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The Value of Information in
Multi-Objective Missions

In many multi-objective missions there are situations when actions based on maximum
information gain may not be the ‘best’ given the overall mission objectives. In addition
to properties such as entropy, information also has value, which is situationally dependent.
This thesis examines the concept of information value in a multi-objective mission from an
information theory perspective.

A derivation of information value is presented that considers both the context of information,
via a fused world belief state, and a system mission. The derived information value is used
as part of the objective function for control of autonomous platforms within a framework
developed for human robot cooperative control.

A simulated security operation in a structured environment is implemented to test both
the framework, and information value based control. The simulation involves a system of
heterogeneous, sensor equipped Unmanned Aerial Vehicles (UAVs), tasked with gathering
information regarding ground vehicles. The UAVs support an effort to protect a number
of important buildings in the area of operation. Thus, the purpose of the information is to
aid the security operation by ensuring that security forces can deploy efficiently to counter
any threat.

A number of different local controllers using information based control are implemented and
compared to a task based control scheme. The relative performance of each is examined
with respect to a number of performance metrics with conclusions drawn regarding the
performance and flexibility of information value based control.
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Chapter 1

Introduction

1.1 Motivation

Autonomous vehicles are being increasingly utilised for information gathering tasks in mili-

tary operations, particularly for those missions considered dull, dirty or dangerous. A wide

range of both Uninhabited Aerial Vehicle (UAV) and Uninhabited Ground Vehicle (UGV)

types have been successfully deployed around the world, adding significant capability to

the militaries that field them. Much recent research has focused on teams and the co-

ordintation/cooperation between both the autonomous vehicles themselves, and the human

users. These developments have enhanced the ability of autonomous systems to accomplish

complex missions and extend the capability of simple platforms with limited sensing abil-

ity. These considerations are particularly important for emerging applications such as law

enforcement, search and rescue, bush fire fighting and environmental survey.

Autonomous platforms currently in service are primarily employed in the information gath-

ering role as an aid to situational awareness, where manned systems may be too costly, the

situation considered too dangerous or mission persistence insufficient. Being a situational

awareness tool, the information gathered by the autonomous system will commonly serve

as an enabler for action. This action may be performed by either the information gatherer

or some external agent. For example information gathered by a camera equipped UAV in

aid of bush fire fighting will be used by the fire chief to direct fire crews and refine resource

allocation.
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In the example applications of autonomous vehicles in the civilian and military domains,

the information requirements are varied and dynamic. Further the information may be used

for a number of purposes and directed by agents external to the system. This gives rise

to information objectives which may be dynamic with respect to external mission demands

and current information state. In addition, the demands of the final information customer

or customers may result in multiple conflicting information objectives. As the information

gathering resources are limited, the problem for the system becomes a decision problem

of how to autonomously allocate the available resources to ensure that the information

gathered is most beneficial to the objectives of a wider mission, even as the mission changes.

This recognition of the dynamic nature of the wider mission and the need to adapt to the

wider mission requirements within a multi-objective scenario has not been comprehensively

examined within the robotics community. This gap in research between operations research

and autonomous control of systems has been the motivation for this research.

1.2 Thesis Objectives

This thesis aims to address the control and resource allocation problem outlined by extend-

ing information theoretical control concepts to account for multiple objectives and, via a

framework for examining information value, to enable different information types to be used

in determining cooperative control actions. This extension of information theoretic concepts

also aims to provide a link between the information requirements of a wider mission and

the cooperative control scheme, through human level input from a single operator.

The implementation in the simulation environment is aimed at demonstrating control of a

system of autonomous information gatherers, based on the concept of information value.

1.3 Thesis Contributions

The contributions of this thesis are:

• Presentation of a flexible framework for human-robot cooperation that allows for a

wider mission objective to flow through the system and be incorporated into the
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control of autonomous platforms. The framework is designed for the implementation

of different control architectures, different fusion components as well as centralised

and distributed control architectures.

• Presentation of a consistent formulation of information value, based on information

theoretic concepts that takes into account the wider mission objectives as well as

the current information state. The formulation is capable of dealing with multiple

objectives and dynamic information states and mission objectives.

1.4 Thesis Structure

Chapter 2 examines some relevant work from the economics community in the area of valuing

market goods and information as a tradeable good. The difficulty of defining information

value, due to a number of unique attributes, is highlighted along with the relationship

between information value and the agent decision problem.

Chapter 3 details a method of determining information value for a mission with multi-

ple objectives. The formulation captures both the current information state along with a

preference ordering for different information types that is situation dependant.

Chapter 4 describes the architecture of the simulator used to investigate information value

based control. The architecture is generic to a multi-agent information gathering task and

can be applied to both centralised and distributed control and information fusion schemes.

Chapter 5 details the implementation of information value for an urban security scenario.

This scenario consists of a number airborne sensor platforms finding and tracking ground

vehicles in an urban road network where static assets are to be protected. A number of

different control schemes are described along with an outline of the code used for simulation

and the relevant operator interfaces.

Chapter 6 provides detail on the setup of the simulated system and includes the situations:

− baseline with no modification to the information gain rate utility/preference ordering

− modification to information gain rate utility/preference ordering based on human

input

− addition of external information into the system
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Data from running each situation in simulation is presented with associated evaluation

metrics.

Chapter 7 draws some conclusions from the simulation data and identifies potential direc-

tions for future work.



Chapter 2

Related Work

2.1 Valuing Goods in a Market

There are many economic theories and models which provide ways of valuing and predicting

the value of market goods. These can be broadly described by the concepts of intrinsic and

subjective value.

Intrinsic value theory relates value to some intrinsic property of the good. This implies that

a market value is determined irrespective of the individual value judgements of the agents

participating in the market [7]. An important incarnation of the concept of intrinsic value,

proposed by Smith, Ricardo and Marx among others, is the labour value theory [30]. This

states that if supply and demand are in equilibrium, the value of a good is related only to

the labour or effort expended in producing the good [35].

In the body of current economic theory, intrinsic value is not generally accepted as being

useful in free markets, but is often used by proponents to decry profiteering and to demon-

strate labour exploitation, thus justifying a command economy [7]. One of the issues pointed

to as a flaw in intrinsic value, is that for trade to occur each agent must have an incentive

to trade. If the value of a good were constant for all agents, then an agent will have little

incentive to trade, or alternatively once a good is acquired there is as much incentive to

on-trade the good to another agent as there is to keep the good [7]. This implies that for

market trade, there must be some discrepancy in the value of the good as judged by the

agent’s performing the transaction and hence the value of a good is not solely dependant
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on intrinsic properties.

This subjective view of value has traditionally been illustrated by the so called diamond/water

paradox. A diamond does not fill any base human need to survive, unlike water, which is

arguably more useful. However diamonds are far more costly and by implication more valu-

able [39]. If offered either diamonds or a bottle of water for the same small price a rational

human would, in normal circumstances choose the diamonds. If the same person found

themselves stranded and dying of thirst the rational choice would be reversed. Subjective

value theory thus relates value to the ability of the good to satisfy some desire or utility

[28]. In this model each agent has some internal method for assessing the value, or for

preference ordering goods, with respect to a satisfaction criteria. Hence through trading,

the individual value judgements of all agents participating in the market can influence the

value of a good.

The concept of scarcity and its relationship to utility has also been illustrated using the

diamond/water paradox. In the case of a person dying of thirst, if the water/diamond offer

is made again and again there will be a point at which the utility for water decreases below

that of diamonds and thus the diamonds will be chosen. As an agent acquires goods, the

value of having more of the same or similar goods may decrease to a point where there is

no net value for any further acquisition. This behaviour is described by the marginal value

theory, where each agent considers the goods currently owned in the subjective valuation

mechanism [11], [19]. This is the basis of utility or indifference curves, where the utility

of acquiring examples of a good tends toward zero as more are acquired. If an agent has

limited buying power in a market where two goods, A and B, are available for purchase, the

relative utility of acquiring good A over good B will reduce as the agent’s stocks of good A

increase. Even if the utility of good A is initially higher than that of good B, at some point

the utility gain of acquiring more of good A will be less than that of acquiring good B [18].

Thus for an agent to maximise utility this effect of marginal utility must be considered.

The effect of changes to agent’s preference ordering due to introduction of new goods,

scarcity, marginalisation or other influences will be reflected in the market price. This

has been used by a variety of multi-agent systems as a mechanism for cooperation and

task allocation. In general the agents receive rewards for tasks, which require expenditure

of finite agent resources. By forming an economy and trading tasks, global good is done

through each agent’s self interest while the competitive element enables competing local
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information to be dealt with in context of the team objective [9]. Typically the trade will

take the form of an auction such as in [3], [13], [17]and [20] with various mechanisms used to

conduct the auction. In [2], the auction is centralised with a master auctioneer setting the

reward for each task, the agents then bid to perform the tasks based on their estimated cost

of action. An extension to the task based auction is presented in [42] which allows auctioning

of roles or task abstractions in addition to task fragments. In [37] the centralised auctioneer

is used only to enter new tasks into the system with each agent able to hold a subsequent

auction for all or part of any task it is contracted to complete.

However, simply observing the value of the traded good does not provide details of the

internal valuation mechanism applied by an individual agent. Many techniques for learning

an agents utility are available such as indifference curves [18] or graph based methods in-

cluding the active utility elicitation in [4], [5]. Alternatives, which use market based schemes

such as [22], the attention bond used by [24] or the techniques based on buyer collusion

[27] also provide ways of finding agent utility. These methods use market observations to

uncover utility, however for the agent to participate in the market, or in the case of a multi-

agent system to also coordinate actions, the agent must still be designed with some suitable

internal valuation mechanism.

2.2 The Market Value of Information

While some research has suggested that in information markets with human agents trade

and value show similar trends to that of more material goods [34], traditional economic

models often have difficulty dealing with information as a commodity. This is due to the

intangible nature of information as a good and a number of unique attributes.

1. Information is abstract. While data is corporeal and readily measurable, information

relies on the understanding and interpretation of the consumer. A large amount of

data can be summarised by a concept and a single ideogram can stand in for an entire

collection of ideas.

2. The marginal cost of information gain may be low. Information can be cheap to

produce, have a negligible replication and distribution costs, and be cheap to store.
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Hence cost of information in isolation is unlikely to provide a good yard stick for

measuring the value of information to an agent.

3. Information is an experience good. The true value of a piece of information cannot be

known until it has been consumed or processed. Once consumed there is no further

value to be obtained from acquiring the same information and in general it cannot

be ‘unconsumed’. This leads to the so called inspection paradox [41]. Additionally

acquired information may be sold or distributed by the purchasing agent without

information loss.

4. Acquiring new information can invalidate information already owned. A physical tool

will continue to be able to perform its designed function even after the purchase of

newer or more efficient tools and thus will still have a measurable value in the market.

However if information is made obsolete due to the addition of new information, the

residual market value will be zero.

In [40] these characteristics are addressed by decomposing information value into three

components. The relevance, which indicates the extent the information relates to a decision

problem, utility the time function relating to the ability of the information to be able to

influence a decision and acceptance which relates to the agent’s ability to process information

given the current situation. Note that all three components have a temporal element.

Both the relevance and value of information to an agent have conditionality and limit

characteristics. The conditionality characteristic implies that information may only be

relevant and valuable in certain conditions, which may be defined by context or events.

As an example of event based relevance, if a security system can deploy a sensor to check

the integrity of doors, this information will be irrelevant if the building has burnt down.

For context based relevance in a homeland security type scenario, a person’s profession

will, in general, have little relevance or value in determining the terrorist threat posed.

However given that a person has bought a large quantity of ammonium nitrate the person’s

profession will be highly relevant in determining threat. The concept of conditionality is

partially captured in the objective theory of value through the marginal contribution of the

information to the agent’s goals.

Information relevance and value may have limits where the marginal value of information

may be zero above or below a certain level. For example, if a convoy of critical supplies has
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a particular pre-planned route, information may indicate the presence of hostile parties. If

the extent of the information only extends to presence then this may have no influence on

the configuration of the convoy or the route taken. However if the information indicates the

size and armament of hostile forces that may be encountered, then the route may be altered.

As an example of an upper limit of information value, localizing a target to greater accuracy

than the blast effects of the weapon being employed against it, will have no influence on

the decision of where to aim.

In [41] the author extends objective and marginal value theories to instrumental goods, such

as information. In the proposed valuation mechanism, a value is placed on the state the

agent is trying to reach and a path of intermediate states identified. If multiple paths exist

between states, then the Shapley value of coalition contribution can be used to allocate the

total value of the final state to all intermediate state. This implicitly captures conditionality

in information value, by formalising the relationship between different pieces of information

and allowing the formation of ‘infomation coalitions’ without which the desired state cannot

be reached. To be useful the goal and body of knowledge to be acquired must be well defined,

needing decomposition to a level that is manageable for computation. For scenarios where

highly abstract goal states may exist or the path between information states may be non-

linear, this may be problematic.

2.3 The Decision Problem and the Value of Information

If information is not free and an agent has finite resources, then the question of whether to

acquire new information becomes part of the decision agent’s decision problem. In classical

decision making problems the relative preference for action is encoded by a utility function.

This defines a gain for each outcome resulting from actions taken by the decision maker.

Except in the case of perfect knowledge, the deterministic utility function U(x, u), with u the

utility gain associated with a particular action when the world is in state x, is not especially

useful as the true state of the world is not known with precision and the true utility gain is

uncertain [16]. If a distribution P (x) summarises all the probabilistic information available

about the state x, then expected utility is the probabilistic estimate of the deterministic

utility.
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J (u) ∆= E{U(x, u)} =
∑

u∈U
U(x, u)P (x|u) (2.1)

A rational decision maker will always select actions that maximise expected utility. The

utility function form, however says nothing about the nature of the actions or how they

become available to the decision maker, only the impact of an action on the state x is of

interest [8].

If an agent uses expected utility in decision making, then both the belief about the state

x and the impact of the action taken P (x|u) will influence the desirability of that action.

Thus any information which modifies the agents belief on x can be considered as having

value with respect to maximising utility. At the agent level, information value can then

be defined as the expected gain having the information compared to the expected gain not

having the information and then subtracting the cost of acquiring the information. This

concept is used as the basis for valuing information in [14], [31] and [38].

In the investigation of the utility of price information in [26] the utility is defined as the

expected cost saving in having a retailers price information. This is extended in [25] to

account for more abstract concepts like brand by applying monetary value when calcu-

lating utility. This approach determines the expected best price before and after price

information is purchased and uses the marginal utility as the decision variable for purchase.

However the limitation of using such a marginalisation approach is that characteristics of

price distributions in the market are assumed.

In information theoretic control the utility is related to the certainty of the estimate P (x)

[15], [31], thus the value of new information is implicitly correlated to its ability to reduce the

uncertainty about the true state of x. Using mutual information as the expected change in

the distribution after observation provides a way of predicting how the utility will be affected

prior to gaining information. Thus nothing is assumed a priori regarding the shape of the

distribution.

2.4 Other Information Value Metrics

Methods of valuing information based on content are fundamental in modern data mining

systems, notably internet search engines. Typically approaches such as word frequency [40],
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a learned model [1] or heuristic templates such as described in [10] are used by these search

engines to rank new information. While many of these algorithms are highly sophisticated,

the ranking applied is subjective, with the ranking of the information retrieved reflecting

the operator’s internal valuation if he or she has sufficient skill in phrasing the search query

for the given algorithm. In general, whatever the search engine algorithm, the objective

is to minimise the time taken to find information while maximising the probability that

the information returned is what the operator is looking for. This approach is not readily

extendable to multiple competing objectives or dynamic objectives.

In some applications the quality of the information is considered synonymous with value.

In [29] an operator ranks information sources based on quality, with this weighting used in

the fusion process. In other systems such as [12] and [32] the value of information is judged

according to its reliability based on trust criteria or corroboration with other information.

These information valuations do not consider the marginal or situational behaviour of the

value of information value.

2.5 Summary

Determining the value of market goods has been well researched in economics, however

many existing theories have some difficulty in relating value to an intangible good such as

information. Where the value of intangible goods has been examined, it has been suggested

that the value of information to an agent follows similar principles to other goods and

is subjective. The value being a function of both the agents internal priorities and the

perceived state of the world.

If an autonomous agent’s control mechanism can be represented by a gain based objective

function, then at each decision point, the reward gain will be impacted by both the agent’s

belief about the world, and the objective variables. Thus the value of information can be

described in terms of an objective function. While this is not new, it has not been well

understood in regard to autonomous control of multiple agents with competing objectives

and dynamic missions.



Chapter 3

The Value of Information

3.1 Introduction

In this chapter a value formulation based on utility and information entropy is applied to

the information gathering mission and extended to allow different information states to be

dealt with. The fundamental utility based value of information proposed by Sheridan is

outlined in Section 3.2 and then extended to the multivariate case in section 3.3. In Section

3.4, the information gathering scenario is introduced with the relevant information value

formulations shown.

3.2 Utility Based Value of Information

In [38], Sheridan formally defines information value as ‘the difference between the gain in

taking the best action given each specific state of a random variable x and the gain in taking

the best action knowing only P (x), minus the effort or other cost of discovering the truth

from the initial uncertain state.’

If a finite set of j actions is available to a decision making agent, the utility for performing

action uj conditioned on the random variable of interest being in state i is given by the

utility function U .

U(uj |xi) (3.1)
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If x has a finite set of possible states, the average utility gain for an agent taking the best

action for each occurrence of the state i is the average utility Uavg.

Uavg =
∑
i

P (xi){max
j

[U(uj |xi)]} (3.2)

For an agent to realise the average utility gain in Equation 3.2, the true state of x must be

known at each decision point. If the agent does not have perfect knowledge and P (x) sum-

marises all the probabilistic information available, then the agent’s gain for each occurrence

of the state i is the average expected utility gain U ′avg.

U ′avg = max
j
{
∑
i

P (xi)U(uj |xi)} (3.3)

The difference between the average utility and average expected utility represents the value

in utility units of determining the true state of x from the current P (x).

V ∗ = Uavg − U
′
avg (3.4)

If the agent updates the belief P (x) by observing x then the additional information has

value with respect to utility gain. If a single observation z of x is made, then value of the

information in z is the difference between V ∗ before, \z, and after the observation.

Vz = V ∗\z − V
∗
z (3.5)

The terms V ∗ and Vz provide general measures of information value that can be applied

whenever there is probabilistic representation of the variable of interest and a utility function

U is available.

In general, for an agent to make an observation and update P (x) requires the expenditure

of resources. Following the value of information in Equation 3.4 being described as the

difference in expected gain when knowing the true state of a variable and having an estimate

of its state, a natural description for the cost of information is the cost of determining the

true state of x from the current estimate P (x). If the cost of obtaining or processing new

information can be defined in terms of resource units expended per bit of information, then
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the expected cost of determining the true state of x or Cavg can be found using the entropy

of the distribution P (x).

Cavg = CH(x) (3.6)

= −C
∑
i

P (xi) logP (xi) (3.7)

The cost coefficient C will define the resources expended, such as time, fuel, dollars or

bandwidth. For resources other than bandwidth or computation time, the coefficient is

unlikely to be static and may be a function of some external variable or even the state of

interest itself C(x).

The net value of determining the true state of x is then found by subtracting the cost from

the value.

Vnet = V ∗ − Cavg (3.8)

In an uncertain world, multiple observations are likely to be required to provide a good

estimate of the true state of x. This makes defining the cost coefficient C difficult. A more

practical approach is to determine the cost of an individual or small set of observations. In

Equation 3.5 a portion of the total information value is apportioned to the information from

a single observation. Similarly the cost of a single observation can be defined as a function

of the difference between the cost of determining the true state of x before and after using

the information in z. The single observation cost coefficient, Cz can then be used.

Cz = Cz

(
H(x\z)−H(xz)

)
(3.9)

= −Cz

(∑
i

P (x\zi ) logP (x\zi )−
∑
i

P (xzi ) logP (xzi )

)
(3.10)

Equation 3.9 shows that for a constant Cz, only the change in entropy of the distribution

P (x) influences the cost of information.
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H(x\z)−H(xz) = H(x)−H(x|z)
∆= I(x; z) (3.11)

The mutual information, I(x; z), of the distributions P (x|z) and P (x) represents the ex-

pected change in the entropy after adding information from the observation.

I(x; z) = H(x)−H(x|z)

= H(z)−H(z|x) (3.12)

= H(x) +H(z)−H(x, z)

Where the distribution entropies can be found from the standard entropy equations.

H(.) = −
∑
i

P (.i) logP (.i) (3.13)

H(x, z) = −
∑
i

∑
j

P (xi, z) logP (xi, z) (3.14)

H(x|z) = −
∑
i

P (xi|z) logP (xi|z) (3.15)

H(z|x) = −
∑
i

P (z|xi) logP (z|xi) (3.16)

Hence if the sensor can be modelled by P (z|x), the mutual information can be determined

prior to the observation through the difference H(z) − H(z|x). In this case P (z) can be

determined through the total probability theorem shown in Equation 3.17.

