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ABSTRACT 
Environmental issues are complex and understanding them involves integration of 

different areas of knowledge, feedback and time delays, however strategies to cope with 

complexity are not often used or taught in environmental education. The aim of this 

thesis is to examine the benefit of three such strategies for environmental education: 

multiple external representations, learning from models, and collaborative learning. The 

socio-environmental system modelled was visitor impact in a national park in Australia. 

Students in Year 9 and 10 from two schools were given a text description (Text group) 

and either a system dynamics model (SDM group), an agent-based model (ABM group), or 

both models (SDM & ABM group). This experimental design allowed learning outcomes 

(environmental and system dynamics knowledge, and understanding of the socio-

environmental system) and use of the model(s) (in terms of the proportion of time spent 

on each screen, activities, and strategies) to be compared in each learning environment 

(individual and collaborative).  

 

Multiple external representations were the most successful strategy in the individual 

learning environment in terms of increases in environmental knowledge. However, 

students given only the system dynamics model had greater understanding of the system, 

and students given only the agent-based model increased environmental knowledge 

easily identified in the animated representation. 

 

Prior knowledge, patterns of use, strategies for changing variables and the 

representational affordances of the models explained some of these differences. In 

particular, prior knowledge was an important indicator of how students coordinated use 

of the models in the SDM & ABM group. 
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Learning with a system dynamics model was the most successful strategy for students in 

the collaborative learning environment. Differences between the learning environments 

were detected in all groups with respect to both learning outcomes and use of the models 

due to prior knowledge, interrogation of the models, and the learning environments 

themselves.  

 

These experiments have provided evidence that strategies for understanding complex 

systems provide viable methods of communicating complex ideas to school-aged 

students with varying levels of prior knowledge. In particular, multiple external 

representations provided students with flexibility in how they learned; models allowed 

students to experiment with a system otherwise not allowed; and a collaborative learning 

environment facilitated students’ interpretation of a system dynamics model.
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1. INTRODUCTION 
Humans are an integral part of environmental systems. Most of the activities in our lives affect the 

environment in some way, although these effects may not be immediately apparent. Environmental 

systems often respond in ways that are unexpected – there may be a delay between a cause and its 

effect, there may not have been a known link between the cause and its effects, or the effects may 

occur at a far greater scale than originally predicted. The development of skills for understanding 

complex systems such as these should be an essential part of education given the global, national, 

and local environmental problems that exist in today’s society. Environmental educators need to 

focus further attention on the development of these skills. 

 

One of the aims of environmental education is to teach environmental knowledge and provide 

students with the skills needed to understand other environmental problems. This thesis will build 

on theories of mental models in order to account for the problems that students face when learning 

about environmental systems. These theories relate to the role that knowledge and understanding 

play in such problems. Misconceptions in science are common, and studies have found that 

students demonstrate a lack of understanding about important environmental issues. In addition, 

environmental systems are usually complex systems, which are generally poorly understood. 

Complex systems are often described using strategies such as multiple external representations, 

models, or a collaborative learning environment. All of these strategies have been studied, but not 

together, and the results have not been conclusive with respect to the effects on learning outcomes.  

 

The purpose of this study is to examine a range of instructional strategies aimed at enabling 

understanding of a complex socio-environmental system (a socio-environmental system is one that 

incorporates society’s use of, or human impact on, the environment). The area of (potential) visitor 

impacts on a national park was selected for two reasons. The first is that empirical data exist to 

indicate visitor numbers in a Sydney-based national park. Secondly, the environmental issues 

involved in this type of system are not part of any school curriculum. This allows a study of the 

effects of the intervention without having to worry about pre-instructional knowledge differences. 

The topics and skills are relevant to the NSW Science Syllabus because they focus on the impact of 

humans on an ecosystem and skills involved in working scientifically. 
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System dynamics is a methodology designed to describe and understand complex systems. It 

involves the use of a computer to simulate a complex system. System dynamics models are made 

up of stocks (levels) and flows (rates), and the interactions between them. System dynamics is a 

modelling tool used not only for the environment, but also for modelling economic and social 

systems. Agent-based models address complex systems from the bottom-up. By defining the roles 

and actions that individual entities (agents) follow, system level patterns can emerge. The use and 

learning outcomes associated with both types of model will be examined in this study.  

 

This study examines a number of instructional techniques to address the problems associated with 

understanding complex systems. Even though system dynamics has been reported in the literature 

as an effective tool for modelling complex systems, both experts and novices have trouble 

understanding the systems described using system dynamics. Is system dynamics really an effective 

way to learn about complex systems? The first hypothesis tested is that a system dynamics model is 

too abstract for high school students, and an additional representation that constrained the 

interpretation of the model (one that was familiar to the students, such as the animated 

representation included in the agent-based model) will improve interpretation, and therefore 

understanding. Learning outcomes were compared from students in four groups: a control group in 

which students were exposed to a text-based description of visitor impacts on a national park (see 

Appendix 1), and three treatment groups, in which students were given a system dynamics model 

to examine, an agent-based model, or both of these combined.  

 

While it has been shown that students do learn different information from different types of 

representations, when interactive representations are compared, the ways in which these models 

are used also needs to be taken into account. The second guiding research question examined is 

does the type of model used have an effect on the ways in which students use the model? Four 

areas are examined in relation to this research question. The first is despite differences in the 

patterns of use due to the different run times of the agent-based and system dynamics models, will 

students be engaged and use the experiment screen more than other screens? In addition, there 

has been little work that examines the preference of users when examining multiple external 

representations. The ways in which students interrogated the models when given both were 

explored in greater depth, and compared to students using single models. Examining user 

preference allows the first hypothesis to be confirmed: if students used the agent-based model to 

constrain interpretation of the system dynamics model then this will be reflected in their use of the 
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models, and students will use the system dynamics model more than the agent-based model. The 

third area examined is that of the relationship between learning outcomes and the ways in which 

the models were used. The question of whether the use of the model will be related to learning 

outcomes, particularly for those with which prior knowledge had no relationship will also be 

examined. Finally, the effect of the strategies that students used to make changes to variables will 

be examined, both in relation to providing reasons for choices made, and learning outcomes 

associated with these strategies. Particularly, whether the strategies used to interrogate the models 

will be dependent on the models used. 

 

Collaborative learning environments have been suggested as appropriate for learning about the 

environment, using multiple external representations, and learning from models. However, there 

has been little work that examines the effect that each of these areas has on learning outcomes. Will 

cooperative or collaborative learning have an effect on the skills and understanding that students 

gain from a system dynamics model, an agent-based model, or both? The studies carried out with 

regards to learning from multiple external representations and how students used the models were 

repeated with students in dyads. The results of these were compared in order to examine whether 

the differences in learning outcomes were a result of the learning environment, or of different uses 

of the models. The first hypothesis addressed is that students working in a collaborative learning 

environment will have higher scores for all learning outcomes than students in an individual 

learning environment. The second hypothesis is that students working in a collaborative learning 

environment will interact more with the model than students in an individual learning environment. 

The guiding hypothesis for learning from multiple representations will be applied to the 

collaborative learning environment: a system dynamics model is too abstract for high school 

students, and an additional representation that constrained the interpretation of the model (one 

that was familiar to the students, such the animated representation included in the agent-based 

model) will improve interpretation, and therefore understanding. Finally the effect of the learning 

environment on the strategies used and the way in which decisions are made will be compared 

between the learning environments. Particularly, whether the strategies used to interrogate the 

models will be independent of the learning environment. 

 

While using system dynamics models and other simulations for learning has been an instructional 

strategy in science education for a number of years, the proposed study is innovative in a number 

of ways. Firstly, there is a lack of empirical data investigating learning outcomes from the use of 
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system dynamics models (although a strong research base regarding learning outcomes from the 

use of agent-based models exists). Secondly, a thorough investigation of the ways in which 

students use agent-based and system dynamics models and any relation this may have to learning 

outcomes has not been done. Thirdly, the differences between individual and collaborative use of 

system dynamics models and agent-based models have not been examined. Besides contributions 

to the scholarly knowledge base on learning from system dynamics models and agent-based 

models in general, and on environmental education in particular, it is also hoped that this study can 

contribute to the practice of teaching with system dynamics models and agent-based models. It is 

my view that while there is a small, active international community of teachers that promotes this 

educational technology, the potential of system dynamics modelling, agent-based modelling, and 

the combination of the two deserves more widespread acceptance. 

1.1RESEARCH AIMS, CORE CONCEPTS AND THEORETICAL 
APPROACH 

The aim of this project is to compare different ways for school-aged children to understand a 

complex socio-environmental system, namely the environmental impacts of recreational use of a 

national park. The variables to be examined relate to the representation of the socio-environmental 

system; the ways in which models are used, and the effect of a collaborative environment. The 

outcomes of the experiment include the answers to the research questions, the materials 

constructed for the experiments, and recommendations that can be made regarding the design of 

modelling software for learning environments. The research questions are: 

 

1. What differences in understanding of a socio-environmental system can be identified in 

school students after they are presented with text (see Appendix 1), a system dynamics 

model, an agent-based model, or a combination thereof? 

 

2. Does the representation affect how the model is used? 

 

3. Does the way that the model is used affect what students learn from the models? 

 

4. Does prior knowledge affect how students use models? 
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5. Does working in dyads affect school students’ understanding of a socio-environmental 

system? 

 

6. Does working in dyads affect the ways in which students use models? 

 

The principal variables that will be examined are outlined in Table 1-1 below. 

Table 1-1: Variables to be explored in the study 

Independent variables Dependent variables 

Exposure to and use of an agent-based model 

Exposure to and use of a system dynamics model 

Participation as an individual 

Participation in a group 

School 

Strategies used to interrogate the models 

Environmental knowledge  

System dynamics knowledge 

Understanding of the socio-environmental 

system 

 

The hypotheses (H) and questions to be explored (E) are as follows: 

 

H1: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such the animated representation included in the agent-based model) will improve 

interpretation, and therefore understanding. 

 

E1: does the type of model used have an effect on the ways in which students use the model? 

 

There are four further questions to this: 

 

E1a: Despite differences in patterns of use due to the different run times of the agent-

based and system dynamics models, will students be engaged and use the experiment 

screen more than other screens? 

 

E1b: If students used the agent-based model to constrain their interpretation of the system 

dynamics model, then this will be reflected in their use of the models, and students will use 

the system dynamics model more than the agent-based model. 
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E1c: Is the use of the models related to learning outcomes, particularly those with which 

prior knowledge had no relationship? 

 

E1d: Are the strategies used to interrogate the models dependent on the models used? 

 

Three hypotheses are related to learning in a collaborative learning environment and one 

exploratory question: 

 

H2a: Students working in a collaborative learning environment will have higher scores for all 

learning outcomes than students in an individual learning environment. 

 

H2b: Students working in a collaborative learning environment will interact more with the 

model than students in an individual learning environment. 

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such the animated representation included in the agent-based model) will 

improve interpretation, and therefore understanding in a collaborative learning 

environment. 

 

E2a: Are the strategies used to interrogate the models independent of the learning 

environment? 

1.2 METHOD AND RESEARCH APPROACH 
This study adopts an experimental design. A random allocation of 45 students into the individual 

learning environment experiment (27 students) and the collaborative learning environment 

experiment (18 students) allowed groups to be compared with each other.  In the individual 

learning environment, five students were given only a text description. Nine students were given the 

system dynamics model and the text description (SDM group), six students had access to the 

agent-based model and the text description (ABM group), and seven students were given both 

models and the text description (SDM & ABM group). In the collaborative learning environment, 

three students were given only a text description. Six students were given the system dynamics 

model and the text description (SDM group), four students had access to the agent-based model 

and the text description (ABM group), and five students were given both models and the text 
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description (SDM & ABM group). The pre- and post-test design of the main instrument allowed 

knowledge change to be assessed. In addition, responses related to understanding of the system 

modelled were also collected. 

 

Video screen shots were collected, coded, and analysed to provide information on how students 

used the models. These were analysed on a general use basis (proportion of time spent on each 

screen, frequency of activities performed) and the specific strategies used to change the variables 

were also analysed. 

 

The experimental design is supported by exploratory data analysis, which allows further 

investigation into relationships between scores in each group, and relationships between learning 

outcomes and use of the models. In addition, statistical results are supported with examples of 

student answers. 

1.3 STUDY CONTEXT  
This study was carried out at two schools with students in Year 9 and Year 10 as part of a normal 

science class. Students were given the background questionnaire as their first task. Students were 

then introduced to the experiment. Students were given 20 minutes to complete the pre-test. 

Students were then given 20 minutes to examine the materials (text in the control group, and 

models in the treatment groups), and asked to complete the post-test, the final assessment and the 

evaluation in the remaining time.  

1.4 SUMMARY OF FINDINGS, CONCLUSIONS AND 
CONTRIBUTIONS 

Multiple external representations were the most successful strategy in the individual learning 

environment in terms of increases in environmental knowledge. However, students given only the 

system dynamics model had greater understanding of the system, and students given only the 

agent-based model increased environmental knowledge easily identified in the animated 

representation. 

 

Prior knowledge, patterns of use, strategies for changing variables and the representational 

affordances of the models explained some of these differences. In particular, prior knowledge was 

an important indicator of how students coordinated use of the models in the SDM & ABM group. 
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Learning with a system dynamics model was the most successful strategy for students in the 

collaborative learning environment. Differences between the learning environments were detected 

in all groups with respect to both learning outcomes and use of the models due to prior knowledge, 

interrogation of the models, and the learning environments themselves.  

1.5OUTLINE 
The outline of this thesis is as follows. Chapter 2 provides a review of the literature on the topics 

presented above: mental model theory, understanding complex systems, environmental education, 

multiple external representations, learning with models, and collaborative learning. Chapter 3 

outlines the methodology of the study, including the development of the models, and discusses the 

sample used. Chapter 4 is the first results chapter, addressing the hypothesis that multiple external 

representations will result in higher learning outcomes than single model use. The factors that may 

influence this finding are also explored. In Chapter 5, the use of the models is discussed in terms of 

the activities that students participated in, the screens that they spent their time on, and the 

strategies used to change the variables. This provides evidence to support the hypothesis that prior 

knowledge affects the use of the model, and for some learning outcomes, the specific interaction 

with the model is particularly important. Again a combination of experimental design and 

exploratory investigation is presented. The final results chapter is Chapter 6, in which the results of 

Chapter 4 and Chapter 5 are compared to students who used the models in dyads. The conclusions 

are presented in Chapter 7. 
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2. LITERATURE REVIEW 

2.1KEY COGNITIVE CHALLENGES 
There are a number of factors that make learning about and understanding environmental systems 

challenging. These include issues concerned with mental model theory, the role of knowledge and 

understanding, and general misconceptions in understanding and managing complex/dynamic 

systems.  

2.1.1 Learning Theory: Mental models 
Mental model theory is an important theory on which this study is based. Mental models are the 

internal representation of a system, usually content-specific, and change as new information 

becomes available (1993; Halford & Andrews, 2004; Norman, 1983). Mental models are based on 

any information the learner decides to include, and as such, may contain illogical information 

(Norman, 1983). Mental models are used to make sense of observations (Halford, 1993; Norman, 

1983; Savelsbergh, de Jong, & Ferguson-Hessler, 1998); for reasoning or making predictions 

(Halford, 1993; Norman, 1983; Savelsbergh et al., 1998; Young, 1983); and in time may become 

associated with a particular learning task (Savelsbergh et al., 1998). Learners may develop mental 

models intentionally to meet a learning goal, or spontaneously as a result of a given task (Buckley & 

Boulter, 1999). Mental models are accessed from memory if the representation has been associated 

with a situation in the past. They are either transferred directly to the new situation or a new mental 

model is constructed using information from the two situations.  

 

Using a simulation model, such as a system dynamics model or an agent-based model can result in 

clearer understanding because it provides students with an example mental model (Sheehy, Wylie, 

McGuinness, & Orchard, 2000). Providing students with an example mental model, upon which to 

form their own, does not solve all the problems associated with understanding complex systems. 

Environmental systems are complex systems, and “forming, maintaining and manipulating a mental 

model of changes in a number of variables is demanding” (Sheehy et al., 2000 p. 123). The 

cognitive load associated with mentally simulating a dynamic system is high. Cognitive load refers 
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to the resources used by working memory at a given point in time (Anglin, Vaez, & Cunningham, 

2003). External representations affect the extraneous cognitive load associated with the task.  

 

A Mindtool is a term defined by Jonassen (2000) as “an intellectual toolkit for engaging learners in 

constructive, critical thinking about whatever they are learning… Mindtools provide a set of 

computer-mediated activities that foster thinking.” (p. v). He argues that students cannot use 

applications such as modelling without engaging the mind. Mindtools allow learners to represent, 

manipulate, and reflect on their knowledge (Jonassen, 2000). Jonassen (2003) also suggests that the 

ability to externally represent problem formations using tools or formalisms is another way for 

novices to construct representations that allow them to engage in expert problem solving 

behaviour. Mindtools give external representations a role beyond providing an example mental 

model for students to adopt. They allow students to off-load the unproductive tasks, such as 

memorising, and instead to focus on productive tasks, such as recognising patterns (Jonassen, Carr, 

& Yueh, 1998). This adds to the theory of mental models by relying on tools, such as system 

dynamics models or agent-based models, to act as an external representation and reduce the 

problems associated with cognitive load and mental simulation identified in the literature.  

2.1.2 Role of Knowledge/Understanding 
Halford (1993) discusses a number of properties that understanding should entail. In order for 

understanding to occur, the subject should have a mental model that represents the structure of the 

concept; these mental models should be generalisable and therefore able to be transferred from 

one situation to another; and the models should be able to generate predictions or inferences 

outside of the basic information given (Halford, 1993; Wild & Quinn, 1998). In addition, 

understanding should result in certain outcomes including the further development of problem-

solving skills and strategies and the further organisation of information to determine relations 

between representations. 

 

When learners construct their own models of concepts they do not start with a blank slate. Learners’ 

pre-existing models will affect further understanding of a topic presented to them (Duit, 1995). 

Misconceptions in science can be particularly difficult to overcome, even after directed instruction in 

a specific area (Ozkan, Tekkaya, & Geban, 2004). Understanding of scientific phenomena are often 

based on every day experiences which are often deeply held beliefs and are difficult to overcome 
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(Duit, 1995). Misconceptions of scientific phenomena may lead to confusion about environmental 

problems (Alerby, 2000).  

 

It is important that students have a clear understanding of the concepts involved in science in order 

to understand environmental issues. Misconceptions in science are difficult to change in both 

common scientific phenomena (such as how bodies work (Cumming, 1998)) and complex 

environmental problems (such as climate change (Daniel, Stanisstreet, & Boyes, 2004) or the 

carrying capacity of a population (Munson, 1994)). A number of theories have been discussed to 

explain why misconceptions in science are so difficult to change. Buckley (2000) says that 

understanding biology is challenging because it is an interactive system that exists at a range of 

scales. Alternatively, or in addition, many misconceptions are formed at a young age (by the time 

the student is four) which could explain older students’ resistance to altering their understanding of 

scientific concepts (Cumming, 1998). However, complex environmental problems, about which 

opinions may not have been formed at a young age, also confuse students. Climate change is one 

such environmental issue. Misconceptions have been identified that showed limited understanding 

of the links between different environmental issues as well as poor understanding of the nature of 

the issue itself (Daniel et al., 2004). One of the most telling misconceptions was that about half the 

students, typically older students, thought that burying waste rather than burning it would reduce 

global warming, when in fact both processes will produce greenhouse gases (Daniel et al., 2004). 

The ability to utilize systems thinking would mean that people would not attempt to 

compartmentalize these systems, and a better understanding of the system as a whole may be 

reached (Daniels & Walker, 2001). For example, Munson’s (1994) study showed that misconceptions 

that relate to the carrying capacity of a population are due to students’ perception that population 

size is independent of environmental variables. This leads to further misconceptions regarding the 

limits of resources and the effects of those resources on a population. 

 

Environmental issues are based on a combination of a number of sciences, including biology, 

ecology, politics, and the social sciences. Ecosystems are so complex that it would be unreasonable 

to expect that people could accurately predict or explain the changes that would occur if one 

variable were altered (Munson, 1994). The focus for many environmental educators, instead, then is 

that changes would occur if one variable were altered (Munson, 1994).  
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2.1.3 Complex/Dynamic Systems 
Systems are characterised as having components or definable elements (state variables or stocks), 

interactions or interrelations between them (flows of matter, energy, or information), and in open 

systems such as ecological and economic systems, fluxes in and out of the system boundaries 

(imports and exports). Systems also often behave in a dynamic manner over time (Limburg, O'Neill, 

Costanza, & Farber, 2002; Ossimitz, 1997). A dynamic system is one whose components are related 

to changes in other components in the system (Jonassen, 2000). Understanding complex systems 

requires that students solve problems on a number of levels, which may be ill-structured, and in 

order to do so, they must develop complex mental representations of the particular phenomena 

(Halford & Andrews, 2004; Jonassen et al., 1998).  

 

Many people have trouble understanding complex systems even when they are illustrated using 

models. Dynamic systems are typically too complicated for school students to understand using 

traditional methods of modelling (Woolsey & Bellamy, 1997), but even highly educated university 

students have trouble with concepts such as stocks, flows and feedback (Booth Sweeney & Sterman, 

2000; Diehl & Sterman, 1995; Moxnes, 2004). Diehl and Sterman (1995) found that subjects were 

unable to take into account the effects of feedback and time delays. They suggested two reasons 

for this. Firstly people’s mental representations of complex tasks tend to be simplified and 

therefore overlook side effects, feedback processes, and delays (Diehl & Sterman, 1995). The 

second reason suggested was that even when people know about these elements, their ability to 

correctly infer the behaviour of such a system is poor. They conclude that the first reason can be 

overcome by training, and the second reason can be overcome by computer simulation modelling. 

Forrester (1971) outlined four common mistakes that are often made when managing complex 

systems. The first is that one solution may just result in new system behaviour with unwanted 

outcomes. The second is that short-term “fixes” usually result in long-term problems. Thirdly, local 

goals often do not match up with global goals. Finally, the points in a system where intervention is 

conducted often have little leverage and are often where large effort may only have a small effect. 

Moxnes (2004) concluded that subjects lacked dynamic mental models, and that this could 

contribute to the inability to manage the system to equilibrium. Therefore it is very important to 

educate students in the skills necessary to understand system dynamics.  
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Another reason that complex systems can be difficult to understand is that there can be feedback in 

the other direction, where aggregate level structures affect the behaviour of the elements of which 

they are composed (Wilensky & Reisman, 2006). In an agent-based model, the rules that apply to 

the agents determine the behavior of the whole system. This characteristic of agent-based models, 

emergence, is one of their main advantages. By laying down the rules for the agents and the 

system, behavior may emerge that would otherwise not have been predicted (Bousquet & Le Page, 

2004; Ginot, Le Page, & Souissi, 2002; Parrott & Kok, 2001; Schieritz, 2002). A combination of both 

types of model may help students to understand the links between these levels of complex systems. 

 

The system examined in this study is a socio-environmental system – visitor usage of a national 

park. The ecosystem of the park is a complex system, and visitor use has impacts on the system 

that may be unexpected on the part of the visitors, and will certainly indirectly affect other parts of 

the ecosystem. The recreation impact depends on the use (the type of activity, the amount of use, 

the behaviour of the users, the spatial distribution of the use, and the temporal distribution of the 

use), the environment itself, the design of the site, and the level of management (Cole, 1993). While 

tourist-made tracks and soil condition have been mentioned as variables that may be related to 

visitor impact in a national park, the most common impact that visitors themselves identified was 

related to the number of people at the site (Hillery, Nancarrow, Griffin, & Syme, 2001). When asked 

about threats to the environment of a national park 71% (of the 201 respondents) listed tourism, 

28% exotic plants and animals, and 8% broader environmental issues (Hillery et al., 2001). 

