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Abstract 

 
This thesis presents an innovative human promoter recognition model HPR-PCA. 

Principal component analysis (PCA) is applied on context feature selection DNA 

sequences and the prediction network is built with the artificial neural network (ANN). 

A thorough literature review of all the relevant topics in the promoter prediction field 

is also provided. 

 

As the main technique of HPR-PCA, the application of PCA on feature selection is 

firstly developed. In order to find informative and discriminative features for effective 

classification, PCA is applied on the different n-mer promoter and exon combined 

frequency matrices, and principal components (PCs) of each matrix are generated to 

construct the new feature space. ANN built classifiers are used to test the 

discriminability of each feature space. Finally, the 3 and 5-mer feature matrix is 

selected as the context feature in this model.  

 

Two proposed schemes of HPR-PCA model are discussed and the implementations of 

sub-modules in each scheme are introduced. The context features selected by PCA are 
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used to build three promoter and non-promoter classifiers. CpG-island modules are 

embedded into models in different ways. In the comparison, Scheme I obtains better 

prediction results on two test sets so it is adopted as the model for HPR-PCA for 

further evaluation. Three existing promoter prediction systems are used to compare to 

HPR-PCA on three test sets including the chromosome 22 sequence. The performance 

of HPR-PCA is outstanding compared to the other four systems. 
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Chapter 1 Introduction 

 

One of the most important goals of Human Genome Project [ Lander, Linton et al. 

2001] is to provide a complete list of annotated genes. Although large scale 

sequencing projects of human complete mRNAs have been undertaken, there are still 

many low copy genes which evade sequencing [Sonnenburg, Zien et al. 2006]. 

Bioinformatics, which is a combination of biology, biochemistry, mathematics and 

computer science [Chen(Ed.) 2005], makes it possible to identify those genes using 

computer-based technologies. As the core content of this thesis, detecting promoter 

regions which are close to the transcription start sites (TSS), is one of the most 

important aspects of DNA sequence analysis. Promoter regions have significant value 

for the human genome project, because once a promoter is found, a gene start can be 

annotated.  

In this chapter, we firstly introduce the basic concepts of transcription and eukaryotic 

promoters. Secondly, the significance of promoter prediction is stated. Finally, the 

outline of the thesis is presented. The contribution of the thesis is towards finding 

effective features to improve the performance of the promoter recognition system. 
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1.1 Transcription and Eukaryotic Promoter 

Transcription is the process in which a DNA sequence is converted to a corresponding 

RNA sequence. A DNA sequence contains four types of nucleotides: adenine 

(abbreviated A), cytosine (C), guanine (G) and thymine (T). DNA usually occurs in 

double strands and the nucleotides in one strand are complementary to the ones in the 

other strand, i.e., A bonding only to T and C bonding only to G. The transcription start 

site (TSS) is the position where protein synthesis begins [Attwood and Parry-Smith 

1999]. When transcription starts, RNA is produced by copying the genetic 

information from the DNA sequence. If the RNA carries coding information to the 

protein synthesis sites, we call it mRNA. In this process, the nucleotides A, C, G, and 

T of the DNA sequence are transcribed into U (uracil, which replaces T), G, C and A of 

the mRNA sequence. Eventually, translation starts and protein is synthesized 

corresponding to mRNA [Chen(Ed.) 2005].  

 

Promoter regions are located upstream of the TSS of genes. They contain binding 

sites that can be recognized by transcription factors that are a kind of protein. Acting 

as a ―switch‖, promoter sequences specify the times and the places of the transcription 

occurring in genes. They attract transcription factors that give RNA polymerase 

access to gene and permit RNA transcription. Other activating and repressing proteins 

also bond to promoter regions and affect gene expression depending on different cell 

conditions [Deonier, Tavare et al. 2005]. Figure.1.1 shows the structure of a 

eukaryotic gene sequence and the location of the promoter in this DNA gene sequence 

http://en.wikipedia.org/wiki/Adenine
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/Thymine
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is marked by a black box. 

 

 

Figure 1.1 The structure of a eukaryotic gene sequence 

 

The black box indicates the promoter, which is close to the transcription start site. 

Grey boxes indicate exons, which are separated by introns. In the transcription of 

eukaryotic gene systems, exons form a part of the final protein-coding sequence, but 

introns are cut out of the transcript. The transcription start site and the transcription 

stop are indicated by solid black lines. The lighter black solid line before the 

transcription stop corresponds to the Poly-A signal site, where the transcript is cleaved 

[Raychaudhuri 2006].   

 

1.2 Significance of Promoter Prediction   

The protein coding gene is one of the most important features of the genomic DNA 

sequence. However, compared to non-coding DNA sequences, coding regions only 

occupy a tiny part of whole DNA sequences. So for a further understanding of how the 
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coding regions are regulated, the first and necessary step is to extract the small islands 

of coding regions from the sea of non-coding sequence. Only by using biochemical 

methodology, can researchers locate the exact position of TSS, where the 

transcription starts. However, the processes are complicated and the time spent on the 

massive sequence database cannot be estimated. Therefore it is proposed that 

computational analysis of eukaryotic promoters be first employed to improve gene 

identification and prediction efficiency. Promoter regions contain the binding sites for 

transcription factors and other proteins which control the transcription. By predicting 

the promoter regions, we can approximate the location of TSS, which is located in, or 

immediately downstream, of promoter regions, and then find the gene start.   

 

Owing to the development of the human genome project, almost entire coding 

sequences of human beings have been mapped. However, there are still many genes 

which have not been sequenced, meaning that these genes and their promoter regions 

may be ignored. Promoter identification in other species also needs to be 

accomplished, but unlike promoter recognition on the human genome, the experiment 

is without the support of massive sequencing [Sonnenburg, Zien et al. 2006]. 

Therefore, to develop an effective computational promoter system with high 

specificity and sensitivity is crucial for solving these problems. 

Last but not least, promoter regions are elaborate mechanisms that control specific 

genes in a highly defined manner both spatially and temporally. Cell types are then 

determined in multicellular organisms by specifically turning on or off the 
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transcription of sets of genes. Moreover, human health is also influenced by 

transcription control, since improper regulation of genes in cell growth may cause 

diseases such as cancer [Pedersen, Baldi et al. 1999]. Therefore, promoter prediction 

is definitely interesting of its own function. 

 

1.3 Outline of this Thesis 

In this thesis, a human promoter prediction system — HPR-PCA (human promoter 

recognition system base on principal component analysis) is explored. A new 

proposal regarding promoter feature selection is developed and a principal component 

analysis algorithm is adopted in the process. Most discriminative features are selected 

to form feature matrices. The classification and promoter prediction modules are 

implemented by artificial neural networks (ANN). 

 

The contributions of the thesis include:  

Codons and pentamers of DNA sequences are firstly proposed to be combined as 

candidates for feature selection. Comparison results testify to the efficiency of the 

combination. 

PCA is applied in feature selection process. Rather than specific pentamers such as 

CGGCG, GCGCG etc. mentioned in PromoterExplore [Xie, Wu et al. 2006], more 

complex hybrid feature vectors are built, based on simple features which are extracted 

directly from training promoter sequences. 

ANN is used in both training and test processes. Optimal network parameters are 
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received by the comparative experiments and the holdout validation training approach. 

The modeling network is computationally efficient. 

Both Specificity and Sensitivity are improved compared to three of the most popular 

promoter prediction systems: DragonGSF [Bajic and Seah 2003] [Bajic, Tan et al. 

2004], FirstEF [Davuluri, Grosse et al. 2001] and Eponine [Down and Hubbard 2002]. 

The better performance testifies to the effectiveness of the new feature selection 

methodology based on PCA.  

 

The thesis is organized as follows: 

In Chapter 2, the concepts and methodologies involved in the promoter prediction 

approach are reviewed. Important features of promoters are classified into context 

features, and the corresponding algorithms of feature extraction and feature selection 

are introduced. Several state-of-the-art modeling and classification technologies are 

stated. Summaries of sequence features and modeling approaches used in existing 

promoter prediction systems are listed. 

 

In Chapter 3, PCA is taken as the feature selection algorithm in HPR-PCA, so the 

theory and application of PCA are presented first. As the implementation tool, the 

theory of backpropagation (BP) ANN is also introduced. The steps contained in the 

feature selection process of HPC-PCA are stated specifically and the implementation 

of PCA on feature selection is emphasized in this section. Finally a codon and 

pentamer combined frequency matrix is selected as original input matrices of the PCA 
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feature selection algorithm.  

 

In Chapter 4, two promoter prediction schemes are proposed, whose structures and 

training methods are different. The sub-modules’ implementations of each scheme are 

the same and stated in this section. The experiment for building classifiers including 

parameter optimization is emphasized. Finally, promoter and non-promoter sequences 

and three human DNA sequences are used for testing the performance of the two 

proposed schemes. In this comparison, the scheme that achieves better results is 

adopted as the HPR-PCA model. 

 

In Chapter 5, three test sets are formed to evaluate the performance of HPR-PCA and 

different evaluation criterions are introduced. Three other state-of-the-art promoter 

prediction models— DragonGSF, FirstEF and Eponine are chosen for comparison. 

The characteristics of the four systems are analyzed according to test results. 

 

In Chapter 6, the advantages and shortages of HPR-PCA are pointed out. Finally, 

future work for improving the performance of HPR-PCA is proposed.



-8- 

 

 

 

 

Chapter 2 Literature Review 

 

This chapter presents a review of the literature in the promoter prediction area. In 

particular the following topics are reviewed: important promoter features, promoter 

feature extraction and algorithms and promoter prediction modeling techniques. In 

order to obtain a clear understanding of the feature extraction and selection processes 

and the whole prediction systems, we firstly introduce important promoter features, 

which are the basis of building classifiers for the promoter recognition system. Two 

distinct types of promoter features: signal features and context features are discussed. 

A summary of features used in promoter prediction systems is listed. Next, the 

theoretical background of several typical feature extraction and selection algorithms 

is introduced. Fianlly, several state-of-the-art modeling and classification 

methodologies are presented with a summary of the specific models used in some 

well-known existing promoter prediction systems. 

 

2.1 Important Promoter Features 

To accurately predict promoter regions, finding discriminative and informative 
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features is the first and key step. As far as feature choice is concerned, there are two 

distinct types of features used in the area of promoter prediction: signal and context 

structure features. All of the promoter prediction systems adopt one or more kinds of 

features as these informative features are important for building a powerful classifier. 

Therefore, it is necessary to present the definition and characteristics of these 

promoters. 

 

2.1.1 Sequence Signal Features 

Signal features are biological signals in promoter regions. The most important signal 

features include CpG islands, transcription factor binding sites (TFBSs) such as 

TATA-box and CAAT-box, and initiator (Inr). These are the most intuitive features 

and they all have clear definition. In this section, the concept of CpG islands and 

TATA-box are discussed as they are the most frequently used features in promoter 

prediction systems. 