Pz(z) =
∑
x

Px|z(z|x)Px(x) (3.17)

Substituting the mutual information into equation 3.9 gives a cost form that can be readily

determined.
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Cz = CzI(x; z) (3.18)

For each observation z that may be made, the expected net value of the information added

to the system is found by subtracting the single observation cost from the single observation

value.

V z
net = Vz − Cz (3.19)

3.3 Value of Information for Multiple Variables

In Section 3.2 the state of interest in the agent’s utility function was represented by a single

random variable x. In a situation where the state of interest is best understood as a joint

distribution of multiple random variables, the agent’s utility will become a function of this

distribution. If four variables xt, xs, xc and xd determine the state of interest x then the

utility function from Equation 3.1 will become:.

U(uj |xti,xsl ,xcm,xdn) (3.20)

Similarly the agents average utility and expected average utility will take the joint distri-

bution form.

Uavg =
∑
i

∑
l

∑
m

∑
n

P (xti,x
s
l ,x

c
m,x

d
n){max

j
[U(uj |xti,xsl ,xcm,xdn)]} (3.21)

U ′avg = max
l
{
∑
i

∑
j

∑
m

∑
n

P (xti,x
s
l ,x

c
m,x

d
n)U(uj |xti,xsl ,xcm,xdn)} (3.22)

For the multivariate case, the information value functions retain the forms shown in Equa-

tions 3.4 and 3.5. The information cost will take the joint distribution form of Equation

3.9 and the information cost for a single observation will use the mutual information of the

joint distribution.
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Cz = Cz

(∑
i

∑
l

∑
m

∑
n

P (xtzi ,x
sz
l ,x

cz
m ,x

dz
n ) log{P (xtzi ,x

sz
l ,x

cz
m ,x

dz
n )}

−
∑
i
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s\z
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)
(3.23)

Cz = CzI(xti,x
s
l ,x

c
m,x

d
n; z) (3.24)

Equation 3.24 assumes that the function defining the cost per bit of information is the same

across all the states being observed. If this is not the case then the cost coefficient should

reflect this by being a function of all the variables of interest Cz(xti,x
s
l ,x

c
m,x

d
n).

3.4 The Multi-Objective Scenario

In an example scenario, there are a number of assets, both mobile and static, that need to

be protected as part of ongoing security operation in an urban environment. An unknown

number of ground vehicles are in the area, some of which may pose a threat to the assets.

An information gathering system consisting of a number of sensor equipped mobile agents

is available to provide information about vehicles within the area of operation. This in-

formation is provided to security resources, which can then deploy to counter any threats.

If security resources are limited, being unable to provide protection to all assets at once,

then the efficiency of the security response will be determined by what is known prior to

deployment regarding the nature and location of any threats.

As an information gathering resource, the agent’s primary objective is to maximise informa-

tion regarding threats in order to facilitate an efficient security response. In support of this

objective the agent’s tasks can be decomposed: to find targets, determine whether they are

a threat and once identified as a threat, to maintain an estimate of current location. This

can be considered as the multi-objective mission: search for targets, classify targets and

track targets. For each planning cycle the agent’s decision problem is to determine which

observation/s should be made in order to provide the most informative threat picture.

The current threat picture will be some function of the proximity of all ground vehicles to
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the protected assets, the types of target and hence the threat posed, and the uncertainty

regarding the vehicles true position. As the number and type of ground vehicles is initially

unknown, the utility gain for the observation z will contain the variables:

− xt, indicating the existence of a known or tracked vehicle in the observation

− xc, the classification of the tracked vehicle observed

− xl, the relative proximity of the tracked vehicle to all assets

− xs, indicating the existence of a previously unknown vehicle in the observation

− xd, the classification of the unknown vehicle

− xλ, the relative proximity of the unknown vehicle to all assets

Intuitively it may be expected that vehicles considered to pose a significant threat will try

to reach the assets being protected and thus are more likely to be found near or heading

towards these assets. Further, if the vehicles are cooperating then there will be a correlation

between the locations of all those cooperating.

P (xt|xc) 6= P (xt) (3.25)

P (xs|xd) 6= P (xs)

P (xt|xs) 6= P (xt) (3.26)

P (xs|xt) 6= P (xs)

This has implications for both the tracking algorithm and the information value functions.

To avoid the complex inference required to determine the level of co-operation between

targets, for the purposes of this study it has been assumed that ground vehicle actions are

independent and that vehicle type and location are independent given the existence of the

vehicle. Where the threat primarily comes from a single vehicle which is difficult to dis-

tinguish from civilian traffic, this assumption is reasonable. The independence assumption

allows the utility function in Equation 3.20 to be the sum of the independent utilities as in

Equation 3.27. In this case the action u is taking the observation z and 1..j is the set of

possible points in the area that may be observed.
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U(uj |xt,xs,xc,xd,xl,xλ) = U(uj |xt,xc)+U(uj |xt,xl)+U(uj |xs,xd)+U(uj |xs,xλ) (3.27)

For a set of q tracked targets and a single undetected target in the observation, the utility of

observing this state can be found via the value, v, which is assigned to each of the true states

of x as part of the mission setup. Equation 3.28 shows the observation utility determined

from value of the x states observed.

U(uj |xt,xs,xc,xd,xl,xλ) =
∑
q

vlq +
∑
q

vcq + vλ + vd (3.28)

The current belief on each of the variables of interest, either maintained directly or accessed

by the agent, is used to calculate the average and expected utility for the next observation

z. Due to the independence assumption, the Equations 3.21 and 3.22 can be applied to find

the utility of z, as per Equations 3.29 and 3.30 with the value for each state found from

Equation 3.28.

Uavg =
∑
i
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m

P (xli,x
c
m,x

t
m) max
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∑
l

∑
n

P (xλl ,x
d
n,x

s
n) max

j
U(uj |xλl ,xdn,xsn)

(3.29)

U ′avg = max
j

∑
i

∑
m

P (xli,x
c
m,x

t
m)U(uj |xli,xcm,xtm)+max

j

∑
l

∑
n

P (xλl ,x
d
n,x

s
n)U(uj |xλl ,xdn,xsn)

(3.30)

Where i and l are the summations across all possible locations and m and n the summations

across all possible types for the tracked and untracked vehicles respectively.

The probability of the classification of an undetected target cannot be extracted from the

observable belief states unless a prior belief on the target type distribution is available. In

line with the assumption that nothing is known a priori regarding the targets in the area

or indeed the existence of potential targets, a flat distribution across all target types can

be used. Once a target has been observed a distribution of classification probabilities for
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the target can be generated and hence the undetected target distribution over N possible

target types will remain naive.

P (xd) =
1
N

(3.31)

Where N is the number of distinct target types.

For the case of multiple known targets being present in the observation, the Equations 3.29

and 3.30 need to reflect the joint distribution of the tracked target classifications. If the

assumption of independent target behaviour holds then Equations 3.21 and 3.33 will apply

for q targets which have a probability of appearing in the observation.
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P (xλl ,x
d
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n)U(uj |xλl ,xdn,xsn) (3.33)

In the scenario presented, the primary cost to the agent in making an observation is the

resources expended in manoeuvering to a position to allow the best observation z. In this

case Cz is a function of the spatial parameters of z and is most appropriately measured in

time, fuel or distance units. As the cost is independent of the information gained, the cost of

the observation is used directly rather than the cost per bit formulation shown in Equation

3.18. If the agent performs an observation or set of observation actions each planning cycle

then only the relative cost of each potential action is of interest in determining V z
net.
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3.5 Summary

In this chapter a scheme for valuing different information types has been presented. The

value process considers both human judgements, the state of the world observed and the

current information state. The information valuation scheme is applied to the specific

multi-objective scenario of security and asset protection in an urban environment. Chapter

4 outlines a complete system architecture for applying information value to the control of

a heterogeneous sensor network for the security scenario.



Chapter 4

Architecture

4.1 Introduction

Control of a number of sensor platforms based on the value of information outlined in

Section 3.4 was implemented in a mid-fidelity simulation environment. The system was

originally developed for testing algorithms and architectures for the co-operative control of

a system of heterogeneous airborne sensor platforms tracking ground targets in an urban

environment. The architecture of the simulator is modular allowing components complying

with the interface standard to be inserted or removed with relative ease.

This section provides a brief outline of the original architecture, followed by the modifica-

tions for decentralised control and the implementation of information value in controlling

the platforms. The implementation of the modules relevant to the information value based

control scheme is then detailed.



4.2 Multi-Objective System Architecture 23

4.2 Multi-Objective System Architecture

4.2.1 Task Based Control
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Figure 4.1: The basic simulator framework.

The simulator and architecture were conceived as a possible solution to the problem of

single operator control of multiple autonomous platforms supporting an urban security

mission. The original architecture is based on centralised processing of sensor information
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with a central control loop to determine waypoints that are then passed to each platform

for autonomous execution.

The complete system framework, shown in Figure 4.1, is an amalgamation of distinct control

and fusion functionalities. The control domain is based on Saradis’s framework for the

principle of Increasing Precision with Decreasing Intelligence (IPDI)[36]. Control is task

based, with discrete tasks being allocated to available resources. In line with the concept

of IPDI, the higher the level of control, the more abstract the task description. Passing a

high level task such as Search down through the Organize, Coordinate, Execute refinement

processes, results in the task being described at the lowest level in terms of a path for a

platform/sensor combination. Execution of the path by the agents causes information gain

which feeds into the fusion domain as sensor returns or observations.

The fusion domain is layered according to the levels described in the JDL Data fusion model

[23]. Information enters the fusion domain at the lowest level as raw sensor observations

and is refined to generate an estimate of the state of the world. The fusion and control

domains interact at two points, corresponding to the JDL descriptions of Level 3 and 4 Data

Fusion. At Level 3 or ‘situation assessment ’ a mission state is derived from the estimate

of the world state. This can be used to evaluate the utility of performing any task. In this

framework Level 4 Data Fusion, or ‘process refinement ’, is an implicit part of the Human

Robot Interface. The operator has access to the output of the fusion components via the

Information Customer Interface, thus human level information assessment and abstract

reasoning for control refinement may be performed by the operator. This information

is implicit in the operator’s mission specification and enters the system via the situation

assessment level.
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4.2.2 Distributed Control
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Figure 4.2: The distributed control simulator framework.

The Distributed Control architecture shown in Figure 4.2 is a modification of that in Figure

4.1, where higher level control decisions are deferred to the agents. In order to support this,

the Mission Planning and Task Allocation components are on board each agent. In this

case for the team to be coordinated a negotiation module is added to each agent to permit

inter-agent communication. If each agent communicates it’s best task assignment and the

utility to other agents, then the allocation for maximum team utility can be negotiated.
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The fusion domain is shared with the centralised architecture in Figure 4.1. The single point

of fusion and dissemination ensures that agents have a common belief state on which to make

decisions. However for each agent planning cycle the Belief, B, needs to be communicated

to each agent via the Dispatcher along with the Mission.

4.2.3 Information Value Based Control
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Figure 4.3: The information value based control simulator framework.
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The Information Value architecture shown in Figure 4.3 is a further modification of the

Distributed Control architecture. Again fusion components are shared and centralised,

however Level 3 Fusion, Organisation and Coordination are collapsed into a single level.

The belief state is used to generate a common ‘Threat Map’, which implicitly captures the

system goals. The Threat Map is used by each agent to generate an information value map

on which all agent decisions are based. A negotiation module is added to maximise the

value of information by ensuring information is not duplicated. However negotiation is not

used for all information value based control schemes as outlined in Section 5.2.4.

4.3 Components

4.3.1 Human Robot Interface

The Human Robot Interface (HRI) consists of two components, the Information Customer

Interface and the Operator Control Interface. The architecture separates these functionali-

ties for command and control purposes, allowing information dissemination by distributing

copies of the Information Customer Interface while maintaining single point of mission

control.

The link between the Operator Control Interface and Information Customer Interface pro-

vides a bridge between the information and control domains at the human level. This allows

for active inference, planning and refinement at the abstract Level 4 Data Fusion level.

4.3.2 Level 0 and 1 Data Fusion

At the Level 0 Data Fusion level raw sensor signals are associated to target features and

Level 1 Data Fusion associates these features to an entity and provides an entity state

estimate. In the simulated system both Level 1 and 2 processes are performed within the

various sensor modules, producing an observation z as output. Appendix A details this

process.
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4.3.3 System Belief

The complete system belief state, B, is constructed from a number of components.

B = f(bc, bf , ba) (4.1)

− bc is the belief about the current state of the world.

− bf is the belief about the future state of the world.

− ba is an augmented belief state resulting from additional high level input from a human

or through inference or learning.

Each b is the joint distribution of the variables of interest, which for the security scenario

is the components of P (x).

b = f(P (xt,xc,xs,xd)) (4.2)

Where P (xt) is the track distribution over the area of operation for all targets being tracked,

P (xs) is the search state over the area of operation, P (xc) is the classification distribution

for all targets being tracked and P (xd) is the distribution associated with the classification

of any undetected target.

According to the JDL fusion model, the complete belief state contains elements belonging

to both Level 2 and 3 data fusion. By fusing sensor observations with prior information,

the current belief bc provides situation assessment, or Level 2 fusion, through the track,

classification and search modules. These are detailed in appendix A. If the actions of the

agent and their effect on the estimate of the world states are considered, then the future

belief bf provides impact assessment which is considered part of Level 3 fusion.

The current belief bc is characterised at time k by P (xk), which summarises all the proba-

bilistic information available about x from the observation history z0, ...zk−1. In the scenario

the observation history applies only to xc, xt and xs, as P (xd) is assumed constant.

If target classification is such that it describes an intrinsic property of the target object

then P (xck) = P (xck−1), if zk−1 contains no information about xc. However if the targets

are mobile, then this relationship does not hold for xt or xs. Thus, due to the small size

of the area associated with a single observation relative to the area of operation, P (xt) and

P (xs) will necessarily be predicted to time k if no observation has been made at k− 1. The

predicted state may be obtained by the Chapman-Kolmogorov equation.
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P (xtk|zt1:k−1) =
∫
P (xtk|xtk−1)P (xtk−1|zt1:k−1)dxtk−1 (4.3)

Where P (xtk|xtk−1) is a probabilistic Markov motion model. In the case of xt this is the

actual target motion model, which will be conditioned on target type P (xtk|xtk−1,x
c
k−1), and

for xs this term will be the motion model for an unknown target type.

With the target classification, P (xc), invariant with respect to time if no observation is

made, the future belief bf at time k + n is characterised only by P (xtk+n) and P (xsk+n).

Using the same motion model as Equation 4.3, a prediction of P (x) can be made for some

arbitrary future time. The forward predict time is driven by the planning cycle of the agents.

In the task based control implementation the world states are predicted forward according

to Equation 4.3 as part of the process of determining the best path for the assigned task.

Incorporating the impact of agent actions is discussed below.

4.4 Level 3 Data Fusion

The product of Level 3 fusion is the estimate of the situation utility [23]. The Level 3 process

involves assessing the likely impact of future agent actions and evaluating the situation with

respect to the mission objectives.

For the task based control architecture, both the state of the world and the mission con-

tribute to defining task priority. Thus Level 3 data fusion includes a mapping of the mission

goals and current state of the world to prioritised system goals.

L3 : B ×M → A,P (4.4)

− B is the current system belief state generated from all available information.

− M is the mission description for the whole system defined by the human operator.

− A is a set of system tasks described by M .

− P is the set of priorities for all tasks.

To assess the impact of the agent’s actions on the future belief state, a fixed time horizon

corresponding the agent’s replan cycle is used. For the task based control system the tasks

are prioritised according to the mapping in Equation 4.4, leaving the relative impact of
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the observation action in completing the task as the remaining component for determining

situation utility. This is determined by assessing the mutual information of the agent’s

sensor and the task’s state variable. This is detailed in Appendix B

For the information value based control system, the likely impact of the observation zk+1

directly on all states of interest is used to assess future agent actions with respect to the

mission. The situation utility is determined by comparing the value of world state prior

to the observation P (xk) and post the observation P (xk+2), with one step look ahead

prediction of target tracks. The future belief state bf at the planning horizon k+ 1 and the

Chapman-Kolmogorov Equation 4.3, provide the basis for determining P (xk+2|zk+1) This

is detailed in Section 5.2.

4.4.1 Execution

The Execution Level is where physical control of the platforms and sensors is carried out.

The assigned task a or desired observation z is used to generate inputs for the platform

controllers, via a path planner or other guidance system. The platform controllers, which

in the case of a UAV will be the navigation module and autopilot, then execute the path

using feedback from the simulated world regarding the vehicle’s motion and position.

The framework shown in Figure 4.1, shows the Path Planner component above the Dis-

patcher, with only the final path or way point passed to the platform. This arrangement is

suitable for sensor platforms having minimal onboard processing and no inter-platform com-

munication. With increased processing power and communications ability the Path Planner

may be moved onboard, with centralised control maintained if the Dispatcher simply passes

details of a to the relevant platform.

Path Planning

A path appropriate for the assigned platform must be generated that satisfies the require-

ments for either accomplishing the task a or observing the area specified by z. This applies

whether the path planning component is on board the platform or residing in the ground

station. The separation of task allocation and path planning allows flexibility in the path

planning algorithms used without impacting the higher levels of control. Further, in the
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case of task based control, it allows the Coordinator to operate with only limited knowledge

regarding details of the platforms being controlled.

In the task based systems the assigned task a will normally be associated with an area for

the time k + 1. Thus the Path Planning component generates a platform specific optimal

path in order to provide sensor coverage for a. If a single task requires coordination between

multiple platforms, determining the group optimum path may require multiple iterations of

the individual path planners. If the planner resides in the platform the ability to send and

receive information about the path between platforms is necessary for successful execution.

Various constraints such as fuel usage or manoeuvre limits may result in the path planner

being unable to generate a valid path within the cost budget allocated to the task. The

framework includes a feed back mechanism between the Task Allocation and Path Plan-

ning modules to allow the task to be returned to the Coordinator where the task set A is

reallocated.

In the information value framework the observation zk+1 is defined by the point s in the

area of operation to be observed. Hence the Path Planning component generates an optimal

path for the platform to point its sensor at a point of interest. Assuming that all parts of

the map are accessible and given that an estimate of the cost of taking the observation is

explicitly included in the value formulation, the feed back mechanism, although included in

the architecture, should not be used in practice.

4.5 Summary

This chapter has outlined a general architecture for the co-operative control of a system of

heterogeneous airborne sensor platforms tracking ground targets. Use is made of the concept

of data fusion levels and the principle of Increasing Precision with Decreasing Intelligence.

The general framework is modular and flexible with task and information value based control

both being able to be used within the same system architecture. Chapter 5 details the

implementation of the system architecture with an information value based control scheme

derived from the formulations in Chapter 3.



Chapter 5

Implementation

5.1 Introduction

The implementation of the value based control formulation outlined in Chapter 3 using the

architecture described in Chapter 4 is presented in 5.2, with the corresponding implemen-

tation of the task based control used for comparison detailed in Appendix B.

At every planning cycle, each agent calculates its own value map for the security scenario,

as shown in Section 5.2.3, from the common threat map described in Section 5.2.2. The

value map is used to determine the value of an observation V z
net according to the control

schemes described in section 5.2.4 and their associated cost functions in Section 5.2.5.

Section 5.3 details the metrics used for comparison of the value based control and the task

based control schemes. The specifics of the scenarios used for comparison are shown in

Section 6.1, with results presented in Section 6.4.
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5.2 Value Based Control

5.2.1 Priority

The priority p of either a ground vehicle or asset is used as the basis of preference ordering

for both the task based and value based controllers. In the value based control, the priority

is used to determine the value of the observation z, while in task based control it is used to

determine the weighting for a discrete task as detailed in Appendix B.

The priority of a ground vehicle is given by the set Pc, which differentiates based on the

threat posed by the particular type.

Pc = K [pc1, p
c
2 . . . p

c
m] (5.1)

Where there are m distinguishable ground vehicle types and K may be a normalising value

or other equivalence term such that comparison can be made with other priority sets active

in the system. In the simulated system, the target type priority is applied by the operator

according to one of the descriptions shown below. A numerical value corresponding to the

human level description is then automatically applied.

pm = |No Impact, Some Impact, Desirable, Highly Desirable, Mission Critical| (5.2)

It is desirable that the values corresponding to each descriptive level are either assigned by

a human with high level knowledge of the situation or extracted from historical data. In the

scenarios investigated, the corresponding numerical values are applied as either the linear

set 1 . . . 5 or the logarithmic set 21 . . . 25. Similar priority descriptions and numerical values

are used for asset priority. This same basic priority description is used as a foundation for

both task based and value based systems.

5.2.2 Threat Map

As discussed in Section 3.4, in the urban security scenario the information gathering agent’s

observation utility is a function of the variables corresponding to ground vehicle type, cur-
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rent position estimate and proximity to protected assets. Information on all states of interest

is gained through placing the footprint of the agent’s sensor over a section of the area of op-

eration and making an observation. This allows the asset proximity variable for the current

planning cycle to be fixed if the two dimensional space of the area of operation is used as an

anchor for the belief states and value functions. This gives rise to the ‘threat map’ which

describes U(uj |xl,λ). If the observation action uj is similarly anchored, with j describing a

subset x of the area of operation, then a ‘value map’ can be created which will indicate the

expected value of observing any point in the area of operation. Defining x as a point area,

the utility for uj=x is then a function of the variables xt, xc, xs and xd.