 

Recreational impacts on national parks exhibit behaviours typical of complex systems. For example 

Cole & Landres (1996) state that threats to these areas tend to act in combination, and the 

cumulative effects are synergistic rather than additive. Impacts usually exceed predictions (Cole & 

Landres, 1996). There is an asymptotic relationship between the amount of use and the amount of 

impact (Cole, 1993). If use levels are low, then a small increase in use will result in a large increase 

in impact. Once use levels are high, any further increase in use will have little effect on the impact. 

Recreational activities also change over time in response to changes in the nature of the users and 

the sites themselves (Duffus & Dearden, 1990). The extent of an impact is also dependent on the 

vulnerability of the soils, vegetation, animals, and water and its topographic features (Cole, 1993). 

In addition, managers of national parks have to manage the competing interests of different 

stakeholders (McCleave, Espiner, & Booth, 2006). 
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2.2ENVIRONMENTAL EDUCATION 

2.2.1 Definition 
Environmental education can be enacted in schools (Ballantyne, Fien, & Packer, 2001; Caro, 

Borgerhoff Mulder, & Moore, 2003), at places of environmental significance (such as national parks 

or museums) (Aleixandre & Rodriguez, 2001; Darlington & Black, 1996; Orams, 1997; Powers, 

2004; Siemer & Knuth, 2001), on a community-wide basis (such as large scale education 

campaigns) (Abrahamse, Steg, Vlek, & Rothengatter, 2005; Barr & Gilg, 2005; Calvert, 2004; Davies 

& Webber, 2004; Robottom, 2004; Volk & Cheak, 2003; Whelan, Flowers, & Roberto Guevara, 2004), 

and may involve cooperation between two of the above (Talsma, 2001). Two common goals of 

environmental education programs are the communication of scientific knowledge to the public 

(Castillo, Garcia-Ruvalcaba, & Martinez R., 2002) and changes in behaviour or attitude (Corraliza & 

Berenguer, 2000; Pooley & O'Connor, 2000; Vaske & Kobrin, 2001). Changing behaviours and 

attitudes towards the environment are regarded as important aspects of environmental education 

because they are seen to influence lifestyle decisions, a change in which would bring about 

sustainability (Commission on Sustainable Development, 2001). However, knowledge about a 

particular environmental issue or species does not necessarily result in higher conservation 

priorities with respect to management decisions (Hunter & Rinner, 2004), and the literature is 

inconclusive with regards to relating increased environmental knowledge with improved 

environmental attitudes or behaviour (Caro et al., 2003; Hwang, Kim, & Jeng, 2000). A third goal of 

environmental education is educating students how to think about the environment (Hungerford, 

2002). In other words, individuals should be able to make decisions that take into account various 

points of view about a topic, and to think about their interactions with the environment (Simmons & 

Volk, 2002).  

 

Environmental education is education about the environment, for the environment, in the 

environment (Lucas, 1979). The broadness of this definition has resulted in the variety of programs 

listed above, and each involves one or more of these factors. Programs incorporating education 

about the environment aim to provide information about an environment or an issue, and may 

contribute some information regarding skills for acquiring environmental information. Programs 

that focus on education for the environment involve skills instruction in order to influence 

environmentally focused behaviour in order to conserve an environment for a particular purpose. 
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Education for the environment appears to be the most controversial, with much debate occurring in 

the literature around the use of such education (see for example (Fien, 1993, 2000; Jickling & 

Spork, 1998; Thomas, 2005)). Programs that address education in the environment take place in an 

environment, such as outdoor education.  

 

The definition of environmental education differs depending on the organisation, although most 

incorporate Lucas’s 1979 definition, and common themes can be found. Environmental education 

can incorporate both formal and informal education (Environment Australia, 2000, p. 3; Sureda, 

Oliver, & Castells, 2004; United Nations, 1992); should focus on knowledge and skills development 

(Environment Australia, 2000, p. 3; NSW Council on Environmental Education, 2001; United Nations, 

1992); and result in environmentally responsible behaviour (Environment Australia, 2000, p. 3; 

Linke, 1980; NSW Council on Environmental Education, 2001; United Nations, 1992). Definitions 

also emphasise the importance of the interconnectedness of the environment with itself and with 

other sectors such as society and the economy (Environment Australia, 2000; Fleer, 2002; NSW 

Council on Environmental Education, 2001; United Nations, 1992). 

 

There are a number of methods of delivery of environmental education. These include curriculum, 

community education, community development, social marketing, outdoor education and cultural 

tourism, and other strategies such as risk minimisation, environmental monitoring, or building 

environmental management systems (Young, 1996). 

2.2.2 Environmental education in Australia 
The importance of environmental education in protecting the world’s environment was officially 

recognised in the first intergovernmental conference on environmental education, held in 1977. The 

conference was organised by the United Nations Education, Scientific and Cultural Organisation 

(UNESCO) and the United Nations Environment Programme (UNEP). The recommendations and 

guidelines that were developed as a result of the conference are referred to as the Tbilisi 

Declaration. Environmental education has been included in Australia’s national education goals for 

more than a decade (Gough, 2002). The NSW Department of Education and Training states that the 

aim of environmental education is to achieve “the level of competence and citizenship in all 

students that will enable them to contribute to the achievement of sustainable societies” (NSW 

Department of Education and Training, 2001 p. 9). The Department outlines the objectives of 

environmental education in its Environmental Policy for Schools, developed from recommendations 
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made in Agenda 21, Chapter 36 (United Nations, 1992), and outlined in Table 2-1. In NSW, 

environmental education is taught across all disciplines, as recommended by the United Nations 

(1992). This approach has been criticised in the United Kingdom because of fears that the topic 

would be lost amongst other subject demands, and concerns about the separation of learning about 

environmental values and science (Littledyke, 1997, 2000). The subject areas of science and 

environmental studies have been separated into different key learning areas in the national 

curriculum in Australia (Gough, 2004). A problem in NSW schools, and indeed worldwide, is the 

decreasing interest in science education, despite increasing levels of environmental concern 

(Gough, 2002). This suggests that perhaps Littledyke (1997, 2000) was right in his concerns 

regarding the separation of knowledge-based instruction and environmental values. 

Table 2-1: Objectives of Environmental Education 

Objectives of Environmental Education 

The nature and function of ecosystems and how they are interrelated  

The impact of people on environments  

Knowledge 

and 

understanding 

of  

The role of the community, politics and market forces in environmental 

decision making  

Applying technical expertise within an environmental context  

Identifying and assessing environmental problems  

Communicating environmental problems to others  

Resolving environmental problems  

Adopting behaviours and practices that protect the environment  

Development 

of skills in 

Evaluating the success of their actions  

(NSW Department of Education and Training, 2001). 

There are two other bodies that address the role of environmental education specifically. The NSW 

Council on Environmental Education (2001) identifies a number of roles of education. These include 

assisting in identifying and understanding environmental issues and developing visions of 

sustainable futures, decision making and taking action, sustainability, and assisting in reflecting on 

and evaluating the consequences of actions and deciding on new courses of action. Environment 

Australia released a National Plan for Environmental Education in 2000. The Plan outlines five 

principles of environmental education (Environment Australia, 2000). Environmental education 

must: involve everyone; be lifelong; be holistic and about connections; be practical; and be in 

harmony with social and economic goals and accorded equal priority. One of the recommendations 
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from the Plan is better communication between experts from different disciplines, and between the 

formal and informal education settings. Australia is currently not covered by this National Action 

Plan. The new National Action Plan was not approved before the Federal election took place on the 

24th November 2007, and the process is on hold now that a new Federal government has been 

elected. The State government body concerned with environmental education is the relatively newly 

formed Department of Environment and Climate Change NSW (Department of Environment and 

Climate Change NSW, 2007). The formation of this department incorporated the other government 

bodies that were concerned with environmental education: the Environment Protection Authority 

(2003), and the Department of Environment and Conservation, NSW (2004). 

2.2.3 Environmental knowledge and skills 
Many studies about environmental education are focused on factors resulting in the improvement of 

environmental behaviour or attitudes rather than the other goals (Aleixandre & Rodriguez, 2001; 

Brackney & McAndrew, 2001; Campbell Bradley, Waliczek, & Zajicek, 1999; Costarelli & Colloca, 

2004; Culen & Volk, 2000; Hsu, 2004; Jenkins & Pell, 2006; Jurin & Fortner, 2002; Knussen, Yule, 

MacKenzie, & Wells, 2004; Ma & Bateson, 1999; Milfont & Duckitt, 2004; Zelezny, 1999). There is no 

doubt that the interaction of motivation, cognition and behaviour is poorly understood, however 

there is a need for a structured approach to research about environmental education (Palmer, 

1999). Issues such as “learned hopelessness” and apathy (Nagel, 2005), emotional reactions and 

knowledge (Borden & Schettino, 1979), and competency in environmental problem-solving skills in 

combination with environmental information and values (Ramsey, Hungerford, & Tomera, 1981) 

affect environmentally responsible behaviour. 

 

Rickinson (2001) concluded that much more evidence was found relating to the learners than to the 

actual learning as did Hoody (1995) who concluded that most environmental education researchers 

evaluate programs rather than the general educational outcomes. (Leeming, Dwyer, Porter, & 

Cobern, 1993) also conducted a review that found that the research on the outcomes of 

environmental education generally exhibited weak methodologies, were unable to be compared to 

each other (due to unique instruments used). However, (Morgan & Soucy, 2006) point out that 

knowledge tests about particular locations cannot be used elsewhere. Even within the evidence on 

learners that was found in Rickinson’s review study, more research was concerned with 

environmental ideas and perceptions than learners’ educational experiences. Among the studies 

concerned with learning, studies addressed learning outcomes rather than the process of learning, 
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students tended to be passive learners rather than active creators of their own experience, and 

most programs revolved around a science theme. Rickinson also found that generally, students’ 

factual knowledge of the environment was low, and varied depending on the topic area. However, 

students’ understanding of environmental issues was usually even more limited than their factual 

knowledge. Gigliotti (1990) expressed the view that the public is emotionally charged, but lacking 

in basic ecological knowledge. For the public to take environmental action they need to believe that 

solutions to environmental problems are necessary, and fully understand the consequences to the 

environment and themselves of not taking action (Gigliotti, 1990). Another study found that it is 

perceived knowledge, rather than actual knowledge that was a barrier to responsible environmental 

behaviour (Simmons & Widmar, 1990).  

 

Another issue in environmental education is how it relates to science education. In order to 

understand environmental issues the interplay of science, social, and economic knowledge must be 

understood. How best to combine these is still being discussed in the literature (Jenkins & Pell, 

2006). The need to show the links between these subject areas keeps environmental education out 

of the science education realm. There are usually two types of question that need to be answered – 

an ethical, personal or social question related to the actions to take, and the second is the scientific 

question (Kolsto, 2006). In both cases, there is usually expert disagreement as to what action to 

take. There has also been debate about whether to concentrate on values education or factual, 

science-based education (Lundegard & Wickman, 2007). Knowledge of ecology is a prerequisite to 

sound decisions regarding solutions to issues even if it doesn’t necessarily produce environmental 

behaviour (Hungerford & Volk, 1990). Knowledge and understanding are also important because 

they are linked to ownership of an issue (Hungerford & Volk, 1990). In fact, a recent study was able 

to conclude that environmentally responsible behaviour is a complex system itself, relying on the 

interaction of intention, moral norms, attitude, perceived behavioural control, guilt, social norm, 

attribution, and problem awareness (Bamberg & Moser, 2007). And in fact, the authors concluded 

that although the processes contributing the enactment of pro-environmental behavioural intention 

are not fully understood, the role of knowledge is a necessary, although not sufficient, precondition 

for moral norms and attitudes (Bamberg & Moser, 2007) 

 

This thesis measured learning outcomes and had a science theme. It also measured both factual 

learning (with short-answer environmental knowledge questions and a combination of short-

answer and multiple choice system dynamics knowledge questions) as well as understanding (using 
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short answer questions in the final assessment task). It does not address environmentally 

responsible behaviour, however questions asked to assess students’ understanding of the system 

requires them to identify decisions they would make. 

2.2.4 Recommendations for an Environmental 
Education Program 

General recommendations have been made regarding environmental education programs in schools 

(e.g. a flexible curriculum, a collaborative learning environment (May, 2000)) and for programs in 

the environment (e.g. achievable goals and objectives set for the visit, greater integration between 

schools and residential experiences (Dettmann-Easler & Pease, 1999)). Another interesting 

recommendation was that students should bear the consequences of their behaviours (Linke, 1980; 

May, 2000). The literature suggests that an effective environmental education program would give 

students an understanding of the issues involved in a problem, how these impact on other areas, 

and some idea about the steps to take to address such a problem (Fleer, 2002; Loughland, Reid, 

Walker, & Petocz, 2003). This is typically difficult for environmental issues because the experts are 

still determining the best course of action themselves. 

 

Barriers to environmental education include conceptual barriers related to the scope and content of 

environmental education; logistical barriers (where and how and when); educational barriers 

(teachers’ confidence in their own competence); and the attitudinal barriers of the teachers (Ham & 

Sewing, 1988; Hausbeck, Milbrath, & Enright, 1992). Because the “correct” answer is often not 

known in environmental issues, they may be confronting for some teachers to teach (Hausbeck et 

al., 1992). There are also issues involved with the decision of how to address environmental issues. 

With a single-issue focus, it is difficult for learners to generalise the knowledge and skill to other 

issues (Hungerford & Volk, 1990), and the education program may produce students who have a 

positive manner towards one issue, without being able to see how to apply this attitude towards 

their usual lives (Hungerford & Volk, 1990). The features of an effective environmental education 

program as outlined earlier (impart understanding of the issues, their impact, and actions to take), 

are difficult to achieve with adults, let alone school students. Students have difficulties with the 

language necessary for discussing environmental problems over time (Sheehy et al., 2000). 

 

Critical education components include: environmentally significant ecological concepts and the 

environmental interrelationships that exist within and between these concepts; environmental 

education should be multidisciplinary; provide opportunities for learners to achieve a level of 
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environmental sensitivity that will promote a desire to behave in appropriate ways; provide a 

curriculum that will result in an in-depth knowledge of issues; provide a curriculum that will teach 

learners the citizenship skills needed for issue analysis and investigation, and citizenship skills and 

the time needed for application of these; should involve hands-on contact with nature; and provide 

a learning environment in which learners can develop an internal focus of control (Hausbeck et al., 

1992; Hungerford & Volk, 1990). 

 

Of the methods of delivery of environmental programs, (Young, 1996), this study addresses 

curriculum. Education about the environment is addressed in that it concentrates on environmental 

knowledge about the potential visitor impacts in a national park and the skills involved in 

understanding a complex system. A number of the recommendations outlined in Table 2-1, and 

others identified by the NSW Council on Environmental Education and Environment Australia are 

addressed in this study. It aims to examine strategies leading to the acquisition of knowledge and 

understanding in the areas of the nature and function of ecosystems, how they are related, and the 

impact of people on environments. These strategies may also develop skills in identifying and 

assessing environmental problems, and applying technical expertise within an environmental 

context. In addition, the ability to reflect on and evaluate the consequences of actions will also be 

examined. 

 

This study examines three instructional strategies in environmental education with the aim of 

understanding how these strategies influence learning, rather than the decisions that subjects make 

after they have completed an environmental education program. The strategies are learning from 

multiple external representations, learning with models, and learning in a collaborative learning 

environment. The study addresses Rickinson’s recommendation for deeper empirical investigation 

into “the processes, experiences and contexts of young people’s environmental learning, including 

what kinds of conditions are helpful for which kinds of students undertaking which types of 

learning” (2001, p. 307).  

2.2.5 A Socio-Environmental System - National Parks 
This study uses the impacts of visitor use in a national park as an example of a complex system. 

The management aim of a national park is a mix of conservation and protection of ecosystems, 

natural and cultural features, landscapes, geoheritage and other phenomena, and the provision of 

opportunities for public appreciation, sustainable visitor use, visitor management, community 

health and wellbeing, and economic benefits for the community (Department of Environment and 
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Conservation (NSW), 2006). The model of a national park used in this study is a highly simplified 

version of data collected from Botany Bay National Park (BBNP), Kurnell (Davison, 2000). This piece 

of land has been put aside by the government because of its cultural significance, as it is Captain 

Cook’s landing place. As a result of the development that has occurred in the surrounding suburbs, 

the environmental integrity of the national park has also become important. The Park is surrounded 

by an oil refinery, a sand mining company and other industry. In the area are wetlands important for 

migrating birds. In addition to its functions as a site for cultural heritage and its environmental 

values, the park is important to visitors for a variety of recreational uses.  

 

Common uses of the park are fishing, diving, picnics, going for a drive and having a look at the 

view, bushwalking and nature watching. Models have been used to understand visitor behaviour in 

natural settings (Chang, 1997; Gimblett et al., 2000a; Murdock, 2004; Romesburg, 1974; Shechter 

& Lucas, 1980; van Wagtendonk, 2004; Wang & Manning, 1999) although these mainly concentrate 

on travel and visitor contact (or carrying capacity of the park) rather than visitor impact. Models 

have been developed to investigate the interaction between tourism and the environment 

(Lacitignola, Petrosillo, Cataldi, & Zurlini, 2007), and to make informed management decisions (Bieri 

& Roberts, 2000; Gimblett et al., 2000a; Gimblett et al., 2000b; Roberts, Stallman, & Bieri, 2002; 

Schmidt, Webb, Valdez, Marzolf, & Stevens, 1998). In other parks, recreation may also include 

activities such as hiking, camping, horseriding, four-wheel driving, skiing, rafting and boating (Sun 

& Walsh, 1998). All of these uses impact on the environment in different ways. Activities such as 

bushwalking, even on the paths provided, can have an effect on the vegetation in a national park 

(Hill & Pickering, 2006). And activities that involve fires (such as in picnic grounds), or inadequate 

waste disposal, can introduce nutrients (such as phosphorus and nitrogen, but also others) into the 

soil (Arocena, Nepal, & Rutherford, 2006). A system such as this national park is a challenge to 

manage if funding has to be distributed between maintenance of areas for recreation, areas of 

cultural heritage, and environmental integrity. This is conflicting for two reasons, the first is that 

human contact with the environment usually impacts on that environment in some way, and natural 

resource managers are rarely able to control the impact that recreational users have on a national 

park (Cole & Hammitt, 2000). The second reason is that there is limited knowledge about the exact 

nature of the “natural conditions” (Cole & Hammitt, 2000). 

 

National parks are typical complex systems in that any attempt to manage an impact may involve 

feedback, time delays, and unexpected consequences (Cole & Landres, 1996). Opportunities for 
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sustainable visitor use and recreation in NSW national parks are only available in those parks where 

such a use is compatible with the conservation of the park’s natural and cultural values.  

 

Environmental education has been found to be effective as a conservation measure as far as the 

impact of recreational disturbance (Medeiros et al., 2007) and conservation behaviour (Asch & 

Shore, 1975), although sometimes only with particular interest groups (Morgan & Soucy, 2006). In 

addition, recreational experiences in national parks may be important for the development of 

environmental sensitivity. Environmentally sensitive people have often spent large amounts of time 

in natural areas engaging in recreational activities (Hungerford, 2004). 

 

The impact of visitor use of the national park that will be the focus of this study is essentially a 

waste management issue. Visitors leave rubbish in the bins provided, both organic and inorganic 

rubbish. If this rubbish is not all collected, then it can attract feral animals as a food source, and if 

not eaten, then can decompose and result in the addition of nutrients to the environment, which 

then encourages introduced plant species. Feral animals, in particular cats, are a threat to native 

animals because they preferentially target young larger mammals as well as smaller mammals as 

prey (Short, Turner, & Risbey, 2002). While not all introduced species of plants and animals are 

detrimental to management of a conservation area, invasive introduced species are (Usher, Kruger, 

Macdonald, Loope, & Brockie, 1988), and have been shown to be a major environmental problem in 

countries such as Australia and the USA. Like most environmental issues, national park managers 

have to decide how to allocate limited resources to the control of invasive introduced species of 

plants and animals, and the outcomes of any decision are often uncertain (Usher et al., 1988).  

 

Bushland in the Sydney district has evolved to take advantage of the low nutrient (particularly low 

phosphorus) sandy soils that are prevalent in the area (Adam, Stricker, & Anderson, 1989; Adamson 

& Fox, 1982; Beadle, 1954; Benson & Howell, 1990). Each species has a minimum requirement for 

soil phosphates in order for normal growth to occur, and if this is met, the plant survives, providing 

it can compete with other species (Beadle, 1954). Natural vegetation in the Sydney area is mainly 

grown on Hawkesbury Sandstone soils. It is a distinctive assemblage of species that are able to 

thrive on these poor soils, mainly sclerophyllous plants that have tough, and small or spikey leaves. 

This vegetation remains because of the low nutrient soils that were of no use for agriculture 

(Benson & Howell, 1990). Plant communities do undergo cyclic and directional changes, they are not 

static (Benson & Howell, 1990). Slightly different combinations of species may be favoured 
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depending on the sequence of natural events such as fire or flood and the weather conditions 

thereafter, however plant communities are generally self-sustaining. Invasive introduced species of 

plant are able to establish themselves in a community after some type of disturbance (Benson & 

Howell, 1990). The seeds are dispersed into bushland via stormwater, dumped garden refuse, wind 

or fruit eating birds (Benson & Howell, 1990). Once nutrients are added to an ecosystem, the 

changes that occur are irreversible. The vegetation community is dependent on the soil type 

(Benson & Howell, 1990), and increases in soil nutrients encourage introduced plant species 

(Adamson & Fox, 1982; Morgan, 1998), have an effect on species richness and succession dynamics 

(Tilman, 1987), and result in the deterioration of the natural environment (Benson & Howell, 1990). 

This can be due to competition in terms of space, light and pollinators (Benson & Howell, 1990; 

Bjerknes, Totland, Hegland, & Nielsen, 2007). While litter is not the main contributor to additional 

nutrients in the environment (other sources include stormwater (in which phosphorus 

concentrations are about 50-100 times greater than those that occur in natural streams in the 

Sydney region), garden fertilisers, dumped refuse, sewer discharges, and pet excrement, (Adamson 

& Fox, 1982; Benson & Howell, 1990)) it was chosen for examination in this study because it is a 

common activity for visitors to a national park. Other impacts on the environment include rubbish 

dumping, changed fire frequency and destruction of bush for service routes and roadways 

(Adamson & Fox, 1982; Benson & Howell, 1990).  

2.3STRATEGIES FOR UNDERSTANDING COMPLEX SYSTEMS 

2.3.1 Multiple External Representations 
A representation is a simplification of a phenomenon for a specific purpose (Buckley & Boulter, 

1999). Zhang (1997) described external representations as “the knowledge and structure in the 

environment” (p. 180). This includes physical symbols, objects, dimensions of a graph, external 

rules, constraints, and relations embedded in physical configurations (Zhang, 1997). External 

representations provide information that can be perceived and used without being interpreted and 

formulated explicitly, they anchor cognitive behaviour, and can change the nature of tasks (Zhang & 

Norman, 1994). Zhang (1997) defined internal representations as “the knowledge and structure in 

memory” (p. 180). Cognitive processes are used to retrieve information from internal 

representations, and external representations can trigger this process (Zhang, 1997). The 

advantage of using external representations, as described earlier with reference to mental models, 
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is that they do not need to be re-represented as an internal model in order for learners to use them 

for problem solving (Zhang, 1997).  

 

Most teachers will use more than one representation when explaining a concept to their students. 

This may be in the form of a verbal description followed by a diagram, or a map, or a graph. 