 

CpG islands  

CpG islands are genomic regions that contain a high frequency of CG dinucleotides 

and relate to 56% of human genes [Antequera and Bird 1993]. The letter "p" in CpG 

notation refers to the phosphodiester bond between the cytosine and the guanine. We 

use two features to identify whether the sequence (>200 base pair (bp) ) is CpG 

islands related:  
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(1) GC percentage (GCp)  

( ) ( ),GCp P C P G    (2.1) 

(2) Observed/expected CpG ratio ( /o e )  

( )
/ ,

( ) ( )

P CG
o e

P C P G



 (2.2) 

where ( )
number of Cs

P C
length

 
  (2.3) 

( )
number of Gs

P G
length

 
  (2.4) 

( )
number of CGs

P CG
length

 
  (2.5) 

 

If 0.5GCp  , and / 0.6o e  , the sequence is CpG islands related, otherwise it is 

non-CpG islands related [Gardiner-Garden and Frommer 1987]. Many promoter 

prediction systems, such as CpGProd [Ponger and Mouchiroud 2002], FirstEF, 

PromoterExplore, use CpG islands as a global signal feature. 

 

TATA-box 

The TATA-box is a DNA sequence that has a consensus TATA(A/T)A(A/T) sequence. 

TATA-box is usually located at 25bp upstream to the transcription site [Fickett and 

Hatzigeorgiou 1997] and it is normally bound by the TATA Binding Protein: TFIID/ 

TFIIA, TFIIB, RNA polymerase II/TFIIF, TFIIE and TFIIH [Smale and Kadonaga 

2003]. TATA-box is used in many systems, i.e. PWMs [Bucher 1990], NNPP  [Reese 

2001], Promoterscan [Prestridge 1995] as a promoter sequence signal like 
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CpG-islands. However, compared to a long genome sequence, the TFBSs like 

TATA-boxes are too short, which means that similar elements may be found by 

chance anywhere [Pedersen, Pierre Baldi et al. 1998]. Furthermore, statistical analysis 

also indicates that the density of TFBSs does not contain information to effectively 

classify promoters and non-promoters [Zhang 1998a]. Therefore, we need to combine 

other features with TFBSs like TATA-boxes for promoter and non-promoter 

classification. 

 

Initiator (Inr)  

Inr elements are usually characterized by the consensus sequence PyPyAN(T/A)PyPy 

[Kaufmann, Verrijzer et al. 1996], where Py is a pyrimidine(C or T), and N is any 

nucleotide [Bucher 1990]. The first A is located at the transcription start site and the 

pyrimidine just upstream of this A is often cytosine. It is found that in some TATA-box 

less promoters, Inr may control the transcriptional start point instead of TATA-box. 

There are also promoters that have both TATA-box and Inr elements, and promoters 

without either [Pedersen, Baldi et al. 1999]. Therefore, Inr is usually combined with 

the TATA-box as the signal feature in earlier promoter recognition methods. 

 

2.1.2 Sequence Context Features 

Unlike signal features, context features are basically extracted from training genomic 

sequences and analyzed by statistical methods. The word "n-mers" can cover all of the 
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context features. Codons (3-mer) are used as the genetic code and they can be 

translated into 20 distinct amino acids (refer to Table 2.1). A coding region always 

begins with a start codon and ends with a stop codon. ATG is usually regarded as an 

initial codon, and TGA, TAA or TAG are usually known as stop codons. It is found 

that codon patterns in coding and non-coding regions are different [Attwood and 

Parry-Smith 1999], thus it is supposed that codon-usage statistics can be used to 

analyze context features of promoters. Context features have been used in many 

well-known promoter prediction models recently: PromoteExplore [Xie, Wu et al. 

2006] selects informative pentamers (5-mer) as context features; DragonGSF [Bajic 

and Seah 2003] generates the positional weight matrix (PWM) of pentamers to 

calculate scores of fixed length sequence. The Kullback-Leibler divergence [Wu, Xie 

et al. 2007] based classifier chooses the hexamers (6-mer) as promoter features to 

balance the discriminant power of classifiers and the computational speed. 

Additionally, it has also been shown that 8-mers have distinct pattern relative to TSS 

[FitzGeralad, Shlyakhtenko et al. 2004]. The great power of sequence context features 

is testified to by the improved performance of these new promoter models. 

 

Table 2.1 The genetic code of codons [Attwood and Parry-Smith 1999] 

 T C A G  

T TTT 

TTC 

Phe TCT 

TCC 

TCA 

Ser TAT 

TAC 

Try TGT 

TGC 

Cys T 

C 

A TTA Leu TAA Stop TGA Stop 



-13- 

TTG TCG TAG TGG Trp G 

C CCT 

CTC 

CTA 

CTG 

Leu CCT 

CCC 

CCA 

CCG 

Pro CAT 

CAC 

His CGT 

CGC 

CGA 

CGG 

Arg T 

C 

A 

G 

CAA 

CAG 

Gln 

A ATT 

ATC 

ATA 

Ile ACT 

ACC 

ACA 

ACG 

Thr AAT 

AAC 

Asn AGT 

AGC 

Ser T 

C 

A 

G 

AAA Lys AGA Arg 

ATG Met AAG  AGG  

G GTT 

GTC 

CTA 

GTG 

Val GCT 

GCC 

GCA 

GCG 

Ala GAT 

GAC 

Asp GGT 

GGC 

GGA 

GGG 

Gly T 

C 

A 

G 

GAA 

GAG 

Glu 

 

2.1.3 Summary of Features Used in Existing Promoter 

Prediction Models 

Sequence context features theoretically include signal features, because signal 

features are also the combination of nucleotides. For example, in the evaluation 

equation of CpG islands, the frequency of "CG" (a typical 2-mer) is counted, and 

TATA sequence is defined as a short consensus sequence TATA(A/T)A(A/T). Many 

promoter prediction methods locate the promoter regions by purely using those signal 
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features as biological signals are the most reliable features of promoter sequences. 

However, the statistical characteristics of DNA sequences are also important because 

it is possible to dig out the relationship among the massive nucleotides sequence 

datasets. Therefore, it is advisable to combine signal features and context features to 

construct the classifier for promoter recognition. A summary of features that have 

been used in existing promoter prediction methods is shown in Table 2.2. 

 

Table 2.2 Summary of features used in existing promoter prediction systems 

 

System 

Signal Feature Context 

Feature 

 

TATA-b

ox 

(Y /N) 

Inr 

(Y/ N) 

GC-box or 

CpG Island 

(Y or N) 

Other 

PWMs Y Y Y Cap signal 

CAAT-bo

x 

N/A 

Promoter- 

Scan 

Y N N TEs N/A 

PromFD Y Y N N 5-mer–10-mer 

Promoter- 

Inspector 

N N N N IUPAC words 

NNPP Y Y N N N/A 
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FirstEF N N Y first splice 

donor site 

5-mer 

6-mer 

DFP N N Y N/A 5-mer 

DragonGSF N N Y N/A 5-mer 

CpGProD N N Y N/A N/A 

Eponine Y N Y N/A N/A 

McPromer Y Y N N/A motifs 

Prom- 

Predictor 

N N Y N/A 5-mer 

Promoter- 

Explorer 

N N Y N 5-mer 

KLD N N N N 5-mer–7-mer 

 

2.2 Review of Promoter Feature Extraction and Selection 

Algorithms 

The selection of discriminative input features is the crucial step in building a powerful 

classifier. Varieties of algorithms for signal processing and pattern recognition have 

been used in promoter feature extraction and selection processes, as DNA sequences 

also can be regarded as digital signals. In this section, several classical and popular 

feature extraction and selection algorithms are reviewed. 
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2.2.1 Sequence Feature Extraction Algorithms 

The positional weight matrix (PWM) and the hidden Markov model (HMM) are two 

of the most classical and useful algorithms in sequence feature extraction. These are 

always essential to sequence signal features. Therefore, the theoretical background of 

these two algorithms and their application in sequence feature extraction are 

presented in the following section  

 

Positional weight matrix  

A weight matrix is a simple generative model for a short, ungapped sequence motif 

[Down and Hubbard 2002]. PWM is used extensively in signal feature extraction 

processing, as it can create a profile that represents the common feature across the 

training sequence. This profile can be used to scan new sequences and make a 

decision as to whether these sequences are related to the training group [Raychaudhuri 

2006]. The simple process of generating a PWM is stated as follows:  

Firstly, given a group of fixed length sequences, we total up the number of each 

nucleotide in each position.  

Secondly, we calculate the probability of each nucleotide at each position by the 

following equation: 

,

,

n i

n i

N
P

N
   (2.6) 

where ,n iP  is the probability of a specific nucleotide n  (A, C, T, G) in position i  of 

a sequence, and iN  is the number of times the nucleotide occurs at the position 
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among the whole observed sequence. N  is the total number of sequences. 

Sometimes a bias factor might be added to this equation to avoid zero probability and 

the equation can be changed to: 

 
,

,
1

n i n

n i

N q
P

N






 (2.7) 

Here, nq  is the background frequency of a nucleotide and a pseudo-count of one is 

used here.  

Next, we calculate the values of the weight matrix as follows: 

,

, log
n i

n i

n

P
W

q

 
  

 
 (2.8) 

where ,n iW  is the value of each nucleotide in position i . At last, the score of a new 

sequence is derived by finding the weight values in the matrix that correspond to the 

nucleotide at a specific position and their totals:      

,

1

N

n i

i

S W


  (2.9) 

The above process is a simplified version. PWM is also used to generate position 

matrices of n-mers. In order to satisfy different models, some promoter prediction 

systems that use PWM to extract the signal features modify the equation by adding 

some parameters and conditions. PWMs [Bucher 1990] derives four weight matrices 

of TATA-box, cap signal, CCAAT-box and GC-box respectively. PromoterScan 

[Prestridge 1995] uses a weight matix to score TATA-box. Eponine combines weight 

matrices with associated discrete probability distributions relative to TSS to generate 

more complex weight matrices of TATA-box and CpG-island enrichment. DPF [Bajic, 

Chong et al. 2002] [Bajic, Seah et al. 2003] and PromoterExplorer [Xie, Wu et al. 
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2006] derive their position weight matrices from selected pentamers.  

 

Hidden Markov Model (HMM) 

Hidden Markov Model (HMM) [Krogh and Brown 1994] is a more sophisticated 

technology for feature extraction from sequences compared to PWM. A sequence of 

coin flips is always used to illustrate a hidden Markov model (Figure 2.1). We can 

assume that a fair coin can derive flips of head (H) and tail (T) with equal probability 

of 0.5, and a biased coin derives probability of H and T for p  and 1 p respectively. 

