong association with cumulative sun exposure and 

occupational exposure. Together these results suggest that a history of sunburn generally 
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reflects an intermittent pattern of sun exposure, and that intermittent exposure and 

sunburn are risk factors for BCC development. 

1.4.1.5. Population differences in UVR and skin cancer risk 

The difference in incidence of NMSC between white populations (see section 1.3.3.1) 

may intuitively be simply attributed to differences in UV exposure; however the reality is 

likely to be more complex. Models relating BCC risk to increases in UV exposure 

suggest that an increase of 1% of UV exposure increases the risk of BCC by 1.7% [107]. 

Hawaii has a climate similar to that of Australia, but the rates of BCC in white 

populations in Hawaii remain much lower than in genetically similar populations in 

Australia [44]. The differences in incidence seen between these varying populations 

internationally are likely to be due to a complex interplay of different factors including 

differences in UV exposure, genetic heterogeneity, skin types, and behaviour; in other 

words, different combinations of genotype, phenotype and environmental risk factors. 

This inconsistency in incidence underlies the urgency in further evaluating the genetic 

susceptibility to NMSC. 

It has been suggested that continued depletion of stratospheric ozone and climate change 

may be involved in increased international skin cancer rates (see section 1.3.3.3) [108-

110]. However, the increases in incidence are not uniform internationally and cannot be 

entirely explained by the depletion of the ozone layer. For instance, Norway has seen a 

steady increase in skin cancer incidence over the last five decades with no concomitant 

change in measured ozone levels [66]. The observed international increase in BCC 

incidence is likely to be due to a complex interplay of a variety of factors including ozone 

depletion, increased detection rates, change in type of clothing, increased mobility of 

populations between countries and climates, and increase in outdoor recreation and sports 

[111].   

1.4.1.6. Sensitivity to UVR 

Studies have found that the complex of inherited characteristics defining a person’s ‘sun 

sensitivity’ (often measured by the ability to tan) is more important in mediating skin 
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cancer risk than the colour of the person’s skin. Of the three types of skin cancer, the 

weakest evidence for an increase in risk with increasing fairness of the skin is seen for 

BCC and the strongest for melanoma. It is important to note however, that there have 

been difficulties in accurately measuring skin colour in an objective way, and that these 

problems with measurement bias should affect the interpretation of associations found 

through such studies [14]. Kricker et al [78] found that when sun sensitivity and skin 

colour were analysed in a single logistic regression model with hair colour and eye 

colour, only the ability to tan remained a significant predictor of risk for BCC. Most other 

studies that have found an association between skin colour and skin cancer have not 

controlled for the ability to tan [81, 112-114]. The seminal study by Kricker et al [78] 

shows that the relative risk for BCC in persons with no ability to tan is 3.7 (95% CI 1.9-

7.3) times that of persons with the capacity for a deep tan, and that there is a gradient to 

increasing risk with increasing sensitivity; meaning that ‘ability to tan’ is a moderate-

range risk factor, and more significant than that seen for sun exposure history. A gradient 

of risk with sun sensitivity also exists for SCC and melanoma [115, 116]. All of these sun 

sensitivity gradients were steeper than the corresponding gradients in risk with decreasing 

skin colour, supporting a greater importance of the former with respect to skin cancer 

risk. The poor association of risk of NMSC with density of pigmentation is also 

supported by the similarly low rate of skin cancer amongst USA blacks and the lighter-

skinned Chinese people living in the same environment [14]. Many other studies confirm 

that skin that burns easily and tans poorly is a risk factor for BCC [42, 47, 102, 117, 118].  

Early studies on pigmentary traits such as hair colour and eye colour were contradictory 

and suffered from methodological weaknesses relating to ascertainment, use of 

inappropriate controls, and subjective measurements. Blond or red hair and light eye 

colour were reported to increase the risks of skin cancer in several studies [47, 102, 117]; 

subsequently two Australian studies [112, 119] and an Irish study [120] found no 

associations of skin cancer with hair or eye colour. Studies that have controlled for other 

factors such as the ability to tan found that hair colour and eye colour were no longer 

independent risk factors for BCC [78, 81].   
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Evidence that Southern European ancestry is protective for BCC is seen in a study where 

any Southern European grandparent greatly reduces the risk of BCC (OR 0.05, 95% CI 

0.01-0.42) [78], and this is likely to indicate the protection associated with the complex 

combination of genetic, pigmentary and sun sensitivity traits of people of this ethnic 

background. Celtic origin has been reported to be associated with skin cancer in limited 

studies [121, 122] and has been refuted by others [78] who found no evidence of this as a 

risk factor per se.  

1.4.1.7. Personal sun protection 

It is intuitively appealing to assume that personal sun protection measures such as the use 

of hats, clothing and sunscreens should decrease skin cancer risk. Personal sun protection 

is difficult to measure for several reasons; it is difficult to separate sun protection and sun 

sensitivity as those with more sensitive skin are more likely to employ greater sun 

protection measures, and in addition, it would be impossible to ethically support a 

placebo sun protective measure given the strong inferential data suggesting that 

appropriate sunscreen use protects the individual from skin cancer. Several randomised 

controlled trials (RCTs) confirm the ability of sunscreen use to reduce the risk of SCC 

precursors and probably also to reduce the risk of SCC [123-126]. The effect of 

sunscreen use on BCC risk is more contentious: daily sunscreen use has been shown in a  

randomized controlled trial to have no effect on the risk of BCC compared with the 

discretionary use of sunscreen [126]. One observational study indicates a probable effect 

of sun protection measures in adults in reducing risk of BCC in the short term [96]: 

patients were determined to be in either a high or low sun exposure group based on their 

personal protection measures, and this level of sun exposure over 18 months significantly 

predicted the number of new BCCs independently of the number of previous BCCs. 

Other large population-based prospective case-control studies have found that sunscreen 

use is associated with an increased risk of BCC; also that BCC risk is higher on the head 

and neck for those who had worn a hat compared with those who had not [99, 102, 121]. 

That sunscreen use in that study showed a similar within-study pattern of risk to hat use 

suggests that any increased risk found was not due to any specific harmful effect of 

sunscreens (such as chemical mutagenicity or increased exposure to longwave UV 
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radiation). These results should be interpreted with the awareness that protective 

behaviours may be adopted after high risk subjects become aware of their risk status, and 

that the risk of BCC may be associated with sun exposure behaviour prior to this 

awareness. Firm conclusions cannot be made with respect to personal sun protection 

measures. 

The reported associations between melanoma and personal sun protection have also been 

controversial with several studies showing increased risks of melanoma associated with 

sunscreen use and ascribing this to the increased duration of UV exposure permitted by 

the use of sunscreen. A population based case-control study in Sweden reported a slightly 

increased risk of melanoma associatied with sunscreen use [127] and a retrospective 

study on sunscreen use and naevus counts in children concluded that sunscreen use 

increases the risk of melanoma [128]. A well designed RCT found that sunscreen use 

may reduce the incidence of new naevi in children [129]. Following much debate [130] 

[131-133] and criticism over the methodological weaknesses of the studies showing 

associations between sunscreen use and melanoma [132, 134],  the answer is still unclear.  

1.4.2. Phenotypic subtypes  

One research group has looked at BCC risk with respect to measurable phenotypic 

differences within populations of individuals affected by BCC. They describe subgroups 

of patients with BCC that fall into two major phenotypic classifications; the multiple 

presentation phenotype (MPP) characterized by the presence of clusters of 2-10 new, 

primary BCC tumours at any presentation [135]; and the truncal phenotype characterized 

by an initial presentation with a BCC on the less sun exposed trunk as opposed to the 

more frequently affected head and neck region [136]. Initial presentation with a truncal 

tumour has been shown by this group to be associated with the development of 

significantly more BCC lesions (0.13 per year) on this site compared with patients who 

presented initially with head and neck lesions (0.03 per year) . The mean age of 

presentation in patients with initial truncal lesions is younger (59.6 years) than those first 

presenting with head and neck lesions (64.9 years), and these patients are also more likely 

to have multiple BCCs at presentation. Together these results could point towards a 
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predisposition to BCC, and the authors propose that this predisposition is likely to be due 

to a combination of genetic factors [137] and a reduction in immune surveillance [135].  

 

1.4.3. Previous BCC 

One of the strongest known risk factors for developing BCC is a history of one or more 

previous BCC [39, 96, 138-141]. The highest risk period for a second BCC is within one 

year of the previous BCC [141], and the three year cumulative risk is between 33 and 

77% (depending on the number and type of lesions present), at least a 10-fold increase in 

incidence compared with the rate in a comparable general population [142].  

1.4.4. BCC risk and other malignancies 

The association of BCC with the risk of other malignancies remains unclear, with some 

studies showing no association and others showing inconsistent and small increased risks 

of several internal cancers eg lung, thyroid, breast, testicular, cervix, and non-Hodgkin’s 

lymphoma [143-148]. Patients diagnosed with BCC at an earlier age (before 60 years) 

have been shown to be at greater risk of breast, testicular and non-Hodgkin’s lymphoma 

[145]. An increased risk of malignant melanoma has been shown more consistently in 

patients with prior BCC, and varies from 2.2 to 17-fold [144, 146, 149]. Shared risk 

factors such as exposure to the same carcinogens eg UVR, and increased surveillance of 

patients with prior BCC may contribute to this overlap in risk. Overall cancer mortality of 

people with a history of NMSC may also be increased, with reported relative risks of 1.30 

for men (95% CI 1.23- 1.36) and 1.26 for women (95% CI 1.17- 1.35) [150].  

1.4.5. Other risk factors 

Other well established risk factors for BCC include exposure to therapeutic ionizing 

radiation [151-153], and arsenic [154-156] and scars [157, 158]. Smoking has been 

identified as a risk factor for BCC however reports have been inconsistent and no firm 

conclusions can currently be made [88, 100, 159, 160]. Dietary factors such as 

antioxidant vitamin and fat intake may also play a role in risk [161, 162], although large 

prospective studies have refuted this evidence [163, 164].  
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1.4.6. Association with other UVR-associated lesions 

Numbers of melanocytic naevi are unlikely to be associated with individual risk of BCC 

development. Melanocytic naevi are known to be caused by a combination of genetic 

factors and environmental UV exposure, especially in childhood [129, 165] and are not a 

good direct surrogate measure of the sun exposure required for BCC development. One 

study suggested that numbers of larger moles (greater than 5mm in diameter) is 

associated with an increased risk of BCC however the authors note that as subjects 

performed their own mole counts, that there may have been some problems with 

misclassification of solar lentigines as moles [78]. Studies from Australia and 

internationally have noted the poor concordance between patients’ and doctors’ mole 

counts [166, 167] further discounting the relevance of these results. 

Seborrhoeic keratoses are probably related to sun exposure and so it is intuitive that their 

presence may be associated with risk of skin cancer. This question has not yet been 

adequately addressed and despite their frequency, very little is known about the nature or 

causes of these benign cutaneous tumours. What is known is that seborrhoeic keratoses 

may occur on any site of the body except palms and soles; occur more commonly in 

populations with lighter skin than more darkly pigmented populations [168]; seem to 

increase in frequency with age; and are more common on sun exposed areas of the body 

[169]. The incidence of these lesions may have increased in Australian populations over 

the last couple of decades, and seems to be greater in Australia than the UK [170, 171]. 

Together this data gives circumstantial evidence that UVR is involved in the aetiology of 

these lesions, and does not discount the possiblility of genetic predisposition to these 

lesions. 

It is obvious that despite the growth in evidence of important epidemiological 

associations with development of SCC and BCC, studies have not looked at this evidence 

in the context of population-based family studies, and very little is known about the 

probable complex interaction of these epidemiological risk factors with genetic factors.  

1.5. PTCH gene 
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1.5.1. PTCH as a tumour suppressor gene 

Much of the current understanding of the molecular genetics of BCC comes from the 

identification of causative mutations in genes involved in familial cancer syndromes. 

Perhaps the most significant of these to our understanding of BCC is the discovery of the 

molecular basis of naevoid basal cell carcinoma syndrome (NBCCS), also known as 

Gorlin syndrome. In the last decade, disruptions to the hedgehog signalling pathway have 

been inextricably linked to human tumorigenesis, most notably in the pathogenesis of 

BCC. It has long been known that this pathway is pivotal to embryonic development 

[172, 173]. More recently it has been shown that this pathway also has a role in tumour 

suppression, a function that is not surprising considering that many developmental genes 

continue to function in regulation of cell growth and differentiation after embryogenesis. 

Tumour suppressor genes are recessive oncogenes (or anti-oncogenes) whose 

homozygous inactivation is required for their carcinogenic expression. In NBCCS 

individuals are born with an inherited or germline mutation of one allele of the PTCH 

gene. This causes an autosomal dominant syndrome of cancer predisposition, because the 

remaining allele is likely to be lost in a proportion of susceptible cells through somatic 

events. This is explained by the Knudson ‘two-hit hypothesis’ [174] which suggests that 

the first ‘hit’, or mutation, is inherited; the second hit is the loss of the remaining allele 

(or loss of heterozygosity) due to random somatic events causing mitotic nondisjuction, 

deletion, or mitotic recombination. In NBCCS, each cell in the body carries the mutation, 

so that only the one additional hit (eg mutations following UV radiation) is needed. The 

same mutation is seen in sporadic BCCs, where both hits come from the somatic type of 

mutation [175-178].  Individuals with NBCCS get a head start on the mutation of the 

PTCH gene alleles so that BCCs occur earlier than in their non-syndromic counterparts.  

1.5.2. The Hedgehog pathway 

What is known about the Hedgehog pathway in vertebrates has largely been inferred 

from studies in Drosophila melanogaster. The importance of this pathway is displayed by 

its high degree of conservation through evolution [179]. Drosophila hedgehog works in 

concert with other molecules to lay down the basic framework of the embryo, 
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determining anterior-posterior relationships (segment polarity) in developing structures. 

A number of proteins are recognized to be important for the function of this pathway, and 

in most cases a single gene encoding one of these proteins in Drosophila corresponds to a 

family of related homologues in vertebrates.  

The model for hedgehog signaling in vertebrates involves a receptor complex at the cell 

surface made up of two transmembrane proteins PTCH and smoothened (smo) [180, 

181]. While in Drosophila there is one hedgehog protein, in vertebrates there are three 

homologues, named Sonic, Desert and Indian, although Sonic is the most commonly 

expressed. There are also several PTCH homologs in vertebrates, with PTCH1 (PTCH) 

likely to act as the major receptor molecule for all three forms of human hedgehog. 

PTCH2 is a close homolog of PTCH [182] and its normal function is not known, 

although there is evidence for its involvement in a medulloblastoma and also a BCC 

tumour, and thus it may rarely act as a tumour suppressor gene in these tumours [183].  

PTCH is a 12-pass protein that binds the protein hedgehog, whilst smoothened is 

responsible for transducing the hedgehog signal, promoting transcription of downstream 

target genes. In the absence of hedgehog binding, PTCH holds smoothened in an inactive 

state, thus inhibiting signalling to downstream genes. When hedgehog (hh) binds to the 

receptor complex (via PTCH), PTCH inhibition of smoothened is released and the signal 

is transduced.  It is unclear how these two surface molecules interact with each other; 

directly (eg. via a conformational change), or indirectly (eg. via a catalytic mechanism 

[184]).  

Downstream mediation of the hedgehog signal in Drosophila occurs via a zinc finger 

transcription factor, cubitus interruptus (ci). In the absence of a hedgehog signal, this 

molecule forms a tetrameric complex at the microtubules with three proteins; fused, 

suppressor of fused, and costal-2, causing cleavage of ci to generate a smaller fragment 

that enters the nucleus and prevents transcriptional activation. In the presence of a 

hedgehog signal, the tetrameric complex dissociates and inhibits the cleavage of ci 

causing a full length ci to enter the nucleus and activate target genes [185]. Once again 

the vertebrate has three homologues of the Drosophila ci, and these are named Gli1, Gli2 

and Gli3 after their role in human gliomas [186].  
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1.5.3. Target genes 

Studies have uncovered many possible target genes of the hedgehog pathway and these 

are mostly genes involved in cell cycling, cell adhesion, signal transduction and 

regulation of apoptosis [187, 188]. Hedgehog signaling has been shown to oppose cell 

cycle arrest and increase the replicative capacity of cultured epithelial cells [189]. 

Extrapolation from target genes of Drosophila PTCH implicates several possible target 

genes for humans: PTCH itself, signaling-protein members of the Wnt family (wingless 

in Drosophila) and members of the TGFβ family (decapentaplegic in Drosophila) 

encoding the bone morphogenetic proteins (BMPs) [190]. The upregulation of PTCH 

expression is thought to cause the sequestration of hedgehog within the cells that it is 

produced, thus limiting its further movement [191]. The Wnt and TGFβ family proteins 

may be the main mediators of the hedgehog effect by both autocrine effects and paracrine 

effects on surrounding tissues [192]. An expected consequence of Wnt overexpression in 

BCC is increased levels of intracellular β-catenin, a protein that interacts with E-cadherin 

and is important in cell adhesion [193, 194]. The TGFβ superfamily members have 

diverse functions with effects on cell proliferation, expression of extracellular matrix 

proteins, morphogenic movements, apoptosis, and differentiation [195]. BMPs in 

particular play an important role at sites of epithelial-mesenchymal interaction and may 

be important in mediating tumour invasion [196]. There is also some evidence that Gli1 

and Gli2 may mediate the carcinogenic effect. The Gli1 gene has been previously shown 

to act as an oncogene in brain tumours including medulloblastomas [186]. More specific 

to its role in the hedgehog pathway, mouse models overexpressing Gli1 or Gli2 in the 

epidermis develop skin tumours that resemble BCCs [197, 198]. 

1.5.4. Naevoid Basal Cell Carcinoma (Gorlin) Syndrome - NBCCS  

NBCCS was first described in 1960 [199] and is a rare autosomal dominant disorder 

characterized by three ‘major’ features - multiple basal cell carcinomas, dyskeratotic 

palmar and plantar pitting, and odontogenic keratocysts. Many other developmental and 

skeletal anomalies constitute ‘minor’ features and include overgrowth, epidermal scysts, 

calcified falx cerebri, rib anomalies such as bifid ribs, cleft lip and palate, and spina 
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bifida occulta. Other tumours also occur with increased frequency in this disorder and 

these include medulloblastoma, ovarian fibromas, meningioma, and rhabdomyoma [200]. 

The most common and debilitating of all the effects of this syndrome are the BCCs that 

appear much earlier than in the normal population and can number more than 500 in a 

lifetime [201].  

As with other cancer susceptibility genes, a proportion of those carrying the mutation do 

not actually develop the disease, and it is likely that the actual manifestation of tumours 

depends on the constellation of gene and environmental risk factors particular to the 

family and individual. For example, Australian sufferers develop BCCs at an earlier age 

than their English counterparts, which is likely to be due to genetic susceptibility 

interacting with risk due to ultraviolet light exposure in the different environments [201, 

202]. In Australia, nearly 50% of Gorlin syndrome patients will have at least one BCC 

removed prior to the age of 20, a rate 900- fold higher than the Australian population of 

that age. By the age of 40, 95% of Australian Gorlin syndrome sufferers will have had a 

BCC, some 300- fold higher than the rate of the general population [1, 201]. In the UK 

Gorlin sufferers also have a 900- fold increased risk of developing BCC eventually, 

however they do so at an older age, with only 4% having had a BCC removed by the age 

of 20, a 50- fold increase compared with the population [54, 202, 203]. Some 15% of 

Gorlin syndrome sufferers internationally do not manifest basal cell carcinomas at all, 

and this figure is even higher for individuals from darker skinned races. The BCCs in 

NBCCS may appear as early as two years of age, especially on the nape and most often 

proliferate between puberty and 35 years of age [200]. The syndrome’s prevalence is now 

agreed to be around 1 in 60,000 [204].   

1.5.5. Discovery of PTCH mutations as cause of  NBCCS 

An interesting gene-hunting detective story unfolded over the last decade, finally 

culminating in the discovery of the PTCH gene as the gene responsible for NBCCS. 

Tumour suppressor genes are regulators of cell growth and differentiation, and murine 

knockout models support their role in normal development [205] [206, 207]. The clinical 

features and behaviour of neoplasms in NBCCS suggested that the underlying defect may 
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have been a tumour suppressor gene: tumours are multiple and occur relatively early 

compared with sporadic tumours of the same type, and the syndrome also features 

derangements in normal development. If the Gorlin syndrome gene functioned as a 

classical tumour suppressor, then it should be homozygously inactivated in BCCs and the 

other tumour types in this syndrome. Since we know that inactivation of a tumour 

suppressor gene often occurs through mutation of the first allele (the first hit) and loss of 

the second allele (the second hit) then we would expect to see loss of heterozygosity 

(LOH) for polymorphisms surrounding the tumour suppressor gene.  

Linkage analysis placed the gene on chromosome 9q22-31 [176, 208-212]; [213]. As part 

of a collaborative positional candidate search, Hahn et al [213] then found as many genes 

as possible that mapped to that area and searched for submicroscopic rearrangements in 

patients. The PTCH gene was found to lie in the correct region of the chromosome and 

patients were screened for mutations in this gene using single strand conformation 

polymorphism analysis (SSCP) and DNA sequencing. Inactivating mutations within the 

PTCH gene were found in six unrelated NBCCS patients. At almost the same time, 

Johnson et al [214] postulated PTCH as a candidate for NBCCS and found two affected 

individuals with inactivating mutations by SSCP. Furthermore, both of these seminal 

studies also found the PTCH gene to be mutated in sporadic BCCs, implicating this gene 

as a possible aetiologal necessity in the development of non-syndromic BCCs as well. 

There is wide phenotypic variation in NBCCS-affected families, and screening of the 

PTCH coding region also reveals a wide spectrum of mutations in NBCCS patients. The 

majority of the mutations found are predicted to result in premature protein truncation 

[175, 215], but the phenotypic variability does not seem to correlate with the nature or 

location of the mutations in PTCH. Interestingly, even kindreds with identical mutations 

differ markedly in their clinical features, suggesting that other genetic or environmental 

factors may be important modifiers of developmental and neoplastic traits [215].  

1.5.6. PTCH inactivation in sporadic BCC 

Further evidence has since been found for the inactivation of PTCH as a major factor in 

sporadic BCC formation. LOH has been found in over 50% of BCCs suggesting that in 
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many tumours one of the alleles is inactivated by deletion [176]. In some tumours 

without LOH, direct sequencing reveals inactivating mutations in PTCH that have not 

resulted in loss of the allele, suggesting that mutation of PTCH may be a necessary step 

for tumour formation of sporadic BCCs [216]. It is likely that in tumours not showing 

allelic loss, both copies of the gene have undergone point mutation. As with NBCCS 

PTCH mutations, where mutations are found, most lead to premature protein termination, 

and a number of them are C-to-T substitutions typical of ultraviolet B irradiation (UVB) 

involvement. UVB radiation mainly produces DNA lesions between adjacent pyrimidines 

(TT, CT, TC, CC) – the ‘UVB signature’ – and two types of lesions are produced; the 

cyclobutane pyrimidine dimers and the 6-4 photoproducts [217-219]. However, more 

than 50% of the PTCH mutations in sporadic BCCs do not have the UVB signature [216], 

suggesting that environmental factors other than UVB exposure may be important in the 

pathogenesis of BCCs (eg. UVA exposure). Mutations in PTCH have also been detected 

in BCCs associated with Xeroderma Pigmentosum (XP) and in contrast to sporadic 

tumours, XP tumours show a high rate of UVB signature mutations [77].  This is 

consistent with the mechanism of XP whereby sufferers are unable to repair DNA lesions 

such as mutations caused by UVB. 

Despite an absence of an animal model for BCCs, tumours that closely resemble BCCs 

have been demonstrated in PTCH1 +/- knockout mice, and exposure to UVR increases 

the size and number of these tumours and shifts their histological features so that they 

more closely resemble human BCCs [4]. Studies also show that sonic hedgehog signaling 

is a component of T-cell responses to mediate CD4+ T-cell effector function and that 

response varies in individuals, suggesting that PTCH alleles may be involved in the 

effectiveness of immune surveillance [220]. 

1.5.7. PTCH involvement in other tumorigenesis 

A number of key members of the hedgehog signaling pathway are involved in 

tumorigenesis of a range of tumours. These include medulloblastoma, meningioma [221], 

squamous cell carcinomas of the oesophagus [222], transitional cell carcinomas of the 

bladder [223], and the benign skin lesions trichoepitheliomas [224]. Several of these 
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sporadic tumours are not involved in NBCCS therefore suggesting a wider role for PTCH 

mutation in cancer pathogenesis. Other members of the hedgehog pathway have been 

investigated for their role in tumorigenesis. Activating mutations of smoothened have the 

same downstream effects as inactivating mutations of PTCH, and a number of 

independent studies have detected activating mutations of smoothened in 10 to 20% of 

BCCs [225, 226]. Mice overexpressing downstream members of the hedgehog pathway, 

Gli1 or Gli2, develop BCC-like lesions [197, 198]. The Hh gene has also been 

implicated, and overexpression in transgenic human and mouse skin leads to tumours that 

are morphologically indistinguishable from BCCs [227, 228]. The induction of BCC with 

the activation of this pathway alone in the absence of deliberate mutagenesis suggests 

that activation of the hedgehog signaling pathway initiates BCC formation. The exact 

mechanism of dysregulated hh signaling and increased risk of cancer development 

remains to be elucidated. Interestingly, hedgehog pathway target-gene overexpression is 

seen in all BCC subtypes suggesting that this dysregulation is an early rate-limiting step 

in BCC carcinogenesis [177]. 

1.5.8. PTCH pathway in future therapies 

 A better understanding of the molecular processes underlying the pathogenesis of BCCs 

may allow improvements in therapeutic success in its management. Therapies involving 

inhibition of hedgehog signaling might be expected to suppress tumour growth. 

Cyclopamine from the Veratrum lily species is know to inhibit hedgehog signaling and 

reverse the effects of oncogenic smoothened and PTCH mutations [229]. There appears 

to be no adverse effects of exposure of adults to this compound, and it is therefore 

interesting as a basis for a possible therapeutic agent for tumours resulting from 

dysregulation in hedgehog signaling. 

1.5.9. PTCH polymorphisms and BCC 

Some important preliminary work has been performed to investigate PTCH 

polymorphisms in relation to BCC susceptibility. The consequences of polymorphisms of 

exons of PTCH are unknown, and they may have functional implications. There is 

increasing evidence that even silent substitution of nucleotides (effecting no amino acid 
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change) could influence mRNA processes, including affecting splicing accuracy or 

efficiency [230]. This may be the case for the PTCH intronic SNP IVS 15+9 which may 

form part of an intronic enhancer region, as the adjacent sequence conforms to a splicing 

enhancer sequence identified in the growth hormone gene [231, 232]. Haplotypes may 

confer increased risk through encoding of a protein with less efficient function by the 

combination of the individual effects of the SNPs involved; alternatively they may be in 

linkage disequilibrium with other significant variants. 

One research group have found significant associations between certain PTCH 

haplotypes and rate of development of further BCCs/year in English subjects who 

initially developed a head/neck BCC [233]. Subjects were genotyped for two exonic 

SNPs (exon 12: C>T 84 and exon 23: T>C 140) and one intronic SNP (exon 15: IVS 

15+9). They found no association between rate of BCC accrual and these genotypes 

individually, but did find an association with the haplotype of the exon 12/exon 23 

variant, giving a relative risk of increased BCC accrual (BCCs/year for one year 

following presentation) of 2.46 (95% CI 1.27- 3.97). The exon 23 variant causes a proline 

to leucine change (Pro>Leu), and has been linked with breast cancer risk in women using 

the oral contraceptive pill [234], suggesting that there is possibly an as-yet-

uncharacterised functional significance to this SNP. The haplotype association with BCC 

accrual remained significant when controlled for UVR-exposure parameters, skin type, 

gender and age at first presentation. These researchers also found an association between 

the exon 15 variant/exon 23 wild type haplotype and decreased risk of BCC in a case 

control analysis (OR 0.44, p=0.009), with significance unaffected by adult UVR 

exposure. It should be noted that despite a claim to control for UVR-exposure 

parameters, childhood and adolescent exposure were not included in the UVR-exposure 

questionnaire for either study; and as it is evident that UVR exposure at these ages is 

likely to affect later risk of BCC [78] and omission of this may overestimate the effect of 

the genetic association in these analyses. Nevertheless, the importance of further 

investigation into the significance of PTCH polymorphisms with respect to risk of BCC 

is highlighted by these studies. 
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The exon 23 Pro>Leu SNP has been investigated further in a pilot study that examined 

the association with populations of differing pigmentary characteristics and risk of 

NMSC [235]. The Pro>Pro genotype was significantly less common in populations with 

characteristically lighter skin colour (eg. Swedes) compared with populations with darker 

skin colour (eg. African-Americans), suggesting a possible association between the 

eumelanin-to-phaeomelanin shift and a shift from the Pro>Pro genotype to Leu-

containing genotypes. There was a non-significant trend for increasing Pro>Pro 

frequency with increasing BCC severity (early-onset or multiple tumours). The authors 

suggest that the failure to replace Pro in phaeomelanin-prevalent populations may be 

associated with an increased population risk for BCC, and an increased individual risk for 

multiple BCC.  

No studies have investigated the involvement of other hedgehog pathway genes or indeed 

any other possible BCC susceptibility genes in the general population outside of the 

context of NBCCS.  

1.6. Familial Cancer Syndromes  

Several other familial cancer syndromes involve a predisposition to the development of 

multiple BCCs. Bazex-Dupre-Christol syndrome was first described in 1966 [236] and is 

a rare X-linked dominant syndrome characterized by congenital generalized 

hypotrichosis, follicular atrophoderma and multiple early-onset BCCs occurring in the 

second or third decade of life that have an aggressive course and are prone to relapse 

[237, 238].  

Rombo syndrome was first described in 1981 and is a rare familial disorder for which 

inheritance is likely to be autosomal dominant [239-241]. This rare familial disorder has 

skin changes that become evident at seven to 10 years of age with cyanotic redness and 

follicular atrophy of the sun exposed skin, and later milia-like papules and telangectasias. 

The skin changes become more pronounced with age and lead to a “worm-eaten” 

appearance of the skin known as atrophoderma vermiculatum. BCCs develop around the 

age of 35, depending on the exposure to other risk factors such as UVR. 
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The recessively inherited diseases; xeroderma pigmentosum (XP), albinism and 

epidermo-dysplasia verruciformis, are also associated with the development of multiple 

BCCs in association with a predisposition to NMSC in general. Patients with XP are 

deficient in the repair of UV-induced DNA lesions and are characterized by their 

predisposition to early-onset NMSC (average age 10) on sun-exposed skin [77, 242]. XP 

cells are deficient in those gene-products required for catalyzing the incision step in 

nucleotide-excision repair of damaged DNA [243, 244]. Albinos also develop BCC at an 

increased rate compared with normally-pigmented persons, although SCCs are more 

common in this group [245]. Epidermo-dyplasia verruciformis is a rare multifactorial 

disorder involving genetic, actinic, and immunologic factors, with a susceptibility to 

NMSC (mostly SCC) associated with the development of multiple pityriasis versicolor-

like lesions as well as flat wart-like lesions [246]. 

There have been several unrelated reports of non-syndromic hereditary BCC [3, 247] 

suggesting the possibility of a genetic predisposition to BCC in addition to the rarer 

familial syndromes described: these include cases exhibiting unilateral distribution 

suggesting mosaicism [248-250]. The PTCH gene is an obvious candidate to contribute 

to non-syndromic susceptibility to BCC, either via a different mutation spectrum or in the 

absence of modifiers that are essential for the full Gorlin phenotype. The reports of 

polymorphisms in this gene associated with number of BCCs per year and their possible 

association with pigmentary factors have given weight to this possibility [231, 233, 235].  

1.7. MC1R 

1.7.1. Melanin and pigmentation 

Cutaneous pigmentation results from the synthesis and distribution of melanin in the skin. 

Melanin is a pigmented heteropolymer produced by melanocytes in the complex process 

of melanogenesis, the regulation of which involves more than 80 genetic loci [251]. 

Melanocytes are specialized dendritic cells that reside at the dermoepidermal junction 

and synthesise and package melanin within membrane bound organelles called 

melanosomes. The melanosomes are distributed to the keratinocytes and the growing hair 

shaft through the dendritic processes of the melanocytes. The keratinocytes then 
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differentiate, mature and migrate to the epithelial surface where the melanin creates light-

absorbing and light-scattering effects depending on its quantity and chemical composition 

[252].  

1.7.2. MC1R receptor 

The MC1R receptor is one of five forms of melanocortin receptors (MC1R - MC5R) that 

have distinctive tissue distribution and physiologic roles. All are activated by the 

melanocortins, a family of structurally-related peptide hormones derived from one 

precursor protein, proopiomelanocortin (POMC). These include corticotropin (ACTH) 

and the α (alpha), β (beta), and γ (gamma) melanocyte stimulating hormones (MSHs) 

[253, 254]. The melanocortin-1 receptor (MC1R) is a G-protein coupled receptor with 7 

transmembrane spanning domains. Although melanocytes have the highest density of 

these receptors, it is expressed in many other cell types in the skin including 

keratinocytes, fibroblasts, endothelial cells and antigen presenting cells [255]. Ligand 

binding activates the enzyme tyrosinase gene expression and activity, melanocyte 

proliferation and melanocyte dendricity [256-258].  

1.7.3. Forms of Melanin  

Melanin exists in two differing forms within human skin, brown-black eumelanin and 

yellow-red pheomelanin. These forms have differing unique biochemical and 

ultrastructural properties within melanosomes. The eumelanosomes are large and 

elliptical with a highly organized matrix, containing high molecular weight, poorly 

soluble melanin. The pheomelanosomes in contrast are small and spherical with an 

unstructured particulate matrix containing low molecular weight, soluble pheomelanin 

[259]. MC1R expression appears to be centrally important to the regulation of 

melanocytes, including induction of photoprotective melanisation in response to UV 

exposure.  

The ratio of eumelanin to pheomelanin as well as total melanin content is higher in 

persons with more darkly pigmented skin compared with those of lighter pigmented skin 

[260]. Pheomelanin levels are generally highest in very red hair, while eumelanin 
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predominates in the hair of most other colours [261 review]. Eumelanin is thought to be 

more photoprotective than phaeomelanin because it is more resistant to degradation by 

UV and more efficient at scavenging reactive oxygen radicals produced by exposure to 

UV [262]. Eumelanosomes also form supranuclear caps that shield the nuclei of cells 

from UV radiation therefore conferring additional photoprotection [263]. Pheomelanin, in 

addition to absorbing a narrower range of wavelengths than eumelanin, is photolabile and 

generates oxidative stress on irradiation, leading to less efficient photoprotection and 

increased photosensitivity [251]. 

