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ABSTRACT 

 

Polymer manufacturing is a major worldwide industry, attracting the attention of 

numerous industrial units and research institutes. Increasing demands on polymer 

quality, process safety and cost reduction are the main reasons for growing interest in 

the design and control of emulsion polymerisation. Emulsion polymerisation process 

implemented with free radical polymerisation has significant advantages over other 

processes, such as the production of polymer of higher molecular weights at high 

conversion rates, easier temperature control due to the low viscosity of the reaction 

media, high degree of selectivity and more friendly to environment due to the use of 

an aqueous medium. It allows for the production of particles with specially-tailored 

properties, including size, composition, morphology, and molecular weights. 

Introducing two or more different monomers to the polymerisation process (named 

multi-polymerisation) can lead to the synthesis of an almost unlimited number of new 

polymers types. 

 

Emulsion polymers are products by process, meaning that the manner in which the 

polymerisation is carried out is perhaps more important than the raw materials in 

determining the form of the final product. This highlights the significance of the 

systematic approach in online process control which requires thorough understanding 

of the process phenomena as a prerequisite for development of a mathematical 

description of the process as the model. It is thus evident and based on research 

observations that process control for emulsion terpolymerisation is a particularly 

difficult task because of the lack of validated models and the lack of online 

measurements of most of polymer properties of interest. Therefore, a well validated 

model is crucial for optimising and controlling the emulsion terpolymerisation 

operations allowing for design of the polymer product properties. 

 

In this study, a framework for process design and control of emulsion 

terpolymerisation reactors was developed. This framework consisted of three 

consecutive stages, dynamic modelling of the process, optimising the process for 
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finding the optimal operating strategies and final online controlling the obtained 

optimal trajectories through multivariable constrained model predictive control. 

 

Within this framework, a comprehensive dynamic model was developed. Then a test 

case of emulsion terpolymerisation of styrene, methyl methacrylate and methyl 

acrylate was investigated on state of the art facilities for predicting, optimising and 

control end-use product properties including global and individual conversions, 

terpolymer composition, the average particle diameter and concentration, glass 

transition temperature, molecular weight distribution, the number- and weight-average 

molecular weights and particle size distribution. The resulting model was then 

exploited to understand emulsion terpolymerisation behavior and to undertake model-

based optimization to readily develop optimal feeding recipes. The model equations 

include diffusion-controlled kinetics at high monomer conversions, where transition 

from a ‘zero-one’ to a ‘pseudo-bulk’ regime occurs. Transport equations are used to 

describe the system transients for batch and semi-batch processes. The particle 

evolution is described by population balance equations which comprise of a set of 

integro-partial differential and nonlinear algebraic equations. Backward finite 

difference approximation method is used to discretise the population equation and 

convert them from partial differential equations to ordinary differential equations. The 

model equations were solved using the advanced simulation environment of the 

gPROMS package. 

 

The dynamic model was then used to determine optimal control policies for emulsion 

terpolymerisation in a semi-batch reactor using the multiobjective dynamic 

optimisation method. The approach used allows the implementation of constrained 

optimisation procedures for systems described by complex mathematical models 

describing the operation of emulsion terpolymerisation reactors. The control vector 

parameterisation approach was adopted in this work. Styrene monomer feed rate, 

MMA monomer feed rate, MA monomer feed rate, surfactant feed rate, initiator feed 

rate and the temperature of reactor were used as the manipulating variables to produce 

terpolymers of desired composition, molecular weight distribution (MWD) and 

particle size distribution (PSD). The particle size polydispersity index (PSPI), 

molecular weight polydispersity index (MWPI) and the overall terpolymer 

composition ratios were incorporated as the objective functions to optimise the PSD, 
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MWD and terpolymer composition, respectively. The optimised operational policies 

were successively validated with experiments via one stirred tank polymerisation 

reactor. 

 

Due to the lack of online measurements of key process product attributes for emulsion 

terpolymerisation, an inferential calorimetric soft sensor was developed based on 

temperature measurements. The calorimetric soft sensor obtains online measurements 

of reactor temperature, jacket inlet and outlet temperatures helped estimate the rate of 

polymerisation. The model includes the mass and energy balance equations over the 

reactor and its peripherals. Energy balance equations include the heat of reaction, 

internal and external heat transfer effects, as well as external heat losses. 