The arrows indicate state transitions, by which the fair coin can switch to the biased 

one with probability q  and the biased coin can switch to the fair one with probability 

q . There are two states in this model. 1S  represents one state in which the flips are 

generated by the fair coin and 2S  is the other state in which flips are generated by the 

biased coin [Raychaudhuri 2006].  

 

 

Figure 2.1 A simple hidden Markov model with two states [Raychaudhuri 2006] 
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When applying the HMM on sequence analysis, we assume that observations 

(nucleotides in DNA) are accounted for by hidden states and the probability of the 

current state is only dependent on the prior state of the same system. HMM can 

represent spacer-included motifs [Murakami, Ohta et al. 2000] of a sequence family. 

There are a number of algorithms that can be used for training HMM and a simple 

example to train the HMM by Baum-Welsh algorithm is as follows: 

Firstly, the random parameters are assigned to the model.  

 

Secondly, the probability of each state for each position of each sequence is 

calculated.  

 

Lastly, the parameters are updated by the training algorithm and then the model with 

optimized parameters can describe this family of sequences [Raychaudhuri 2006]. 

 

The classical model has been utilized by different systems. Generalized Hidden 

Markov Model (GHMM) [Stormo and Haussler 1994] is used for generating 

multi-symbol strings in gene finding systems [Kulp, Haussler et al. 1996]. The Pol II 

promoter prediction program [Murakami, Ohta et al. 2000] is built based on PromFD 

[Chen, Hertz et al. 1997] and utilizes HMM to acquire additional motifs. McPromoter 

is developed based on GenScan [Burge and Karlin 1997], and uses stochastic segment 

models (SSMs) [Ostendorf, Digalakis et al. 1995] which is a generalization of HMM 

to represent six segments of the promoter sequence from -250 to +50bp: upstream 1 
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and 2, TATA box, spacer, initiator and downstream.  

 

2.2.2 Sequence Feature Selection Algorithms 

Compared to sequence signal features, context features are more complex. From 

3-mer (codon) to 8-mer, the number of variables increases exponentially. Sometimes, 

a better promoter prediction result relies on finding more discriminative features 

rather than improving model building methodology. Therefore, many systems start to 

focus on how to select the most effective and informative features among the massive 

feature-candidate pool. Here I simply present four methodologies in context feature 

selection process used by different systems. 

 

DPF [Bajic, Chong et al. 2002] selects 256 from 1024 pentamers jp  ( 1,2,...1024j  ) 

for the classification model using the relevance function: 

   / 1p n p nJ          (2.10) 

where p  and n are the percentages of promoters and non-promoters in which the 

pentamer jp  appears respectively. The number of p  and n  represents the pj’s 

average number of occurrences in sequences where jp  appears in promoter and 

non-promoter sequence training sets. Finally, 256 pentamers with the highest values 

received from the relevance function are selected for the classification model. 

 

The Pentamer selection method used by PromPredictor [Chen and Li 2005] is also 
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based on calculating the relevance of the same features between different data sets. It 

refers to the distance function [Solovyev and Makarova 1993]: 

2

1 0

2 2

1 0

( )
( )

m m
D X

d d





 (2.11) 

where 1m  and 0m  are the mean value of the feature X  in the promoter and 

non-promoter sequence data sets respectively. 1d  and 0d  are the standard deviations 

of feature X  in positive and negative training sequence data sets separately. They 

can be calculated by the following function: 

1

1 N

i

i

m x
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   (2.12) 

2

1

1
( )

1

N

i

i

d x m
N 

 

  (2.13) 

where ix  is the value of feature X  appearing in sequence iS   and N  is the total 

number of sample sequences in a data set. Subsequently, the top aN  pentamers 

( 1024aN  ) with the largest values of ( )D X are selected. 

 

PromoterExplorer involves posterior probability in context feature selection. A 

function for selecting most informative pentamers is defined as: 

( 1| )
, 1, 2,

( 0 | )

i

i

P I a
i

P I a


 
      

 
 (2.14) 

where ( 1| )iP I a   is the posterior probability of I  given a pentamer ia . 1I   

representing the input sequence is the promoter, otherwise 0I  . The pentamers are 

ranked according to their   values and then 250 pentamers with the highest values 

are selected.  
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More recently, the promoter prediction system has adopted the concept of relative 

entropy in the feature selection process [Wu, Xie et al. 2007]. Kullback-Leibler 

divergence is used to calculate the distance, which is defined as follows: 

4

1

( )
( , ) ( ) ln

( )

k k

promoterk k k

promtoer non promoter promoter k
i non promoter

p i
p p p i

p i
 

 

   (2.15) 

where k

promoterp  and k

non promoterp 
 represent the probability density functions of words 

(the combination of A, C, T and G) in promoter and non-promoter sequences. 

k ( 4, 5, 6, 7k     ) indicates the fixed word length and the total number of words is 4k . 

One subgroup of the most effective words can be obtained by maximizing the 

following criterion function: 

 

 
{ | {1,2,...4 }}

arg max ( , )

| ( ) ( )

k

k k

promoter non promoter
i i

k k

promoter non promoter

S p p

i p i p i

 




 

  

 (2.16) 

where S  represents the set of subscripts of all the words in the subgroup that are 

selected. The desirable number of words within a subgroup can be selected by 

sorting
( )

{ ( ) ln , }
( )

k

promtoerk

promtoer k

non promtoer

p i
p i i S

p i

   in descending order.  

 

In conclusion, the concepts of statistics and probability are widely used in sequence 

feature selection processing, and the prediction performances of the promoter 

recognition models are greatly improved with the introduction of these 

methodologies. 
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2.3 Review of Modeling and Classification Methodology  

To construct a model with effective classifiers is the final step of promoter recognition 

systems. Pattern recognition approaches are widely used in the promoter prediction 

area. Pattern recognition models have the ability to determine if an unknown sequence 

belongs to some group it has ″seen″ before, because the characteristic of a certain 

sequence group can be remembered by the model [Attwood and Parry-Smith 1999]. 

Several methodologies of building classifiers and models that are used in promoter 

recognition program are discussed here.  

 

2.3.1 Introduction of modeling and classification 

methodology  

The process of building models and classifiers is always implemented with machine 

learning technologies. Machine learning is an adaptive process that enables 

computers to learn from experience [Chen(Ed.) 2005]. Several machine learning 

approaches for building models and classifiers are introduced. As some of these 

methods take PWM scores as input signals, the classification function of PWM is 

presented first. 

 

PWM 

Apart from sequence feature extraction, PWM is also used for classification in 

promoter recognition. The scores that are needed in a decision process can be 
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obtained by calculating the log likelihood that it belongs to the same class using the 

weight matrix. As we mentioned in section 2.2.1; usually, two weight matrices of the 

same feature are generated from both positive and negative training sequence sets. 

Given an unknown sequence, two scores will be obtained according to these two 

matrices. A decision then can be made by simply comparing the two scores, or it may 

be based on more complex rules carried out by a neural network or learning machine.  

 

Artificial neural network (ANN) 

ANN is one of the most popular modeling and classification tools because of its 

powerful intelligent learning ability. ANN can take various input signals; for example, 

the scores generated by the PWM, or directly embed sequence features into the 

framework. As the promoter recognition system I built is developed using ANN, the 

theory and application will be discussed in Chapter 3.   

 

Support vector machine (SVM) and Relevance vector machine (RVM) 

SVM is always used as an effective classifier for separable and non-separable data. 

This is so because the good performance can be generated without prior knowledge of 

the problem and better performance can be achieved by incorporating prior 

knowledge into SVM [Burges 1998]. The problem of the slow speed in the test phase 

can be resolved by combining other algorithms with SVM [Scholkopf, Smola et al. 

1998]. RVM [Tipping 2001] is also a sparse training algorithm like SVM. It can select 

the most helpful functions for classification and discard useless basis functions from 
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provided functions [Down and Hubbard 2002]. At the same time parameters of the 

learning machine can be trained by these probabilistic and distance functions. Both 

SVM and RVM are widely used in promoter recognition systems. 

 

2.3.2 Summary of modeling and classification methodology 

used in existing promoter prediction models 

Pattern recognition approaches are widely used in the promoter prediction area and it 

is seldom found that different promoter prediction systems construct exactly the same 

models or classifiers. Each model has its own advantages and disadvantages. A 

summary of classification and modeling methodology used in promoter prediction 

systems is listed in Table 2.3. The selected systems are the same as the ones in Table 

2.2. 

Table 2.3 Summary of classification and modeling methodology used in promoter 

prediction systems 

System Classification and Modeling Methodology 

PWMs Probabilistic model based on PWM scoring block 

PromoterScan Probabilistic model based on PWM scoring block 

PromFD Scoring model based on Information matrix database  

PromoterInspector Prediction model based on IUPCA matched rules 

NNPP Time-delay neural networks for feature extraction, 

detection and functional regions prediction 
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FirstEF Probabilistic models based on QDF 

DFP Classifiers built by ANN with input scores from feature 

weight matrices 

DragonGSF Classifiers built by ANN with input scores from feature 

weight matrices 

CpGProD Linear model based on CpG island score 

Eponine RVM built model initialized by PWM and random 

Gaussian position distribution 

McPromoter ANN incorporated with hidden Markov chain 

PromPredictor Classifier built by ANN 

PromoterExplorer Classifier trained by AdaBoost 

KLD decision model based on PWM scoring block 
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Chapter 3 Application of Principal 

Component Analysis and Artificial 

Neural Network to Promoter Feature 

Selection 

 

This section presents the promoter feature selection process, which is the most 

important part of building the classification model HPR-PCA. In this human promoter 

recognition model, principal component analysis (PCA) is adopted to reduce the 

dimensionality and select the most discriminative context features from promoter and 

non-promoter sequences. The theory and application of PCA are stated, and as the 

implementation tool, back propagation (BP), artificial neural network (ANN), and a 

holdout validation training method are also introduced. Finally, the application of 

PCA for feature selection of the model HPR-PCA is presented in detail, and the 

conclusions are made through a series of comparative experiments.  

 

3.1 Principal Component Analysis 

Principal Component Analysis (PCA) is one of the best known techniques of 
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multivariate analysis [Jolliffe 1986] and it has wide applications in areas from 

neuroscience to computer graphics. The central idea of PCA is to transform the 

original variables to a new set of variables which are projected into a new space. By 

reducing the dimensionality of a high dimensional dataset, the first few principal 

components are retained according to their order, which can represent the most 

variation in the original data set. The theory and the application of PCA are stated 

here. 

3.1.1 Theoretical background 

PCA is the application of linear algebra, and there are some important concepts in 

linear algebra which are useful for understanding PCA.  