The threat map is determined by a combination of the asset properties and the relative

location of all assets. Each asset will have an associated mission priority pa1 applied as in

Equation 5.2 and a vulnerability to threat v1. For the point x, the contribution of asset

m is found by using one of the threat function shown in Equations 5.3 to 5.6. The total

threat at any point x is the sum over all a where a ∈ A is the set of all assets and xa is the

location of asset a.

pl,λ(x) = pae
−0.5

(
(xa−x)2

νa

)
(5.3)

pl,λ(x) = pa

(
1− 1

ηνa
|xa − x|

)
(5.4)

pl,λ(x) =

 pa for |xa − x| < ηνa

0 for |xa − x| > ηνa

(5.5)

pl,λ(x) =

 pa for x ∈ S

0 for x /∈ S
(5.6)

Equations 5.3 and 5.4 allow the operator to assign potential threat based on the distance

of a target from the asset. In Equation 5.3 a log decreasing threat function is applied

centered on the asset and in 5.4 the threat decreases linearly with distance from the target.

Equation 5.5 sets a constant threat within the specified distance from the asset. The η

value is the vulnerability limit distance, beyond which a target poses no threat to the asset.
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The numerical values for pa are as for the type priority and the vulnerability of asset, va,

is applied by the operator according to the human specified levels in Equation 5.7.

In Equation 5.6, the set S is a group of points or nodes specified by the operator and

allows manual setting of the priority of the area around an asset. This provides flexibility

for assigning a threat area of any shape, which can be used by the operator to reflect

vulnerability for different avenues of approach to the asset. This assignment of threat to

a set of points is also used in the Mission setup for task based control and is described in

Appendix B.

v = |Soft, Reinforced, Hardened, Fortified, Protected| (5.7)

The values corresponding to each vulnerability level relate to a ‘safe’ distance. This is the

minimum distance at which a security response will be able to neutralise any threat posed

by a ground vehicle without substantial damage to the asset. In this case Soft corresponds

to 150m and Protected to 10m.

5.2.3 State Utility

As the information gathering component of the security mission, the primary task of the

agents is to provide information regarding potential threats to ensure they are effectively

countered. Hence the observation utility for an agent will be a function of both the state

of the ground vehicles observed and the current information state. This is supported by

the intuition that for a vehicle of known type, an observation will be more valuable if the

current position estimate is poor than if the vehicles position is known precisely.

If maximum entropy provides maximum gain, then combining the information state with

the target state provides the observation utility for each of the variables of interest. The

observation utility conditioned on the true type and location is shown in Equations 5.8 and

5.9 for the point x.

vlx = plx
H(xt)

Hmax(xt)
+ pc

H(xt)
Hmax(xt)

(5.8)

vc = pc
H(xc)

Hmax(xc)
(5.9)
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Where H(xt) is the current track entropy associated with target q, which has a track

distribution that includes the point x and Hmax(xt) is the maximum dispersion of P (xt)

before the target is considered not to be in track. This is detailed in Appendix A. Similarly

H(xc) is the entropy associated with the current vehicle type estimate, with Hmax(xc) being

the entropy of a flat distribution of all possible target types.

As nothing is know regarding any untracked vehicles in the observation, the current entropy

of xt and xc can be considered as Hmax. Hence the observation utilities for the untracked

target at point x is simply equal to the priority as shown in Equation 5.10 and 5.11.

vλx = pλ (5.10)

vd = pd (5.11)

The maximum utility prior to observation z of point x is then found in Equation 5.12 by

substitution.

U(uj=x|x) = U(uj=x|xt,xc,xl) + U(uj=x|xs,xd,xl=λ)

=
∑
q

vlx,q +
∑
q

vcx,q + vlx + vdx (5.12)

The observation utility for point x conditioned on the best knowledge that sensor r can

obtain of a target is then found by substituting Equation 5.13 for 5.8 and Equation 5.14 for

5.9.

v
′l
x = plxP (ztx|xtx)

H(xtx)
Hmax(xtx)

+ pcP (zc|xc) H(xtx)
Hmax(xtx)

(5.13)

v
′c = pcqP (zc|xc) H(xc)

Hmax(xc)
(5.14)

Similarly for the unknown vehicle, Equations 5.10 and 5.11 are modified based on the

estimated state of the world.
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v
′λ
x = pλP (xtx) (5.15)

v
′d
x = pdP (xc) (5.16)

The average utility prior to observation z of point x is then found in Equation 5.17 by

substitution.

U ′(uj=x|x) =
∑
q

v
′l
x,q +

∑
q

v
′c
x,q + v

′l
x + v

′d
x (5.17)

The value of V ∗\z can then be found for x from Equation 3.4.

V ∗\k = Uavg − U
′
avg

=
∑
i

P (xi)U(uj=x|x)−
∑
i

P (xi)U
′
(uj=x|x) (5.18)

Where Uavg and U ′avg can be found from the summation of the observation utility over all

possible vehicle types for all tracked and unknown targets.

∑
i

P (xi)U(uj=x|x) =
∑
m

P (xtx1
)P (xcm1

)U(uj=x|xtx1
,xcm1

,xlx) + · · ·

+
∑
m

P (xtxq)P (xcmq)U(uj=x|xtxq ,x
c
mq ,x

l
x)

+
∑
n

P (xsx)P (xdn)U(uj=x|xsx,xdn,xλx) (5.19)

The probability of the existence of the tracked target P (xt) at x is obtained from the track

estimate, the type estimate P (xc) for the tracked target is provided by the classification

distribution and the probability P (xs) of a previously undetected target at x is obtained

from the search state. See Appendix A for the implementation of the search, track and

classify belief states. Note that with no a priori knowledge, P (xdn) will be constant.

If sensor r makes observation zr that includes information about a target then the resulting
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observation utilities for the point x can be found by substituting the post observation

entropy into Equations 5.8, 5.9, 5.13 and 5.14.

vlx = plx
H(xtx|zr)
Hmax(xtx)

+ pc
H(xtx|zr)
Hmax(xtx)

(5.20)

vc = pc
H(xc|zr)
Hmax(xc)

(5.21)

v
′l
x = plxP (ztx|xtx, zr)

H(xtx|zr)
Hmax(xtx)

+ pcP (zc|xc) H(xtx|zr)
Hmax(xtx)

(5.22)

v
′c = vcqP (zc|xc, zr)

H(xc|zr)
Hmax(xc)

(5.23)

The post observation entropy can be found prior to the observation being made via mutual

information.

H(xtx|zr) = H(xtx)− I(xtx, z
t
r) (5.24)

H(xcx|zr) = H(xcx)− I(xcx, z
c
r) (5.25)

Where I is found using Equations 3.12, 3.13 and 3.14. The joint probability of target states

and the observation is found using the sensor model of sensor r.

P (xt, ztr)P (ztr|xt)⊗ P (xt) (5.26)

P (xc, zcr)P (zcr|xc)⊗ P (xc) (5.27)

For the unknown target vλx and vd remain as for Equations 5.10 and 5.11, while the v′ values

for the unknown target are shown in Equations 5.28 and 5.29.

v
′λ
x = pλP (xtx, zr) (5.28)

v
′d
x = pdP (xc, zr) (5.29)

These values of v found from Equations 5.20 to 5.29 can be substituted into Equations 5.12
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and 5.17 to give Uz(uj=x|x, zg) and U ′z(uj=x|x, zg) respectively.

To find V ∗z , the joint distributions in Equations 5.26 and 5.27 are used for the estimate of

the state after observation z.

V ∗z = Uzavg − U
′z
avg

=
∑
i

∑
m

P (xi, zg)UZ(uj=x|x, zm)−
∑
i

∑
g

P (xi, zg)U
′z(uj=x|x, zg) (5.30)

Hence for q ground vehicles having a probability of being point x and g possible type

observations:

∑
i

∑
g

P (xi, zg)Uz(uj=x|x, zg) =
∑
g

∑
m

P (xtx1
, ztx)P (xcm1

, zcg)Uz(uj=x|xtx1
,xcm1

,xlx, zg) + · · ·

+
∑
g

∑
m

P (xtxq , z
t
x)P (xcmq , z

c
g)Uz(uj=x|xtxq ,x

c
mq ,x

l
x, zg)

+
∑
n

P (xsx, z
s
x)P (xdn)Uz(uj=x|xsx,xdn,xλx) (5.31)

The complete action set for the agent is the set of observations for all points in the area of

operation, or x ∈ S. By determining V ∗ for each point, a value map for each sensor can be

created. The complete observation value Vnet can be found from this map by subtracting the

cost of placing the sensor to observe the area defined by x. The cost will be dependent on

control issues such how the value map is used and the planning horizon, which is discussed

in Sections 5.2.5 and 5.2.4.

5.2.4 Planning and Control

Three different control schemes were used in the implementation of value based control, In-

finite Horizon Peak-chasing (IHP), Finite Horizon Peak-chasing (FHP) and Finite Horizon

Footprint (FHF). These are compared to the Task based control scheme in Appendix B as

a performance benchmark.

In the IHP control scheme, at each planning cycle the agent chooses a waypoint which

allows observation of the point x where the Vnet map shows maximum value. This point is
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passed to all other agents, and if two or more agents have selected an observation point x

within 20m of each other, new observation points are chosen in a pareto optimal fashion.

In the FHP control scheme, as in IHP, the agent chooses a waypoint which allows observation

of the point x where the Vnet map shows maximum value. However the point chosen is

limited by a 30o arc either side of the agents direction of travel, with a radius equal to the

maximum distance the agent can travel before the next planning cycle. This is shown in

Figure 5.2. In FHP, nothing is communicated between the agents. The area considered

is shown in Figure 5.2, with the point of maximum value within this area chosen as the

waypoint for the next planning cycle.

Figure 5.1: The Finite Horizon Peak chasing control scheme for a 5 second look ahead
planning horizon. A waypoint for the current planning cycle is chosen from within the 30o

arc highlighted in blue.

The FHF control scheme uses the same path planning mechanism as the task based con-

trol system discussed in Appendix B. A set of potential sensor footprints is found at the

planning horizon, and the set of points s contained in each footprint found. The value of

the observation is then
∑
x∈s

Vxnet. The waypoint corresponding to maximum value is then

chosen for the current planning cycle. The predicted footprints for a 5 second look ahead

planning cycle are shown in Figure 5.2.

The predicted footprints are based on predicting a set of fixed bank angles from the current

pose. As a result of the UAV needing to reach the desired bank angle, the actual footprint

at the horizon will differ somewhat from that predicted at the beginning of the planning

cycle. Figure 5.3 shows the difference between the footprints predicted at the beginning of

the planning cycle and the actual footprint at the end of the planning cycle.
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Figure 5.2: The Finite Horizon Footprint chasing control scheme for a 5 second look ahead
planning horizon. Predicted footprints are shown in light green with the dark green indi-
cating the current footprint. The UAV bank angle control associated with the footprint
providing the best

∑
x∈s

Vxnet is chosen for the current planning cycle.

Figure 5.3: Actual footprint at the end of the planning cycle shown in dark green, with
predicted footprints shown in light green as per Figure 5.2. Note the actual footprint is
similar but not identical to the footprint selected for control.
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5.2.5 The Observation Cost

As discussed in Section 3.4 the cost coefficient is independent of the information contained

in the observation and dependent on the parameters of z. In the case of IHP, the cost is a

function of the distance from the agents current position to the chosen point on the map,

x and the agents current speed.

Czx =
∣∣X̄x − x̄

∣∣Xv (5.32)

Where Xv is the agent’s velocity along the heading axis and Xx the current location.

At each time step the agent makes an observation. As FHP determines the value of observing

points at the planning horizon, ie within a constant number of time steps, it is assumed

that each observation action consumes the same resources. Hence no cost is applied and

the V ∗ map used directly.

For FHF control the cost is applied as a function of the agents state at the planning horizon

k. This penalises extreme manoeuvres and large control inputs.

Czs = Xc
φ −Xk

φ (5.33)

Where Xφ is the agent’s bank angle.

5.3 Evaluation Metrics

A number of metrics are used for evaluating performance and for comparison between the

task based and information value based control schemes.

5.3.1 Threat Measures

The first of these is the threat measure T . The threat is derived from the utility functions

outlined in Section 5.2.3. The threat posed by tracked target T is shown in Equation 5.34.

Tq =
H∑
i=1

C∑
m=1

P (xti,x
c
m)vli,m +

C∑
m=1

P (xcm)vc (5.34)
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The overall threat measure can then be found using Equation 5.35.

T =
S∑
s=1

P (xss)v
λ
s +

C∑
m=1

P (xdm)vdm +
Q∑
q=1

Tq (5.35)

As described in Section 5.2.3, for the information gathering system the threat is a function

of both the true state of the world and in the information available. This is reflected in

the threat measures in Equations 5.34 and 5.35. The threat conditioned solely on the true

world state is the true threat Tt shown in Equation 5.36.

Tt =
Q∑
q=1

xtxp
l
x + xcmp

c
m (5.36)

− The set Q is all ground vehicles currently in the area of operation both tracked and

untracked.

− x is the true position of ground vehicle q at the current time.

− m is the true ground vehicle type.

5.3.2 Entropy

The entropy of the distributions maintained as part of the belief state B provides a set of

metrics on which comparison of the different control schemes can be made. However the

entropy alone fails to capture the relative priority of the distributions. As a result both

the entropy and a measure termed the weighted entropy Hw are used for comparison. The

weighted entropy is shown in Equation 5.37.

Hw(x) =
∑
i

piP (xi) log (P (xi)) (5.37)

− pi is the priority associated with the variable x being in state i.

− For the search distribution xs, the summation is i = 1 . . . S and pi = pl.

− For each target track distribution xtq, the summation is i = 1 . . .H, where H is the

number of particles making up the track, and pi = pl.

− For each target classification xcq the summation is i = 1 . . .M.
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5.3.3 Hellinger-Bhattacharya Distance

The task based control system uses the Hellinger-Bhattacharya distance between a current

and desired distribution to determine the utility for each task as discussed in Section B.5.

As a result the HB distances are used as a set of metrics for comparison of the different

control schemes. The HB distance δ between two distributions of x is shown in Equation

5.38.

δ
(
P (xa), P (xb)

)
=

[∑
i

(
P (xai )

0.5 − P (xbi)
0.5
)2
]0.5

(5.38)

Where the current distribution P (xa) is compared to the flat distribution P (xb).

As for the entropy metrics, the HB distance does not capture the relative priority of the

distributions. As a result a measure termed the weighted HB distance δw is used for com-

parison. The weighted entropy is shown in Equation 5.39.

δw =

[∑
i

(
pi

[
P (xai )

0.5 − P (xbi)
0.5
])2
]0.5

(5.39)

− pi is the priority associated with the variable x being in state i.

− For the search distribution xs, the summation is i = 1 . . . S and pi = pl. For the

uniform distribution P (xs) = |S−1 for a single undetected target as discussed in

Appendix B.

− For each target track distribution xtq, the summation is i = 1 . . .H, where H is the

number of particles making up the track, and pi = pl. For the uniform distribution

P (xt) = H−1.

− For each target classification xcq the summation is i = 1 . . .M. For the uniform distri-

bution P (xc) = Q−1.

5.4 The Simulated System

5.4.1 System Overview

The framework shown in Figure 4.3 was programmed in C++ and implemented for a single

processor as a single threaded application. The application makes use of modular compo-
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nents to allow for flexibility in setup and the testing of interchangeable elements. The code

modules or module blocks closely correspond to the framework components from Chapter

4 as illustrated in Figure 5.4.

Setup Module

Main Simulation

Information Display 
Module

Operator Control 
Module

Tracker 
Module

Classifier 
Module

Search State 
Module

Sensor 
Returner 
Module

Belief State Manager 
Module

Threat Map 
Module

Controller Block

Ground 
Vehicle 
Module

UAV Module

Sensor 
Module

Simulation 
Control 
Module

Main Setup 
Module

UAV Setup 
Module

GV Setup 
Module

Figure 5.4: Software modules used for simulation.

Both the task and value based control schemes make use of the same structure with many

common modules. These common modules and components are described in detail in

Appendix A. The modules which make up the control block in Figure 5.4 unique to task

based control are described in Appendix B.
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5.4.2 Control Modules

For value based control scheme, the control block contains the modules as shown in Figure

5.5.

Value Controller Block

Mission 
Planning Module

Organiser 
Module

Coordination 
Module

UAV Path 
Planner Module

Figure 5.5: Software modules used for information value based control.

The Value Map for each UAV is derived from the Threat Map and operator mission input

as per Section 5.2.3. This map is then used to determine the best path or waypoint using

the control schemes in Section 5.2.4 which is then passed to the UAV Controller.

5.4.3 Simulation Setup and Interface

The Simulation Setup module provides the interface for creating the simulation scenario.

This can be done manually each time the simulation runs or loaded from a file. Once the

scenario is created it is passed to the Main Simulation module which is started by the

operator.

Simulation Setup

The Main Setup module displays the screen shown in Figure 5.6. Using this interface the

number, type and initial locations of UAV sensor platforms and ground vehicles is be set.

Additionally the number, type, orientation and FOV for each sensor carried by the UAV

platforms is established.
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Figure 5.6: Main simulation setup screen.

The setup module also contains two sub modules for setting additional initial conditions for

the UAVs and ground vehicles to be used in simulation. These are discussed below.
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UAV Parameters

The UAV Setup module displays the screen shown in Figure 5.7. This screen provides

a graphical interface for setting initial UAV locations and heading. It also permits an

initial path, consisting of a number of waypoints, to be provided to the UAV controller on

simulation start. If a path is provided, the UAV will complete the path before becoming

available to the system for consideration in the planning loop.

Figure 5.7: Screen for setting up initial UAV parameters.
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Ground Vehicle Parameters

The Ground Vehicle Setup module displays the screen shown in Figure 5.8. This screen

provides a graphical interface for setting initial ground vehicle locations and headings. It

also permits the assignment of any number of waypoints which are provided to the ground

vehicle guidance component, as described in Appendix A.

Figure 5.8: Screen for setting up initial ground vehicle parameters.

5.4.4 Operator Interface

Main Screen

Once the simulation scenario setup is complete the operator is presented with the screen

shown in Figure 5.9. This is the primary information interface between the operator and

the system. All information available to the simulated system, including the belief state

and UAV/Sensor status is available through this screen. The control interface is detailed

in Section 5.4.4

The map display allows a graphical representation of the location of UAVs, the current

footprint as well as a summary of track information for ground vehicles detected and being

tracked. The search state, threat map and value map for each UAV can also be displayed

graphically. For testing purposes the true location of all ground vehicles may be displayed,

however this is normally switched off during a simulation run.
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Figure 5.9: Main screen for displaying information to operator during simulation.

Classification information and detailed UAV/Sensor information is displayed in the dedi-

cated panels.

Mission Parameters

The operator exercises control of the UAV sensor platforms via the Controller or Mission

module which interfaces via the screen shown in Figure 5.10.

Using the graphical control, the operator can instantiate assets and search areas in the

desired location. A priority and vulnerability rating is then assigned along with the threat

function from Section 5.2.2. Existing assets or areas can be modified or removed at any

point during the simulation.

The desired track variance, priority and classification threshold for each vehicle type can

be assigned and dynamically modified using the ground vehicle pane. The classification

threshold indicates the point at which there is no further value in obtaining vehicle type

information. For the Task based control scheme, once the threshold is reached the ‘classify

vehicle’ task is removed from task list.
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Figure 5.10: Mission screen for operator input to control sensor system.

Once vehicles are being tracked, the relative priority of searching for undetected vehicles

is controlled via the Search pane. The assigned search likelihood indicates the threshold

likelihood for searching an area or point for a previously undetected ground vehicle.

5.5 Summary

This chapter has described the software implementation of the the architecture developed

in Chapter 4 using information value as described in Chapter 3. Graphical interfaces are

available to the operator for both visualisation of the information or belief state and for pro-

viding information and control inputs. These are used for the simulation results presented

in Chapter 6.



Chapter 6

Simulation

6.1 Simulation Overview

The main execution loop used by the simulation represents 0.5 seconds of elapsed time. As

the simulation is single thread and run on a single CPU, the relationship between simulation

time and real time is heavily dependant on the number of vehicles being tracked and the

complexity of the sensor platform control scheme being used. In general, using standard

desktop PC hardware, more than 3 or 4 vehicles in track results in each simulation loop

taking more than 0.5 seconds.

During a simulation loop every ground vehicle, UAV and sensor position is recalculated,

sensor observations made and the belief state updated. As the UAV module is setup to run

at 20Hz, the Guidance/Autopilot/Motion Model loop is run 10 times each loop prior to the

sensor observations being triggered.

The planning horizon used is 5 simulation seconds. For the FHF, FHP and IHP control

schemes, the UAV waypoints/paths are updated each replan cycle. For the Task based

control scheme, tasks are reorganised and reallocated each replan cycle. All data, including

the true state of the simulated world and the evaluation metrics, is logged every 5 simulation

seconds.