1.7.4. MC1R variants 

Following the first report of an association between germline variant MC1R alleles and 

red hair [264], human MC1R variants have been found to occur in more than 50% of 

individuals in white populations [265-267]. There are over 30 variant alleles reported in 

European-derived populations [264, 266-273], with several of these found to be 

associated with red hair and fair skin. There is in fact, such a great deal of MC1R coding 

diversity that it is difficult to identify a wild type. Several groups have looked at a 

combination of gene sequences to deduce a consensus sequence [266, 268, 273], using 

phylogenetic analysis of MC1R gene sequences in geographically diverse populations 

[272]. 

1.7.5. Red Hair Colour variants of MC1R 

The three most common red hair colour variants account for 60% of all cases of red hair- 

Arg151Cys, Arg160Trp, and Asp294His, with individuals carrying two of these alleles 

almost always having red hair [266]. The frequency of these variants differs according to 

the population; studies show the allele frequency of these three types together is 

approximately 20% in Australians [252, 274] and nearly 50% in an Irish cohort [266]. 

These three Red Hair Colour (RHC) alleles give rise to loss-of-function mutations 

although some studies suggest that they may retain some function and that red hair is not 

the null phenotype [275, 276]. The RHC alleles also contribute to fair skin and poor 

tanning response to UV, giving rise to the ‘RHC phenotype’. These phenotypic features 

are explained by increased phaeomelanin in the skin and hair and/or decreased capacity 
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to produce eumelanin, creating a red colour in the hair shaft and reduced skin 

photoprotectivity [264]. There is also evidence that RHC alleles impart a heterozygote 

effect: one study shows that presence of one allele increases the odds of having red hair 

nine- to 16-fold and fair skin five- to seven-fold [266]. The weaker association with skin 

colour in this study may have been due to the limitations imposed by the use of the 

Fitzpatrick classification of skin type used in its determination. 

It is clear that MC1R variant-allele presence is necessary for the RHC phenotype but not 

sufficient. Individuals with identical MC1R variants may nevertheless display different 

hair colour (eg auburn, red or strawberry blonde): even monozygotic twins (sharing the 

same genotype) have been found to differ in their hair colour [266] [268, 277]. Similarly, 

the exact relationship between skin phototype and pheomelanin/eumelanin production in 

the human epidermis is not straightforward [260, 278], although it appears that activation 

of MC1R is involved in switching between eumelanogenesis and pheomelanogenesis 

[279]. Thus other loci must be involved in creating the RHC phenotype, perhaps by 

moderating the expressivity of MC1R variants or masking of the trait. 

1.7.6. MC1R associations with skin cancer 

The involvement of the MC1R locus in pigmentary traits and the cutaneous response to 

UVR makes it an intuitively relevant candidate gene for susceptibility to cutaneous 

malignant melanoma and nonmelanoma skin cancer. MC1R gene variants have been 

shown to be associated with melanoma independent of their association with 

pigmentation phenotype giving two- to four-fold increased risk [274, 280, 281]. The large 

number and low frequency of MC1R alleles make assessment of this gene in the 

pathogenesis of skin cancer difficult, and initial explorations of a possible link with 

NMSC yielded inconsistent results [266] [282]..  

More convincing evidence for associations between MC1R genotype and NMSC has 

since been demonstrated. Box et al [283] demonstrated an association between higher 

NMSC risk individuals and the nine commonly reported MC1R variants, an association 

that persisted after adjusting for pigmentation phenotype. A larger case-control study 

[267] replicated these findings and extended them to include most of the other known 
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MC1R variants. Carriers of any two variant alleles in this study were at increased risk of 

BCC and SCC. Carriers of one variant allele had half the risk, confirming the 

heterozygote effect of this gene. Unfortunately, the MC1R studies involving NMSC to 

date have suffered from a lack of reliable and objective consensus measure of measuring 

constitutive skin colour [284, 285]. These results do however indicate that MC1R variant 

status may be an independent risk factor for the development of BCC: this needs to be 

further explored. Also, other genes and proteins may be involved in modifying the 

expression of MC1R variants. For example, it is possible that PTCH polymorphisms such 

as exon 23 Pro>Leu (see section 1.5.9) or mutations in this gene could interact with 

MC1R variant status to affect NMSC risk.  

1.8. p53 

The gene P53 encodes the protein p53 which has been termed “guardian of the genome”. 

The gene is located on chromosome 17 band p13, and the protein is a 53 kd nuclear 

phosphoprotein [286, 287]. Mutations of this gene occur in a wide variety of tumour 

types and are in fact the most commonly detected genetic abnormality in human cancer 

[288]. The protein is known to be associated with malignant melanoma susceptibility 

through its association with the protein p14ARF and the CDKN2A locus [289]. The p53 

protein functions to sense genotoxic injury and arrest cell division in late G1 of the cell 

cycle, allowing DNA repair to occur before replication. In the case of extensive DNA 

damage, it induces apoptosis in an effort to eliminate defective and potentially malignant 

cells. Mutated p53 can act in one of two ways to contribute to malignancy; as a dominant 

negative oncogene by affecting normal p53 activity [290] or as a tumour suppressor gene 

by creating a nonfunctioning p53 protein in the presence of further mutational events 

[291]. 

A study by Rady et al was the first to identify P53 mutations in BCC, finding 50% of 14 

tumours carrying a P53 mutation, and was the first to give evidence that these are likely 

to be UV induced mutations [292]. Studies following this found mutations from between 

44% and 100% of tumours [8, 84, 291, 293-296], and showed that the UVB portion of the 

spectrum is likely to be more important than UVA in p53 mutations [84]. Mutations in 
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NMSC occur at several hotspots that are much less frequently mutated in internal 

cancers, and most of them contain the dipyrimidine transition mutation that indicates UV 

induced origin [293, 297, 298]. Most of these hotspots are localized in an area of the gene 

that is evolutionarily conserved [299], suggesting that the mutations are likely to have 

functional significance and therefore act as causative mutations. Skin-cancer-specific 

hotspots have been seen to be repaired more slowly by nucleotide excision repair than 

those at surrounding positions on the same strand, supporting a role in tumour induction 

[300] [72]. There are however, likely to be other mechanisms at work in BCC to 

inactivate P53, some tumours without P53 coding sequence mutations have been found 

to harbor aberrant p53 protein stability [293].   

BCC case subjects have been reported as three times more likely to have a P53 mutation 

in normal skin taken from the mirror-image site to the cancer site, suggesting that P53 

mutation is an early occurrence that may predict the risk of BCC development [301]. P53 

point mutations may occur in cells during sun exposure early in life, which then over 

many years acquire other genetic alterations required for BCC [293]. This multiple-

mutation concept is supported by the finding that multiple samples from individual 

tumours have at least one P53 mutation in common, suggesting that the tumour is derived 

form a single cell with a unique P53 mutation as an early event.  

It is also possible that there is a genetic interaction in tumour suppression between PTCH 

and P53, with evidence from PTCH +/- mice that concomitant loss of P53 dramatically 

accelerated tumorigenesis in medulloblastomas [302]. A germ line polymorphism in P53 

has also been noted and its contribution to HPV induced skin cancer remains 

controversial: polymporphisms may lead to increased susceptibility of the p53 protein to 

HPV-mediated degradation [303, 304].  

1.9. HPV 

While the aetiologic role of HPV in anogenital cancer is well established, the 

epidemiological, molecular and functional data required to fulfill the World Health 

Organisation criteria for viral carcinogenesis have yet to be met in NMSC [305]. Fifteen 

epidemiologically defined high risk mucosal HPV types have been found to cause a 



59 

persistent infection of the cervix as a necessary risk factor for the development of cervical 

cancer [306]. An association between papillomaviruses and NMSC pathogenesis was first 

seen in an animal model whereby SCCs of the skin developed reproducibly following 

experimental infection from virus-induced warts in rabbits [307]. Unlike HPV 

involvement in cervical cancer, HPV may not be necessary for NMSC pathogenesis but 

simply act as a cofactor along with UV radiation exposure. Complicating all deductions 

made with regard to HPV in NMSCs is the fact that HPV is detected with varying 

prevalence in normal skin: the prevalence ranges from 4.7% [308] to 35% [309].  

The earliest evidence for an association between HPV and NMSC in humans originated 

in studies on patients suffering from epidermo-dysplasia verruciformis (EV), a rare 

hereditary disease. The genetic basis of this disorder is not understood, however EV 

patients have increased susceptibility to a group of HPV types (differing from the 

mucosal types) and develop multiple skin warts; multifocal NMSC (mostly SCC) also 

occur on sun exposed skin at a young age [246]. EV HPV types have been detected in 

over 90% of skin cancers in EV patients. It is clear that genetic and immunologic factors 

combine with HPV infection and UVR exposure in EV patients to contribute to their 

NMSC susceptibility. The suggestion of an association between HPV and NMSC is also 

inferred from the susceptibility of renal transplant recipients (RTRs) to both viral warts 

and NMSC (mostly SCCs), suggesting a pathogenic role of HPV in tumour development 

[310] [310] [97]. The long term immunosuppression needed to support a renal transplant 

is associated with an increased risk for certain forms of malignancies including that of the 

skin [311]. HPV has been found in high prevalence and of a similar spectrum in both 

BCCs and SCCs of RTRs prompting some investigators to suggest a differing role of 

HPV in the different tumour types, leading to preferential development of SCCs [312]. 

Most studies of the association between HPV and NMSC are small case series without 

control groups. Early studies employed laboratory methods that caused variability in 

prevalence and spectrum of HPV types found. Despite increasingly sensitive laboratory 

methods, no specific subset of HPV types has been consistently associated with either 

BCC or SCC in immunosuppressed or immunocompetent populations [308, 312-316]. 
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Studies on HPV prevalence in NMSC lesions of immunocompetent subjects from the 

general population report lower figures than those found in RTRs with lower potential for 

mixed HPV infection [308, 312, 315, 317]. With newer laboratory techniques however, 

studies have found HPV infection in over 25% of lesions (see table 1.3).  

 
 

Table 1.3 Studies reporting HPV prevalence in NMSC lesions of immunocompetent people 
NMSC type Iftner et al. 

[308] 
Harwood [312] Shamanin 

[315] 
Biliris [317] 

BCC 27.8% 36.7% 60%# 30.5% 
SCC 59.7% 27.2% 65% 13.0% 
# Note: only 3 BCCs included in this study 
 

Recently there has been one  report of high risk genital type HPV infection of both BCC 

and SCC with significantly greater prevalence seen in malignant lesions compared with 

warts or precancers, supporting an aetiological role of the high risk genital types in skin 

cancer [308]. Patients who were DNA-positive for the high risk types HPV-16, 31, 35 

and 51 were nearly sixty times more likely to have NMSC as compared with unaffected 

controls. This greatly increased risk was calculated after adjusting for age, gender, and 

sun exposure, and despite proving an association only, provokes important questions 

regarding the possible role of specific HPV subtypes in the pathogenesis of skin cancer. 

This evidence is supported by earlier studies that have found mucosal HPV types in skin 

cancers [315, 317-319]. A role for high risk genital types in the aetiology of NMSC 

makes biological sense considering their link already with skin cancer in EV patients and 

to cervical cancer. In addition, three of these types have also been shown to posses 

transforming activity in tissue culture [320, 321].  

Papillomavirus has been detected in the long-living epithelial root sheath and bulb of hair 

follicles in rabbits, [322], which may be relevant to the development of NMSC, as the 

hair follicle plays an important role in this process. The bulge region of the hair follicle is 

considered an immune-privileged site that may contain the reservoir from which HPV 

infection spreads [323]. Recent studies have examined the prevalence of HPV in eyebrow 
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hairs and the association with NMSC, but no firm associations with NMSC have been 

found so far [324] [323, 325].  

E6 and E7 gene products of mucosal HPVs bind to and degrade p53 via the ubiquitin 

pathway and the retinoblastoma protein (pRb) respectively [326]. It was recently 

discovered that certain EV HPV types may bind pRb as efficiently as the mucosal types, 

and that they show transforming properties in human keratinocytes [327].  Other 

cutaneous HPV types from RTRs may mediate p53 carcinogenesis following exposure to 

UVB [328]. Clearly further work is also needed in this area to delineate the involvement 

of HPV and UV light in NMSC carcinogenesis.  

1.10. Other Genetic Influences On BCC Susceptibility And Development 

A number of members the human herpes virus family contribute to human cancer 

pathogenesis: Epstein Barr Virus (EBV) has been implicated in nasopharyngeal 

carcinoma and African Burkitt’s lymphoma [329]; and cytomegalovirus (CMV) has been 

associated with cervical carcinoma [330] and adenocarcinomas of the prostate [331] and 

colon [332]. Because of the ubiquity of CMV and the high seroconversion rates, it has 

been difficult to establish an association between this virus and human cancer, and has 

only been looked at recently with respect to NMSC. A recent study demonstrated a 

frequency of CMV infection in NMSC lesions that suggests a possible role for this herpes 

virus in both SCC and BCC development and this warrants further exploration [333].  

UVR constitutes an oxidative stress on the skin, generating radical oxygen species such 

as hydroxyl and superoxide radicals, hydrogen peroxide and singlet oxygen, that lead to 

protein, lipid, DNA, and gene mutation [334, 335]. It is intuitive to assume that the way 

individuals deal with this oxidative stress may contribute to their susceptibility to 

cutaneous carcinogenesis. The glutathione-S-transferases (GSTs) are involved in the 

protection against this stress as they are critically involved in detoxification of 

electrophilic compounds such as carcinogens and cytotoxic drugs, and they act to protect 

DNA from damage and adduct formation through conjugation [336-338].  GSTs are a 

large family of isoenzymes that comprise five classes: alpha (GST A), mu (GST M), pi 

(GST P), theta (GST T) and zeta (GST Z) [339, 340]. Polymorphic loci have been 
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identified in all GST gene families, but the pathological consequences of these remain 

largely unknown [341].  The polymorphism displayed by these genes makes them 

obvious candidates for cancer susceptibility: reduced ability to remove potential 

carcinogens may result in mutations in key tumour suppressor genes. This has already 

been shown for GST polymorphisms in association with p53 in lung [342] and ovarian 

tumours [343].  

In relation to skin carcinogenesis, interest has focused on polymorphisms in GST T1 and 

GST M1 as both are expressed in skin [341]. It should be noted however that only a 

proportion of the GST enzyme have been studied: it is possible that the genes with the 

greatest effects on skin carcinogenesis have not been investigated. GST polymorphisms 

appear to have a greater influence on outcome within different BCC subgroups rather 

than on susceptibility to BCC overall: variants may affect BCC tumour number and 

accrual. Both GST M1 and GST M3 in combination with skin type I appear to influence 

BCC number [344, 345]. Tumour accrual has been shown to be influenced by male 

gender, number of BCCs at presentation and presence of GST T1 null [345, 346]. GST 

T1 null also appears to be associated with the truncal phenotype compared with patients 

with no truncal lesions [347, 348]. An interesting and poorly understood interaction 

between the GST M1 A and B alleles has been found with GST M1 A/B protective 

against multiple BCC, but not the homozygous state of GST M1 AA or GST M1 BB 

[349]. GST polymorphisms have also been associated with MM [350] and SCC [351] 

susceptibility. 

Cytochrome P450 (CYP) enzymes are also genetically polymorphic and have been 

studied with respect to BCC susceptibility and development. They are also involved in 

detoxification of numerous xenobiotics including carcinogenic components of tobacco 

smoke [352] [341]. Again, associations of polymorphisms of CYP loci have been found 

only with respect to subgroups of patient with BCC rather than overall risk for these 

cancers. Associations are seen with increased numbers of BCCs [344], with truncal 

tumours in association with GST T1 null and with increased no of primary lesions, 

increased accrual [344] and reduced time to next tumour presentation [347]. 
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DNA repair systems are complex and include mismatch repair, photolyases, base 

excision and post-replication repair. The maximum rate of pyrimidine dimer repair in 

normal skin cells is reportedly barely sufficient to cope with the rate at which damage is 

imposed on skin in full sunlight [353]. DNA repair capcity (DRC) was looked at by a 

group who used a plasmid/host-cell reactivation assay in which a UV-damaged 

expression vector plasmid is transfected into peripheral blood T cells from a subject. The 

host cellular repair enzymes repair the photochemical damage in the plamid and it is 

possible to measure the end amount of repair [72]. DRC measured in this way in controls 

shows an age related decline from the age of 20 at a rate of about 0.61% per year, adding 

up to a 25% loss in repair ability over 40 years [72]. This is consistent with the age 

related decline in DNA repair seen in other studies although results have not been 

repeatable [354] [355-357]. This apparent decline in DNA repair activity of normal 

lymphocytes has also been seen in repair of UV [358], x-ray [359], and gamma 

irradiation [360]. Subjects with early onset of BCC (< 44 years) and those with a family 

history of BCC have been shown to have a significantly lower DRC than control subjects 

[72]; DRC has also been linked to MM with a lower DRC seen in those with MM on sun-

exposed areas than unexposed [361].  It has been suggested by the authors of these 

studies that the normal decline in DRC with age may account for the increased risk of 

skin cancer that begins in middle age, and that skin cancer in the young may represent 

precocious ageing.   

Several investigators have noted a weak association of multiple BCCs with the HLA 

immunoregulatory loci. An initial study investigated HLA class II antigens with respect 

to ethnic groups found an association between multiple BCCs and HLA-DR1 in non-Irish 

and non-Ashkenazi patients, however the sample size of this group (14 subjects) may 

have been too small to detect a real difference [362]. Other studies supported this 

association in other populations however they were no longer significant once corrected 

for multiple testing [363, 364] or were contradictory [365-368]. A small significant 

negative association between HLA-DR4 and multiple BCC has been seen in two studies 

[364, 365] however this same HLA type was later shown to be positively associated with 

the development of both multiple BCC and malignant melanoma in the same individual 
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[366]. Overall, the role of HLA types in the development of multiple BCCs appears likely 

to be small. 

The Ras gene family has also been implicated in the development of skin cancer however 

appear to have greater links to the aetiology of malignant melanoma [369] and SCC [370, 

371] than BCC. Ras mutations are relatively infrequently seen in BCCs [370, 372, 373], 

however there is evidence that PDGFRα is upregulated in BCC with associated activation 

of the Ras/MAPK pathway [374]. It may be that this pathway is activated in BCCs in an 

analogous way to breast cancer [375] due to a number of factors including 

overexpression of tyrosine kinases.  

1.11. Family and Twin Studies 

The discovery of familial aggregation is a “universal signal for geneticists to begin 

investigation of genetic causes” [376] alongside classical environmental causes that also 

may be shared in families. Systematic study of the patterns of clustering of both common 

and rare cancers has been successful in this aim. In some cases it has led to the 

identification of specific susceptibility genes of strong effect, for example, in the study of 

breast cancer [377, 378] through segregation and linkage analysis. Understanding of 

genetic susceptibility to prostate cancer [379], colon cancer [380], pancreatic cancer 

[381], endometrial cancer [382], and nasopharyngeal cancer [383], have also been 

enriched from this type of research. In the case of melanoma, for example, genetic causes 

of familial aggregation are now understood to include, in a small proportion of cases, rare 

high-penetrance (high lifetime risk) mutations in the genes CDKN2A and CDK4, and 

much more prevalent low-penetrance (mildly elevated lifetime risk) variants in the 

pigment control gene MC1R [384]. 

Twin studies enable the contributions of genetic and environmental factors to the 

aetiology of a disease to be directly examined by comparing the similarity of 

monozygotic and dizygotic twins. Finland has a nationwide Central Population Register 

that includes data on twins, and also a nationwide cancer registry with compulsory 

reporting of all cancers including non-melanoma skin cancers. Case reports of BCC in 

monozygotic twins and in twins of unknown zygosity emerged from this Finnish twin 
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cohort in the 1970s [385]. A more recent study looked at the difference in prevalence 

associated with zygosity by identifying 335 twin pairs of known zygosity in which at 

least one twin had BCC diagnosed between 1953 and 1996 [386]. The co-twin of a twin 

with BCC was found to have an increased risk of BCC (RR 7.0: 95% CI 3.7-1.3), 

suggesting familial aggregation of this cancer. With only 11 concordant pairs for BCC in 

the data from 1976 to 1996, and a total of 16 concordant pairs if the retrospective (1953- 

1975) data was included, there was very little power with which to make conclusions 

regarding the contributions of genetic and environmental effects. The proportion of 

phenotypic variance in susceptibility due to genetic factors was estimated at 8%, however 

the 95% confidence limits were 0-56%. 

There have been very few other studies of familial clustering of BCC outside the context 

of Gorlin syndrome. One Australian study [3] described 1108 consecutive cases of 

histologically confirmed nonmelanoma skin cancers in a single Melbourne clinic over an 

18 month period in the early 1990s. Among these patients, 12 families were identified in 

which more than one member had a nonmelanoma skin cancer and in which the known 

inherited predisposition syndromes were excluded. Because of potentially biased 

ascertainment of cases with a positive family history of skin cancer to the clinic it is not 

possible to conclude whether or not this proportion of family history positive cases is 

greater than would have been expected by chance. However the patterns of family history 

seen are instructive. In 11 of these families skin cancer had occurred in more than one 

generation, and in nine multiple skin cancers had developed in two or more generations. 

Most of the affected members developed BCCs only; there were some with both BCCs 

and SCCs, and a few with only SCCs. This suggests that familial forms of NMSC 

predisposition may exist, that they may genetic and cancer type-specific. The vertical 

patterns of ‘inheritance’ seen indicate that they may be an autosomal dominant trait. 

Case reports also support the existence of familial aggregation of BCC with case reports 

of multiple superficial BCC in twins [387] or in two generations, including instances of 

male-to-male transmission [247, 388]. There have also been three reports of unilateral 

manifestations of superficial BCC [250], in which familial cancer syndromes were 

excluded by examination and in one case also by radiography. The phenomenon of 
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lateralisation is difficult to explain without the assumption that non-syndromic hereditary 

multiple BCC can occur as a distinct Mendelian trait, with the apparent mosaicism likely 

to have occurred as an early postzygotic mutational event. Thus, a separate phenotype of 

hereditary non-syndromic mulitiple BCC may exist, characterized by the presence of 

multiple superficial BCC and by the absence of other anomalies (as per the MPP 

described in section 1.4.2). One author [250] suggests that this possibly polygenic trait 

has a clinical appearance that differs from those observed in Gorlin, Bazex-Dupre-

Christol and Rombo syndromes because the BCCs are stereotypically of a superficial 

type and preponderantly involve the trunk. There is already preliminary evidence that 

BCC has differential genetic susceptibility to SCC and MM, as suggested by the different 

HLA associations for these tumours [366, 389]. 

In summary, there is preliminary evidence for specific familial aggregation of BCC, but 

no knowledge of its causes. Based on the sum of research on other common cancers, it 

would be expected that a small proportion of such aggregation might be due to rare, high-

penetrance alleles such as PTCH, and the majority due to common, low- to medium-

penetrance factors such as pigmentation genotypes (e.g. MC1R), and sharing of the major 

environmental risk factor, sun exposure. However, it is clear that much further research is 

needed to understand the genetic epidemiology of this common and burdensome cancer. 

1.12. Aims and scope of this thesis 

Although much work has been done on rare genodermatoses involving BCC, very little is 

known about genetic susceptibility to BCC outside these settings. A small Australian 

study looking at familial clustering of NMSC that noted apparent differences in 

susceptibility to BCC versus SCC between NMSC pedigrees, suggesting differing genetic 

influences [3]. However, there have been no larger-scale studies of this phenomenon. 

Gorlin syndrome is one of the rare familial syndromes that has received research 

attention, and involves autosomal dominant inheritance of marked susceptibility to BCC 

and a range of developmental defects. Mutations in the cell growth regulatory gene 

patched (PTCH), when present in the germline are responsible for this disorder. They 

have also been found in a high percentage of sporadic tumours, suggesting a critical 
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involvement of this pathway in BCC tumour development generally. Furthermore, mice 

with Gorlin syndrome-like knockouts of one copy of PTCH develop BCCs if exposed to 

UVR, mimicking the human situation [4]. No studies have yet investigated whether 

germline mutations or less highly penetrant variants of this gene might account for part of 

non-syndromic BCC susceptibility in the general population. 
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Chapter 2: Methods 
 

2.1. Patients and recruitment 

2.1.1. Ascertainment 

 
The subjects of this analysis are part of a larger study of familial aggregation of non melanoma 

skin cancer, which involves cases of early-onset of both BCC and SCC occurring in the greater 

Sydney metropolitan area, and their relatives. This geographical area is defined by the borders 

of Wollongong to the South, Gosford to the North, and the Blue Mountains to the West. These 

cases were identified through the database of the Dermatopathology Division of the Skin & 

Cancer Foundation Australia (SCFA). This academically affiliated service receives pathology 

from a significant proportion of dermatologists practising in New South Wales (NSW), as well 

as from those working at the SCFA’s two large Sydney clinics in Darlinghurst and Westmead. 

Patients are referred to these dermatologists from their general practitioners for assessment and 

treatment of skin conditions including skin cancer, and to make use of the dermatopathology 

service of the SCFA. Referrals to these services are unlikely to have been biased towards 

people with a family history of NMSC. Neither BCC nor SCC are registrable in Australia, but 

their combined incidence has been estimated by population-based surveys to be 2200 per 100 

000 in 1997 in Australia [390]. This figure is likely to also represent the incidence in Sydney 

because NSW has melanoma rates (a surrogate for sun-related skin cancer) that are close to the 

national average, and greater Sydney includes more than two thirds of the State’s population. 

The incidence of melanoma in NSW in the year 2001 was 42.4 and 31.6 per 100,000 for males 

and females respectively, age standardised to the 2001 world population. The national average 

was 53.7 and 38.0 per 100,000 for males and females respectively in the year 2000, age 

standardised to the 2001 world population (from the Australian Bureau of Statistics, 

www.abs.gov.au). Preliminary searches of the SCFA database for BCC and SCC showed that it 

had captured 8200 individuals histologically-verified as having NMSC from 1994- 1999, of 

whom 80% were residents of the Sydney metropolitan area. This equates to 200 per 100,000 

cases per year in Sydney (ie 8200/4,000,000 x 100,000), which is 10% of the total estimated 

incidence. The SCFA database can thus be considered a quasi-population-based register of 

biopsy proven NMSC in the Sydney metropolitan area. 

2.1.2. Recruitment 
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Eligible subjects (probands) were those of either sex, with histologically verified primary 

cutaneous BCC, diagnosed at forty years of age or younger during the 12 month period from 

January to December 2000, or SCC diagnosed at fifty years or younger, during the 24 month 

period from January 1999 to December 2000. These age thresholds were selected so that the 

youngest 7-8% of the total number of BCC and SCC-affected individuals per year were 

captured, and the longer period of SCC eligibility was required because SCC is significantly 

less common than BCC in these age groups [1]. Only the BCC arm of the study will be 

reported here. 

A letter was sent to the referring doctors of 257 BCC cases asking permission to contact their 

patients regarding this project. Once consent was given, and information pack was sent from 

SCFA to the patient, containing information on the research project, consent forms to 

participate in the study and a form to release this consent from SCFA to the research team. . If 

there was no response to this information, SCFA attempted to contact the subjects by telephone 

for a response. For subjects that were unable to be contacted by these methods, a ‘Yes-No’ 

response form was sent out asking them to simply tick a box and return the form, to let us 

know that they were actively refusing participation. If there was still no response a second Yes-

No form was sent. For all correspondence that was ‘returned to sender’ by the postal service, 

the referring doctor was asked for updated contact details. For all subjects whose current 

address or telephone numbers were unable to be discovered by these methods, ‘Marketing Pro’ 

software was used to attempt to obtain current details. If new details were discovered by any of 

these means, the process began again with a new information pack sent to the new address 

and/or a telephone call from SCFA to the new telephone number to follow up on information 

packs sent. The team only contacted the subjects once their consent was returned, which 

included 56 BCC affected individuals, and 48 SCC affected individuals.  

Twenty-three of 201 eligible subjects were denied consent by their treating doctor. Of  the 

remaining 178 early-onset BCC cases approached, 56 consented, 50 actively or passively 

refused, 13 were not contactable after exhausting the methods detailed above, and for 59 it was 

unclear whether or not the patient had received the information or not. Thus the actual 

percentage of eligible contactable subjects consented is between: 56/165 (34%) and 56/106 

(53%), depending on how many of the not-contactable subjects were actually passive refusals. 

2.2. Interviews and histological confirmation of cancers 
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Each family stucture was determined by interviewing probands about their first and second 

degree relatives. Each first degree relative was then approached, and if they consented to 

participate in the study, they were interviewed about their cancer history. Cancer history 

information on deceased first degree family members was also obtained where possible 

through proxy interviews with a consented family member. Attempts were made to verify all 

reports of cancer with histopathological records if possible or alternatively through medical 

records. This was done through contacting the treating doctor or relevant pathology service 

for BCCs and SCCs, and through the cancer registry for registrable cancers. If the registry 

could not verify the reported cancer then the treating doctor was contacted for these records. 

The earliest reported cancer of each type was the priority for verification. Where multiple 

reports were received, they were all followed up until at least one confirmation of NMSC was 

received. Where more than one NMSC was confirmed, the earliest dates of BCC and SCC 

diagnoses were used for subsequent analysis. The information was coded according to the 

level of confirmation (self-report alone/ clinical diagnosis alone/ histological confirmation). 

In situ SCC was accepted as equivalent to invasive SCC because recent data indicate that the 

prospective risk of further SCC is similar in these two conditions. Relatives were only 

labelled ‘unaffected’ if they never had any potential NMSC lesions treated, and if they had no 

NMSC or premalignant lesions present on examination. The oldest unaffected sibling for each 

proband (if available) was designated as an intra-family control. 

In all subsequent analyses, the word ‘relatives’ refers to the consented first-degree relatives of 

probands in this study.  

2.3. Phenotyping 

2.3.1. Skin examination 

All probands and their sibling controls were invited to attend skin examinations at SCFA in 

Westmead or Darlinghurst, at Westmead hospital, or at outer metropolitan or rural hospitals 

for a few subjects who could not attend a city venue. The same measurement equipment was 

used at each site, and the same lights were used to enable standardized illumination. The 

candidate, a medical graduate, was trained to assess premalignant and malignant lesions and 

the markers of sun damage on subjects, according to a standard protocol as, described below. 

Height and weight were recorded. Subjects were asked to identify the hair colour that was 

closest to their natural colour at age 18, using synthetic hair swatches (Clairol, USA) designed 
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for wig-making. Colours used in this study included: High-Lift golden blonde HL-G, Sable 

Brown 48D, Dusk Blonde 93D-N, Nightfall Brown 95D-N, Sunberry 72R, Reddest Fire Red 

206RR, Golden Apricot 41G, Black Azure 52D. Skin colour was recorded using a reflectance 

spectrophotometer, as described in 2.3.3.  

All subjects were tested for features of Gorlin Syndrome, including mandibular keratocysts 

(through the questionnaire) and examination of the palms for pitting. Each of these features 

would be expected to be seen in over 80% of patients with Gorlin syndrome [200]. 

Markers of sun exposure and damage were then assessed on a semi-quantitative scale and 

included:  ephelides (freckles), solar lentigines, actinic keratoses, actinic damage/elastosis, 

seborrhoeic keratoses, and presence of any new skin cancers noted. If a lesion was suspicious 

of malignancy, the subject was referred to their local GP or dermatologist. Results were 

recorded on a patient data sheet and entered into a password-protected database in secure 

facilities. Data for analysis were deidentified. 

All subjects undergoing skin examination also filled out a questionnaire (see section 7.1 for 

clinical protocol) regarding their skin type, hair colour, eye colour, childhood and adult 

freckling, and history of dental cysts. 

The candidate undertook an informal audit of examining technique with an experienced 

dermatologist after the examinations were complete. Her technique was considered adequate 

for all variables except seborrhoeic keratoses, where fainter lesions were missed. Absolute 

values for this variable should be regarded as underestimates and were not interpreted, 

whereas categorisation of individuals with respect to number of these lesions was regarded as 

suitable for analysis. 

2.3.2. Skin examination recoding variables 

All skin phenotype variables, from examination and questionnaire, were subjected to an initial 

analysis to determine their distribution and informativeness. The number of categories was 

reduced by recoding in many cases in order to maximise the number of individuals in each 

recoded category. All recoded variables are described here. 

Only one subject (1.1%) reported having black hair when asked to name their hair colour at 

age 21, and this subject chose a brown hair swatch when asked to select a representative hair 
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swatch colour visually: the category of ‘black’ was therefore combined with the category 

‘dark brown’ for the analysis.  

Few people (3.4% or 3/88) reported that they ‘go brown without any sunburn’ when asked 

“which statement best describes what would happen if your skin were exposed to bright 

sunlight for the first time in summer for one hour in the middle of the day without any 

protection?” (see section 7.1). Therefore the answers for the ‘no sunburn/tanning’ were 

combined with the ‘mild sunburn’ category for analysis. 

No subject out of 88 reported that they ‘never burn’ as a response to the question “in general, 

how does your skin react to the sun?” and therefore this phototype category was removed 

from the analysis. 

Examination for presence of actinic keratoses (AKs) revealed that most subjects did not have 

many of these lesions on the regions of the body included (see section 4.2.4). The categories 

of ‘sparse’ and ‘moderate’ were therefore collapsed to the single category of ‘present’ or 

‘absent’ for presence of any AK on the regions head/neck, chest, dorsum arms and dorsum 

hands examined. A large proportion of subjects had a high amount of solar elastosis, skewing 

the results. Therefore the score for each body region (Head/neck/anterior chest, periorbital, 

lips, dorsa forearms, and dorsa hands) were added up with a score of 0 for ‘absent’, 1 for 

‘mild’ and 2 for ‘severe’. This was added up across all categories and each subject was given 

a score of ‘low’for a total body score between 0 and 9, and a score of ‘high’ for a total body 

score of 10.  

Semi-quantitative counts of solar lentigines were skewed across the 88 subjects examined 

with a disproportionate number falling into a low or high count category (see table 7.8 for raw 

scores). Therefore the median count category for each body region was determined and 

subjects re-categorised into ‘low’ or ‘high’ solar lentigines groups. For the face this meant 

that raw scores of 0 – 2 were recoded as ‘low’ with the remainder of scores 3 – 10 recoded as 

‘high’. Similarly, the raw scores for solar lentigines on the forehead were recoded 0 – 1 ‘low’ 

and 2 – 10 ‘high’. For the upper limb raw scores, 0 – 4 became ‘low’ and 5 – 9 became ‘high’. 