 

An online multivariable constrained model predictive control was formulated and 

implemented for online control of the emulsion terpolymerisation process. To achieve 

this implementation, a novel generic multilayer control architecture for real-time 

implementation of optimal control policies for particulate processes was developed. 

This strategy implements the dynamic model for the emulsion terpolymerisation as a 

real-time soft sensor which is incorporated within the implemented MPC. The 

methodology was successively validated using six case studies within the on-line 

control of terpolymerisation reactors. The cases were online controlled the 

composition of terpolymers, PSD and Mn with specific constraints for the operation 

conversion and particle average radius. 

 

An advanced Supervisory Control Architecture named ROBAS was used in this work. 

It provides a completely automated architecture allowing for the real time advanced 

supervisory monitoring and control of complex systems. The real time control 

application strategy was developed within MATLAB, Simulink, gPROMS and Excel 

Microsoft softwares and implemented on line through ROBAS Architecture. 

 

The manipulated variables are measured using on-line measurements connected to the 

DCS system through Honeywell. These measurements were sent to MATLAB and 

then to the dynamic model in gPROMS through an excel spread-sheet interface. Then 

the dynamic model used them to estimate the controlled variables of the MPC. The 

estimated values of the controlled variables obtained from the dynamic model, were 



 VII 

then sent to the Simulink and fed through the DCS system to the MPC developed in 

MATLAB. The MPC would then calculate optimal trajectories, which are then sent as 

set point signals through the DCS system to the regulatory controller.  

 

The MPC formulation was found to be robust and handles disturbances to the process. 

The result showed that the online multivariable constrained MPC controller was able 

to control the desired composition and Mn as specified set points with great accuracy. 

The MPC algorithm succeeded under constrained conditions, in driving the PSD to 

the desired target. Although some offset was observed with a certain degree of model 

mismatch, the experimental results agreed well with predictions. 
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FIGURE 6.11 Validation of online multivariable constrained MPC for 
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FIGURE 6.12 Validation of online multivariable constrained MPC for 
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Setpoint; ▬ Sensor estimation)……………………………….. 

 

 

 

6.33 

FIGURE 6.13 Validation of online multivariable constrained MPC for 

minimising Mn: (a) & (b) obtained optimal feed rate profiles, 
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FIGURE 6.14 Validation of online multivariable constrained MPC for 

maximising Mn: (a) obtained optimal feed rate profile, (b) Mn, 
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Setpoint; ▬ Sensor estimation)……………………………….. 
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 XIX 

NOMENCLATURE 
 

 

A Heat transfer area (m
2
) 

ga  Empirical constant for glass transition temperature. 

sa  Polymer particle area occupied by an adsorbed surfactant molecule, dm
2
 

sat

liC ,  
Saturated concentration of monomer l  in i phase, mol..L

-1
 

pC  Concentration of monomers in polymer particle phase, mol.L
-1

 

wC  Concentration of monomers  in aqueous phase, mol.L
-1

 

sat

wC  Saturated concentration of monomers  in aqueous phase, mol.L
-1

 

ldC ,  Concentration of monomer l  in droplet phase, mol.L
-1

 

lPC ,     Concentration of monomer l  in the latex particles, mol.L
-1

 

PiC  Heat capacity of reactor content i (J/g·K) 

lwC ,  
Concentration of monomer l  in the water phase, mol.L

-1
 

micelleC
 Concentration of micelles, mol L

−1
 

[cmc] Critical micelle concentration, mol L
−1

 

D  Reactor diameter (m) 

lmonD ,  Diffusion coefficient of monomer l  in particle phase, dm
2
 

lwD ,  
Diffusion coefficient of monomer l  in water phase, dm

2
 

lrdD ,  Diffusion coefficient arising from reaction-diffusion, dm
2
 

d  Impeller diameter (m) 

lpd ,  Density of polymer l , kg L
−1

 

lmd ,  Density of monomer l , kg L
−1

 

iH∆  Enthalpy of monomer i homopolymerisation (J/mol) 