Teachers who use multiple external representations often explain their approach by stating that it is 

more likely to capture a learner’s interest (Ainsworth, 1999b). The use of multiple external 

representations provides learners with an authentic learning environment because most experts, 

and scientists in particular, use multiple external representations to explain phenomena (Kozma, 

2003; Kozma, Chin, Russell, & Marx, 2000). Presenting students with a range of representational 

forms gives students the opportunity to explore many aspects of the one concept (Zhang, 1997), 

users can use the representation of their choice, and a number of personality or cognitive factors 

can effect this choice (Ainsworth, 1999a). It is now easier to present multiple external 

representations including animations and video as well as diagrams and graphs, and to show the 

links between them, due to the technology that has been developed (Wisnudel Spitulnik, Stratford, 

Krajcik, & Soloway, 1998). However, studies have been inconclusive with regard to their effect on 

learning outcomes (Scaife & Rogers, 1996). Factors relating to the individual representations, and to 

the coordination of multiple representations, may explain the variance in results. 

 

Learners have four tasks when learning from multiple external representations (van der Meij & de 

Jong, 2006). They have to understand the syntax of each representation (novices may use 

representations inappropriately); they have to understand which parts of the domain are 

represented; they have to relate the representations to each other (this is particularly difficult 

because learners will have incomplete domain knowledge; and they have to translate between the 

representations (this is particularly difficult for novices) (Ainsworth, 1999a; van der Meij & de Jong, 

2006). 

 

The nature of the representation (propositional, diagrammatic, animation, etc.) may have an effect 

on learning outcomes. There is little empirical evidence to suggest that animations are better than 

pictorial representations, or that pictorial representations are better than verbal or text based 

representations. In fact, representations are not simply diagrammatic or animated or propositional 

(Cheng, Lowe, & Scaife, 2001). For example, most diagrams have some text or propositional 

statements included in them. The mental model that is constructed by learners will be influenced by 
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the format in which the information is presented (Rohr & Reimann, 1998; Zhang, 1997). For 

example, text based representations will usually result in a propositional representation, a graphical 

representation will mainly result in a mental image or combination, and an animation will produce a 

dynamic mental model. Much work has been done comparing learning outcomes of students 

learning from text versus a diagram (see for example (Glenberg & Langston, 1992; Larkin & Simon, 

1987; Moore, 1993; Schnotz & Bannert, 2003)). While system dynamics models are dynamic, they 

are not animated, which could explain why students often have limited understanding of systems 

represented by these models.  

 

The learner’s prior knowledge, in terms of both domain knowledge and representation knowledge, 

may also have an effect on learning outcomes. If learners are already familiar with either the domain 

or the representation, then there should be an increased ability to recognise the connection 

between the representation and the phenomenon represented (Ainsworth, Bibby, & Wood, 1998; 

Horwitz & Christie, 1999; Seufert, Janen, & Brunken, 2007). This ability to translate the symbols 

inherent in the representation and the real objects is known as interpretation (Stenning, 1998). 

Seufert (2003) found that students who had lower prior knowledge and who received no help 

concentrated on memorizing facts, and invested little cognitive effort in comprehension (Seufert, 

2003). Students who had medium level prior knowledge had lower scores for recall, but higher for 

comprehension, because they were engaged in both processes (Seufert, 2003). Learners with high 

levels of prior knowledge did not increase their scores to the maximum level. It was thought that 

this may have been due to an overestimation of their own abilities (Seufert, 2003).  

 

The ability of the learner to translate between representations is necessary for the successful use of 

multiple representations (Halford, 1993; Roth & Bowen, 1999). Translation is dependent on a 

number of factors. The first is the nature of the representation. This includes the modality of the 

representation (propositional versus graphical), level of abstraction (abstract symbolic values are 

used in a model to explain a phenomenon (de Jong et al., 1998)), degree of redundancy (Boshuizen 

& (Tabachneck-)Schijf, 1998), strategies encouraged, and differences in labeling and symbols. In 

addition, translation is dependent on the tasks and domain values, and learner characteristics 

(Ainsworth, 1999a; Ainsworth et al., 1998). Translation between representations can be facilitated 

by prior knowledge of the domain (semantic translation) or by direct relation of the representations 

themselves, without reference to the domain (syntactic translation) (Ainsworth, 1999a). In order for 

the representation to assist interpretation, it should present information at different levels of 
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abstraction, and reveal the nature of the connections; show the factors that make a concept unique 

and how it relates to other concepts; and support the integration of different perspectives on the 

domain (Cheng, 1999). The successful use of multiple external representations depends on the type 

of test, domain, learner, and support (de Jong et al., 1998). It is also a result of learners successfully 

learning how to interpret each representation; understanding the relationship between the 

representation and the domain (Scaife & Rogers, 1996); and finally the coordination of 

representations (Ainsworth et al., 1998; Bodemer, Ploetzner, Feuerlein, & Spada, 2004). Integrating 

representations or linking them dynamically has been found to support learners, allowing them to 

interpret the similarities and differences of the features in each representations (van der Meij & de 

Jong, 2006).  

 

There are a number of reasons for using multiple external representations. Specific information may 

best be conveyed in a particular type of representation (de Jong et al., 1998) and so to convey a 

range of information, a number of different representations may be needed. Learning material that 

contains a variety of information may require the combination of different representations; the 

coordination of multiple external representations may be seen as an indicator of expertise (see 

below); and presentation of representations in a particular sequence may be the best way to learn 

about the subject (de Jong et al., 1998). In addition, using multiple external representations 

provides a safety net in case the student’s reasoning process comes to a halt for some reason with 

a single representation (Savelsbergh et al., 1998).  

 

Multiple external representations may serve one of three different functions (Ainsworth, 1999b), 

which were later defined in a taxonomy (Figure 2-1) (Ainsworth & Van Labeke, 2002). Ainsworth 

(1999) suggests that the three functions are to complement, constrain, and to construct. When 

representations contain different information or cognitive requirements, the representations 

complement each other, either by processes or information (Ainsworth & Van Labeke, 2002). In the 

constraining function, one representation is used to constrain any misinterpretations that may 

result from the other. This may be done by using something familiar to the learner (such as an 

animated representation) or by the inherent properties of the representation (Ainsworth & Van 

Labeke, 2002). This function is often used in physics to make the problem more tractable 

(Savelsbergh et al., 1998), and has been reported as the reason that graphical representations are 

successful (Scaife & Rogers, 1996). The third function is when each representation is used to help 

learners construct a deeper understanding of the learning objective (Ainsworth, 1999b). This can be 



Literature Review 

 

27 

by abstraction, extension or building relations between the representations (such as a system 

dynamics model may do for an agent-based model) (Ainsworth & Van Labeke, 2002). 

 

Figure 2-1: A Functional Taxonomy of Multiple Representations from (S. Ainsworth & Van Labeke, 2002) 

 

System dynamics models and agent-based models themselves are multiple external 

representations. System dynamics models include a stock and flow diagram, equations, graphs, 

tables and text. Similarly the agent-based model is a multiple external representation with the 

animation, code, text, graphs and tables. Thus, all the potential issues with multiple external 

representations apply to learning with system dynamics and agent-based models alone, as well as 

together. According to this taxonomy, the functions of the multiple external representations in this 

study fall into several categories. Students who were given the agent-based model may have used 

the text to constrain by familiarity. In this category, it is the learner’s familiarity with the 

constraining representation that is essential (Ainsworth, 1999a). Students who were given the 

system dynamics model may have used the system dynamics model to construct deeper 

understanding by abstraction of the text. In this category, it is thought that in building references 

FUNCTIONS 

Complementary 

Roles 

Constrain 

Interpretation 

Construct deeper 

understanding 

Complementary 

processes 

Complementary 

information 

Constrain by 

familiarity 

Constrain by inherent 

properties 

Abstraction 

Relations 

Extension 

Task 

Strategy 

Individual 

Different 

Shared 



Literature Review 

 

28 

between representations, the knowledge can be used to expose the structure of the domain itself 

(Ainsworth, 1999a). Students who were given both models and who chose the system dynamics 

model may have used the agent-based model to constrain by familiarity their understanding of the 

system dynamics model; or if they chose to use the agent-based model they may have used the 

system dynamics model to construct deeper understanding by abstraction or by relations. In any 

case the models provided students with complementary processes, both a complementary task, and 

possibly a complementary strategy to interrogate the model. The ability of the learners to 

understand the relationships between representations is addressed in this study.  

 

Positive learning outcomes that have been associated with the use of multiple external 

representations include motivation of student learning in cases where students already liked the 

subject (Tsui & Treagust, 2003); visualisation, instant feedback and flexibility (Tsui & Treagust, 

2003); encourage abstraction by providing a variety of representations that can then be linked to 

construct meaning (Ainsworth, 1999b); and positive learning outcomes if used in a complementary 

fashion and if used in the feedback process (Ainsworth et al., 1998). Multiple external 

representations may provide learners with a variety of perspectives from which to construct their 

own mental models. This is why learner characteristics need to be considered, and may explain 

some mixed results of experiments. Rohr and Reimann (1998) suggested that there is not a clear 

positive result with regards to static images and animations, and instead that these representations 

interact with subjects’ beliefs. In another study, it was concluded that different representations will 

lead to different learning outcomes for tasks, and not that one representation is better than another 

(Rieber, Tzeng, & Tribble, 2004). The way in which the representations are presented may also play 

a role in learning outcomes. One study found that learners learn the domain better if the 

representations are integrated and linked (van der Meij & de Jong, 2006). This study suggested that 

students using a learning environment for a short period of time, in this case 38 minutes, did not 

explore the domain deeply, and were therefore unable to transfer their knowledge to new situations 

(van der Meij & de Jong, 2006). Alternatively, if the representation constrains the interpretation of 

another, it may be that subjects related the domain to the presented contexts too much, and were 

not able to transfer their knowledge.  

 

The use of multiple external representations has been found to have negative effects on students’ 

learning in some cases ((Tabachneck-)Schijf & Simon, 1998; Ainsworth et al., 1998; Bodemer et al., 

2004; de Jong et al., 1998; Scaife & Rogers, 1996). When the purpose of the additional 
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representation is not clear, students may change their usual problem solving processes to 

accommodate the representation, resulting in further errors ((Tabachneck-)Schijf & Simon, 1998). 

Coordination of information from different representations can be a major cost to learners of using 

multiple external representations (Bodemer et al., 2004; de Jong et al., 1998). This is referred to as 

the cognitive load associated with the task. While this is an important consideration, experimental 

findings show that the failure to coordinate between multiple representations is not simply a matter 

of cognitive load (Ainsworth et al., 1998). Even when representations are fully redundant, students 

have trouble coordinating between representations (Ainsworth et al., 1998). This indicates that even 

when the factors associated with the representations are taken into account, the characteristics of 

the learner still need to be considered.  

 

One of the challenges of using multiple external representations is the cognitive load associated 

with translating between representations (van der Meij & de Jong, 2006). Students may have 

problems relating different representations due to the split-attention effect, whereby learners split 

their attention between the representations (Chandler & Sweller, 1992). Several studies have been 

carried out to investigate the many loading aspects and the best way to present multiple external 

representations in order to decrease the extraneous and intrinsic cognitive load, and allow students 

to concentrate on the integration process, given the advantages of using multiple external 

representations (Lee, Plass, & Homer, 2006; Seufert et al., 2007; van der Meij & de Jong, 2006). 

Seufert, Janen and Brunken (2007) found that both intrinsic and extraneous cognitive load needed 

to be reduced in order for advantages in learning outcomes to be recognised. In addition, the study 

examined the use of explanatory features, and found that they were effective when the learning 

environment was less complex and had fewer representations to be integrated. Lee, Plass & 

Homer’s (2006) study investigated the design of a learning environment using multiple external 

representations in order to determine how best to present information to reduce the intrinsic 

cognitive load. They found that when the content was separated into two successive screens, the 

intrinsic cognitive load was reduced, however students with higher prior knowledge benefited from 

this more than those with lower prior knowledge. Those students who used the simulations with the 

content separated experienced higher levels of comprehension and transfer. The differences found 

between the students with the two levels of prior knowledge suggested that those with low prior 

knowledge experienced high cognitive load associated with establishing connections between 

information on the two screens. This was not unexpected because those students who already had a 
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mental model in place would have had to use fewer resources to incorporate the new information 

than those without existing prior knowledge (Lee et al., 2006).  

 

Prior knowledge of the domain is an important factor in the success of multiple external 

representations. Many studies have found that in the area of problem solving, novices and experts 

use multiple external representations in different ways. The use of multiple external representations 

is usually associated with expert behaviour, and thus thought to be beneficial for novices to 

experience in order to learn about a domain. However, novices generally find this difficult 

(Ainsworth, 1999a; Tabachneck-Schijf, Leonardo, & Simon, 1997), both in terms of making 

connections across representations and connecting representations to the real world (Kozma, 

2003). Novices will often use only one representation (Ainsworth, 1999a). As novices generally lack 

expertise either in the domain or the representations they are using, they are unlikely to be able to 

recognise structural relations between representations (Ainsworth, 1999a). In addition, experts tend 

to successfully solve problems with abstract representations, and novices with concrete 

representations (Jonassen, 2003). Tabachneck-Schijf et al. (1997) suggest that pictorial 

representations may be advantageous for expert reasoning because they evoke recognition 

processes for the expert to access information in memory, and a dynamic construction of the 

picture would provide the expert with a summary of the process. The expert could therefore 

concentrate on the reasoning rather than on the task of maintaining an internal representation. 

However, this would not benefit a novice who has no prior knowledge of the topic to access. If this 

is the case, then is it still valuable to use strategies that are common to experts to instruct novices? 

It may be if it allows novices to build mental models that are more consistent with experts’, which 

would then support appropriate cognitive processes (Cheng et al., 2001). Incorporating techniques 

for translating between representations as part of the instruction of novices may be necessary 

((Tabachneck-)Schijf & Simon, 1998). Students with low prior knowledge have been found to have 

problems relating different representations to each other, and were disadvantaged because of this 

(Bodemer & Faust, 2006; van der Meij & de Jong, 2006). The ability of students to correctly relate 

multiple representations to each other was associated with familiarity of the visualizations in the 

learning material (Bodemer & Faust, 2006). These authors found that step-by-step integration of 

information can reduce extraneous cognitive load so that externally relating multiple 

representations can be done within working memory capacity (Bodemer & Faust, 2006).  
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The order in which the representations are presented may have an effect on the learning outcomes. 

Scaife and Rogers (1996) suggest that experience with static representations may aid in the ability 

to learn from dynamic representations. Whereas Schnotz (2002) suggests that the picture should be 

presented before the text because text can result in many different mental models, which are then 

confused by the picture which is more specific. This study allowed students to have free choice in 

terms of the order in which the representations were examined.  

 

This study addresses the recommendation made by Buckley (2000) that further research be carried 

out to determine how different types of representations contribute to model-based learning. 

Studies have found that presenting information in two modalities can make learning more effective 

because it spreads processing over multiple systems (Ainsworth & Loizou, 2003). This study uses 

text and a system dynamics model in order to determine whether learning about a complex system 

is enhanced by the addition of an agent-based model. An agent-based model may be useful when 

learning about a complex system because keeping a dynamic system in mind when resolving a 

localised problem can be challenging (Milrad, Spector, & Davidsen, 2003). Students may also reason 

with multiple external representations (Cox, 1999) so, providing them with the information in a 

variety of forms may aid them in being able to explain it to themselves later. In this study the 

multiple external representations are fully redundant, that is, the same information is able to be 

determined from all of the representations (de Jong et al., 1998), however the processes are 

different. This is appropriate for the high cognitive load assumed to be involved with interpretation 

of new models with this level of complexity (Sweller & Chandler, 1994). 

2.3.2 Learning from Models 

2.3.2.1 Modelling the environment 

Models are representations of ideas, objects, events, processes or systems (Gilbert & Boulter, 1998), 

and are generally simplifications of reality (Coyle, 2000; Jonassen, 2000). Computer-based models 

allow complex systems to be represented efficiently and constructed in a relatively short amount of 

time. The level of detail in any model involves a trade off between fidelity and communication (Avni, 

1999; Bellinger, 2003; Feinstein & Cannon, 2002). A computer-based model may be a valuable tool 

for learning because the assumptions of the system must be stated explicitly, allowing these 

assumptions to be criticised and compared (Forrester, 1971). In addition, parts of the system are 

able to be more easily visualized when using a model (Gilbert & Boulter, 1998). “The purpose of a 
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model is to capture the essence of a problem and to explore different solutions of it” (Grimm, 1999, 

p. 137).  

 

A number of factors are important in constructing and using models. These include, fidelity; 

validation of the model (are the conclusions from the simulation similar to those reached in the 

real-world simulation?); verification of the model (is the model operating as it should?); level of 

abstraction (how embedded is the model in the domain?); how the model handles time; and the 

existence of an optimal solution (Feinstein & Cannon, 2002; Größler, 2004). System dynamics 

models and agent-based models are able to fulfil the majority of these factors, although the level of 

abstraction in a system dynamics model is generally high, and the existence of an optimal solution 

is dependent on the question that is addressed in either model. The design of interactive 

environments for supporting learning about complex domains should be guided by: authentic 

activities, construction of artefacts, collaboration, reflection, situating the context, and multi-modal 

interaction (Milrad, 2002). There is a trade-off between the usability and the power of a 

representation (Lohner & van Joolingen, 2002). 

 

Both knowledge about the environment and the skills to interpret this information are essential in 

the learning outcomes of environmental education if the goal of responsible citizenship is to be 

achieved. As such, access to information in science is the first part of the process (Buckley & 

Boulter, 1999), and the other is constructing models and testing hypotheses. 

 

Because ecosystems are complex systems, actions that affect a single area can have unexpected 

repercussions elsewhere, and so modelling can be a useful tool to identify and examine such 

behaviour (Loiselle, Carpaneto, Hull, Waller, & Rossi, 2000). Policy makers, resource managers and 

engineers routinely underestimate the importance of feedback, non-linearities, time delays and 

changes in human behaviour as a result of policy interventions such as flood control, the use of 

pesticides, increasing the capacity of roads, policies for fire suppression, or security standards for 

water supply systems (Pahl-Wostl, 2007).  

 

Technology can allow students to more easily collect data, present data, and understand and 

analyse systems (Woolsey & Bellamy, 1997). A meta-analysis conducted in 2001/2002 examining 

studies undertaken in the United States of America found a small positive effect for computer 

assisted instruction (CAI) in science (Bayraktar, 2001/2002). Some conditions promoted this 
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positive effect more than others, including working with simulations or tutorials (rather than drill 

and practice), individual use of computers (rather than in groups), use of CAI as a supplement to 

regular instruction (rather than a substitute), and software programs that had been developed by a 

researcher or a teacher (rather than those commercially available) (Bayraktar, 2001/2002).  

 

Technology can also be used for learning by modelling (Rohr & Reimann, 1998; Woolsey & Bellamy, 

1997) and learning with models (Milrad et al., 2003) to allow improved understanding of complex, 

dynamic systems. Many authors (de Hoog, de Jong, & de Vries, 1991; Gilbert & Boulter, 1998; 

Stylianidou, Boohan, & Ogborn, 2004) refer to these types of learning as exploratory learning 

activities (students are able to explore pre-existing models) and expressive learning activities 

(students create their own models). A further step is for students to critique other students’ models 

(Gobert & Pallant, 2004). Understanding scientific models is quite different from the ability to 

reason with scientific models (Gobert & Pallant, 2004). 

 

A simulation is used either for science or education, and it is used because the actual system can 

not be investigated directly (Rieber, 1996). Scientists use simulations to establish and refine 

existing theory and understanding of the system. In education, simulations are used because 

students can learn about a system by observing the result of actions or decisions through feedback 

generated over a variety of time-scales (Rieber, 1996). Despite the literature that says that learning 

by modelling is an important method of learning, there are few empirical studies of the success of 

modelling in science classrooms (see for example (Stylianidou et al., 2004)). Davies (2002) found 

that the features of a simulation that were important for student engagement were the complexity 

of the situation, the learning environment as a whole, navigational opacity, allowing sufficient time 

for engagement to develop, and allowing for cooperative learning. Some studies have shown that 

both model building exercises and learning with models can promote systems thinking, improve 

students’ understanding of the nature of modelling itself, improve learning outcomes, reduce 

misconceptions, increase transferability, and improve student attitude toward the class (Friedman & 

McMillian Culp, 2001; Gobert, Snyder, & Houghton, 2002; Kiboss, Ndirangu, & Wekesa, 2004; Kurtz 

dos Santos, Thielo, & Kleer, 1997; Pallant & Tinker, 2004).  

 

Models used in science education have two main roles. The first is an analytic role, when models are 

used to simplify complex structures and the model is applied directly to a situation (Harre, 1999). 

The second role is an explanatory one, where models are used as representations for anything that 
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cannot be observed naturally, such as theories (Harre, 1999) or to investigate phenomena that 

occur over different time or spatial scales (Jacobson & Wilensky, 2006). Using a simulation allows 

students to investigate the links that occur between scales (Jacobson & Wilensky, 2006), and allows 

students to participate in a full inquiry-cycle in less time than they would in the real world, and thus 

learn better inquiry skills because they can do this more often (Murray, Winship, Bellin, & Cornell, 

2001). The use of models and technology provides an authentic learning experience for the 

students (Jacobson & Wilensky, 2006; Kelleher, 2000). Simulations are effective particularly in 

science because they allow students to develop hypotheses and test them (Buckley et al., 2004; 

Milrad, 2002; Woolsey & Bellamy, 1997), and can provide students with scaffolds to aid in 

experimental design (de Jong & van Joolingen, 1998). Once a model is created, it can be used as a 

trigger to explain behaviour or identify how the system relates to a larger system (Coyle, 2000). 

Using simulation models in education allows the learner to interact with the representation, which 

in turn provides the learner with feedback that can be interpreted as the basis for further interaction 

(Milrad, 2002). 

 

Learning by modelling (or expressive learning activities) may result in more comprehensive long-

term learning outcomes (Jonassen, 2000, 2003). Creating dynamic models allows students to 

combine fragmented knowledge into larger constructs by allowing them to explore that knowledge 

(Stratford, Krajcik, & Soloway, 1998). However, positive results have also been found in studies 

examining the effect of learning with pre-built models (Pallant & Tinker, 2004). The focus of this 

study will be on learning with pre-built models, (also defined as learning with model-based 

simulations) because of the greater time involved in training students in using the modelling 

software (Jonassen, 2000; Ossimitz, 1997), and also the large amount of time involved in students 

production of a working model (Haslett, 2001). For this study, the underlying model is context-

based, placing the learner in a context that simulates a real situation (Milrad, 2002). Wilensky & 

Reisman (2006) make the point that some facts and theories need to be presented in an appropriate 

context in order to be integrated with existing knowledge and retained. This is certainly the 

recommendation made by the environmental education research. It is particularly import for 

students who are engaging with the experience as an isolated experience, rather than are engaged 

in the study of science (Wilensky & Reisman, 2006). 

 

System dynamics modelling and agent-based modelling require higher level cognitive skills than 

those often addressed by computer-based learning (Jonassen, 2000). Simulation models have been 
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used successfully in physics where improvements were found in students’ achievement, problem 

solving skills, and overall understanding of the concepts (Jimoyiannis & Komis, 2001). However, 

there has not been agreement in the literature on this success (de Jong & van Joolingen, 1998; 

Hopson, Simms, & Knezek, 2001/2002). Reasons for poor results include: under utilisation of the 

features available; different types of learners not accounted for; and an inability to assess individual 

learners due to poor experimental design (de Jong & van Joolingen, 1998). Generally, the skills 

required to fully participate in discovery learning are the ability to generate a hypothesis, applying a 

systematic and planning process, and the use of high-quality heuristics for experimentation (de 

Jong & van Joolingen, 1998). Of those studies that did test individual measures, certain 

characteristics typified successful learning outcomes. They are direct access to domain information, 

students receiving assignments, and the availability of a learning environment that allows model 

progression (de Jong & van Joolingen, 1998).  