For the upper back and shoulders, 0 – 6 became ‘low’ and 7 – 9 became ‘high’.  

Reporting of freckling in childhood and adulthood was skewed to include a greater proportion 

in the category ‘very few’ than the other positive freckling categories (see table 7.9 for raw 

scores). ‘Very few’ was therefore renamed ‘some’, and the ‘few’, ‘some’, and ‘many’ 
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categories were collapsed into the single category of ‘many’. As with the analysis of semi-

quantitative examination results for solar lentigines, subjects’ ephiledes (freckling) scores 

were skewed or biphasic (see table 7.9) and so the median (if skewed) or the score between 

the two peaks (if biphasic) for each region was taken, and subjects reclassified into high and 

low numbers of freckles based on this median division. For ephilides on the face, raw scores 

of 0 – 3 were recoded as ‘low’ and 4 – 10 as ‘high’. For raw scores of ephilides on the 

forehead, 0 – 3 were re-classified as ‘low’ and 4 – 10 as ‘high’. For the upper limbs, raw 

scores of 0 – 7 were scored as ‘low’ and 8 – 10 as ‘high’. For the upper back and shoulders, 0 

– 6 raw scores were recoded as ‘low’ and 7 – 10 as ‘high’. 

Examination results for numbers of seborrhoeic keratoses were skewed with many subjects 

scoring ‘nil’ on this variable for several of the body regions (see table 7.10). The results were 

reclassified into an absent/present dichotomy for each region examined to allow any real 

associations to be seen. The score for all the body regions examined (head/neck, upper limbs, 

chest, abdomen, back, lower limbs) were then summed to give a total body score, and this was 

also divided into ‘low’ (score of 0 – 1) and ‘high’ (score of 2 – 8) categories based on the 

median score. 

2.3.3. Skin colour assessment 

The apparent colour of a person’s skin is due to the aggregate of reflected light, the 

wavelengths of which depend on four biochromes: melanin, carotenoids, oxyhaemoglobin and 

reduced haemoglobin. Melanin and the carotenoids are brown and yellow respectively, and 

are found in the epidermis, the uppermost layer of the skin. Oxyhaemoglobin is bright red and 

found in the arterioles and capillaries of the upper dermis of the skin, just deep to the 

epidermis. Reduced haemoglobin is bluish-red and is found in the venous plexus of the 

dermis, just deep to the arterioles and capillaries [21]. 

Skin colour of each subject examined was assessed with a BYK Gardner spectrophotometer; a 

portable instrument that measures reflected colour and the colour difference using the 

Commission International de l’Eclairage (CIE; 1976) L*a*b* standard colour system. The L* 

value (luminance) represents the relative lightness ranging from total black to total white; the 

a* value represents the balance between red and green; and the b* value the balance between 

yellow and blue. This instrument uses the same wavelengths of light (400 to 700nm at 20nm 

intervals) to measure skin reflectance as the Minolta 508, a spectrophotometer with 
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measurement of skin colour that correlates highly (r = 0.68) with melanin density seen 

histologically on biopsied skin from the site measured [391]. The Minolta does not separate 

the reflected light into the L, a and b axes, giving a single reading of reflected light for each 

20nm interval of reflected light. Based on best correlation with melanin density over the 

spectrum of light used, researchers using the Minolta generally use the difference between the 

reflectance measurements at 400nm and 420nm of incident light as a single parameter. 

The Minolta and BYK Gardner instruments are regarded as equivalent in commercial colour 

measurement applications. However, there are no published data on correlates between 420-

400nm reflectance and L*a*b* measurements, or between L*a*b* measurements and 

melanisation. In this thesis, the raw L*a*b* measurements were used without further 

manipulation in order that all available information on skin colour should be used. 

The spectrophotometer was recalibrated prior to each skin examination session to ensure 

comparable readings between subjects, and the mean of 6 consecutive readings was recorded. 

The measurements were taken on the medial axillary wall (constitutional skin colour) and 

upper outer arm (sun exposed skin colour) of each subject examined. The mean L*a*b* 

values was recorded on the subject’s data sheet. 

2.4. DNA extraction 

Blood (20 ml EDTA) was collected from the probands, sibling controls and parents of 

probands by standard venipuncture. DNA was extracted from whole blood as described in 

appendix 7.2. The total concentration of the DNA was checked by spectrophotometry at 260 

nm and 320 nm (Genequant Pro; Amersham Pharmacia Biotech, England). The DNA quality 

was estimated by running the DNA samples on a 1% agarose gel, stained with ethidium 

bromide (final concentration of 0.5µg/ml). Gels were photographed under UV light (NovaLine 

Gel Documentation System; Sweden).  

2.5. Genotyping of PTCH 

2.5.1. Exon and primer selection 

The exons chosen for amplification and analysis were exons 2, 3, 5 to 18, and 20 to 23. Exon 

23 was split into 23a and 23b to allow for easier amplification and dHPLC (exon numbering 

of the PTCH exons is as described by Johnson et al [214]. The priorities for exon choice were 

based on those for which PTCH mutations have been documented in Gorlin subjects. The 
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genbank accession number for the PTCH gene is U59464. Exons 1 and 4 were excluded 

because no mutations have been seen in these exons in previous studies, and exon 19 was 

excluded due to repeated difficulties with PCR amplification. Primer pairs used are according 

to Hahn et al (exons 6, 7, 8, 9, 10, 11, 15, 17 and 18) [213], Fujii et al (exon 2) [392] and Xie 

et al (exons 12, 13, 14, and 21) [221]. Primer pairs for exons 3, 5, 16, 20, 22, 23a, and 23b 

were provided by BJ Wainwright (personal communication). Primer sequences for all exons 

amplified are listed in table 2.1 and have been used extensively for dHPLC analysis of Gorlin 

syndrome patients and somatic mutations in non-familial BCC in the laboratory of Prof BJ 

Wainwright, University of Queensland; Brisbane, Australia. 
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Table 2.1 Primer sequences to amplify PTCH exons 
Exon Primer sequence 

2 F 5’-ACTCCTCCCTTCTGCTTCGT-3’ 
 R 5’-GCGCTGGCGAATATCTCTAT-3’ 

3 F 5’-CTATTGTGTATCCTATGGCAGGTAGTCAGATAACAGAT-3’ 
 R 5’-ATTAGTAGGTGGACGCGGCGGGCCT-3’ 

5 F 5’-GCAAAAATTTCTC AGGAACACC-3’ 
 R 5’-GGAACAAACAATGATAAGCAA 

6 F 5’-CCTACAAGGTGGATGCAGTG-3’ 
 R 5’-TTTGCTCTCCACCCTTCTGA-3’ 

7 F 5’-GTGACCTGCCTACTAATTCCC-3’ 
 R 5’- GGCTAGCGAGGATAACGGTTTA- 3’ 

8 F 5’- GAGGCAGTGGAAACTGCTTC -3’ 
 R 5’- TTGCATAACCAGCGAGTCTG-3’ 

9 F 5’-GTGCTGTCGAGGCTTGTG-3’ 

 R 5’-AGAAGCAGGAGCAGTCATGG-3’ 

10 F 5’-TTCGGCTTTTGTTCTGTGC-3’ 
 R 5’-CCGGTGGCATTTGTCAAC-3’ 

11 F 5’-CTGTTAGGTGCTGGTGGCA-3’ 
 R 5’-CTTAGGAACAGAGGAAGCTG-3’  

12 F 5’- GACCATGTCCAGTGCAGCTC-3’ 
 R 5’- CGTTCAGGATCACCACAGCC-3’ 

13 F 5’- AGTCCTCTGATTGGGCGGAG-3’ 
 R 5’- CCATTCTGCACCCAATCAAAAG-3’ 

14 F 5’-AAAATGGCAGAATGAAAGCACC-3’ 
 R 5’-CTGATGAACTCCAAAGGTTCTG-3’ 

15 F 5’-GACAGCTTCTCTTTGTCCAG-3’ 
 R 5’-ACGCAAAAGACCGAAAGGACGA-3’ 

16 F 5’-CGCTAGGACCAGGGTCCTTCTGGCTGCGAGTTATA-3’ 
 R 5’-TCAGTGCCCAGCAGCTGGA-3’ 

17 F 5’-AACCCCATTCTCAAAGGCCTCTGTTC-3’ 
 R 5’-CACCTCTGTAAGTTCCCAGACCT-3’ 

18 F 5’-AACTGTGATGCTCTTCTACCCTGG-3’ 
 R 5’-AAACTTCCCGGCTGCAGAAAGA-3’ 

20 F 5’- CATTTAGGACAGAGCTGAGCA-3’ 
 R 5’- GGCCCAATCACAATGATTTC-3’ 

21 F 5’-TGTTCCCGTTTCCTCTTG-3’ 
 R 5’-GCACAGGAAACACAGCATTC-3’ 

22 F 5’-AGTGTGGCCAGCAGGTAAAT-3’ 
 R 5’-CTCCAGGCCCACTACCAC-3’ 

23a F 5’-AAACCCAAGGAGGGAAGTGT-3’ 
 R 5’-CCGAGGGTTGTGAGAACG-3’ 

23b F 5’-GCATTCTGGCCCTAGCAATA-3’ 
 R 5’- TCTTTGCCTGGCTCTAGGTC-3’ 

Forward (F) and reverse (R) primer sequences of exons 2 to 4 and 5 to 23b of the PTCH gene. The primer pairs 
of exons 15, 17 and 18 correspond to primer pairs 14, 16 and 17 respectively as described by Hahn et al. [213] 
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2.5.2. PCR protocol for amplification of PTCH exons 

PCR reactions were performed in a total volume of 52.8µl. The reaction contained 5µl of PCR 

buffer (1.5 mM MgCl2; 10mM Tris-HCl, pH 8.5; 50mM KCl), 1 µl DMSO, 1µl dNTP 10mM 

(Fisher Biotec, Australia), 1µl of each primer 50µM (forward and reverse), 0.3µ of AmpliTaq 

Gold 5U/µl (Roche Applied Biosystems, USA), 3µl DNA 25ng/µl, and 40.5 µl dH2O (table 

2.2). The same PCR protocol suited the amplification of exons 2, 5- 20, 22, and 23a (and 

19?). For exons 3 and 21, 2.5 mM MgCl2 was used, and for exon 23b, 2.0 MgCl2 was used. 

Each reaction contained a negative control that contained all the stock ingredients with water, 

to ensure that the reagents were not contaminated. A positive control was not available. All 

PCR reactions were done using sterile techniques, working in a laminar flow hood.  

The annealing temperature for exon 2, 3, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, and 20 was 55ºC, 

for exons 6, 11, and 14 it was 57ºC, for exons 16, 21, 22, and 23a it was 59ºC and for exon 

23b it was 60ºC. The thermocycling parameters included an initial denaturing step at 95º for 

30 minutes, followed by 95º for 45 seconds, the specific annealing temperature for 50 

seconds, 72º for 50 seconds for 35 cycles, and a final elongation cycle of 72º for 7 minutes 

(Palm-Cycler version 2.2; Corbett Research, Australia). The PCR tubes were stored at -20ºC 

until required for denaturing High Performance Liquid Chromatography (dHPLC) or 

sequence analysis.  

 

Table 2.2 PCR Cocktail (52.8 µl total) 
Reagent (conc) Volume (µl) Final concentration 
dH2O 40.5 - 
PCR Buffer (MgCl2, Tris-HCl, KCl) 5.0 MgCl2: 1.5mM; Tris-HCl: 10mM (pH 8.5); KCl: 50mM 
DMSO 1.0 - 
dNTP’s (10 mM)  1.0 0.19 mM 
PTCH F primer (50 µM) 1.0 0.95 µM  
PTCH R primer (50 µM) 1.0 0.95 µM 
AmpliTaq Gold (5U/µl) 0.3 1.5 U 
DNA (25 ng/µl) 3.0 75 ng 
Total 49.8 + 3.0 µl  

 
 

2.5.3. Agarose gel electrophoresis 

All PCR products were checked for purity and correct sizing on a 1.5% agarose gel (1.5g 

agarose in 100 ml 0.5x TBE), stained with ethidium bromide (final concentration of 0.5 
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µg/ml). For all samples, 3 µl of each PCR product was mixed with 2 µl of loading dye and 

pipetted into successive wells of the gel, running them next to 2µl of low DNA mass ladder 

(4µl/appl; Invitrogen Life Technologies, Australia) and the negative control. The gels were 

electrophoresed at 80V for approximately 30 minutes at room temperature and subsequently 

photographed under UV light (NovaLine Gel documentation system; Sweden). It was always 

ascertained that the negative control did not show any bands on the gel. If the negative control 

did show a band in a particular experiment, the resultant samples were discarded, the reagents 

replaced, and the reaction repeated until the negative control did not show a band on the gel.  

2.6. dHPLC analysis of the PTCH gene 

The PCR products were denatured at 95ºC for 5 minutes, followed by slow renaturing at -1ºC 

per minute, from 94º to 60ºC (Palm-Cycler version 2.2; Corbett Research, Australia) and 

subsequently stored at -20ºC until dHPLC analysis. Denatured PCR products (5-20µl) were 

analyzed for heteroduplexes by dHPLC (WAVE® DNA Fragment Analysis System; 

Transgenomic Inc, Omaha, Nebraska, USA) at the dHPLC Fragment Analysis Facility, 

Westmead Millennium Institute, Sydney, Australia. The PCR product was eluted from a 

temperature-equilibrated DNASep® analytical column (Transgenomic Inc, Omaha, Nebraska, 

USA) using a gradient of 0.1 M triethylammonium acetate buffer (TEAA) (A) and 0.1 M 

TEAA/25% acetonitrile (B), pH 7.0, at a constant flow rate of 0.9 ml/min. The gradient was 

predicted by the WAVEMakerTM software (Transgenomic) (table 2.4). Eluted DNA fragments 

were detected with ultraviolet absorption at wavelength 260 nm. Temperatures used for 

dHPLC were based on temperatures used by the University of Queensland, Brisbane (kindly 

provided by Wainwright BJ; personal communication) and predictions determined by the 

WAVEMakerTM software (table 2.4). The sequence of the wild type PTCH amplicon used for 

predictions is Genbank sequence U59464 (see section 7.3).  

For the eight exons most likely to harbour mutations based on previous research (exons 2, 3, 

6, 8, 14, 15, 17 and 18), two temperatures were used to screen each exon, in an attempt to 

detect all variations in the majority of the exon. These eight exons have been found to have 

the highest mutation rate of all the coding regions of the PTCH gene, and mutations in these 

exons account for approximately 60% of the total mutations cited in the literature. 

Unfortunately, exons 6 and 8 were able to be screened at one temperature only, due to 

procedural difficulties and time constraints. Thus mutation in the exons screened at two 

temperatures accounted for approximately 50% of the total mutations cited in the literature. 
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The two temperatures were used to screen 19 of the 58 probands, including all of those 

probands for whom there was histopathological confirmation of a family history of BCC at 

the time that laboratory work was practicable. This included 17 probands from the BCC arm 

of the study and 2 from the SCC arm. See table 2.3 for a summary of family cancer 

prevalence in the 19 probands chosen to have extra screening for higher risk exons. For the 

remainder of the 39 probands for these seven exons and the remaining exons screened, one 

dHPLC temperature only was used. The melting profiles for the temperatures used as 

predicted by the WAVEMaker TM software can be found in appendix 7.4; one example is 

given in figure 2.1.  
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Table 2.3 Family history of BCC, SCC, and MM (proband and first degree relatives) for high risk subjects 
included for two temperatures of  dHPLC screening 

aDNA unavailable at time of laboratory work for screening at two dHPLC temperatures 
# Underlined age indicates that the subject is deceased 
*Indicates proband age of diagnosis 

Proband ID Total number 
of family 
members 
recruited 

Number 
of BCC-
affected 
family 
members 

Age of onset of BCC# Number of 
SCC-
affected 
family 
members 

Age of 
onset of 
SCC 

Number 
of 
NMSC-
affected 
family 
members 

Number 
of MM-
affected 
family 
members 

Age of 
onset 
of MM 

BCC probands 
8755 5 2 31, 34* 1 55 3   
8761 4 2 34*, 62 1 65 2   
8763 8 2 36*, 43,  2 41, 71 4 1 42 
8768 4 2 20*, 48 0 - 2   
8770 5 3 39*, 69, 70 1 75 3 2 33, 78 
8773 6 2 39*, 52 0 - 2   
8781 3 2 35*, 51 1 51 2   
8797 9 2 35*, 53 2 53, 42 3   
8800 10 4 26, 38*, 43, 69 1 70 4   
8815 5 2 19*, 58 0 - 2   
8816 9 6 39*, 44, 50, 50, 53, 76 2 53, 76 6 2 38, 49 
8840 6 6 23, 23, 25, 28*, 49, 54 2 42, 46 6 3 23, 

37, 47 
8846 4 3 26*, 55, 56 0 - 3   
8857 4 2 35*, 63 0 - 2   
9022 9 6 35*, 36, 44, 54, 58, 74 0 - 6   
9125 6 3 25, 37, 38* 2 43, 67 4   
9194 4 2 33*, 62 1 64 2   
9242a 7 2 30*, 50 0 - 2   
SCC probands        
8701 7 6 29*, 30, 39, 54, 69, 75 3 40*, 51, 

84 
6 1 69 

8001 6 3 37, 37, 53 1 41* 4   
8196a 7 3 34,43, 45 3 34, 41*, 

53 
4   
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Table 2.4 Amplicon size and DHPLC conditions for PTCH fragments 
Exon Size (bp) dHPLC gradient dHPLC temp (ºC) 

2 294 54-63%B in 4.5 min 59.9
  54-63%B in 4.5 min 62.5

3 313 55-64%B in 4.5 min 56.5
  55-64%B in 4.5 min 58

5 248 52-60% in 4.5 min 57 

6 335 57-66% in 3.5 min 59.2 

7 294 54-63% in 4.5 min 57 

8 256 53-62%B in 4.5 min 61.8

9 281 54-63%B in 4.5 min  60.8 

10 242 54-63%B in 3.5 min 60.2 

11 253 53-62%B in 4.5 min 58.3 

12 211 53-62%B in 3.5 min 62.6 

13 222 51-60%B in 4.5 min 59.2 

14 540 59-68%B in 4.5 min 61.5
  56-65%B in 4.5 min 63.8

15 425 57-66%B in 4.5 min 58
  57-66%B in 4.5 min 60.5

16 219 51-60%B in 4.5 min 59.3 

17 268 53-62%B in 4.5 min 59.8
  51-60%B in 4.5 min 64.5

18 410 57-66%B in 4.5 min 61.2
  57-66%B in 4.5 min 62.8

20 267 54-63%B in 4.0 min 61.3 

21 186 49-58%B in 4.5 min 61.7 

22 371 56-65%B in 4.5 min 62.8 

23a 331 55-64%B in 4.5 min 63.9 

23b 407 57-66%B in 4.5 min 63.1 
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Figure 2.1  Predicted dHPLC melting curve for PTCH exon 15, wild type. 
Helical fraction (%) of the DNA (Y-axis) versus base position in the amplicon (X-axis). The helical fraction 
ranges from 0% (completely denatured DNA; single stranded DNA) to 100% (double stranded DNA). dHPLC 
can detect mutations in partially denatured DNA, optimally 30-80% helical fraction (Leary J, Manager dHPLC 
Fragment Analysis Facility, Westmead Millennium Institute; Personal Communication).  
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2.7. DNA sequencing of PTCH exons 

Samples with detectable dHPLC variants were sequenced, together with a sample of the 

same exon that displayed a normal dHPLC melting curve, for comparison. The PCR 

products were purified using a QIAquick PCR Purification Kit (Qiagen; Australia. Cat. 

No. 28106), following the manufacturer’s instruction manual (see appendix 7.5). The 

quantity of the purified PCR product was estimated using gel electrophoresis (see above), 

loading 2 µl of each sample mixed with 2 µl of loading dye, comparing it to 2 µl of low 

DNA mass ladder. 

Sequencing was carried out in both the forward and reverse direction or, in some cases, 

only in forward direction. Each sequencing reaction comprised template DNA, 3.2 pmol 

of the respective primer and 1µl of DMSO. Water was added to make up to a total 

volume of 12 µl.  For all exons except exon 15, 10ng of template DNA was included, and 

for exon 15, 20ng of template DNA was included due to its larger size (see appendix 7.3 

for exon sizes).  

Sequencing was carried out in the DNA Sequencing Facility at the Westmead 

Millennium Institute, Sydney, Australia. The facility uses an ABI PRISM 3100 Genetic 

Analyser (Applied Biosystems; Australia); using POP-6 polymer with a 50 cm capillary 

array. 

2.8. PTCH gene SNP identification numbers 

Table 2.5 SNPs seen in probands that have previously been identified in SNP databases with their 
identification numbers  
Exon SNP  SNP identification number
2 C>T 116 rs1805153 
6 IVS6-55T>C rs2297087 
8 IVS8+23G>A rs2066840 
11 IVS11-50G>C rs574688 
12 T>C 63 rs16909910 
12 C>T 84 rs2066836 
15 IVS15+9 G>C rs2066829 
23a 140 T>C rs357564 
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2.9. Estimating Australian population cumulative risk (prevalence of a prior 

diagnosis) of NMSC 

2.9.1. Estimating cumulative risk from incidence 

NMSC are not notifiable to cancer registries in most of Australia, so verification of self-

reported past diagnoses is not as feasible as it is for other cancers. Cumulative risk 

(prevalence of a prior diagnosis) of SCC and BCC was estimated from the most recent 

Australian general population incidence data available [1]. Five-year incidence data was 

obtained for men and women separately from survey data collected in 1995. Although 

lifetime prevalence of skin cancer was surveyed in this study, only the previous 12 

months of skin cancer incidence data had been validated, and therefore only this data was 

suitable for analysis. Although the numbers of non-melanoma skin cancers were provided 

for five year age groups beyond 69 years (ie. 70-74, 75-79, 80-84, 85+), the number of 

people at risk for these age groups was only provided as a single group (70+).  Therefore, 

incidence and prevalence was able to be estimated only for individuals up to 70 years of 

age. 

Estimating prevalence and cumulative risk from incidence data has been discussed by 

other researchers [393] [394]. Most approaches require registry data which are not 

available in this instance.  These models allow for the effects of competing risks. 

Statistician collaborators, Dr Karen Byth and Ms Peta Forder constructed estimates by 

making simplifying assumptions, and adapting existing epidemiological methods to 

incidence and cumulative risk estimation for BCC and SCC. The general population 

cumulative risk was estimated via a suitable model for the incidence. This novel approach 

is described below. All references to “prevalence” after this point mean prevalence of a 

prior diagnosis of skin cancer (ie cumulative risk). 

Assume for the moment that the incidence of the particular cancer of interest at age i is 

independent of year (period) and of year of birth (cohort). Let the incidence of this cancer 

at age i be denoted by iλ  and note that iλ <<1.  Suppose that there are iN  individuals of 
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age i.  Assume that the probability distribution of the number of individuals who develop 

the cancer of interest at age i can be approximated by a Poisson distribution with 

parameter i iN λ . Inspection of the observed incidences for ages <70 years in the Staples 

et al (1998) data suggested a log-linear model for iλ  of the form 

( )0 1ln( )i iageλ β β= + ×  

so that  

( )0 1 iage
i eβ βλ + ×= . 

Assume further that any immigration or emigration processes operating on the general 

population occur independently of the cancer incidence process. Since we are interested 

in non-melanoma skin cancers, also assume that the death process operating on the 

general population is independent of the cancer incidence process.  These assumptions 

and their implications are discussed in detail later. 

Let iP  denote the probability that an individual has a first cancer of the prescribed type 

diagnosed at age i.  Using conditional probability arguments, this is the product of the 

probabilities that no cancer of that type was diagnosed at any earlier age multiplied by the 

probability of this cancer diagnosis at age i. Therefore, 
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The ‘prevalence’ of first cancer by age i is then : 
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Substituting ( )0 1 iage
i eβ βλ + ×=  into the above equation and denoting 1 1 as ( )iage iβ β×  gives 
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The prevalence at age i ( ˆPrevi ) can therefore be estimated by ‘plugging in’ the ML 

estimates 0β̂  and )(ˆ
1 iβ .  The delta method (Armitage et al, 2002), which is a first order 

approximation based on a Taylor series expansion, can then be used to provide an 

estimate of the variance of ˆPrevi . 

If 0
0
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β
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∂
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1
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Under the log-linear model, 
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and 
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The 95% confidence bounds for prevalence at each age i can be estimated as 

( )ˆ ˆ ˆPrev 1.96 var(Prev )i i± × . 

2.9.2. Comparison of the observed and expected prevalences within a sample 

Finally, we must estimate the expected number of cancers amongst the proband relatives 

under the null hypothesis H0 that the relatives are a random sample of particular ages and 

genders from the general population. Consider a single individual and suppose that the 

prevalence in the general population for that individual’s age and gender is π .   

0, if the individual has no cancer
Let X=

1, if the individual has cancer.   
⎧
⎨
⎩

 

Then, under H0, X has a Bernoulli distribution with parameter π .  In particular, under H0,  

E(X) ,  
and

var(X) (1 ).

π

π π

=

= −
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Suppose that π  is estimated by π̂ , calculated from a random sample of the general 

population.  (In our study, π̂ = ˆPrev , the prevalence estimate for the individual based on 

the random 1995 National Survey).  Using a variance decomposition result based on the 

conditional variance of X (see, for example, Lindgren, 1976), we know that 

[ ] [ ]
[ ]

ˆ ˆvar(X) E var(X| = ) var(E X| = )

ˆ ˆ ˆ=E (1 ) var( )
ˆ ˆ ˆPrev(1-Prev) var(Prev) 

π π

π π π

= Π + Π

− +

≈ +

 

For a sample of individuals, the observed number of cancers is simply 
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X
n

i
i

O
=

=∑ .   

The expected number of cancers (E) under H0 can therefore be estimated by  
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which is the sum of the estimated gender and age-specific prevalences for each individual 

in the sample. 

Furthermore, 
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It is therefore possible to estimate an approximate 95% confidence interval for the 

expected number of cancers in the sample under H0 by calculating 
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This allowed the observed prevalences of NMSC from the proband relatives to be 

compared with the 95% confidence intervals of the estimated Australian population 

prevalence. 

The difference between observed and expected prevalences for each cancer was deemed 

to be significant if the observed prevalence fell outside of the 95% confidence intervals of 

the expected prevalence for that cancer. 

 

2.10. Estimating expected prevalence of malignant melanoma 

Malignant Melanoma is notifiable and as such we have cancer registry records of the 

incidence and prevalence of this disease in the Australian general population. Cancer 

registry prevalence of MM was calculated from cancer registry data from 1996, to enable 

it to be comparable to the data used in the calculations for BCC and SCC expected 

prevalences. Statistician collaborators determined 95% confidence limits for the 1996 

Australian registry incidence data using world standardised population data from that 

year [395]. The number of expected MMs with 95% confidence intervals was then 

estimated from this data for each gender and relative type. For MM, calculations could be 

made on all live subjects, as the registry included data on all agre groups by five years to 

80 – 84 years. This allowed the observed prevalences of MM from the proband relatives 

to be compared with the 95% confidence intervals of the estimated Australian population 

prevalence of MM. 
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Chapter 3: Incidence of skin cancer in families of BCC 
probands 

3.1. Introduction 

Despite being the most common of all cancers, almost nothing is known about the 

patterns and causes of familial aggregation of basal cell carcinoma in the population. 

Studies of susceptibility to this disease to date have either focussed on the specific, rare 

familial syndrome NBCCS (see section 1.5.4), in which features other than BCC must be 

present, or have assessed risk factors without making use of the information that family 

history can provide (section 1.4). 

Systematic study of the patterns of clustering of other common tumour types has given 

completely new insights into their causes. They have led to successful mapping of new 

susceptibility loci and the development of genetic models incorporating rare high-

penetrance gene mutations and common medium- and low-penetrance genetic variants. 

This complex genetic aetiology, coupled with the influence of the environment has 

furthermore led to the recognition that risks caused by even classic susceptibility gene 

mutations are highly dependent on an individual’s and a family’s overall risk profile 

(section 1.11). There is no reason why BCC ought not to be subject to the same 

complexities. 

One major BCC susceptibility gene, PTCH, is well known to cause familial BCC 

susceptibility in the context of Gorlin syndrome; its alleles are probably very rare, but 

confer risks of up to 900- fold, depending on the baseline incidence in the population (see 

section 1.5.4). It is not known to what extent familial BCC susceptibility occurs other 

than in association with Gorlin syndrome, and if it does, whether it could be accounted 

for in part by high-penetrance mutations in PTCH or other genes. No genome-wide 

linkage studies have been performed on familial clusters of non-Gorlin-associated BCC; 

indeed no such cohorts have been reported. 
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One critically important low-medium genetic risk factor for both BCC and SCC has been 

identified: the red hair-associated variant alleles of the pigmentation control gene MC1R 

(see section 1.7). In Australian populations these variants have a frequency of around 

20% and relative risks of two to four, and are likely to contribute strongly to familial 

aggregation of BCC and SCC in European-derived populations. Finally, high-risk 

patterns of sun exposure are a ubiquitous risk factor for all forms of skin cancer, with 

frequency in the 15-25% range and relative risks of 1.2 -1.9, i.e. in the low range (see 

section 1.4.1.4).  

The high prevalence of susceptible skin phototypes ie MC1R variants, and of high-risk 

sun exposures in Australia suggests that a large proportion of cases of BCC and SCC in 

the population will be due to these two risk factors alone. They are both commonly 

shared in families and are risk factors for SCC and melanoma, so it would be predicted 

that these two skin cancers would also co-aggregate strongly with BCC in families. 

The present study sought to test this hypothesis by focussing on a cohort of individuals 

that had developed BCC much earlier than average, and therefore might be enriched for 

BCC risk factors; examining the incidence of skin cancer among their relatives, and 

conducting a preliminary study of the factors associated with BCC by comparing these 

cases with unaffected siblings. The incidence of BCC and SCC was confirmed separately 

in relatives of probands, and this may establish whether there is a differential risk in 

relatives of people with early-onset BCC with respect to these two forms of NMSC. A 

greater risk of BCC than SCC in relatives may suggest the influence of BCC-specific risk 

factors on this group. In this chapter the patterns of aggregation and incidence of skin 

cancers are described in a series of 56 individuals who developed BCC under the age of 

40, and in their close relatives. 

3.2. Results 

3.2.1. Subject selection and characteristics 

3.2.1.1.Probands 
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The primary subjects ascertained for the study were individuals diagnosed with 

histologically-confirmed BCC at the Skin and Cancer Foundation in the year 2000, who 

were under the age of 40 at the time of diagnosis (see section 2.1.2). After obtaining 

treating doctors’ consent, subjects were approached first by mail and then by telephone 

with information about the study and an invitation to participate. 56 of the 201 eligible 

subjects consented to the study. 23 of 201 were refused contact by their treating doctor, 

50 actively or passively refused, 13 were not contactable after multiple attempts, and for 

59 it was unclear whether or not the patient had received the information or not. The 

percentage of eligible, contactable subjects consented is between 56/165 (34%) and 

56/103 (53%) depending on how many ‘not contactable’ subjects actually received the 

invitation. 

The probands were 18 men and 38 women aged 22 to 44 years (at recruitment) who 

together had a median age of 40 years. Both the female and the male probands had a 

median age of 40 years at recruitment.  

3.2.1.2.Family members 

The family structures for the 56 families were determined by interviewing probands 

about their first degree relatives; permission was sought to contact all of these individuals 

which included 260 parents and siblings. Of these 260 eligible first-degree relatives, 17 

were denied contact by probands including 12 siblings and five parents. For two of these 

relatives the reason given by probands was that it was due to mental or medical illness, 

for six it was due to intra-family discord, for four it was because it was felt that they 

would not be interested in participating, and for five no reason was given. Interviewers 

contacted all of those relatives for whom permission was granted for contact by the 

proband. Overall, 82% (212/260) of the eligible first-degree relatives consented to 

participate in the study. Excluding those for whom no proband consent for contact was 

given, there was an 87% (243/260) overall participation rate. This included 86% (89/103) 

of the available parents and 88% (123/140) of the siblings. Two probands were adopted 

and had no knowledge of their biological relatives; this meant that approximately four 
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(212/54) first-degree relatives were recruited for participation per proband where 

biological relatives were available to approach.  

Overall, 212 first-degree relatives of probands participated in the study, of which 50% 

(107/212) were men and 50% (105/212) were women. Of the 123 recruited siblings of 

probands, 53% (65/123) were men and 47% (58/123) were women. Included in this 

group were two half-siblings (sharing one biological parent), and one who was deceased. 

Of the 89 parents recruited, 47% (42/123) were men and 53% (47/89) were women, 

including 17 who were deceased. Consent and cancer histories for deceased relatives 

were obtained by proxy interview with another recruited family member.  

3.2.2. Skin cancer prevalence 

Each subject was asked whether they had been diagnosed with any form of cancer, and 

all self-reports were followed up with an attempt at histopathological verification (see 

section 2.2). In the case of NMSC reports, the treating doctor was approached, and if this 

contact was unsuccessful then the local pathology service was contacted. Where multiple 

reports were received, they were all followed up until at least one confirmation of NMSC 

was received. Where more than one NMSC was confirmed, the earliest dates of BCC and 

SCC diagnoses were used for subsequent analysis. 