Variance is a measure of the spread of data in a data set. Variance of data set a  is 

defined as: 

2

2 1
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n
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a a

s
n









 (3.1) 

where ia  is the element of a . n  is the total number of elements in data set a . a  is 

the mean of a , which is calculated by: 
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n

i

i

a

a
n




 (3.2) 

Variance is purely operated on one dimensional data. When calculating how much the 

dimensions vary from the mean with respect to each other, we need to refer to 

covariance. Covariance is used to measure two or more dimensional data. Given 

another data set b , which has the same number of samples as data set a , the 
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covariance between b  and a  can be calculated as follows: 
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 (3.3) 

If we calculate the covariance between a  and itself, the result is variance[Smith 

2002]. We can build a matrix : 

1

m

c

C
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 , (3.4) 

and make row vectors:  

 1 1 2 nc a a a a   , (3.5) 

 2 1 2 nc b b b b   , (3.6) 

3... mc c  are set by additional row vectors.  

Let us define a covariance matrix:  

1

1

T

cC CC
n




 (3.7) 

where cC  is an m m  covariance matrix. The diagonal elements of cC  are the 

variance data type, i.e.,
2 2,a bs s , and the off-diagonal elements are the covariance data 

type, i.e., cov( , )a b . Here large values of variance elements represent the signal that 

are of interest and small ones represent noise. Covariance is a measure of how much 

two random variables correlate to each other. A large diagonal element in the 

covariance matrix corresponds to high independency between two variables and small 

one corresponds to low independency. In PCA, we want to make new variables be 

independent to each other through linear transformation. Therefore, the ideal solution 

is to diagonalize the covariance matrix cC , or to find another matrix related to cC , 
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making the off-diagonal elements of the matrix become zero through linear 

transformation. In order to achieve this goal, let us refer to an orthonormal matrix P ,  

where                  1 TP P                        (3.8) 

and a new matrix Y , 

where                    Y PC                      (3.9) 

Y  is the projection of C  based on new space P . We can make the following 

deduction: 

1

1

1
( )( )

1

1

1

1

1

T

Y

T

T T

T

C YY
n

PC PC
n

PCC P
n

PAP
n

 











                     (3.10) 

where                 TA CC                        (3.11) 

As A  is symmetric, we can find matrix E  and D  so that TA EDE , where D  is 

a diagonal matrix and E  is a matrix of eigenvectors of A  arranged as columns. 

Thus, we can select P  where each row P  is an eigenvector of TCC . Now, we can 

rewrite YC  in terms of P  and D . 
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It is obvious that P  is the matrix that can diagonalize YC . The eigenvalues of YC  

(diagonal values in D ) are the variances of C , and the row vectors of P  

corresponding to the largest eigenvalues are the principal components (PCs) of C  

[Shlens 2005]. By linear transformation, the covariance matrix cC  is transformed to 

YC , so the problem becomes to digonalize YC . Following the above deduction, the 

problem is simplified to finding the eigenvectors and eigenvalues of the covariance 

matrix cC .  

 

After obtaining matrix D , we rank the values of the diagonalized elements. The 

larger values in matrix D  associate with higher levels of energy. We need to use 

these values to estimate how many PCs we need to built a classifier. Let us define the 

matrix D: 

1 0

0 N

d
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                              (3.13) 

The idea is to select the smallest number of PCs that should contribute a certain 

percentage of total variation. The selection can be completed by the following 

function: 

0

0

1 1

n N

n j j

j j

t d d
 

                                      (3.14) 

In this function, jd  is the j th diagonal value of D . In order to retain as much 

information as possible and reduce the dimensionality at the same time, we chose a 

cut-off value 0.7Mt  , where 0n  is the smallest integer, for which 
0n Mt t  [Jolliffe 

1986]. 
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Therefore, 0n  eigenvectors from matrix P which correspond to the first 0n  

eigenvalues are selected. The new matrix constructed by these orthonormal 

eigenvectors can be regarded as the basis of a new space, into which the original data 

set is projected.  

 

At last, the solution of PCA can be concluded in five steps: 

1. For a given data set, arrange it into a m n  matrix, where m  is the number of 

measurement types and n  is the number of samples. In our experiment, m  

specifically represents a number of sequence features and n  is the sequence number 

in a training data set. 

2. Calculate the mean for each measurement and generate a covariance matrix. 

3. Calculate the eigenvectors and eigenvalues of the covariance matrix. 

4. Rank the eigenvalues of the covariance matrix and determine how many PCs are 

needed for the classifier. 

5. Select the eigenvectors according to step 4, and form a new space.  

 

3.1.2 Bioinformatics applications of PCA 

A genomic data set is probably the largest data set with high complexity and 

redundancy, so clustering algorithms or dimensional reduction algorithms 

[Raychaudhuri, Stuart et al. 2000] are important for genetic analysis. With wide 

application, PCA is used for pattern recognition in microarray data sets 



-33- 

[Raychaudhuri, Stuart et al. 2000], species-specific codon usage analysis [Medigue, 

Rouxel et al. 1991] [Kanaya, Yamada et al. 1999], clustering gene expression data 

[Yeung and Ruzzo 2001] and so on. In these applications, PCA performs well on 

extracting the useful signals while reducing the noise in genetic datasets. It is shown 

that PCA can automatically detect the redundancies in a data set and define a smaller 

hybrid feature [Raychaudhuri 2006]. Those important features that account for most 

variables in an original data set are mostly selected as principal components for 

clustering or classification. As PCA works well on dimension reduction and feature 

extraction, it is selected as the feature extraction algorithm in HPR-PCA.  

 

3.2 Artificial Neural Network and Training Method 

Machine learning approaches gradually replace traditional computer science 

techniques and algorithms in bioinformatics [Chen(Ed.) 2005]. Artificial neural 

network (ANN) is one of the machine learning mechanisms which is widely used in 

genetic sequence analysis. The basic concept of ANN is introduced firstly and 

followed by a backpropagation (BP) learning algorithm which is used in HPR-PCA. 

HPR-PCA adopts the holdout validation training method in training and test processes, 

so it is also stated in this section. 
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3.2.1 Artificial Neural Network and Backpropagation 

Learning Method 

ANN is a kind of adaptive machine learning algorithm that can learn from experience, 

and it is also intelligent as it has the ability to recognize new things. ANN usually has 

several layers and each layer contains several neurons. In a typical ANN, the first 

layer is the input layer, where the information enters the network. The middle layers 

are hidden layers, which contain neurons that combine the input features and compute 

more complex functions. The last layer is the output layer that is connected with the 

nodes in the hidden layer and combines them to decide on a final decision [Chen(Ed.) 

2005]. In the classification process, ANN firstly imitates the human brain to capture 

the input-output relationship and update the inner network structure, and then 

classifies those new input data according to the stored knowledge. A simple 

illustration of ANN is shown Figure 3.1. 

 

Figure 3.1 Schematic illustration of an ANN 

 

A neuron is the basic element of ANN. In a neuron, the sum of weighted inputs and 



-35- 

bias are sent to the transfer function, and each neuron can apply different transfer 

functions to generate the output. The inputs of a neuron can be either signals from an 

outside network or outputs of other neurons, and the outputs can be either the final 

results of the network or inputs to other neurons. Figure 3.2 shows the model of a 

general neuron. 

 

Figure 3.2 The structure of a general neuron.  

X  is the input vector and y  is the output. W  represents the weight vector and b  

represents the bias. f  is the transfer function.  

 

The ANN built classifier is used for classifying promoter regions and non-promoter 

regions, therefore, the output results are non-linear. Two non-linear transfer functions: 

log-sigmoid and tan-sigmoid are used in HPR-PCA. Figure 3.3 and Figure 3.4 are the 

graphs of log-sigmoid and tan-sigmoid transfer functions. 
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Figure 3.3 The figure of log-sigmoid transfer function 

 

The log-sigmoid algorithm is: 

1
logsig( )

(1 exp( ))
n

n


 
                                (3.15) 

 

 

Figure 3.4 The figure of tan-sigmoid transfer function 

 

The tan-sigmoid algorithm is: 

2
tan sig( ) 1

1+
n  

（exp(-2 n)）
                           (3.16) 
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A feed-forward neural network is used in HPR-PCA. In a feed-forward neural 

network, each neuron in one layer connects with every neuron in the next layer but not 

to those in the same layer or a previous layer. BP is the most common algorithm of a 

feed-forward network. It minimizes the error function which is calculated by inputs 

and target outputs in a training set and updates the weights by using the method of 

gradient descent [Rojas 1996]. A simple three-layer BP learning process is introduced 

as follows: 

 

1. Initialize the 1, 2, , 1, 2,ijw i n j p          , 1, 2, , 1, 2, , )jtv j p t q         , 

which are the connection weights between input and hidden layers and the connection 

weights between hidden and output layers. The initiation values can be randomly 

selected from the range 1, 1  . n  represents the dimension of the input vector, p  

represents the number of neurons in the hidden layer and q  is the neuron number of 

the output layer. 

 

2. Calculate the input and output of the hidden layer: 

  
1

n

j i j i j

i

s w x b



                          (3.17) 

   ( )j jy f s                              (3.18) 

where 1 2[ , , , ]k nP x x x     is the input vector. jb  is the output bias of the hidden 

layer. 1 2( , , , , )k pS s s s    is the input vector of the hidden layer. jy  is the output of 

each neuron in the hidden layer. f  is the transfer function, and we only use 

log-sigmoid and tan-sigmoid transfer functions in the ANN training process of  
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HPR-PCA 

 

3. Calculate the input and output of the output layer: 

1

1, 2, ,
p

t jt j t

j

L v y t q


                     (3.19) 

( ) 1, 2, ,t tC f L t q                     (3.20) 

where t  is output bias of the output layer and tL  is the input vector of the output 

layer. tC  is the response of the output layer . 

 

4. Calculate the gradient of the error function 
k

td  of the output layer with target 

output 
1 2,, ,k qT t t t

      and tC : 

    1, 2, ,k k

t t t t td t C C C t q                          (3.21) 

 

5.  Calculate the gradient of the error function k

je  by jtv  and 
k

td : 

1

q
k k

j t jt j j

t

e d v y y


 
       
 
                       (3.22) 

 

6. Adjust the connection weights jtv  and the output bias t  by 
k

td  and jy : 

   ( 1) ( ) k

j t j t t jv N v N d y                           (3.23) 

   ( 1) ( ) k

t t tN N d                                (3.24) 

   1, 2 , , 1, 2 , , 0 1t q j p                 

   where   is the learning constant. 

 



-39- 

7. Adjust the connection weights ijw  and the output bias jb  by k

je  and input ix : 

   ( 1) ( ) k

i j i j j iw N w N e x                         (3.25) 

   ( 1) ( ) k

j j jb N b N e                             (3.26) 

   1, 2 , , 1, 2 , , , 0 1i n j p                  

where   is the learning constant. 

 

8. Randomly select the next training sample, sent it to the ANN and repeat steps 1 to 7 

 

9. When all the samples in the training set are trained once, evaluate the error of the 

network. If the error reaches an acceptable value, it means that the ANN is trained 

successfully, otherwise the training is unsuccessful. 