2.3.2.2 System Dynamics Modelling 

A system dynamics model will be one of the representations investigated in this study. “System 

Dynamics is a methodology for analysing complex systems and problems with the aid of computer 

simulation software” (Alessi, 2000, p. 1) and includes cause and effect relationships, time delays 

and feedback loops. Jay Forrester described the philosophy and method of the approach of system 

dynamics in 1961 with the publication of Industrial Dynamics. In 1970, in response to the formation 

of the Club of Rome, the first system dynamics model related to the environment was developed 

(Forrester, 1971). The model addressed issues concerning population growth, and was published in 

a book called World Dynamics. Forrester and the group at the Massachusetts Institute of 

Technology came to a number of conclusions regarding negative effects on the environment that 

are still relevant. These include the unsustainability of high standards of living and industrialisation, 

population pressures resulting in limited natural resources, pollution and social stresses.  

 

Systems can be represented by causal loop diagrams and by stock and flow diagrams. Causal loop 

diagrams are useful for demonstrating feedback (Sterman, 2000). Feedback is a defining element of 

a complex system. Forrester identifies feedback as the most important element in defining a system 

(Forrester, 1971). “The feedback loop is the closed path that connects an action to its effect on the 

surrounding conditions, and these resulting conditions in turn come back as “information” to 

influence further action” (Forrester, 1971, p. 17). Feedback is also described as “the structure 

surrounding a decision process” (Forrester, 1968). A positive loop occurs when a change in one 
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variable causes a change in the same direction in a second variable, which in turn causes further 

changes in the first. In Figure 2-2 below, the birth rate and population loop demonstrates positive 

feedback. An increase in the population causes an increase in the birth rate (because more of the 

population is able to reproduce) which causes an increase in the population, and so on. Negative 

loops counteract change (Sterman, 2001). In Figure 2-2, the death rate and population loop 

demonstrates the stabilising function of a negative feedback loop. Any increase in the population 

results in an increase in the death rate, which causes a decrease in the population, thereby 

stabilising the increase. Conventions exist for drawing causal loop diagrams, the diagrams contain 

variables that are linked by arrows (Sterman, 2000) (see Figure 2-2). The polarity of the variable is 

indicated by the (+) or (-) sign, and describes how the dependent variable changes in response to 

the independent variable (Sterman, 2000). In this example, an increase in the birth rate causes an 

increase in the population which then results in an increase in the birth rate. Whereas, an increase 

in the population causes an increase in the death rate, which then causes a decrease in the 

population. The loop identifier in the middle of the arrows shows the nature of the feedback, either 

positive (reinforcing) or negative (balancing) (Sterman, 2000).  

 

Figure 2-2: An example of a Causal Loop Diagram (Sterman, 2000, p. 138) 

 

Stock and flow diagrams represent the quantitative nature of the system. A stock and flow diagram 

will be a representation used in the experiments in this study. A stock is defined as a “quantity of 

something (such as the quantity of heat in a cup of coffee)” (Alessi, 2000), and is a time-point 

related system variable (Ossimitz, 1997). A stock is represented by a rectangle (see Figure 2-3). A 

flow “represents the rate of change (the rate of increase and/or decrease) of a stock” (Alessi, 2000). 

Flows are represented by pipes into or out of a stock (Sterman, 2000). A valve can be seen on the 

pipe that controls the flow. They are time-interval related system variables (Ossimitz, 1997). “A rate 

of flow is controlled only by one or more of the system levels and not by other rates” (Forrester, 

1971, p. 18). The clouds at the ends of the flows represent the boundaries of the system. 

Population Birth Rate Death Rate 

+ 
+ 

+ - 

+ – 
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Figure 2-3: An example of a Stock and Flow Diagram (Sterman, 2000, p. 193) 

 

System dynamics has been used to examine the dynamic complexity of perfectionist tendencies in 

gifted and talented children (Ramsey & Ramsey, 2002); to understand Keynes’ theory of financial 

crisis (Harvey, 2002); to examine environmental sustainability of an agricultural development 

project (Saysel, Barlas, & Yenigun, 2002); the effect of exercise and diet in obesity treatment 

(Abdel-Hamid, 2003); to design interactive courseware (Spector & Davidsen, 1997); to understand 

the process of implementing technology-enhanced learning environments in higher education 

(Stavredes, 2001); and to understand a mine disaster in Canada (Cooke, 2003). It has been used to 

make policy recommendations (e.g. (Satsangi, Mishra, Gaur, Singh, & Jain, 2003; Saysel et al., 2002; 

Xu, 2001)), and for public participation in environmental problems (Jones, Seville, & Meadows, 

2002; Stave, 2002, 2003; Walker, Greiner, McDonald, & Lyne, 1999), although using system 

dynamics to model stakeholders’ mental models has not always been successful (Rouwette, Vennix, 

& Thijssen, 2000). System dynamics has been used to study a variety of situations in natural 

resource management (e.g. (BenDor & Metcalf, 2006; Carbonell, Ramos, Pablos, Ortiz, & Tarazona, 

2000; Faust, Jackson, Ford, Earnhardt, & Thompson, 2004; Guo et al., 2001; Martinez-Fernandez, 

Esteve-Selma, & Calvo-Sendin, 2000; Xu, 2001)); to model socio-environmental systems (Faust et 

al., 2003; Martinez Fernandez & Esteve Selma, 2004; Saysel et al., 2002; Weclaw & Hudson, 2004); 

situations of economy versus environment (Dudley, 2004; Woodwell, 1998); and systems involving 

the interplay of society, economy and the environment (such as tourism (Patterson, Gulden, 

Cousins, & Kraev, 2004), tourist behaviour (Walker et al., 1999) and environmental sustainability 

(Hilty et al., 2006)).  

 

Human impact is often left out of ecological models, even though humans may have a large impact 

on the real systems (Alberti et al., 2003). Environmental problems usually involve interdisciplinary 

collaboration, which may be difficult due to different disciplines, models and parameters (Benda et 

al., 2002). System dynamics is useful because it is designed for this sort of interaction. A common 

problem concerning the management of complex systems is that one or two influences are 

identified, assumed to be the factors responsible for the outcomes observed, and this results in the 
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implementation of simple policies to address complex problems (Alessi, 2000). Natural resource 

management is increasingly associated with complex systems as information from a variety of 

disciplines is incorporated (Daniels & Walker, 2001). System dynamics modelling is suited to 

multidisciplinary problems because it can accommodate both quantitative and qualitative data. It is 

fundamentally interdisciplinary (Sterman, 2001). 

 

STELLA™ is the system dynamics software that will be used in this study. STELLA™ is an object-

oriented graphical programming language designed specifically for modelling dynamic systems 

(Costanza, Duplisea, & Kautsky, 1998). STELLA™ has been used in a variety of both instructional and 

experimental or explorational studies (e.g. (Davies, 2002; isee Systems, 2005; Patterson et al., 

2004)). Icons for stocks and flows (see Figure 2-3) are placed on the screen and connections 

between these are made. Behind the diagrammatic representation sits the mathematical equations 

governing the system’s behaviour (Sherwood, 2002). The diagrammatic interface allows the user to 

create a physical representation of their mental model and manipulate it to carry out experiments 

(Jonassen, 2000; Land & Hannafin, 2000), regardless of the user’s understanding of the 

mathematics that governs the system. Outputs can be viewed as graphs or tables. STELLA™ also 

allows the model builder to generate a user friendly interface, for example sliders to change model 

parameters (Costanza et al., 1998). 

 

Although much is written of the value of system dynamics modeling in education in schools, very 

little empirical data exists to confirm this (Doyle, Radzicki, & Trees, 1998; Stratford et al., 1998). 

Instead, case studies and anecdotal accounts from teachers who have used such models are 

available on the web (Guthrie & Fisher, 1999; Ragan, 1999; Verona, Ragan, Shaffer, & Trout, 2001). 

The Core models project was a large scale implementation of system dynamics modeling in a 

number of schools, and evaluation of the project, while focusing on teacher support, did find that 

while students did improve understanding of the scientific concepts underlying modeling, they did 

not improve their ability to interpret the models (Maryland Virtual High School, 2001). Studies make 

recommendations as to how to teach system dynamics modeling (Schaffernicht, 2006; Stuntz, 

2000), or how to incorporate it into a class (Draper, 1993). Other studies have raised areas for 

further investigation. Studies investigating the effect of systems thinking interventions on 

participants’ mental models (Doyle, 1997), the effect of systems modelling on the development of 

higher cognitive skills (Jonassen, 2003) and general learning effectiveness (Spector, 2000) are 

needed. Other studies focus on university-aged students and examine how students mismanage 
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systems (Moxnes, 1998), or learning about system dynamics concepts (Kainz & Ossimitz, 2002) 

rather than learning about the domain on which the model is based.  

 

Students do have trouble understanding complex systems using system dynamics models. One 

study found that the majority of participants in four separate studies (167 subjects in total) had 

biased views of the dynamics of the environmental system that they were examining which 

suggested that they were using a static (rather than a dynamic) mental model (Moxnes, 2000). 

Another study found that graduate students had very poor understanding of the processes involved 

in climate change, a common misconception was that stabilising emissions would “fix the problem”, 

showing a poor understanding of dynamic processes (Sterman & Booth Sweeny, 2002). 

Unfortunately, the management strategies employed by Moxnes’ (2004) students that mismanaged 

a system to collapse are strategies that have been observed in natural resource managers in 

districts similar to the ones in at least one of the studies. This mismanagement was even observed 

when the subjects were given a structure with only one stock and two flows, feedback on decisions 

and allowed the opportunity to learn from past mistakes (Moxnes, 2004). This suggests that 

domain knowledge may not have been a factor in these subjects’ understanding of the system. 

While a number of studies have investigated learners’ inability to correctly model a natural resource 

problem (Booth Sweeney & Sterman, 2000; Diehl & Sterman, 1995; Moxnes, 2004), (Kainz & 

Ossimitz, 2002) determined that students did not have difficulties in determining between stocks 

and flows, and instead found it difficult to represent this information in a flow chat, and similarly 

that students were better able to interpret information from a table than from a graph. This 

suggests that perhaps the representational affordance of the system dynamics model, or the way in 

which the assessment is asked, needs to be examined. 

 

Prior knowledge of the domain and system dynamics modeling was found to be important in 

model-building activities in high school students (Sins, Savelsbergh, & van Joolingen, 2005). Lowe 

(1993) states that when the display is an abstract scientific diagram (such as a system dynamics 

model) both domain general knowledge and domain specific knowledge are important in a learner’s 

construction of their mental representation. (Draper, 1993) suggests that system dynamics are an 

important communication tool. Doyle and Ford (1998) suggest that system dynamics models can be 

used to change or improve students’ mental models in order to ensure dynamic decisions are 

appropriate. System dynamics models allow students to test their assumptions about systems, and 

therefore help students to think critically about important issues (Potential, 1992). System dynamics 
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modeling provides students with a dynamic framework in which to place detailed facts (Forrester, 

1992). 

 

This study aims to investigate the use of system dynamics as an instructional tool under different 

conditions. The next section outlines the literature that relates to the other instructional strategies 

to be tested. 

2.3.2.3 Agent-based modelling 

An agent-based model is the other representation that will be investigated in this study. In agent-

based modelling the focus is on the interaction between the agents, and their environment. An 

agent is defined as an object that controls its own behavior, and could be individuals of a species, 

individuals at a particular stage in the life cycle (a cohort), or a group of individuals that can be 

considered identical (Ginot et al., 2002). An agent could therefore be a single plant, animal or 

molecule, or an entire species. Agent-based models may incorporate methods for the agents to 

learn, evolve or adapt to the system (such as neural networks or evolutionary algorithms) 

(Bonabeau, 2002a). In an agent-based model, feedback can lead agents to learn from behavior or 

experience (Schieritz, 2002). As discussed earlier, the rules that apply to the agents determine the 

behavior of the whole system, called emergence. By laying down the rules for the agents and the 

system, behavior may emerge that would otherwise not have been predicted (Bousquet & Le Page, 

2004; Ginot et al., 2002; Parrott & Kok, 2001; Schieritz, 2002). 

 

Agent-based models are particularly useful for modelling environmental management situations 

because they allow environmental models to be linked to the social systems, the interactions 

between different scales of decision-maker to be investigated, and the emergence of collective 

responses to changing environments and policies to be investigated (Hare & Deadman, 2003). 

Agent-based modelling has been developed from three different sources. These are individual-

based modelling, which focuses on the interaction of discrete individuals that have unique 

characteristics; artificial life simulation, the simulation of lifelike behaviours at the macroscale 

through the modelling of simple interacting micro scale behaviours of components; and multi-

agent systems which are composed of many autonomous, social, communicative, pro-active agents 

that interact with each other to solve group problems (Hare & Deadman, 2003). The benefits of 

agent-based modelling are: it captures emergent behaviour, it provides a natural description of a 

system, and it is flexible (Bonabeau, 2002b).  
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Agent-based models, and in particular individual-based models, are used to research vegetation in 

ecosystems (Boulain, Simioni, & Gignoux, 2007); to describe the interaction of animal behaviour and 

population dynamics in order to predict the effects of agricultural practice (Wang & Grimm, 2007); 

population dynamics of an olive fruit fly in order to better manage the pest species’ (Gilioli & 

Pasquali, 2007); visitor use of a national park (Gimblett et al., 2000b; Roberts & Gimblett, 2000); 

population dynamics in terms of resource partitioning (Uchmanski, 2000); plants and their role in 

an ecosystem (Parrott & Kok, 2001); residential development (Brown, Page, Riolo, & Rand, 2004). 

Individual-based models are important for theory and management as they allow researchers to 

consider variability between individuals, local interactions, complete life cycles, and individual 

behaviour adapting to the changing internal and external environment (Grimm et al., 2006). 

 

The costs involved in using an agent-based model include difficulty in analysis, understanding and 

communication because they are more complex, and difficulty in replication of the model by others 

(Grimm et al., 2006). The costs involved in multi-agent systems include the lack of systematic 

methodology for structure and the lack of widely available industrial-strength multi-agent systems 

toolkits, and trust of the agents to make decisions (Sycara, 1998). Multi-agent models have been 

used to determine the interaction between stakeholder decision making and an ecosystem 

(Monticino, Acevedo, Callicott, Cogdill, & Lindquist, 2007) 

 

When used in education, agent-based models allow students to explore the relationship between 

the agents’ rules of behaviour and the patterns that emerge (Stieff & Wilensky, 2003). Students are 

able to make predictions and test them by exploring model outcomes as they manipulate variables 

(Stieff & Wilensky, 2003). The use of agent-based models in education “narrows the gap” between 

school biology and research biology (Wilensky & Reisman, 2006). The main advantage of using 

agent-based models is that students are able to employ their knowledge of the behaviour of 

individuals in the construction of theories about the behaviour of populations (Wilensky & Reisman, 

2006). Agent-based models are able to be quite realistic. Using a realistic computer simulation can 

be motivating for students because they are entertaining and evocative (Goldstone & Son, 2005). 

 

NetLogo is the software used in this study for the agent-based model. NetLogo is a multiagent 

modelling language (Stieff & Wilensky, 2003). It has its own programming language, embedded in 

an integrated, interactive modelling environment (Tisue & Wilensky, 2004b). NetLogo is written in 
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Java (Tisue & Wilensky, 2004b), and is a hybrid compiler/interpreter. It also enables users to open 

simulations and experiment, exploring the effects of their decisions (Tisue & Wilensky, 2004a) and 

was designed for use in both research and education. NetLogo has been used for education in 

chemistry (Levy, Kim, & Wilensky, 2004; Stieff & Wilensky, 2002, 2003), biology (Wilensky & 

Reisman, 2006), mathematics (Abrahamson & Wilensky, 2005), physics (Sengupta & Wilensky, 1999; 

Wilensky, 2003) and materials science at the undergraduate level (Bilkstein & Wilensky, 2005). 

 

The use of agent-based models for chemistry allowed students to link multiple representations and 

levels in order to gain a deeper understanding of concepts and encouraged conceptual 

understanding rather than the memorisation of facts (Stieff & Wilensky, 2003). In a separate study, 

it was found that the use of NetLogo in chemistry resulted in all students understanding 

macroscopic concepts, a large increase in the number of students who were able to correctly 

describe both macroscopic and microscopic behaviour of the system, and most of the students 

could apply this understanding to a different context (Levy et al., 2004). However, students were 

not able to relate the microscopic to the macroscopic level (Levy et al., 2004). In biology, students 

who built models using NetLogo were able to reason about the mechanisms that underlie predator 

prey systems and predict future behaviour (Wilensky & Reisman, 2006). In physics, agent-based 

modelling helps students to make the connection between abstract and concrete concepts 

(Sengupta & Wilensky, 1999). In this case students were able to connect the fields of electrostatics 

and electricity, and to see current emerging from a moving charge, and the direction in which it was 

moving. Use of an agent-based model for undergraduate level students in material sciences allowed 

the observation of processes that were fundamental to their understanding of the concept and 

allowed student to make links between topics that were usually separate (Bilkstein & Wilensky, 

2005).  

 

There has been a less structured approach to the development of the field of individual and agent-

based modelling than that of system dynamics modelling (Railsback, 2001). While models that have 

used individuals have been used in ecology since the 1970s, the use of individual-based modelling 

specifically only began from 1988 (Grimm, 1999). The two main advantages for ecologists using 

individual-based models are that they are able to represent individuals as discrete units, and the 

type of theory that has been generated from top-down approaches has issues (Grimm, 1999). For 

scientists examining natural resource management, the interaction between environmental 

dynamics and social dynamics needs to be examined (Bousquet & Le Page, 2004). System dynamics 
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modelling focuses ecological theories on the system having to be in equilibrium (Bousquet & Le 

Page, 2004). A multi-agent system is composed of: an environment that is usually a space; a set of 

objects; an assembly of agents, which are specific objects, and represent the active entities in the 

system; an assembly of relations that link objects to one another; an assembly of operations that 

allow agents to manipulate objects; and operators with the task of representing the application of 

these operations, and the reaction of the world to this attempt at modification, that is, the laws of 

the universe (Bousquet & Le Page, 2004). The main issue is formalising the necessary coordination 

among agents and questions are related to decision making, control, and communication (Bousquet 

& Le Page, 2004). There is not a difference between the process of modelling itself if the two styles 

of modelling are compared, only in the assumptions and the tool used (Grimm, 1999).  

 

System dynamics modelling is well suited to studying systems containing a complex web of 

feedback loops, and agent-based modelling is well suited to incorporating spatial and probabilistic 

aspects of the system (Wakeland, Macovsky, Gallaher, & Aktipis, 2004). When these authors 

compared the two types of models in terms of educational potential, they found that the system 

dynamics model was useful for conceptual understanding, whereas the agent-based model was 

useful because of the representation of the processes. The behaviour of individual agents is not 

important in system dynamics models since the dynamics of the underlying structure are dominant 

(Scholl, 2001). Both types of model aim to identify leverage points in complex aggregate systems, 

however in agent-based models these are identified in rules and agents, whereas in system 

dynamics models in the feedback structure of the system (Scholl, 2001). Agent-based models 

establish a link between the micro and macro level of the model, system dynamics models establish 

a link between the system structure and the system behaviour (Schieritz & Milling, 2003). These 

authors suggest that an integrated approach may have the advantage of helping decision makers to 

be able to think of the two levels that are modelled at the same time.  

 

Students are likely to experience high cognitive load associated with either modelling style. This is 

thought to be related to the extent to which the elements interact with each other (Sweller & 

Chandler, 1994). By definition, a complex system has a number of interacting elements. In addition, 

at least in the case of the system dynamics model, the representation itself involves an abstract 

syntax. Students who are given this type of model have to learn not only the content, but also how 

to interpret the representation. This means that a large number of elements have to be learned 

simultaneously in order to be understood (Sweller & Chandler, 1994). If students had experience 
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either with the representation, or with the domain, it would expected that their cognitive load would 

be smaller because some of the elements that had to be interpreted, would already be linked in 

their mental model (Sweller & Chandler, 1994). The agent-based model, on the other hand, allows 

students to understand how the interacting elements can be combined more easily. If the two 

representations were combined, then students will be able to understand the elements individually 

and in combination. 

 

Until recently, few studies have used a combination of the two models (Schieritz & Grossler, 2003), 

however recently this has become more common (see for example (Martinez-Moyano, Sallah, 

Bragen, & Thimmapuram, 2007; Osgood, 2007; Wilensky, 2007). And a number of papers have 

been written that directly compare how to use the different types of model to model the same 

system (Borshchev & Filippov, 2004). 

2.3.2.4 Learning from an animated or a static model 

The agent-based model used in this study uses an animation to represent the agent-level process. 

Animated representations are a type of dynamic representation. Ainsworth and VanLabeke (2004) 

identified different types of dynamic representations. The first is time-persistent (T-P) and is 

similar to that seen in the output produced by both the models; the data is displayed incrementally 

in the form of a graph or table. This representation “displays the current value and any other ones 

that have been computed” (p. 244). The second type of dynamic representation is a time implicit (T-

I) representation. When static, these representations show values but not the time that the values 

occurred, if dynamic then the representation adjusts as the learner is watching. In this case the 

dynamic representation does add information in terms of the sense of time. The third type of 

representation is time-singular (T-S) and “displays one or more variables at a single instant of time” 

(p. 246). A T-S representation is used in the agent-based model in this study. T-S representations 

are often used when communicating complex information, but because they are so complex; the 

external representation contains limited information and therefore puts greater strain on internal 

processing (or cognitive load). This is because learners have to keep the system’s previous states in 

their head to compare them to the current state. They suggest that the constrain by familiarity 

function (mentioned earlier) may be most commonly met by using a T-S representation to help 

learners interpret T-P or T-I representations. Lowe (2003) identifies three different types of 

animated representations: transformations (changes in form – colour, shape etc.); translations 

(changes in the positions of entities); and transitions (appearance or disappearance of entities) 
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(Lowe, 2003). Lowe’s definitions most commonly apply to Ainsworth and VanLabeke’s T-I and T-S 

representations. 

 

The main benefit of using animated representations is their ability to depict temporal change (Lowe, 

2003). Animation may enhance understanding in cases where events are shown at a scale otherwise 

unable to be seen by the learner, and especially if the animation then shows how these events show 

themselves at a different scale (Rohr & Reimann, 1998). An example of such a case is a 

demonstration of germination of a plant, this occurs at a scale that learners would not normally see, 

and if it was related to the physical changes in the plant over a period of time, may enhance 

understanding of the process. This kind of process is difficult to explain and understand in words. 

The components that are not accessible to perception and conceptual aspects may not be readily 

understandable unless a dynamic representation is used (Savelsbergh et al., 1998). Animated 

representations may help students to construct a useful mental model (Rohr & Reimann, 1998; 

Savelsbergh et al., 1998) and further, overcome difficulties in using their model for reasoning about 

the domain.  

 

There have been mixed results with regards to the effect of animation on learning (see for example 

(Anglin et al., 2003; Byrne, Catrambone, & Stasko, 1999; Lewalter, 2003; Lowe, 2003, 2004; Rieber, 

1990). Byrne et al. (1999) found that the use of animation does not automatically enhance learning. 

They could not distinguish between the effect of animation and the effect of simply a good visual 

representation, with or without animation effects (Byrne et al., 1999). The authors hypothesised that 

animation may affect the speed at which a student learns (or the motivational factors) rather than 

the amount learnt, however this was not examined in their study. Lowe (2003) has investigated the 

effects of using animation in learning about meteorological effects, and has generally found that 

animation is not effective in this domain. Subjects tend to be attracted to the information generated 

by the features in the animation that actually change in a contrasted manner to the rest of the 

display (Lowe, 2003, 2004). Lowe (2003) concluded that even when interaction and user control are 

provided, and the animated representation is accurate, simply presenting the representation may 

not be enough to allow learners to build accurate mental models of the phenomena.  

 

One explanation for the negative effects of learning from animations is the high cognitive load 

associated with interpreting the animation, and mentally simulating the model in order to reason 

with it later (Rohr & Reimann, 1998). A method suggested to overcome the cognitive load 
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associated with the interpretation was to present learners with a static version of the dynamic 

representation before the dynamic representation was shown (Bodemer et al., 2004). Another 

suggestion is for increased direction when presenting novices with animated representations of 

phenomena (Lowe, 2004).  