Table 3.1 describes for each proband the total number of subjects that were recruited in 

each family; the number of them who have had histologically confirmed BCC, SCC, and 

melanoma (MM), and the age of onset for each affected family member.  
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Table 3.1 Number of family members with BCC, SCC, and MM (proband and first degree relatives) for 
each proband 
 
Proband 
ID 

Total 
number 
of family 
members 
affected 

Number 
of BCC-
affected 
family 
members 

Age of 
onset of 
BCC# 

Number 
of SCC-
affected 
family 
members 

Age of 
onset of 
SCC 

Number 
of 
NMSC-
affected 
family 
members 

Number 
of MM-
affected 
family 
members 

Age of 
onset of 
MM 

8755 5 2 31, 34* 1 55 3   
8756 2 1 38* 0 - 1   
8759 4 1 37* 2 38, 60 3   
8761 4 2 34*, 62 1 65 2   
8762 6 1 31* 0 - 1   
8763 8 2 36*, 43  2 41, 71 4 1 42 
8764 6 1 36* 0 - 1   
8766 4 1 39* 0 - 1   
8767 4 1 40* 0 - 1   
8768 4 2 20*, 48 0 - 2   
8769 5 1 27* 0 - 1   
8770 5 3 39*, 69, 

70 
1 75 3 2 33, 78 

8771 5 1 36* 1 71 2   
8772 3 1 37* 0 - 1   
8773 6 2 39*, 52 0 - 2   
8774 3 1 22* 0 - 1   
8775 7 1 39* 1 81 2   
8776 5 1 29* 0 - 1   
8778 2 1 37* 0 - 1   
8779 5 1 33* 0 - 1   
8781 3 2 35*, 51 1 51 2   
8794 6 1 39* 0 - 1   
8797 9 2 35*, 53 2 53, 42 3   
8800 10 4 26, 38*, 

43, 69 
1 70 4   

8810 4 1 32* 0 - 1   
8815 5 2 19*, 58 0 - 2   
8816 9 6 39*, 44, 

50, 50, 
53, 76 

2 53, 76 6 2 38, 49 

8818 7 2 37*, 44 0 - 2   
8825 3 2 34*, 73 1 67 3 1 60 
8826 2 1 35* 0 - 1   
8832 2 1 35* 0 - 1   
8840 6 6 23, 23, 

25, 28*, 
49, 54 

2 42, 46 6 3 23, 37, 
47 

8846 4 3 26*, 55, 
56 

0 - 3   

8857 4 2 35*, 63 0 - 2   
8928 4 1 27* 0 - 1   
9022 9 6 35*, 36, 0 - 6   
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44, 54, 
58, 74 

9094 5 1 39* 1 65 2   
9125^ 6 3 25, 37, 

38* 
2 43, 67 4   

9167 4 1 32* 0 - 1   
9168 5 1 38* 0 - 1   
9194 4 2 33*, 62 1 64 2   
9207 2 1 36* 0 - 1   
9208 1 1 38* 0 - 1   
9240 3 1 33* 0 - 1   
9241 7 1 28* 0 - 1   
9242 7 2 30*, 50 0 - 2   
9273 1 1 31* 0 - 1   
9274 4 3 34*, 38, 

59 
1 59 4 1 59 

9275 5 3 30*, 45, 
45 

0 - 3   

9334 1 1 36* 0 - 1   
9445 5 5 38*, 50, 

51, 68, 
75 

1 78 5 1 53 

9446 9 1 35* 1 83 2   
9459 5 1 37* 1 70 2   
9465 6 1 31* 0 - 1   
9491 4 3 30, 31*, 

52 
0 - 3   

9527 4 1 39* 0 - 1   
 
*indicates the age of onset for the proband, the person first entering the study and the person screened for 
mutations in the PTCH gene 
# Underlined age indicates that the subject is deceased 
^ Gorlin syndrome reported in family 
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Table 3.2 Number of skin cancers in first degree relatives of early-onset BCC probands 

Number 
Cancers in 
1st Degree 
Relatives 

BCC 
Frequency* 

SCC 
Frequency 

NMSC 
Frequency 

MM 
Frequency 

1 13 14 14 4 
2 6 6 9 2 
3 1 - 3 1 
4 1 - 1 - 
5 3 - 3 - 
*Indicates number of families out of 56 with the specified number of that cancer among first degree 
relatives 
 
 

Table 3.3 Number of BCCs in families affected by BCC alone (ie without any members affected by MM 
or SCC) 
Number cancers in 1st 
degree relatives 

Frequency of families with 
BCC alone (no MM or 
SCC history)* 

2 6 
3 3 
6 1 
*Indicates number of families with the specified number of BCC among first degree relatives with no 
members affected by MM or SCC 
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The 56 probands had developed BCC at a median age of 36. None of them had developed 

either SCC or MM. 

Overall, 28% (60/212) of the first-degree relatives had been affected by NMSC, including 

20% (25/123) of the siblings and 40% (36/89) of the parents. Taking the pool of relatives 

as a whole, the earliest confirmed age of onset of NMSC for each affected individual 

ranged from 23.0 to 83.0 years, with a median age of 53.0 years. As is expected from 

ascertainment bias in family studies, ages of onset for siblings (median 42.0, range 23.0 – 

54.0) were earlier than for parents (median 62.0, range 46.0 – 84.0) because, as a 

generation, the siblings have lived through fewer years at risk. The median age of 

diagnosis for mothers (58.5 years) was non-significantly earlier than for fathers (65.0 

years)(Χ2 = 56, p=0.229), and the median age of diagnosis for brothers (41.0 years) was 

earlier than for sisters (43.0 years) (X2 = 20, p=0.220). 

More than half the probands (30/56, 54%) had at least one first-degree relative with 

NMSC, more than one quarter (16/56, 29%) had two or more, and in three cases (3/56, 

5%) five relatives were affected by NMSC. These affected relatives included 23 siblings 

and 24 parents affected by BCC, and five siblings and 22 parents affected with SCC. 

Three siblings and ten parents had been affected by both cancer types. 

Overall, 22% (47/212) of the first-degree relatives had been affected by BCC, including 

19% (23/123) of the siblings and 27% (24/89) of the parents. When considering the pool 

of relatives as a whole, the earliest confirmed age of onset of BCC for each affected 

individual ranged from 23.0 to 76.0 years, with a median age of 51.0 years. The earliest 

confirmed age of onset of BCC among the siblings ranged from 23.0 to 54.0 years, with a 

median age of 43.0. The earliest confirmed age of onset of BCC among the parents 

ranged from 48.0 to 76.0 years with a median age of 58.5 years. The median age of 

diagnosis for mothers (57.0 years) was earlier than for fathers (62.0 years) (X2 = 6, 

p=0.199), whereas the median age of diagnosis for brothers (50.0 years) was earlier than 

for sisters (57.0 years) (X2 = 12, p=0.213). 
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Nearly one half of the probands (24/56, 43%) had at least one first-degree relative with 

BCC, one fifth (11/56, 20%) had two or more, and in three cases (3/56, 5%) five relatives 

were affected by BCC.  

Overall, 13% (27/212) of first-degree relatives had been confirmed to be affected by 

SCC, including 4% (5/123) of the siblings and 25% (22/89) of the parents. When 

considering the pool of relatives as a whole, the earliest confirmed age of onset of SCC 

for each affected individual ranged from 38.0 to 83.0 years, with a median age of 64.5 

years. The earliest confirmed age of onset of SCC among the siblings ranged from 38.0 to 

53.0 years, with a median age of 42.0 years. The earliest confirmed age of onset of SCC 

among the parents ranged from 42.0 to 83.0 years with a median age of 67.0 years. The 

median age of diagnosis of SCC for fathers (66.0 years) was slightly earlier than for 

mothers (67.0 years), and the median age for brothers (41.0 years) was slightly earlier 

than for sisters (42.5 years). 

More than one third of the probands (20/56, 36%) had at least one first-degree relative 

with SCC, and in six cases (6/56, 11%) two relatives were affected by SCC. There were 

no cases where more than two relatives within a family were affected by SCC. In first-

degree relatives of probands, there were nearly twice as many BCC-affected relatives as 

SCC-affected ones, with a BCC-affected: SCC-affected ratio of 1.7:1. 

Overall, 5% (11/56) of first-degree relatives had been confirmed to be affected by MM, 

including 4% (5/123) of the siblings and 7% (6/89) of the parents. When considering the 

pool of relatives as a whole, the earliest confirmed age of onset of MM for each affected 

individual ranged form 23.0 to 78.0 years, with a median age of 47.0 years. The earliest 

confirmed age of onset of MM among the siblings ranged from 23.0 to 53.0 years with a 

median age of 38.0 years. The earliest confirmed age of onset of MM among the parents 

ranged from 37.0 to 78.0 years, with a median age of 53.0 years.  

More than one tenth (7/56, 12.5%) of the probands had at least one first-degree relative 

with MM; in two cases (2/56, 4%) two relatives were affected by MM and for one case 

(1/56, 2%) there were three relatives affected by MM. 
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It can be hypothesised that increased susceptibility to BCC primarily reflects a general 

increase in risk of skin cancer, as might be related to high sun exposure or a sun-

vulnerable skin type. This hypothesis predicts that BCC, SCC and possibly melanoma 

would co-aggregate in families. The incidence of NMSC in the cohort of relatives is 

formally compared with incidence data from the general population in the next section. 

However a survey of the patterns of aggregation gives evidence both for and against this 

hypothesis. Among 30 probands with a positive family history of NMSC in first-degree 

relatives, 20 had at least one relative affected by SCC; so the majority of family clusters 

included both BCC and SCC. However, of the other ten probands there were four who 

had at least two first-degree relatives affected by BCC and none affected by SCC, one 

being part of a six-case cluster of BCC (see table 3.3). This amounts to nearly one fifth of 

families affected by BCC alone, and suggests that a subset of the probands shares a 

specific susceptibility to BCC, rather than to NMSC generally, with their relatives. 

One proband (ID 9125) out of 56 (2%) reported a personal history of clinically diagnosed 

Gorlin syndrome. Two of her three siblings had histologically confirmed BCC, with both 

of these affected siblings having had an early-onset of their tumours; her sister at 37 years 

and her brother at 25 years of age. Two of her first-degree relatives also had a history of 

SCC with her father having been affected at 67 years of age and her sister at 43 years of 

age (see appendix 7.7 family ID 29125 for pedigree). Clinically, her mother did not have 

Gorlin syndrome and her father was deceased at the time of her diagnosis. From a review 

of his records a diagnosis could not be made conclusively. Mutation analysis of the 

PTCH gene in several family members at the Queensland Institute of Medical Research 

had revealed no PTCH mutation in this family (participant’s medical record). 

3.3. Comparison of NMSC prevalence in relatives with that in the Australian 

population 

As described in section 2.9.1, the term “prevalence” used here refers to prevalence of a 

prior diagnosis of NMSC. In order to address whether the prevalence of previous NMSC 

in this cohort of relatives differed from that expected for this group, it was necessary to 

make use of data from the most recent Australian survey of the population incidence of 
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NMSC (note that the word ‘relatives’ refers to consented first-degree relatives of 

probands as per section 2.2). This survey of 60,000 individuals Australia-wide was 

judged appropriate for this purpose, even though the cohort of the present study was 

concentrated in the Sydney basin. The incidence of melanoma (a surrogate for all sun-

related skin cancer) in NSW is close to the national (see section 2.1.1 for exact data). 

This presumably reflects two facts: that a large proportion of the Australian population 

resides in NSW, and that greater Sydney lies about mid-way on the gradient of 

population incidence of melanoma in Australia. The overall Australia-wide NMSC 

incidence is noted to be most similar to the central (including NSW) zone than the 

northern or southern zones, and therefore can be assumed to be a fairly good estimate of 

the incidence of these cancers for the Sydney metropolitan area. We hypothesised that 

NMSC incidence in Sydney would therefore also be similar to the national average. 

Incidence data from state-based cancer registries are available for melanoma but not for 

NMSC, as these cancers were not registrable in NSW at the time of writing. 

Raw data were obtained from the authors of the Australia-wide survey, and used by 

statistician collaborators Dr Karen Byth and Ms Peta Forder to re-estimate age-specific 

incidence rates of BCC and SCC, together with their 95% confidence limits (see methods 

section 2.9.1). This was necessary because the original publication only included 

confidence limits for the observed crude incidence rates in each age/sex group, but not 

for the curve the authors had fitted to their data. First, a curve was fitted to the raw data 

from this survey by maximum likelihood estimation using a Poisson regression routine in 

the statistical package STATA. The estimated regression parameters and their associated 

variances are presented in Table 3.4. 



 101

 

Table 3.4 Maximum likelihood parameters and associated variances for incidence of BCC and SCC in 
data from Staples et al [1] using a Poisson regression routine 

Cancer Group 
0β̂  1̂β  Var( 0β̂ ) Var( 1̂β ) Cov( 0β̂ , 1̂β )

SCC Male -11.5525 0.113261 0.468784 0.000129 -0.00768 

 Female -11.8153 0.1082343 0.722557 0.000203 -0.011942 

BCC Male -9.112422 0.0865304 0.122610 0.000037 -0.00208 

 Female -8.058947 0.0608958 0.109614 0.000037 -0.001963 

 

The incidence rates for BCC and SCC are shown in Figure 3.1, from Staples et al. (1) 

together with the curve newly fitted to the data. 
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Figure 3.1 Fitted curves for incidence rates for BCC and SCC in men and women in Australia in 1996 
(re-analysis of data provided from Staples et al [1]) 
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Cumulative risk (prevalence of a prior diagnosis) of BCC and SCC in Australia was then 

calculated for men and women of various ages, together with their associated 95% 

confidence limits, from the fitted data. These results are summarized in tables 3.5 and 3.6 

and shown graphically in Figure 3.2. 
 
 

Table 3.5 Estimated prevalence (with 95% CI) of SCC and BCC in Australian men in 1996 (re-analysis 
of data provided from Staples et al [1]) 
Age Estimated Prevalence (cases per 100,000 people) 

SCC (95% CI) BCC (95% CI) 

15 41 (0,87) 364 (154,575) 

20 78 (0,160) 627 (293,961) 

25 144 (8,280) 1030 (529,1531) 

30 260 (40,480) 1648 (927,2368) 

35 464 (118,810) 2592 (1589,3594) 

40 821 (293,1350) 4028 (2680,5375) 

45 1448 (665,2232) 6196 (4448,7944) 

50 2542 (1423,3662) 9431 (7259,11603) 

55 4438 (2908,5967) 14160 (11593,16728) 

60 7677 (5678,9675) 20844 (17961,23727) 

65 13074 (10446,15703) 29703 (26577,32829) 

70 21622 (17700, 25546) 39931 (36771, 43091) 
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Figure 3.2 Estimated prevalence (with 95% CI) of SCC (A) and BCC (B)  in Australian men and women 
in 1996 (re-analysis of data provided from Staples et al [1]) 
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B. 

BCC prevalence
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Table 3.6 Estimated prevalence (with 95% CI) for SCC and BCC in Australian women in 1996 (re-
analysis of data provided from Staples et al [1]) 

Age Estimated Prevalence (cases per 100,000 people) 

SCC (95% CI) BCC (95% CI) 

15 30 (0,72) 827 (377,1278) 

20 56 (0,129) 1297 (642,1951) 

25 101 (0,220) 1930 (1037,2822) 

30 179 (0,366) 2782 (1618,3945) 

35 311 (23,600) 3924 (2462,5386) 

40 539 (107,970) 5449 (3673,7226) 

45 928 (302,1555) 7476 (5386,9565) 

50 1594 (714,2474) 10145 (7767,12523) 

55 2726 (1537,3915) 13621 (10995,16247) 

60 4638 (3078,6198) 18071 (15216,20925) 

65 7825 (5706,9944) 23619 (20458,26781) 

70 13012 (9632,16393) 30252 (26562,33942) 
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3.3.1. Comparison of observed and expected prevalence of NMSC in first 

degree relatives  

The population data from Staples et al. were only age-stratified to the age of 70 yr, so 

analysis of the cohort of relatives in the present study was restricted to data from the 

siblings and parents of the BCC proband cases who were alive and aged less than 70 

years. Of the 123 siblings for whom data was obtained, one deceased subject was 

removed from analysis, leaving 122 sibling individuals (63 men, 59 women).  Of the 89 

parents for whom data was available, 17 subjects were deceased and 29 subjects were 

removed because they were aged 70 years or older.  Thus, the parental group for analysis 

included only 43 subjects (18 men, 25 women). The subjects whose data was removed 

because they were deceased are identified in table 3.1 by underlining of the age of onset 

of their cancers. 

For each group, the observed prevalence of a prior diagnosis of BCC and SCC was 

calculated. The method outlined above was then used to calculate the expected number of 

BCC and SCC in that group of relatives, taking into account their current age, and their 

95% CIs, under the null hypothesis that the subjects had the same prevalence distribution 

as the general population. The observed and expected prevalences are presented in table 

3.7 below. 
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Table 3.7 Observed and expected prevalence of skin cancers in siblings and parents  
of proband subjects by gender 

Group Gender Cancer 
Type 

Observed 
prevalence

Expected prevalence 

(95% C.I.) 

Relative 
Risk 

 

Siblings Men SCC 1 0.70 (0.00, 2.32) 1.43 

  BCC 15 2.87 (0.00, 6.05) 5.23* 

 Women SCC 3 0.55 (0.00, 1.99) 5.45* 

  BCC 8 4.05 (0.27, 7.82) 1.98* 

Parents Men SCC 7 1.69 (0.00, 4.09) 4.14* 

  BCC 5 4.16 (0.70, 7.63) 1.20 

 Women SCC 1 1.18 (0.00, 3.24) 0.85 

  BCC 9 4.22 (0.61, 7.84) 2.13* 

*indicates result was significant at 0.05 level (non-overlapping 95% confidence limits of expected and 
observed prevalences, as per section 2.9.2) 

Significantly more BCC cases were observed among the siblings, both brothers and 

sisters (relative risks 5.23 and 1.98 respectively), and in the mothers of probands (RR 

2.13), than expected. Significantly more SCC cases were observed among the sisters (RR 

5.45) and fathers (RR 4.14) of probands than expected. 

The degree of familial aggregation of NMSC therefore differed by sex, relative and 

cancer type. In brothers, only BCC risk was elevated, whereas sisters had increased risks 

of both BCC and SCC. Among mothers only BCC risk was elevated, and among fathers 

only SCC risk was increased. Taken together, these data show that being a first-degree 

relative of a case of early-onset BCC was associated with marked increases in risk of 

NMSC, both BCC and SCC.  

3.3.2. Comparison of observed and expected MM in first degree relatives 

The expected number of malignant melanomas for the group of first degree relatives was 

calculated directly from the 1996 Australian Cancer Registry data (see methods section 
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2.10). Of the 123 siblings for whom data was obtained, one deceased subject was 

removed from analysis, leaving 122 sibling individuals (63 men, 59 women). Of the 89 

parents for whom data was available, 17 subjects were deceased, leaving 72 subjects 

(eight men, nine women) for the analysis. A comparison of the observed and expected 

numbers of this cancer is seen in table 3.8. 

Table 3.8 Relative risk of MM in first degree relatives of early-onset BCC probands 
Group Gender Observed 

Prevalence
Expected Prevalence 

(95% C.I.) 
Relative 
Risk 

Siblings Men 3 0.289 (0, 1.339) 10.3* 
 Women 1 0.323 (0, 1.433) 3.1 
Parents Men 3 0.987 (0, 2.901) 3.0* 
 Women 2 0.74 (0, 2.437) 2.7 
*indicates result was significant at 0.05 level (non-overlapping 95% confidence limits of expected and 
observed prevalences, as per section 2.10) 

All relatives had an increased risk of MM compared with the general population, and this 

was significant for male relatives. Brothers of the early-onset probands had a significant 

ten-fold increased risk of MM compared with the Australian population, and fathers had a 

three-fold increased risk. 

3.4. Other cancer diagnoses 

No proband reported a personal history of any cancer other than BCC. It can be seen in 

Table 3.9 that 17 first-degree relatives reported cancer diagnoses other than skin cancer, 

most of which could be histologically verified. Seventeen first degree relatives exhibited 

a variety of cancer diagnoses including colorectal (six relatives), breast (three), renal cell 

(two), laryngeal SCC (two), ovarian (one), prostate (one) and squamous cell lung (one) 

cancers, and malignant fibrous histiocytoma (one). The six relatives with colorectal 

carcinoma had an average age of onset of 66 years, which is close to the population 

average. Three first-degree relatives had breast carcinoma, two with invasive ductal 

histological types and the other not specified, and an average age of onset of 52 years. 

None of these data suggest abnormal aggregation of non-skin cancers in these families. 
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Table 3.9 All cancer diagnoses (excluding skin cancers) in first degree relatives of probands 
Family ID Relationship to 

Proband 
Gender Cancer diagnosis Age of 

Onset 
28775 Sibling Female Breast (invasive 

ductal) 
47 

28770 Parent Male Laryngeal SCC  77 
29779 Parent Female Ovarian 45 
28781 Parent Male Colorectal 65 
28797 Parent Female Colorectal 65 
28816 Parent Male Renal Cell 

Carcinoma 
68 

28818 Parent Female Breasta 49 
28825 Parent Male Colorectal 69 
28857 Parent Male Laryngeal SCC 55 
29094 Parent Male Colorectal 58 
29168 Parent Female Colorectal 73 
29168 Parent Male Squamous Cell 

Lung 
69 

29240 Parent Male Malignant fibrous 
histiocytoma 
(sarcoma) 

62 

29275 Parent Female Breast (invasive 
ductal) 

60 

28767 Parent Male Renal Cell 
Carcinoma 

61 

28762 Parent Female Colorectal 67 
28762 Parent Male Prostate 70 
aClinical information only for this patient (not histologically verified) 
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3.5. Pedigrees of affected families 

Of the 56 probands included in this study, three had histopathologically-verified 

clustering of 6 cases of BCC among first-degree relatives. As is implied by the analysis in 

section 3.3, and shown in Figure 3.3, most families with more than one NMSC exhibited 

a combination of both types of skin cancer. However some families’ cancer histories 

included only BCC (e.g. see pedigree for family ID 29022). 

 
Figure 3.3. Pedigrees for families 28840, 28816, and 29022 
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Legend forFigure 3.3: 
 

 
Text: Date of Birth  
         Type cancer  
         Date of diagnosis 
 
 

3.6. Discussion 

As with other malignancies, the causes of BCC are likely to be due to a complex 

interplay of environmental and genetic factors. A better understanding of the way that 

BCC aggregates in families may help us to start to unravel these aetiological factors. In 

this chapter we see an examination of familial aggregation for BCC and SCC, a study that 

has no parallel in the literature to date.  

The participation rate of eligible subjects for this study was 34%, however the effective 

participation rate of 53% may be a better assessment of participation: there were a 

relatively large number of non-contactable subjects due to the young age and mobility of 

the population sample compounded by the fact that the SCFA database contact 

information on these subjects was three years old. The population from which the 

subjects were ascertained needed to be from this database to allow comparison with the 

information gathered for the SCC arm of the study (see section 2.1.2). Despite this, there 

may be some ascertainment bias in that consenting subjects may be those in whom there 

is a family history of cancer, giving an overestimate of the cancer prevalence in relatives 

of early-onset BCC subjects. A family history of melanoma, the skin cancer of highest 

mortality, may be thought to produce a larger ascertainment bias than other types of skin 

cancer, due to the nature of the prognosis and likelihood of discussion among family 

members. If all eligible subjects who did not participate were to have no family history of 

BCC 

SCC
proband 

36

Malignant Melanoma

Other Cancer 

  Age first affected; m: multiple cancers 

Control sibling 
 

xxxx 
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cancer, then our overestimates would be between 1.9-fold and 2.9-fold at worst (based on 

the inverse of the participation rates calculated above).  

The participation rate of eligible relatives of this study was very high at over 85% in both 

parents and siblings. There was a female preponderance of proband subjects with a F:M 

ratio of  2.1:1. As this does not affect the sex distribution of their relatives, and as the sex 

ratio of relatives was equal, the bias towards female sex in probands should not affect the 

interpretation of cancer prevalence in relatives.  

From examination of histopathologically-verified prevalence of NMSC in these 56 

families of people with early-onset BCC, it is evident that familial aggregation of NMSCs 

is occurring. Over half of the families studied display aggregation of either BCC or SCC 

with two thirds of these including a history of both types of NMSC. Significantly, the 

other one-third of these families include family members with a history of BCC but not 

SCC, and in nearly half of these, clusters of three first-degree relatives or more affected 

relatives exist. There are also three families in whom two or more first-degree relatives 

were affected by melanoma. Together these results indicate that families of people with 

early-onset BCC may be at increased risk for skin cancer in general, and also for BCC in 

particular.  

Here for the first time, relative risks of BCC, SCC, and MM for first-degree relatives of 

early-onset BCC cases have been determined. The computed relative risks confirm 

suspicions that arise when looking at the aggregation seen in the pedigrees in these 

families: first-degree relatives of people with early-onset BCC have an increased risk of 

NMSC. The expected prevalence of NMSCs in the subjects was calculated from data on 

the Australian population, and a significantly increased risk of BCC, SCC and melanoma 

occurred for first-degree relatives, with differential risks for different relative, sex and 

cancer type. Sisters and mothers of probands had a two-fold increased risk of BCC, and 

brothers had a 5-fold increased risk of BCC compared with that estimated for the general 

population. Sisters and fathers of people with early-onset BCC had over four times the 

prevalence of SCC than expected. For melanoma, the increased risk was significant for 

male relatives only, with a 10-fold increased risk for brothers of people with early-onset 



 115

BCC and three-fold for fathers. In general, the relative risks of cancers were greater in 

siblings than parents, which is not surprising given the larger baseline risk of parents due 

to their more advanced age. 

These estimates should be interpreted with the understanding that they are based on some 

strong underlying assumptions. Cumulative risk of NMSC was estimated from validated 

Australian population annual incidence data (see section 2.9.1). This annual incidence 

data was used despite unvalidated lifetime data being available from this survey, as only 

validated data was deemed suitable for such an analysis. It was assumed that the period- 

and cohort-specific incidence rates for a given age and gender were constant.  This 

assumption may not be correct especially given the recorded increase in incidence seen in 

Australia and internationally over the last few decades (see section 1.3). The national 

survey from which the incidence figures were obtained for the estimation of prevalence 

suggest that SCC age-specific incidence rates have increased between 1985 and 1995, 

while BCC rates have fallen for those aged under 50 years and have risen in those aged 

older than 50 years during this same 10-year period [1]. Thus it is possible that estimates 

of expected prevalence for SCC are in fact overestimates, such that the risk ratio based on 

observed prevalences could be slightly underestimated. Thus the SCC relative risks 

calculated are likely to be conservative estimates. If BCC incidence has actually declined 

by 10% in people under 50 years of age from 1985 to 1995 as suggested by the latest 

national survey, then the BCC relative risk in siblings may be a slight overestimate. 

Changes of this magnitude in the younger age group, even if real, cannot fully account 

for the two- to five-fold excess of observed to expected BCCs seen in siblings and 

mothers of the probands. 

Empirical evidence supporting the Poisson model assumptions is illustrated in the close 

agreement between the observed and fitted incidence rates provided in figure 3.1.  Death 

from NMSC is known to be extremely rare in Australia [396]. Although the occurrence 

of malignant melanoma is known to be associated with the presence of NMSC, death 

from malignant melanoma as an overall cause of death in Australia is also rare. 

Therefore, it is reasonable to approximate the incidence processes for SCC and BCC as 

acting independently of the overall death process on the Australian population.  If 
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probands’ relatives are more prone to death from malignant melanoma which in turn is 

associated with increased rates of NMSC, then those relatives with NMSC who died of 

melanoma have not been counted amongst the observed cases.  This is because only those 

relatives who were alive contributed to this observed total. There is, therefore, a 

conservative effect on risk assessment due to any association between NMSC incidence 

and melanoma death in the probands’ relatives. 

It has been observed that the risk of NMSC is lower for immigrants (arriving after the age 

of 10 years) than native-born Australians [78].  Consequently, the SCC and BCC 

incidence processes do not act independently of the immigration process, as assumed in 

our mathematical derivation of estimated prevalences.  It is not clear whether the 

emigration process acts independently of the SCC and BCC incidence processes.  

Unfortunately, using the available data, it is impossible to quantify these effects and those 

of other related variables, such as ethnicity and lifetime latitude of residence.   

The mean age of diagnosis of BCC in the Australian population has been estimated at 63 

for men and 59 for women, and for SCC it is 66 years for men and 64 years for women 

[1]. Although these figures cannot be directly compared with those from the subjects of 

this study due to differences in ascertainment and measurement; it is evident that mean 

ages of onset in the family members of this study were younger for the siblings (as 

expected due to ascertainment bias), and of a similar magnitude for parents. 

Since the majority of families with aggregation of skin cancer have a combination of 

SCC and BCC, and it is likely that general risks for skin cancer are increased in relatives 

of people with early-onset BCC. These general risk factors are likely to include 

environmental, genetic, and phenotypic risks that are common to UVR-related skin 

cancers in general. Environmental risk factors that may to be common to all three types 

of skin cancer include sun exposure levels, sun protection measures employed, HPV or 

other viral infection, and increased surveillance in family members. Inherited, genetic 

characteristics that may cause increased risk to all three types of skin cancer may include 

those which relate to pigmentary traits such as MC1R, HPV susceptibility eg through 

polymorphism p53Arg, and probably multiple as-yet unidentified genetic susceptibilities. 
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Phenotypic risk factors for all three types of skin cancer include sun sensitivity, 

pigmentary characteristics, signs of sun exposure such as actinic keratoses, and 

phenotypic results of a combination of higher risk skin pigmentation and sun exposure 

such as freckling. 

Given that nearly one fifth of families in this study had aggregation of BCC to the 

exclusion of SCC or MM, BCC-specific risk factors are also likely to be at work. BCC-

specific factors probably include environmental risks such as the pattern of sun exposure, 

with childhood and intermittent exposure affecting BCC risk to a greater degree than 

SCC risk [47, 78, 81]. Toxins such as arsenic are also specific risk factors for BCC. 

Genetic factors such as PTCH polymorphisms or mutations within the germlines of these 

families could also affect risk of BCC. This tumour-suppressor gene causes increased risk 

of BCC to those with the rare genodermatosis Gorlin syndrome, but beyond some 

preliminary haplotyping studies, has not been examined as a potential contributor to BCC 

susceptibility in the general population (considered in chapter 5). Presence of Gorlin 

Syndrome would also cause an increased risk of BCC differentially compared with SCC, 

and one proband reported a prior clinical diagnois of this syndrome. 

Further information about the origins of skin cancer risk may be obtained through 

phenotypic examination of probands and their unaffected siblings who can act as intra-

family controls. Environmental risk factors are assumed to be similar for siblings within a 

family, meaning that observed phenotypic differences are likely to be attributable to 

genetic causes. Questionnaires to ascertain exposure to environmental risk factors would 

be useful and could be employed in future studies. These issues will be explored further 

in the next chapter. 

Sources of error in comparing this study’s subject prevalence with population prevalence 

include the differences in latitude of the people involved, and differences in sibling 

numbers of the people measured. However, as discussed in section 2.1.1, the Sydney 

basin is likely to have a similar incidence of skin cancer to the general population.  
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Chapter 4: Case-control analysis: phenotypic risk 
factors for early-onset BCC 

4.1. Introduction 

The subjects of this study are 56 people who have developed BCC under 40 yr, i.e. earlier 

than 93% of Australians who are affected by this type of skin cancer. It was hypothesised 

that they would exhibit increased risk factors for BCC. In the previous chapter their 

relatives were shown to have increased prevalence of not only BCC, but also SCC and 

melanoma. Importantly, in a proportion of these families there were multiple cases 

affected by BCC in the absence of SCC, in one family this included six first-degree 

affected relatives. Exploration of underlying causative factors therefore needs to address 

both susceptibility to skin cancer in general and also susceptibility factors that might be 

unique to BCC. 

Particular skin phenotypes are known to be associated with skin cancer risk. The complex 

of inherited characteristics defining a person’s ‘sun sensitivity’ has a moderate 

association with BCC. Pigmentary characteristics such as skin colour and tanning ability 

are key features of this complex and may play a causative role, with eye colour and hair 

colour surrogate markers (see section 1.4). Genetic variation in MC1R is largely 

responsible for these individual differences in pigmentary characteristics, in combination 

with other as yet unknown genes, and acts as an independent risk factor for BCC (see 

section 1.7). 

Risk of BCC is increased by sun exposure, with acute intermittent exposure rather than 

cumulative total dose the more important pattern of exposure for determining risk of this 

tumour (see section 1.4). Signs of high total cumulative sun exposure such as presence of 

pterygium on the sclera of the eye, and solar elastosis or actinic keratoses on the 

chronically sun exposed regions of the body have been associated with SCC, and to a 

lesser extent BCC. However it is difficult to disentangle these phenotypes from varying 

individual susceptibility to sun-related skin damage: they are not uncontaminated markers 

of solar radiation dose. Some commonly occurring skin lesions that are the result of 
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combinations of pigmentary traits and sun exposure include solar lentigines and 

freckling. More poorly understood are the presence of seborrhoeic keratoses; these 

benign lesions may be associated with sun exposure and are very prevalent in Australian 

populations. They do not have any known associations with skin cancer. In this chapter, 

the causes of BCC in the probands are explored by comparing their skin phenotype with 

that of their unaffected siblings. Siblings are similar genetically and are even more likely 

to have shared a common early environment. Differences seen between affected-

unaffected sibling pairs can therefore not be confounded by population admixture and, if 

not due to chance, are more likely to have a genetic than an environmental basis. 

Several skin characteristics were measured, using both self-reports and physical 

examination by a trained examiner under standardised conditions (see section 2.3). 

Pigmentary characteristics of the skin were measured along with sun sensitivity factors, 

characteristics relating to previous sun exposure, and characteristics due to a combination 

of sun sensitivity and sun exposure. All tests of association described in this chapter were 

carried out using logistic regression, either unconditionally or conditioning on family 

membership (i.e. taking into account their membership of a proband-sibling pair). 

Differences in skin colour, skin phototype, signs of sun sensitivity and sun exposure were 

seen between the sibling pairs, indicating identifiable phenotypic risk factors for early-

onset BCC. 

The following chapter (section 5) describes analysis of genetic factors that may explain 

the clustering of skin cancer within these families.  

4.2. Results 

4.2.1. General characteristics 

A nested case-control analysis was performed by selecting the oldest NMSC-unaffected 

sibling as a control for each proband where available. Examinations were performed on 

88 subjects, including assessments of pigmentary characteristics and semi-quantitative 

analysis of various sun exposure-related lesions on their skin. Of these 88 subjects, 73% 
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(64/88) were part of proband-sibling case-control pairs, with the 27% (24/88) remaining 

subjects undergoing examination unpaired. 

Table 4.1. Age, Height, Weight paired t-tests 
Measurement Mean Case-Control SD Sig (2-tailed) 
Age (years) -1.8 6.0 .101 
Height (cm) -1.3 9.3 .449 
Weight (kg) -2.9 14.7 .266 
 
There were no significant differences between probands and siblings with respect to age, 

height, or weight (see table 4.1). The siblings chosen as a control for the probands were 

selected to be the oldest NMSC-unaffected sibling. The average age of the siblings was 

1.8 years older than the probands, or one year and 10 months (SD 6.0 years). The sibling 

controls were also on average slightly taller than their proband pair by 1.3 cm (SD: 9.3 

cm) and heavier by 2.9 kg (SD: 14.7 kg).  