Each scenario and situation outlined in Section 6.2 was run 5 times for a simulated mission

time of 800 seconds.
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6.2 Scenario Setup

Two example scenarios are used, both based around information gathering in aid of asset

protection. The fixed assets are shown in Table 6.1, along with a vulnerability rating. For

the purposes of these scenarios it is assumed that vulnerability is constant throughout the

simulation. The asset locations are shown in Figure 6.1.

Table 6.1: Assets

Asset Classification Vulnerability

1 Government House Hardened

2 State Library Reinforced

3 Hospital Reinforced

4 Army Barracks Protected

5 Museum Soft

6 Town Hall Reinforced

7 Ferry Terminal Reinforced

8 Central Post Office Reinforced

9 Maritime Museum Reinforced

10 Convention Centre Reinforced

11 Exhibition Centre Reinforced

12 World Trade Centre Hardened

13 Ferry Terminal Reinforced

14 Stadium Reinforced

15 Central Station Reinforced

16 Broadcast Centre Reinforced

17 Ambulance HQ Reinforced

18 Police HQ Hardened

19 Hospital Reinforced

20 Cargo Terminal Reinforced

21 School Soft

22 School Soft
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Figure 6.1: Asset location in the Sydney CBD for the security scenario under investigation

For Task based control, a representative area around each asset is identified for the ‘Search

Area’ task discussed in Appendix B. These areas are shown in Figure 6.2, with the size

of the area corresponding to the vulnerability of the associated asset. Note that the more

vulnerable the asset the larger the search area.
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Figure 6.2: Areas corresponding to asset location in the Sydney CBD for the security
scenario under investigation

6.2.1 Scenario 1

The first scenario consists of 2 UAV sensor platforms and 5 ground vehicles as outlined in

Tables 6.2 and 6.3. Details on the vehicle types can be found in Appendix C.

Table 6.2: Ground Vehicles - Scenario 1

Vehicle Type

1 4wd, Red Force

2 Truck, Light, Blue Force

3 4wd, Civilian

4 Truck, Light, Civilian

5 Car, Civilian

The initial UAV and ground vehicle locations and heading are shown in Figure 6.3. Note

that ground vehicles are indicated by a yellow marker with a coloured border and UAVs

by a red marker with coloured border. The coloured line extending from the UAV marker
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Table 6.3: UAVs - Scenario 1

UAV Type Altitude (m) Sensor Orientation

1 Fast Delta 100 CCD Forward

2 Aerosonde 150 IR Down

indicates the current heading with the current sensor footprint bounded by the same colour

as the marker border.

Figure 6.3: Ground Vehicle and UAV initial locations for Scenario 1.

6.2.2 Scenario 2

The second scenario consists of 3 UAV sensor platforms and 10 ground vehicles as outlined

in Tables 6.4 and 6.5.

The initial UAV and ground vehicle locations and heading are shown in Figure 6.4. Note

that the same symbology applies as for Scenario 1.
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Table 6.4: Ground Vehicles - Scenario 2

Vehicle Type

1 4wd, Militia

2 Truck, Light, Red Force

3 Armour, Light, Blue Force

4 4wd, Blue Force

5 Car, Civilian

6 Car, Civilian

7 Truck, Heavy Civilian

8 Truck, Light, Civilian

9 Truck, Light, Civilian

10 4wd, Civilian

Table 6.5: UAVs - Scenario 2

UAV Type Altitude (m) Sensor Orientation

1 Fast Delta 100 BW CCD Down

2 Aerosonde 175 CCD Down

3 Aerosonde 150 CCD Forward

Figure 6.4: Ground Vehicle and UAV initial locations for Scenario 2.
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6.3 Situation Setup

Using the Scenarios described in Section 6.2, a number of Situations are developed to

examine the impact of: applying the information value scheme presented in Section 5.2,

allowing human directed modification of the value scheme and incorporating information

from external sources. These are outlined below.

6.3.1 Situation 1 - Baseline

For the ‘Baseline’ situation, there is no ranking of asset value or preference order for tracking

the vehicles detected. Thus the utility function for UAV control maximises information gain

with respect to time, without consideration of the information type or value with respect

to a larger mission.

6.3.2 Situation 2 - Operator Modified

In the ‘Operator Modified’ situation, the operator specifies mission parameters prior to the

mission start via the Mission Console as described in Section 5.4.4. The priority for each

asset is set by the appropriate descriptor from Equation 5.2 chosen by the operator. Table

6.1 is reproduced in Table 6.6 with priorities assigned.

The priorities assigned to each asset are an interpretation of the disruption likely to be

caused to the functioning of the city if the asset were targeted for attack.

The system develops a threat map according to the equations in Section 5.2.2 for each

vehicle type using the vulnerability and priority assignment in Table 6.6. A representative

threat map is shown in 6.5.

The preference ordering for tracking and classifying vehicles is determined through the

operator assigned priority, desired track variance and classification threshold. The operator

assigned parameters are shown in Table 6.7.
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Table 6.6: Assets

Asset Classification Priority Vulnerability

1 Government House Highly Valuable Hardened

2 State Library Useful Reinforced

3 Hospital Highly Valuable Reinforced

4 Army Barracks Highly Valuable Protected

5 Museum Important Soft

6 Town Hall Important Reinforced

7 Ferry Terminal Important Reinforced

8 Central Post Office Important Reinforced

9 Maritime Museum Useful Reinforced

10 Convention Centre Valuable Reinforced

11 Exhibition Centre Important Reinforced

12 World Trade Centre Valuable Hardened

13 Ferry Terminal Valuable Reinforced

14 Stadium Useful Reinforced

15 Central Station Valuable Reinforced

16 Broadcast Centre Useful Reinforced

17 Ambulance HQ Highly Valuable Reinforced

18 Police HQ Highly Valuable Hardened

19 Hospital Highly Valuable Reinforced

20 Cargo Terminal Important Reinforced

21 School Useful Soft

22 School Useful Soft

Max

Figure 6.5: Figure on the left shows the relative threat corresponding to the assets outlined
in Table 6.1, with the z axis representing the maximum threat from a target located at that
point. The x,y scale is in metres, and the map grid is shown in the figure on the right.

The priority ranking of vehicle types largely reflects their ability to cause damage to the

assets being protected, with the necessity of knowing where a vehicle is in order to intercept,

being reflected in the desired track variances. The application of the classification threshold

shown recognises the importance of distinguishing between civilians and irregular or insur-
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Table 6.7: Mission Setup

Vehicle Desired Variance Classification
Threshold

Priority

Civilian Light Truck 35 0.98 Desirable

Blue Force Light Truck 45 0.8 Some Impact

Red Force Light Truck 25 0.95 Highly Desirable

Civilian Medium Truck 35 0.98 Desirable

Blue Force Medium Truck 45 0.8 Some Impact

Red Force Medium Truck 25 0.95 Highly Desirable

Civilian Heavy Truck 35 0.98 Desirable

Blue Force Heavy Truck 60 0.8 Some Impact

Red Force Heavy Truck 10 0.95 Highly Desirable

Civilian 4WD 35 0.98 Some Impact

Blue Force 4WD 60 0.8 Some Impact

Red Force 4WD 10 0.95 Highly Desirable

Militia 4WD 10 0.98 Mission Critical

Civilian Motorbike 35 0.98 Desirable

Militia Motorbike 10 0.98 Mission Critical

Civilian Car 35 0.98 Desirable

Blue Force Car 45 0.8 Some Impact

Red Force Car 25 0.95 Highly Desirable

Militia Car 10 0.98 Mission Critical

Blue Force Light Armour 90 0.8 Some Impact

Red Force Light Armour 10 0.95 Mission Critical

Blue Force Heavy Armour 90 0.8 Some Impact

Blue Force IFV 90 0.8 Some Impact

Search Likelihood Threshold 0.25 Mission Critical

gent forces prior to intercepting or using force. Thus via the Mission Console much high

level reasoning regarding the overall situation is captured from the operator prior to the

mission starting, which is then used as part of the utility function for determining allocation

of sensor resources.

6.3.3 Situation 3 - Online Operator Modified

In the ‘Online Operator Modified’ situation the operator modifies mission parameters during

the mission. This may be done to reflect new mission priorities or other changes in situation

that may be external to the system.

The initial mission parameters are identical to Situation 2, with the changes described in

Table 6.8.

The modification to the priority assigned to Asset 14, Stadium and Asset 15, Central

Station, reflects a situation where the mission priority of an asset or area may change due
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Table 6.8: Operator modified mission parameters

Time (s) Mission Element Mission Parameter Original Modified

250 Stadium Priority Useful Highly Valuable

250 Central Station Priority Valuable Highly Valuable

450 Civilian Light Truck Priority Desirable Highly Desirable

450 Civilian Light Truck Desired Variance 35 20

450 Civilian 4wd Priority Desirable Highly Desirable

450 Civilian 4wd Desired Variance 35 20

450 Civilian Motorbike Priority Desirable Highly Desirable

450 Civilian Motorbike Desired Variance 35 20

450 Civilian Car Priority Desirable Highly Desirable

450 Civilian Car Desired Variance 35 20

to external factors. For example in this case it may be due to a large event scheduled at

the given location or specific information or tip off regarding an imminent threat which is

then passed on to the operator. The change in priority and desired variance for all civilian

vehicles in this case may represent a situation where it has been found that distinguishing

between civilian and militia is more difficult than originally expected.

Using this online modification of mission parameters, the operator’s judgement of the sit-

uation, both with respect to the larger external mission and events observed through the

system, can be captured and used to reallocate sensor resources in response to the current

situation.

The ‘Online Operator Modified’ situation was run only with Scenario 2.

6.3.4 Situation 4 - Observation Points

In the ‘Observation Points’ situation, observers are located around a number of key instal-

lations. These observers can relay information back to the system, with the information

provided able to be incorporated into the system’s belief state. The initial mission param-

eters are identical to Situation 2, with the areas in the observers’ view shown in Figure

6.6.

The ‘Observation Points’ situation was run only with Scenario 2.
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Figure 6.6: Areas observable from the fixed observation points.

6.3.5 Situation 5 - External Observations

The ‘External Observations’ situation is similar to Situation 4, however there are no fixed

observers. Observations come through as a single report as they might from a tip off or

patrol moving through the area. A summary of the observations is shown in Table 6.9.

Table 6.9: External observations.

Time (s) Observation

120 Vehicle 1

150 Vehicle 6

450 Vehicle 1

500 Vehicle 2

In this case the external information received is considered reliable and used to update the

system’s belief state. The ‘External Observations’ situation was run only with Scenario 2.
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6.4 Simulation Results

The following sections present a snap shot of the data collected from running the scenarios

and situations from Sections 6.2 and 6.3 in simulation. The data for each situation is the

average of five runs. If a target is not detected in at least three of the five runs, the detection,

track and classification information for that target is not shown.

For each simulation set, the time to find and classify each of the simulated ground vehicle

targets is presented as a comparison of different control types, preference ordering and

situations. The threat posed by all simulated ground vehicles, given their location and

type is known at each time step is defined as the true threat. The true threat for each

simulation set is shown graphically along with the system’s estimate of the true threat.

The absolute difference at each time step between the true and estimated threat is also

presented graphically along with the cumulative error in the system’s threat estimate.

The results presented are logged at the end of each 5 second planning cycle. Thus new target

detections and classifications between planning cycles only appear in the simulation data

logs at the end of each cycle. The operator, however sees the new detection or classification

as soon as it is fused into the system belief state.

6.4.1 Baseline vs Operator Modified

In this section the simulation is run with no preference ordering, which is referred to as

the Baseline, and is compared to the results of adding preference ordering, referred to

as Operator Modified. In the Operator Modified scenario the asset and ground vehicle

preference data from Tables 6.6 and 6.7 is input prior to the mission start. This is then

used to determine the value of information as per Chapter 5. Both Scenario 1 and 2 are

examined for each of the four control schemes.

Scenario 1

Examining Table 6.10 it can seen that the two control schemes which have limited waypoint

planning, FHP and FHF, show identical detection times for the Baseline and Operator

Modified simulations. It appears that by only considering the local threat, the behaviour of

the sensor platforms is not sufficiently altered by preference ordering to result in additional
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Table 6.10: Targets Tracked - Baseline vs Operator Modified for Scenario 1

FHP
BSL

FHP
OPM

FHF
BSL

FHF
OPM

IHP
BSL

IHP
OPM

Task
BSL

Task
OPM

Targets Found 3 3 5 5 1 4 5 4

Time to Find (s)

1 - - 185.5 185.5 - 75.5 80.5 -

2 15.5 15.5 140.5 140.5 - 200.5 10.5 260.5

3 - - 100.5 100.5 - - 105.5 190.5

4 280.5 280.5 15.5 15.5 10.5 10.5 420.5 10.5

5 10.5 10.5 35.5 35.5 - 115.5 10.5 110.5

Targets Classified 1 1 3 5 1 4 4 1

Time to Classify (s)

1 - - - 755.5 - 100.5 160.5 -

2 - - 310.5 310.5 - 230.5 20.5 265.5

3 - - 470.5 495.5 - - 625.5 -

4 365.5 365.5 - 675.5 70.5 170.5 445.5 -

5 - - 490.5 500.5 - 290.5 - -

target detections. As preference ordering primarily effects the threat map on a larger scale,

the difference in utility between observing 2 nearby nodes will be similar with or without

preference ordering. In general preference ordering will only cause a significant difference

in detection performance with FHP and FHF when the ordering results in 2 assets close

together having very different values or when a target track of high or low value is within

the area being considered.

The number of targets detected with the IHP control scheme increased from 1 to 4 using

preference ordering, and most significantly resulted in the detection of Target 1 which is the

Red Force threat. Unlike FHP and FHF control schemes, IHP considers the entire threat

map when determining a new waypoint and thus, changes due to preference ordering have a

greater impact. Using Task based control resulted fewer detections with preference ordering

and importantly, Target 1 was not detected.

Of the four control schemes only FHF control detected Target 1 with or without preference

ordering. Without preference ordering Target 1 was not classified, however with ordering

it was classified at 755.5 seconds. Of note is that while target detection times for FHF did

not change, all targets were classified.

Examining the FHP and FHF graphs in Figure 6.7 it can be seen that changes to the

true and estimated threat plots through the addition of preference ordering were relatively

small. Much more significant changes can be seen for IHP and Task based controls. The
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IHP graph shows consistently better threat estimates using preference ordering while the

Task graph shows marginally better performance for the Baseline estimate. This is better

illustrated in Figure 6.8.

In Figure in 6.8 as in Figure 6.7 the difference between the estimated threat, with or without

preference ordering, with FHP control is very small. As a result the cumulative error plots

are similar with a small improvement seen when applying preference ordering. FHF shows

a similar trend however the performance improvement is significantly larger. As is alluded

to by Table 6.10 and Figure 6.7, applying preference ordering to IHP control significantly

improves the threat estimate. Conversely for Task based control, the average error is greater

when using preference ordering. Looking at the Task graph the oscillating behaviour of the

threat estimate can be seen with the threat estimate error up to twice the peak error of

IHP, particularly when using preference ordering.
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Figure 6.7: True and Estimated Threat for Scenario 1 for each control scheme.
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Figure 6.8: The threat estimate error and cumulative average error for each control scheme
in Scenario 1.
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The Track Entropy graph in figure 6.9 shows the same track behaviour in both the pref-

erence and non-preference ordered scenarios. This indicates that the small improvements

in performance due to ordering are the result of reductions in the search state entropy.

As neither IHP or Task controllers detected Target 1 in both preferenced an preferenced

cases, these graphs provide little to inform the change of performance with respect to threat

estimation, however from the entropy of the targets detected it can be seen that preference

ordering does have a significant effect on the observations taken.

The effect of preference ordering is most clearly seen in the FHF graph with the entropy

of the Target 1 track distribution. The relatively constant track entropy between 400 and

750s indicates constant observation of track particles without actually observing the target

itself. The Baseline plot shows 2 addition observations of Target 1 at approximately 450s

and 660s, however by the subsequent peaks it can be seen that the system has not allocated

resources to maintain a good track estimate, despite potentially being a high threat target.

Conversely the preference ordered plot indicates resources being allocated to tracking Target

1 while allowing the entropy to increase on other less threatening tracks, most clearly seen

in the plot of Target 3.
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Figure 6.9: Track entropy for each each control scheme in Scenario 1. Baseline left and
Operator modified right.
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Scenario 2

The target detection times for FHP and FHF 6.11 with and without preference ordering

in Scenario 2, closely mirror Scenario 1. As in Scenario 1, preference ordering when using

the Task based controller resulted in fewer detected targets and those detected often being

detected later. The most significant change in behaviour from Scenario 1 to 2 is in the IHP

sets. In Scenario 2 detection times are very similar in the Baseline and Operator Modified

simulations with only a small change for Targets 3 and 5.

Table 6.11: Targets Tracked - Baseline vs Operator Modified for Scenario 2

FHP
BSL

FHP
OPM

FHF
BSL

FHF
OPM

IHP
BSL

IHP
OPM

Task
BSL

Task
OPM

Targets Found 6 6 10 10 10 10 10 9

Time to Find (s)

1 25.5 25.5 25.5 25.5 5.5 5.5 5.5 95.5

2 - - 10.5 10.5 5.5 5.5 30.5 65.5

3 30.5 30.5 100.5 100.5 180.5 240.5 50.5 -

4 - - 45.5 45.5 5.5 5.5 5.5 10.5

5 130.5 130.5 380.5 375.5 115.5 250.5 5.5 115.5

6 5.5 5.5 35.5 35.5 5.5 5.5 5.5 25.5

7 240.5 240.5 15.5 15.5 10.5 10.5 10.5 15.5

8 - - 10.5 10.5 5.5 5.5 5.5 25.5

9 - - 350.5 230.5 5.5 5.5 5.5 40.5

10 135.5 135.5 10.5 10.5 10.5 10.5 5.5 15.5

Targets Classified 2 2 9 10 10 10 10 8

Time to Classify (s)

1 - - 120.5 120.5 500.5 115.5 210.5 255.5

2 - - 350.5 490.5 130.5 125.5 75.5 80.5

3 55.5 55.5 780.5 580.5 250.5 295.5 350.5 -

4 - - 195.5 220.5 440.5 80.5 55.5 75.5

5 - - - 720.5 380.5 605.5 525.5 -

6 - - 115.5 120.5 285.5 660.5 315.5 310.5

7 445.5 445.5 45.5 45.5 80.5 210.5 200.5 80.5

8 - - 130.5 130.5 135.5 85.5 45.5 400.5

9 - - 450.5 535.5 105.5 110.5 75.5 125.5

10 - - 120.5 120.5 460.5 195.5 80.5 80.5

As for Scenario 1 the threat estimate plots for FHP, shown in Figure 6.10, with and without

preference ordering are similar. Unlike Scenario 1, the FHF threat estimate with preference

ordering is considerably closer to the true threat for most of the simulation. For the IHP

controller, the clear performance improvement with respect to threat estimate observed in

Scenario 1 is not present in Scenario 2.

As for Scenario 1, for FHP, FHF and IHP controllers there is an improvement in threat
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estimation performance with preference ordering, while the Task controller exhibits worse

performance with ordering.

The Track Entropy graphs in figure 6.12 for FHP show the same behaviour for Scenario

2 as Scenario 1 and thus the conclusions regarding the performance improvements due to

search entropy also apply. For the FHF and IHP controllers, there is no evidence of any

performance improvement due to preference ordering and the resulting track of the Red

Force ground vehicle, Target 1. For the Task based controller however, the Baseline does

not display the high track entropy plateau from 500 to 800s seen in the Operator Modified

scenario.

Baseline vs Operator Modified Summary

From the results of Scenarios 1 and 2, FHP, FHF and IHP control schemes showed improved

estimation of true threat with the use of preference ordering to assign value to assets and

targets. For these 3 control schemes the overall target detection rate, detection times,

classification rate and classification times either stayed the same or showed improvement.

By the same performance measures, the application of preference ordering for the Task

based control scheme showed poorer performance.
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Figure 6.10: True and Estimated Threat for Scenario 2 for each control scheme.
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Figure 6.11: The difference between True and Estimated Threat for Scenario 2 with Baseline
left and Operator modified right.
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Figure 6.12: Track entropy for each each control scheme in Scenario 2. Baseline left and
Operator modified right.
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6.4.2 Control Type Comparison

The Operator Modified system used in Section 6.4.1 is examined here in more detail to

compare the different control types and to highlight some behaviours of the system resulting

from utilising information value to make control decision.

Figures 6.13 and 6.14 show the entropy of each state observed by the system for each control

scheme in Scenarios 1 and 2 respectively. As one of the states observed the target track

entropy graphs presented in Section 6.4.1 are contained within these graphs.

From Figures 6.13 and 6.14 it can be seen that the search entropy remains largely constant.

This is due to the area of the map continuously observed by the sensor platforms being

small and relatively constant compared to the total search area. A more detail comparison

of the search component of the observed states for each control scheme is shown in Figures

6.21 and 6.22.