 

Factors associated with the successful use of animations are that the animation should be slow and 

clear so that learners can perceive any movement or changes, and the timing corresponding to the 

movement and changes (Tversky, Bauer Morrison, & Betrancourt, 2002); prior knowledge of the 

subjects (Byrne et al., 1999); and aim to reduce the cognitive load the learner is under, enabling 

students to store the correct model and argue about other concepts related to it (Rohr & Reimann, 

1998). When learning from a model about a simple system (how an electric motor works), it has 

been advised that an animation should be combined with spoken rather than printed text, and that 

students should control the pace of the learning materials (Mayer, Dow, & Mayer, 2003). However, 

in this activity, there was less structure, and so it was thought to be more important that students 

have the freedom to interrogate the text information as often as they liked, and in the same manner 

as those in the Text group. 

2.3.2.5 Use of the models 

As mentioned earlier, the mental model that is constructed by learners will be influenced by the 

format in which the information is presented (Rohr & Reimann, 1998; Zhang, 1997). It is obvious 

that there will be a trade-off between the advantages of the representations (Lohner & van 

Joolingen, 2002). In addition, simulation models are thought to be important educational devices 

because they allow students to interact and make decisions that they would not otherwise be able 

to do in real life. Buckley et al. (2004) also suggests that use of the models, such as deciding which 

perceptual cues to attend to, deciding how to interact with the representation and monitoring and 

evaluating the results of those interactions, are important metacognitive processes that play an 

important part in model-based learning. If this is the case, learning outcomes would also depend 

on the ways in which students interrogate the simulations, as well as the representational 

affordances of the models themselves, although there are very few studies that investigate the use 

of the models when they compare learning outcomes (Kennedy & Judd, 1007, 2007; Levy et al., 

2004; Moxnes, 1998). 
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Levy, Kim & Wilensky (2004) compared the use of an agent-based model for a high and low 

scaffolded learning environment. They found that students who were given less guidance spent less 

time exploring the model, but had similar levels of activity (Levy et al., 2004). In addition, it was 

noted that students performed more runs than variable changes: they were testing each set of 

variables more than once (Levy et al., 2004). They concluded that increasing the freedom in 

exploring models does not detract from the experimental spirit they expressed in the activity, 

however the scaffolding does increase the time in observing the model as it changes, which is 

crucial to finding patterns and understanding complex phenomena (Levy et al., 2004).  

 

Levy & Wilensky (Levy & Wilensky, 2005) investigated the patterns in how students used an agent-

based model to learn about Chemistry. Each action taken in the model was recorded, and the 

average time between actions was used to measure deliberation. The four main statistics measured 

were successive settings in running the model, observation time, the average time between actions, 

and the number of runs. Students were engaged in a relatively ‘open’ activity (only able to change 

one setting, but to whatever value they chose), and Levy & Wilensky were able to identify three 

distinct exploration patterns. The first strategy was straight to the point, which had a shorter overall 

observation time, but longer observation time per run; longer time between actions; and fewer runs. 

Levy & Wilensky identified this as an efficient mode to use the model, which may allow students to 

develop a deeper understanding of each state of the model. However, using a straight to the point 

strategy may mean that learners miss critical settings or transitions which would have been 

discovered by a wider range of values chosen. These critical settings are an important part of 

understanding a system from using a model (Lowe, 1993). The second strategy was called homing 

in. Students who used this strategy exhibited a shorter overall observation time, and shorter 

observation time per run; shorter time between actions; and more runs. These students were 

identified by the authors as “click happy”. The third strategy identified was called oscillating, which 

consisted of a longer overall observation time, but shorter observation time per run; shorter time 

between actions; and an intermediate number of runs. Both the homing in and oscillating strategies 

involved speedy model changes and short observations, which implies that students were not able 

to detect and generalise complex relationships between variables. However, the many states of the 

model means that students examined many aspects of the model’s behaviour and students were 

more likely to detect a critical setting. Of the two, the homing in strategy is more planned, whereas 

students would struggle to keep the previous state in mind for comparison when using the 

oscillating strategy. Similar patterns were found when students engaged in a more complicated 
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activity where they were able to explore the model along a number of settings and a wide range of 

values. The authors concluded that students explored the models in a characteristic way 

independent of tasks or goals. There was one pattern that was noticed with respect to the goal of 

the learner. When there was a particular goal state for the model, students tended to gravitate 

towards that state; and when the range of values was informative, students used a wider range of 

values. It was also found that the tools made a difference when sliders and free commands were 

compared (Levy & Wilensky, 2005). Students who used the textual commands tended to display the 

oscillating strategy across a wider range of values, and in a nonlinear order, than those offered via 

the slider.  

 

Strategies for interrogating models have been discussed, in some respect, in the system dynamics 

modelling literature. Moxnes (1998) discuses the combination of mental models and analysis. In 

terms of the analysis, he discusses a trial-and-error heuristic, a consistent analysis, and a gradient 

search, which can be loosely mapped to the oscillating, straight to the point, and homing in 

strategies noted by Levy and Wilensky. He suggests that the rationale behind the gradient search is 

that students do not have a clear idea of the importance of the particular stock in the model, and 

they can see no other strategy than ongoing reductions (Moxnes, 1998). None of the students had 

prior domain knowledge. However, there was no further investigation into the links between the 

strategies and the decision-making and mental model development. Moxnes (1998) also 

investigated the use of explanatory features such as additional information that scaffolded students 

in how to model the system. Students were able to utilise the extra information given about growth, 

but not about the stock. 

 

Two other issues with regards to the use of the models are the user’s model preference (for the 

group given both models), and the role of prior knowledge in the use of models. There is little work 

on learners’ representational preferences. (Van Labeke & Ainsworth, 2002)’s study examined the 

preference for the number of representations interrogated by students (3-4) and which of those had 

the most requests for translation (indicated that students may start at the complicated/unknown 

representation and relate it back to the familiar rather than vice versa). The only study to specifically 

investigate the role of prior knowledge in the use of the model was the Levy & Wilensky (Levy & 

Wilensky, 2005) study discussed in some detail above. They suggested that prior knowledge about 

the domain may shorten the exploration time, resulting in a student focusing on a few key settings, 

such as the straight to the point strategy. 
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2.3.3 Collaborative Learning 
Cooperative learning is an important aspect to be addressed in this study. While the use of 

computers is becoming more common in the classroom, environmental education generally does 

not cater to one computer per student, and so this style of learning should be taken into account. 

Other authors also suggest that it seems inadequate not to address this factor (Metz, 1998). Even 

fifteen years ago it was being argued that group work with computers was beneficial for learning, at 

even the most basic levels of data entry, as well as for problem solving exercises (Underwood & 

Underwood, 1990). 

 

Cooperative learning can be contrasted to collaborative learning because “cooperation only requires 

that learners work together, each learner completing a part of the task, rather than negotiating with 

others about all aspects of the task, as is necessary in collaboration” (Beatty & Nunan, 2004, p. 

166). A cooperative learning environment requires students to coordinate their efforts to complete 

a task (Slavin, 1983). Often, a group of students working together at a single computer encourages 

collaboration because not everyone can have control of their tasks (Beatty & Nunan, 2004). 

However, Milrad (2002) found that most of the learning seemed to occur in the discussion and not 

in the interactions with the simulation models. 

 

Baker et al. (2001) found that, in general, students are reluctant to express disagreement when they 

are in groups. They suggest that when designing computer supported collaborative learning (CSCL) 

environments to support interaction about science, the structure should include a debatable task; 

cognitive preparation for debate; multiple representations of solutions; compatible partners; and a 

strong understanding of the topic (Baker, de Vries, Lund, & Quignard, 2001). The role of the teacher 

is also important. Teachers should combine the role of information giver with debate moderator for 

the most effective role in terms of their own development and learning outcomes of the students. 

 

Learner perceptions play an important role in successful collaborative learning situations (Beatty & 

Nunan, 2004). Learners with awareness of their own ability to actively participate in a task are better 

able to engage in collaborative tasks. Collaborative learning requires a plan for the work process, 

critical thinking, and scaffolded learning. Learners need to engage in these steps to effectively use 

the collaborative learning environment. Determining priorities, therefore, is also an important part 

of the collaborative learning process. The learner’s perception of the technology is also an 
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important component of the collaborative learning process, as learners must be scaffolded within 

their learning environments (Beatty & Nunan, 2004). 

 

Cooperative learning can be an effective learning environment, although some differences have 

been found in the way that male and female students work in groups (Edwards, Coddington, & 

Caterina, 1997). Studies have found that students in cooperative learning groups out-performed 

individual learners in a biology subject (Singhanayok & Hooper, 1998). Cooperative learning 

encourages interaction with the tool (Singhanayok & Hooper, 1998); supports a range of learning 

styles (Wang, Hinn, & Kanfer, 2001); and allows group members to explain concepts to each other 

(Kramarski, 2004), which is a metacognitive strategy. Suthers and Hundhausen (2003) showed that 

a shared graphical representation made central characteristics of the learning object salient, which 

provided representational guidance to the learning discourse. A collaborative learning environment 

in science also provides students with an authentic learning experience because scientists work in a 

social work environment (Kozma, 2003). In a review of 26 studies covering almost all grades, and 

subjects that included social studies, science, and physical science, (Johnson & Johnson, 1985) 

found that 21 studies showed that cooperative learning promoted higher achievement, 2 studies 

had mixed results, and 3 had no differences between treatments. 

 

While collaborative learning has been recommended in both environmental education and model-

based learning, it has been specifically investigated in very few cases (Jacobson & Wilensky, 2006). 

Collaborative discussion-based inquiry was found to be an important process to include when using 

an agent-based model in a classroom situation as it allowed students to share unanticipated 

findings and re-interpret and reconcile these findings (Abrahamson & Wilensky, 2005). Kozma 

(2003) reported on a study in which a pair of students using multiple, linked representations were 

engaged in extended discourse to construct shared meaning out of surface features. They both 

achieved a scientific understanding of the domain, and replicated the discourse practice of 

scientists (Kozma, 2003). It is also recommended for use, along with other strategies, in Chemistry 

learning environments (Kozma, 2003). 

 

Most of the current research agrees that students need to be scaffolded in their collaborative 

activities (Gilllies, 2003; Maloney & Simon, 2006; Manlove, Lazonder, & de Jong, 2005). In this 

study, collaborative learning was not scaffolded, nor was there a group goal. However, in the case 
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of group projects without a correct answer, or solving complex problems, it may be that hearing 

others’ thinking processes is beneficial, even if teaching does not take place (Slavin, 1996). 

 

The collaborative learning environment in this study consisted of students in dyads sharing the 

learning materials. No scaffolding was used, and students had to collaborate in order to complete 

the task. Assessment was completed by individuals, not in groups. Interaction data was not 

collected and instead learning outcomes and use of the model will be compared between the two 

learning environments. Interaction data was not collected as part of this thesis. The purpose of this 

section of the thesis is to make a preliminary comparison of differences in learning outcomes and 

measures of use between students working alone and in dyads. This will provide directions for 

future research in the field of collaborative learning with system dynamics and agent-based models. 

 

A number of authors have investigated collaboration in science education (see for example (Jeong & 

Chi, 2007; Oliveira & Sadler, 2007; Roschelle, 1992; Suthers & Hundhausen, 2003)). These authors 

identify convergence as the main advantage of a collaborative learning environment. Convergence 

occurs when students engage in collaborative inquiry learning and mutually construct 

understanding of the phenomenon (Roschelle, 1992). Jeong and Chi (Jeong & Chi, 2007) analysed 

conversations and determined that the convergence in their study could be attributed to 

collaborative interaction. They also found that a modest amount of convergence is typical in an 

unstructured, naturalistic collaborative learning situation. That suggests that in this study, which is 

unstructured, but in which students were randomly allocated to dyads, less convergence is 

expected. These authors say that convergence is due to interaction and shared input, in other 

words the materials.  

 

Collaborative model-building has been examined with respect to the influence of the representation 

on the modelling process (van Joolingen & Lohner, 2001), and the decision-making processes 

involved in online collaborative model-building (Reimann, Thompson, & Weinel, 2007), however in 

both cases, university-aged students were used. The study by van Joolingen and Lohner suggested 

that the representation does influence the model-building process, however the results were 

preliminary. 
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2.4SUMMARY 
The study addresses Rickinson’s recommendation for deeper empirical investigation into “the 

processes, experiences and contexts of young people’s environmental learning, including what 

kinds of conditions are helpful for which kinds of students undertaking which types of learning” 

(2001, p. 307). In this study, Rickinson’s ‘conditions’ take the form of strategies commonly used to 

understand complex systems: multiple external representations, learning from models, and a 

collaborative learning environment. Learning outcomes will be compared between groups in an 

experimental design in order to compare the effects of these strategies. Exploratory data analysis 

will add information to start to answer the question of why particular strategies are more successful 

than others. The following chapter will outline the methods used in this study, including the model 

development, instrument development, sample, procedures and analysis. Chapter 4 will address the 

research question: 

 

1. What differences in understanding of a socio-environmental system can be identified in 

school students after they are presented with text (see Appendix 1), a system dynamics 

model, an agent-based model, or a combination thereof? 

 

Chapter 5 will address the research questions: 

2. Does the representation affect how the model is used? 

 

3. Does the way that the model is used affect what students learn from the models? 

 

4. Does prior knowledge affect how students use models? 

 

The following research questions will be reported on in Chapter 6: 

 

5. Does working in dyads affect school students’ understanding of a socio-environmental 

system? 

 

6. Does working in dyads affect the ways in which students use models? 

 

The conclusions will be outlined in Chapter 7. 
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3. METHODS 

3.1 MODELLING THE SYSTEM 
The system of visitor impact in a national park was chosen because of the reasons outlined in 

Chapter 2, namely that it is a complex system, important in terms of managing the Australian 

environment, and one in which human management can have an effect. The system dynamics model 

was built first. This allowed the structure of the system to be determined. The model went through 

a number of iterations. The first decision was how much to model. Data about visitor usage of the 

national park was available for three months (35 days), in all areas of the park (a number of picnic 

grounds, walking tracks and the visitor centre), and for visitors undertaking all activity types 

(picnicking, bushwalking, driving, cultural heritage etc) (Davison, 2000). To include all this 

information into the model would result in a model that was too complicated for students in Year 9 

and Year 10. Of the activities, visiting the park for a picnic was thought to be a common activity 

that most students could relate to. In addition, the issues concerning the impact of waste 

management on the national park could be modelled. Because of this, of the available data, only 

those visitors who visited the park in order to have a picnic were included. Using knowledge gained 

from my honours thesis (Davison, 2000) regarding the relationship between visitors’ location in the 

park and their activity type, only those visitors who visited three specific locations and who had 

selected picnic as their only activity were included.  

 

The next stage of modelling was to develop a narrative on which the model would be based. 

Visitors would enter and leave the park for the purpose of having a picnic. Their impact on the park 

would concern the waste they left in the bins. The garbage collection person would collect a 

proportion of this waste, the rest of which would be left in the bin. In addition, some of the waste 

would be deposited in the bin after the garbage collection person had already come. This waste 

included organic and inorganic matter. The inorganic waste would accumulate, but the organic 

waste would attract introduced animal species as a food source and, if not eaten, would decompose 

and add nutrients to the environment. The effects of increased nutrients in the environment would 

be to make the environment more suited to introduced plant species, which would then out-

compete the native species of vegetation. This same structure would be repeated at the three picnic 

areas, each with their own pattern of visitor use over 35 days.  
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The model was constructed in Stella™. It was examined, and decided that this was too much 

information to give to Year 10 school students. The model was cut back to one picnic area, without 

the flow on effect from the introduction of nutrients to the environment, and the timeframe was 

reduced to ten days in the park. The days were selected based on the highest number of visitors 

(for the equations associated with this model, see Appendix 2).  

 

Figure 3-1: System dynamics model of visitor impact on a national park 

 

The user interface was also designed, and a number of screens were added to the Stella™ model. 

These included a home screen, which was an introduction to the model and contained directions 

with regards to the other screens. The second screen was the information screen, containing the 

text information describing the system (Appendix 1). The third screen was the explore screen, 

which allowed students to explore the model “step-by-step” using Stella’s™ storytelling feature 

(isee Systems, 2007), or in full which provided students with the entire model as seen in Figure 3-1. 

The final screen was the experiment screen, in which students could interact with the model (Figure 

3-2). The experiment screen contained a slider and two items in a table allowing students to input 

values for variables. The variables were the number of pieces of rubbish, the time that the person 

came to collect the garbage, and the proportion of rubbish that was collected. Changing the 

number of pieces of rubbish allowed students to examine the extremes of what could happen in the 

system. The other two variables were decisions that a park manager could make. Students were not 

able to manipulate the number of people who arrived or their arrival or departure cycles, because 

these are not variables that a park manager could control. There was a (pulse) withdrawal of 

garbage each day by the garbage services function, depending on the garbage collection time and 
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the proportion of garbage collection. Fifty percent of the waste left at the site was organic, and the 

other fifty percent was inorganic. Inorganic waste adds to the waste left at the site stock, while 

organic waste can either be eaten by introduced animal species’ or decompose (with a time delay), 

adding nutrients to the environment. Students were also able to see the stock and flow diagram, 

and two graphs. These graphs showed the amount of nutrients added to the environment and the 

total waste accumulated. By observing these two graphs, students could see how the accumulated 

waste was increasing and decreasing as a result of their interaction and could see the time delay 

involved in the corresponding change to nutrients in the environment. Students selected ‘go’ to run 

the model, and ‘reset’ which set the values back to their original values. On the system dynamics 

model there was also an ‘ideas’ option, which repeated information given at the end of the text 

description, reminding students of the available values to which the variables could be changed. 

 

Figure 3-2: System dynamics model Experiment screen 

 

The next stage with regards to model-building activities was to build the agent-based model; this 

was done using NetLogo™. While the structure and narrative had been decided on using the system 

dynamics model, the decisions made in the agent-based model revolved around how exactly to 

represent these processes visually. What would the picnic ground look like? How could the process 

of decomposition be represented in an animation? It was decided that the graphics did not have to 

look too realistic. A number of authors (see for example (Lowe, 2004)) have found that animations 
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can be underwhelming if they simply run with no obvious need for students to interpret what they 

see). 

 

Figure 3-3: Agent-based model Experiment screen 

 

In NetLogo, the screen on which students can interact with the model is called the Interface screen. 

For the purposes of comparison with the system dynamics model, this screen will be referred to as 

the Experiment screen for the remainder of the thesis. The combination of features seen in Figure 

3-4 is typical for a NetLogo model with a graphics window, plotting window and sliders and buttons 

that students can manipulate (Stieff & Wilensky, 2003). One advantage of the agent-based model is 

that it allows students to make links between the agents’ behaviour (graphics window) and the 

macro-level (plotting window) of the system occurs in the experiment screen. 

 

In terms of using this software in order to build the model, the rules for the basic elements are 

written (see Appendix 3). The individual elements are referred to as “turtles” (Wilensky & Reisman, 

2006). Turtles move around a two dimension grid, each cell of which is referred to as a “patch” 

(Wilensky & Reisman, 2006). Patches can also execute instructions and interact with turtles and 

other patches (Wilensky & Reisman, 2006). Turtles can be used to represent agents on a number of 
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different levels, in this case the visitors, waste products, introduced animal species, and additional 

nutrients were all turtles. Patches represent the medium in which they interact (Wilensky & Reisman, 

2006), in this case the national park picnic ground. As the agent-based model was developed, and 

it was determined what could be represented using this method, the system dynamics model was 

modified slightly, so that the two models were aligned.  

 

Figure 3-4: Waste represented in the agent-based model 

 

The organic waste was represented by an apple. For the process of decomposition, the apple then 

went through a number of stages: deflated, an apple core, an apple core on its side, and then when 

the process was complete, a brown square was used to represent additional nutrients. Students 

were given a key to interpret this information. It was decided that for the purpose of the model, the 

process of decomposition would take three days; this allowed a time delay (an important concept). 

This was represented in the usual way in the system dynamics model (see Figure 3-1). This is a 

much shorter timeframe than reality, however if the real times had been used, the model would 

have to run for too long before the students ‘saw’ anything in the agent-based model.  

 

The models were tested for usability and speed in the first pilot study (discussed below). The other 

modification that was made to the models following the pilot study was a further reduction in the 

time represented in the model (to allow for more experimentation to occur). This reduced the 

simulated time from ten days to seven days. Further details were also added to the two graphs, 

including labels on the x-axis of both graphs indicating the day (rather than the number of 

minutes). 
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3.2 DEVELOPMENT OF THE INSTRUMENTS 
The five instruments that were developed for this study are: the background questionnaire; the 

environmental knowledge test; the system dynamics knowledge test; the final assessment task; and 

the evaluation. 

3.2.1 Background questionnaire 
The background questionnaire contained a number of questions including general information, 

experience with computers, attitudes toward science, and attitudes toward the environment. The 

questionnaire can be found in Appendix 4.  

3.2.2 Environmental knowledge test 
Both the environmental knowledge and system dynamics knowledge tests were given to students in 

a pre-test / post-test design. Students received their pre-test answers and space was provided for 

students to either change their original answer or to write ‘as above’. This design was decided upon 

given the time and effort involved in the knowledge tests. There was only a short amount of time 

between the pre- and post-tests, and students were given three assessments to complete after the 

activity. In order to reduce students’ boredom, and to save them from composing the lengthy 

answers that may have been the same as their pre-test answers, it was decided that students would 

be given the option of having access to their original answers and either altering these answers or 

not. As the assessment was not testing recall of facts, it was not thought that there would be 

negative repercussions for the learning outcome analyses. On examination of the answers that 

students provided, students did change their answers in the post-test answers. The other potential 

risk was that students would not provide answers to the questions in the post-test, this did not 

occur. 

 

The environmental knowledge test was worth 32 marks, and contained seven questions, four of 

which were analysed in the overall environmental knowledge score, and three of which were 

analysed individually for this thesis. Negative marking was not used. The entire knowledge test can 

be found in Appendix 5, including the first three questions. The questions included in the overall 

score were: 

 

4. Choose one effect of the loss of vegetation on soil (1 mark), water run-off (1 mark), and the 

whole ecosystem (1 mark). (Total 3 marks). 
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5. Have a think about introduced species of animals (such as cats, rats or mice) 

a.  Please circle any of the following activities that you think would cause an increase 

in the number of introduced species of animals: bushwalking, fishing, having a picnic, 

going for a drive, horseriding, walking a dog, littering, collecting fire wood, collecting 

shells. (8 marks) 

b. Name one effect of introduced animals on the environment (1 mark). (Total 9 

marks) 

6. Now think about introduced species of vegetation 

a. Please circle any of the following activities that you think would cause an increase 

in the number of introduced species of vegetation: bushwalking, fishing, having a 

picnic, going for a drive, horseriding, walking a dog, littering, collecting fire wood, 

collecting shells. (7 marks) 

b. Name one effect of the introduction of non-native vegetation on native vegetation 

(1 mark). (Total 8 marks) 

7. Now imagine you are in an ecosystem that is not a national park, for example a beach, a 

mangrove swamp, or a local creek. Please complete the following table. For each activity 

listed identify one effect on the ecosystem, choose one possible further effect and indicate 

how long these effects would take to occur.  

a. Building a road. What is the initial impact on an ecosystem (1 mark)? What is the 

timescale (tick one): same day, 1 week, 1 year, more than 1 year (1 mark)? What are the 

further effects on the ecosystem (1 mark)? What is the timescale (tick one): same day, 1 

week, 1 year, more than 1 year (1 mark)? 

b. Littering. What is the initial impact on an ecosystem (1 mark)? What is the timescale 

(tick one): same day, 1 week, 1 year, more than 1 year (1 mark)? What are the further 

effects on the ecosystem (1 mark)? What is the timescale (tick one): same day, 1 week, 

1 year, more than 1 year (1 mark)? 

c. Bushwalking. What is the initial impact on an ecosystem (1 mark)? What is the 

timescale (tick one): same day, 1 week, 1 year, more than 1 year (1 mark)? What are the 

further effects on the ecosystem (1 mark)? What is the timescale (tick one): same day, 1 

week, 1 year, more than 1 year (1 mark)? (Total 12 marks) 
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Questions 5 and 6 are directly related to the learning materials. The purpose of asking students 

these questions is to determine whether they learned the main message in the materials. Questions 

4 and 7 required students to apply the knowledge that was available in the learning materials to 

other ecosystems. Question 4 was not analysed separately as students had high pre-test scores, 

and as it was only worth 3 marks, there was little change in the scores. 