All subjects were investigated for evidence of Gorlin syndrome, through history of 

mandibular keratocysts and presence of palmar pitting (see section 2.3.1). These features 

are both pathognomonic of Gorlin syndrome, and presence of both features occurred in 

one patient only (proband ID 9125) who had previously been clinically diagnosed with 

this syndrome.  
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4.2.2. Pigmentary factors 

4.2.2.1.Hair Colour 

Table 4.2 Case control comparison of hair colour by self report and by identification of a swatch of hair 
colour (from subjects’ answers to questionnaire) 

 
Subjects most commonly reported a light or mouse brown hair colour with dark brown 

the next most common hair colour, then blonde/fair, then red. Only one subject reported 

having black hair (see table 4.2 and appendix table 7.2). Dark brown was the second most 

common hair colour reported with 31/88 (35.2%) in this category. There were 17/88 

(19.3%) who reported blonde/fair hair with 6/88 (6.8%) reporting red hair and 1/88 

(1.1%) reporting black hair. Black and brown hair results were aggregated for the 

analysis (see table 4.2). 

Subjects were asked to self-identify their hair colour in two ways: by answering the 

question “Which colour best describes your natural hair colour at age 21- red, fair/blonde, 

light/mouse brown, grey, dark brown, or black?”, and by matching their recalled hair 

colour at age 21 by a standard  wigmaker’s hair swatch (see section 2.3.1). Hair colour 

observed at time of examination is not a relevant variable in studies of human 

pigmentation because of age-related and cosmetic changes. Identification of hair swatch 

Variable  n (%) Unconditional 
Logistic 
Regression 

Odds 
Ratio  

(95% 
CI) 

p-
value 

Conditional 
Logistic 
Regression 

Odds 
Ratio  

(95% 
CI) 

p-
value 

Hair colour 
self report 

88(100.0) As continuous 
variable  

1.112 (.803-
1.543) 

.521 As 
continuous 
variable  

1.094 (.675-
1.773) 

.715 

32(36.3) Brown/black 1 - - Brown/black 1 - - 
33(37.5) Light brown  1.789 (.646-

4.957) 
.263 Light brown 2.916 (.611-

13.925) 
.180 

17(19.3) Fair 1.111 (.337-
3.659) 

.862 Fair .821 (.116-
5.800) 

.843 

6(6.8) Red 1.556 (.248-
9.750) 

.637 Red 1.708 (.087-
33.488) 

.725 

Identification 
of hair colour 
by swatch 

88(100.0) As continuous 
variable  

1.147 (.616-
2.137) 

.665 As 
continuous 
variable  

1.000 (.464-
2.155) 

1.000 

36(40.9) brown/black 1 - - brown/black 1 - - 
39(44.3) blonde/fair 1.429 (.558-

3.655) 
.457 blonde/fair 1.000 (.277-

3.608) 
1.000 

13(14.) red 1.143 (.312-
4.189) 

.840 red 1.000 (.191-
5.241) 

1.000 
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is a more objective measure because it removes the subjectivity of naming the colour and 

is therefore probably a more objective measure of the subjects’ true hair colour.  

The subjects showed reasonably high correlation between these two self-reported 

measures, with Spearman’s rank correlation of 0.71 (significant correlation at the 0.01 

level), indicating 71% agreement between the measures (see appendix table 7.2). All 

subjects who self-reported red hair also identified their hair as red visually by hair 

swatch. Only one person reported having black hair, and this individual identified their 

hair colour as brown by selection of hair swatch. Nearly all (94.1%, 16/17) self-reported 

blondes also identified this colour by hair swatch, with one (5.9%) selecting a red hair 

swatch. Most (87.1%, 27/31) self-reported brunettes identified a brown swatch, with 

three (9.7%) selecting a fair/blonde swatch and one (3.2%) a red hair swatch. A ‘light or 

mouse brown’ self-report was less specific, with most selecting a fair/blonde swatch 

(20/33 or 60.6%), and the remainder either a brown swatch (8/33, 24.2%) or red (5/33, 

15.2%) swatch. If the ‘light or mouse brown’ named category is combined with the ‘dark 

brown’ named category to allow an analysis of agreement with the self-report by swatch, 

the agreement between the two measures is 0.43 (Kronbach’s Kappa). If instead, the 

‘light or mouse brown’ named category is combined with the ‘fair/blonde’ named 

category for a comparison with the swatch self-reports, agreement improves to a measure 

of 0.65 (Kronbach’s Kappa). 

No consistent or significant trend between hair colour and history of BCC was seen in the 

subjects examined, whether determined by self report or identification of hair swatch 

colour (see table 4.1). Subjects with self-reported lighter pigmented hair than dark 

brown/black were more likely to have had BCC; however the odds did not increase 

consistently with increasing fairness. When the groups were compared as matched pairs, 

the odds of BCC were still raised for light-brown (OR= 2.92, 95% CI 0.61 -13.93) or red-

heads by self report (OR = 1.71, 95% CI 0.09 – 33.49), but was the relationship was 

completely lost for the more reliable measure of hair colour by hair swatch. Overall, there 

is little evidence for an association of hair colour and BCC risk in this group.   
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4.2.2.2.Eye Colour 

Table 4.3 Case control comparison of eye colour (from subjects’ answers to questionnaire) 
Variable  n (%) Unconditional 

Logistic 
Regression 

Odds 
Ratio  

(95% 
CI) 

p-value Conditional 
Logistic 
Regression 

Odds 
Ratio  

(95% 
CI) 

p-
value 

Eye 
colour 

88(100) As continuous 
variable 

1.700 (.759-
2.404) 

.306 As 
continuous 
variable 

1.155 (.547-
2.433) 

.706 

 17(19.3) brown/black 1 - - brown/black 1 - - 
 34(38.6) green/hazel .887 (.273- 

2.884) 
.842 green/hazel .825 (.211- 

3.225) 
.782 

 37(42.0) blue 1.655 (.500- 
5.470) 

.409 blue 1.337 (.298- 
6.001) 

.704 

 
Blue (37/88 or 42.0%) or green eyes (34/88 or 38.6%) were more commonly reported by 

subjects with only 19.3% (17/88) reporting brown/black eyes (see table 4.3).  

No significant relationship between eye colour and history of BCC was evident, with 

slightly increased odds of BCC in subjects with lighter eye colour, a relationship that was 

weakened by comparing matched proband-sibling pairs (OR = 1.16, 95% CI 0.55- 2.43), 

reducing the likelihood of a real association. There was also no trend for consistently 

increasing risk with decreasing eye pigmentation, as the odds of BCC were decreased for 

green/hazel eyes  (OR = 0.83, 95% CI 0.21- 3.23) and increased for blue eyes (OR = 

1.33, 95% CI 0.30- 6.00). Together, these results provide no evidence for an association 

between eye colour and BCC risk in these subjects.  

4.2.2.3.Skin Colour 

The commonest reported skin colour among all subjects was fair (47/88 or 53.4%) with 

39.8% (35/88) reporting very fair skin, and only 6.8% subjects overall (6/88) reporting 

olive or brown skin colour (see table 4.4).  

The odds of BCC was higher for people reporting a lighter skin colour, and this 

relationship strengthened in the case-control analysis (OR = 2.04, 95% CI 0.67- 6.29) but 

remained non-significant. There was a trend for increasing risk of BCC with 

progressively increased fairness of skin, with ORs of 1.47 (95% CI 0.27- 8.10) for fair 

skin and 2.18 (95% CI 0.38- 12.58) for very fair skin compared with the whole unpaired 

group of control siblings. Given that there were so few subjects reporting olive/brown 
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skin, odds ratios were unable to be determined for categories of increasing fairness of the 

skin for case-control pairs. 

People with BCC had very slightly lighter overall constitutive skin colour as measured by 

luminance (see 2.3.3 for detailed explanation of skin colour parameters as determined by 

reflectance spectrophotometry), which also strengthened with case-control matching but 

did not reach significance (OR = 1.20, 95% CI 0.93- 1.55; see table 4.6). Inner arm 

(constitutive, non-sun exposed) skin colour was slightly less red on a red-green 

reflectance scale in probands compared with the group of siblings (OR = 0.91, 95% CI 

0.76- 1.08), with cases on average having nearly one unit lower readings on reflectance 

spectrophotometry on this variable. This association became significant when case-

control pairs were matched (OR = 0.59, 95% CI 0.36 – 0.98, with paired t-test 2-tailed 

significance =0.019), suggesting that constitutive red-green reflectance of the skin is 

associated with a lower risk of BCC compared with those whose skin is made up of less 

of this pigment. People with BCC also had less yellow in their skin pigment as measured 

by the yellow-blue reflectance parameter, and although this relationship strengthened 

with matching of probands with their siblings in the analysis (OR = 0.83, 95% CI 0.64- 

1.07), it remained small and not significant.  

None of the outer arm (a sun-exposed skin area) measurements of skin colour were 

significantly different between cases and controls. There was very little difference in 

exposed skin colour, with essentially no difference between exposed skin in overall 

fairness (OR = 1.08, 95% CI 0.94- 1.24), and little difference seen before case-control 

pairing in red-green reflectance or yellow-blue reflectance. In an analysis with case-

control pairing, there was a trend for a small association with outer arm red-green 

reflectance (OR = 0.83, 95% CI 0.62- 1.11) and yellow-blue reflectance (OR = 0.85, 95% 

CI 0.69- 1.07) with BCC, with an increasing degree of either measure decreasing the 

odds of BCC slightly. 

The measures L (‘luminance’), a (‘red-green reflectance’) and b (‘yellow-blue 

reflectance’) are independent dimensions of colour, but skin types are likely to be 

expressed as recurring combinations of these measures, due to the effect of a small 
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number of skin structures contributing to colour in a limited number of ways (see section 

2.3.3 for a discussion on the main contributors to skin colour). Correlations between the 

measures were examined using linear regression; Spearman’s correlation coefficient for 

the outer arm measure L was R2=0.81, i.e. 81% of the variance in the measure L is 

explained by the outer arm measures a and b. Inner arm measure L had a Spearman’s 

correlation coefficient of R2=0.72, suggesting that 72% of the variance in inner arm L is 

explained by the inner arm a and b measures. When the a and b measures for the outer 

arm and the inner arm are combined in a linear regression analysis, inner arm red-green 

reflectance was the only independent predictor of BCC risk.  
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Table 4.5 Case control comparison of self- reported skin pigmentation (from subjects’ answers to questionnaire) 
Variable n (%) Unconditional Logistic 

Regression 
Odds 
Ratio  

(95% CI) p-value Conditional Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 
 
 

Self reported skin 
pigmentation 

88(100) As continuous variable 1.479 (.714-
3.058) 

.292 As continuous variable 2.044 (.665-
6.289) 

.212 

 6(6.8) Olive/Brown 1 - - Olive/Brown 1 - - 
 47(53.4) Fair 1.474 (.268- 

8.091) 
.655 Fair 2085.670 ? .899 

 35(39.8) Very Fair 2.182 (.378- 
12.583) 

.383 Very Fair 3649.923 ? .892 

Table 4.6 Case control comparison of spectrophotometric measurements of outer and inner arm skin colour 
Variable Paired t test Mean 

difference 
case - 
control 

(95% CI) Sig (2-
tailed) 

Unconditional 
Logistic 
Regression 

Odds Ratio  (95% CI) p-value Conditional 
Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 
 
 

Observed 
exposed skin 
colour 

Outer arm 
luminance  

1.02452 (-.97464-
3.02367) 

.304 Continuous 
variable 

1.019 (.955-
1.088) 

.563 Continuous 
variable 

1.076 (.935-
1.238) 

.309 

 Outer arm red-
green 
reflectance  

-.66129 (-1.66190-
.33932) 

.187 Continuous 
variable 

.963 (.842-
1.101) 

.582 Continuous 
variable 

.828 (.621-
1.105) 

.200 

 Outer arm 
yellow-blue 
reflectance  

-.89097 (-2.13435-
.35242) 

.154 Continuous 
variable 

.975 (.886-
1.073) 

.607 Continuous 
variable 

.854 (.685-
1.065) 

.162 

Observed 
constitutive 
skin colour  

Inner arm 
luminance  

1.06194 (-.34603-
2.46990) 

.134 Continuous 
variable 

1.041 (.947-
1.144) 

.404 Continuous 
variable 

1.197 (.925-
1.548) 

.171 

 Inner arm red-
green 
reflectance  

-.99484 (-1.81555--
.17413) 

.019* Continuous 
variable 

.906 (.757-
1.083) 

.278 Continuous 
variable 

.591 (.356-
.980) 

.041* 

 Inner arm 
yellow-blue 
reflectance  

-.88742 (-2.04297-
.26813) 

.127 Continuous 
variable 

.952 (.855-
1.060) 

.372 Continuous 
variable 

.826 (.639-
1.068) 

.145 
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4.2.3. Propensity to burn, ability to tan, and phototype 

Overall, only nine (10.2%, 9/88) subjects reported severe sunburn with blistering 

following a single exposure to bright sunlight for one hour for the first time in summer. 

Most subjects reported mild or no sunburn (29.5%, 26/88) or painful (60.2%, 53/88) 

sunburn (see section 2.3.2 for recoding of variable information and appendix table 7.3 for 

raw data).  

There was a trend for progressively increased risk of BCC for people with increasing 

propensity to burn, and this effect was magnified by analysis by case-control pairs. A 

painful burn increased risk of BCC slightly (OR = 1.21, 95% CI 0.47 – 3.15) and a severe 

burn increased the risk more than two-fold (OR = 2.57, 95% CI 0.44 – 14.82). Analysis 

by case-control pairs increased this relationship, with a greater than three-fold risk of 

BCC for a painful burn after their first summer exposure to sunlight (OR = 3.50, 95% CI 

0.73- 16.85), and a seven-fold risk if reporting severe sunburn with blistering (OR = 7.00, 

95% CI 0.70- 70.74); this trend did not quite reach significance (p for trend = 0.08).  

However, only 6.8% (6/88) of persons reported a response of deep tanning following 

repeated exposure to the sun (‘ability to tan’), with 18.2% (16/88) of people at the other 

end of the spectrum, reporting no tanning/freckling only. The remainder fell nearly 

equally into the groups of ‘moderately tanned’ (38.6% or 34/88) or ‘mildly/occasionally 

tanned’ (36.4% or 32/88) (see appendix table 7.3).  

There was an effect of increased risk of BCC in people with reduced ability to tan 

although significance was not achieved: there was a small increased risk of OR 1.61 

(95% CI 0.28- 9.23) for moderate tanning, OR 1.46 (95% CI 0.25- 8.40) for mild tanning 

and a larger effect of OR 3.00 (95% CI 0.42- 21.30) for no tan or freckling only (p for 

trend = 0.33). This effect was increased by case-control analysis, with the odds of BCC 

2.15 (95% CI 0.19- 24.93) for moderate tanning, 1.74 (95% CI 0.13- 22.75) for mild 

tanning, and six-fold increased odds of BCC (OR = 5.97; 95% CI 0.33- 107.26) for those 

reporting no tan or freckling only (p for trend = 0.25). These results are consistent with a 

protective effect of the ability to tan on risk of BCC. 
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Only 9.1% (8/88) reported ‘always burning/never tanning’, with the remainder reporting 

‘usually burning/sometimes tanning’ (52.3%, 46/88), or ‘sometimes burning/usually 

tanning’ (38.6%, 34/88) (see appendix table 7.4).  

The trend for risk of BCC with lower skin phototype was present but small (OR = 1.72, 

95% CI 0.84 – 3.56) but became larger and statistically significant (p for trend = 0.045) 

in the case-control analysis, with a more than three-fold increased risk of BCC with 

decreasing phototype (OR = 3.56; 95% CI 1.03 – 12.35); the risk of BCC was greater 

than four-fold for phototype II (usually burn/sometimes tan; OR = 4.24; 95% CI 0.91 – 

19.81), and nearly ten-fold for people with phototype I as compared with phototype III 

(always burn/never tan; OR = 9.79; 95% CI 0.668 – 143.42), although remained non-

significant.  

In summary, effects of these measures were only weakly discernible in these data due to 

limited power of the study, and the intrinsic limitation of a sibling-control design in 

which many risk factors will be shared by cases and controls. However the directions of 

the trend data are all consistent with effects observed in population-based studies of BCC. 

The trend was for increased risk of BCC with increased propensity to burn, decreased 

ability to tan, and lower skin phototype, with this latter variable the only one to reach 

significance (p = 0.045.) 
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Table 4.7 Case- control comparison of skin reactions to single, repeated, and general exposure to the sun (from subjects’ answers to questionnaire) 
Variable  n (%) Unconditional 

Logistic 
Regression 

Odds Ratio  (95% CI) p-value Conditional 
Logistic 
Regression 

Odds Ratio  (95% CI) p-value 

Single 
exposure to 
sun 
(propensity 
to burn) 

88(100.0) As continuous 
variable  

1.429 (.688-2.967) .338 As continuous 
variable  

2.747 (.876-8.621) .083 

 26(29.5) mild/no sunburn 1 - - mild/no sunburn 1 - - 
 53(60.2) painful 

sunburn/peeling 
1.210 (.465-3.147) .696 painful 

sunburn/peeling 
3.500 (.727- 

16.848) 
.118 

 9(10.2) severe 
sunburn/blistering 

2.567 (.444-14.822) .292 severe 
sunburn/blistering 

7.000 (.693- 
70.743) 

.099 

 
Repeated 
exposure to 
sun (ability to 
tan) 

88(100.0) As continuous 
variable 

1.288 (.770- 2.155) .334 As continuous 
variable 

1.518 (.749- 3.077) .247 

 6(6.8) deeply tanned 1 - - deeply tanned 1 - - 
 34(38.6) moderately 

tanned 
1.615 (.283- 9.235) 

 
.590 
 

moderately tanned 2.148 (.185- 
24.933) 

.541 
 

 32(36.4) mildly tanned 1.462 (.254- 8.401) .671 mildly tanned 1.742 (.133- 
22.746) 
 

.672 
 

 16(18.2) no tan/freckle 
only 

3.000 (.423- 21.297) .272 no tan/freckle only 5.973 (.333- 
107.257) 

.225 

 
General 
reaction to 
sun 
(phototype) 

88(100) As continuous 
variable 

1.727 (.839-3.559) .138 As continuous 
variable 

3.559 (1.029-
12.346) 

.045* 

 88(100) As continuous 
variable recoded 

1.934 (.799-4.695) .144 As continuous 
variable recoded 

4.500 (.972-20.827) .054 

 34(38.6) sometimes 
burn/usually tan 
(phototype III) 

1 - - sometimes 
burn/usually tan 
(phototype III) 

1 - - 



 131

 46(52.3) usually 
burn/sometimes 
tan 
(phototype II) 

1.837 (.737- 4.577) .192 usually 
burn/sometimes 
tan  
(phototype II) 

4.243 (.909-19.811) .066 

 8(9.1) always 
burn/never tan 
(phototype I) 

2.667 (.470-15.136) .268 always burn/never 
tan (phototype I) 

9.787 (.668-
143.415) 

.096 
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4.2.4. Sun exposure 

Table 4.8 Case-control comparison of presence of actinic keratoses, solar elastosis and pterygium (as measured by 
skin examination) 
Variable n (%) Unconditional 

Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 

Conditional 
Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 
 
 

Presence of  
actinic 
keratoses  

44 
(50.0)/ 
44 (50.0) 

Presence/ Absence 3.000 (1.216-
7.399) 

.017* Presence/ 
Absence 

3.667 (1.023-
13.143) 

.046* 

Total solar 
elastosis 

27 
(30.7)/ 
60 (68.2) 

Low/high 
categories 

1.016 (.396- 
2.604) 

.974 Low/high 
categories 

1.222 (.723-
2.064) 

.454 

Presence of 
pterygium 

56 
(63.6)/ 
31 (35.2) 

Presence/ 
Absence 

.917 (.368- 
2.285) 

.852 Presence/ 
Absence 

.750 (.260-
2.162) 

.594 

 
Half of the subjects had at least one actinic keratosis at examination (see table 4.8 and appendix 

table 7.6). One subject was not examined for total solar elastosis or pterygium and so the analysis 

for these two factors included 87 subjects only. A large proportion of subjects had a high amount of 

solar elastosis (see section 2.4.2 and appendix table 7.7), and nearly two-thirds of subjects had the 

sun-exposure-related lesion ‘pterygium’ visible on the sclera of their eye at examination. 

The presence of any actinic keratoses were significantly associated with history of BCC with an OR 

of 3.00 (95% CI 1.22- 7.40; p = 0.017) for this variable, an association that was increased 

marginally in the case-control analysis (OR = 3.67; 95% CI 1.02- 13.14; p = 0.046). The other signs 

of sun exposure showed smaller associations and required case-control analysis to become evident; 

total solar elastosis was associated with a slightly increased risk of BCC in the case-control analysis 

(OR = 1.22, 95% CI 0.72- 2.06); and risk of BCC was paradoxically slightly reduced in people with 

a pterygium when cases were analysed with respect to their matched siblings (OR = 0.75; 95% CI 

0.26- 2.16).  

In summary, the large amount of sun-exposure-related skin changes in this group made any potential 

associations with BCC risk difficult to determine. The direction of the trend data for actinic 

keratoses and solar elastosis was consistent with population-based studies on BCC risk, with actinic 

keratoses presence significantly associated with BCC risk (p = 0.017).  
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4.2.5. Skin characteristics that are influenced by sun exposure 

Solar lentigines and freckling are pigmentary lesions with complex aetiology (see 1.4.1.1). 

Lentigines have their strongest associations with prior sunburn and occur in sites of previous 

burning, freckles are influenced by sun exposure more broadly. Freckling is strongly geneticly 

determined whereas the genetics of solar lentigo formation, if any, are not understood. 

 
4.2.5.1.Solar lentigines 

Table 4.9 Case-control comparison of numbers of solar lentigines on the face, forehead, upper limbs, and back and 
shoulders (as measured by skin  examination) 
Variable n (%) Unconditional 

Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 

Conditional 
Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 

Solar lentigines 
face 

88 (100) Continuous 
variable 

1.088 (.856-
1.382) 

.491 Continuous 
variable 

1.146 ( .873- 
1.503) 

.326 

 43 
(48.9)/ 
45 
(51.1) 

low/high 
categories 

1.185 (.500-
2.811) 

.700 low/high 
categories 

1.667 (.606-
4.586) 

.323 

Solar lentigines 
forehead 

88 (100) Continuous 
variable 

.949 (.757-
1.190) 

.653 Continuous 
variable 

1.010 ( .771- 
1.322) 

.945 

 47 
(53.4)/ 
41 
(46.6) 

low/high 
categories 

.729 (.306-
1.732) 

.474 low/high 
categories 

1.167 (.392-
3.471) 

.782 

Solar lentigines 
dorsal upper limbs 

88 (100) Continuous 
variable 

1.254 (1.026-
1.532) 

.027* Continuous 
variable 

1.424 ( 1.075- 
1.886) 

.014* 

 46 
(52.3)/ 
42 
(47.7) 

low/high 
categories 

2.583 (1.052-
6.346) 

.038* low/high 
categories 

3.250 (1.060-
9.967) 

.039* 

Solar lentigines 
upper 
back/shoulders 

88 (100) Continuous 
variable 

1.074 (.878-
1.313) 

.487 Continuous 
variable 

1.384 ( .958-  
2.000) 

.084 

 43 
(48.9)/ 
45 
(51.1) 

low/high 
categories 

1.440 (.605-
3.426) 

.410 low/high 
categories 

2.000 (.602-
6.642) 

.258 

 
Table 4.9 shows a trend for increased risk of BCC for people who have had a high number of solar 

lentigines (see section 2.3.2 for recoding and appendix table 7.8 for raw data). Having a high 

number of solar lentigines on the upper arms increased risk of BCC significantly (OR = 2.58; 95% 

CI 1.05- 6.35), and this association was strengthened to a 3-fold risk of BCC in the case-control 

analysis (OR = 3.25, 95% CI 1.06- 9.97). There was a smaller, non-significant risk with high 

numbers of solar lentigines on the face (OR = 1.19, 95% CI 0.50- 2.81) and this increased 

marginally in the case-control analysis (OR = 1.67, 95% CI 0.61- 4.59). Solar lentigines on the 

forehead had essentially no effect on risk, with an odds ratio approaching unity. High numbers of 
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solar lentigines on the upper back and shoulders was associated with a small increased BCC risk, 

and this increased to a two-fold risk (OR = 2.00; 95% CI 0.60 – 6.64) in the paired case-control 

analysis. 
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4.2.5.2.Freckling 

Table 4.10 Case-control comparison of freckling (from questionnaire answers and from skin examination) 
Variable n (%) Unconditional 

Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 

Conditional 
Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 
 
 

Reported freckling 
in childhood 

88 
(100.0) 

As continuous 
variable 

1.455 (.757-
2.798) 

.261 As continuous 
variable 

1.752 (.749- 
4.097) 

.196 

 8 (9.1) None 1 - - None 1 - - 
 31 (35.2) Some 1.385 (.291-

6.581) 
.682 Some .250 (.016- 

3.997) 
.327 

 49 (55.6) Many 2.062 (.456-
9.328) 

.347 Many 1.500 (.251- 
8.977) 

.657 

Reported freckling 
in adulthood 

88 
(100.0) 

As continuous 
variable 

1.177 (.632-
2.191) 

.607 As continuous 
variable 

1.472 (1.472- 
3.038) 

.296 

 15 (17.0) None 1 - - None 1 - - 
 43 (48.9) Some 1.633 (.496-

5.383) 
.420 Some 3.000 (.555- 

16.208) 
.202 

 30 (34.0) Many 1.511 (.430-
5.313) 

.520 Many 3.000 (.555- 
16.208) 

.202 

Clinical freckling 
face 

88 
(100.0) 

Continuous 
variable 

.975 (.802-
1.186) 

.803 Continuous 
variable 

1.012 ( .746- 
1.374) 

.938 

 60 
(68.2)/  
28 (31.8) 

low/high 
categories 

1.000 (.420-
2.379) 

1.000 low/high 
categories 

1.333 (.298-
5.957) 

.706 

Clinical freckling 
forehead 

88 
(100.0) 

Continuous 
variable 

1.099 (.906-
1.334) 

.338 Continuous 
variable 

1.249 ( .932- 
1.674) 

.137 

 66 
(75.0)/ 
22 (25.0) 

low/high 
categories 

.975 (.407-
2.337) 

.956 low/high 
categories 

1.750 (.512-
5.978) 

.372 

Clinical freckling 
dorsal upper limbs
  

88 
(100.0) 

Continuous 
variable 

1.160 (.909-
1.480) 

.233 Continuous 
variable 

1.903 ( 1.068- 
3.391) 

.029* 

 78 
(88.6)/ 
10 (11.4) 

low/high 
categories 

1.815 (.749-
4.396) 

.187 low/high 
categories 

4.000 (.849-
18.836) 

.080 

Clinical freckling 
upper 
back/shoulders 

88 
(100.0) 

Continuous 
variable 

1.112 (.884-
1.398) 

.365 Continuous 
variable 

1.221 ( .883- 
1.688) 

.228 

 43 
(48.9)/ 
45 (51.1) 

low/high 
categories 

1.105 (.460-
2.654) 

.823 low/high 
categories 

1.400 (.444-
4.411) 

.566 

 
Reported freckling in childhood was not consistently associated with BCC risk, as seen in table 4.10 

(see section 2.3.2 for recoding of variables and appendix table 7.9 for raw scores). Reporting of 

some freckles in childhood was associated with a small increased risk of BCC (OR = 1.39, 95% CI 

0.29- 6.58); many freckles were associated with a higher risk (OR = 2.06, 95% CI 0.46- 9.32); 

neither association was significant. The validity of these predictions are questioned when 

considering the marked decrease in predicted risk resulting from the case-control analysis (some 

freckles; OR = 0.25, 95% CI 0.02- 4.00, many freckles; OR = 1.50, 95% CI 0.25- 8.98).   
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Freckling in adulthood showed a more consistent but still non-significant association with more 

evidence for a trend, with a slightly elevated risk that increased to 3-fold in the case-control analysis 

(OR = 3.00; 95% CI 0.55- 16.21 for both).  

As with examination of solar lentigines, the dorsal upper limbs were the only region of the body 

examined to show a significant association of freckling with BCC risk. Here, there was a four-fold 

risk (OR = 4.00, 95% CI 0.85- 18.84) of BCC with high numbers of freckles seen on the upper 

limbs, with a p value approaching significance at 0.08. The p value drops to significance at the 0.05 

level when all categories on the semi-quantitative scale are included in the analysis, giving a 2-fold 

risk of BCC associated with upper arm freckling (OR = 1.90, 95% CI 1.07- 3.39, p = 0.029). 

Observed freckling on the face and forehead both had no effect on BCC risk without the case-

control analysis, but was associated with slightly increased odds of BCC with the case-control 

analysis (face freckling; OR = 1.33; 95% CI 0.30- 5.96; forehead freckling; OR = 1.75; 95% CI 

0.51- 5.96). Upper back and shoulder freckling also showed a small non-significant association with 

BCC risk with odds of 1.40 (95% CI 0.44- 4.41) with case-control matching. 

In summary, the trends seen in this case-control data reflect those seen in population studies on 

BCC. Risk of BCC was increased by the presence of sun-exposure-related lesions including solar 

lentigines and freckling. The most significant associations were seen for both variables on the 

chronically sun-exposed region of the arm (p = 0.014 and p = 0.029 respectively). The amounts of 

solar lentigines were more consistently associated with BCC risk than freckling, which may reflect 

their relatively simple relationship to sun-exposure. The measures of freckling included both self-

reported variables and clinically measured ones. The self-reported measure of childhood freckling 

showed the most inconsistent associations with risk of BCC, which may reflect the difficulties 

associated with reliance on subjects’ memory of the variable.  
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4.2.6. Seborrhoeic keratoses 

Table 4.11 Case-control comparison of numbers of seborrhoeic keratoses (from skin examination) 
Variable n (%) Unconditional 

Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 

Conditional 
Logistic 
Regression 

Odds 
Ratio 

(95% 
CI) 

p-
value 
 
 

Seborrhoeic 
Keratoses head 
and neck 

88 (100.0) Continuous 
variable 

.456 (.148-
1.402) 

.170 Continuous 
variable 

.429 ( .111- 
1.657) 

.220 

 15 (17.0)/ 
73 (83.0) 

Present/Absent 
categories 

.456 (.148-
1.402) 

.170 Present/Absent 
categories 

.429 (.111-
1.657) 

.220 

Seborrhoeic 
Keratoses upper 
limbs 

88 (100.0) Continuous 
variable 

1.283 (.530-
3.108) 

.581 Continuous 
variable 

1.000 ( .351-  
2.851) 

1.000 

 29 (33.0)/ 
59 (67.0) 

Present/Absent 
categories 

1.214 (.480-
3.069) 

.682 Present/Absent 
categories 

1.000 (.351-
2.851) 

1.000 

Seborrhoeic 
Keratoses chest 

88 (100.0) Continuous 
variable 

.500 (.188-
1.332) 

.166 Continuous 
variable 

.286 ( .059-  
1.375) 

.118 

 22 (25.0)/ 
66 (75.0) 

Present/Absent 
categories 

.500 (.188-
1.332) 

.166 Present/Absent 
categories 

.286 (.059-
1.375) 

.118 

Seborrhoeic 
Keratoses 
abdomen 

88 (100.0) Continuous 
variable 

.919 (.412-
2.051) 

.837 Continuous 
variable 

.667 ( .188-  
2.362) 

.530 

 25 (28.4)/ 
63 (71.6) 

Present/Absent 
categories 

.683 (.266-
1.756) 

.429 Present/Absent 
categories 

.500 (.125-
1.999) 

.327 

Seborrhoeic 
Keratoses back 

88 (100.0) Continuous 
variable 

.778 (.350-
1.730) 

.538 Continuous 
variable 

.625 ( .204-  
1.910) 

.410 

 34 (38.6)/ 
54(61.4) 

Present/Absent 
categories 

.776 (.321-
1.874) 

.572 Present/Absent 
categories 

.714 (.227-
2.251) 

.566 

Seborrhoeic 
Keratoses lower 
limbs 

88 (100.0) Continuous 
variable 

.841 (.373-
1.896) 

.676 Continuous 
variable 

.857 ( .288-  
2.550) 

.782 

 30 (34.1)/ 
58 (65.9) 

Present/Absent 
categories 

.688 (.279-
1.697) 

.417 Present/Absent 
categories 

.857 (.288-
2.550) 

.782 

Seborrhoeic 
keratoses total 
body (sum) 

88 (100.0) Continuous 
variable 

.884 (.680-
1.150) 

.358 Continuous 
variable 

.717 (.461-
1.117) 

.141 

 40 (45.5)/  
48 (54.5) 

Low/high 
categories 

.551 (.228-
1.335) 

.187 Low/high 
categories 

.500 (.171-
1.463) 

.206 

 

Overall, scores for seborrhoeic keratoses were low and found to be absent for many subjects on 

different regions of their bodies (see section 2.3.2 for recoding and appendix table 7.10 for raw 

scores). There were no significant associations between BCC and seborrhoeic keratoses. The overall 

summed score of total body seborrhoeic keratoses for proband-sibling pairs gave an odds ratio of 

0.72 (95% CI 0.46 – 1.12) when assessed as a continuous variable, and 0.50 (95% CI 0.17 – 1.46) 

when divided into high and low categories; these results did not quite reach significance. In addition, 

odds ratios of association between seborrhoeic keratoses in the various body sites were less than 1.0, 

suggesting that presence of seborrhoeic keratoses may be associated with a reduced risk of BCC. 
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The decreased risk of BCC for presence of seborrhoeic keratoses on the chest approached 

significance for the case-control paired analysis, with an OR of 0.27 (95% CI 0.06- 1.38, p = 0.118).  

In summary, the data trend is for lower BCC risk with increased seborrhoeic keratoses. Little 

literature exists on the risks associated with these benign lesions (see section 1.4.6) although these 

trends contradict the suggested relationship of seborrhoiec keratoses to sun exposure. 

4.3. Effect of date of examination on measurements 

Sun exposure-related variables and skin pigmentary measurements are likely to be affected by the 

time of year that examination took place, due to variation in the amount of UVR exposure according 

to season. The dates of examination for all probands and siblings were compared (see figure 4.1 and 

4.2). It is evident that the date of examination was not significantly different between the proband 

and control groups for both the unconditional and conditional logistic regression analyses and it is 

therefore unlikely that measurements were systematically biased by this variable.  