Target observations can be clearly seen as steps in the classification entropy plots and

troughs in the track entropy plots. Troughs in the track entropy plots that do not have a

corresponding step in classification indicate observation of track particles without observa-

tion of the target. An example of this discussed in Section 6.4.1 can be seen in the FHF

graph. No observations of Target 1 are made during the period 200 to 700s, however the

track entropy is maintained through observation of the track.

The entropy limit can be seen for both the search and target track states. For the track

entropy plots this limit is the point at which there is equal probability on each track particle

and each particle is centred on a different node. This is seen in both FHP graphs. Where

this entropy limit is reached, the particle filter tracker is likely to become ‘starved’ unless

an observation is made quickly. In the starved state, the filter does not have enough

particles to represent the true state of the target track and subsequent observations cannot

be associated to the track without additional classification information. With a dense road

network, particle starvation of implemented tracker can occur quickly. Starvation can be

observed in the Scenario 1 FHP track plot for Vehicles 2 and 5 and in the Scenario 2 FHP

track plot for Vehicle 6. Other tracks approach starvation, but in each case an observation

is made before this occurs.

Step increases in track entropy can be caused both by characteristics of the map network

and characteristics of the particle filter tracker. Each road junction will cause a step change
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in track entropy and a large number of intersections will very rapidly decay the track

estimate. However these steps are likely to be small. A null target observation of the track

can also result in increased entropy in the track distribution if the null observation of the

target is associated with a number of particles which have a high probability prior. The

redistribution of these particles and their associated probability across the track distribution

can cause a step increase in track entropy.
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Figure 6.13: Entropy of each belief state observed for Scenario 1.
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Figure 6.14: Entropy of the belief states for Scenario 2.
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The track Hellinger-Bhattacharya distance in Figures 6.15 and 6.18 is a measure of the

distance of the current track estimate from a naive or flat distribution. When a vehicle is

detected particles are redistributed by the tracker such that they cluster around the point

on the map associated with detection. Fusing a target observation results in minimum

track distribution entropy and maximum Hellinger-Bhattacharya distance from the naive

distribution. These observations can be seen as steps in the plot and correspond with the

points of minimum entropy in Figures 6.13 and 6.14. The Hellinger-Bhattacharya distance

graphs mirror the associated entropy graphs, however the decay in the target position

estimate as the target ground vehicle moves around the road network can be seen more

clearly.

It is the weighted Hellinger-Bhattacharya distance shown in Figures 6.17 and 6.20 that is

used by all control schemes as the basis for assigning information value. This weighted

distance considers the track distribution with respect to the assets being protected, the

target classification and the classification entropy. The later shown in Figures 6.16 and

6.19.

An example of the insight into the system behaviour provided by the weighted Hellinger-

Bhattacharya distance is the plot for Target 1 with FHF control during Scenario 2. In

Figure 6.14 the track entropy for Target 1 shows an oscillating tendency with peaks and

troughs at similar values. This is reflected in the track Hellinger-Bhattacharya distance in

Figure 6.18. However in the weighted Hellinger-Bhattacharya plot in Figure 6.20 there are

3 distinct segments for the Target 1 peak, from 0 to 150s, 150 to 650s and 650 to 800s. At

approximately 150s it can be seen from Figure 6.19 that Target 1 is classified, and being a

Red Force vehicle means that the value for observing the Target 1 track will increase. This

is reflected in the higher peaks in the weighted Hellinger-Bhattacharya distance after this

time. The better track estimate resulting from a number of track observations from 650s, as

seen in Figure 6.14, combined with the Target beginning to move away from a high priority

asset results in reduced peaks in the weighted Hellinger-Bhattacharya plot.
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Figure 6.15: The track Hellinger-Bhattacharya distance for Scenario 1 for each control
scheme.
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Figure 6.16: Classification probability conditioned on true type for targets detected using
each control scheme for Scenario 1.
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Figure 6.17: Weighted Hellinger-Bhattacharya distance for Scenario 1 for each control
scheme.
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Figure 6.18: The track Hellinger-Bhattacharya distance for Scenario 2 for each control
scheme.
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Figure 6.19: Classification probability conditioned on true type for targets detected using
each control scheme for Scenario 2.
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Figure 6.20: Weighted Hellinger-Bhattacharya distance for Scenario 2 for each control
scheme.
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Figure 6.21: Weighted Hellinger-Bhattacharya distance for the search distribution for each
control scheme in Scenario 1.

Figures 6.21 and 6.22 show the weighted Hellinger-Bhattacharya distance of the search

distribution from the naive or flat distribution along with the cumulative average. Lower

values indicate less probability of undetected targets around valuable assets and/or a more

compact search distribution in these areas. For Scenario 1, there is a clear performance

ranking between the different control schemes:

− FHP

− Task

− IHP

− FHF

For Scenario 2 the difference in performance between FHF, IHP and Task is minimal,

however FHP shows significantly better performance.

From the detection/classification Tables 6.10 and 6.11 for Scenario 1 using the Operator

Modified preference ordering the performance ranking for the control types is:
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Figure 6.22: Weighted Hellinger-Bhattacharya distance for the search distribution for each
control scheme in Scenario 2.

− FHF with 5 detections, 5 classifications

− IHP with 4 detections, 4 classifications

− Task with 4 detections, 1 classification

− FHP with 3 detections, 1 classification

For Scenario 2 the performance ranking is:

− IHP with 10 detections, 10 classifications

− FHF with 10 detections, 10 classifications

− Task with 9 detections, 8 classifications

− FHP with 6 detections, 2 classification

Note that for both scenarios, the detection and classification performance of the Task based

controller with no preference ordering is similar to the top ranked control schemes.
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Considering the cumulative average threat error in Figure 6.8, the performance ranking for

Scenario 1 is:

− FHF

− FHP

− IHP

− Task

From Figure 6.11 the ranking for Scenario 2 is:

− FHF

− Task

− IHP

− FHP

Note that using Task based control with no preference ordering, the cumulative average

threat error is below all other control schemes using preference ordering. However the

speed at which the average threat error drops to the lower value is slower, this indicates

that the other control schemes provide a better threat estimate during the initial states of

simulation.

In Figure 6.20 the weighted Hellinger-Bhattacharya plots for Target 1 have consistently low

peaks for FHF and IHP control. This indicates that these control systems are providing

good track information on Target 1, particularly when the track propagates into areas where

Target 1 may pose a threat to assets. While there is a very large peak at around 700s in

the IHP plot, a number of observations are made relatively quickly bringing it back down.

This is in contrast to the FHP plot which remains consistently high and the system does

not bring the value back down. The Task based controller shows characteristics present

in both FHF and FHP plots at different time. Up to approximately 300s a low weighted

Hellinger-Bhattacharya distance for Target 1 is maintained, while after 500s this value

increases significantly and the system does not react as aggressively as with IHP control to

bring it back down.
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Control Type Comparison Summary

Despite using the same preference ordering, the relative performance of the different control

schemes implemented varies significantly with the best performing depending on the metric

of performance used. Discounting the performance of the Task based controller without

preference ordering, the FHF and IHP control schemes are the best performers with respect

to detecting, classifying and tracking targets. The FHP control in general performs worst

with respect to these metrics, with the Task based controller performing somewhere in the

middle. However with respect to search performance, the FHP controller shows a significant

performance advantage over the other control types.
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6.4.3 Mission: Online Operator Modified

In the Online Operator Modified scenario, mission parameters are modified during the

simulation as described by Table 6.8. Detection and classification times along with the

threat estimate are used for comparison with the Operator Modified scenario in which the

preference ordering is static.

In Figure 6.23 a small step increase in threat can be seen at 250s, which corresponds to

the operator upgrading the value of Assets 14 and 15 to ‘Highly Valuable’. This change

results in both undetected and tracked ground vehicles in the vicinity of these assets being

considered a higher threat and thus there is an increase in the overall true threat. A second

larger step is seen at 450s. This corresponds to the operator receiving information that

the Red Force is commandeering civilian vehicles and as a result upgrades the priority

for detecting and tracking civilian ground vehicles. As there are 6 civilian vehicles in the

simulation, this change results in a large increase in the true threat. As can be seen in

Table 6.12, all control schemes have a number of civilian vehicles being tracked, thus the

estimated threat also increases when this priority is changed. Note that for FHP control

only 3 civilian vehicles are in track at 450s and thus the estimated threat does not increase

to the same extent as the true threat. For all cases it can be seen that the operator’s actions

have approximately doubled the true threat.

In Figure 6.24 both the threat error and cumulative threat error plots can be seen to diverge

at 250s, which corresponds to the first online modification of the mission. In all 4 control

cases the average threat estimation error is significantly reduced compared to the unmodified

scenario.

Despite the significantly better performance with respect to threat estimation, the detection

and classification times for all control schemes is little changed. In Table 6.12 only FHF

reduces in classification performance with one less civilian target classified while FHF and

IHP take longer to detect civilian Targets 4 and 5 with online modification of the mission.

6.4.4 Online Operator Modified Summary

The threat estimate plots show that the online changes to the mission have an immediate

effect on the system’s threat estimate and in some cases the change in the threat estimate
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Table 6.12: Targets Tracked - Online Operator Modified Scenario 2

FHP
BSL

FHP
OOPM

FHF
BSL

FHF
OOPM

IHP
BSL

IHP
OOPM

Task
BSL

Task
OOPM

Targets Found 6 6 10 10 10 10 10 10

Time to Find (s)

1 25.5 25.5 25.5 25.5 5.5 5.5 5.5 25.5

2 - - 10.5 10.5 5.5 5.5 30.5 70.5

3 30.5 30.5 100.5 100.5 180.5 250.5 50.5 40.5

4 - - 45.5 45.5 5.5 5.5 5.5 10.5

5 130.5 130.5 380.5 340.5 115.5 250.5 5.5 570.5

6 5.5 5.5 35.5 35.5 5.5 5.5 5.5 85.5

7 240.5 240.5 15.5 15.5 10.5 10.5 10.5 15.5

8 - - 10.5 10.5 5.5 5.5 5.5 65.5

9 - - 350.5 175.5 5.5 5.5 5.5 40.5

10 135.5 135.5 10.5 10.5 10.5 10.5 5.5 15.5

Targets Classified 2 1 9 8 10 10 10 7

Time to Classify (s)

1 - - 120.5 120.5 500.5 360.5 210.5 -

2 - - 350.5 285.5 130.5 125.5 75.5 275.5

3 55.5 55.5 780.5 - 250.5 295.5 350.5 -

4 - - 195.5 270.5 440.5 80.5 55.5 60.5

5 - - - - 380.5 645.5 525.5 -

6 - - 115.5 120.5 285.5 720.5 315.5 360.5

7 445.5 - 45.5 45.5 80.5 210.5 200.5 65.5

8 - - 130.5 130.5 135.5 85.5 45.5 200.5

9 - - 450.5 365.5 105.5 110.5 75.5 220.5

10 - - 120.5 120.5 460.5 195.5 80.5 65.5

will depend on the system’s current belief state. The threat error plots show the changes

quickly becoming part of the decision making process for all control schemes and by updating

the mission with external information, provide a significantly better estimate of the true

threat.
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Figure 6.23: True and Estimated Threat for the Online Operator Modified situation.
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Figure 6.24: The threat estimate error and cumulative average error for each control scheme.
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6.4.5 Mission: Observation Points

In the observation points scenario a portion of the map is continuously observed, either

through surveillance cameras or an Observation Post (OP). The system treats this as an-

other sensor in the network and updates the belief accordingly. The location and area

covered by these additional sensors is shown in Figure 6.6.

The scale and shape of the system estimated threat graphs shown in Figure 6.25 indicate

that the additional sensors have little effect on the overall threat estimate. The reason for

this is the small area of the map covered by the additional sensors, and as static OPs, only

observations of targets and tracks passing through the field of view are made.

The cumulative threat error plots shown in Figure 6.26 show the addition of static sensors

results in only a small change in threat estimation performance. However this change in

performance is for the worse with the IHP controller and for the FHF controller in the later

stages of the simulation.

Table 6.13: Targets Tracked - Observation Points Scenario 2

FHP
BSL

FHP
OBPS

FHF
BSL

FHF
OBPS

IHP
BSL

IHP
OBPS

Task
BSL

Task
OBPS

Targets Found 6 10 10 10 10 10 10 10

Time to Find (s)

1 25.5 25.5 25.5 25.5 5.5 55.5 5.5 20.5

2 - 10.5 10.5 10.5 5.5 10.5 30.5 10.5

3 30.5 30.5 100.5 250.5 180.5 295.5 50.5 10.5

4 - 450.5 45.5 90.5 5.5 80.5 5.5 45.5

5 130.5 80.5 380.5 40.5 115.5 285.5 5.5 30.5

6 5.5 5.5 35.5 35.5 5.5 5.5 5.5 40.5

7 240.5 445.5 15.5 15.5 10.5 20.5 10.5 20.5

8 - 480.5 10.5 10.5 5.5 65.5 5.5 190.5

9 - 715.5 350.5 35.5 5.5 45.5 5.5 30.5

10 135.5 65.5 10.5 10.5 10.5 65.5 5.5 165.5

Targets Classified 2 7 9 10 10 9 10 10

Time to Classify (s)

1 - - 120.5 130.5 500.5 210.5 210.5 190.5

2 - 15.5 350.5 15.5 130.5 15.5 75.5 15.5

3 55.5 35.5 780.5 500.5 250.5 390.5 350.5 190.5

4 - 455.5 195.5 130.5 440.5 85.5 55.5 50.5

5 - 125.5 - 215.5 380.5 - 525.5 85.5

6 - 70.5 115.5 85.5 285.5 125.5 315.5 330.5

7 445.5 - 45.5 85.5 80.5 65.5 200.5 205.5

8 - 485.5 130.5 225.5 135.5 80.5 45.5 225.5

9 - 720.5 450.5 130.5 105.5 130.5 75.5 75.5

10 - - 120.5 185.5 460.5 225.5 80.5 185.5
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The changes in decision making due to the addition of the static sensors is more clearly

seen in the detection/ classification times shown in Table 6.13. In the case of IHP, Target 2

is detected at 5.5s due to directing a UAV to observe a high threat area. With the addition

off an OP in the vicinity there is reduced utility in assigning a UAV to observe the area and

thus this target is not detected by a UAV. The table shows that Target 2 is first detected by

an OP at 10.5s and this sensor then classifies the target at 15.5s. As the observation is fused

into the common belief state, subsequent target observation to update the track estimate

are performed by UAV observation. The addition of static sensors is also responsible for

the additional detections seen in the FHP results. Targets 4, 8 and 9 are first detected by a

static sensor and these observations are also responsible for enabling classification of Target

4,5,6,8 and 9. Despite the additional tracks and classifications with FHP, from Figure 6.26

the overall estimate is poorer. This is as a result of the additional targets being civilian

vehicles which pose a comparatively small threat to assets.

6.4.6 Observation Points Summary

In the scenario presented, the addition of observation points or static sensors did not have

a large impact on the system’s performance with respect to threat estimation. The main

change in the system’s performance will be seen in the search belief state, however the impact

will be largely dependant on the ratio of the area covered by the static sensors to the overall

area. The probability of high threat targets passing through the static sensor’s field of view

may also contribute to some extent. As shown by threat estimate error plots, the additional

static sensors do not necessarily result in better threat estimation performance.
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Figure 6.25: True and Estimated Threat for the Observation Points situation.
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Figure 6.26: True and Estimated Threat for the Observation Points situation for each
control scheme.



6.4 Simulation Results 98

6.4.7 Mission: External Observations

In the External Observations scenario a number of target observations are provided to the

system from an external source as outlined in Table 6.9. The observations take the form

of vehicle type and location at a given time and are fused into the belief state in the same

update cycle as UAV observations.

As in the Observation Points Scenario in Section 6.4.5, it can be seen from Figure 6.27 that

changes in the system’s estimated threat due to additional observations is minimal. Two

of the external observations are of targets that contribute little to the overall threat while

the observation of the Red Force vehicle, Target 1, occurs after it is already being tracked

by all control schemes.

The threat error plots in Figure 6.28, show that the threat estimation performance for

all control schemes, except Task, result on poorer performance compared to the Operator

Modified scenario. This result is result is counter intuitive, as the external observations

add information to the system and would be expected to aid threat estimation. With the

addition of information in the Observation Points scenario also causing poorer performance

in 2 cases, this indicates that information addition may result in poorer performance when

the metric used for utility is not solely based on information gain. This is taken up further

in Chapter 7.

As for Observation Points, the four external observations fused into the belief state have

relatively little impact on the difference between the True Threat and Estimated Threat.

All 4 control schemes detect Target 1 prior to the external observation. As a result from

Table 6.14, the most significant change in detection/classification times is in classification

time. The external observation of Target 1 at 120s does however result in target classification

by 125.5s for FHP and IHP.

6.4.8 External Observations Summary

It has been shown that external observations of the correct format can be seamlessly in-

tegrated into the system, with the information adding to the belief state. However it was

shown that these changes to not necessarily result in a performance improvement.
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Table 6.14: Targets Tracked - External Observations Scenario 2

FHP
BSL

FHP
EXTO

FHF
BSL

FHF
EXTO

IHP
BSL

IHP
EXTO

Task
BSL

Task
EXTO

Targets Found 6 8 10 10 10 10 10 10

Time to Find (s)

1 25.5 25.5 25.5 25.5 5.5 5.5 5.5 5.5

2 - 500.5 10.5 10.5 5.5 5.5 30.5 35.5

3 30.5 30.5 100.5 100.5 180.5 320.5 50.5 50.5

4 - 515.5 45.5 45.5 5.5 5.5 5.5 5.5

5 130.5 240.5 380.5 385.5 115.5 385.5 5.5 5.5

6 5.5 5.5 35.5 35.5 5.5 5.5 5.5 5.5

7 240.5 270.5 15.5 15.5 10.5 10.5 10.5 10.5

8 - - 10.5 10.5 5.5 5.5 5.5 5.5

9 - 410.5 350.5 345.5 5.5 5.5 5.5 5.5

10 135.5 - 10.5 10.5 10.5 10.5 5.5 5.5

Targets Classified 2 2 9 9 10 10 10 10

Time to Classify (s)

1 - 125.5 120.5 120.5 500.5 125.5 210.5 100.5

2 - - 350.5 500.5 130.5 125.5 75.5 60.5

3 55.5 55.5 780.5 420.5 250.5 395.5 350.5 100.5

4 - - 195.5 205.5 440.5 80.5 55.5 55.5

5 - 720.5 - - 380.5 485.5 525.5 420.5

6 - - 115.5 120.5 285.5 240.5 315.5 375.5

7 445.5 - 45.5 45.5 80.5 190.5 200.5 180.5

8 - - 130.5 130.5 135.5 85.5 45.5 55.5

9 - - 450.5 675.5 105.5 110.5 75.5 50.5

10 - - 120.5 120.5 460.5 170.5 80.5 130.5
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Figure 6.27: True and Estimated Threat for the External Observations situation.
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Figure 6.28: True and Estimated Threat for the External Observations situation for each
control scheme.



Chapter 7

Conclusions and Future Work

7.1 Architecture

A flexible framework for human-robot cooperation has been implemented and demonstrated

in a simulation environment. The basic architecture has been shown to be adaptable, via

module substitution, to a variety of control concepts. Two different control schemes, in

information value and task based control, have been demonstrated using the same basic

architecture.

The implementation of the cooperative architecture has been shown to allow human judge-

ment of the wider mission to be captured and fed into the system. This capturing of human

situational evaluation has been demonstrated both as an a priori input and as an online

dynamic process.

The architecture allows for the use of different sensor types and platforms and and has been

demonstrated with sensor input from sources external to the system.

7.2 Information Value Based Control

A consistent formulation of information value, based on information theoretic concepts

that takes into account wider mission objectives and the current information state, has

been presented. This has been demonstrated as a valid basis for controlling a number of

heterogeneous sensor platforms for an information gathering task.
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It has also been shown that this concept of control can be used to capture some of the

wider situational context and operator knowledge. Further, any changes to the situation

are quickly assimilated into the belief state and the behaviour of the system modified.

7.3 Control Schemes

Four control schemes were demonstrated in simulation, with 3 using the information value

based control discussed in Chapter 3. The fourth scheme utilised an identical valuation

system but used a platform to task allocation method of control.

A number of different metrics were used to evaluate the performance of each control type:

− Overall estimation of the true threat state

− Maintenance of Red Force vehicle tracks

− Detection and Classification times

− Search performance

With respect to these metrics the performance ranking of the control schemes was signif-

icantly different depending on the metric used. FHF and IHP controllers performed best

against the detection and classification metric, Task in threat estimation, Task and FHP

for tracking and FHP for searching.

The Task controller explicitly assigns a ‘track’ tasking to a UAV. As a result, high threat

targets are more likely to be reacquired and observed once in track. In the case of FHP,

the limited area considered in the path planning loop results in a tendency to remain in the

vicinity of a high threat target once detected. This same characteristic is responsible for the

FHP search performance. As a weighted measure, once the UAV is in an area considered to

be vulnerable the control loop will tend to continues searching the local area. However this

becomes a liability when looking at detection/classification performance as the controller is

reluctant to move the UAV to new lower threat areas.