 

The BP algorithm uses the gradient descent method to minimize the error functions, 

so the continuity and differentiability of transfer functions need to be guaranteed 

[Rojas 1996]. The BP network performs well on classifying massive and complex 

data, therefore, it is ideal for classifying DNA sequence data. 

 

3.2.2 Holdout Validation Training Method  

Holdout validation training method is used in the HPR-PCA feature selection process. 

In all sequence datasets (promoter, exon, intron and 3’ UTR), training data are 

randomly selected from the original data set and the remaining observations are 
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retained as validation data.  

 

3.3 Features Selection Based on PCA 

Finding effective features is essential for building powerful classifiers. As mentioned 

in Chapter 2, there are two types of features used in promoter recognition approaches: 

sequence signal features and context features. In HPR-PCA, PCA is used to select 

discriminative context features. Context features take an important position in our 

promoter prediction model, because nearly all of the signal features are included in 

context features, and they have more common patterns for genome-wide promoter 

regions prediction. The following section states the feature selection process in 

HPR-PCA step by step. The evaluation step is implemented with ANN. 

 

3.3.1 Feature Matrix Generation 

Feature matrices are extracted from human promoter and non-promoter sequences, 

which are accessible in public databases. Human promoter sequences used in this 

experiment are from Eukaryotic Promoter Databases (EPD), Release 86 [Schmid, 

Perier et al. 2006], and from the database of transcription start sites (DBTSS), version 

5.2.0 [Suzuki, Yamashita et al. 2002]. Human non-promoter sequences used in this 

model are exon sequence, intron sequences and 3’ UTR sequences. Human exon and 

intron sequences are extracted from the exon-intron database [Saxonov, Daizadeh et 

al. 2000], and the human 3’ UTR sequences are from the UTR database [Pesole, Liuni 
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et al. 2001].  Among these sequences, only the promoter sequences from EPD have a 

fixed length of 1200bp, the length of sequences from other databases varies.  

 

For training and testing purposes, promoter sequences from 250bp upstream to 50bp 

downstream of the transcription binding site are extracted from EPD and DBTSS 

promoter databases respectively. Non-promoter sequences including exon sequences, 

intron sequences and 3’UTR sequences whose length are over 1200bp (compared to 

the sequence length in EPD) are selected from those three non-promoter databases 

mentioned above and arranged into 300bp each. Those sequences with letter ″N″ are 

not included in the selected data sets. 

 

A DNA sequence consists of four types of nucleotides, so with different combinations, 

there are 34 64  codens (3-mers), 44 256  4-mers, and 54 1024  pentamers 

(5-mers) in promoter and non-promoter sequences. The feature matrices are based on 

the n-mer frequencies and the steps of feature matrix generation are as follows: 

 

1. Count the overlapping 3-mer, 4-mer and 5-mer frequencies of promoter and 

non-promoter sequences. For a sequence with length L bp, the counting window 

moving 1bp per step, there will be ( 1)L n   n-mers counted in each overlapping 

sequence matrix ( 3,4,5n  ). As the length of each sequence is fixed at 300bp, there 

are 298 3-mers, 297 4-mers and 296 5-mers involved in counting 3-mer, 4-mer and 

5-mer frequency matrices respectively.  
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2.  Generate three types of frequency feature matrices for each sequence group: 

3-mer matrix, 4-mer matrix and 5-mer matrix with the dimension 64 sn , 256 sn  

and 1024 sn  respectively, where sn  is the number of sample sequences. A total of 

12 feature matrices are extracted from the promoter and non-promoter data sets. Let 

us refer to 0 1( , )a i j , 0 2( , )b i j  and 0 3( , )c i j  as the 3-mer, 4-mer and 5-mer frequency 

matrix respectively, where 1 1, 2, ,64i    , 2 1, 2, , 256i      , 3 1, 2, ,1024i      and 

j  represents the number of sequences. 

 

3.  Normalize the matrices as follows: 
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   where 1 2( , ), ( , )a i j b i j    and 3( , )c i j  are the 3-mer, 4-mer and 5-mer feature 

matrix respectively. maxa , maxb  and maxc  are maximum values of the 3-mer, 4-mer 

and 5-mer matrix respectively. 

Combine these three normalized matrices in four ways: 
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     1, 2 , , 1 3 4 4abci                   (3.33) 

   where 1 ,( )ab jC i   is the combination of the 3-mer and 4-mer matrix, and 2 ,( )ac jC i   

is the combination of the 3-mer and 5-mer matrix. 3 ,( )bc jC i   is the combination of the 

4-mer and 5-mer matrix, and 4 ( , )abcC i j  is the combination of the 3-mer, 4-mer and 

5-mer matrix. 

 

Now, the 3-mer, 4-mer and 5-mer matrices 1 2( , ), ( , )a i j b i j    and 3( , )c i j  together 

with their combined matrices 1 ,( )ab jC i  , 2 ,( )ac jC i  , 3 ,( )bc jC i   and 4 ( , )abcC i j  can be 

extracted from each sequence group. In order to select features to build three 

classifiers— Promoter versus Exon , Promoter versus Intron and Promoter versus 

3’UTR classifier, one promoter matrix and one non-promoter matrix are combined in 

pairs and the n-mer frequency matrices of non-promoter sequence are normalized by 

dividing the maximum value of corresponding promoter matrices..  

 

3.3.2 Feature Selection Based on PCA 

The next step is to find the most effective n-mer feature combination for classification 

from different matrices.  Promoter and exon feature matrices are used in a 

comparative experiment. Seven pairs of matrices are separately used as input matrices 

of the previously designed PCA algorithm: firstly, generate the covariance matrices of 
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each matrix; secondly, calculate the eigenvectors and eigenvalues of these covariance 

matrices; thirdly, rank the eigenvalues in descending order. The first three 

eigenvectors of each covariance matrix are selected to form seven new hybrid feature 

vectors, on which the original promoter feature matrices and exon feature matrices are 

projected. Next, the new promoter and exon vectors are sent to the neural network for 

training. The target outputs are set to ″1″ corresponding to promoter vectors and ″0″ 

corresponding to exon vectors. Figure 3.5 shows the flow chart of the training 

process. 

 

Figure 3.5 The flow chart of training process 

(1) Combination  (2) PCA  (3) Projection  (4) Neural Network Training 
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In total, there are seven networks based on seven different n-mer combined feature 

matrices. Five thousand promoter sequences from DBTSS and 5000 exon sequences 

from the exon-intron database constitute the training set of the comparative 

experiment. The 3-mer, 4-mer and 5-mer frequency matrices are extracted from the 

promoter and exon training sequences separately, and then seven promoter-exon 

combined feature matrices (3-mers, 4-mers, 5-mers, 3 and 4-mers, 3 and 5-mers, 4 

and 5-mers and 3, 4 and 5-mers) are generated to train those seven networks. For test 

purposes, five thousand promoter and 5000 exon sequence segments are selected from 

the same database as the training sequences and the length of these sequences are all 

300bp. Sequences of training sets and test sets are not repeated or overlapped. A 

simple three layers BP network is built to train and test these feature vectors. Three 

transfer functions of the three layers are ―tan-sigmoid‖, ―log-sigmoid‖ and 

―tan-sigmoid‖ respectively and the holdout validation training method is used in the 

training and test processes. The training epochs are set to 10000 and the classification 

threshold is set to 0.5. The network parameters are not optimized here as the purpose 

of this comparative experiment is only to testify which n-mer combination shows the 

best discrimination. The test process is shown in Figure 3.6.  
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Figure 3.6 The flow chart of the testing process 

 (1)Feature matrix generation  (2) Projection   (3) Classification with ANN 
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In the comparison, two evaluation criteria—sensitivity ( eS ) and specificity ( pS ) are 

evaluated. True positive (TP ), false negative ( FN ) and false positive ( FP ) are also 

counted for statistical purposes. 

TP
Se

TP FN



                             (3.34) 

p

TP
S

TP FP



                             (3.35) 

In order to reduce the error produced in the ANN training process, all the networks are 

trained and tested three times with the same data groups and the results taken are the 

average values. Table 3.1 shows the comparison results of the seven trained networks. 

 

Table 3.1 Comparison results of seven networks 

Network       Se Sp Se + Sp Ranking 

3-mer 0.6856 0.5945 1.2801 4 

4-mer 0.6512 0.5715 1.2227 5 

5-mer 0.7100 0.6150 1.3250 3 

3&4-mer 0.6260 0.5823 1.2083 7 

4&5-mer 0.6830 0.5342 1.2172 6 

3&5-mer 0.7340 0.6500 1.3840 1 

3&4&5-mer 0.6980 0.6282 1.3262 2 

 

3.3.3 Conclusion 

In the comparative experiment, the ANN trained with the 3 and 5-mer feature matrices 
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achieves the best results among the seven networks, so the 3 and 5-mer combined 

feature matrices will be adopted in the human promoter recognition network.  

Considering other feature selection, TFBSs are relative short and if without 

reasonable combinations with other features, this kind of features will lead to a high 

false positive rate. According to the analysis of 1871 human promoter sequences, in 

EPD [Schmid, Perier et al. 2006], TATA-only and Inr-only promoters account for just 

6% and 9% respectively. As we mentioned in Chapter 2, more than half of human 

promoters are CpG-islands related, therefore, CpG-island features are combined with 

the selected context feature in our human promoter recognition network. The 

implementation of the whole network will be introduced in Chapter 4.
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Chapter 4 Human Promoter 

Recognition Network 

 

In this chapter, two schemes are proposed first for a human promoter recognition 

network, and the implementations of the sub-modules are also specifically presented. 

Network parameters are optimized by a comparative experiment. Marked promoter 

sequences, non-promoter sequences and three human DNA sequences are selected to 

test the performance of the two proposed schemes. Finally, Scheme I is adopted as the 

HPR-PCA model as it achieves better overall results. 

 

4.1 Overview of Human Promoter Prediction Network 

Here the overall structures of two proposed human promoter prediction networks are 

presented. The difference between Scheme I and Scheme II is the utilization of 

CpG-islands signal. Scheme II divides sequences into CpG-islands related and 

CpG-islands non-related groups before sending these sequences into to classifiers, 

while Scheme I combines the CpG-island signal directly with the classification results 

from the classifiers. The overall structures of Scheme I and Scheme II are show in 
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Figure 4.1 and Figure 4.2.  

 

In order to predict TSS along large genome sequences, a sliding window is set up first. 

The window size is 300bp and it moves 20bp in each step in our model. In Scheme I, 

each sequence segment from the sliding window will receive a score from the 

CpG-islands module and at the same time the feature generation module extracts a 3 

and 5-mer feature vector of each sequence segment. The PCA module projects the 

feature vector into the new space which is constructed during the training processes. 