3.2.3 System dynamics knowledge test 
The system dynamics knowledge test was worth 12 marks, and contained eight questions, all of 

which are analysed for this thesis (see Appendix 5). The questions included in the overall system 

dynamics knowledge score were: 

 

8. Please choose the definition of time delay that best fits your understanding of the term with 

respect to system dynamics: a) when the cause and effect are separated by time (1 mark), b) 

when you are running late for an appointment, c) when something scheduled is late, d) 

when something is postponed, e) I do not know.  

9. Identify one environmental impact that involves a time delay from any that you have 

discussed so far (1 mark) and indicate the approximate length of time involved (short term 

or long term) (1 mark). (total 2 marks) 

10. Which of the following describes the term reinforcing feedback as it relates to system 

dynamics? a) the two variables change in the same direction (1 mark), b) the two variables 

change in opposite directions, c) positive information that a teacher gives you about your 

work, d) a loop that exists between an audio input and an audio output, e) I do not know. 

11. Which of the following is an example of reinforcing feedback as it relates to system 

dynamics? a) interest added to a bank account (1 mark), b) lake shrinking due to 

evaporation, c) “your assignment was good, though your spelling needs some work”, d) 

when a microphone is placed in the general direction of the output speakers resulting in a 

high-pitched squealing, e) I do not know 

12. Which of the following describes the term balancing feedback as it relates to system 

dynamics? a) the two variables change in opposite directions (1 mark), b) the two variables 

change in the same direction, c) negative information that a teacher gives you about your 

work, d) a loop that exists between an audio input and an audio output, e) I do not know. 
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13. Which of the following is an example of balancing feedback as it relates to system 

dynamics? a) lake shrinking due to evaporation (1 mark), b) interest in a bank account, c) 

“your assignment was terrible, you didn’t try at all”, d) when a microphone is placed in the 

general direction of the output speakers resulting in a high-pitched squealing , e) I do 

not know. 

14. How would you describe the behaviour of the variables of the two graphs below: 

(i)  

(ii)  

 

a) (i) exponential growth and (ii) exponential decay (1 mark), b) (i) exponential decay and (ii) 

exponential growth, c) (i) equilibrium and (ii) exponential decay, d) (i) oscillation and (ii) 

equilibrium, e) I do not know 

 



Methods 

 

62 

15. How would you describe the system represented by the graph below? 

 

a) equilibrium (1 mark), b) exponential growth, c) exponential decay, d) oscillation, e) I do not know. 

(Total Questions 8-15 12 marks) 

16. Case study 

Fossil Fuels

Fossil Fuel Emissions

Terrestrial  
Death

Atmosphere

Terrestrial  
Biosphere

Marine  
Biosphere

Terrestrial Dead  
Organic Matter

Marine Dead  
Organic Matter

Terrestrial  
Decomposition

Terrestrial  
Respiration

Terrestrial  
Photosynthesis

Marine  
Decomposition

Marine DeathMarine  
Photosynthesis

Marine  
Respiration

 

What environmental issue is this model describing? (1 mark) 

What element of the system is not in balance? (1 mark) 

What are the potential issues if the system is not balanced? (1 mark). (Total 3 marks). 

 

The purpose of Questions 8-15 was to assess general system dynamics concept knowledge. These 

concepts are important in the field of system dynamics, and prior knowledge may influence 
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interpretation of a system dynamics model. In addition, assessment of these concepts after the 

treatment would also be useful to determine whether simple exposure would help to improve 

knowledge of these areas. 

 

The purpose of Question 16 was to assess whether students could identify a system from a static 

diagram of a stock and flow diagram. The system is one that should be familiar to students, the 

carbon cycle, and addresses an important scientific issue: that of climate change. Once again, 

determining whether students already had this skill before the treatment will help to determine real 

results. 

3.2.4 Final Assessment Task 
The final assessment task focuses on understanding of an environmental system. Originally it 

consisted of one open ended question asking students to explain the environmental system to 

someone who had never seen it. The second page was blank, asking students to draw a visual 

representation of the environmental system. This was originally going to be a concept map. The 

form of questioning was altered after the pilot study to provide more structure for the students in 

terms of their interrogation of the model, and ability to answer the questions.  

 

The final assessment contained five questions that allow students to assume the role of a national 

park manager (see Appendix 6). The questions are: 

 

1.  What variables did you alter? What happened to the system when you altered the variables? 

(You can include graphs or diagrams) 

 

2.  What are the management issues that are involved in looking after this area of the National 

Park? 

 

3.  What decisions would you make if you were the manager of this park? 

 

4.  If this description (the model/s and the text) of the National Park was more detailed, what 

do you think would happen next? What are the possible problems that could occur for the 

environment? 

 



Methods 

 

64 

5.  Imagine you are the manager of this National Park, and you have to write a report for your 

boss who has never been to the park before. Describe the park, what happens in the park, what the 

main issues are, and the consequences of the different management options. 

 

These questions were grouped into sections. The first section was called the Use of the Model. This 

section included all of Question 1. The section Describe included the answers to two parts of 

Question 5: describe the park and what happens in the park. The Issues section included answers to 

Question 2 and a part of Question 5: what the main issues are. The Higher Level Thinking section 

included Question 3, Question 4, and the final part of Question 5: what are the consequences of the 

management options? The purpose of these questions was to assess understanding of the system 

itself, rather than more general environmental knowledge. 

3.2.5 Evaluation 
The evaluation is an evaluation of the experience. This consists of ten statements with a likert scale 

regarding general features of the experience, for example, whether the students could visualise the 

real situation, whether they liked being in the national park or not, etc. Following this are 4 open 

ended questions focusing on what students liked the best, the least, what they would change if they 

could, and any other comments. The results of these questions are not presented in this thesis (see 

Appendix 7). 

3.3USE OF THE MODEL 
The use of three screens were analysed in the system dynamics model: the information screen, the 

explore the model screen, and the experiment screen. The agent-based model had two screens that 

were analysed, the information screen and the experiment screen. The proportion of time spent off 

task was also calculated for each model. The activities that were analysed were the frequency of 

changes made to each variable, the number of times the model was run, and the total activity was 

recorded. The variables that could be changed were the number of pieces of rubbish each person 

left (Npr), the proportion of rubbish collected by the garbage collection person (Prc), and the 

garbage collection time (Gct). Others that are reported on from the system dynamics model relate to 

the explore the model screen: explore the model step by step (SbS) and explore the model in full 

(IF). There was also an “ideas” option available on the system dynamics model. The total activity 

included all of the above, as well as other activities not discussed in these results. An example of 

the way that the video was coded can be found in Appendix 8. 
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To make sense of the patterns of use in this study, they were classified according to Levy and 

Wilensky’s (2005) strategies.  

Table 3-1: Patterns found in Levy and Wilensky’s (2005) study 

 Strategy 

Name Straight to the point Homing in Oscillating 

Description The most informative 

state is accessed 

directly 

The most informative 

state is gradually 

approached through 

decreasing increments 

The model oscillates 

between two regimes, 

back and forth between 

high and low values 

Overall observation 

time 
Lower Lower Higher 

Observation time 

per run 
Higher Lower Lower 

Time between 

actions 
Higher Lower Lower 

Runs Lower Higher Medium 

3.4LIMITATIONS 
This study had three main limitations: 

 

Small sample size 

 

This is common in educational research, and in all relevant instances in this study, effect sizes 

were reported which take sample size into account. 

 

The sample size limits the generalisability of the study, and conclusions are limited to these 

experiments. 

 

Short treatment time 

 

20 minutes is a short amount of time during which to expect learning to occur. For practical 

reasons, it was necessary for this study. However, the results will show that increases in 
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knowledge scores and understanding can be achieved in a short amount of time. This is 

relevant for environmental educators who often have time restrictions in their programs. 

 

No interaction data for the collaborative learning environment 

 

The literature agrees that the benefits that a collaborative learning environment brings to 

learners are related to the interaction between learners. For practical reasons, this data was 

not collected in this study. However, the investigation of differences in use of learning 

outcomes will suggest specific areas for further research and provide information about 

general patterns of use of agent-based and system dynamics models and associated 

learning outcomes. 

3.5ETHICS 
The principle ethical issue for this project was that the subjects were children, so the 

parent’s/guardian’s permission was required. All students were given an information sheets and a 

consent form to take home, and could return the consent form to their teachers, directly to myself, 

and were given stamped envelopes with my university address already printed, which they could 

also use. In all cases, contact was made with the Principal, the Head Science Teacher, and the 

classroom teacher, and information sheets were given to all involved. Of the 18 students involved in 

the pilot study, six returned consent forms, and of the 121 students involved in the main study, 49 

returned consent forms.  

 

Other ethical issues to be considered were confidentiality and anonymity. The results are used 

collectively, and identifiers have been used rather than names in all cases where individual data is 

reported. The schools that participated have not been identified. Data storage is another ethical 

issue. Hardcopies of all data are kept in a locked filing cabinet, and will be destroyed after seven 

years. Electronic copies of all data with students’ names are password protected. Ethical approval 

was sought from the University of Sydney and the Department of Education and Training, NSW. The 

letters of approval can be found in Appendices 9 and 10. 
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3.6PILOT STUDY 

3.6.1 Aim 
The aim of the pilot study was to trial the models, the instruments and the procedure before 

undertaking the main study. 

3.6.2 Sample 
The pilot study was conducted in a Year 10 science class at an independent co-educational high 

school in Sydney. Six students returned their permission slips. Video screen shots were collected 

and coded from two students. 

3.6.3 Design 
A class list was provided before I went into the classroom, and students were randomly allocated to 

groups. The information presented to students in the models and the text is redundant, it is just 

the process that differs. Two students were given only a text description. Five students were given 

the system dynamics model and the text description (SDM group), five students had access to the 

agent-based model and the text description (ABM group), and five students were given both models 

and the text description (SDM & ABM group). However, due to the number of permission slips that 

were returned, the following sample sizes were obtained: Text group (1 student), SDM group (2 

students), ABM group (3 students) and SDM & ABM group (0 students).  

 

This experimental design addressed the recommendations made by Doyle et al. (1998) who state 

that measuring changes in mental models in response to system dynamics models should include 

an experimental control, collect data from individuals, and measure actual change (rather than 

perceived change).  

3.6.4 Procedure 
Students were given the background questionnaire as their first task and then introduced to the 

experiment (for the script used, see Appendix 11). Students were then given 20 minutes to 

complete the pre-test followed by a break for recess. When they returned, they were given 20 

minutes to examine the materials (the text for the control group, and models for the treatment 

groups). They were then asked to complete the post-test, the final assessment and the evaluation.  
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Video screen shots were collected and coded in this study. Users were classified using the same 

parameters as Levy and Wilensky, and some additional parameters are suggested. Video screen 

shots were collected and coded with respect to times, activities and screens (see for example 

Appendix 8).  

3.6.5 Outcomes 
As a result of the pilot study a number of changes were made. The main change was that the 

duration of time modelled was shortened (reduced from ten consecutive days to seven). This served 

the purpose of reducing the runtime of the agent-based model, and provided students in the ABM 

group and the SDM & ABM group with more opportunities to use the model to experiment. The 

original open-ended format to questions in the final assessment task was also adjusted to reflect 

the style of questions outlined earlier. The procedure itself was found to be adequate, and the times 

allocated for answering the questions was retained. 

3.7 MAIN STUDY 
3.7.1 Design 

Two experiments were carried out for the main study. The first experiment was in an individual 

learning environment. A class list was provided before I went into the classroom, and students were 

randomly allocated to groups. The information presented to students in the models and the text is 

redundant, it is just the process that differs. 18 students were given only a text description. 19 

students were given the system dynamics model and the text description (SDM group), 19 students 

had access to the agent-based model and the text description (ABM group), and 19 students were 

given both models and the text description (SDM & ABM group). However, due to the number of 

permission slips that were returned, the following sample sizes were obtained: Text group (5 

students), SDM group (9 students), ABM group (6 students) and SDM & ABM group (7 students).  

 

The second experiment was carried out in a collaborative learning environment. Students 

interrogated the materials in dyads, and assessment was carried out on an individual basis. A class 

list was provided before I went into the classroom, and students were randomly allocated to groups. 

10 students were given only a text description. 12 students were given the system dynamics model 

and the text description (SDM group), 12 students had access to the agent-based model and the 

text description (ABM group), and 12 students were given both models and the text description 

(SDM & ABM group). However, due to the number of permission slips that were returned, the 
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following sample sizes were obtained: Text group (3 students), SDM group (6 students), ABM group 

(4 students) and SDM & ABM group (5 students).  

3.7.2 Sample 
Schools were selected for contact based on their proximity to the University of Sydney, prior contact 

with science teachers, and their interest in the use of technology in Science. These were a mixture 

of both Government and Independent schools. Schools were given the option of whether Year 9 or 

Year 10 students were nominated to participate. Schools were contacted through the contact 

person, and after that Information Sheets were sent to the Principal and Head Science teacher. 

Follow up phone calls and emails were used to determine participation. 

 

Altogether there were 27 students from two schools who returned their permission slips, and whose 

responses were analysed in the individual learning environment. There were 18 students from 

School 1 whose responses were analysed in the collaborative learning environment. Four students 

returned their consent forms and were absent on the day of the study. 

 

The first school, School 1, was an academically selective girls high school; students who 

participated from this school were in Year 10. The second school, School 2, was a girls 7-10 middle 

school; students who participated from this school were in Year 9.  

 

Students were novices with respect to both system dynamics and visitor use of national parks. This 

eliminated potential complications due to misconceptions about impacts in a national park. The 

exercise was incorporated into normal class work, and the experiments performed in the schools. 

This design may be limited in its generalisability; however it was practical in terms of logistics and 

acquiring an appropriate sample. Depending on the representativeness of the sample, this 

generalisation may be able to be expanded upon. 

3.7.3 Procedures 
Students in both schools were given an introduction to the purpose of the experiment and a brief 

introduction outlining how the model would look, how students could interact with the materials, 

and expectations regarding their work (see Appendix 11).  

 

Students were given the background questionnaire as their first task (20 minutes) then given 20 

minutes to complete the pre-test. Students were then introduced to the experiment (10 minutes). 
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Students examined the materials for 20 minutes. They were then asked to complete the post-test 

(15 minutes), the final assessment task and the evaluation (15 minutes).  

 

Video screen shots were collected and coded in this study. Video screen shots were collected and 

coded with respect to times, activities and screens. Users were classified using the same parameters 

as Levy and Wilensky, and some additional parameters are suggested.  

3.8 ANALYSIS 
The results of the background questionnaire data and the evaluation are not presented for the 

purposes of this thesis. Analyses indicated that differences between the control group and the 

treatment groups in both learning environments were not relevant for the research questions 

outlined. 

 

In order to use parametric statistical tests, the data have to be normally distributed, the variance 

must be homogeneous, the data should be interval-level data, and the data should be independent 

((Field, 2005)). In order to check the normality of the distribution, the skewness and kurtosis of the 

data should be examined, and a Kolmogorov-Smirnov test should be carried out (Field, 2005). 

Skewness and kurtosis are significant at p < .05 when the z-score is > 1.96, significant at p <.01 

when the z-score is > 2.58, and at the p < .001 when z-score > 3.29. In small samples the p < .01 

should be used (Field, 2005). Kolmogorov-Smirnov tests were also carried out on all variables, and 

a significant p < .05 result indicates a deviation from a normal distribution. The results of the 

skewness and kurtosis and Kolmogorov-Smirnov tests can be found in Appendix 12 for each 

learning outcome compared in the following results chapters, and in Appendix 13 for the measures 

of use of the models.  

 

The measures of skewness and kurtosis and the results of the Kolmogorov-Smirnov tests indicated 

that some data were distributed non-normally. The normal distribution of the data could not be 

assumed for these variables. Transformations were unsuccessful; however given the small sample 

size this was expected. The small sample size also meant that the tests for a normal distribution for 

each group were unable to be carried out. It was decided that regardless of the variable, non-

parametric statistical tests would be used for consistency. Non-parametric tests will have an 

increased chance of a Type II error if the data are normally distributed. A Type II error occurs when 
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the results of statistical tests show that there is no effect in the population when really there is 

(Field, 2005). 

 

Medians and ranges are reported on instead of means and standard deviations because of the non-

parametric nature of the data. The proportion of students who scored more than 50% and the 

proportion of students who increased their score are also reported to get a sense of students’ 

performance. Kruskal-Wallis tests were carried out to compare independent data with more than 

two groups (such as learning outcomes between the four groups). Mann-Whitney tests were used to 

compare data between two conditions with different participants, and as post-hoc tests in 

combination with Kruskal-Wallis tests (Field, 2005). Due to the already small sample size, and the 

exploratory nature of the research, it was decided that corrections for multiple analyses (such as a 

Bonferroni correction) would not be required in these cases. Any significant differences found in 

these post-hoc tests are treated cautiously, and further investigation of the results is carried out. 

Friedman’s ANOVA was used to compare the use of the model within each group (frequency of 

changes of the three variables, proportion of time spent on each screen). The Wilcoxon signed-rank 

test is used when there are two sets of scores that come from the same population (Field, 2005). 

This was used to test the differences between the pre- and post-tests for environmental knowledge 

and system dynamics knowledge, and as a post-hoc test for Friedman’s ANOVA.  

 

The relationships between the learning outcomes were compared using correlations for each group. 

Correlations identify linear relationships between variables (Field, 2005). While generally this does 

not allow conclusions about causality to be made, in the cases where the order of events is known – 

for example pre-tests were completed, students used the model, and post-tests and the final 

assessment task were then completed; some implications can be seen. Spearman’s correlation 

coefficient (rs) was calculated due to the non-parametric nature of the data. A correlation of 1.00 

indicates that the ranks of the marks in the pre- and post-test (of the same question) were 

identical. In this case, because students were not required to re-answer the question if they were 

satisfied with their pre-test answer, it indicates no change in their ranking. A high, significant 

correlation indicates some deviation in rankings, and therefore from previous answers. When noted 

in combination with a significant increase in the scores (as was reported in the discussion sections 

throughout the thesis), it indicates that students added to their previous knowledge in order to 

answer the post-test questions and simply supports the findings of the Wilcoxon Signed-ranks 

tests. If, however, the value of the correlation was non-significant, then that indicates an area for 
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further investigation, because the ranks in the pre- and post-test are markedly different. In all 

cases this was used only to indicate areas that may require further inquiry. A large, significant 

correlation between the pre-test score of one question, and the post-test score of another indicates 

that a relationship exists between the two. In the case of these occurrences, I discuss the possibility 

of such a relationship indicating that students who had higher scores in the pre-test were also able 

to score highly in the post-test in this other question.  

 

Due to the small sample size, large effect sizes were taken into account in addition to significance, 

and are noted throughout the results sections. Pearson’s correlation coefficient r was used (Field, 

2005), and calculated by dividing the z score by the square root of n. Field identifies the following 

parameters: r = .10 is a small effect size, r = .30 is a medium effect size, r = .50 is a large effect 

size. Only large effect sizes are reported in this thesis.  

 

In Chapter 4 (Multiple External Representations), the overall scores for the environmental 

knowledge test, the system dynamics knowledge test, and the final assessment task were analysed 

first. This involved the comparison of the scores between groups using the Kruskal-Wallis test (and 

Mann-Whitney test post-hoc if required). The Wilcoxon signed-rank test was used to compare pre- 

and post-test scores for each group. For these tests, significance is reported at the p < .10 level 

because of the small sample size. Effect sizes are calculated where appropriate, and large effect 

sizes, r > | .50 | are noted. Spearman’s rho was used to explore the relationships between learning 

outcomes. The significance level reported for correlations is p < .05. This pattern was repeated for 

individual test scores. References to the actual answers to items in the final assessment task are 

also used to support relationships found between learning outcomes. The answers can be found in 

Appendix 14. 

 

In Chapter 5 (Use of the Models), the use of the model was also compared between groups using 

the Kruskal-Wallis test (and Mann-Whitney tests post-hoc if required). Friedman’s ANOVA was used 

to compare the proportion of time spent on each screen within each group, and the frequency of 

changes made to each of the three variables (with Wilcoxon signed-rank tests post-hoc if required). 

Spearman’s rho was used to explore the relationships between the measures of the use of the 

model, and between these measures and learning outcomes. Kruskal-Wallis tests were used to 

compare the use of the model between students who used different strategies to change the 

variables (with Mann-Whitney tests post-hoc if required), and similarly for learning outcomes. When 
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the strategies were analysed, the amount of time as well as the proportion of time spent on screens 

was compared between strategies. Significance levels for all tests are as reported above. The sample 

size used in Chapter 5 is less than that reported in Chapter 4; the collection of some video 

screenshots was unsuccessful. In the ABM group n = 5, in the SDM group n = 7, and in the SDM & 

ABM group n = 6. 

 

In Chapter 6 (Collaborative Learning Environment), Mann-Whitney tests were carried out on pre-test 

and post-test scores to compare the individual and collaborative learning environments in all cases. 

The remaining analysis was performed as outlined for both Chapter 4 and Chapter 5. The sample 

size used for the section examining the use of the models is less than that reported in the first half 

of the chapter; the collection of some video screenshots was unsuccessful. . In the collaborative 

learning environment, for the ABM group n = 2, for the SDM group n = 4, and for the SDM & ABM 

group n = 2. 

 

The experimental design has been outlined and the analysis presented here. The following three 

chapters will present the results of these analyses. 
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4. MULTIPLE EXTERNAL REPRESENTATIONS 

4.1RATIONALE 
Providing or generating multiple external representations are well-researched strategies for 

understanding complex systems. Advantages include capturing the learners’ interest and providing 

an authentic learning environment for students (1999b; Kozma, Chin, Russell, & Marx, 2000). In 

addition, using multiple representations provides a safety net in case the student’s reasoning 

process comes to a halt for some reason with a single representation (Savelsbergh, de Jong, & 

Ferguson-Hessler, 1998). There are challenges involved with using multiple external 

representations. These include students changing their usual problem solving processes to 

accommodate the representation, resulting in further errors ((Tabachneck-)Schijf & Simon, 1998); 

and the high cognitive load associated with the coordination of information from different 

representations can be a major cost to learners using multiple representations (Bodemer, Ploetzner, 

Feuerlein, & Spada, 2004; de Jong et al., 1998). Regardless of cognitive load, some students still fail 

to coordinate between multiple representations (Ainsworth, Bibby, & Wood, 1998).  

 

In this study, both the agent-based model and the system dynamics model give students the 

benefits of multiple representations using graphs, text and the representation of the model itself 

(animation in the case of the agent-based model and a stock and flow diagram for the system 

dynamics model). Rohr and Reimann (1998) said that text based representations will usually result 

in a propositional representation, a graphical representation will mainly result in a mental image or 

combination, and an animation will produce a dynamic mental model. An animated representation 

may be useful when learning about a complex system because keeping a dynamic system in mind 

when resolving a localised problem can be challenging (Milrad, Spector, & Davidsen, 2003). Stock 

and flow diagrams, however, are abstract scientific diagrams, and Lowe (1993) states that both 

domain general knowledge and domain specific knowledge are important. Providing students with 

both models should provide them with benefits associated with multiple representations such as 

the safety net discussed above. Using both models may help students to be able to think of the two 

levels that are modelled at the same time (Schieritz & Milling, 2003). The addition of the alternate 

model may also overcome problems observed with learning with both types of model – such as 

making links between levels in the agent-based model and interpreting a new representation in the 
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system dynamics model. The multiple representations of the models should constrain students’ 

understanding by providing a combination of a familiar representation and an authentic, scientific 

system view representation. 