The increased area of the map considered by the FHF controller overcomes the deficien-

cies in the FHP controller for detection and classification. However the weighted search

performance suffers as a result.
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It has been shown that small changes to the control scheme can significantly affect the

performance of the system and that the resulting changes may be either desirable or unde-

sirable depending on the performance metric used. Thus when this system is run, both the

mission and the control scheme used need consideration.

7.4 Scenarios

Three scenarios were used to demonstrate the ability of the architecture adapt to changes

in situation and accept external information. Where the operator was able to modify

mission parameters on the fly to reflect a new situation, performance for all control schemes

improved significantly.

In the scenarios where external information was added to the system, via fixed sensors

and target observations, the performance benefit varied depending on the control scheme

used. Additional information did not necessarily improve performance. This indicates a

controller-belief interaction that cannot be described as ‘more information equals better

performance’ and the requires further investigation.

7.5 Future Work

The framework for human-robot cooperation has been shown to be a useful approach to tack-

ling the problem of single operator, multiple platform control for an information gathering

mission. However within the scope of this thesis it has been impossible to fully characterise

the system developed. Application of the framework to different environments, tasks where

information is gathered in support of other activities and tasks where the objective is not

defined in terms of information states is left as future work.

Running the entire simulation on a single CPU lead to severe limitations in computational

power. The nature of the road network and tracker makes the system complex even with

10 targets. When combined with the computational resources required to run multiple

autopilots, ground vehicle models and motion models, the simulation quickly bogs down

on a single processor. By distributing modules to different CPUs as would be done in

a real system, such as with a CPU per autopilot, larger more complex scenarios may be

investigated. This is again left to future work.
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The results for the 2 scenarios in which external information is added to the system pose

a number of questions for future work. The beahviour observed indicates that additional

information may harm the system’s performance, depending on the control scheme adopted.

This runs counter to the principle of using information gain as utility, though may reinforce

the importance or valuing information. To properly examine the behaviour observed, it

needs to be determined whether it is specific to the scenario used as an example or whether

it is a trend more widely observed. Changes should include static sensor placement and

observation area, additional targets and sensors, longer simulation time, UAVs flying fixed

patterns and additional external target observations. This too is left to future work.



Appendix A

Common Simulation Components

and Modules

A.1 Sensors

The sensor component contains all the functions and data required to generate observa-

tions for a single simulated sensor. Each sensor object in the simulation is associated to a

single UAV platform and is updated with new position and pose information each time the

platform updates its own position. On being triggered to generate an observation, the area

currently visible to the sensor, or footprint, is found from the current state of the platform

X and the fixed sensor Field Of View (FOV) parameters. The bounds of the footprint are

passed to Search state component for fusion of the null observation. If the true position of

a ground vehicle is within the current footprint a probabilistic target observation is created

and passed to the Tracker and Classifier components for fusion.

A.1.1 Sensor Footprint

The sensor footprint is determined by a coordinate transformation from the sensor frame

to the world frame. The sensor frame is defined relative to the UAV frame, which in turn

is known relative to the world frame. Sensors are fixed to the platform, simplifying the

transformation.
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The body frame of the UAV is defined relative to the fixed world frame via origin x,y,z

nominally attached to the platform Centre of Gravity (CG). The orientation of the UAV

body, b, relative to the world frame, w, is given by the transformation matrix shown in

Equation A.1 where s(.) is sin(.) and c(.) is cos(.).

Cwb =


cθcψ cθsψ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφsφ

sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

 (A.1)

− Subscript b represents the body frame.

− Superscript w the world frame.

− ψ yaw angle of the platform.

− θ pitch angle of the platform.

− φ roll, or bank angle of the platform.

The transformation matrix for world frame to the UAV frame is the matrix transpose shown

in Equation A.2.

Cbw = Cw
T

b (A.2)

A coordinate in the body frame can be transformed to world frame coordinates via the

transformation shown in Equation A.3.

Pwt = Cwb P
b
t (A.3)

− Subscript t represents the target frame, which is the same as the world frame.

− P is the 3-dimensional coordinate vector.

Target observations are made in the sensor frame. As the sensor frame may have a different

orientation to the UAV body frame, a transformation to the body frame may be required.

The origin of both the sensor frame and body are both considered as nominally the platform

CG or P bt = P st . All sensors are fixed relative to platform and are constrained to look in a

single direction. Thus the transformation matrix Cbs is the same as Cwb shown in equation
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A.1 with fixed substitutions as shown in Equation A.4. The forward, down, half left/right

and left/right sensor orientations are shown visually in Appendix C with the respective

vectors shown in Equation A.4.


ψ

θ

φ

 =


0

−π
2

0

 ,


0

−π
4

0

 ,

±π

4

0

0

 ,

±π

2

0

0

 (A.4)

The complete transformation of observed coordinates to world coordinates is shown in

Equation A.5 where subscript s refers to the sensor frame.

Pwt = Cwb C
b
sP

b
t (A.5)

In addition to dependance on Cwb and Pwb , the sensor footprint is dependent on the sensor

FOV and location of the ground plane. The FOV is defined by a horizontal and vertical

angle designated as αh and αv respectively. The ground plane is designated by Zg.

The footprint is determined by projecting a unit vector from the sensor origin to each corner

of the sensor’s FOV. The azimuth and elevation of each unit vector can be determined as

shown below.

azimuth = ±αh
2

elevation = ± arctan(tan
αv
2

cos (azimuth)) (A.6)

The FOV transformation matrix, or unit vector transformation matrix Csf , for each corner

can be determined by substituting the relevant azimuth and elevation into Equation A.1.

The subscript f identifies the transformation matrix as referring to a single corner of the

sensor’s FOV. The unit vector, nwfi, for each corner can be determined in the world frame

as shown in Equations A.7 and A.8.

nwfi = CbwC
s
bC

fi
s


1

0

0

 (A.7)

− i is the index of the unit vector, for a rectangular FOV i = 1 . . . 4.
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− ψ = azimuth

− θ = elevation

− φ = 0

To transform a coordinate or unit vector defined in the sensor frame to the world frame the

transformation below is used.

Pws = Pwb + CbwP
b
s (A.8)

The sensor footprint can then be mapped onto the ground by projecting each unit vector

and determining the intersection with the ground plane. Solving the parametric equations

shown in Equation A.9 results in the x,y coordinates of the footprint corners in the world

frame.

x = x0 + at

y = y0 + bt (A.9)

Given the ground plane z = Zg, the substitution terms in Equation A.9 can be obtained

using Equations A.10 to A.12.

Pws =


x0

y0

z0

 (A.10)

nwfi =


a

b

c

 (A.11)

t =
Zg − z0

c
(A.12)

The target detection ability of a sensor and the probability is dynamically affected by the

pixel density pixel/m2. The instantaneous pixel density at a point within the footprint
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can be determined using the method outlined in Equations A.9 to A.12 and dividing the

projected FOV edges into n equidistant sections according to the resolution. If the sensor

pixels are nominally square then the pixel density, µ can be found from Equation A.13.

µ =
ᾱh
nh

=
ᾱv
nv

(A.13)

Taking into account the sensor height and pose, both of which are coupled to the UAV height

and pose, the angle between a unit vector anywhere in the footprint, α can be calculated.

Using the same notation from Equations A.10 and A.11 the pixel density κ can be found

via the Equation A.15.

α = arctan
√
a2 + b2

c
(A.14)

κ =
1

((Zg − z0) sec2(α)µ)2
(A.15)

The computational load of determining κ and a subsequent P (zt|xt) for each point in the

sensor’s footprint resulted in the simplification for κ shown in Equation A.16 being adopted.

In order to speed the computational process this approximation is applied over the whole

footprint.

κ =
np(

z2
0

tan(αh) tan(αv)
2

) (A.16)

− np is the number of pixels.

− h is the height of the UAV/Sensor above the ground plane Zg

A.1.2 Detection

The ability of the sensor to detect a particular ground vehicle type is a function of both the

sensor’s ability to ‘see’ the ground vehicle type and the number of resolved pixels across the

target. This later component is encapsulated in the Johnson criteria, J , which represents

the number of cycles or line pairs across the target.
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J =
κ
√
β

2
(A.17)

− J Johnson Criteria

− κ is the pixel density (see Equation A.16).

− β is the projected target area in m2

Empirical studies show that for a detection confidence of 0.9 in a cluttered environment,

a J value of between 4 and 17 is required [6]. These values relate to conspicuous and

non-conspicuous targets respectively.

Due to the computational load imposed during simulation, ta is kept constant and a de-

tectability function determined a priori for each sensor type. This is stored as a look up

table, relating J to P (zt|xt) values, which are then used to determine if the ground vehicle

within the sensor’s footprint is detected. The table is shown in Appendix C.

A.1.3 Localisation

The sensor’s ability to estimate a detected ground vehicles location is represented by a two

dimensional Gaussian as shown in Equation A.18.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (A.18)

To determine the location of the detected target, the true ground vehicle x and y are used

along with the σ defined in the model for the sensor type. An x and y value for the

detection is then selected with probability G from the distribution centered on the true

target location.

A.1.4 Classification

The sensor’s ability to estimate a detected ground vehicle’s type is represented by the

distribution P (zc|xc). Each sensor type has a unique discrimination function and these

are shown in Appendix C. To determine the classification of a detected ground vehicle, a

classification is selected with probability P (zc|xc) conditioned on the true vehicle state.
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A.1.5 No Detect

Each time an observation is made the footprint as calculated in A.1.1 is passed to the

Search State and Tracker for fusion as the ‘null observation’. As observations of ground

vehicles that fall within the footprint are handled separately, the null observation is the

sensor estimate of where no ground vehicles are present.

A.2 Platforms

The UAV platform component contains all the data and functions to simulate a single UAV

sensor platform. Each platform is associated with at least one sensor for which it provides

state updates. The UAV contains a number of subcomponents:

− The Guidance component takes waypoints and generates a desired height, bank angle

and speed command. The guidance loop is performed in simulation at 10Hz.

− The Autopilot component takes the guidance command and generates control inputs

for angular rates and throttle. This Autopilot loop is performed in simulation at 20Hz

− The Dynamic Model component takes the control inputs, and based on the platform

dynamic model generates a new state X for the UAV. The Dynamic Model loop is

performed in simulation at 20Hz with the new state at the end of each loop passed

back to the Autopilot component.

Two different UAV platform types are available in the simulation, as outlined in Appendix

C. Both types use the same subcomponents and functions, however limits and gains will be

unique to the type.

A.2.1 Guidance

The Guidance component takes either a single waypoint or list of waypoints, defined as a

three dimensional point, and the current UAV state X and generates a guidance command

shown below.
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guidance =


vd

zd

φd

 (A.19)

− vd is the desired airspeed, which is supplied as part of the waypoint.

− zd is the desired height, which is the z component of the waypoint.

− φd is the desired bank angle.

Each time the guidance loop is called, the distance to the current way point is checked. If

the waypoint has been reached a check is made for a new waypoint. If none is available the

guidance mode is switched to ‘orbit’ and a constant v̇, zd and φd applied until a new waypoint

becomes available. If the the current waypoint has not been reached, a Proportional Integral

(PI) control and φ limit is applied to the heading error to determine φd.

φd(s) = kφ(ψw − ψc) +
2(ψw − ψc)

s
(A.20)

− kφ is the proportional controller gain determined from a lookup table based on the

UAV current speed.

− ψw is the heading to the active waypoint from the current UAV position.

− ψc is the current UAV heading.

A.2.2 Autopilot

The Autopilot component takes guidance commands as described in Section A.2.1 and gen-

erates an autopilot command which defines the control rates to be applied to the platform.

autopilot =


θ̇

φ̇

v̇

 (A.21)

The guidance command is passed through height, speed, bank and pitch control functions

in order to generate the output in Equation A.21. For simulation it is assumed that all

turns will be coordinated, hence the Dynamic Model omits side slip effects and therefore

no rudder control, ψ̇, value is calculated.
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Height Control

The height control function is in two stages, first a demanded Rate Of Climb (ROC) is

determined using a proportional controller via Equation A.22, then this is converted to a

demanded pitch or climb angle, θ using Equation A.25.

żd = kh(zc − zd) (A.22)

− żd is the desired ROC

− kh is the proportional controller gain determined from a lookup table based on UAV

type and current speed.

− zc current height above the ground.

− zd desired height above the ground.

The desired flight path angle at the current speed is then calculated as shown below.

γd =
(
żc − żd
v

)
(A.23)

γe = γd − γc (A.24)

− γd is the flight path angle need to achieve the desired ROC from Equation A.22

− v is the current airspeed.

− zc current height above the ground.

− zd desired height above the ground.

− γe is the flight path angle error.

As the simplified Dynamic Model does not account for effects such as side slip or skidding

the current pitch angle is the current flight path angle, θc = γc. The desired pitch angle,

θd is then calculated using the γ values, before being passed through a limiting function as

shown in Equation A.25.

θd(s) = γd + γe +
0.1γe
s

(A.25)
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Pitch Control

The pitch controller uses the demanded pitch angle from the height controller to generate

a θ̇ command using the PI controller in Equation A.26.

θ̇(s) = kθ(θd − θc) +
θd − θc
s

(A.26)

− θ̇ is the applied pitch rate.

− kθ is the pitch gain determined from a lookup table based on UAV type and current

speed.

− θd − θc is the pitch angle error.

Speed Control

The speed control control function is a lead-lag compensated error feed back loop. The v̇

error is passed through the lead-lag filter in Equation A.27.

G(s) =
s+ 0.1
s+ 0.01

(A.27)

The controller gain kv is determined from a lookup table based on UAV type and current

speed allowing the desired v̇ to be found via Equation A.28.

v̇ = kvG(s) (A.28)

Bank Angle Control

The bank angle controller is a gain scheduled proportional controller with gain kp determined

from a lookup table based on UAV type and current speed. The desired roll rate is found:

φ̇ = kp(φd − φc) (A.29)

− φ̇ is the applied roll rate.

− kp is the controller gain.

− φd − φc is the bank angle error.



A.3 Ground Vehicles 116

A.2.3 Dynamic Model

The Dynamic Model takes the applied control inputs from the Autopilot and the current

UAV state and applies a fourth order Runge-Kutta solution to the 6-DoF Ordinary Dif-

ferential Equation (ODE) of state. The general Runge-Kutta solution for the initial UAV

state Xn is found using Equation A.30.

Xn+1 = Xn +
1
6

(k1 + 2k2 + 2k3 + k4)dt (A.30)

k1 = Xndt

k2 = Xn + 0.5k1dt

k3 = Xn + 0.5k2dt

k4 = Xn + k3dt

(A.31)

Where dt is the incremental time step, for simulation purposed a constant value of 0.1 was

used.

The control input from the Autopilot in Equation A.21 is assumed constant over the time

step dt. As the applied v̇, θ̇ and φ̇ values are supplied the remaining velocities can be

calculated and the k values determined via:

ẋ = vc cos θc cosψc

ẏ = vc cos θc sinψc

ż = vc tan θc

ψ̇ =
tanφc(vc tan θ̇+9.81)

vc

(A.32)

The output state Xn + 1 is then applied as the current state Xn of the platform for the

next Autopilot/Dynamic Model loop.

A.3 Ground Vehicles

The Ground Vehicle component contains all the functions and data required to simulate

a single ground vehicle. Each Ground Vehicle contains Guidance and Motion Model com-
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ponents which control position, along with static characteristics which are unique to each

type. The various vehicle type are outlined in Appendix C.

The target type, size and conspicuousness may be used in conjunction with Equations A.17

and the table in Appendix C to determine the detection probability. However due to the

computational load for running the entire simulation on a single processor, the properties

size and conspicuousness properties were not used for the simulation results shown in Section

6.4.

A.3.1 Motion Model

Ground vehicles are restricted to moving along the urban road network shown in Appendix

C. The network is discretised into nodes, where each node is nominally placed at a 1m

interval along the road. Each node is given a unique identifier with a connectivity map

indicating which nodes are connected and in what direction. These directions are shown in

Appendix C.

During each Motion Model loop the ground vehicle centroid is moved forward along the

network, by the number of nodes specified by the time interval and the vehicle velocity.

The velocity for each vehicle type is give in Appendix C and the Motion Model loop is run

at 20Hz.

A.3.2 Guidance

The Guidance subcomponent has two different modes of operation, random and path. If the

current mode is set to random, on reaching an intersection node a new direction is chosen

randomly subject to the propagation filter shown in Appendix C.

The Guidance subcomponent can hold a list of waypoints. A path from the current position

to the next waypoint in the list can be found using the A∗ algorithm. The output of the A∗

algorithm is a set of intersection nodes and the subsequent path nodes, which are stored.

If the current Guidance mode is set to path, then on reaching an intersection the new

direction is defined by the stored next path node. If the waypoint is reached and there

are waypoints yet to be visited a new path to the next waypoint is found, however if no

unvisited waypoints remain, the Guidance mode is forced to random.
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The A∗ algorithm is the recursive application of the function in Equation A.33

f ′(n) = g(n) + h′(n) (A.33)

− g(n) is the total distance travelled from the path start point to the current location.

− h′(n) is the estimated distance from the current position to the waypoint determined

through a heuristic function.

− f ′(n) is the current estimate of the shortest path.

The final path f(n) is equal to f ′(n) once the algorithm has finished. The heuristic used

for estimating the distance to the waypoint is shown in Equation A.34.

h
′
x̄>ȳ(n) = |x̄|+ 0.4 |ȳ|

h
′
x̄<ȳ(n) = 1.4 |ȳ|

(A.34)

− x̄ is the distance from the current position to the waypoint along the x axis.

− ȳ is the distance from the current position to the waypoint along the y axis.

A.4 Tracker

The Target Tracking Module is part of the Level 2 Data Fusion functionality and is respon-

sible for providing the current bc and future belief bf of the location of all ground vehicles

detected. The complete track component of the belief Bt is a vector of q probability dis-

tributions, where q is the number of ground vehicles that have been observed. If a tracked

ground vehicle’s position is given by the variable xt the belief state is:

Bt = [P (xt1) . . . P (xtq)] (A.35)

The distribution P (xt) represents the probability of the tracked target being at any given

node in the map. The belief of the target’s position given all observations made up to time

k can be found using Equation A.36.

bk(xt) = P (xt|ztk, ztk−1, . . . , z1) (A.36)
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Assuming the ground vehicle’s motion is Markovian, Equation A.36 can be calculated re-

cursively using Bayes rule as in Equation A.37 .

bk(xt) = P (xtk|zt1:k)

= KP (ztk|xtk)P (xtk|xk−1, z
t
1:k−1)

= Kp(ztk|xtk)P (xtk|xtk−1)P (xtk−1|zt1:k−1) (A.37)

Where the prior P (xtk−1|zt1:k−1) is the posterior from the previous recursion and K is a

normalising constant.

A.4.1 Prediction

As the ground vehicle will not necessarily be observed at each k, a prediction of the state

xt provides the current belief estimate when no observation is available and may be used to

generate the future belief estimate. The propagation of P (xt) is governed by the Chapman-

Kolmogorov and Fokker-Planck-Kolmogorov equations, for the continuous and discrete cases

respectively. The predicted belief state can be found:

bk+1(xt) = P (xtk+1|zt1:k)

= K

∫
P (xtk+1|xtk)P (xtk|zt1:k)dxk (A.38)

Where P (xk+1|xk) is the target’s motion model. The setup of the module allows prediction

of P (xt) to the UAV planning horizon.

A.4.2 Update

When an observation is available, the belief is updated using Bayes theorem in Equation

A.39.
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bk+1(xt) = P (xtk+1|zt1:k+1)

= KP (ztk+1|xtk+1)P (xtk+1|zt1:k) (A.39)

If observations are available from multiple sensors and each is conditionally independent

given the true state of xt, then ztk+1 =
[
z1
k+1 . . . z

r
k+1

]
. The update, Equation A.39 can then

be rewritten as in Equation A.40.

bk+1(xt) = P (xtk+1|zt1:k+1)

= KP (xtk+1|zt1:k)
r∏
i=1

P (ztik+1|x
t
k+1) (A.40)

A.4.3 The Particle Filter

Initialisation

The Track prediction and update are implemented in a multi-hypothesis framework, using

a particle filter approach. On observation of a previously unknown ground vehicle a new

track is created to represent the distribution P (xtq). The track consists of a fixed number of

particles where each particle represents a hypothesis of the true target location xtq and type

xcq. The initial particle locations are assigned according to the sensor’s localisation model

as discussed in Section A.1.3 and the classification model discussed in Section A.1.4. The

number of particles assigned to a point x is found from Equation A.41.

|hx,m| = G(xx, xy)P (xcm)|H|∀m ∈ C (A.41)

Propagation

The belief of target classification will be constant with respect to time, hence each particle

is propagated according to Equation A.38, where the motion model used is model for the

type assigned to the particle. At road junctions, the direction for propagation is chosen

randomly, subject to the direction filter shown in Appendix C.
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Update

When an observation becomes available of a ground vehicle in track, a new set of particles is

created as for initialisation where |h| � |H|. Then each original particle is updated accord-

ing to Equation A.39 using the joint probabilities P (zk+1|xtk+1,x
c) and P (xtk+1,x

c|z1:k).