Next the new vector is sent to three classifiers: the Promoter vs. Exon classifier, 

Promoter vs. Intron classifier and Promoter vs. 3’ Utr classifier; which perform 

separate classifications. The three scores from the classifiers together with the one 

form the CpG-islands module are processed in the data processing model, where the 

final prediction of TSS is produced.     

 

In Scheme II, each 300bp sequence segment is sent to CpG islands module first and is 

classified to a CpG islands related sequence or non-CpG islands related sequence. As 

mentioned in Chapter 2, when the GC percentage is over 0.5 and the 

observed/expected CpG ratio is over 0.6, the sequence is CpG related, otherwise, it 
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Figure 4.1 The overview structure of Scheme I 
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Figure 4.2 The overview structure of Scheme II 
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is non-CpG islands related. The further processes of feature extraction, principal 

components selection, sequence classification and TSS prediction are the same as 

Scheme I, but the classified CpG islands related sequences and non-CpG islands 

related sequences are processed separately. Therefore, the CpG islands related and 

non-CpG islands related classifiers are trained with corresponding CpG islands 

related and non-CpG islands related sequences. The training process will be 

introduced specifically in the classifiers construction section. 

 

4.2 Implementations of Sub-Modules  

In the human promoter recognition network, all of the Sub-Modules are divided into 

four main groups: feature vector creation and PCA modules, classifiers for promoter 

and non-promoter sequences, CpG islands module, and data processing and TSS 

prediction modules. In this section, the implementations of these groups and their 

differences in Scheme I and Scheme II are discussed.  

 

4.2.1 Feature Vector Creation and PCA Modules 

Feature vector creation and PCA modules are two of the most important modules in 

the whole network. Here we can use the conclusion in Chapter 3 to calculate the 

principal components (PCs) of sequence feature matrices and initialize the PCA 

module. There are no essential differences in the module’s implementation between 

Scheme I and Scheme II except in the training sample selection and classification 
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approach.  

 

In Scheme I, the positive training samples are 1000 promoter sequences from EPD 

[Schmid, Perier et al. 2006], together with 7000 promoter sequences form DBTSS 

[Suzuki, Yamashita et al. 2002]. All of these promoter sequences are from 250bp 

upstream to 50bp downstream of the transcription binding sites and those sequences 

with letter ″N″ are not included in the positive training sets. The negative training 

samples are divided into three groups: exon, intron and 3’UTR sequence groups. 

These non-promoter sequences whose lengths are over 1200bp (compared to the 

sequence length in EPD) are selected and arranged into 300bp. Each negative training 

group contains 10000 sequences. Four 3 and 5-mer combined feature matrices are 

extracted from promoter, exon, intron and 3’UTR sequence groups. One promoter 

feature matrix and one non-promoter feature matrix from the negative training groups 

are combined into pairs. The size of each matrix is 1088 18000 . PCA is applied on 

the three matrices which include both promoter and non-promoter information, and 

1088 eigenvalues of each covariance matrix are ranked in descending order. 

According to Equation (3.14), at least six PCs are needed in our network by choosing 

a cutoff value 0.7Mt  . Therefore, six eigenvectors corresponding to the first six 

eigenvalues of each covariance matrix are selected as PCs.  

 

In Scheme II, all of promoter sequences and non-promoter sequences are classified 

into a CpG islands related sequence group and a non-CpG islands related sequence 
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group for feature matrix extraction and principal components generation. In the CpG 

islands related sequence group, the positive training samples are formed with 5000 

promoter sequences from EPD and DBTSS, and the negative training samples include 

3000 exon sequences, 3000 intron sequences and 3000 3’UTR sequences. In the 

non-CpG islands related sequence group, the positive training samples are 8000 

promoter sequences from EPD and DBTSS, and in the negative training group, there 

are 10000 exon sequences, intron sequences, and 3’UTR sequences respectively. The 

lengths of sequences in Scheme II are also 300bp and the selection approach is the 

same as in Scheme I. One promoter feature matrix and one non-promoter feature 

matrix from negative training groups are combined within the CpG islands related 

training group and non-CpG islands related training group. Therefore, the size of each 

of the four 3 and 5-mer feature matrices in the CpG islands related training group is 

1088 8000 , and 1088 18000  in the non-CpG islands related training group. The 

process of PCA application on feature matrices is the same as in Scheme I and both 

the CpG islands related group and the non-CpG islands related group have their own 

principal components. The specific steps of calculating PCs of sequence feature 

matrices can be referred to in Chapter 3. 

 

A feature vector creation module can extract a 3 and 5-mer feature vector of each 

input sequence. Each PCA module in Scheme I and Scheme II contains three groups 

of PCs: PCs of a promoter-exon combined feature matrix, PCs of promoter-intron 

combined feature matrix, and PCs of promoter-3’UTR combined matrix. These three 
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groups of PCs construct three new feature spaces. Then, the 3 and 5-mer feature 

vector from the feature vector creation module are projected into the three spaces and 

form three new feature vectors as the output of the PCA module. The illustration of a 

feature vector creation module and PCA module is shown in Figure 4.3. 

 

 

Figure 4.3 The illustration of a feature vector creation module and PCA module 
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4.2.2 Classifiers for Promoter and Non-Promoter Sequences 

There are three classifiers in Scheme I and six classifiers (three for CpG islands 

related sequences and three for non-CpG related sequences) in Scheme II. These 

classifiers are built with a back propagation (BP) artificial neural network (ANN) and 

the theoretical background of BP-ANN is introduced in Chapter 3. In this section, the 

method of building promoter vs. exon classifier, promoter vs. intron classifier and 

promoter vs. 3’UTR classifiers is discussed and the parameters of the network are 

optimized with comparative experiments. 

 

The outputs of the PCA module are three vectors based on promoter-exon feature 

space, promoter-intron feature space and promoter-3’UTR feature space respectively. 

In this module, these three vectors are taken as the input of the classifiers and each 

classifier can classify the input vector into a promoter cluster or a non-promoter 

cluster.  

 

ANN can learn from training samples and has the ability to recognize new data, so it is 

ideal for building classifiers by training existing marked sequence samples and 

recognizing new input sequences. There are three problems that need to be considered 

in the classifier building process: first, the dimension of the input vector; second, the 

number of layers in the ANN and the number of neurons in hidden layers; third, 

transfer function selection of each layer.  
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As is known, the number of PCs is equal to the dimension of input vectors. As 

calculated in a previous section, at least six PCs are needed to separate the promoter 

sequence and the non-promoter sequence in the newly built promoter and 

non-promoter feature space. We need to further test if the network performance will 

be better by using higher dimensional vectors. In the model building process, we need 

to find the optimal size of the neural network. A small network might have good 

generalization ability, but learn very slowly or not learn at all. So increasing the 

number of layers or the neurons in hidden layers within a range should improve the 

performance of the network. However, further increment of the number of layers or 

the number of neurons will increase the computational complexity and lead to bad 

performance on generalization. In that case, training samples might be rare compared 

to the size of the network and thus, over fitting occurs, which means the validation 

error still increases even when the training error steadily decreases. It is proposed to 

use the log-sigmoid and tan-sigmoid nonlinear transfer functions in the network but 

there are no specific regulations to assign these two transfer functions, i.e. the order 

and times. Due to the above three problems, comparative experiments are designed 

for achieving better performance and optimizing the parameters of the network. 

 

As the CpG islands feature is not considered in the comparative experiments, the 

training samples are not divided into CpG islands related and non-CpG islands related 

group as required for Scheme II. Here we classify the training samples into three 

groups for three classifiers: promoter and exon vectors based on promoter and exon 
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feature space, promoter and intron vectors based on promoter and intron feature space, 

and promoter and 3’UTR vectors based on promoter and 3’UTR feature space. These 

three groups of vector samples are generated by the sequence feature matrices used 

for calculating PCs in Scheme I. Three 1088 18000  3 and 5-mer promoter and 

non-promoter feature matrices are projected into corresponding feature spaces as 

follows:  

0
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where P  represents the 01088 n  principal components vectors of the promoter and 

non-promoter feature matrix, 0n  is the number of principal components, C  

represents the 1088 18000  promoter and non-promoter feature matrix and V  

represents the 0 18000n   vector samples. Additionally, the target outputs 

corresponding to the training samples are set to ″1″ corresponding to promoter vectors 

and ″0″ corresponding to non-promoter vectors. Figure 4.4 is an illustration of the 

classifier training process.  
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Figure 4.4 The illustration of the classifier training process 

The comparative experiments are developed in three steps. In the tests contained in 

the first step, the dimension of the input vectors and the layers are all fixed at three. 

The number of neurons in the hidden layer of the three tests are 10, 20 and 20 

respectively. In Test 1.1 and Test 1.2, the transfer functions are all set to ―tan-sigmoid‖, 

―log-sigmoid‖ and ―log-sigmoid‖. In Test 1.3, the transfer functions are 

―tan-sigmoid‖, ―log-sigmoid‖ and ―tan-sigmoid‖. The BP learning algorithm is used 

in these ANNs, which is introduced in Chapter 3. The training epochs of networks are 

all set to 30000. In order to test the performances of these three groups of classifiers, 

five thousand promoter sequences and 6000 non-promoter sequences (2000 of each of 

three non-promoter datasets) are used. The feature vector generation process of the 

test set is as follows: first, extract the 3 and 5-mer feature vector of each sequence; 
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second, project the above vector to three feature spaces built with PCs of promoter & 

non-promoter feature matrices, and generate three new feature vectors; third, send 

these new vectors into the corresponding classifiers and obtain the classification 

results. The training set and test set do not overlap. In each group, three classifiers 

work together and when the output of two classifiers are over 0.5 (threshold=0.5), the 

input sequence is reported as a promoter sequence; otherwise it is regarded as a 

non-promoter sequence. The results of the first step are shown in Table 4.1. 

 

Table 4.1 The experiment results in Step 1 of comparative experiments 

Test Test 1.1 Test 1.2 Test 1.3 

Dimension of Input 

Vectors 

3 3 3 

No. of Layers 3 3 3 

No. of Neurons in 

Each Layer 

(3, 10, 1) (3, 20, 1) (3, 20, 1) 

Transfer Functions 

of Each Layer  

(tan, log, log) (tan, log, log) (tan, log, tan) 

TP  4072 4132 4198 

FP  1771 1482 1325 

Se  0.8156 0.8264 0.8396 

Sp  0.6969 0.7360 0.7601 

tan: tan-sigmoid   log: log-sigmoid 
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From the above results, we can make following conclusions: first, within a certain 

range, the more neurons there are in hidden layers, the better performance the network 

can achieve; second, in the transfer function arrangement of each layer, the 

―tan-sigmoid‖, ―log-sigmoid‖ and ―tan-sigmoid‖ shows the greatest advantages. 