[ ]•E  Aqueous phase concentration of desorbed radicals, mol.L
-1

 

ee
 Entry efficiency coefficient 

f  Efficiency dissociation constant 

lcompF ,  Mole fraction of monomer l  in the polymer 

IF  Flow rate of initiator, mol.s
-1
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lf  Mole fraction of monomer l  in the system 

lmF ,  Flow rate of monomer l  , g.s
-1

 

sF
 Flow rate of surfactant, mol.s

-1
 

wF
 Flow rate of monomer , L.s

-1
 

G The number of radius increments to be integrated 

rh  
Transfer coefficient between the reaction mixture and the internal 

wall(W/m
2
K) 

[ ]I  Initiator concentration in the reactor, mol.L
-1

  

[ ]•
iIM  Aqueous phase concentration of oligomeric radicals of degree ‘i’, mol.L

-1
 

jcrit Critical degree of polymerisation for homogeneous nucleation 

stK  Stirrer constant 

K Rate of propagation volume growth per particle, L s−
1
 

l

jiK ,  
Partition coefficient of monomer l  between i and j phases 

dk
 Rate coefficient for initiator decomposition, s

-1
 

dmk  Rate coefficient for desorption of monomeric radicals from particles, s
−1

 

j

ldmk ,  

Rate coefficient for desorption of monomeric radicals l  from particles of 

radius j, s
-1

 

ldiffk ,  Diffusion-controlled rate coefficient of monomeric radicals l , s
-1

 

ji

lek ,

,  
Rate coefficient for entry of an oligomeric radical l of degree ‘i’ into an 

existing particle of radius j, L.mol
-1

.s
-1

 

ji

ek ,  
Overall rate coefficient for entry of oligomeric radical of degree ‘i’ into an 

existing particle of radius j, L.mol
-1

.s
-1

 

eEk  
Overall rate coefficient for re-entry of desorbed monomeric radicals l , L.mol

-

1
.s

-1
 

j

leEk ,  
Overall rate coefficient for re-entry of desorbed monomeric radicals l  into an 

existing particle of radius j, L.mol
-1

.s
-1

  

i

micelleek ,  

Rate coefficient for entry of an oligomeric radical of degree ‘i’ into a micelle, 

L.mol
-1

.s
-1

 

iK  
Volume growth rate coefficient for free monomeric radical l  existing in a 

particle, L.mol-
1
.s

-1
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pk  General propagation rate coefficient in polymer particle, L.mol
-1

.s
-1

  

pok  Propagation rate coefficient at low conversion in polymer particle, L.mol
-1

.s
-1

 

ijpk ,  Propagation rate coefficient of polymeric radical i with monomer j, L.mol
-1

.s
-1

 

i

aqpk ,  
Aqueous phase propagation rate coefficient for oligomeric radicals of degree 

‘i’, L.mol
-1

.s
-1

 

aq

pk  Overall aqueous phase propagation rate, L.mol
-1

.s
-1

 

l

ijtk ,  
termination rate coefficient between oligomeric radicals of degree ‘i’ and ‘j’ in 

phase l , L.mol
-1

.s
-1

 

p

tok  
Termination rate coefficient between oligomeric radicals in particle phase at 

low conversion, L.mol
-1

.s
-1

 

aqtk ,  Overall termination rate coefficient in the aqueous phase, L.mol
-1

.s
-1

 

aq

ijtk ,  
Termination rate coefficient between oligomeric radicals of degree ‘i’ and ‘j’ 

in    the aqueous phase, L.mol
-1

.s
-1

 

trk
 Rate coefficient for radical transfer to monomer, L.mol

-1
.s

-1
 

M  Molecular weight of polymer chain, kg..mol
-1

 

avgM  Average molecular weight of the different monomers, kg..mol
-1

 

lM
 Molecular weight of monomer l , kg..mol

-1
 

nM  Number average molecular weight, kg.mol
-1

 

wM  Weight average molecular weight of polymer, kg.mol
-1

 