The new particle set is normalised and the |h| particles with the lowest P (xt,xc) are removed

from the set |H| before renormalisation.

When the null observation corresponding to a particles position becomes available the new

probability for the hypothesis is determined by Equation A.39 where the sensor model

applied is P (zs|xs) = 1−P (zt|xt). If the probability falls below a threshold it is set to zero

and removed from the set to be propagated in the net time step. The particle probabilities

are then renormalised.

A.5 Classifier

The Target Classifier Module is part of the Level 2 Data Fusion functionality and is re-

sponsible for providing the classification belief of all ground vehicles detected. The classify

component of Bc is a vector of q probability distributions, where q is the number of targets

currently being tracked by the Target Tracking Module.

Bc = [P (xc1) . . . P (xcq)] (A.42)

The distribution P (xc) is the probability of the true ground vehicle type taken over all

possible types. The classification update is performed via a recursive application of the

Bayes update equation:

P (xc|zc) =
P (zc|xc)P (x)

P (zc)
(A.43)

Given the observation zc is received by the Classifier the classification estimate can be

obtained from Equation A.50.

P (xc|zck) = KP (zck|xc)P (xc) (A.44)
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Where K is a normalising factor and P (xc) is the estimate of the classification prior to

the update. This is initially the uninformed distribution over all target types, while for

all subsequent updates the posterior P (xc|zck) from the previous update is used as the new

prior. The sensor model P (z|xc) is known for each sensor type a priori and stored as a

likelihood matrix. See Appendix C for details of the different sensor models.

If observations are available from multiple sensors within the same time step k and each

is conditionally independent given the true state of xc, then zck+1 =
[
z1
k+1 . . . z

r
k+1

]
. The

update equation can be written:

P (xc|zck) = [P (zck)
−1P (xc)

r∏
i=1

P (zci |xc) (A.45)

In the implemented Classifier and Tracker, correct observation to track is assumed. Hence

the interaction between the Classifier and Track is limited to selection of the number of

particles to assign to a particular motion model based on the classification probability.

A.5.1 Classification Sets

The ground vehicle types are grouped into predefined classification sets. These sets are

used in constructing the mission for the task based control and for threat definition in value

based control. Instead of assigning priority or threat to an individual type the operator

may assign it to one of the sets and deal with the set as if it were a single type.

The probability of membership of set C is the sum of probabilities for each member of the

set as shown in Equation A.46.

P (xC) =
∑
m

P (xcm)∀m ∈ C (A.46)

The predefined classification sets are outlined in Appendix C.

A.6 Search State

The Search component is part of the Level 2 Data Fusion functionality and is responsible

for providing the current bc and future belief bf of the location of ground vehicles that have
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yet to be observed. The complete search component Bs is a probability map over all points

within the area of operation.

Bs =
S∑

n=1

P (xsn) (A.47)

In the urban security mission defined in Section 3.4 the number, or indeed existence, of

ground vehicles in the area of operation is unknown a priori. This makes setting up the

search distribution and assessing the initial of P (xs) difficult, particularly in relation to

finding appropriate priors. As a result the state of search task is represented as the dis-

tribution P (xs) over the entire area of operation conditioned on the existence of a single

previously unobserved ground vehicle. When a ground vehicle is detected it is immediately

handed off to the Track and Classification components and a null observation passed to the

Search State component.

A.6.1 Predict

As only a small section of the area of operation is observed at any time, the prediction of

the state xs provides the current belief estimate for the unobserved areas and may be used

to generate the future belief estimate. The propagation of P (xs) is nominally governed by

the Chapman-Kolmogorov equation as for the track state in Equation A.38. However given

no a priori information on location, number or type of vehicles, then each type and possible

location needs to be propagated to time k. This is computationally intractable for the node

network map, therefore a time constant information decay is applied according to Equation

A.48 where τ is the decay constant.

P (xsk−1|xsk) = P (xsk)τdt (A.48)

A.6.2 Update

The classification update is performed via a recursive application of the Bayes update

equation:
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P (xs|zs) =
P (zs|xs)P (x)

P (zs)
(A.49)

Given the null target observation zs is received the updated estimate can be obtained from

Equation A.50.

P (xs|zsk) = KP (zsk|xs)P (xs) (A.50)

Where K is a normalising factor and P (xs) is the estimate of the classification prior to the

update. This is initially the uninformed distribution over the area of operation, while for

all subsequent updates the posterior P (xs|zsk) from the previous update is used as the new

prior. The value of P (zs|xc) is related to the detection probability outlined in Section A.1.2

by Equation A.51.

P (zs|xs) = 1− P (zt|xt) (A.51)



Appendix B

Task Based Control

B.1 Framework Components

B.1.1 Organization

The decision process performed at the Organization level can be summarized as the map-

ping:

O :Mc ×Md × P× Ah × Ph → (A,W) (B.1)

− Mc is the current state of the mission derived from the the world belief state B.

− Md is the desired mission state derived from the operator input and the the structure

of the mission M .

− P is the set of priorities associated with task types.

P = {ptq, pcq, ps}∀q = 1 . . .Q (B.2)

− ptq and pcq are the priority for tracking and classifying the qth target type and ps is the

priority of search for the whole area of operation.

− Ah is set of additional tasks as a result of Level 3 data fusion.

− Ph is the set of priorities associated to tasks specified by the operator which for this

implementation is the search of areas around protected assets.

Ph = {pS
a, . . .} (B.3)
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− pS
a is priority for searching the sub area associated with the ath asset.

− A is the unified set of tasks.

− W is the set of weights associated with the set A.

B.1.2 Coordination

In line with the concept of IPDI, the Coordination level deals with a lower level of task

abstraction than the Organiser. The first stage of the Coordination process is allocation of

the task set, A, to the available resources. This results in the allocated task set Υ

C : W× A→ Υ (B.4)

Certain tasks may be assigned to multiple platforms or sensors and may need to be coordi-

nated in time and/or space. This is the second stage of the coordination process. For tasks

which include parameters such as simultaneous arrival or observing a target from different

angles, the time and space coordination may require multiple iterations of the path plan for

each platform.

B.2 Modules

The task based control scheme is implemented in code as the modules shown in Figure B.1.

These modules are discussed in the following sections.

B.3 Organiser

The Organiser performs the mapping shown in Equation B.1 in stages, with responsibility

for the different stages divided between the Mission and Mission Planner modules.

− Interface with the operator to capture and store the mission parameters.

− Evaluate the current and desired mission states.

− Create the current task pool from the current belief and mission, adding any other

tasks specified by the operator.

− Calculate a weighting for each task in the current task pool.
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Value Controller Block

Mission 
Planning Module

Organiser 
Module

Coordination 
Module

UAV Path 
Planner Module

Figure B.1: Software modules for tasked based control.

B.4 Mission Module

The Mission Module provides the interface for the operator to enter and modify mission

parameters. These parameters are maintained as the mission object M , which consists of

three components corresponding to the search, track and classify objectives.

M =
[
Ms,Mt,Mc

]
(B.5)

Search Ms

The Search component of the mission consists of the operator defined parameters ‘Priority’

and ‘Likelihood’ for the General Search task and any Area Search tasks.

When entering the priority and likelihood parameters, the operator is able to specify whether

they apply to the entire area of operation, S or a specific area S. In the security scenario,

S will normally be an area surrounding a protected asset.

The priority term is assigned according to one of the descriptions shown in Equation B.6. A

numerical value corresponding to the human level description is then automatically applied

and stored in the mission object.
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ps = |No Impact, Some Impact, Desirable, Highly Desirable, Mission Critical| (B.6)

It is desirable that the values corresponding to each descriptive level are assigned by a

human with high level knowledge of the situation, or extracted from historical data. The

corresponding numerical values are applied as either the linear set 1 . . . 5 or the logarithmic

set 21 . . . 25.

The ‘Likelihood’ describes the desired maximum likelihood of the presence of an undetected

target being present at any point in either S or S.

Track Mt

The Track component consists of the operator defined parameters ‘Priority’ and ‘Track

Variance’ for each ground vehicle type. The ‘Priority’ term is assigned, as for search,

according to selected priority level shown in Equation B.6. The desired track variance in

m, for the target type is entered directly by the operator

Classify Mc

The Classification component consists of the operator defined parameters ‘Priority’ and

‘Classification Threshold’ for each target type. The priority term is again assigned according

to the levels in Equation B.6.

The classification threshold is entered directly by the operator. If the vehicle type prob-

ability of of a tracked target reaches this threshold the target is considered to have been

classified.

B.5 Mission Planning Module

The Mission Planning Module generates a current mission state Mc based on the system

belief B and a desired mission state Md based on the parameters in the mission object

M . These mission states are then mapped to a set of tasks and associated priorities as
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per equation B.1. From section B.4, the mission M consists of search, track and classify

components.

M = f [(σ2
trk|xc)︸ ︷︷ ︸
Track

, Pmin(xc)︸ ︷︷ ︸
Classification

, Pmax(xs|S), Pmax(xs|S)︸ ︷︷ ︸
Search

] (B.7)

Where the priority for each search, track or classify task is determined from the priority p

applied by the operator from Equation B.6.

B.5.1 Current Mission State Mc

The current mission state is defined by the Hellinger-Bhattacharya distance between the

current distribution P (x) and the naive or flat distribution. For two discrete distributions

P (xai ) and P (xbi) of length i, the distance δ is fund using Equation B.8.

δ
(
P (xai ), P (xbi)

)
=

[∑
i

(
P (xai )

0.5 − P (xbi)
0.5
)2
]0.5

(B.8)

The naive distribution is constant, hence δ is determined via the Hellinger-Bhattacharya

(HB) affinity to allow the distributions to be handled separately. The HB affinity α for a

discrete distribution of n possible states is shown in Equation B.9.

α = 2 log
n∑
i=1

√
P (xi)
n

(B.9)

The affinity in Equation B.9 has an associated HB distance shown below.

δα = 2(1− e0.5α) (B.10)

The distance between the distributions is then found using equation B.11.

δ = δaα − δbα (B.11)
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Search

The state of general search component of the mission can be obtained by finding the HB

distance of the P (xs) from a uniform distribution of the same length using the Equations

B.9 to B.11.

Ms
c = δsα − δUα (B.12)

Where δU is the HB distance of an uniform distribution with length |S|.

The area search component of the current mission state is the set of the individual search

states of all areas S specified by the operator.

Ms
c =

∣∣Ms
c(S)i

∣∣∀i = 1 . . . A (B.13)

Where A is the set of search areas specified by the operator. The distribution associated

with the points in S can be extracted from the main search map P (xs) as S ⊂ S.

Ms
c(S) = δsα − δUα

= 2

1− e
log
|S|∑
i=1

√
P (xs∈S)
|S|

− δUα (B.14)

Track

The track component of the current mission state is the set of individual track states of all

ground vehicles being tracked by the system.

Mt
c =

∣∣Mt
c(q)

∣∣∀q ∈ Q (B.15)

Where Q is the set of all ground vehicles in track. The track distribution for target q

is obtained from P (xt) with the distribution length |S|. The uniform distribution for the

tracker implemented consists of g points with P (xt) = 1
g where g is equal to the number of

particles used by the tracker and |S| − g points where P (xt) = 0.
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Classify

The classification component of the current mission state is the set of individual classification

states of all ground vehicles being tracked.

Mc
c = |Mc

c(q)| ∀q ∈ Q (B.16)

Where Q is the set of all ground vehicles in track. The classification distribution for target

q is obtained from P (xc) and δUα is the uniform distribution over all possible ground vehicle

types.

B.5.2 Desired Mission State Md

The desired mission state is based on the operator preferences captured by the mission

module. A desired distribution for the search, track and classify components is created

according to the parameters in M . The HB distance of the resulting distribution from the

naive equivalent is stored as the desired mission state.

Search

The desired state of the general search component is defined by the operators specified

maximum likelihood for detecting a previously unknown target at any point the area of

operation or Pmax(xs). The desired distribution for the assumption of one unknown target

is found from Equation B.17.

P (xs) =


Pmax(xs)
|S|−1 for |S| − 1 points

1− Pmax(xs) for 1 point
(B.17)

For the uniform distribution P (xs) = 1
|S| for all points.

The area search component of the desired mission state is the set of the individual desired

search states of all areas S specified by the operator.

Ms
d =

∣∣Ms
d(S)i

∣∣ ∀i = 1 . . . A (B.18)
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Where A is the set of search areas specified by the operator. The distribution associated

with each area in A is found in a similar manner to Equation B.17, where S ⊂ S and the

total distribution length is |S|. The desired distribution can then be construction from the

operator assigned value for PAmax(xs).

PA(xs) =


Pmax(xs)
|S|−1 for |S| − 1 points

1− Pmax(xs) for 1 point
(B.19)

For the uniform distribution PA(xs) = 1
|S| . The desired mission state for the area S can

then be found.

Ms
d(S) = δsα − δUα

= 2

1− e
log
|S|∑
i=1

√
PA(xs∈S)
|S|

− δUα (B.20)

Track

The desired state for the track component of the mission is the set of individual track states

for each ground vehicle in track.

Mt
d =

∣∣Mt
d(q)

∣∣ ∀q ∈ Q (B.21)

The desired track distribution is defined by the track variance σ2
max specified for the target

q. A Gaussian distribution over g points with σ2 = σ2
max is constructed where g is the

number of particles used by the tracker to estimate the location of a single target.

P (xt) =

 1
σ
√

2π
e−0.5(x−µσ )2

for x ∈ (−g
2 ,

g
2) points

0 for all x /∈ g
(B.22)

The length of the distribution is |S| where x ∈ S. The uniform distribution is that same as

used for comparison of the current mission track state.
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Classification

The desired state for the classification component of the mission is the set of individual

classification states for each ground vehicle in track.

Mc
d = |Mc

d(q)| ∀q ∈ Q (B.23)

The desired classification distribution for target q is obtained described by the classification

threshold Pmin(x) specified for q by the operator.

P (xc) =

 Pmmin(xci ) for i = 1 . . .m− 1
1−Pmmin(xci )
|m|−1 for i = m

(B.24)

Where m is the set of all possible ground vehicle types. The uniform distribution over all

possible ground vehicle types or P (xc) = 1
|m| is used to find δUα .

B.5.3 Task Generation

The purpose of the task generation component of the Mission Planning Module is to generate

the task pool A from the belief state B. A task or set of tasks is generated for each of the

mission components of search track and classify as appropriate, considering also the ground

vehicles being tracked and what is known about each.

Any tasks contained in the set Ah, are added or removed from the task pool at the discretion

of the operator. If a human generated task ah conflicts with an automatically generated

task, the system generated task is removed from the pool until reinstated by the operator’s

removal of the conflicting task.

Search

The probability of a previously undetected target being at any point within the area of

operation is maintained as the search state P (xs) as detailed in Appendix A. This gives rise

to the general search task as which can be defined as maintain the probability for detecting

a previously unseen target, at any point in the area of operation, below the threshold set by

the operator. The parameters of the general search task are given by ms
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ms = f [ps, Pmax(xs|S)] (B.25)

− xs is the state variable representing the existence of a previously undetected target at

node s.

− Pmax(xs|S) is the operator specified desired likelihood of detecting a previously unde-

tected target in the area of operation.

− ps is the operator assigned priority assigned to the general search objective.

Area Search

The general search task, which relates to the entire area of operation, has a single operator

applied priority and threshold. Searching the area around any protected asset is treated as

a separate task to general search and is included as part of the set Ah.

The area search task aS is dealt with in the same way as general search with the associated

mission components taking the same form as Equation B.25. However the priority and

threshold values applied by the operator only apply to the area S where S ∈ S.

ms = f [psS , Pmax(xs|S)] (B.26)

The general search task as is generated when the system is initialised along with an area

search task asS for each asset in the area of operation.

Track

When an observation is made of a ground vehicle, the position estimate is passed to the

tracking component which maintains the track estimate P (xtq) for all q detected targets.

This is detailed in Appendix A. The track task can then be defined as reduce the uncertainty

regarding the location of tracked target q. Hence for each of q observed targets a track task

atq defined by mt is generated.

mt = f [ptc, (σ
2
c |xcq), P (xcq)]∀c = 1 . . .C (B.27)
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− ptc is the assigned priority for tracking a given target type or set of types c.

− xcq is the state variable indicating the classification of the qth target.

− σ2
c is the desired maximum variance for tracks belonging to the classification set c.

The desired track variance indicates the desired upper bound of uncertainty in a detected

target’s position. Both desired track variance and priority can be assigned on target type

or classification set as in Section B.5.3 and Appendix A.

The area to be observed for each atq is found by using the future belief state bf for the track

of target q at the planning horizon.

Target Track

The track task atq defines the track priority and desired track state with respect to the target

type. If different parameters define the desired track state for a specific target q, then the

track task generated for the target q will be treated as part of the additional task set Ah.

mt
q = f [ptq, (σ

2
q |xcq), P (xcq)] (B.28)

− ptq is the operator assigned priority for tracking target q.

− xcq is the state variable indicating the classification of target q.

− σ2
q is the desired maximum variance for the track of target q.

Classify

When an observation of a ground vehicle is made, the target type estimate is passed to the

classification component which maintains the classification for each track. This is detailed

in Appendix A. The classify task acq can then be defined as reduce the uncertainty regarding

the classification of target q given it is of the type m. Hence for each of q observed targets

a classification task acq defined by mc is generated. However as the task parameters are a

function of the type of ground vehicle, the true task parameters often cannot be determined

prior to the task being completed. As a result the classification supersets described in

Appendix A are used to find mc. The classification task for target q inherits the priority
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and threshold values for the superset c for which it has the highest probability of being a

member.

mc = f [pcc, Pmin(xcc|xcq)]∀c = 1 . . . C (B.29)

− pcc is the operator assigned priority for the set of types c

− xcq is the state variable representing the classification of the qth target.

− xcc is the state variable representing the classification of the qth target with respect to

the classification group on which the threshold is defined.

If the classification probability exceeds the specified Pmin(xcq) value for the target then the

associated classify task is removed.

Classify Target

The track task acq defines the classification priority and threshold with respect to the prob-

ability of membership to a classification superset. If different parameters define the desired

classification state for a specific target q, then the classification task generated for the target

q will be treated as part of the additional task set Ah.

mc
q = f [pcq, Pmin(xcq] (B.30)

− pcq is the operator assigned priority for the target q

− xcq is the state variable representing the classification of the qth target.

B.5.4 Task Weights

The task weight is a function of three components reflecting the priority/criticality of the

information, the desired uncertainty of the information and the preference between the

different information types.

wa =

 paRM̄a for Ma
d >Ma

c

0 for Ma
d ≤Ma

c

(B.31)
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Where pa is the operator assigned priority relevant to the task a, R is the information type

preference and M̄a is difference between the current and desired information distributions as

described in Sections B.5.1 and B.5.2. The term M̄a is thus the marginalised HB distance

between the desired and current distributions of the x relevant to the task, as shown in

Equation B.32

M̄a =
Ma

d −Ma
c

Ma
d

(B.32)

By using the same priority structure for search, track and classify the issue of information

type preference is partially addressed. However due to the influence of the physical area

covered by P (x) in determining the M̄a value, tasks associated with a small physical area

will typically have very high weighting compared to those such as the general search task

which cover a much larger areas. Thus in order to make the information types preferentially

independent [21] the preference term R is added to the task weighting function. The value

of R is then the ratio of the physical area associated with the P (x) relevant to the task, to

the area covered by the general search task.

B.6 Coordination Module

The role of the Coordination Module is to efficiently allocate the tasks generated by the

Organiser Module to the available resources and provided coordination mechanism between

platforms, where necessary to complete the task. In addition to the task list A and weights

W provided by the Organiser, the Coordinator uses information such as sensor accuracy,

modalities, coverage and platform characteristics to determine the optimal task allocation.

At this level, the task pool A is considered as a whole and thus does not make any distinction

between human generated tasks or system generated task.

B.6.1 Task Allocation

Given the the task pool A and the associated set of weights W, the task allocation process

seeks to optimise the mapping in Equation B.33.

C : W× A→ Υ (B.33)
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Where Υ is an ordered set of task to resource assignments, with the first element correspond-

ing to the first agent. The optimization process seeks to maximize the objective function

J (Υ), where Υ contains all tasks assigned in the current planning cycle. The objective

function for a single task is described by Equation B.34.

J (a) = f(η(Γ, a), γ(Π, a), κ(X, a)) (B.34)

− a is an individual task to be allocated.

− Γ is the suitability of a given sensor for the task a.

− Π is the suitability of the platform for the task a.

− X is the current state of the sensor/platform being tested for assignment.

1. η(Γ, a) The suitability of the sensor for the task.

− For tracking tasks the suitability score is defined by the sensor’s localisation

ability. The upper bound is given by the distribution of the true ground vehicle

location given that it is observed at point x or P (zx|xx). The score for tracking

a target the is determined by the HB distance between this distribution and a

uniform distribution.