4.2 HYPOTHESIS AND BRIEF INTRODUCTION TO THE 
CHAPTER 

The guiding hypothesis is that: a system dynamics model is too abstract for high school students, 

and an additional representation that constrained the interpretation of the model (one that was 

familiar to the students, such as the animated representation included in the agent-based model) 

will improve interpretation, and therefore understanding. 

 

The experiment compared the learning outcomes from students randomly allocated to four groups: 

a control group (Text group, n = 5) in which students were exposed to a text-based description of 

visitor impacts on a national park (see Appendix 1), and three treatment groups, in which students 

were either given a system dynamics model to examine (SDM group, n = 9), an agent-based model 

of the system (ABM group, n = 6), or both of these combined (SDM & ABM group, n = 7). 

 

For a full discussion of the analyses performed, refer to Chapter 3. In brief, the results of analyses 

carried out on the overall environmental knowledge and system dynamics knowledge test scores 

and the final assessment task score will be reported on first. The second section provides a focus 

on a number of key questions and sections within the overall scores. Each section has the following 

structure: 

 

• Comparison of pre-test and post-test scores between groups, and comparison of pre-test and 

post-test scores within each group, 

• Comparison of the change in knowledge scores between the groups, 

• Comparison of the final assessment task scores between the groups, and 

• Exploratory analysis of relationships between learning outcomes. 
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4.3LEARNING OUTCOMES: ENVIRONMENTAL KNOWLEDGE, 
SYSTEM DYNAMICS KNOWLEDGE, AND UNDERSTANDING 
4.3.1 Results 

As outlined above, this section reports on the results of the analyses performed on overall test 

scores. Pre-test and post-test knowledge test scores will be compared between the groups using 

Kruskal-Wallis tests. Pre- and post-test scores will be compared for each group using Wilcoxon 

signed ranks tests. The results of Kruskal-Wallis tests comparing the change in knowledge test 

scores between groups will then be reported. Final assessment task scores will also be compared 

between groups using Kruskal-Wallis tests. Due to the small sample size, large effect sizes were 

taken into account in addition to significance, and are noted where appropriate. Finally an 

exploratory analysis of the correlational relationships between learning outcomes will be described 

using Spearman’s rho. The meaning of these results in terms of the hypothesis will then be 

discussed. 

4.3.1.1 Pre- and post-test environmental and system dynamics 
knowledge scores 

Students in each group completed two knowledge tests in a pre- and post-test design. Pre-tests 

were administered before interaction with the materials. Post-tests were completed by students 

after the treatment, and students were given the opportunity to change their original answer, or to 

keep it (for a full discussion of this, please see Chapter 3). The environmental knowledge test was 

worth 32 marks, and contained items that related specifically to the materials and items that 

required application of this knowledge to other systems. The system dynamics knowledge test was 

worth 12 marks, and also contained general system dynamics knowledge questions and an applied 

question.  
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Table 4-1: Median, range of scores and proportion of students who scored more than 50% for the 
knowledge pre- and post-test scores, for each group and the results of the Wilcoxon signed-ranks 
test comparing the pre- and post-test scores. 

Pre-test Post-test 

Range Range 

Group Mdn Lower Upper 

More than 

50% score 

(%) Mdn Lower Upper 

More than 

50% score 

(%) 

Pre-test 

vs. Post-

test (T) 

ABM          

EK 16.25 0 25 50 15.75 5.5 28 50 2.5a 

SDK 3.5 0 10 33 6.5 0 10 50 0.0 

SDM          

EK 11.5 2 31 33 15.5 3 24 33 17.0 

SDK 1 0 7 11 2 0 7 11 8.0 

SDM & ABM         

EK 14.5 2 20.5 43 17 10 22.5 57 0.0* 

SDK 3.5 0 7 14 5 1.5 8.5 29 1.0 

Text          

EK 14 7 27 40 19 12 27 80 0.0a 

SDK 1 0 7.5 20 5 2 7.5 20 0.0a 

Note. EK = environmental knowledge test (maximum score 32 marks). SDK = system dynamics knowledge test 

(maximum score 12 marks). Bold typeface indicates large effect size (r > | .50 |). 

ap < .10. *p < .05. 

 
Table 4-1 shows that the ABM group had the highest median pre-test environmental knowledge 

score and the Text group had the highest median post-test environmental knowledge score. The 

ABM group also had the highest proportion of students who scored more than 50% in the pre-test. 

The Text group had the highest proportion in the post-test. Kruskal-Wallis tests showed that the 

difference between the groups with respect to pre-test scores was non-significant (H(3) = 0.30, p = 

.96), as was the difference with respect to post-test scores (H(3) = 2.34, p = .51). 

 

The ABM and SDM & ABM groups shared the highest median pre-test system dynamics knowledge 

score, and the ABM group had the highest median post-test system dynamics knowledge score. 
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Only 33% of students scored more than 50% in the pre-test in the ABM group, but 50% scored more 

than 50% in the post-test. The difference between pre-test scores was non-significant (H(3) = 2.93, 

p = .40), as was the difference between groups in terms of post-test scores (H(3) = 2.16, p = .54) 

for the system dynamics knowledge test. 

 

Wilcoxon signed-rank tests showed that students in the Text group (p < .10) and the SDM & ABM 

group (p < .05) significantly increased their environmental knowledge score between the pre- and 

post-tests and large effect sizes were associated with each. There was a significant (p < .10) 

difference between the pre- and post-test scores in the ABM group, and a large effect size was 

associated with this. The range of scores for this group decreased between the pre-test and post-

test, and the lower range of the scores was higher in the post-test than the pre-test. The difference 

between pre- and post-test scores in the SDM group was non-significant and the effect size was 

small. 

 

Comparison of system dynamics knowledge scores showed that the Text group experienced a 

significant (p < .10) increase between the pre- and post-tests and a large effect size was associated 

with this. There were large effect sizes associated with increases in system dynamics knowledge 

test scores in the ABM and SDM & ABM groups, however the differences were non-significant. In the 

SDM group, the difference between pre- and post-test scores was also non-significant and the 

effect size was medium. 

4.3.1.2 The change in the environmental and system dynamics 
knowledge scores 

The change in the knowledge scores was calculated by subtracting the pre-test score from the 

post-test score. The purpose of comparing these changes is to determine whether the treatments 

had an effect on the size of the difference between the scores. 
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Table 4-2: Median changes, the range of the change, and the proportion of students that increased 
their scores for the knowledge tests, for each group 

Range 

Group Mdn Lower Upper Increased score (%) 

ABM     

EKchange 3.5 -3 6 83 

SDKchange 0 0 5 33 

SDM     

EKchange 1 -16 8 67 

SDKchange 1 -2 7 67 

SDM & ABM     

EKchange 2.5 0 14 86 

SDKchange 0 -1 4 43 

Text     

EKchange 3 0 9 80 

SDKchange 2 0 6 80 

Note. EK = the environmental knowledge test (maximum score is 32). SDK = the system dynamics knowledge 

test (maximum score is 12). change = the change in the score between the pre-test and post-test. 

 

As can be seen in Table 4-2, the median change in the environmental knowledge score between the 

pre- and post-test scores for each group varied between 1 and 3.5. In addition, a high proportion 

of each group increased their environmental knowledge score, although the SDM group had the 

lowest proportion. A non-significant difference was calculated in the change in environmental 

knowledge scores between the groups (H (3) = 1.24, p = .74). 

 

The median change in the system dynamics knowledge score varied between 0 and 2, some 

students in the SDM and SDM & ABM groups experienced a decrease in their score, and the Text 

group had the largest proportion of students increase their score. There was a non-significant 

difference in the change in system dynamics knowledge scores between the groups (H (3) = 2.53, p 

= .47). 
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4.3.1.3 Understanding of the system: Final assessment task scores 
The final assessment was worth 91 marks and contained five questions that allowed students to 

assume the role of a national park manager. Questions addressed areas such as self-reported 

interrogation of the materials, description of the system, environmental and management issues 

raised by the materials, and decisions, predictions and consequences of the decisions suggested. 

The purpose of these questions was to assess understanding of the system itself, rather than more 

general environmental knowledge. 

Table 4-3: Median and range of scores in the final assessment task, for each group 
Range 

Group Mdn Lower Upper Score > 50% (%) 

ABM 17 13 36 0 

SDM 20.5 7 27 0 

SDM & ABM 20 8 34 0 

Text 26 2 37 0 

Note. The maximum score is 91. 

 

The highest median score for the final assessment task was found in the Text group, as can be seen 

in Table 4-3. Students in the ABM group had the lowest median score. There was a non-significant 

difference between the groups when this learning outcome was compared (H (3) = 0.70, p = .87). 

4.3.1.4 Correlations between learning outcomes 
Spearman’s rho was used to determine the relationships between learning outcomes in each group 

due to the non-parametric nature of the data. A correlation of 1.00 indicates that the ranks of the 

marks in the pre- and post-test (of the same question) were identical. In this case, because 

students were not required to re-answer the question if they were satisfied with their pre-test 

answer, it indicates no change in their ranking. A high, significant correlation indicates some 

deviation in rankings, and therefore from previous answers. When noted in combination with a 

significant increase in the scores (as was reported in the discussion sections throughout the thesis), 

it indicates that students added to their previous knowledge in order to answer the post-test 

questions and simply supports the findings of the Wilcoxon Signed-ranks tests. If, however, the 

value of the correlation was non-significant, then that indicates an area for further investigation, 

because the ranks in the pre- and post-test are markedly different. In all cases this was used only 

to indicate areas that may require further inquiry. A large, significant correlation between the pre-
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test score of one question, and the post-test score of another indicates that a relationship exists 

between the two. In the case of these occurrences, I discuss the possibility of such a relationship 

indicating that students who had higher scores in the pre-test were also able to score highly in the 

post-test in this other question. 

Table 4-4: Correlations between learning outcomes in the ABM group using Spearman’s rho 
 Pre-test environmental and 

system dynamics knowledge 

scores 

Learning outcomes 

 EKpre SDKpre EKpost EKchange SDKpost SDKchange FAT 

Pre-test environmental and system dynamics knowledge scores    

EKpre --       

SDKpre .60 --      

Learning outcomes      

EKpost .89* .43 --     

EKchange -.26 -.55 -.12 --    

SDKpost .83* .83* .60 -.64 --   

SDKchange .51 -.03 .68 -.38 .27 --  

FAT .81* .84* .58 -.18 .81* -.05 -- 

Note. EK = environmental knowledge score. SDK = system dynamics knowledge score. FAT = final assessment 

task score. pre = pre-test score. post = post-test score. change = change in the score between the pre-test and 

post-test. 

n = 6. 

*p < .05. 

 

Table 4-4 shows that in the ABM group, students who had a higher pre-test environment 

knowledge score also had higher post-test scores for the environmental knowledge and system 

dynamics knowledge tests; and a higher final assessment task score. Similarly, students who had a 

higher pre-test system dynamics knowledge score had a higher score for the system dynamics 

knowledge post-test and the final assessment task. The system dynamics knowledge post-test 

score was also positively, significantly correlated with the final assessment task. 
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Table 4-5: Correlations between learning outcomes in the SDM group using Spearman’s rho 
 Pre-test environmental and system 

dynamics knowledge scores 

Learning outcomes 

 EKpre SDKpre EKpost EKchange SDKpost SDKchange FAT 

Pre-test environmental and system dynamics knowledge scores    

EKpre --       

SDKpre -.29 --      

Learning outcomes      

EKpost .47 .36 --     

EKchange -.46 .27 .43 --    

SDKpost -.16 .14 -.21 -.10 --   

SDKchange -.24 -.45 -.36 .03 .70* --  

FAT .01 .31 .47 .16 .25 .20 -- 

Note. EK = environmental knowledge score. SDK = system dynamics knowledge score. FAT = final assessment 

task score. pre = pre-test score. post = post-test score. change = change in the score between the pre-test and 

post-test. 

n = 9. 

*p < .05. 

 

Table 4-5 shows that in the SDM group, pre-test scores were not significantly correlated with 

learning outcomes. Students who had a higher post-test score for system dynamics knowledge also 

had a larger change in their system dynamics knowledge score. 
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Table 4-6: Correlations between learning outcomes in the SDM & ABM group using Spearman’s rho 
 Pre-test environmental and system 

dynamics knowledge score 

Learning outcomes 

 EKpre SDKpre EKpost EKchange SDKpost SDKchange FAT 

Pre-test environmental and system dynamics knowledge score    

EKpre --       

SDKpre .79* --      

Learning outcomes      

EKpost .93** .60 --     

EKchange -.86** -.86* -.75 --    

SDKpost .78* .74 .76* -.96** --   

SDKchange .04 -.22 .25 -.26 .49 --  

FAT .93** .68 .93** -.86* .85* .30 -- 

Note. EK = environmental knowledge score. SDK = system dynamics knowledge score. FAT = final assessment 

task score. pre = pre-test score. post = post-test score. change = change in the score between the pre-test and 

post-test. 

n = 7. 

*p < .05; **p < .01. 

 

In the SDM & ABM group, students who had a higher pre-test environmental knowledge score also 

had a higher pre-test system dynamics knowledge score. Students who had a higher pre-test 

environmental knowledge score had a higher post-test score for the environmental knowledge test, 

for the system dynamics knowledge test, and for the final assessment task. Higher pre-test 

environmental knowledge scores were negatively and significantly correlated with the change in the 

environmental knowledge score. Students who had a higher pre-test system dynamics knowledge 

score also had a smaller change in their environmental knowledge score.  

 

Students who had a higher post-test environmental knowledge score also had a higher system 

dynamics knowledge post-test score and a higher final assessment task score. The change in the 

environmental knowledge score was negatively and significantly correlated with the system 

dynamics knowledge post-test score and the final assessment task score. Students who had a 

higher system dynamics knowledge post-test score also had a higher final assessment task score. 
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Table 4-7: Correlations between learning outcomes in the Text group using Spearman’s rho 
 Pre-test environmental and system 

dynamics knowledge scores 

Learning outcomes 

 EKpre SDKpre EKpost EKchange SDKpost SDKchange FAT 

Pre-test environmental and system dynamics knowledge scores    

EKpre --       

SDKpre .98** --      

Learning outcomes      

EKpost .70 .56 --     

EKchange -.90* -.98** -.40 --    

SDKpost .70 .56 1.00** -.40 --   

SDKchange -.41 -.55 -.05 .67 -.05 --  

FAT 1.00** .98** .70 -.90* .70 -.41 -- 

Note. EK = environmental knowledge score. SDK = system dynamics knowledge score. FAT = final assessment 

task score. pre = pre-test score. post = post-test score. change = change in the score between the pre-test and 

post-test. 

n = 5. 

*p < .05; **p < .01. 

 

Table 4-7 shows that in the Text group, students who had a higher pre-test environmental 

knowledge score had a higher pre-test system dynamics knowledge score. The students who had a 

higher pre-test environmental knowledge score had a lower change in their environmental 

knowledge score and a higher final assessment task score. Pre-test system dynamics knowledge 

scores were negatively and significantly correlated with the change in the environmental knowledge 

score, and positively and significantly correlated with the final assessment task. Students who had a 

higher environmental knowledge post-test score also had a higher system dynamics knowledge 

post-test score. Those who had a higher change in their environmental knowledge score had a 

lower final assessment task score. 
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4.3.2 Discussion 
The guiding hypothesis was that: a system dynamics model is too abstract for high school students, 

and an additional representation that constrained the interpretation of the model (one that was 

familiar to the students, such as the animated representation included in the agent-based model) 

will improve interpretation, and therefore understanding. 

 

If this hypothesis holds true, students in the SDM group would have few increases in knowledge 

scores, students in the ABM group would be able to increase knowledge scores, most probably 

those that are related to the representational affordance of the animation provided, and the SDM & 

ABM group will allow students to have the benefits of both, and provide an environment in which 

students can link the two representations. This is because the stock and flow diagram should 

provide students with a greater understanding of the macro level of the system than the graphs in 

the agent-based model, and the animation should provide students with a greater understanding of 

the micro-level as the animation provides a high level of detail. The control group is important in 

this discussion, but only briefly. The remainder of the discussion focuses on whether students 

increased knowledge scores, and whether there were significant differences when groups were 

compared for learning outcomes. Each of the above areas will now be addressed separately: the 

control group, the affordances of the system dynamics model, the affordances of the agent-based 

model, and the use of multiple representations. 

4.3.1.5 The control group 

Students in the control group increased both knowledge scores between the pre- and post-test, 

and had a similar final assessment task score to students in the treatment groups. Students in all 

groups were given a text description, and due to the experimental design, it can be assumed that 

results calculated for treatment groups that differ from the control group, may be a result of the 

treatment. Non-significant correlations between pre-test scores and learning outcomes indicated 

that the treatment had an effect on learning outcomes. Seufert (2003) found that students who had 

lower prior knowledge and who received no help, concentrated on memorizing facts, and invested 

little cognitive effort in comprehension. The results for the Text group support this finding. In the 

Text group, a positive significant correlation between the pre-test environmental knowledge and 

system dynamics knowledge scores and the final assessment task score and negative, significant 

correlations between pre-test scores and the change in the environmental knowledge score 

suggested that students with lower prior environmental and system dynamics knowledge 
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concentrated on improving their knowledge of those areas, whereas students who had higher prior 

knowledge in these areas were able to concentrate on understanding the system overall.  

4.3.1.6 Learning from an agent-based model 

Agent-based models have been shown to be successful in allowing students to link multiple 

representations and levels to gain a deeper understanding of concepts, and is suited to 

representation of a process or a dynamic system due to the animation involved as part of the model 

(Milrad et al., 2003; Rohr & Reimann, 1998; Savelsbergh et al., 1998; Stieff & Wilensky, 2003; 

Wakeland, Macovsky, Gallaher, & Aktipis, 2004). However, with these advantages comes a high 

cognitive load related to the extent to which the elements interact with each other (Sweller & 

Chandler, 1994), which may prevent links between the levels from being made by students. In the 

ABM group, increases in both knowledge test scores were reported. The results of the correlations 

support those of Ainsworth et al. (1998) and Horowitz & Christie (1999) who suggested that if 

learners are already familiar with either the domain or the representation, then there will be an 

increased ability to recognize the connection between the representation and the phenomenon 

represented. In the ABM group, students who had higher pre-test scores for environmental 

knowledge and system dynamics knowledge were able to score highly on the post-test questions 

and the final assessment task (which assessed understanding). It may be that the prior knowledge 

facilitated students’ exploration of the model so that students who had this knowledge were better 

able to understand the system, and improve their environmental and system dynamics knowledge 

scores. Due to the lack of significant correlations between these learning outcomes and the change 

in the scores, no conclusions can be made with regards to the large effect sizes associated with 

increases in the knowledge scores. To explain these results the environmental knowledge score, 

system dynamics knowledge score, and final assessment task will be investigated in the following 

sections. 

4.3.1.7 Learning from a system dynamics model 

System dynamics models are useful for conceptual understanding (Wakeland et al., 2004), they 

establish a link between the system structure and the system behaviour (Schieritz & Milling, 2003). 

Students have been shown to improve understanding of the scientific concepts underlying 

modelling, rather than their ability to interpret the models after a long-term intervention (Maryland 

Virtual High School, 2001). However, the high cognitive load involved in interpreting the abstract, 

scientific diagram may result in small learning gains (Lowe, 1993; Sweller & Chandler, 1994). In the 

SDM group, there was a non-significant difference between the pre- and post-test environmental 
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knowledge test scores, and the system dynamics knowledge test scores for students in the SDM 

group. These results and those of the correlations indicate that the treatment had an effect on 

learning outcomes. Students who had high pre-test environmental knowledge and system dynamics 

knowledge scores did not have high post-test scores for these tests. However, students had similar 

levels of understanding to other groups. These support the findings outlined above in that students 

were able to understand the system conceptually, however were not able to apply other knowledge 

to this understanding.  

4.3.1.8 Learning from multiple representations 

As has been explained, one advantage of using multiple representations is that this provides a 

safety net in case the student’s reasoning process comes to a halt for some reason with a single 

representation (Savelsbergh et al., 1998). In addition, the using both models may help students to 

be able to think of the two levels that are modelled at the same time (Schieritz & Milling, 2003), and 

may overcome the challenges involved with learning with both types of model – such as making 

links between levels in the agent-based model and interpreting a new representation in the system 

dynamics model. The multiple representations of the models should constrain students’ 

understanding by providing a combination of a familiar representation and an authentic, scientific 

system view representation. However, challenges such as the high cognitive load associated with 

the coordination of information from different representations can be a major cost to learners of 

using multiple representations (Bodemer et al., 2004; de Jong et al., 1998). Regardless of cognitive 

load, some students still fail to coordinate between multiple representations (Ainsworth et al., 

1998).  

 

Students in the SDM & ABM group significantly increased their environmental knowledge score (p < 

.05). Significant increases were also noted in both the control group and the ABM group. By 

comparison with the lack of change in the SDM group previously discussed, the increased score in 

the SDM & ABM group indicates that for students given a system dynamics model, the addition of an 

agent-based model provided students with an advantage with respect to environmental knowledge 

scores. Significant correlations between the pre-test environmental knowledge score and the post-

test score indicated that students used prior knowledge in addition to the representation, as was 

suggested for students in the ABM group. Additionally, correlations between learning outcomes 

suggested that students were able to learn about all three areas (environmental knowledge, system 

dynamics knowledge, and understanding of the system). A number of authors suggest that learners 
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who are already familiar with either the domain or the representation, should have an increased 

ability to recognise the connection between the representation and the phenomenon represented 

(Ainsworth et al., 1998; Horwitz & Christie, 1999; Seufert, Janen, & Brunken, 2007). Seufert (2003) 

found that students who had lower prior knowledge and who received no help concentrated on 

memorizing facts, and invested little cognitive effort in comprehension. Negative correlations were 

calculated between the change in the environmental knowledge score and prior environmental and 

system dynamics knowledge. In terms of the relationship with learning outcomes, students who had 

greater changes in their environmental knowledge scores had lower scores for the system dynamics 

post-test and the final assessment task. The correlations suggest that students who already had 

higher prior knowledge of the environment may have been able to concentrate their efforts on 

translating between the two models, and so had a greater understanding of the system; whereas 

students with lower prior knowledge focused their attention on increasing their knowledge of these 

areas.  

 

A large effect size was associated with an increase in the system dynamics knowledge score for 

students in the SDM & ABM group, and also in the control group and the ABM group. Comparison 

with the non-significant change in the median system dynamics knowledge score in the SDM group 

indicates that for students given a system dynamics model, the addition of the agent-based model 

provided students with an advantage in terms of system dynamics knowledge scores. Correlations 

between knowledge scores suggested that the treatment may have had an effect on this score. It 

may be that students with higher prior environmental knowledge were able to concentrate on 

learning about areas not related to environmental knowledge (such as system dynamics concepts) 

covered by the materials. 

 

The comparison of the final assessment task scores showed a non-significant difference between 

the groups. However, the relationships between the final assessment task score and knowledge 

tests scores were different in each group. In the SDM & ABM group, correlations suggested that 

students who were able to score highly on the knowledge tests were also able to score well in the 

test assessing their understanding of the system because they included the knowledge that they 

gained from the treatment in their answers.  

 

Of those groups that were given a model, the SDM & ABM group was the most successful, in terms 

of a greater increase in their environmental knowledge score, a similar increase in their system 
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dynamics knowledge score to those in the ABM group, and a similar final assessment task score to 

all other groups. These results support the findings of many authors who suggest that using 

multiple external representations is a useful strategy for learning about a complex system 

(Ainsworth, 1999b; Kozma et al., 2000; Savelsbergh et al., 1998).  