The number of subjects from the whole group of 88 probands and siblings is sufficient to allow 

analysis by month of examination (see figures 4.1 and appendix table 7.11). As seen in figure 4.1, 

there is no significant difference between the month of examination in the proband compared with 

the sibling groups (Fisher’s Exact Test p= 0.860).  
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Figure 4.1 Proband and sibling groups’ date of skin examination by month  

 

Case-control pairs were also compared by month of skin examination in a scatterplot that shows no 

correlation between the two measures (see figure 4.2), meaning that there is no systematic difference 

between the two groups on this variable. 
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Figure 4.2 Date of skin examination by month for case-control pairs 

 

 

The 66 subjects in the case-control sample were best compared for significance by the season of 

examination, as there were too few subjects to allow enough power for a comparison by month (see 

appendix table 7.12). There was also no significant difference between the season of examination of 

the probands compared with their matched sibling pairs (McNemar Test p = 0.267). 

Among all of the variables measured in the skin examinations, the ‘L* a* b*’ spectrophotometric 

measurements of the skin (see section 2.3.3) are the parameters most likely to have been affected by 

the date of examination. Other sun exposure variables measured reflect the cumulative effects of sun 

exposure as well as acute effects, while pigment of skin in general, and the outer aspect of the arm in 

particular, is affected more acutely by changes in melanin density and distribution due to recent 

UVR exposure. Outer arm measures of luminance (L) were smaller than on the inner arm, reflecting 

the constitutive lightness of pigment overall on the less exposed skin. Outer arm red-green 

reflectance (a) and yellow-blue reflectance (b) was greater than inner arm, reflecting greater 
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amounts of pigment on the exposed area compared with the less exposed area. L can be seen as a 

measure of whiteness of the skin and an overall average increase in this measure was seen among all 

subjects on the outer arm in winter as compared with summer, when UVR exposure is assumed to 

be reduced. Inner arm (constitutive) L varied slightly also, but predictably not as much as the outer 

arm measure. Overall, outer arm a in subjects showed an increase over the warmest season, with 

inner arm a decreasing slightly over this same period. Outer and inner arm b both increased in the 

warmest months (see figure 4.3). In figure 4.3, the variance of results for spring are larger than 

results for the other seasons due to the smaller number of subjects examined in this season (n = 4 

examined in spring). 
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Figure 4.3 Outer and inner arm luminance (A), red-green reflectance (B) and yellow-blue reflectance (C) as 
measured by spectrophotometry, by season of examination 
A. 
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B.  
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C. 

 

 

4.4. Discussion 

Probands and their unaffected siblings were examined for phenotypic differences in skin, eye, and 

hair pigmentation; as well as differences in sensitivity to the sun and signs of the amount of previous 

sun exposure. Of the pigmentary variables, only constitutive red-green reflectance was significantly 

associated with BCC risk, and this occurred in the direction opposite to that expected, in that red-

green reflectance of the skin associated with a decreased risk of early-onset BCC. Of the sun 

sensitivity factors, decreasing skin phototype was significantly associated with an increasing risk of 

BCC. A marker of cumulative sun exposure - presence of actinic keratoses - was associated with 

significantly increased risk of BCC. Signs reflecting the combination of pigmentary characteristics 
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and sun exposure - in the form of arm freckling and solar lentigines - also gave subjects a 

significantly increased risk of this tumour.  

There were no significant differences detected in height or weight of the two groups, and no 

systematic differences in the date of examination that may have skewed results that depend on 

effects of recent ambient UVR. The tendency towards older age in the sibling group is not surprising 

given that the oldest unaffected sibling was selected where available. Since the age difference was 

only 1.8 years on average, the difference did not reach significance. An older sibling was chosen as 

the control to ensure that the sibling would have attained at least the same age as the probands, as 

age is such a strong predictor of skin cancer.   This ensured that the sibling pair was as discordant as 

possible with respect to skin cancer phenotype.  

This group of subjects was fairly ‘sun sensitive’ in that most (96.6%) reported some burning in 

response to their first exposure to summer sun, and very few (6.8%) reported an ability to build up a 

‘deep tan’. In addition, nearly a fifth of the subjects overall (18.2%) reported a total inability to tan. 

There was a trend for an association of the propensity to burn with risk of BCC, with non-significant 

odds ratios reaching the moderate to high range (highest OR for affected-unaffected pairs 7.0) for 

people with a high propensity to burn. It is likely that with a larger sample size a significant 

association of BCC risk with propensity to burn may be seen. The ability to tan displayed a 

relationship with BCC risk that could be interpreted as due to a complex interplay of pigmentary 

factors and sun exposure behaviours. Despite no significant associations, the risk of BCC showed a 

tendency toward an association with moderate tanning ability and also with the total inability to tan; 

the risk was still positive in those with a mild ability to tan but lower than for the other two 

categories. The literature shows that ability to tan interacts with exposure so that if a person tans 

well, there is a linearly increased risk with intermittent exposure; whereas for those that tan poorly, 

risk plateaus with increasing intermittent exposure [81, 103]. Measurement of patterns and amount 

of sun exposure by interview would be necessary to help disentangle these effects but were beyond 

the scope of the present study. 

It is unsurprising that there were no probands or siblings of the darker skinned skin phototypes IV, 

V or VI. Most people self categorised themselves as skin phototype II (usually burn/sometimes tan) 

or III (sometimes burn/usually tan). For the more sensitive measure of analysis by case-control 

pairs, a significant relationship was seen for risk of BCC with decreasing phototype, with an overall 

OR of 3.6. When broken down to assess the contributors to the risk in this figure, phototype II was 
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associated with a more than 4-fold risk, and phototype I a nearly 10-fold risk compared with people 

of phototype III. When looked at separately, these categories did not quite reach significance 

although given the significance of the relationship when looked at together, this relationship is likely 

to hold up with greater sample numbers. There is extensive evidence in the literature that skin that 

burns easily and tans poorly (ie skin of lower phototype) is at increased skin cancer risk, and this 

finding is replicated in the present study [42, 102, 117]. 

Actinic keratoses can be viewed as a surrogate measure of cumulative exposure and are 

premalignant lesions. Between 1:100 and 1:1000 will develop into an SCC and for this reason they 

are always treated or removed. Half of the subjects had at least one of these premalignant lesions, 

and there was a significant association of the presence of any actinic keratosis with a 3-fold 

increased risk of BCC, reflecting previous findings [78]. Solar elastosis was so common among the 

subjects that there was little power to detect an association: more specific measures of this variable, 

if developed, may be of more value. Presence of a pterygium was also common among the subjects 

with nearly two-thirds of them displaying this surrogate marker cumulative of sun exposure. 

Paradoxically, the presence of a pterygium was associated with a decreased risk for BCC, although 

the effect was small and not significant. 

Both childhood and adult freckling have been associated with BCC and SCC risk and this effect is 

replicated here [78]. Pigmentary characteristics and sun exposure combine to cause freckling 

(ephelides) and solar lentigines (larger freckles that don’t disappear in winter). All subjects had 

evidence of some of these lesions. Most subjects (91.9%) reported having freckles in childhood. 

Although 17% of subjects reported a lack of freckles in adulthood (on the face), most had some 

freckles present at the time of examination. Risk of BCC was moderately increased for people with 

increased numbers of both freckles and solar lentigines on their arms. The arms are a commonly sun 

exposed area and accessible to the clinician as a quick and easy addition to the assessment of a 

person’s risk of skin cancer. For these lesions elsewhere on the body risks of BCC were mostly also 

elevated, with the highest risks (although still in the low range of OR 2.0 or less) seen in the most 

sensitive case-control analysis analysis ie people with a low versus a high number of the lesion. 

These trends of increased risk of BCC with freckling and solar lentigines on other parts of the body 

require confirmation in a larger study of early-onset BCC. 

More than half the subjects had no evidence of seborrhoeic keratoses on each body site examined. 

These poorly-studied benign lesions are also known as ‘senile warts’ and have been associated with 
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sun exposure, but not with skin cancer to date (see section 1.4). No significant associations with 

BCC risk were found, and there was a consistent and paradoxical reduced risk of BCC with presence 

of seborrhoeic keratoses: risk was halved with higher overall body numbers of these lesions. 

Similarly, lesions on the chest, abdomen, head and neck, back and lower limbs were all associated 

with small but not significantly decreased risks. The arms were the only body site where risk of 

BCC was not reduced, although it showed no evidence of giving an increased risk. Numbers of 

seborrhoeic keratoses found in this study were far lower than those seen in a comparable Australian 

population [169] (see section 2.3.1). Fainter lesions that would be assessed as seborrhoeic keratoses 

by an experienced examiner may have been missed in the proband and sibling examinations. If 

undercounting of these lesions occurred, it is likely that they would have occurred across all body 

areas and for all subjects examined, and therefore does not account for the paradoxical reduced risk 

of BCC seen. The possibility that any genetic predisposition leading to BCCs in these subjects also 

suppresses the development of seborrhoeic keratoses needs further exploration. The trends of 

decreased risk of BCC with these lesions require confirmation in a larger study of early-onset BCC. 

Hair colour and eye colour reflected the general fairness of skin pigmentation with few subjects 

reporting dark hair or brown eyes. It was evident by the two measures employed to estimate 

constitutive hair pigmentation that reporting by naming of hair colour is subjective and probably 

unreliable. Self-reported hair colour by naming differed from self-report by identification of hair 

swatch, with the term ‘light or mouse brown’ associated with the most variation in selection of 

swatch; more of these individuals selected a fair/blonde hair swatch than a brown one. Neither eye 

colour nor hair colour emerged as convincing predictors of BCC risk: green eye colour was 

associated with a small non-significantly decreased risk and blue with a small non-significantly 

increased risk compare with darker eyes. Thus there was no clear trend of an effect with for this 

variable on the risk of BCC. Similarly, hair colour associations were inconsistent although mostly 

tended towards increased risk of BCC with fairer hair. The most reliable measure to detect a 

difference in risk with hair colour - if one was indeed present - was from the hair swatch selection 

by case-control pairs. No effect of hair colour was seen in this study. This is not a surprising finding 

given the variability in predictive value of these traits in the literature [47, 112]. They may act as 

surrogate markers for pigmentary characteristics or sun sensitivity, but seem to be relatively 

unreliable ones. 
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Overall, these early-onset BCC probands and their siblings were relatively fair-skinned, with 93.2% 

describing themselves as fair- or very fair-skinned, and the remainder olive/brown. Significant 

differences in skin pigmentation were detected between the two groups as measured by 

spectrophotometer, suggesting that constitutive red-green reflectance of the skin decreases the risk 

of BCC (OR 0.6). Constitutive luminance was associated with a slightly (but non-significantly) 

increased risk of BCC, however much of the variance of this measure was explained by the 

measures of yellow-blue reflectance and red-green reflectance. Constitutive yellow-blue reflectance 

tended towards a decreased risk of BCC but was also not significant. Red-green reflectance was the 

only independent predictor of BCC risk.  

The red-yellow pigment phaeomelanin prevalent in lighter skinned persons probably causes 

decreased skin photoprotectivity [251, 264] compared with the darker, more photoprotective 

eumelanin [262]. Although lighter, easy-burning skin is likely to have more phaeomelanin and less 

eumelanin than darker skin, the exact relationship between skin phototype and 

pheomelanin:eumelanin production in the epidermis is not straightforward or directly predictable 

[260, 278]. MC1R variants are thought to contribute to individual differences in pigmentation, and 

in particular, to eumelanogenesis and pheomelanogenesis; MC1R variants also contribute to risk of 

BCC, independently of their effect on pigmentation [283]. Individuals with the same MC1R variants 

may display differences in hair pigmentation; for example, auburn or strawberry blonde [266]. Thus 

other loci are likely to be involved in the creation of pigmentary characteristics. It has been 

hypothesised that MC1R variants may be involved in the switching between eumalanogenesis and 

pheomelanogenesis [279].  

Skin colour has shown less association with risk of BCC in the literature than sun sensitivity has; 

however the lack of access to or use of objective measurement techniques for skin colour may have 

contributed to this. Skin colour is not only dependent on melanin pigmentation, but is also 

influenced by the presence of superficial capillaries (increases redness), collagen content (increases 

yellowness), body hair, thickness, and moisture [397]. The BYK Gardner spectrophotometry 

readings are not calibrated to melanin content of the skin or a suitable surrogate such as MC1R 

variant status, and this analysis is urgently necessary to allow better interpretation of 

spectrophotometric measures. Nevertheless, it is evident from the changes in pigmentation on the 

outer arm seen over the seasons (see figure 4.3) that yellow-blue reflectance and red-green 

reflectance are greater on the outer than the inner arm, suggesting a relationship with sun exposure 
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that is likely to be related to melanin in the skin. Yellow-blue reflectance and red-green reflectance 

also increase slightly in the hotter months (summer) compared with the cooler months (winter), 

suggesting that these two variables do increase concomitantly with the tanning response; of the 

possible contributors to skin colour, melanin pigmentation is the only one that is likely to change 

skin colour acutely in this way. Constitutive skin colour also changes with the season although not 

as markedly as the outer arm, with a small increase of yellow-blue reflectance and decrease of red-

green reflectance with summer as compared with winter.  

Constitutive red-green reflectance was associated with a significantly decreased risk of BCC in our 

subjects. It was seen in these data that outer arm a* (red-green) values increased in the summer, so it 

is a reasonable inference that high a* values are positively correlated with skin melanisation. The 

simplest interpretation of these data is that high constitutive pigmentation, as seen in the inner arm 

measurements, is associated with reduced risk of early-onset BCC. However further studies are 

required to establish the relationship of the L*a*b* parameters with biological parameters such as 

skin melanin content and changes due to tanning. 

We used the BYK Gardner spectrophotometer to measure skin pigmentation (see section 2.3.3), 

whereas the few other studies that have used full-spectrum spectrophotometry for objective 

measurement of skin colour have used other insturments such as the Minolta 508 spectrophotometer, 

and recorded the measurements differently. Using the Minolta, one group found that risk of BCC in 

men and women had a small positive association with spectrophotometric readings [398]. These two 

instruments use the same wavelengths of incident light to measure reflected light which may be 

recorded in different ways: using the L*a*b* system or through a measure at each wavelength in 

20nm increments across all or part of the spectrum measured (400nm to 700nm). Both machines 

were tested on the upper arm of three human subjects and the L*a*b* readings were found to be 

almost identical (see appendix 4.23). Researchers using the Minolta have chosen to use the 

difference between readings at 400nm and 420nm for measurements of skin pigmentation; some of 

the information on the spectrum of reflected light is lost by the use of only two wavelengths of light. 

We have chosen to use the L*a*b* measure as it may capture more information about the reflected 

light across wavelengths of relevance to the perception of the human eye, and therefore probably 

provides more information about the skin’s colour than a difference between two wavelengths. This 

difference in recording affects the ability to compare the results of research using both instruments. 

A study has shown that presence of hair may overestimate pigmentation readings, although this was 
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seen using a different measure of reflected light, and on a different part of the body: it is difficult to 

know how this would apply to our results [399]. It may be worthwhile to test this on the outer arm in 

future to determine whether subjects should be shaved at the test site. 

MC1R variant analysis was not carried out in this project and will be essential to elucidate the 

relationships between the L*a*b reflectance measures and risk. A first step would be analysis of 

associations between the MC1R red hair-associated (RHC) variants and L*a*b* measures in a large 

cohort of controls, examined at different times of the year, in both sun-exposed and non-sun-

exposed sites. 

Together these results suggest that skin colour, sun sensitivity, and sun exposure are associated with 

an increased risk of BCC.  
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Chapter 5: Analysis of patched for germline mutations in 
clusters of BCC cases 

 
5.1. Introduction 

BCC, SCC and MM all showed significant increases among the first-degree relatives of cases of 

early-onset BCC, as shown in chapter three. Sun sensitivity, skin pigmentary characteristics, and 

evidence of sun exposure all showed associations with BCC when the cases were compared with 

unaffected sibling controls. These data are most consistent with the increase in BCC risk to these 

probands being largely due to causes that increase the risk of all forms of skin cancer. 

Nevertheless, some striking family clusters of only BCC, to the exclusion of SCC and MM, were 

observed. The hypothesis therefore remained that at least some proportion of the observed clusters 

of BCC cases, or at least some part of their aggregation, was due to a genetic factor or factors 

specific to BCC risk. 

Inactivating germline mutations of PTCH cause Gorlin Syndrome, a rare and usually familial 

genodermatosis comprising early-onset BCC and developmental abnormalities (section 1.5.4). 

Mutation of this gene is associated with a 900-fold increased risk of BCC in Australia. Recently, a 

common single nucleotide polymorphism (SNP) in PTCH exon 23 (Pro>Leu) has been associated 

with degree of skin pigmentation [235], and combinations of polymorphisms (ie certain haplotypes) 

in this gene have been associated with rate of BCC accrual [233]. 

The melanocortin-1 receptor (MC1R) is involved in individual variation in the type of melanin 

synthesized and the way it is distributed in the skin, and variations in this receptor contribute to 

individual differences in pigmentary characteristics. MC1R variants are very common in light 

skinned populations including Australians of European origin, and red hair-associated variant alleles 

of this gene have been associated with a two- to four-fold risk of BCC [267, 283]. No other germline 

mutations have been consistently associated with BCC risk, although p53(Arg72) has been linked 

with NMSC risk. This chapter addresses the question of whether mutations in PTCH are 

contributing significantly to the higher risk of BCC in these individuals. Probands from 56 families 

with early-onset BCC were included for genetic analysis. In addition, two probands from a related 

cohort of early-onset SCC cases was analysed; these had three or more BCC-affected first degree 

family members (see section 2.6 and table 2.3). 
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 DNA from peripheral blood from all 58 probands was screened for mutations of the PTCH gene 

using PCR, dHPLC and direct sequencing. Twenty of the 23 exons of the PTCH gene were 

amplified by PCR and screened in this way. Two dHPLC temperatures were used to screen the 

subjects with the highest probability of carrying a PTCH mutation, for the eight exons that most 

commonly bear PTCH mutations in Gorlin syndrome (see section 2.6). The remaining subjects were 

screened at a single dHPLC temperature for all 20 exons. 

No mutations were found in the exons screened for these 58 subjects with personal or family history 

of high risk BCC. The SNPs observed were present at frequencies similar to those in the literature. 

Where population frequency data for a SNPs were lacking, they were determined in a comparable 

Australian cohort without BCC; the frequencies for these SNPs were also similar to the probands’. 

Therefore no evidence was found to implicate either PTCH inactivating mutations or SNPs in risk of 

BCC in these early-onset cases.  

5.2. Results 

5.2.1. dHPLC and sequencing analysis of the PTCH gene 

Twenty of the 23 PTCH exons were screened for mutations by dHPLC as described in Section 2.5.1 

and 2.6. These covered 97% of the coding sequence of PTCH, in which also 97% of all Gorlin 

syndrome-associated mutations have been found. The equipment and protocols used were identical 

to those used by a collaborating reference laboratory that has been screening Gorlin syndrome 

subjects for germline PTCH mutations by this method for several years. In six of the eight exons (2, 

3, 14, 15, 17, 18) that most commonly bear PTCH mutations in Gorlin syndrome two dHPLC 

temperatures were used to screen the 19 subjects with the highest probability of carrying a patched 

mutation. A single temperature was used for the other 14 exons and for screening the other 39 

subjects. All products were run with sequence proven wild-type controls and any test sample that 

gave a profile different from the control was submitted to bi-directional DNA sequencing. One 

variant-negative test sample at random from each exon analysed was sequenced in the forward 

direction to confirm presence of the wild type sequence. 

Exons 3, 7, 9, 13, 16, 17, 18, 20, 21, 22, and 23b did not show any variant elution profiles in any of 

the 58 subjects screened. In the other nine exons (2, 5, 6, 8, 11, 12, 14, 15 and 23a), dHPLC variants 

were seen in some of the samples. All these samples were confirmed to be heterozygous for 



 153

previously described single nucleotide polymorphisms (SNPs) as shown in table 5.1. dHPLC and 

sequence appearances of each SNP may be seen in appendix 7.9 and 7.10. 

 

Table 5.1 PTCH SNPs observed and comparison of relative frequencies with database population data 
Exon SNPa Amino acid 

change 
Proband 
heterozygote 
relative 
frequency 
(n=58) 

Population 
heterozygote 
relative 
frequency  

Source of 
population 
datac 

2 116C>T Leu>Leu 0.034 No data n/a 
5 80A>G Thr>Thr 0.103 No data n/a 
6 IVS6-55T>Cb N/A 0.450 0.267 HapMap 

project: USA 
European 
descent n=30  

   0.500 CCRd: USA 
European 
descent n=24  

   0.125 CCR: USA 
Han Chinese 
n=24 

   0.261 CCR: USA 
African 
American n=23 

8 IVS8+23G>A N/A 0.017 0.029 NIHPDRe: 
USA mixed 
descent n=450 

11 IVS11-50G>Cb N/A 0.431 0.468 CCR: USA 
Caucasians 
n=95 

   0.250 CCR: USA 
European 
descent n=24 

   0.267 NIHPDR: USA 
mixed descent 
n=450 

   0.167 CCR: USA 
Han Chinese 
n=24 

   0.087 CCR: USA 
African 
American n=23 

12 63T>Cb Asn>Asn 0.224 0.167 CCR: USA 
European 
descent n=24 

   0.250 CCR: USA 
Han Chinese 
n=24 

   0.304 CCR: USA 
African 
American n=23 

84C>T Ala>Ala 0.362 0.458 CCR: USA 
European 
descent n=24 
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   0.100 NIHPDR: USA 

mixed descent 
n=450 

   0.167 CCR: USA 
Han Chinese 
n=24 

   0.087 CCR: USA 
African 
American n=23 

14 351G>A Ser>Ser 0.017 No data n/a 
15 IVS15+9G>Cb N/A 0.483 0.500 CCR: USA 

European 
descent n=24 

   0.375 NIHPDR: USA 
mixed descent 
n=450 

   0.458 CCR: USA 
Han Chinese 
n=24 

   0.565 CCR: USA 
African 
American n=23 

23a 140C>T Pro>Leu 0.552 0.214 - 0.436 
(two reports on 
same 
population) 

WICVARf: 
USA mixed 
descent 

aAll SNPs are referred to in the forward direction 
bRefers to forward sequence; SNP database refers to complement reverse sequence  
cUsing ensembl human geneview (www.ensembl.org) and CHIP bioinformatics (http://snpper.chip.org) SNP databases 
dCCR= Coriell Cell Repository 
eNIHPDR= National Institute of Health Polymorphism Discovery Resource 
fWICVAR is a population submitted by the laboratory of the Centre for Genome Resarch at the Whitehead Institute, 
Cambridge MA 
 
In summary, the only variants observed had been previously described in various populations of 

normals and can be classified as single nucleotide polymorphisms (SNPs). None of the variants had 

known associations with Gorlin syndrome or any other disease. 

Each of the SNPs will be described in turn and their frequencies in the test probands compared with 

available data from the Ensembl Human Geneview (www.ensembl.org) and Children’s Hospital 

Informatics Program (CHIP) bioinformatics (http://snpper.chip.org) SNP databases. Table 5.1 

shows all population data available to date from these two databases and compares these with the 

dHPLC variant frequency observed in the test cohort. In brief, for the six of these variants where 

published data was available, dHPLC-detected SNP heterozygotes were seen at frequencies similar 

to those expected from the population frequencies observed in samples of similar ethnic 

background.  
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In the exon 2 assay, a C>T SNP was observed at position 116, synonymous Leu>Leu at the amino 

acid level. The heterozygote relative frequency in the early-onset BCC probands was 2/58 (0.034) 

and no population data were available for comparison. 

In the exon 5 assay, a A>G SNP was observed at position 80, synonymous Thr>Thr at the amino 

acid level. The heterozygote relative frequency in the early-onset BCC probands was 6/58 (0.103) 

and no population data were available for comparison. 

In the exon 6 assay, a SNP was observed at intron 6, position -55 (IVS6-55 T>C) in 26/58 probands 

(frequency of heterozygosity 0.45). A similar frequency of this SNP (12/24, 0.50) in healthy adults 

was seen among North Americans of European descent sampled in the Coriell Cell Repository. 

Population heterozygosity varies between samples of assumed similar genetic background, as the 

frequency of heterozygosity among another group of European descent was 0.267 (see table 5.1). 

Frequencies of this SNP in Chinese and African American groups have been lower than in the 

European samples. 

In the exon 8 assay, a G>A SNP was observed at intron 8, position 23 (IVS8+23 G>A), in 1/58 

probands (frequency of heterozygosity 0.017). This frequency was similar to that found in a 

population from North America of mixed descent (0.029). 

In the exon 11 assay, a G to C base substitution was found at intron 11, position -50 (IVS11-50 

G>C) in 25/58 probands (frequency of heterozygosity 0.431). The frequency of this SNP varied 

widely in other populations, ranging from 0.087 to 0.468. The frequency found in a North American 

population sample of 95 ‘Caucasians’ was 0.468, which differed little from our proband group who 

are mostly also of European descent.  

Two SNPs were seen in the exon 12 assays. A base substitution of T to C occurred at position 63 (63 

T>C) in 13/58 probands (frequency 0.224) and a C to T substitution occurred at position 84 (84 

C>T) in 21/58 probands (frequency 0.362). Neither of these SNPs changes the amino acid sequence. 

Five probands harboured both variants (see appendix 7.10 for sequence). SNP 63 T>C occurred at 

similar heterozygote frequencies of between 0.167 and 0.304 in mixed populations from the USA, 

with the most similar frequency seen in a group of 24 Han Chinese from North America. The SNP 

84 C>T was seen in varying rates of between 0.087 and 0.458 in populations of differing genetic 

backgrounds from the US. The most similar frequency of heterozygosity to that seen in our group of 

probands was seen in 24 North Americans of European descent. 
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In the exon 14 assay, a G>A SNP was observed at position 351, synonymous Ser>Ser at the amino 

acid level. The relative frequency of heterozygosity in the early-onset BCC probands was 1/58 

(0.017) and no population data were available for comparison. 

In the exon 15 assays a G>C SNP was commonly seen at intron 15, position 9 (IVS15+9 G>C), at a 

rate of 0.483. A similar frequency of heterozygosity was evident among populations previously 

studied (ranging from 0.375 to 0.565) from varied ethnic backgrounds.  

In exon 23a, a SNP was observed at position 140 (140 C>T) occurred commonly, with a base 

substitution of C for T in 32/58 probands (frequency of heterozygosity 0.552). This SNP alters 

proline to leucine at amino acid position 1315 of the protein. It has been reported to occur at a 

similar frequency in North American populations of mixed racial background, albeit at two different 

heterozygosity frequencies, 0.214 and 0.436. 

In summary, none of the SNPs observed in these exons, for which published population data existed, 

showed frequencies in this cohort that deviated from published values. Where there was no relevant 

data from other populations, control data was obtained from an Australian sample. 

5.2.2. Comparison with Australian population SNP frequency 

For the three exonic, synonymous SNPs observed in exons 2, 5, and 14, there was no population 

data available with which to compare the frequencies seen in the probands. In order to seek 

preliminary evidence as to whether these SNPs were associated with early-onset BCC, a 

‘convenience’ control group was sought. The set of control siblings would only have been suitable 

for this purpose in a much larger study, given the low frequencies observed in the probands. 

Age- and sex-matched controls (n=110) were selected from subjects in an Australian population-

based study of melanoma [410]. They were relatives of the probands (who were cases of early-onset 

melanoma in Sydney, Melbourne or Brisbane). The protocol of that study does not include 

collection of data from relatives as to previous diagnoses of NMSC, so their status with respect to 

BCC is unknown. However they are known to have 91% Anglo-Celtic ethnicity, a frequency similar 

to that expected in this cohort of BCC-affected probands. 

One hundred and ten control samples were screened for the exon 2, 5 and 14 SNPs and the results 

are shown in table 5.2. In addition, data are shown for the exon 15 SNP, which was screened (in an 

earlier, preliminary project) in 30 controls from this group age- and sex-matched to the 19 initial 
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probands that had been screened at two dHPLC temperatures for exon 15. Published data existed for 

this SNP, but this comparison was to rule out any possible large differences in frequency of PTCH 

SNPs between these Australian controls and other populations previously tested. 

 

Table 5.2 PTCH SNP frequency data comparison with Australian population sample 
Exon SNP Amino 

acid 
change 

Relative 
frequency 
early-
onset 
BCC 
probands 

Relative 
frequency 
Australian 
population 
sample  

p value: 
Fisher’s 
exact 
test (2-
sided) 

2 116C>T  Leu/Leu 0.034 
(2/58 ) 

0.028 
(3/105) 

1.000 

5 80A>G  Thr/Thr 0.103 
(6/58) 

0.047 
(5/106) 

0.197 

14 351G>A  Ser/Ser 0.017 
(1/58) 

0.020 
(2/102) 

1.000 

15 IVS15+9 
G>C 

N/A 0.483 
(28/58) 

0.519 
(14/27)* 

0.818 

*population frequency range 0.375 – 0.565 (see table 5.1) 

None of these SNPs were novel, but no data on their prevalence in the population was available. The 

purpose of the comparison of heterozygote frequencies in the BCC probands and a comparable, 

though not strictly controlled, Australian population sample was to rule out the possibility that these 

were otherwise rare SNPs with a potential association with BCC. This would have remained a 

possibility if they had not been observed in the ‘control’ sample, however all three were observed at 

similar frequencies in both samples (see table 5.2).  

The exon 2 116C>T SNP was observed with a relative frequency of 3.4% in the Australian controls 

(p=1.000, Fisher’s Exact Test for comparison with BCC proband sample). The exon 5 80A>G 

substitution (A>G 80) was observed with a relative frequency of 4.7% of the Australian controls (p= 

0.197, Fisher’s Exact Test). The exon 14 351G>A SNP was observed in 1.9% of controls (p=1.000, 

Fisher’s Exact Test). For the exon 15, IVS15+9G>C SNP, its frequency in the Australian population 

sample (51.9%), was similar to that in the BCC proband group (p=0.818, Fisher’s Exact Test), as 

well as within the range of published values (population frequency range 0.375 – 0.565, table 5.1). 
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5.3. Limits on PTCH mutation frequency in early-onset BCC probands 

Given that no mutations were found in this group of 56 early-onset probands, what can we infer 

about the general population from which this sample was drawn? 

We assume a Poisson distribution because PTCH mutation is considered to be a rare event and 

calculate the upper 95% confidence limit: 

P(X) =  e-λλx 

    X! 
 
Where P = 95%, X = 0, λ= rate of mutation 

0.95 = e-λλ0 

 0! 

 

0.95 = e-λ 

-λ = ln(0.95) 

λ = - 0.051 

The upper 95% confidence rate of the mutation frequency is 5.1%, meaning there is a 97.5% chance 

that PTCH mutations occur in fewer than 5.1% of Australians with early-onset BCC. 

5.4. Discussion 

Nine of the 20 exons screened were found to harbour single nucleotide polymorphisms (SNPs), seen 

on dHPLC as variant melting curves and confirmed on direct sequencing. In eight exons, only one 

SNP was seen, and in one, two SNPs were apparent. All SNPs produced non-coding variants except 

for one, the T>C 140 SNP on exon 23a causing a proline to leucine change, seen in 46% of the 

subjects screened. This SNP was seen in a similar frequency (43.6%) in a SNP database (CHIP) 

comprised of persons of European background who were likely to be of similar racial mix to this 

sample. Five more of the 9 exons harbouring SNPs had population SNP data for comparison, and in 

each, the proband SNP frequency was similar to the population SNP frequency. For the remaining 

three exons harbouring SNPs there were no population SNP data available. For these three exons, a 

control group was chosen from the Australian population for comparison of these exons in the 

PTCH gene. The frequency of SNPs in this group for each of the three exons lacking comparable 

population SNP frequency data was not significantly different to that found in the proband group 
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(see table 5.2). A subset of these controls was compared with the SNP frequency of one of the exons 

for which population SNP data was available (exon 15). This confirmed that Australian SNP 

frequency for PTCH is likely to be similar to that from international data on European-derived 

populations. 

The familial aggregation of BCC in nearly a fifth of all the families screened is suggestive of genetic 

susceptibility as a contributing factor to its cause. The tumour suppressor gene PTCH is a candidate 

as a contributor to genetic susceptibility. Gorlin syndrome is caused by the autosomal dominant 

inheritance of a gene that leads to marked susceptibility to BCC and a range of developmental 

defects. PTCH is the cell growth regulatory gene responsible for this disorder, and mice with 

knockouts of one copy of PTCH develop BCCs when exposed to UVR [4]. In addition, PTCH 

mutations are found very commonly within sporadic tumours suggesting a possible necessary 

involvement of this pathway in tumours outside of Gorlin syndrome. Importantly, it appears that no 

studies have previously looked at possible germline mutations of this gene in non-Gorlin families 

with susceptibility to BCC. Thus it is obligatory that this gene be examined when investigating 

possible genetic causes of familial aggregation of this tumour. 

Twenty PTCH exons (exons 2, 3, 5 to 18, and 20 to 23) were screened for mutations in this study. 

Together these exons account for 4196 coding base pairs (97% of the total of the 4345 coding base 

pairs) and for 97% (199/206) of the published mutations in PTCH. The only exon with published 

mutations not to be screened was exon 19, and this was excluded due to technical problems with 

amplification of the exon by PCR. The primers used amplified the full coding segment and the 

splice junctions next to each exon. dHPLC screening found variants in the introns adjacent to exons 

6, 8, 11 and 15, which confirms that those assays were effective. 

dHPLC identifies DNA variants mainly through detection of the altered affinity and mobility of any 

heteroduplexes formed between mismatched nucleotides in double stranded DNA during the 

reannealing phase at the end of PCR. The sensitivity of dHPLC to detect these heteroduplexes in 

amplicons sized 100 to 732 base pairs is estimated to be between 92-100% [400-402] and is 

increased by performing dHPLC at multiple temperatures. [402]. Thus for single temperature 

screening, the sensitivity is 92% at worst. Generally, dHPLC is a reliable technique to screen for 

single nucleotide substitutions, deletions and insertions [403]. 
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Screening of the PTCH gene was nearly complete in these patients. 97% of the coding regions were 

screened, and although this accounts for 97% of the Gorlin syndrome-associated mutations as 

reported in the literature, there is still a small part of the gene left that could harbour DNA variants. 