− For classification tasks the suitability score is defined by the sensor’s ability to

discriminate between target types. The upper bound is given by the sensor model

P (zc|xcm), where m is the true ground vehicle type. The score for classifying a

target of type m is determined by the HB distance between this distribution and

a uniform distribution.

− For search tasks the suitability score is the probability of detecting a ground

vehicle given that it is present in the observation or P (zt|xt). This probability

of detection is discussed in detail in section A.1.2.

2. γ(Π, a) The platform suitability describes the relative ability of the sensor platform

to place the sensor in a position to make the observations required by the task. For

example traversability, size, speed or noise signature limitations may reduce the effec-

tiveness or even prevent the agent from making the observations required to accom-

plish a. For the airborne sensors implemented in the simulation the various platform’s
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suitability for all tasks is assumed to be comparable and thus this component is not

used in the objective function.

3. κ(X, a) The current state of the platform will affect when a task can be started and

the expected time to completion. Further, certain platform states may prevent the

task from being performed. In the system implemented, only the agent’s position is

considered, with platforms closest to the area associated with the task receiving the

highest suitability score.

For the task list A the utility for each possible agent j assigned to a task is found via

Equation B.35.

U(aji ) = η(Sj , ai)× γ(Xj , ai)× wi (B.35)

If an agent is limited to a single task assignment for the current planning cycle then for i

tasks assigned to j resources, where i <= j, the best utility for Υ is obtained by Equation

B.36.

maxUΥ =
∑
j

(maxua|aij) (B.36)

A person-by-person optimization [33] process is used to obtain a pareto optimal allocation

for Equation B.36. This process is outlined in B.6.1.

1. Assign task with highest utility gain to each agent

2. If multiple agents are assigned to the same task, the new individual

agent utility is the maximum utility for the task divided by the

number of agents assigned

3. Calculate the group utility

4. For 1 . . . j agents

For 1 . . . i tasks

Assign ai to agent j

Calculate new group utility
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If new group utility > old group utility

Update allocated task list with aij

Old group utility = new group utility

5. Return final allocated task list Υ

B.6.2 Path Planner

Once the set Υ has been filled, the Path Planner determines the best waypoint/s for each

agent in order to accomplish the assigned task ,taking into consideration platform and sensor

capability. This is done in a number of stages with the resulting waypoint/s then passed to

the agent controllers for execution.

1. The bounding agent states reachable at time k are found from the platform manoeuvre

envelope, corresponding to maximum and minimum control inputs applied to the

current state X.

2. Five intervening states are selected at even intervals between the bounding states and

the sensor footprint for each of the resulting seven possible future states found.

3. The P (x) of interest is projected to time k.

4. For each sensor footprint the probability of observing the true state of xk is then

found.

5. The pose corresponding to the footprint with the best P (z|xk) is then used to define

a waypoint which is communicated to the agents guidance module.

6. If the footprints yield a zero probability of detecting the true state, then the control

input resulting in the agent moving closest to the area associated with a is chosen.

For both the track and classify tasks this is the P (xt) weighted centroid of the track

estimate. For the area search task this is the centre of the area.
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Models and Parameters

Figure C.1: Aerial photo of the Sydney CBD left and the road network used by the simulator

right.
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Figure C.2: Template showing the distances and the 8 possible direction nodes can be
connected. The numbers in the square boxes are used as a column index in a matrix used
to store the map.

Figure C.3: Template showing the orientation assigned to a ground vehicle based on the
direction it enters the current node.

C.1 Ground Vehicles

Figure C.4: Direction filter for propagation of Ground Vehicles at intersections. Direction
of node arriving from is shown in blue, the permitted directions of travel are shown in red.
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C.1.1 Ground Vehicle Types

Truck, Light, Civilian

Average Speed 6.5m/s

Projected Area 11.0m2

System Enum 0

Conspicuous

Truck, Light, Blue Forces

Average Speed 6.0m/s

Projected Area 12.0m2

System Enum 1

Inconspicuous

Truck, Light, Red Forces

Average Speed 6.0m/s

Projected Area 12.0m2

System Enum 2

Inconspicuous

Truck, Medium, Civilian

Average Speed 5.5m/s

Projected Area 18.0m2

System Enum 3

Conspicuous
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Truck, Medium, Blue Forces

Average Speed 5.0m/s

Projected Area 22.0m2

System Enum 4

Conspicuous

Truck, Medium, Red Forces

Average Speed 5.0m/s

Projected Area 24.0m2

System Enum 5

Conspicuous

Truck, Heavy, Civilian

Average Speed 4.5m/s

Projected Area 36.0m2

System Enum 6

Conspicuous

Truck, Heavy, Blue Forces

Average Speed 4.0m/s

Projected Area 42.0m2

System Enum 7

Inconspicuous
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Truck, Heavy, Red Forces

Average Speed 4.0m/s

Projected Area 42.0m2

System Enum 8

Inconspicuous

4WD, Civilian

Average Speed 8.5m/s

Projected Area 9.0m2

System Enum 9

Conspicuous

4WD, Blue Forces

Average Speed 8.0m/s

Projected Area 8.5m2

System Enum 10

Inconspicuous

4WD, Red

Average Speed 8.0m/s

Projected Area 7.5m2

System Enum 11

Inconspicuous
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4WD, Militia

Average Speed 8.5m/s

Projected Area 7.5m2

System Enum 12

Conspicuous

Motorbike, Civilian

Average Speed 10.0m/s

Projected Area 2.0m2

System Enum 13

Conspicuous

Motorbike, Militia

Average Speed 10.0m/s

Projected Area 2.0m2

System Enum 14

Conspicuous

Car, Civilian

Average Speed 9.0m/s

Projected Area 7.0m2

System Enum 15

Conspicuous
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Car, Blue Forces

Average Speed 8.5m/s

Projected Area 7.5m2

System Enum 16

Conspicuous

Car, Red Forces

Average Speed 8.5m/s

Projected Area 7.5m2

System Enum 17

Conspicuous

Car, Militia

Average Speed 9.0m/s

Projected Area 6.5m2

System Enum 18

Conspicuous

Armour, Light, Blue

Average Speed 6.5m/s

Projected Area 19.0m2

System Enum 19

Inconspicuous
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Armour, Light, Red

Average Speed 6.5m/s

Projected Area 21.0m2

System Enum 20

Inconspicuous

Armour, Heavy, Blue

Average Speed 5.5m/s

Projected Area 36.0m2

System Enum 21

Inconspicuous

Armour, IFV, Blue

Average Speed 6.0m/s

Projected Area 21.0m2

System Enum 22

Inconspicuous
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C.1.2 Classification Groups and Membership

Unarmoured Armed Friendly Light Vehicle

Truck, Light, Civilian Truck, Heavy, Blue Forces Truck, Light, Civilian 4WD, Civilian

Truck, Light, Blue Forces Truck, Heavy, Red Forces Truck, Light, Blue Forces 4WD, Blue Forces

Truck, Light, Red Forces 4WD, Blue Forces Truck, Medium, Civilian 4WD, Red Forces

Truck, Medium, Civilian 4WD, Red Forces Truck, Medium, Blue Forces 4WD, Militia

Truck, Medium, Blue Forces 4WD, Militia Truck, Heavy, Civilian Motorbike, Civilian

Truck, Medium, Red Forces Motorbike, Militia Truck, Heavy, Blue Forces Motorbike, Militia

Truck, Heavy, Civilian Armour, Light, Blue Forces 4WD, Civilian Car, Civilian

Truck, Heavy, Blue Forces Armour, Light, Red Forces 4WD, Blue Forces Car, Blue Forces

Truck, Heavy, Red Forces Armour, Heavy, Blue Forces Motorbike, Civilian Car, Red Forces

4WD, Civilian IFV, Blue Forces Car, Civilian Car, Militia

4WD, Blue Forces Car, Blue Forces

4WD, Red Forces Armour, Light, Blue Forces

4WD, Militia Armour, Heavy, Blue Forces

Motorbike, Civilian IFV, Blue Forces

Motorbike, Militia

Car, Civilian

Car, Blue Forces

Car, Red Forces

Car, Militia

Red Forces Militia Red Forces Armed Red Forces Unarmed

Truck, Light, Red Forces 4WD, Militia 4WD, Red Forces Truck, Light, Red Forces

Truck, Medium, Red Forces Motorbike, Militia 4WD, Red Forces Truck, Medium, Red Forces

Truck, Heavy, Red Forces Car, Militia Armour, Light, Red Forces Car, Red Forces

4WD, Red Forces

Car, Red Forces

Armour, Light, Red Forces

Blue Armed Blue Unarmed Blue Armour Civilian

Truck, Heavy, Blue Forces Truck, Light, Blue Forces Armour, Light, Blue Forces Truck, Light, Civilian

4WD, Blue Forces Truck, Medium, Blue Force Armour, Heavy, Blue Forces Truck, Medium, Civilian

Armour, Light, Blue Forces Car, Blue Forces IFV, Blue Forces Truck, Heavy, Civilian

Armour, Heavy, Blue Forces 4WD, Civilian

IFV, Blue Forces Motorbike, Civilian

Car, Civilian

Unfriendly Unfriendly Armed Friendly Unarmed

Truck, Light, Red Forces Truck, Heavy, Red Forces Truck, Light, Civilian

Truck, Medium, Red Forces 4WD, Red Forces Truck, Light, Blue Forces

Truck, Heavy, Red Forces 4WD, Militia Truck, Medium, Civilian

4WD, Red Forces Motorbike, Militia Truck, Medium, Blue Forces

4WD, Militia Car, Militia Truck, Heavy, Civilian

Motorbike, Militia Armour, Light, Red Forces 4WD, Civilian

Car, Red Forces Motorbike, Civilian

Car, Militia Car, Civilian

Armour, Light, Red Forces Car, Blue Forces
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Truck Blue Forces Armoured

Truck, Light, Civilian Truck, Heavy, Blue Forces Armour, Light, Blue Forces

Truck, Light, Blue Forces 4WD, Blue Forces Armour, Light, Red Forces

Truck, Light, Red Forces Armour, Light, Blue Forces Armour, Heavy, Blue Forces

Truck, Medium, Civilian Armour, Heavy, Blue Forces IFV, Blue Forces

Truck, Medium, Blue Forces IFV, Blue Forces

Truck, Medium, Red Forces

Truck, Heavy, Civilian

Truck, Heavy, Blue Forces

Truck, Heavy, Red Forces
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C.2 UAVs

Aerosonde

Cruise Speed 21.0m/s

Max Speed 41.0m/s

Min Speed 15.0.0m/s

Max Bank
0.8rad

14o

Sensors 1 x IR or 1 x Vision

Fast Delta

Cruise Speed 30.0m/s

Max Speed 46.0m/s

Min Speed 22.0.0m/s

Max Bank
1.1rad

65o

Sensors
2 x Vision or 1 x Vision + 1 x IR

or 1 x Radar

C.3 Sensor Models

Figure C.5: Probability of detection as a function of Johnson cycles
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C.3.1 Sensor Orientations

Figure C.6: Look Forward Orientation - Enum 0
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Figure C.7: Look Down Orientation - Enum 1

Figure C.8: Look Left Orientation - Enum 2
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Figure C.9: Look Right Orientation - Enum 3

Figure C.10: Look Left and Down Orientation - Enum 4
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Figure C.11: Look Right and Down Orientation - Enum 5
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C.3.2 Simulated Infra-Red Sensor
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C.3.3 Simulated Colour Vision Sensor
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C.3.4 Simulated Black and White Vision Sensor
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C.3.5 Simulated Radar Sensor



C.3 Sensor Models 169



Bibliography

[1] S. Agichtein, E. Lawrence and L. Gravano. Learning search engine specific query
transformations for question answering. In Proc. of the 10th Int. Conf. on World Wide
Web, 2001.

[2] G. Bererton, C. Gordon and S Thrun. Auction mechanism design for multi-robot
coordination. In Proc. of the Int. Conf. on Neural Information Processing Systems,
2003.

[3] W. Brandt, B. Brauer and Gerhard Weiss. Task assignment in multiagent systems
based on vickrey-type auctioning and leveled commitment contracting. Lecture Notes
in Artificial Intelligence, 1860:95–106, 2000.

[4] D. Chajewska, U. Koller and Ormoneit D. Learning an agents utility function by ob-
serving behaviour. In Proc. of the Eighteenth International Conf. on Machine Learning,
2001.

[5] D. Chajewska, U. Koller and Parr R. Making rational decisions using adaptive utility
elicitation. In Proc. of the 17th International Conf. on Artifical Intelligence, 2000.

[6] J. Considine. Methodologies for predicting detection and recognition rages of imaging
systems against military targets. Technical report, Australian Defence Science and
Technology Organisation, 2003.

[7] J. Cox. The Concise Guide to Economics. Savannah-Pikeville Press, 1997, 2nd Ed.

[8] J. Dastani, M. Hulstijn and Leendert van der Torre. How to decide what to do?
European Journal of Operational Research, 160:762–784, 2005.

[9] M. Dias and A. Stentz. Opportunistic optimization for market-based multirobot con-
trol. In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems.,
2002.

[10] A. Madhavan J. Nemes E Dong, X. Halvey and J. Zhang. Similarity search for web
services. In Proc. of the 30th Very Large Database Conf., 2004.

[11] R Farber, S. Costanza and M. Wilson. Economic and ecological concepts for valuing
ecosystem services. Ecological Economics, 41:375–392, 2002.



BIBLIOGRAPHY 171

[12] K. Fullam and K. Barber. Using policies for information valuation to justify beliefs. In
Proc. of the 3rd International Conf. on Autonomous Agents and Multi-Agent Systems
AAMAS’02, July 2002.

[13] B. Gerkey and M. Mataric. Sold!: Auction methods for multirobot coordination. IEEE
Transactions on Robotics and Automation, 18(5):758–768, 2002.

[14] J. Grass and S. Zilberstein. A value-driven system for autonomous information gath-
ering. Journal of Intelligent Information Systems, 14:5–27, 2000.

[15] A. Grocholsky, B. Makarenko and H. Durrant-Whyte. Information-theoretic coordi-
nated control of multiple sensor platforms. In Proc. of the 2003 Int. Conf. on Robotics
and Automation, 2003.

[16] B. Grocholsky. Information-Theoretic Control of Multiple Sensor Platforms. PhD
thesis, The University of Sydney, 2002.

[17] J. Guerrero and G. Oliver. Physical interference impact in multi-robot task allocation
auction methods. In Proc. of the IEEE Workshop on Distributed Intelligence Systems,
2006.

[18] J. Hicks. Value and Capital. Oxford University Press, 1975 2nd Ed.

[19] J Hicks and R Allen. A reconsideration of the theory of value. part 1. Econometrica,
1(1):52–76, 1934.

[20] D. Kalra, N. Ferguson and Stentz. Hoplites: A market-based framework for planned
tight coordination in multirobot teams. In Proc. of the 2005 Int. Conf. on Robotics
and Automation, 2005.

[21] R.L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. Cambridge University Press, 1993.

[22] O Koifman, G. Shehory and A. Gal. Negotiation-based price discrimination for in-
formation goods. In Proc. of the Int. Conf. on Autonomous Agents and Multi-Agent
Systems, 2004.

[23] C.L. Rogova G.L. Steinberg A.N. Waltz E.L. Llinas, J. Bowman and F.E. White.
Revisions and extensions to the jdl data fusion model ii. In Proceedings of the Seventh
International Conference on Information Fusion, volume 2. International Society of
Information Fusion, June 2004.

[24] M. Loder, T. Van Alstyne and W. Wash. An economic answer to unsolicited commu-
nication. In Proc. of the rth ACM Conf. on Electronic Commerce, 2004.

[25] P. Markopoulos and J. Kephart. How valuable are shopbots? In Proc. of the 1st In-
ternational Conf. on Autonomous Agents and Multi-Agent Systems AAMAS’02, 2002.

[26] P. M. Markopoulos and L. H. Ungar. Pricing price information in e-commerce. In Proc.
of the ACM Conference on Electronic Commerce, 2001.



BIBLIOGRAPHY 172

[27] S. Matsubara. Adaptive pricing that can withstand buyer collusion of false-type dec-
laration. In Proc. of the 3rd ACM Conf. on Electronic Commerce, 2001.

[28] C. Menger. Principles of Economics. New York University Press, 1976.

[29] M. Mostaghimi. Bayesian estimation of a decision using information theory. IEEE
Transactions on Systems, Man and Cybernetics, 27(4):506–517, 1997.

[30] B Ollman. Economics as a Social Science: Readings in Political Economoy, chapter
What is Marxism?, pages 106–111. Pluto Press, 2003 2nd Ed.

[31] C. Papadimitriou and M. Yannakakis. On the value of information in distributed
decision-making. In Proc. of the 10th ACM Symposium on Principles of Distributed
Computing, 1991.

[32] T. Peterson and M. Sundareshan. Information value mapping for fusion architectures.
In Proc. of the 3rd International Conf. on Information Fusion, 2000.

[33] R. Radner. Team decision problems. Annals of Mathematical Statistics, 33:857–881,
1962.

[34] S. Rafaeli and Raban D. R. The subjective value of information: The endowment
effect. In Proc. of the IADIS Int. Conf. WWW/Internet, 2003.

[35] D. Ricardo. On the Principles of Political Economy and Taxation. John Murray,
London, 1821, 3rd Ed.

[36] G. N. Saradis. Entropy in Control Engineering. World Scientific, Singapore, 2001.

[37] D. Bagnell D. Schneider, J. Apfelbaun and R. Simmons. Learning opportunity costs
in multi-robot market based planners. In Proc. of the Int. Conf. on Robotics and
Automation, 2005.

[38] T. Sheridan. Reflections on information and information value. IEEE Transactions on
Man and Cybernetics, 25(1):194–196, 1995.

[39] A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations. Methuen
& Co. 5th Ed., 1904.

[40] T. Wahnfried U. Meissen, S. Pfennigschmidt and K. Sandkuhl. Situation-based message
rating in information logistics and its applicability in collaboration scenarios. In Proc.
of the 30th EUROMICRO Conf., 2004.

[41] M. W. Van Alstyne. A proposal for valuing information and instrumental goods. In
Proc. of the 20th Int. Conf. on Information Systems, 1999.

[42] R. Zlot and R. Stentz. Market-based multirobot coordination using task abstraction.
In Proc. of the 4th Int. Conf. on Field and Service Robotics, 2003.


	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Thesis Objectives
	Thesis Contributions
	Thesis Structure

	Related Work
	Valuing Goods in a Market
	The Market Value of Information
	The Decision Problem and the Value of Information
	Other Information Value Metrics
	Summary

	The Value of Information
	Introduction
	Utility Based Value of Information
	Value of Information for Multiple Variables
	The Multi-Objective Scenario
	Summary

	Architecture
	Introduction
	Multi-Objective System Architecture
	Task Based Control
	Distributed Control
	Information Value Based Control

	Components
	Human Robot Interface
	Level 0 and 1 Data Fusion
	System Belief

	Level 3 Data Fusion
	Execution

	Summary

	Implementation
	Introduction
	Value Based Control
	Priority
	Threat Map
	State Utility
	Planning and Control
	The Observation Cost

	Evaluation Metrics
	Threat Measures
	Entropy
	Hellinger-Bhattacharya Distance

	The Simulated System
	System Overview
	Control Modules
	Simulation Setup and Interface
	Operator Interface

	Summary

	Simulation
	Simulation Overview
	Scenario Setup
	Scenario 1
	Scenario 2

	Situation Setup
	Situation 1 - Baseline
	Situation 2 - Operator Modified
	Situation 3 - Online Operator Modified
	Situation 4 - Observation Points
	Situation 5 - External Observations

	Simulation Results
	Baseline vs Operator Modified
	Control Type Comparison
	Mission: Online Operator Modified
	Online Operator Modified Summary
	Mission: Observation Points
	Observation Points Summary
	Mission: External Observations
	External Observations Summary


	Conclusions and Future Work
	Architecture
	Information Value Based Control
	Control Schemes
	Scenarios
	Future Work

	Common Simulation Components and Modules
	Sensors
	Sensor Footprint
	Detection
	Localisation
	Classification
	No Detect

	Platforms
	Guidance
	Autopilot
	Dynamic Model

	Ground Vehicles
	Motion Model
	Guidance

	Tracker
	Prediction
	Update
	The Particle Filter

	Classifier
	Classification Sets

	Search State
	Predict
	Update


	Task Based Control
	Framework Components
	Organization
	Coordination

	Modules
	Organiser
	Mission Module
	Mission Planning Module
	Current Mission State Mc
	Desired Mission State Md
	Task Generation
	Task Weights

	Coordination Module
	Task Allocation
	Path Planner


	Models and Parameters
	Ground Vehicles
	Ground Vehicle Types
	Classification Groups and Membership

	UAVs
	Sensor Models
	Sensor Orientations
	Simulated Infra-Red Sensor
	Simulated Colour Vision Sensor
	Simulated Black and White Vision Sensor
	Simulated Radar Sensor


	Bibliography