 

The tests of Step 2 are developed based on the results of Step 1. The input vector’s 

dimension being fixed on 3 in Step 1 as the training speed of the neural network is 

influenced by the input vectors: the higher dimension of the input vectors, the lower 

the calculation speed of the network. The lower dimension of the input vector may 

influence the classification results but it enables us to achieve the above two important 

conclusions quicker. Using Function 3.14 we are able to calculate that at least six PCs 

are needed in the promoter and non-promoter space, so at least 6-dimension input 

vectors are needed in the classifiers. In comparison, ANNs with a 5-dimension input 

vector and an 8 dimension input vector are built and tested in the Step 2 experiments. 

There are three layers of these ANNs and 20 neurons in the hidden layers. The transfer 

function of each layer is kept as ―tan-sigmoid‖, ―log-sigmoid‖ and ―tan-sigmoid‖. 

Table 4.2 contains the results of Step 2. 

 

Table 4.2 The experiment results in Step 2 of comparative experiments 

Test Test 2.1 Test 2.2 Test 2.3 

Dimension of Input 

Vectors 

5 6 8 
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No. of Layers 3 3 3 

No. of Neurons in 

Each Layer 

(5,20,1) (6,20,1) (8,20,1) 

Transfer Functions 

of Each Layer  

(tan, log, tan) (tan, log, tan) (tan, log, tan) 

TP  4327 4429 4360 

FP  1077 983 1135 

Se  0.8654 0.8858 0.8720 

Sp  0.8007 0.8136 0.7934 

 

The results of the experiments that undertaken in Step 2 show that more PCs and a 

higher dimension of the input vector can not absolutely lead to better classification 

results. The results of ANN with a 6-dimension input vector obtain the highest 

sensitivity and specificity in the group. The specificity of ANN with an 8-dimensional 

input vector shows even lower specificity than the one with a 5-dimensional input 

vector. 

 

Based on the results obtained from the experiments in Step 2, the experiments in step 

3 are designed as 6-dimensional input vector’s ANNs. The number of layers in Test 

3.1, Test 3.2 and Test 3.3 are three, four and five respectively. The number of neurons 

of hidden layers are all set to 20. The transfer functions of input and output layers are 

―tan-sigmoid‖ and are ―log-sigmoid‖ in hidden layers. The result is shown in Table 
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4.3. 

 

Table 4.3 The experiment results in Step 3 of the comparative experiments 

Test Test 3.1 Test 3.2 Test 3.3 

Dimension of Input 

Vectors 

6 6 6 

No. of Layers 3 4 5 

No. of Neurons in 

Each Layer 

(6,20,1) (6,20,20,1) (6,20,20,20,1) 

Transfer Functions 

of Each Layer  

(tan, log, tan) (tan, log, log, tan) (tan, log, log, log, 

tan) 

TP  4429 4733 4614 

FP  983 602 693 

Se  0.8858 0.9466 0.9228 

Sp  0.8136 0.8871 0.8694 

 

Test 3.2 obtains a relative high sensitivity and specificity in the comparative 

experiments, which is 0.9466 and 0.8871 separately. Therefore, the optimized 

network parameters are used for training the classifiers in the human promoter 

recognition network. The training sample sequences of the classifiers of the two 

schemes are those sequences for generating 3 and 5-mer feature matrices and 

calculating PCs of each scheme. Each classifier which has a 6-dimension input vector 
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in Scheme I and II is built with four layers of ANN. The numbers of neurons of these 

four layers are 6, 20, 20 and 1, and the transfer functions are set to ―tan-sigmoid‖, 

―log-sigmoid‖ ―log-sigmoid‖ and ―tan-sigmoid‖ of each layer respectively. The 

training epochs are 30000.  

 

4.2.3 CpG islands module 

A CpG islands module can determine whether the input sequence segment is CpG 

islands related or not by two criteria: GC percentage (GCp) and observed/expected 

CpG ratio ( /o e ) which are calculated according to Equations (2.1) and (2.2). Given 

an input sequence, if it’s GCp and /o e  are over 0.5 and 0.6, the module will report it 

as a CpG islands related sequence.  

 

A CpG islands module plays different roles in the two schemes. In Scheme I, the CpG 

module I gives a score for each input sequence segment: ―1‖ for a CpG islands related 

segment and ―0‖ for a non-CpG islands related segment. The score from a CpG 

islands module together with the outputs from the classifier module of each input 

sequence segment will be processed in a data processing module.  

 

In Scheme II, the criteria used in the CpG islands module are the same as the criteria 

in Scheme I. Each sequence from the CpG islands module is classified as a CpG 

islands related or non-CpG islands related sequence instead of obtaining a score. And 
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then, according to the classification, the sequence will be further processed by 

following either the CpG islands related branch or non-CpG island related branch. 

 

4.2.4 Data Processing and Prediction of TSS 

The data processing module and the transcription start site (TSS) prediction module 

obtain the final results of the human promoter recognition network: the data 

processing module reports the windows of the potential promoter regions and the TSS 

prediction module predicts the exact location of TSS. 

In Scheme I, the outputs of the three promoter vs. non-promoter classifiers and the 

scores from the CpG islands module are sent to the data processing module. The 

threshold of each classifier is set to 0.4, and if the outputs of two of three classifiers 

are over the predefined threshold, the data processing module will sum up the outputs 

of the three classifiers and the score from the CpG island module. If the sum is over 

2.2, the data processing module will report the window as the potential promoter 

region. In the TSS prediction module, a promoter region is identified if the number of 

consecutive windows is more than 30 and the consecutive windows are defined here if 

the offset of two windows is less than 300bp. The predicted TSS is the location that 

contains the maximum likelihood. 

 

In Scheme II, the predefined thresholds of classifiers are set to 0.4, and as the 

promoter vs. non-promoter classifiers are trained with CpG islands related sequences 
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and non-CpG islands related sequences separately, the data processing module report 

a potential promoter region window when two of three classifies’ outputs are more 

than 0.4 and the sum of scores from three classifiers is over 1.2. The rules of 

predicting the location of TSS are the same as the ones in Scheme I. 

 

4.3 Performance Evaluation of Scheme I and Scheme II 

In order to evaluate the performance of Scheme I and Scheme II, 5000 promoter 

sequences and 6000 non-promoter sequences as used in Section 4.2.2 for testing 

classifier performance.are used to form Test Set 1. Additionally, three Homo Sapiens 

chromosome 22 genomic sequences—NT_028395.3, NT_011519.10 and 

NT_011521.4 are extracted from GeneBank to form Test Set 2. In Test Set 1, TP is 

counted when a true promoter sequence is recognized, otherwise FP is counted. In 

Test Set 2, we adopt the same evaluation method as DragonGSF: when one or more 

predictions fall in the region of [-2000, +2000] relative to a TSS, a TP is counted. All 

predictions which fall on the annotated part of the gene on the region [+2001, 

EndofTheGene] are counted as FP. Other predictions are not considered in counting 

TP and FP. The comparison results of Test Set 1 and Test Set 2 are listed in Table 4.4 

and Table 4.5. 
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Table 4.4 The comparison results of two schemes on Test Set 1 

Scheme Scheme I Scheme II 

TP 4763 4604 

FP 388 646 

Se  0.9526 0.9208 

Sp  0.9246 0.8769 

 

Table 4.5 The comparison results of two schemes on Test Set 2 

Scheme Scheme I Scheme II 

NT_028395.3 TP 1 1 

FP 1 1 

NT_011519.10 TP 18 17 

FP 6 15 

NT_011521.4 TP 2 3 

FP 1 10 

Se  0.4038 0.4038 

Sp  0.7241 0.4468 

 

According to the above results, the networks of Scheme I and Scheme II achieve 

comparable sensitivities, while Scheme I obtains the higher specificity in both Test 

Set 1 and Test Set 2. Although Scheme II has more a complex structure than Scheme I, 

the false positives produced by it are three times as many as for Scheme I. As there are 
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not enough CpG islands related non-promoter training samples for the classifiers of 

Scheme II, the network is more likely to identify a CpG islands related sequence as a 

promoter sequence, which leads to more false positives. In conclusion, the network of 

Scheme I obtains better overall test results, therefore, it is adopted as the HPR-PCA 

model.
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Chapter 5 Results and Discussion 

 

To evaluate the ability of HPR-PCA to predict TSSs in human DNA sequences, we 

compare HPR-PCA with three well-known existing promoter prediction systems: 

DragonGSF, Epoin and FirstEF. The methodologies of these systems are reviewed in 

Chapter 2. In HPR-PCA, the network parameters use the default setting of Scheme I. 

The comparison results are obtained based on three different test datasets.  

 

5.1 Test Results and Discussion 

Test set 1 consist of four human genomic sequences from GenBank with a total length 

of 0.95Mb and 14 known TSS. These sequences are tested using promoter prediction 

systems mentioned in Chapter 2 and the results are available for comparison. Table 5.1 

shows an overview of the four selected genomic sequences.  
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Table 5.1 Description of the large genomic sequences in Test set 1. 

Accession 

number 

Description Length (bp) Number of 

TSS 

L44140 Homo sapiens chromosome X region 

from filamin (FLM) gene to 

glucose-6-phoshate dehydrogenase 

(G6PD) gene. There are 13 known and 

six candidate genes in the sequence. 

 

 

219447 

 

 

11 

D87675 Homo sapiens DNA for amyloid 

precursor protein 

301692 1 

AF017257 Homo sapiens chromosome 21-derived 

BAC containing erythroblastosis virus 

oncogene homolog 2 protein (ets-2) 

gene 

 

101569 

 

1 

AC002368 Homo sapiens Xq 28 BAC PAC and 

cosmid clones containing FMR2 gene 

324816 1 

Total 947524 14 

 

Three promoter prediction systems — DragonGSF, Eponine and FirstEF are selected to 

compare the performance in Test set 1. A promoter region is counted as a true positive 

(TP) if TSS is located within the region, or if a region boundary is within 200bp 5’ of 
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such a TSS. Otherwise the predicted region is counted as a false positive (FP). The 

results and comparisons are listed in Table 5.2 and Table 5.3.  

 

Table 5.2 Performance comparison of four prediction systems for Test set 1 (I) 

Accession 

number 

System TP  FP  Coverage (%) 

L44140 DragonGSF 

FirstEF 

Eponine 

HPR-PCA 

6 

6 

6 

6 

11 

11 

12 

11 

54.5 

54.5 

54.5 

54.5 

D87675 DragonGSF 

FirstEF 

Eponine 

HPR-PCA 

1 

1 

1 

1 

1 

0 

1 

0 

100 

100 

100 

100 

AF017257 DragonGSF 

FirstEF 

Eponine 

HPR-PCA 

1 

1 

1 

1 

0 

0 

3 

0 

100 

100 

100 

100 

AC002368 DragonGSF 

FirstEF 

Eponine 

HPRPCA 

1 

1 

1 

1 

2 

1 

0 

0 

100 

100 

100 

100 
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Table 5.3 Performance comparison of four prediction systems for Test set 1 (II) 

System TP  FP  eS   pS   

DragonGSF 9 14 0.6429 0.3913 

FirstEF 9 12 0.6429 0.4286 

Eponine 9 16 0.6429 0.3600 

HPR-PCA 9 11 0.6429 0.4500 

 

For Test set 1, all four systems predict 9 of the 14 TSSs of the four human genomic 

sequences and achieve the equivalent sensitivity. However, HPR-PCA produces the 

least false positives and the highest specificity. The result of FirstEF is comparable as it 

only produces one more false prediction than HPR-PCA.  