It is also possible that PTCH mutations causing non-Gorlin familial BCC might have a different 

mutation spectrum to those which cause Gorlin syndrome. In the interests of efficiency, those 

probands of highest risk were screened more thoroughly by the use of two dHPLC temperatures for 

the subjects with the highest probability of carrying a mutation (ie those with greatest familial 

aggregation). Taking into account the sensitivity of dHPLC and the coverage of the assays 

performed, the completeness of PTCH gene screening in this study is at least 95% (0.92 x 0.97) for 

known Gorlin mutations and 95% (0.92 x 0.97) for the coding sequence of PTCH. Therefore, based 

on the findings of this study it can not be completely excluded that some probands have pathogenic 

DNA variants in the PTCH gene, although given the completeness of the screen it is unlikely. 

Given that no mutations were found in any of the exons screened in any subject, no evidence was 

found to implicate either PTCH inactivating mutations or SNPs in risk of BCC in these early-onset 

cases. Combinations of polymorphisms (haplotypes) have been associated in the literature with 

particular phenotypes such as skin pigmentation and rate of accrual of tumours. Even silent 

substitution of nucleotides (effecting no amino acid change) could influence mRNA processes, 

including affecting splicing accuracy or efficiency [230] eg through effect on enhancer regions or a 

combination effect on protein function. They could also act as markers for other significant gene 

mutations/variants through linkage disequilibrium. The SNPs found here are classified as 

polymorphisms based on their frequency in controls, not on their possible functional significances. 

Given that the frequencies are similar in our subjects compared with controls, it is unlikely that these 

SNPs have any functional significance, and there is no evidence at present that they are associated 

with familial BCC. The potential role of uncommon SNPs as low penetrance alleles for BCC should 

be specifically tested in larger case-control studies.  

Assuming a Poisson distribution, and having observed no mutations in a sample of 56, we can be 

97.5% confident that if there are any PTCH mutations contributing to early-onset BCC in the 

Australian population, then their prevalence is less than 5.1%. Thus high penetrance germline 

mutations in this gene may still be responsible for a small proportion of the increased risk seen in 

this family study. This suggests that screening PTCH will be unlikely to prove relevant to clinical 

geneticists, given that it is a large and expensive gene to test for mutations [404]. Larger family 
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studies may be able to determine if this gene does contribute at all to increased risk of BCC, and 

multiple large studies showing a lack of association will be needed to exclude PTCH as a 

contributory factor to BCC.  

One proband (9125) was affected with Gorlin syndrome, although the clinical features of this family 

were atypical for Gorlin’s syndrome: the proband had pathognomonic Gorlin syndrome features 

(multiple early-onset BCC, palmar pitting, characteristic facies and calcification of the falx cerebri), 

but there were no typically affected first degree relatives. Clinical records show that the proband’s 

father had falx cerebri calcification, but no BCC. PTCH gene screening for this subject was also 

done in a clinical setting and this showed that no DNA variants were present in the PTCH gene of 

either individual. This confirms our finding (of no mutation in PTCH for this proband), and suggests 

a contribution to the disease of other genes in this family, most likely genes coding for proteins 

involved in the hedgehog signalling pathway (see section 1.5.2). To thoroughly exclude other 

members of the hedgehog pathway from involvement in population risk of BCC, other genes in this 

pathway should be screened for high risk families in the same way (eg smoothened, Gli1, Gli2, and 

Gli3). 

Functional studies of the SNP variants found could be performed to determine whether or not they 

are truly benign polymorphisms, although this is very unlikely as no associations with BCC 

susceptibility were seen here. Since all of the SNPs seen here except one are intronic or synonymous 

variants, the protein sequence will not be affected. To rule out an effect on the function of the 

protein however, a bioinformatics analysis of the relevant sequence should be undertaken. The 

involved regions of the gene would be examined to determine whether they are in evolutionarily 

conserved domains indicating a possible important role in the function of RNA processing or 

trafficking, for example altering splice junctions to cause a false splice site. If the involved domains 

are highly conserved, a study of mRNA splicing should be undertaken in cell lines from carriers and 

non-carriers of a similar genetic background.  

Examination of MC1R variant frequency is the next priority when considering genes that could be 

contributing to the BCC-specific aggregation occurring in this family study. This polymorphic gene 

codes for a receptor that is involved in individual differences in pigmentary characteristics such as 

skin, hair and eye colour. Studies have shown that variants of MC1R are also associated with BCC 

risk, and that this occurs independently of pigmentation phenotype (see section 1.7.6): it would be 

interesting to see the correlation between variants of this gene and phenotypes of patients in family 
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studies. As discussed in the previous chapter, correlation of MC1R genotype with skin colour 

parameters recorded by the BYK Gardner, or other full-spectrum reflectance, spectrophotometer 

will be necessary for their full interpretation (see sections 2.3.3 and 4.2.2.3). 

 



 163

Chapter 6: Discussion 
 

6.1. Introduction 

This family study aims to investigate the causes of BCC. People who had BCC before the 

age of 40 were recruited in order to study people who are enriched for risk factors: these 

are the youngest 7% of the population to have this disease. A study of 56 families of 

people with early-onset BCC has enabled an investigation into the causes of BCC and has 

confirmed the hypothesis that first degree relatives of people with early-onset BCC are at 

greater risk of NMSC and MM than the general Australian population. Despite no 

differential overall risk to relatives of BCC over SCC, there were nevertheless a subgroup 

of families with aggregation of BCC alone (to the exclusion of SCC), suggesting the 

existence of BCC-specific risk in some families.  

Examination of the probands and their unaffected siblings confirmed the hypothesis that 

identifiable phenotypic risk factors for early-onset BCC exist. These were found to be a 

mixture of pigmentary and sun-exposure-related risk factors and suggest that 

combinations of genetic and environmental factors are involved in BCC susceptibility. A 

study of the PTCH gene failed to find any mutations and does not support the hypothesis 

that mutations in this gene are responsible for the increased risk of BCC seen in the 

probands. Polymorphisms in this gene were found in a similar proportion to the general 

population, the significance of which to BCC risk is unclear.  

6.1.1. Context  

This family study is the first of its kind to look at familial aggregation of NMSC in any 

general non-syndromic population, and shows that this kind of research is an important 

addition to current cancer research in NMSC. Given the enormous burden of disease that 

BCC and SCC present to the Australian and international communities, it is surprising 

that this is the first time familial aggregation of NMSC has been examined in this way. 

NMSC does aggregate in families of probands with early-onset BCC, showing that some 

families exist that are enriched for risk factors to these tumours. These risk factors are 

made up of genetic and environmental factors, both of which have been examined to 
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some extent here, and that should be examined in further detail in future studies. A bank 

of DNA from these multiple-case BCC-affected families has been created for the first 

time by this project, and may be used and expanded upon for further studies on the 

genetics of skin cancer. 

Important additions to the understanding of the aetiology, prevention and treatment of 

other cancers such as breast cancer and colon cancer have been gathered from this type of 

research; in some cases the identification of high and medium-penetrance susceptibility 

genes. Despite its limited scale, this project has demonstrated the feasibility and 

efficiency of a strategy of recruitment of early-onset BCC cases. Further work with larger 

samples need to be done; this will allow for segregation and linkage analysis for further 

characterisation of the way this disease may be inherited.  

The current study also uses a novel approach to determining prevalence from recent 

nationwide Australian incidence data on NMSC, in lieu of cancer registry data on these 

cancers. The resulting estimate is not perfect, but is the best approximation to 

calculations performed using cancer registry data in other cancer studies. The success of 

this approach leads to several important conclusions: that such incidence studies on the 

Australian population are important for family studies in NMSC; that regular collection 

of this rapidly changing data will be important for genetic epidemiological studies 

involving NMSC in the future; and that prevalence may be estimated from incidence data 

for cancers not on cancer registries to allow comparison of sample populations with the 

general population.  

6.2. Hypothesis 1: First degree relatives of people with BCC are at increased risk of 

NMSC compared with the general population, with a differentially greater risk 

of BCC than SCC 

We have shown that first-degree relatives of people with early-onset BCC are at 

increased risk of BCC, SCC and malignant melanoma. The exact risk seen in this study 

varies by cancer, gender, and relative type. The risk of BCC was elevated in all relatives, 

but significantly elevated in brothers, sisters, and mothers of people with early-onset 

BCC, with the greatest risk seen to brothers who had a greater than five-fold increased 
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risk of also having this tumour. The risk of SCC to relatives of people with early-onset 

BCC was elevated in brothers, sisters and fathers of people with early-onset BCC, and 

significantly elevated in sisters and fathers. The greatest risk seen was in sisters of 

probands who had a greater than five-fold risk of having this tumour. The risk of 

malignant melanoma was also raised in all first-degree relatives, but significantly 

elevated for male relatives, the greatest risk seen to brothers who had over ten-fold 

increased risk of having this tumour.  

These figures should be interpreted with the knowledge that the cases were ascertained 

from the SCFA database which is not a statewide registry (see section 2.1.1) and as with 

all family cancer studies, there may be an ascertainment bias whereby people who have a 

history of cancer in the family may be more likely to consent to participate in cancer 

studies. As calculated in section 3.6, any overestimation due to this potential bias is likely 

to be less than two- to three-fold, and therefore the observed increased risk to relatives of 

all three types of skin cancer is likely to be true of early-onset BCC cases as a whole. 

However, given these limitations the results cannot be generalised to an estimation of 

prevalence of NMSC in the families of people in the general population with early-onset 

BCC.  

The hypothesis of a differentially increased overall risk of BCC specifically as compared 

with SCC in relatives of people with early-onset BCC was not supported by this study. 

Instead, risks for both types of NMSC were increased. Nevertheless, in one third of 

families affected by NMSC, clusters of BCC alone (to the exclusion of other skin cancer 

types) did occur. This suggests the possibility of BCC-specific risk factors operating in 

some families, despite the absence of a differentially increased risk for BCC overall in 

the whole sample of 56 families. This concept needs to be explored further with larger 

family studies that are likely to identify more families with clusters of BCC. Further 

genotypic and phenotypic analysis could be done on identified BCC-specific families. 

6.2.1. Estimation of population prevalence 

To determine how the subjects’ risk of skin cancer compares to the Australian population, 

we would ideally compare the incidence per year of each cancer in each subject with that 
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of the incidence of cancer in the same age and sex of the Australian population at the 

same period in time. This data is not available and instead we have estimated the risks for 

the Australian population based on a national incidence survey for NMSC from the year 

1995 [1] and cancer registry data for melanoma data, from the year 1996. 

The incidence figures from the nationwide survey used as a representative of Australian 

population cancer figures may not truly represent the current population incidence, as 

discussed in section 3.6. The Poisson model used to fit a curve to the incidence figures 

from the survey suggest that it provides a reasonable approximation to the whole 

population incidence. We have used the incidence figures from the year 1996 to estimate 

the expected prevalence of disease in our subjects and there are inherent problems in 

doing this.  

The estimated incidences relate to the risk of skin cancer in the population in 1996, and 

may differ from the risk in other years. It is clear that the incidence of both melanoma 

and nonmelanoma skin cancers in Australia have been increasing over the last several 

decades, at least in older persons, meaning that this “snapshot” of risk for skin cancers 

from 1996 may be an overestimate of the total risk of individual subjects in this study 

who have lived through many years where the risk was likely to have been significantly 

smaller. Consequently it is also likely that the overestimate will be smaller for younger 

persons as there has been less time in which to expect a change in the population’s 

incidence. In addition, incidence of BCC may actually be decreasing in younger people 

(under the age of 50 years), meaning that for siblings of probands, our population 

estimates could be slight underestimates [1]. 

Inferring individual risk of skin cancer from this data also assumes that the data is taken 

from a homogeneous population, that is, one where each member of the population’ risk 

is equal. The Australian population is obviously heterogenous with risks likely to be 

associated with skin phototype, other genetic influences, and environmental exposures of 

the individual. This data is likely to include individuals with multiple skin cancers who 

will represent a larger proportion of this risk than others. It will also include persons of 

skin phototype III or IV who are likely to contribute relatively little to the overall risk to 
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the population. As the subjects of the current study are largely of European background 

and born in Australia, the estimates of population incidence could provide an 

underestimate of the actual risk to the subjects of this study.  

Despite these possible biases, our approach to the estimation of population prevalence of 

NMSC provided a reasonable basis with which to compare subject cancer prevalence, 

and could be used as a model for determining population prevalence in future studies. 

6.3. Increased cancer risk in these families: possible causes? 

Overall, susceptibility to NMSC and MM is increased in these 56 families compared with 

the general population: this fact needs some explanation and warrants further investment 

into family studies in the area of NMSC. The fact that a proportion of families have a 

cluster of multiple BCC also suggests a susceptibility to this cancer specifically, 

separately to NMSC susceptibility. The root of all this increased susceptibility is to be 

found in a combination of environmental and genetic risks, some of which may be 

reflected in the phenotypic risk factors identified in probands. Family members usually 

share very similar environments and therefore environmental risks; they also share very 

common genetic backgrounds making differences in either easier to identify than simply 

among unrelated members of the same cohort in the general population.  

The possible causes of the familial aggregation of skin cancer seen in this study are due 

to a complex interaction of environmental and genetic risk factors. By looking at 

phenotypic differences between sibling pairs, the variance in environmental influences 

seen between members of the general population is reduced as siblings generally share 

similar environmental influences. This means that any differences between the 

individuals in the pairs are more likely to have a genetic basis. We looked at the 

phenotypic differences between affected probands and their oldest unaffected siblings 

(where available) in order to find out more about the possible basis for their increased 

risk of cancer. 
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6.3.1. Hypothesis 2: Identifiable pigmentary and sun exposure related risk 

factors are present in people with early-onset BCC compared with their 

unaffected siblings 

Differences seen on examination between people with early-onset BCC and their 

unaffected siblings suggest that genetic differences in combination with high risk sun 

exposure behaviours have contributed to the increased risk of BCC in probands. It is very 

difficult to disentangle the environmental from the genetic causes of these differences, as 

these risk factors are interactive. The term ‘sun sensitivity’ encompasses a mixture of 

inherited characteristics that make up a person’s skin colour, propensity to burn and 

ability to tan. Skin ‘phototype’ predicts BCC risk in our subjects and this confirms 

previous research: people with very fair skin (phototype I = always burn/never tan) have 

almost 10 times the risk of BCC compared with people with darker skin (phototype III = 

sometimes burn/usually tan). Phototype is relatively uncontaminated by environmental 

exposure as a risk and suggests a difference in genetic susceptibility. However, phototype 

is likely to affect sun exposure behaviour to some degree, although a lower phototype 

individual is likely to reduce their sun exposure and therefore cause an underestimation 

of risk at best. 

A similar effect with increased BCC risk for a decreased ‘ability to tan’ and increased 

‘propensity to burn’ was seen although significance was not achieved with this group. As 

seen in section 1.7, pigmentary characteristics are influenced by, but not directly related 

to an individual’s MC1R variant status: MC1R expression may be modified by other as-

yet-unknown genes and proteins to result in phototype. It is also possible that PTCH 

polymorphisms interact with MC1R variant status to affect NMSC risk as suggested by 

one research group [235]. MC1R variant status would be the next priority in genetic 

candidates to examine in such a group, and correlation with sun sensitivity factors and 

PTCH haplotype would be of interest as potential predictors of risk. 

Actinic keratoses are related to cumulative sun exposure and are both precancerous and a 

marker of SCC risk. Our study confirms other work [78] showing that they may also be 

considered a marker for BCC risk, with a three-fold risk for BCC seen with presence of 
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any actinic keratoses. As BCC seems to be associated more with intermittent exposure 

than cumulative, and SCC more to cumulative than intermittent [14], we would expect 

actinic keratoses to be better markers for SCC than BCC. Freckling and solar lentigines 

were also associated with small increased risks, and although significant only on the 

arms, given the trends seen here are likely to act as markers for BCC risk elsewhere on 

the body in larger samples. Presence of these lesions probably reflects a high risk level of 

intermittent or cumulative sun exposure in combination with high risk skin pigmentary 

types. Questionnaires indexed to lifetime residential and work history used by other 

research groups [38, 80] would be valuable in this context, and we would expect to see 

increased intermittent sun exposure in this group, and perhaps, but not necessarily, 

increased cumulative exposure compared with unaffected relatives. Administration of 

such questionnaires should take high priority in sufficiently-funded future family studies 

on NMSC, for the information on interaction of environmental, genetic, and phenotypic 

risk factors that this would provide.  

Red-green reflectance in constitutive skin colour was associated with decreased BCC 

risk, and this may be interpreted as a decreased risk of BCC with increased skin 

melanisation. Skin colour has shown less association with BCC risk than sun sensitivity 

in the literature, although firm conclusions have been difficult due to the lack of 

consistent and reliable measures of skin colour used to date. Few research groups have 

used the BYK Gardner spectrophotometer, and studies using similar instruments have 

reported single readings only, making comparisons with the present study’s results 

difficult [398].  

The BYK Gardner spectrophotometer needs to be calibrated to melanin content and 

perhaps a suitable marker such as MC1R variant status, and this correlation would be 

relatively simple in future studies where both measures are performed. This would allow 

important interpretation of spectrophotometer measurements with respect to genotype 

and phenotype. The influence of hair on the readings of this instrument should also be 

examined to ensure that systematic bias is not being introduced by the hairiness of the 

test site, as seen with the Minolta spectrophotometer [399]. 
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Hair and eye colour were not good measures of BCC risk in this study, reflecting 

previous trends [103, 112]. Importantly, it is noted that self-report of hair colour by 

naming the colour may be an unreliable and subjective measure, and that the use of hair 

swatches may allow a more objective assessment of this variable. Seborrhoeic keratoses 

were paradoxically associated with a trend towards decreased risk of BCC. Many 

probands and siblings were scored as having no seborrhoeic keratoses, and this is an 

unlikely result in an Australian population based on previous studies. This indicates that 

faint lesions were probably missed by the examiner. The validity of the examination for 

these lesions is questioned, and highlights the need for adequate training of the examiner 

in identification of all lesions.  It is unclear whether faint seborrhoeic keratosis lesions 

and pigmented seborrhoeic keratosis lesions are in a relatively constant proportion to 

each other between body sites and also between patients. Any undercounting is likely to 

have occurred systematically for all subjects and all body regions and therefore the 

unexpected paradoxical association with decreased risk of BCC would still require 

explanation. It should be considered that any genetic predisposition to early onset BCC in 

these subjects also in some way suppresses the development of these benign lesions. 

Solar elastosis and pterygium were so common as to lose sensitivity as markers, and 

broader spectra may be required in coding these variables in future. 

6.3.2. Possible environmental causes 

Environmental risks that are likely to increase risks of all three types of skin cancer 

include general sun exposure, with intermittent sun exposure probably predisposing more 

to BCC [101, 102] and MM, and cumulative exposure predisposing more to SCC [14]. 

Studies show that childhood and adolescent exposure may also contribute more to BCC 

and MM risk than later exposure, whereas for SCC risk the cumulative dose may be more 

important [81, 99, 103]. Questionnaires regarding sun exposure over the individuals’ 

lifetime may help to support or refute these hypotheses. Despite the known risk of UVR, 

other factors must be operating to give the 5- to 10-fold increased skin cancer risks seen 

in these family members, as sun exposure contributes relative risks in the low 1.0 to 2.0 

range, and cannot account entirely for the figures seen here. 
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Other environmental risk factors that may increase risks of NMSC include HPV infection 

or possibly other as-yet-unidentified viral agents. Infectious agents such as viruses may 

cluster in families. HPV is a common viral infection, and high risk genital types have 

recently been identified as possible risk factors for both BCC and SCC [308]. Several 

studies have shown that hair follicle reservoirs of HPV infection exist [323, 324, 405], 

and eyebrow hairs are a convenient source of these [324]. It is unclear if eyebrow hairs 

are an adequate marker of HPV infections elsewhere on the body or of the HPV-type 

within epidermal lesions. Collection of eyebrow hairs during examination of subjects is a 

reasonably non-invasive way of measuring sub-clinical HPV infection and conducting 

investigations into the possible association with skin cancer susceptibility. Several 

members the human herpes virus family contribute to human cancer pathogenesis, and 

CMV needs further investigation as a possible co-factor for NMSC [333]. 

Exposure to therapeutic ionising radiation also increases the risk of NMSC [151-153]. 

Surveillance of individuals and their families for all forms of skin cancer may also 

increase following the diagnosis of one member with any type of skin cancer. Arsenic 

exposure and sites of scars from physical trauma have also been reported to increase risk 

of BCC specifically. Theoretically these environmental predispositions could be shared 

by family members and contribute to their increased susceptibility.  

6.3.3. Hypothesis 3: Mutation in PTCH is responsible for some of the 

increased risk in early-onset non-syndromic BCC probands 

Candidate cancer susceptibility genes for NMSC and MM are likely to include MC1R: 

preliminary studies show that variants in this gene may increase risk of skin cancers 

independently of their effect on pigmentary characteristics [267, 274, 283]. It is possible 

that certain variant alleles negate the UVR protection usually afforded to people of higher 

phototype (darker skin) by their pigmentation.  

The tumour suppressor gene PTCH is an obvious candidate for BCC-specific cancer 

susceptibility given its role in Gorlin syndrome, a rare familial genodermatosis involving 

predisposition to multiple early-onset BCC (see section 1.5.4). The current study is the 

first to examine this gene in the context of non-syndromic population susceptibility to 
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BCC. We found no mutations in the PTCH gene in 58 early-onset probands with BCC, 

indicating that if PTCH mutations are causing population susceptibility to this tumour, 

then they are not a major contributing factor. Almost all of the coding sequence of PTCH 

in which Gorlin syndrome-associated mutations have been found was thoroughly 

screened and found to harbour no mutations. Given the numbers of subjects involved and 

the completeness of screening of this gene, we can be sure that if PTCH mutations are 

causing population susceptibility to BCC, that this is affecting less than 5% of the high 

risk non-syndromic early-onset cases in the community. This important result needs to be 

confirmed in larger studies. It does give preliminary evidence that PTCH is unlikely to be 

a major susceptibility gene to BCC outside the context of Gorlin syndrome. As the 

prevalence of any mutations causing general population BCC is likely to be less than 5%, 

this result also indicates that screening PTCH will be unlikely to prove relevant to clinical 

geneticists, given that it is a large and expensive gene to test for mutations of such a low 

yield. 

Single nucleotide polymorphisms in PTCH in these 58 subjects were seen at a similar 

frequency to that reported in other studies in SNP databases (see section 5.4). Most of the 

other studies are from small groups in the USA and all have different ethnic mixes to that 

seen in Australia, and as they have obviously been ascertained in different ways, are not 

an ideal comparison for the Australian sample examined here. The current polymorphism 

heterozygosity results for PTCH will add useful data to this bank of polymorphism data 

for comparison in the future for other studies on this gene in Australia and 

internationally. Given their similar frequency to that seen in controls, these SNPs are 

unlikely to be contributing to the BCC susceptibility seen in these families. However, 

functional studies of these SNPs would be required to rule out a role in susceptibility to 

BCC. 

6.3.4. Other possible genetic causes 

Other genes in the Hedgehog signalling pathway are still candidates for susceptibility 

genes for BCC, and should be further investigated in susceptible people. Activating 

smoothened mutations have been found in human BCC tumours themselves, and mice 
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overexpressing Gli1 or Gli2 develop BCC-like tumours. Overexpression of the hedgehog 

gene itself in human and mouse skin leads to BCC-like tumours also. Potential 

interactions of PTCH polymorphisms with other gene variants (eg MC1R) mutations 

would also be of interest before ruling out possible PTCH involvement in susceptibility 

to BCC.  

Germline mutations or variants that may be involved in NMSC susceptibility also include 

p53Arg, whereby a polymorphism at codon 72 of P53 replaces proline with arginine and 

results in a protein with increased susceptibility to HPV-mediated degradation. Since 

UVR-mediated mutation of p53 is known to occur commonly in BCC tumours 

themselves [292], this variant of p53 may be contributing to population susceptibility to 

BCC and SCC through infection with HPV. Conflicting evidence has been provided 

regarding this possibility [406-409]. The genetically polymorphic glutathione s-

transferase genes and cytochrome P450 enzyme genes are attractive candidates for cancer 

susceptibility because of the roles they play in metabolizing toxins. They have been 

studied with respect to NMSC susceptibility and again, no firm conclusions can be made. 

Further studies are needed to map and identify BCC susceptibility genes. These should 

include genome-wide linkage studies of dense family clusters in which PTCH mutations 

have been excluded, in order to exclude the presence of as yet undetected hign-

penetrance susceptibility gene mutations. It is likely that these will be more efficient if 

restricted to clusters with early median age of onset. In addition, genome-wide 

association studies are needed on large cohorts of cases and controls, and again it would 

seem prudent to restrict these to early age of onset in order to increase their sensitivity to 

genetic as opposed to environmental causes.. 

6.4. Clinical relevance 

We can now be more certain that when an individual in Australia is treated for BCC at an 

early age, their close relatives are more likely to get all three types of skin cancer than 

others in their community. This could have implications for general practitioners and 

dermatologists who may be able to advise patients and their relatives of a need for 

increased preventative measures and surveillance. Patients who have the phenotypic 
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features that are associated with an increased risk of BCC may also be identified by their 

treating doctor: large degrees of freckling or solar lentigines on the arms could indicate 

the need for a closer examination for early tumours, or reduce the threshold to investigate 

or biopsy suspicious lesions in younger people.  

6.5. Future research 

The probability of familial aggregation of BCC and other skin cancers seen in this study 

suggest that large-scale familial aggregation studies are needed on BCC affecting the 

general population (outside of rare hereditary syndromes): to enable an understanding of 

gene/environment interactions, and to allow genome-wide linkage studies to identify as-

yet unknown markers that may cosegregate with the disease. This could be followed by 

segregation analysis and linkage studies which could lead to the development of complex 

genetic models incorporating rare high-penetrance gene mutations, and common 

medium- and low- penetrance genetic variants. 

The design of future familial aggregation studies could mirror the current study with 

larger numbers of probands with early-onset BCC and their first-degree relatives. Subject 

questionnaires could include history of lifetime sun exposure linked to work history to 

better quantify the amount of sun exposure in probands and their relatives. Skin 

examinations for pigmentary and sun exposure characteristics could be repeated in a 

similar manner to the current study. The MC1R gene would be the next priority when 

screening genes likely to be responsible for any familial aggregation seen. As this is a 

relatively small gene, screening could be done with direct sequencing rather than dHPLC 

and sequencing. Eyebrow hairs could be plucked from subjects for examination of HPV 

presence, subtyping, and correlation with BCC risk.  

BCC is a very common human cancer that is likely to have complex interacting genetic 

and environmental causes that are as-yet poorly understood. Further investigation into 

these interactions are desperately needed to improve future monitoring, treatment and 

prevention of this incredibly burdensome disease. 
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Chapter 7: Appendices 
 

7.1. Appendix: Clinical Protocol for Questionnaire and Examination 

 

 
 

 
Westmead Institute for Cancer Research 

Westmead Hospital, Westmead NSW 2145 Australia 
      
 Basal Cell Carcinoma Genetics Project 
   
    
 
 
 
 
 
 
 
 
   Surname ___________________ 
 
   Given Name ________________ 
 
   Date of Birth ________________ 
 
   Identification no ______________ 
 
   Date of Examination ___________ 
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Genotype/Phenotype studies in Non-melanoma  skin cancer 

Clinical Protocol 

SECTION A 

Demographic Data 

 
 

 i. Sex:  M        F          
 
  
  ii. Age: ____ years 
  
 
  Body Surface Area = 71.84 x (h) 0.725 x (w) 0.425 

 
 
  iii. Height: _______ cm (h) 
 
 

 iv. Weight: _______ kg (w) 
 
 
  v. Skin Reflectance   
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L 
a b 

Outer upper 
arm 

   

Lateral wall 
axilla (inner 
upper arm) 
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SECTION B 
 
COLOURING, SKIN TYPE. 

Please circle one answer for each question below. 

1. Which colour best describes your natural hair colour at age 21?  

 Red (including Auburn) ............................................................................................ 1 

 Fair or Blonde (including White) ............................................................................. 2 

 Light or mouse brown ............................................................................................... 3 

 Grey .......................................................................................................................... 4 

 Dark brown ............................................................................................................... 5 

 Black ......................................................................................................................... 6 

 

2. Which colour best describes the colour of your eyes? 

 Blue or Grey ............................................................................................................. 1 

 Green or Hazel .......................................................................................................... 2 

 Brown or Black ......................................................................................................... 3 

 

3. Which colour type best describes your skin before tanning or on areas never exposed to 
the sun, such as the inside of your upper arm? 

 Very fair ...................................................................................................................... 1 

 Fair .............................................................................................................................. 2 

 Olive or Brown ........................................................................................................... 3 

 Asian ........................................................................................................................... 4 

 Black ........................................................................................................................... 5 

 Other (specify)  ........................................................................................................... 6 

 

Which statement best describes what would happen if your skin were exposed to bright 
sunlight for the first time in summer for one hour in the middle of the day without any 
protection? 

  Get a severe sunburn with blistering? ......................................................................... 1 

  Have a painful sunburn for a few days followed by peeling? .................................... 2 

  Get mildly burnt followed by some tanning? ............................................................. 3 

  Go brown without any sunburn?................................................................................. 4 
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Which of the following best describes what would happen to your skin if it were repeatedly 
exposed to bright sunlight in summer without any protection?  

 Go very brown and deeply tanned ............................................................................ 1 

 Get moderately tanned .............................................................................................. 2 

 Get mildly or occasionally tanned ............................................................................ 3 

 Get no suntan at all or only get freckled ................................................................... 4 

 

In general, how does your skin react to the sun ? 

 Always burns, never tans  1 

 Usually burns, sometimes tans 2 

 Sometimes burns, usually tans 3 

 Never burns, always tans  4 

 
Please look at the faces below. Each of the faces shows some degree of freckling, from none to many. 

Which of these faces best describes how many freckles you would have had at the end of 
summer during childhood? 

 None ......................................................................................................................... 1 

 Very few ................................................................................................................... 2 

 Few ........................................................................................................................... 3 

 Some ......................................................................................................................... 4 

 Many ......................................................................................................................... 5 

 Very many ................................................................................................................ 6 
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Which one of these faces best describes how many freckles you would have at the end of 

summer as an adult?  

 None ......................................................................................................................... 1 

 Very few ................................................................................................................... 2 

 Few ........................................................................................................................... 3 

 Some ......................................................................................................................... 4 

 Many ......................................................................................................................... 5 

 Very many ................................................................................................................ 6 
 
 
 
 
 
 
Have you ever had dental surgery for a cyst (or cysts) in your upper or lower jaw? 
 

      Yes      □ 
      No       □ 
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C. Clinical Phenotype 

 
 

1. Ephelides 

(with respect to freckling quantification chart) 
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2. Solar Lentigines 
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SL4 Upper 
Back/ 
Shoulders 

          

 
 

3. Actinic Keratoses 

 
 
 

  
Nil 

 
Sparse (0-
10) 

 
Moderate (10-
60) 

 
Extensive/confluent 
>60 

 
AK1 
Head/Neck 

    

 
AK2 Chest 

    

 
AK3 Dorsum 
Arms 

    

 
AK4 Dorsum 
Hands 

    

 
 
 

4. Actinic Damage/ Elastosis 
 
 
 

  

Absent 

 
Mild 

 
Severe 

 
Present 

 
AD1 Head, 
neck,  
Anterior Chest 

    

 
AD2 
Periorbital 
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AD3 Lips 

    

 
AD4 Dorsa 
Forearms 

    

 

AD5 Dorsa 
hands 

  
 

  

 

P1 Pterygium 

    

 
 

 
 

5. Seborrhoeic Keratoses 
 
 

  
Nil 

 
Sparse (0-
10) 

 
Moderate (10-
60) 

 
Confluent 
(>60) 

 
SK1 Head & 
Neck 

    

 
SK2 Upper 
Limbs 

    

 
SK3 Chest 

    

 
SK4 
Abdomen 

    

 
SK5 Back 

    

 
SK6 Lower 
limbs 

    

 
 

6. Skin Cancers 
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Body Site 

 
Number 

 
SCC 

 

  

 

BCC 
 

  

 
Melanoma 
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7. Palmar Pitting 
 

 

 Absent Equivocal Present 

PP1 Palmar pitting 
   

 

 
8. Hair Colour 

 
Hair colour at 21 years use swatches provided  
   

Red  ………………………………………………………………..1 
 
Blonde/fair ....................................................................................... 2 
 
Brown …………………………………………………………….3 
 
Black ……………………………………………………………....4 

 
9. Notes 
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7.2. Appendix: Protocol for DNA extraction from whole blood 

 
Take ~3-5 mL blood and add 5x the volume of QIAGEN Buffer EL. Vortex to mix. 
Place on ice for 15 min, vortexing after 10 min then again after a further 5 min. 
Centrifuge at 1400 rpm for 10 min at room temperature. Discard supernatant 
appropriately. 
Wash pellet with 2x the original volume of blood with Buffer EL and place on ice for 5 
min. 
Centrifuge at 1400 rpm for 10 min at room temperature. Discard supernatant 
appropriately. 
Repeat step 4 and 5 if the samples have been frozen. 
Rinse pellet with Buffer EL to remove all remaining red blood cells, using a transfer 
pipette. 
Resuspend the pellet in 5 mL Enzyme solution (after aliquoting the desired amount under 
sterile conditions) and add 50 μL Proteinase K (150 U/mg). 
Incubate at 55°C for at least 3 h, or 37°C overnight. 
Transfer digest to a 15 mL Falcon tube and add 3.5 mL 3M NaCl (1.2M final 
concentration) and shake vigorously 15 times. 
Centrifuge at 2500 rpm for 15 min at room temperature. 
Inverting only once, remove supernatant to a second 15 mL tube and repeat centrifugation. 
Again, inverting only once, remove the supernatant to a new tube and precipitate the DNA 
with 2 volumes of absolute EtOH. 
If no precipitate is present, spin the sample in a high-speed centrifuge at ~10 000rpm (_g) 
for 10-15 min. Remove the supernatant and reconstitute in 1 mL 70% ethanol (EtOH). 
Continue from step 15. 
Spool the DNA from the EtOH using a 1 mL pipette tip and carefully transfer to an 
eppendorf tube containing 70% EtOH and mix. 
Briefly centrifuge the sample to pellet the DNA and remove the EtOH by inverting only 
once then remove the remaining EtOH carefully with a suction line. 
Briefly air dry and resuspend in 200-600 μL sterile T10E1 (for 2 x 107 cells initial dilution 
should be ~300 μL) and place in a heating block at 50°C for 15 min to aid help dissolve 
the pellet.  
Leave at 4°C for at least one week to dissolve before quantitation and electrophoresis. 