N  Agitation speed (rev/s) 

AN  Avogadro’s constant,  mol
-1

 

lN
 Total number of moles of monomer l  in the system, mol 

fed

lmN ,  
Total number of moles of monomer l  added to the system, mol 

tN
 Total number of moles of  all monomers in the system, mol 

lterpN ,  Number of moles of monomer l in the polymer, mol 

pN  Total number of polymer particles in the reactor, particles 

aggn
 

Micelle aggregation number ,i.e. the average number of surfactant molecules 

in a micelle 

)(vn  Molar concentration density of particles of unswollen volume v ,  mol.L
-1

.dm
-1
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)(0 vn  
Molar concentration density of particles of unswollen volume v  containing no 

radicals,  Mol.L
-1

.dm
-1

 

)(1 vn m

 

Molar concentration density of particles of unswollen volume v  containing 

monomeric radicals, mol.L
-1

.dm
-1

 

)(Gn  Molar concentration density of particles of radius increments  G,  mol.L
-1

.dm
-1

 

)(0 Gn  
Molar concentration density of particles of radius increments  G containing no 

radicals,  mol.L
-1

.dm
-1

 

)(1 Gnm  
Molar concentration density of particles of radius increments  G containing 

monomeric radicals, mol.L
-1

.dm
-1

 

)(1 Gn p  
Molar concentration density of particles of radius increments  G, containing 

polymeric radicals, mol.L
-1

.dm
-1

 

)(MP  Instantaneous molecular weight distribution 

)(MP  Cumulative molecular weight distribution 

PSPI  Particle size polydispersity index 

fQ  Heat flux across the reactor wall (W) 

lQ  Heat losses (W) 

rQ  Heat-generation rate due to the chemical reaction (W) 

stQ  Heating due to stirrer (W) 

feedQ  Heat flow due to the reactor feed (W) 

pR
 

Polymerisation reaction rate, mol. L
−1

 .s
−1

 

liR ,  Rate of polymerisation of monomer l  in phase i, , mol. L
−1

 .s
−1

 

sr
 Swollen radius of latex particle, dm 

ur  Unswollen radius of latex particle, dm 

[ ]S  
Concentration of added surfactant per unit volume of the aqueous phase, mol 

L
−1

 

[ ]adsS  Concentration of adsorbed surfactant on the polymer particles surface, mol L
−1

 

T  Temperature of the reaction, K 

ambT  Ambient temperature (°C) 

rT  Reactor temperature (°C) 

outjT ,  Outlet jacket temperature (°C) 
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injT ,  Inlet jacket temperature (°C) 

wT   Reactor wall temperature (°C) 

gT  Glass transition of polymer, K 

lgT ,  Glass transition of polymer formed from monomer l , K 

[ ]•T  Total oligomers concentration in the aqueous phase, mol..L
-1

 

U  Heat transfer coefficient (W/m
2
K) 

V  Total volume of polymerisation reaction, m
3
 

dV  Total volume of monomer droplets in the system, dm
3
 

pV
 

Total volume of polymer in the system, dm
3
 

sV  Volume of swollen polymer particle, dm
3
 

uV  Volume of unswollen polymer particle, dm
3
 

wV
 Volume of aqueous phase in the system, L 

woV
 Volume of water in the system, L 

wmV
 Volume of dissolved monomers in water, L 

X  Total instantaneous monomers weight conversion 

lX
 Instantaneous molar conversion monomer l  

z  Critical degree of polymerisation for entry 

 

 

Greek letters 

ρ  Pseudo rate coefficient for all entry events (oligomeric radicals and exited radicals) into 

existing particles,  s
-1

 

initρ  Pseudo rate coefficient for entry of an oligomeric radical into an existing particle, s
-1

 

α  Coefficient for heat losses (W/
o
C

β
) 

β  Power coefficient for heat losses 

lρ  Density of latex (Kg/m
3
) 

mρ  Density of monomer (Kg/m
3
) 

pρ  Density of polymer (Kg/m
3
) 

wρ  Density of water (Kg/m
3
) 

 

 

 