 

In Test 2, the Chromosome 22 sequence and its annotation data 

(http://www.sanger.ac.uk/HGP/Chr22) are adopted. The sequence with a total length of 

34.75Mbp is tested and the results are evaluated by 393 annotated TSSs. 

 

The comparative systems are the three systems used in Test set 1, but this time we use 

the same evaluation method as DragonGSF: only a TP is counted if one or more 

predictions falls in the region of [-2000, +2000] relative to a TSS. All predictions which 

fall on the annotated part of the gene on the region [+2001, End of The Gene] are 
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counted as FP. Other predictions are not considered in counting TP and FP. Experiment 

results of DragonGSF, FirstEF and Eponine were from [Bajic and Seah 2003].. Table 

5.4 shows the result on Test set 2. 

 

Table 5.4 Performance comparisons of four prediction systems for Test set 2. 

System TP  FP  eS   pS   

DragonGSF 269 69 0.6844 0.7959 

FirstEF 331 501 0.8422 0.3978 

Eponine 199 79 0.5064 0.7158 

HPR-PCA 301 65 0.7659 0.8224 

 

In Test set 2, the sensitivity and specificity of HPR-PCA are 0.7659 and 0.8224 

respectively, FirstEF obtains the highest sensitivity, but it produces the most false 

positives, which leads to the specificity of FirstEF being only half of HPR-PCA. 

DragonGSF retains a good balance between sensitivity and specificity. If we tune the 

parameters of HPR-PCA and the sensitivity is adjusted to 0.7277, which is closer to the 

sensitivity of DragonGSF (0.6844), the specificity of HPR-PCA will achieve 0.8910, 

which is much higher than that for DragonGSF (0.7959). Although Eponine also 

produce low false positives, it only predicts 199 of 393 TSSs, which is far less than 301 

TSSs obtained by HPR-PCA. In conclusion, HPR-PCA obtains better overall results on 

Test set 2, and on the prediction of long human genomic sequences, HPR-PCA is more 



 

-75- 

competitive among these four prediction systems. 

 

In Test 3, seven Homo sapiens chromosome 22 genomic contigs were extracted from 

GenBank with a total length of 11.56Mbp and 94 TSSs in the forward strands. We test 

these sequences because the annotations of chromosome 22 provided by GenBank has 

different number of TSSs with the one in test 2, so the results are more convincing. 

Table 5.5 shows an overview of these genomic sequences. 

Table 5.5 Description of the large genomic sequences in the test set 3. 

Contig Description Length (bp) Number of TSS 

NT_028395.3  

 

 

 

Homo sapiens 

chromosome 22 genomic 

sequence 

647850 6 

NT_011519.19 3661581 38 

NT_011521.4 830225 8 

NT_011523.11 4248192 21 

NT_011525.7 1384186 7 

NT_019197.5 320440 5 

NT_011526.6 464629 9 

Total 11557103 94 
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On Test set 3, we compare HPR-PCA with DragonGSF because DragonGSF is the only 

online system which can accept relatively longer sequences for those systems 

compared in our analysis. In order to get fair results, for those sequences which are 

longer than 1,000,000bp (the limitation of a file in the DragonGSF web tool), we 

arrange them to be equal to, or less than, 1,000,000bp each before sending them to 

HPR-PCA and DragonGSF. The evaluation criteria of Test set 3 is the same as the one 

in Test set 2 and the test results are shown in Table 5.6 and Table 5.7. 

 

Table 5.6 Performance comparison of two prediction systems for Test set 3 (I) 

Accession 

number 

System TP  FP  Coverage (%) 

NT_028395.3 DragonGSF 

HPR-PCA 

1 

1 

1 

1 

16.7 

16.7 

NT_011519.19 DragonGSF 

HPR-PCA 

15 

18 

8 

6 

39.5 

39.5 

NT_011521.4 DragonGSF 

HPR-PCA 

2 

2 

1 

1 

25.0 

25.0 

NT_011523.11 DragonGSF 

HPR-PCA 

15 

16 

4 

5 

71.4 

76.2 

NT_011525.7 DragonGSF 

HPR-PCA 

2 

2 

0 

0 

28.6 

28.6 
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NT_019197.5 DragonGSF 

HPR-PCA 

3 

5 

2 

1 

42.9 

71.4 

NT_011526.6 DragonGSF 

HPR-PCA 

6 

6 

5 

5 

66.7 

66.7 

  

Table 5.7 Performance comparison of two prediction systems for Test set 3 (II) 

System TP  FP  eS   pS  

DragonGSF 44 21 0.4681 0.6769 

HPR-PCA 50 19 0.5319 0.7246 

  

On Test set 3, HPR-PCA again achieves a better result: the sensitivity and specificity 

are 0.5319, 0.4681 and 0.7246, 0.6769 of HPRPCA and DragonGSF respectively. 

Although the annotation of chromosome 22 sequences of Test set 3 is different from the 

ones on Test set 2, HPR-PCA still shows the advantages of genome wide promoter 

prediction practice.  

 

Compared to other currently favored promoter prediction systems, HPR-PCA uses 

rebuilding sequence features selected by PCA instead of those directly taken from DNA 

sequences. This new feature selection concept is successfully embedded in the 

optimized promoter prediction network and proved by three test sets. The experiment 

results of Test set 1 and 3 show that HPR-PCA can reduce the false positive rate which 
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leads to higher specificity. Predictions on the genome sequence of chromosome 22 

made by HPR-PCA are competitive for both specificity and sensitivity. DragonGSF 

reports good prediction performance on the whole human genome sequence, but it uses 

TRANSFAC database [V. Matys, O.V. Kel-Margoulis et al. 2006]which includes 

binding site information only available for known promoters. From this point, 

HPR-PCA has the advantage to discover unknown promoters without prior information. 

In conclusion, all the test results indicate that the ANN-built human promoter 

recognition network—HPR-PCA, which embeds the most informative sequence 

features selected by PCA algorithm, performs well on genome wide promoter 

recognition tasks. 
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Chapter 6 Conclusion and Future 

Work 

 

6.1 Conclusion and Discussion 

The topic of this thesis is human promoter prediction based on principal component 

analysis (PCA). Promoter prediction is one of the most important problems in DNA 

sequence analysis. An overview of promoter recognition is shown in the Introduction 

and Literature Review, which include the significance of promoter prediction, the 

important features of promoter sequences, and the summary of modeling 

methodologies used by some existing promoter prediction models. 

 

Chapter 3 presents the application of PCA on the sequence feature selection process, 

which is a new proposal for promoter feature selection application. In order to find the 

most discriminative features, n-mer ( 3,4,5n  ) feature matrices are extracted from 

promoter and exon sequences. PCA applies to seven different n-mer combination 

promoter-exon feature matrices and the first three PCs of each matrix are selected. In 

order to test the discriminability of seven feature groups, seven classifiers are built with 
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three-layer ANN and trained with a BP algorithm. Finally, the network trained with 3 

and 5-mer combined feature matrices obtains the highest sensitivity and specificity, so 

the 3 and 5-mer combined feature is used to build classifiers in HPR-PCA. 

 

Two proposed schemes of HPR-PCA are introduced in Chapter 4. Sub-modules of the 

human promoter recognition network are divided into four main groups. The main 

difference between Scheme I and Scheme II is the implementation of the CpG islands 

module: Scheme I gives a mark to each sequence from the CpG islands module; and 

Scheme II divides sequences to CpG islands related and non-CpG islands related 

groups for further processing, which determines the training sequences for generating 

PCs in this scheme need to be classified into CpG islands related and non-CpG islands 

related groups. In both schemes, 3 and 5-mer promoter and non-promoter combined 

feature matrices are extracted for generating PCs and building new promoter and 

non-promoter feature spaces. Three promoter vs. non-promoter classifiers are built 

based on the ANN. The structure and parameters of the classifiers are optimized by 

comparative experiments. In the comparison of the two schemes, Scheme I achieves 

better results on two test sets so it is adopted as the model for HPR-PCA. 

 

In Chapter 5, three test sets are formed to evaluate the performance of HPR-PCA， and 

three other promoter prediction techniques: DragonGSF, Epoin and FirstEF are used to 

compare with HPR-PCA. In the end, HPR-PCA achieves the best overall results on all 

of the three test sets among these four systems. The prediction result is also a powerful 
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verification that the PCA algorithm performs efficiently on feature selection, which is 

one of the most important tasks in the promoter recognition field. 

 

6.2 Future work 

As emphasized in the thesis, discriminative features are the crucial elements of 

promoter prediction systems. HPR-PCA embeds context features and the CpG islands 

signal feature into the model, but it does not consider the position information of 

features in promoter sequences. Structure features of sequences, such as flexibility 

rigidity and bendability, which are extracted from three-dimensional DNA structures 

[Pedersen, Pierre Baldi et al. 1998], can generate the profile of promoter sequences. As 

the structure profile originates from the sequential structure of the DNA, rather than the 

general nucleotide composition, it could provide supplementary information in 

promoter prediction practice of HPR-PCA.  

 

Structure features of promoters are discussed in recent promoter prediction techniques 

[Sonnenburg, Zien et al. 2006] [Ohler, Stemmer et al. 2000]. Flexibility, as an important 

structure feature, has been examined in several organisms [Pedersen, Pierre Baldi et al. 

1998]\ [Kanhere and Bansal 2005] [Tirosh, Berman et al. 2007], and it is suggested that 

it can influence the activities of transcription binding sites (TFBSs) [Fukue, Sumida et 

al. 2004]. The flexibility profiles of promoters have distinctive mechanical properties 

[Scherf, Klingenhoff et al. 2000], so it is applicable to use flexibility as a feature to 

distinguish promoter sequences from non-promoter sequences.  
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There are two widely used models for calculating flexibility of DNA sequences: one is 

the trinucleotide model based on DNase I cutting frequencies [Brukner, Sanchez et al. 

1995], and the other is the tetranucleotie model from molecular orbital calculations 

[Packer, Dauncey et al. 2000]. We can use one of these models to create the flexibility 

profiles and extend the HPR-PCA model by embedding the structure features module in 

parallel with the CpG island module and the classifiers module, or combining the 

flexibility profiles with context features for classification. The increase in the true 

positive rate and the decrease in the false positive rate can be expected as one more 

dimensional feature is added in the decision network of the promoter prediction model.  
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