 
(Adapted from: kCkonFab; Agha-Hamilton C, Biospecimen Manager at the Westmead 
Millennium Institute, Sydney; Personal communication) 
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7.3. Appendix: Nucleotide sequences of PTCH exons 

 
Nucleotide sequence of wild type PCR product of exons 2 to 4, and 5 to 23 of the PTCH 
gene. Forward and reverse primers are underlined. Exonic sequences are in capital letters, 
intronic sequences in small letters. The size of the amplicon is given between ( ). Sequence 
is from GenBank accession number U59464. 
 
 
Exon 2 PTCH (294 basepairs) 
 
actcctcccttctgcttcgtccccagGGGAAGGCTACTGGCCGGAAAGCGCCGCTGTGGCTGA
GAGCGAAGTTTCAGAGACTCTTATTTAAACTGGGTTGTTACATTCAAAAAAAC
TGCGGCAAGTTCTTGGTTGTGGGCCTCCTCATATTTGGGGCCTTCGCGGTGGGA
TTAAAAGCAGCGAACCTCGAGACCAACGTGGAGGAGCTGTGGGTGGAAGgtaag
agcgcccgccgcggcgcccgcgcccccggcccggtccctcctcgcggttgatagagatattcgccagcgc 
 
 
Exon 3 PTCH (313 basepairs) 
 
ctattgtgtatcctatggcaggtagtcagataacagataaaacatgagtttgcagtgattttgctattctaattaaacctgtacatatttgt
cagTTGGAGGACGAGTAAGTCGTGAATTAAATTATACTCGCCAGAAGATTGGAG
AAGAGGCTATGTTTAATCCTCAACTCATGATACAGACCCCTAAAGAAGAAGGT
GCTAATGTCCTGACCACAGAAGCGCTCCTACAACACCTGGACTCGGCACTCCA
GGCCAGCCGTGTCCATGTATACATGTACAACAGgtaaggcccgccgcgtccacctactaat 
 
 
Exon 5 PTCH (248 basepairs) 
 
gcaaaaatttctcaggaacaccccagtagtgtgccttaacctaacgcatggcctcttctttttaactttgacagATAATAGAA
TATCTTTACCCTTGTTTGATTATTACACCTTTGGACTGCTTCTGGGAAGGGGCG
AAATTACAGTCTGGGACAGCATACCTCCTgtaagtgtgtgatcatgctttctgatgtctgtgacttctctag
gactcagtgtttctaatgttgcttatcattgtttgttcc 
 
 
Exon 6 PTCH (335 basepairs) 
 
cctacaaggtggatgcagtgggcgcagccgtgttactttacgatgcgtttagaaggctcttttcatggtctcgtctcctaatttcttttgc
agAGGTAAACCTCCTTTGCGGTGGACAAACTTCGACCCTTTGGAATTCCTGGAA
GAGTTAAAGAAAATAAACTATCAAGTGGACAGCTGGGAGGAAATGCTGAATA
AGGCTGAGGTTGGTCATGGTTACATGGACCGCCCCTGCCTCAATCCGGCCGAT
CCAGACTGCCCCGCCACAGCCCCCAACAAAAATTCAACCAAAgtgagtaccagcagtga
gcgctctcagaagggtggagagcaaa 
 
Exon 7 PTCH (294 basepairs) 
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gtgacctgcctactaattcccataattatgtggctgtctttttattttagCCTCTTGATATGGCCCTTGTTTTGAA
TGGTGGATGTCATGGCTTATCCAGAAAGTATATGCACTGGCAGGAGGAGTTGA
TTGTGGGTGGCACAGTCAAGAACAGCACTGGAAAACTCGTCAGgtaagccagctcccg
aggacaatctatgccctgtagtcttcttcctttcctcaaaagccacttccctcctgacatcggcaagtgtatttgtattaatacttaaacc
gttatcctcgctagcc 
 
Exon 8 PTCH (256 basepairs) 
 
gaggcagtggaaactgcttcctgggaatactgatgatgtgccttcccttggactgtgctgcagCGCCCATGCCCTGCA
GACCATGTTCCAGTTAATGACTCCCAAGCAAATGTACGAGCACTTCAAGGGGT
ACGAGTATGTCTCACACATCAACTGGAACGAGGACAAAGCGGCAGCCATCCT
GGAGGCCTGGCAGAGGACATATGTGGAGgtaaacccaccttcgaatcggcgtgcagactcgctggtta
tgcaa 
 
Exon 9 PTCH (245 basepairs) 
 
gtgctgtcgaggcttgtggaagtgttcattgcatttgggcatttcgcattctgttgtgaccacagGTGGTTCATCAGAGT
GTCGCACAGAACTCCACTCAAAAGGTGCTTTCCTTCACCACCACGACCCTGGA
CGACATCCTGAAATCCTTCTCTGACGTCAGTGTCATCCGCGTGGCCAGCGGCT
ACTTACTCATGgtaacgctcgatgccatgctcctgggggctggagtttggtttggttgttttagtctttacttttccatgactg
ctcctgcttct 
 
Exon 10 PTCH (242 basepairs) 
 
ttcggcttttgttctgtgcccccattgttctgcttgcagCTCGCCTATGCCTGTCTAACCATGCTGCGCTG
GGACTGCTCCAAGTCCCAGGGTGCCGTGGGGCTGGCTGGCGTCCTGCTGGTTG
CACTGTCAGTGGCTGCAGGACTGGGCCTGTGCTCATTGATCGGAATTTCCTTTA
ACGCTGCAACAACTCAGgtactaaaggagccatttatctgctgtccgttgacaaatgccaccgg 
 
Exon 11PTCH (253 basepairs) 
 
ctgttaggtgctggtggcagagtcctaactagctttagaatcatctgaattgcatctcgcatgtctaatgccaccatcctctgtttttgct
gtagGTTTTGCCATTTCTCGCTCTTGGTGTTGGTGTGGATGATGTTTTTCTTCTGG
CCCACGCCTTCAGTGAAACAGGACAGAATAAAAGAATCCCTTTTGAGgtaatgcaa
aaacaaaagaagagagctttggggacatcacagcttcctctgttcctaag 
 
 
Exon 12 PTCH (211 basepairs) 
 
gaccatgtccagtgcagctctcagcgctgtgtttttttattcccagGACAGGACCGGGGAGTGCCTGAAGC
GCACAGGAGCCAGCGTGGCCCTCACGTCCATCAGCAATGTCACAGCCTTCTTC
ATGGCCGCGTTAATCCCAATTCCCGCTCTGCGGGCGTTCTCCCTCCAGgtgagcttct
ggtgatgaaggctgtggtgatcctgaacg 
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Exon 13 PTCH (222 basepairs) 
 
agtcctctgattgggcggaggcatgttggtgacctctgaattttttttctgctcccagGCAGCGGTAGTAGTGGTGT
TCAATTTTGCCATGGTTCTGCTCATTTTTCCTGCAATTCTCAGCATGGATTTATA
TCGACGCGAGGACAGGAGACTGGATATTTTCTGCTGTTTTACAAGgtacattttcagact
gctgtggccttttgattgggtgcagaatgg 
 
 
Exon 14 PTCH (540 basepairs) 
 
aaaatggcagaatgaaagcaccatttccctgtttcagcataacattgcaacatgtttcccctcctttcagCCCCTGCGTCAG
CAGAGTGATTCAGGTTGAACCTCAGGCCTACACCGACACACACGACAATACCC
GCTACAGCCCCCCACCTCCCTACAGCAGCCACAGCTTTGCCCATGAAACGCAG
ATTACCATGCAGTCCACTGTCCAGCTCCGCACGGAGTACGACCCCCACACGCA
CGTGTACTACACCACCGCTGAGCCGCGCTCCGAGATCTCTGTGCAGCCCGTCA
CCGTGACACAGGACACCCTCAGCTGCCAGAGCCCAGAGAGCACCAGCTCCAC
AAGGGACCTGCTCTCCCAGTTCTCCGACTCCAGCCTCCACTGCCTCGAGCCCCC
CTGTACGAAGTGGACACTCTCATCTTTTGCTGAGAAGCACTATGCTCCTTTCCT
CTTGAAACCAAAAGCCAAGgtaatctgccacaacttaaggctcttcctgtcttcaaaaaaataacagaacctttgg
agttcatcag 
 
 
Exon 15 PTCH (425 basepairs) 
 
gacagcttctctttgtccaggaagagtcagtggtgctccctggggtctgaccttgtgcctcttctgttccagGTAGTGGTGA
TCTTCCTTTTTCTGGGCTTGCTGGGGGTCAGCCTTTATGGCACCACCCGAGTGA
GAGACGGGCTGGACCTTACGGACATTGTACCTCGGGAAACCAGAGAATATGA
CTTTATTGCTGCACAATTCAAATACTTTTCTTTCTACAACATGTATATAGTCAC
CCAGAAAGCAGACTACCCGAATATCCAGCACTTACTTTACGACCTACACAGGA
GTTTCAGTAACGTGAAGTATGTCATGTTGGAAGAAAACAAACAGCTTCCCAAA
ATGTGGCTGCACTACTTCAGAGACTGGCTTCAGGgtaagacggcgtgggaggctctcgtcctttc
ggtcttttgcgt 
 
Exon 16 PTCH (219 basepairs) 
 
agggtccttctggctgcgagttataatgtgttacaatcatttgccatttctagGACTTCAGGATGCATTTGACAG
TGACTGGGAAACCGGGAAAATCATGCCAAACAATTACAAGAATGGATCAGAC
GATGGAGTCCTTGCCTACAAACTCCTGGTGCAAACCGGCAGCCGCGATAAGCC
CATCGACATCAGCCAGgtactccagctgctgggcactga 
 
Exon 17 PTCH (268 basepairs) 
 
aaccccattctcaaaggcctctgttcttcccgtttttgtagTTGACTAAACAGCGTCTGGTGGATGCAGA
TGGCATCATTAATCCCAGCGCTTTCTACATCTACCTGACGGCTTGGGTCAGCAA
CGACCCCGTCGCGTATGCTGCCTCCCAGGCCAACATCCGGCCACACCGACCAG
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AATGGGTCCACGACAAAGCCGACTACATGCCTGAAACAAGGCTGAGAAgtaagta
gcgttttatcgggaggtctgggaacttacagaggtg 
 
Exon 18 PTCH (410 basepairs) 
 
aactgtgatgctcttctaccctgggctgctcctaacctgtgcccttctctgtccagTCCCGGCAGCAGAGCCCATC
GAGTATGCCCAGTTCCCTTTCTACCTCAACGGCTTGCGGGACACCTCAGACTTT
GTGGAGGCAATTGAAAAAGTAAGGACCATCTGCAGCAACTATACGAGCCTGG
GGCTGTCCAGTTACCCCAACGGCTACCCCTTCCTCTTCTGGGAGCAGTACATCG
GCCTCCGCCACTGGCTGCTGCTGTTCATCAGCGTGGTGTTGGCCTGCACATTCC
TCGTGTGCGCTGTCTTCCTTCTGAACCCCTGGACGGCCGGGATCATTgtgagtgtatta
taaggggctttgtggaagtcaaattcctttcagcatagctctttctgcagccgggaagttt 
 
 
Exon 19 PTCH (305 basepairs) 
 
tttgatctgaaccgaggacaccttagccctctggcgacctcccttgtgggcagccccagagggtgacctgcccgcccactgacca
ctgtgtgccctgctccagGTGATGGTCCTGGCGCTGATGACGGTCGAGCTGGCATAGGAG
TGGAGTTCACCGTTCACGTTGCTTTGTTCGGCATGATGGGCCTCATCGGAATCA
AGCTCAGTGCCGTGCCCGTGGTCATCCTGATCGCTTCTGTTGgtatgggagacatttgaag
caaaaactttgtgaaaaaacaacccatttcctctggctctgtttg 
 
Exon 20 PTCH (214 basepairs) 
 
catttaggacagagctgagcatttaccaggtgaagtccagcaacctgatcttgtgaacatcctcattgcacagGCCTTTCTG
ACGGCCATCGGCGACAAGACCGCAGGGCTGTGCTTGCCCTGGAGCACATGTTT
GCACCCGTCCTGGATGGCGCCGTGTCCACTCTGCTGGGAGTGCTGATGCTGGC
GGGATCTGAGTTCGACTTCATTGTCAGGTAAGCAGGCGTGTGCAAGGAGACAT
GTTTTAGAAATCATTGTGATTGGGCC 
 
Exon 21 PTCH (187 basepairs) 
 
tgttcccgtttcctcttgatctcccagGTATTTCTTTGCTGTGCTGGCGATCCTCACCATCCTCGG
CGTTCTCAATGGGCTGGTTTTGCTTCCCGTGCTTTTGTCTTTCTTTGGACCATAC
CTGAGgtcagtagtgacacggggatgtcccacgtgtaggccggctgaatgctgtgtttcctgtgc 
 
Exon 22 PTCH ( 371 basepairs) 
 
agtgtggccagcaggtaaatggacaagaacacttttaacatggaatccccttaaatagGTGTCTCCAGCCAACGG
CTTGAACCGCCTGCCCACACCCTCCCCTGAGCCACCCCCCAGCGTGGTCCGCTT
CGCCATGCCGCCCGGCCACACGCACAGCGGGTCTGATTCCTCCGACTCGGAGT
ATAGTTCCCAGACGACAGTGTCAGGCCTCAGCGAGGAGCTTCGGCACTACGAG
GCCCAGCAGGCGCGGGAGGCCCTGCCCACCAAGTGATCGTGGAAGCCACAGA
AAACCCCGTCTTCGCCCACTCCACTgtaagtgactctgcagaaccagggggaggggtcttcccaccgtgg
tagtgggcctggag 
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Exon 23a PTCH (331 basepairs)  
 
aaacccaaggagggaagtgtgggagctgcggggaccatgcccagcctgggataccacccttctaacccaccctcaccctctgc
agGTGGTCCATCCCGAATCCAGGCATCACCCACCCTCGAACCCGAGACAGCAG
CCCCACCTGGACTCAGGGTCCCTGCCTCCCGGACGGCAAGGCCAGCAGCCCCG
CAGGGACCCCCCCAGAGAAGGCTTGTGGCCACCCCTCTACAGACCGCGCAGA
GACGCTTTTGAAATTTCTACTGAAGGGCATTCTGGCCCTAGCAATAGGGCCCG
CTGGGGCCCTCGCGGGGCCCGTTCTCACAACCCTCGG 
 
Exon 23b PTCH (406 basepairs) 
 
GCATTCTGGCCCTAGCAATAGGGCCCGCTGGGGCCCTCGCGGGGCCCGTTCTC
ACAACCCTCGGAACCCAACGTCCACTGCCATGGGCAGCTCCGTGCCCGGCTAC
TGCCAGCCCATCACCACTGTGACGGCTTCTGCCTCCGTGACTGTCGCCGTGCAC
CCGCCGCCTGTCCCTGGGCCTGGGCGGAACCCCCGAGGGGGACTCTGCCCAGG
CTACCCTGAGACTGACCACGGCCTGTTTGAGGACCCCCACGTGCCTTTCCACG
TCCGGTGTGAGAGGAGGGATTCGAAGGTGGAAGTCATTGAGCTGCAGGACGT
GGAATGCGAGGAGAGGCCCCGGGGAAGCAGCTCCAACTGAGgtgagtgccactgacaa
gggcagcaagggacctagagccaggcaaaga 
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7.4. Appendix: DHPLC melting profiles 
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Predicted dHPLC melting profile for PTCH exon 2, wild type 
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Predicted dHPLC melting profile for PTCH exon 3, wild type 
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Predicted dHPLC melting profile for PTCH exon 5, wild type 
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Predicted dHPLC melting profile for PTCH exon 6, wild type 
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Predicted dHPLC melting profile for PTCH exon 7, wild type 
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Predicted dHPLC melting profile for PTCH exon 8, wild type 
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Predicted dHPLC melting profile for PTCH exon 9, wild type 
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Predicted dHPLC melting profile for PTCH exon 10, wild type 
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Predicted dHPLC melting profile for PTCH exon 11, wild type 
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Predicted dHPLC melting profile for PTCH exon 12, wild type 
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Predicted dHPLC melting profile for PTCH exon 13, wild type 
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Predicted dHPLC melting profile for PTCH exon 14, wild type 
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Predicted dHPLC melting curve for PTCH exon 15, wild type 
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Predicted dHPLC melting curve for PTCH exon 16, wild type 
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Predicted dHPLC melting curve for PTCH exon 17, wild type 
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Predicted dHPLC melting curve for PTCH exon 18, wild type 
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Predicted dHPLC melting curve for PTCH exon 20, wild type 
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Predicted dHPLC melting curve for PTCH exon 21, wild type 
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Predicted dHPLC melting curve for PTCH exon 22, wild type 
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Predicted dHPLC melting curve for PTCH exon 23, wild type 
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Predicted dHPLC melting profile for PTCH exon 23a, wild type 
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7.5. Appendix: Protocol for PCR-product purification 

 
Using QIAquick PCR Purification Kit and a conventional tabletop microcentrifuge, at 
13,000 rounds per minute: 
 
Suck up the total volume of PCR product using a pipette. 
Add  5 volumes of  Buffer PB to 1 volume of PCR sample and mix. 
Place a QIAquick spin column in a provided 2 ml collection tube. 
To bind DNA, apply the sample to the QIAquick column and centrifuge for 30-60 sec. 
Discard the flow-through. Place the QIAquick column back into the same tube. 
To wash, add 0.75 ml Buffer PE (with added ethanol) to the QIAquick column and 
centrifuge for 30-60 sec. 
Discard flow-through and place the QIAquick column back in the same tube. Centrifuge 
the column for an additional 1 min at maximum speed. 
Place QIAquick column in a clean 1.5 ml microcentrifuge tube. 
To elute DNA from the column, add 50 µl elution buffer (EB) (10 mM Tris-CL, pH 8.5) 
or H2O to the center of the QIAquick membrane and centrifuge the column for 1 min. 
Alternatively, for increased DNA concentration, add 30 µl elution buffer to the center of 
the QIAquick membrane, let the column stand for 1 min, and then centrifuge. The 
average eluate volume is 48 µl from 50 µl elution buffer volume, and 28 µl from 30 µl 
elution buffer. 
Store DNA at -20ºC until use, as DNA may degrade otherwise.  

 
(Adapted from: Qiagen. QIAquick Spin Handbook. USA: Instructions manual; 07/2002. 
p11-8) 
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7.6. Appendix: subjects excluded from analysis 

Table 7.1. Subjects excluded from analysis of comparison with population prevalence (due to death or 
age>70 years) 
ID Family ID  Cancers 
9129 29125 - 
8838 28762 Colorectal 
8827 28763 MM 
8930 28767 Renal Cell 
9331 28775 - 
9332 28775 SCC 
9411 28779 Ovarian 
9115 28797 Colorectal, SCC, BCC 
8892 28816 Renal Cell 
8823 28818 Breast 
8824 28818 - 
8859 28857 Laryngeal SCC 
9042 29022 BCC 
9128 29125 SCC 
9169 29168 Colorectal 
9170 29168 Squamous Cell Lung 
9430 29240 Malignant fibrous 

histiocytoma (sarcoma) 
9289 29275 Breast 
8817 28762 Prostate 
8801 28763 SCC 
8811 29764 - 
8765 28764 - 
8867 28776 - 
8929 28767 - 
8796 28770 BCC, SCC, MM 
8793 28771 - 
8792 28771 SCC 
8985 28773 BCC 
8986 28773 - 
9066 28794 - 
9067 28794 - 
9116 28797 - 
9303 28800 - 
9304 28800 BCC, SCC 
8891 28816 BCC, SCC 
8829 28825 SCC, MM 
8830 28825 Colorectal, BCC 
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9041 29022 BCC 
9096 29094 SCC 
9127 29125 - 
9429 29240 - 
9455 29445 BCC 
9456 29445 BCC, SCC 
9447 29446 - 
9448 29446 SCC 
9461 29459 SCC 
9530 29527 - 
Note: all deceased parents except two had a cancer diagnosis (likely to be bias of 
inclusion in study of people with family history of cancer?) 
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7.7. Appendix: Pedigrees for all families with cancer affected first degree relatives 
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7.8. Appendix: Raw data 

Raw, semi-quantitative data collected on each variable is displayed below as referred to 

in the text. 

Table 7.2 Self reported hair colour crosstabulation: by questionnaire and hair swatch selection 
  Hair colour by swatch  
  Red  Fair/Blonde Brown Total 
Hair colour by 
questionnaire 

Red 6 0 0 6 
Fair/Blonde 1 16 0 17 
Light or 
mouse brown 

5 20 8 33 

Dark Brown 1 3 27 31 
Black 0 0 1 1 

Total  13 39 36 88 
 

Table 7.3 Single  exposure to the sun (“sun sensitivity”) raw data 
Self-reported 
category 

n (%) 

Severe 
sunburn/blistering 

9 (10.2) 

Painful 
sunburn/peeling 

53 (60.2) 

Mild sunburn/tanning  23 (26.1) 
No sunburn/tanning 3 (3.4%) 
Total 88 (100) 
 

Table 7.4 Repeated exposure to the sun (“ability to tan”) raw data 
Self-reported 
category 

n (%) 

Very brown/deeply 
tanned 

6 (6.8) 

Moderately tanned 34 (38.6) 

Mildly/occasionally 
tanned 

32 (36.4) 

No tan/only 
freckled 

16 (18.2) 

Total  88 (100) 
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Table 7.5 General reaction to the sun (“phototype”) raw data 
Self-reported 
category 

n (%) 

Always burns, never 
tans 

8 (9.1) 

Usually burns, 
sometimes tans  

46 (52.3) 

Sometimes burns, 
usually tans 

34 (38.6) 

Total 88 (100) 
 

Table 7.6 Actinic Keratoses (AK’s) raw data 
Number lesions Head/Neck  

n (%) 
Chest 
n (%) 

Dorsum Arms 
n (%) 

Dorsum Hands 
n (%) 

Nil 59 (67) 84 (95.5) 70 (79.5) 73 (83) 
Sparse (0-10) 27 (30.7) 3 (3.4) 16 (18.2) 13 (14.8) 
Moderate (10- 60) 2 (2.3) 1 (1.1) 2 (2.3) 2 (2.3) 

Total 88 88 88 88 
 

Table 7.7. Solar elastosis raw data 
Actinic 
Damage/Elastosis 
Score 

Head/Neck/ 
Anterior Chest 
n (%) 

Periorbital 
n (%) 

Lips 
n (%) 

Dorsa 
Forearms 
n (%) 

Dorsa 
Hands 
n (%) 

Absent - - - - - 
Mild - moderate 6 (6.9) 6 (6.9) 18 (20.7) 17 (19.5) 15 (17.2) 

Severe 81 (93.1) 81 (93.1) 69 (79.3) 70 (80.5) 72 (82.8) 
Total 87 (100) 87 (100) 87 (100) 87 (100) 87 (100) 
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Table 7.8 Solar lentigines raw data 
Solar lentigines 
semi-quantitative 
score 

Face 
n (%) 

Forehead 
n (%) 

Dorsal Upper 
Limbs 
n (%) 

Upper 
back/shoulders 
n (%) 

0-10 10 (11.4) 16 (18.2) 5 (5.7) - 
10-20 19 (21.6) 31 (35.2) 5 (5.7) 3 (3.4) 
20-30 14 (15.9) 9 (10.2) 9 (10.2) 4 (4.5) 
30-40 17 (19.3) 10 (11.4) 11 (12.5) 5 (5.7) 
40-50 14 (15.9) 10 (11.4) 16 (18.2) 8 (9.1) 
50-60 6 (6.8) 7 (8.0) 11 (12.5) 5 (5.7) 
60-70 7 (8.0) 3 (3.4) 12 (13.6) 18 (20.5) 
70-80 - 1 (1.1) 9 (10.2) 14 (15.9) 
80-90 1 (1.1) 1 (1.1) 9 (10.2) 22 (25.0) 
90-100 - - 1 (1.1) 9 (10.2) 
Total 88 (100) 88 (100) 88 (100) 88 (100) 
 

Table 7.9 Freckling raw data 
Self-reported 
childhood freckling 

Proband  
n (%) 

Sibling 
n (%) 

Total 
n (%) 

None 4 (12.1) 4 (7.3) 8 (9.1) 
Very Few 13 (39.4) 18 (32.7) 31 (35.2) 
Few 8 (24.2) 10 (18.2) 18 (20.5) 
Some 2 (6.1) 13 (23.6) 15 (17.0) 
Many 6 (18.2) 10 (18.2) 16 (18.2) 
Total 33 (100.0) 55 (100.0) 88 (100.0) 
 
Self-reported adult 
freckling 

Proband  
n (%) 

Sibling 
n (%) 

Total 
n (%) 

None 7 (21.2) 8 (14.5) 15 (17.0) 
Very Few 15 (45.5) 28 (50.9) 43 (48.9) 
Few 6 18.2) 7 (12.7) 13 (14.8) 
Some 3 (9.1) 8 (14.5) 11 (12.5) 
Many 2 (6.1) 4 (7.3) 6 (6.8) 
Total 33 (100.0) 55 (100.0) 88 (100.0) 
 
Freckling semi-
quantitative score 

Face 
n (%) 

Forehead 
n (%) 

Dorsal Upper 
Limbs 
n (%) 

Upper 
back/shoulders 
n (%) 

0-10 9 (10.2) 8 (9.1) - - 
10-20 17 (19.3) 16 (18.2) 1 (1.1) 3 (3.4) 
20-30 11 (12.5) 15 (17.0) 2 (2.3) 1 (1.1) 
30-40 11 (12.5) 12 (13.6) 3 (3.4) 2 (2.3) 
40-50 12 (13.6) 10 (11.4) 7 (8.0) 6 (6.8) 
50-60 15 (17.0) 12 (13.6) 6 (6.8) 7 (8.0) 
60-70 5 (5.7) 5 (5.7) 15 (17.0) 17 (19.3) 
70-80 5 (5.7) 4 (4.5) 14 (15.9) 19 (21.6) 
80-90 3 (3.4) 6 (6.8) 37 (42.0) 24 (27.3) 
90-100 - - 3 (3.4) 9 (10.2) 
Total 88 (100)  88 (100)  88 (100)  88 (100)  
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Table 7.10 Seborrhoeic keratoses raw data 
Seborrhoeic Keratoses 
semi-quantitative 
score 

Head/Neck 
n (%) 

Upper 
Limbs 
n (%) 

Chest 
n (%) 

Abdomen 
n (%) 

Back 
n (%) 

Lower 
Limbs  
n (%) 

Nil 73 (83.0) 59 (67.0) 66 (75.0) 63 (71.6) 54 (61.4) 58 (65.9) 
Sparse (0 – 10) 15 (17.0) 28 (31.8) 22 (25.0) 22 (25.0) 32 (36.4) 28 (31.8) 

Moderate (10 – 60) - 1 (1.1) - 3 (3.4) 2 (2.3) 2 (2.3) 
Confluent - - - - - - 

Total 88 (100.0) 88 (100.0) 88 (100.0) 88 (100.0) 88 (100.0) 88 (100.0)

 

Table 7.11 Month of examination crosstabulation (all subjects) 
Month No. siblings examined No. probands 

examined  
Total 

January 4 6 10 
February 4 4 8 
March 3 6 9 
April 2 4 6 
May 6 12 18 
June 2 4 6 
July 2 7 9 
August 6 4 10 
September 2 2 4 
October - - - 
November - - - 
December 2 6 8 
Total 33 55 88 
 

Table 7.12 Season of examination of case-control pairs 
  Examination season proband Total 
  Summer Autumn Winter Spring  
Examination 
season sibling 

Summer 6 2 1 0 9 
Autumn 2 8 1 0 11 
Winter 5 1 4 0 10 
Spring 0 1 0 1 2 

Total  13 12 6 1 32 
Note: number of pairs examined in different seasons compared by taking number pairs below and above the 
diagonal (where season matched) and comparing these two numbers (4 above, 9 below) by McNemar Test. 
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Table 7.13 Comparison of Minolta Spectrophotometer and BYK Gardner spectrophotometer L*a*b* 
readings on three subjects 
Subject  Minolta CM-508d BYK Gardner CGSS 
 n=10 Mean SD Mean SD 
A L* 60.099 1.284 60.931 0.263 
 a* 10.473 0.718 11.026 0.297 
 b* 18.719 0.96 19.43 0.158 
B L* 61.192 0.205 62.516 0.261 
 a* 9.451 0.087 9.123 0.093 
 b* 15.966 0.241 16.105 0.357 
C L* 62.504 0.211 64.354 0.26 
 a* 9.408 0.45 8.834 0.349 
 b* 15.102 0.263 15.659 0.148 
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7.9. Elution profiles PTCH exons without variants (exons 3, 7, 9, 20, 13, 16, 17, 18, 

20, 21, 22, 23b) 
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w ild type exon 10
PTCH exon 10 w ild type at 60.2º
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w ild type exon 18
PTCH exon 18 w ild type at 61.2º
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w ild type exon 23b
PTCH exon 23b w ild type at 63.1º
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Figure 7.1 dHPLC elution profiles for PTCH exons 3, 7, 9, 13, 16, 17, 18, 20, 21, 22, and 23b s. 
Elution time in minutes (X-axis) versus absorbance of the eluate in mV (Y-axis). The first peak is the 
sample injection peak; the second peak represents the PCR product elution peak, ideally found between 4-6 
minutes; the third peak is an acetonitrile wash-peak. Some of the elution peaks appear to have a ‘shoulder’; 
this is usually caused by the presence of AmpliTaq Gold. The small irregularities between the sample 
injection peak and the sample elution peak are primer-dimer artefacts [403] . 
 
 

7.10. Elution profiles and sequences for PTCH exons with variants 
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Figure 7.2 A-B dHPLC elution profile for PTCH exon 6, wild type (A) and variant (B).  
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B. Similar elution profiles to this were obtained for 26 samples  
 
 

A 
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Figure 7.3 A-B Reverse sequence exon 6 wild type (A) and variant (B) 
B The arrow indicates the IVS6-55 A>G variant. 
NOTE: This section of forward sequence not visualized on sequencing therefore reverse shown 
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variant exon 8
PTCH exon 8 variant at 61.8º
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Figure 7.4 A-B dHPLC elution profile for PTCH exon 8, wild type (A) and variant (B).  
Heteroduplexes have different retention properties to the dHPLC column than homoduplexes, creating an 
aberrant sample elution peak. The heteroduplexes are eluted from the colomn prior to the homoduplexes 
because of their reduced melting temperatures [403]. 
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Figure 7.5 A-B dHPLC elution profile for PTCH exon 11, wild type (A) and variant (B) 
B Similar elution profiles to this were obtained for 25 samples  
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 B 
Figure 7.6 A-B Reverse sequence exon 11 wild type (A) and variant (B) 
B The arrow indicates the IVS11-50 C>G variant. 
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variant 1 exon 12
PTCH exon 12 variant 1 at 62.6º
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Figure 7.7 A-D dHPLC elution profiles for PTCH exon 12, wild type (A),  variant 1(B), variant2 (C), and 
variant 3 (D) 
B Similar elution profiles to this were obtained for 8 samples [give all ID numbers?]  
C Similar elution profiles to this were obtained for 16 samples 
D Similar elution profiles to this were obtained for 5 samples 
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E 
Figure 7.8 A-E Forward sequence exon 12 wild type (A, C) and variants (B,D,E) 
B  The arrow indicates T>C 63. 
D  The arrow indicates C>T 84 
E  The arrows indicate a combination of T>C 63 and C>T 84 within the same sequence. This occurred in 5 
proband samples 
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Figure 7.9 A-B dHPLC elution profile for PTCH exon 23a, wild type (A) and variant (B) 
B Similar elution profiles to this were obtained for 26 samples  
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Figure 7.10 A-B. Forward sequence exon 23a, wild type (A) and variant (B) 
B The arrow indicates the T>C 140 variant 
 
 
 

7.10.1. Elution profiles and sequences for exons with Australian control data  
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variant exon 2
PTCH exon 2 variant at 59.9º
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Figure 7.11 A-B dHPLC profile for PTCH exon 2, wild type (A) and variant (B) 
B Similar elution profiles to this were obtained for both 8784 and 9208 
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Figure 7.12 A-B. Forward sequence exon 2, wild type (A) and variant (B) 
B The arrow indicates the C>T 116 variant 
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Figure 7.13 A-B dHPLC elution profiles for AMFS controls PTCH exon 2; wild type (A) and variant (B) 
B Variant looks similar to variant profile of probands 
 
 

 
 
Figure 7.14 Forward sequence exon 2 AMFS control, variant 
The arrow indicates the C>T 116 variant 
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Figure 7.15 A-B dHPLC elution profiles for PTCH exon 5, wild type (A) and variant(B) 
B Similar elution profiles as this were obtained for samples with ID numbers 8781, 8825, 9094, 9273, 
9274, and 8779 
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variant exon 5 (AMFS control)
PTCH exon 5 variant at 57.0º
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Figure 7.16 A-B dHPLC elution profiles for AMFS controls PTCH exon 5; wild type (A) and variant (B) 
B Similar elution profiles to this were obtained for samples with ID numbers 11089, 21027, 7877, 6658, 
and 310 
 

 
Figure 7.17 Forward sequence exon 5 AMFS control, variant 
The arrow indicates the A>G 80 variant 
 

      A 

B 
Figure 7.18 A-B Forward sequence exon 5, wild type (A) and variant (B) 
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B The arrow indicates the A>G 80 variant 
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Figure 7.19 A-B dHPLC profile for PTCH exon 14, wild type (A) and variant (B) 
B Elution profile for sample ID 9465 
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B 
Figure 7.20 A-B Forward sequence exon 14, wild type (A) and variant (B) 
B  The arrow indicates the A>G 351 variant 
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Figure 7.21 A-B dHPLC elution profiles for AMFS controls PTCH exon 14; wild type (A) and variant 
(B) 
B Similar elution profiles to this were obtained for samples with ID numbers 12835 and 12836 
 

 
Figure 7.22 Forward sequence exon 14 AMFS control, variant 
The arrow indicates the G>A 351 variant 
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Exon 15 
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variant exon 15
PTCH exon 15 variant at 60.5º
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Figure 7.23 A-D dHPLC elution profile for PTCH exon 15, wild types (A, B) and variants (C, D) 
C, D Same sample seen at two temperatures. Similar elution profiles seen at both temperatures for all 8 
variants. 
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Figure 7.24 A-B. Forward sequence exon 15, wild type (A) and variant (B) 
B The arrow indicates the IVS15+9 G>C variant 
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