4.3.2 Conclusions 
The most effective treatment (in terms of an increase in knowledge scores between the pre- and 

post-test), was the group that was given the multiple external representations (SDM & ABM group). 

When students with access to a system dynamics model were provided with the additional process 

level information of the agent-based model, students increased their environmental knowledge test 

score more so than students in other groups. However, correlations suggested that a large change 

in this score was at the expense of understanding the system, and increasing system dynamics 

knowledge scores.  

 

The most effective treatment for the system dynamics knowledge test was the Text group. Students 

from this group had the greatest increase in their system dynamics knowledge test score between 

the pre- and post-test, however correlations between learning outcomes did not help to explain the 

finding. It may be that the representation itself had an effect on this outcome, and further analysis 

of the learning outcomes is necessary to explain this further. This has implications for system 

dynamics instruction. If students are learning systems concepts it should not be in conjunction with 

a new representation.  

 

There was a non-significant difference between the groups when understanding the system (final 

assessment task) was analysed. This has implications for both the system dynamics community and 

environmental educators. The treatment did not affect the overall understanding of the system, but 

it did affect what students learned about environmental knowledge questions and system dynamics 

knowledge questions. Given that there were different relationships between the learning outcomes, 

there may be a difference between the groups in terms of what was understood about the system. 

Further analysis in the following section may help to explain this finding. 

 

Research on expert and novice use of representations for problem-solving may be relevant in 

explaining some of these results. It has been suggested that experts use pictorial and dynamic 

representations to evoke a recognition process allowing them to reason with the external 
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representation rather than maintain the internal representation (Tabachneck-Schijf, Leonardo, & 

Simon, 1997). The domain ‘experts’ in this study were able to use the multiple representations 

more successfully than the domain ‘novices’. This difference in the use of single and multiple 

representations may indicate the difference between using the models to reason with, or as a 

mindtool, and to build mental models. Students with lower domain knowledge learned about 

particular areas, improving their mental model in one section. When given two models, these 

domain novices were able to use them, and were able to arrive at a similar level of knowledge of all 

three learning outcomes, but particularly improved knowledge about the environment. The domain 

experts may have been more successful in the final assessment task because they were able to link 

these areas together. This has implications for both environmental educators and system dynamics 

educators. The SDM & ABM group and the Text group provided a learning environment in which 

students with any level of prior knowledge could improve their knowledge about the environment.  

 

At this point, the hypothesis has been supported, and students who had both the system dynamics 

model and the agent-based model had a greater increase in their environmental knowledge score 

than the other groups. However, the Text group also increased their system dynamics knowledge 

tests scores more than students in the other groups, and students in both the ABM group and the 

Text group increased their environmental knowledge scores (although to a lesser extent). These 

results do not provide any explanation of whether students were using the agent-based model to 

constrain by familiarity their understanding of the system dynamics model, or using the system 

dynamics model to construct deeper understanding by abstraction or by relations of the agent-

based model. Examination of these differences will be discussed later in this Chapter, with analysis 

of key sections of the tests, and in Chapter 5, with analysis of the ways in which the models were 

used.  
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4.4INDIVIDUAL QUESTIONS 
The guiding hypothesis also applies to this section of the chapter: a system dynamics model is too 

abstract for high school students, and an additional representation that constrained the 

interpretation of the model (one that was familiar to the students, such as the animated 

representation included in the agent-based model) will improve understanding. 

 

Key items and sections of the environmental knowledge test will be compared between pre- and 

post-tests for each group. Each pre-test, post-test, change in knowledge test and final assessment 

task score for these sections will be compared between the groups. Relationships between the key 

items will then be explored using correlations. 

4.4.1 Results of the analysis of key items 
As outlined above, this section reports on the results of the analyses performed on overall test 

scores. Pre-test and post-test knowledge test scores will be compared between the groups using 

Kruskal-Wallis tests. Pre- and post-test scores will be compared for each group using Wilcoxon 

signed ranks tests. The results of Kruskal-Wallis tests comparing the change in knowledge test 

scores between groups will then be reported. Final assessment task scores will also be compared 

between groups using Kruskal-Wallis tests. Due to the small sample size, large effect sizes were 

taken into account in addition to significance, and are noted where appropriate. Finally an 

exploratory analysis of the correlational relationships between learning outcomes will be described 

using Spearman’s rho. The meaning of these results in terms of the hypothesis will then be 

discussed. 

4.4.1.1 Pre- and post-test environmental and system dynamics 
knowledge scores 

Three questions were analysed as part of the environmental knowledge tests. Question 5 (9 marks) 

questioned students about the types of activities that could cause an increase in the number of 

introduced animal species, and asked them to name one effect of such an increase. Question 6 (8 

marks) asked students to identify the types of activities that could cause an increase in the number 

of introduced plant species, and what the effects of such an increase might be. Question 7 (12 

marks) asked students to describe the impact of building a road, littering and bushwalking in terms 

of the initial impact, the time scale involved in that impact, any further impacts, and their 

associated time scales. Question 7 allowed students to apply the system-specific knowledge 

assessed in Questions 5 and 6 to another system. 
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Table 4-8: Median, range of scores and proportion of students who scored more than 50% for key 
questions in the environmental knowledge pre-test and post-test for each group and the results of 
the Wilcoxon signed-ranks test comparing the pre- and post-test scores. 

Pre-test Post-test 

Range Range 

Question Mdn Lower Upper 

Score 

> 50% 

(%) Mdn Lower Upper 

Score 

> 50% 

(%) 

Pre-test vs. 

post-test 

(T) 

ABM          

Q5 2 0 6 17 4 1 7 33 0.0* 

Q6 2.25 0 4 0 2.75 0 6 50 0.0a 

Q7 9 0 12 67 6.5 1.5 12 50 4.0 

SDM          

Q5 2 0.5 8 33 3 0.5 7 44 7.5 

Q6 1 0 8 22 2 0 7 33 7.0 

Q7 8 0 12 56 8 0 10 67 4.5 

SDM & ABM         

Q5 2 1 5 14 3 2 6 14 0.0* 

Q6 2 0 4.5 14 2 1 5.5 14 0.0 

Q7 7.5 0 11 71 9 3.5 12 86 2.0a 

Text          

Q5 3 0.5 5.5 40 4 3 9 40 1.5 

Q6 3 0 7 40 5 1 8 60 2.5 

Q7 5 0 12 40 6 5.5 12 40 0.0 

Note. Q5 = knowledge about introduced animal species (Maximum score is 9). Q6 = knowledge about 

introduced plant species (Maximum score is 8). Q7 = knowledge about the impact of humans on the 

environment and associated timescales (Maximum score is 12). Bold typeface indicates large effect size (r > | 

.50 |). 

ap < .10. *p < .05. 

 

Table 4-8 shows that median scores assessing knowledge about introduced animal species 

(Question 5) were between 2 and 3 for the pre-test and between 3 and 4 for the post-test. Kruskal-

Wallis tests showed that the differences between pre-test scores (H(3) = 0.70, p = .87), and post-
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test scores (H(3) = 2.09, p = .55) were non-significant. Question 6 assessed knowledge about 

introduced plant species, and median scores were between 1 and 3 for the pre-test and between 2 

and 5 for the post-test. There was a non-significant difference between the groups with respect to 

pre-test scores (H (3) = 1.31, p = .73), and the post-test scores (H (3) = 1.79, p = .62). The final 

environmental knowledge score examined was Question 7 assessing knowledge about human 

impacts on an ecosystem and associated timescales. Median pre-test scores ranged from 5 to 9; 

and median post-test scores from 6 to 9. Comparisons of pre-test scores (H (3) = 0.12, p = .99) 

and post-test scores (H (3) = 1.99, p = .57) between the groups indicated that the differences were 

non-significant.  

 

The results of the Wilcoxon signed-ranks tests were also reported in Table 4-8. Students in the 

ABM group significantly increased the score associated with knowledge of introduced animal 

species (Question 5) (p < .05) and the score associated with knowledge of introduced plant species 

(Question 6) (p < .10), and large effect sizes were associated with both.  

 

In the SDM group there were negligible to medium effect sizes were associated with non-significant 

changes in the three environmental knowledge scores.  

 

Significant increases were observed in the score associated with knowledge of introduced animal 

species (Question 5) and with the score assessing knowledge of human impacts of the environment 

and associated timescales (Question 7) in the SDM & ABM group, and large effect sizes were 

associated with both. Large effect sizes were also associated with increases in the score associated 

with knowledge of introduced plant species (Question 6).  

 

In the Text group, large effect sizes were associated with increases in all environmental knowledge 

scores except that associated with knowledge of introduced plant species (Question 6), for which a 

medium effect size was calculated.  

4.4.1.2 The change in the environmental and system dynamics 
knowledge scores 

The change in the knowledge scores was calculated by subtracting the pre-test score from the 

post-test score. The purpose of comparing these changes is to determine whether the treatments 

had an effect on the size of the difference between the scores. 
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Table 4-9: Median, range of the change in scores, and the proportion of students that increased 
their score for each question in the environmental knowledge tests, for each group 

Range 

Question Mdn Lower Upper Increased score (%) 

ABM     

Q5change 1 1 5 100 

Q6change 1 0 2 67 

Q7change 0.5 -5 3 50 

SDM     

Q5change 0 -7 4 44 

Q6change 1 -7 4 67 

Q7change 0 -9 3 22 

SDM & ABM     

Q5change 1 0 2 86 

Q6change 0 0 2 43 

Q7change 1 -1 10 71 

Text     

Q5change 2 -1 3.5 80 

Q6change 1 -2 3 60 

Q7change 1 0 5.5 60 

Note. Q5 = knowledge about introduced animal species (Maximum score is 9). Q6 = knowledge about 

introduced plant species (Maximum score is 8). Q7 = knowledge about the impact of humans on the 

environment and associated timescales (Maximum score is 12). change = change in the score between the pre- 

and post-test. 

 

Table 4-9 shows that the median change in the scores assessing knowledge about introduced 

animal species (Question 5) ranged between 0 and 2. A Kruskal-Wallis test showed that the 

difference between the groups for the change in Question 5 was non-significant (H (3) = 2.59, p = 

.46). The median change between the pre- and post-test scores assessing knowledge of introduced 

plant species (Question 6) was between 0 and 1.There was a non-significant difference between the 

groups associated with the change in the Question 6 score (H(3) = 1.00, p = .80). Question 7 
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assessed knowledge about human impacts on an ecosystem and associated timescales. The median 

change between the pre- and post-test scores varied between 0 and 1. The difference between the 

groups for the change in this score was non-significant (H (3) = 2.79, p = .43).  

4.4.1.3 Understanding of the system – key outcomes 
Individual questions in the final assessment task were grouped into three sections. The first section 

assessed students’ abilities to describe what they saw in the model (Describe, 8 marks). The second 

section addressed students’ abilities to identify the issues that were raised by the materials (Issues, 

16 marks), and the third assessed students’ abilities to make decisions, predictions, and identify 

the consequences of their decisions (Higher Level Thinking, 24 marks). 
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Table 4-10: Median, range of scores and proportion of students who scored more than 50% for 
each section for key sections of the final assessment task for each group  

Range 

Question Mdn Lower Upper More than 50% (%) 

ABM    

Describe 2.5 0 5 17 

Issues 3.5 1 9 17 

HLT 4.5 2 8 0 

SDM    

Describe 4 0 5 33 

Issues 5 2 7 0 

HLT 3 1 7 0 

SDM & ABM    

Describe 1 0 4 0 

Issues 3 1 9 14 

HLT 4 2 10 0 

Text    

Describe 0 0 6 20 

Issues 8 2 9 20 

HLT 6 0 11 0 

Note. Describe = Describe section of the final assessment task (Maximum score is 8). Issues = Issues section of 

the final assessment task (Maximum score is 16). HLT = Higher Level Thinking section of the final assessment 

task (Maximum score is 24). 

 

Comparison of the key sections of the final assessment task showed that there was a non-

significant difference between the groups with respect to the Describe section (H (3) = 3.27, p = 

.35). The difference between the groups with respect to the Issues section (H (3) = 1.45, p = .70) 

was also non-significant. Finally, there was a non-significant difference between the groups when 

the scores for the Higher Order Thinking section were compared (H (3) = 1.89, p = .60). 



Multiple External Representations 

 

97 

4.4.1.4 Correlations between learning outcomes 

Spearman’s rho was used to determine the relationships between learning outcomes in each group 

due to the non-parametric nature of the data. A correlation of 1.00 indicates that the ranks of the 

marks in the pre- and post-test (of the same question) were identical. In this case, because 

students were not required to re-answer the question if they were satisfied with their pre-test 

answer, it indicates no change in their ranking. A high, significant correlation indicates some 

deviation in rankings, and therefore from previous answers. When noted in combination with a 

significant increase in the scores (as was reported in the discussion sections throughout the thesis), 

it indicates that students added to their previous knowledge in order to answer the post-test 

questions and simply supports the findings of the Wilcoxon Signed-ranks tests. If, however, the 

value of the correlation was non-significant, then that indicates an area for further investigation, 

because the ranks in the pre- and post-test are markedly different. In all cases this was used only 

to indicate areas that may require further inquiry. A large, significant correlation between the pre-

test score of one question, and the post-test score of another indicates that a relationship exists 

between the two. In the case of these occurrences, I discuss the possibility of such a relationship 

indicating that students who had higher scores in the pre-test were also able to score highly in the 

post-test in this other question. 
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Table 4-11: Results of correlations between pre-test scores and learning outcomes in the ABM 
group 

Environmental and system dynamics pre-test knowledge scores  

Q5pre Q6pre Q7pre SDKpre 

Environmental and system dynamics pre-test knowledge scores  

Q5pre --    

Q6pre .73 --   

Q7pre .99** .74 --  

SDKpre .46 .65 .44 -- 

Learning outcomes   

Q5post .67 .74 .61 .27 

Q5change -.26 .14 -.35 .10 

Q6post .65 .94** .70 .46 

Q6change .31 .65 .40 .09 

Q7post .93** .77 .97** .37 

Q7change -.60 -.81 -.58 -.90* 

SDKpost .05 .09 .04 .83* 

SDKchange -.13 -.13 .02 -.03 

Describe .49 .73 .50 .88* 

Issues .50 .90* .51 .87* 

HLT .24 .37 .24 .93** 

Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = 

knowledge about human impacts on an ecosystem and associated timescales. SDK = system dynamics 

knowledge Describe = Describe section of the final assessment task. Issues = Issues section of the final 

assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-test score. post = 

post-test score. change = change in the score between the pre-test and the post-test. 

n = 6.  

*p < .05; **p < .01. 

 

In the ABM group, students who had a higher pre-test score assessing knowledge about introduced 

animal species (Question 5) also had a higher pre- and post-test score assessing knowledge of 

human impacts on the environment and associated timescales (Question 7). Pre-test Question 6 
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scores (assessing knowledge about introduced plant species) were positively and significantly 

correlated with: post-test scores for this question; and the Issues section of the final assessment 

task. Similarly, students who had a higher pre-test score assessing knowledge about human 

impacts on the environment and associated timescales (Question 7) had higher post-test scores for 

this question.  

 

Pre-test scores assessing knowledge about system dynamics concepts were significantly negatively 

correlated with the change in the score assessing knowledge of human impacts on the environment 

and associated timescales (Question 7), and significantly and positively correlated with the post-

test score for system dynamics knowledge, and with the three sections of the final assessment task.  
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Table 4-12: Results of the correlations between learning outcomes in the ABM group  
 Learning outcomes 

 Q5post Q5change Q6post Q6change Q7post Q7change SDKpost SDKchange Describe Issues HLT 

Learning outcomes         

Q5post --           

Q5change .49 --          

Q6post .58 -.07 --         

Q6change .25 -.24 .86* --        

Q7post .62 -.30 .75 .46 --       

Q7change -.39 .02 -.71 -.44 -.49 --      

SDKpost .38 -.14 .73 .49 .54 -.99** --     

SDKchange .49 -.48 .43 .27 .85* -.15 .70* --    

Describe .46 .26 .54 .10 .53 -.72 .62 .05 --   

Issues .52 .26 .78 .45 .52 -.88* .81* .03 .90* --  

HLT -.06 -.02 .20 -.12 .19 -.71 .62 -.20 .81 .69 -- 
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Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = knowledge about human impacts on an ecosystem and associated 

timescales. SDK = system dynamics knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final assessment task. HLT = Higher Level 

Thinking section of the final assessment task. post = post-test score. change = change in the score between the pre-test and the post-test. 

n = 6.  

*p < .05; **p < .01. 
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In the ABM group, students who had a higher post-test score assessing knowledge of introduced 

plant species (Question 6) had a greater change in this score. The change in the Question 7 score 

was negatively and significantly correlated with the score for the Issues section of the final 

assessment task. 

 

Students who had a higher post-test score for system dynamics knowledge had a higher change in 

that score. Students who had a higher score for the Describe section of the final assessment task 

also had a higher score for the Issues section. 

Table 4-13: Results of correlations between pre-test scores and learning outcomes in the SDM 
group  

Environmental and system dynamics pre-test knowledge scores  

Q5pre Q6pre Q7pre SDKpre 

Environmental and system dynamics pre-test knowledge scores  

Q5pre --    

Q6pre .84** --   

Q7pre .41 .55 --  

SDKpre -.07 -.02 -.32 -- 

Learning outcomes   

Q5post .40 .34 -.14 .43 

Q5change -.40 -.35 -.45 .33 

Q6post .20 .57 .29 .21 

Q6change -.46 -.10 .09 .25 

Q7post .11 .33 .59 -.40 

Q7change -.32 -.30 -.64 .21 

SDKpost .05 .09 .04 .14 

SDKchange -.13 -.13 .02 -.45 

Describe .31 -.04 -.10 -.16 

Issues .20 -.07 .08 .51 

HLT -.05 .01 .39 -.17 

Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = 

knowledge about human impacts on an ecosystem and associated timescales. SDK = system dynamics 



Multiple External Representations 

 

103 

knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final 

assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-test score. post = 

post-test score. change = change in the score between the pre-test and the post-test. 

n = 9.  

*p < .05; **p < .01. 

 

In the SDM group, pre-test scores assessing knowledge about introduced animal and plant species 

were significantly and positively correlated.  
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Table 4-14: Results of the correlations between learning outcomes in the SDM group 
 Learning outcomes 

 Q5post Q5change Q6post Q6change Q7post Q7change SDKpost SDKchange Describe Issues HLT 

Learning outcomes        

Q5post --           

Q5change .60 --          

Q6post .47 .08 --         

Q6change .20 .35 .70* --        

Q7post -.32 -.20 .02 -.22 --       

Q7change .30 .61 -.04 -.07 .07 --      

SDKpost -.31 -.08 -.46 -.45 .33 -.14 --     

SDKchange -.34 .10 -.54 -.34 .30 -.45 .70* --    

Describe .14 .16 -.65 -.61 -.13 -.15 .50 .65 --   

Issues .51 .34 -.15 .00 -.39 -.20 .07 -.12 .49 --  

HLT -.03 .15 -.07 .22 .03 -.61 .39 .64 .44 .33 -- 
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Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = knowledge about human impacts on an ecosystem and 

associated timescales. SDK = system dynamics knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final assessment task. HLT 

= Higher Level Thinking section of the final assessment task. post = post-test score. change = change in the score between the pre-test and the post-test. 

n = 9.  

*p < .05; **p < .01. 
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In the SDM group, students who had a higher post-test score assessing knowledge of introduced 

plant species (Question 6) also had a larger change in the score for this question. The change in the 

system dynamics knowledge score was positively and significantly correlated with the post-test 

score for this section. 

Table 4-15: Results of the correlations between pre-test scores and learning outcomes in the SDM 
& ABM group 

Environmental and system dynamics pre-test knowledge scores  

Q5pre Q6pre Q7pre SDKpre 

Environmental and system dynamics pre-test knowledge scores  

Q5pre --    

Q6pre .67 --   

Q7pre .82* .75 --  

SDKpre .84* .54 .86* -- 

Learning outcomes   

Q5post .86* .67 .58 .73 

Q5change -.49 -.13 -.67 -.54 

Q6post .49 .89* .48 .22 

Q6change -.15 -.22 -.45 -.49 

Q7post .38 -.02 .44 .22 

Q7change -.69 -.85* -.67 -.62 

SDKpost .68 .69 .83* .74 

SDKchange -.14 .22 .04 -.22 

Describe .81* .85* .93** .90* 

Issues .68 .76* .67 .79* 

HLT .86* .71 .92** .68 

Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = 

knowledge about human impacts on an ecosystem and associated timescales. SDK = system dynamics 

knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final 

assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-test score. post = 

post-test score. change = change in the score between the pre-test and the post-test. 

n = 7.  
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*p < .05; **p < .01. 

 

Table 4-15 shows that in the SDM & ABM group, pre-test scores assessing knowledge about 

introduced animal species (Question 5) were significantly and positively correlated with the pre-test 

score assessing knowledge about human impacts on an ecosystem and associated timescales 

(Questions 7), and with the pre-test score assessing system dynamics knowledge. Students who 

had a higher Question 5 pre-test score also had a higher post-test score for this question, and 

higher scores for the Describe and Higher Level Thinking sections of the final assessment task. Pre-

test scores assessing knowledge of introduced plant species (Question 6) were significantly and 

positively correlated with the post-test score for this question and the Describe and Issues sections 

of the final assessment task; and negatively and significantly correlated with the change in the 

Question 7 score. Students who had a higher Question 7 pre-test score also had a higher pre-test 

score assessing system dynamics knowledge, a higher system dynamics post-test score, and higher 

scores for the Describe and Higher Level Thinking sections of the final assessment task.  

 

The pre-test score assessing knowledge of system dynamics concepts was positively and 

significantly correlated with the Describe and Issues sections of the final assessment task. 
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Table 4-16: Results of the correlations between learning outcomes in the SDM & ABM group 
 Learning outcomes 

 Q5post Q5change Q6post Q6change Q7post Q7change SDKpost SDKchange Describe Issues HLT 

Learning outcomes        

Q5post --           

Q5change .00 --          

Q6post .51 .00 --         

Q6change -.03 .37 .14 --        

Q7post -.08 -.82* .00 .18 --       

Q7change -.83* .00 -.71 .21 .22 --      

SDKpost .43 -.67 .52 -.59 .26 -.62 --     

SDKchange -.35 -.28 .39 -.27 .04 .08 .49 --    

Describe .61 -.58 .72 -.30 .35 -.78* .90* .24 --   

Issues .55 -.41 .82* -.01 .26 -.75 .79* .37 .90** --  

HLT .60 -.63 .47 -.29 .54 -.50 .68 .00 .81* .54 -- 
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Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = knowledge about human impacts on an ecosystem and 

associated timescales. SDK = system dynamics knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final assessment task. HLT 

= Higher Level Thinking section of the final assessment task. post = post-test score. change = change in the score between the pre-test and the post-test. 

n = 7.  

*p < .05; **p < .01. 
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In the SDM & ABM group, the post-test score assessing knowledge of introduced animal species 

(Question 5) was negatively and significantly correlated with the change in the score assessing 

knowledge of human impacts on an ecosystem and associated timescales (Question 7). Students 

who had a greater change in their Question 5 score had a lower post-test score for Question 7. The 

post-test score assessing knowledge of introduced plant species (Question 6) was positively and 

significantly correlated with the score for the Issues section of the final assessment task. The 

significant correlation between the change in the Question 7 score and the Describe section of the 

final assessment task was negative. 

 

Students who had a higher post-test score assessing system dynamics knowledge also had a higher 

score for the Describe and Issues sections of the final assessment task. The Describe section of the 

final assessment task was positively and significantly correlated with the scores for the Issues and 

Higher Level Thinking sections.  
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Table 4-17: Results of the correlations between pre-test scores and learning outcomes in the Text 
group  

Environmental and system dynamics pre-test knowledge scores  

Q5pre Q6pre Q7pre SDKpre 

Environmental and system dynamics pre-test knowledge scores  

Q5pre --    

Q6pre .72 --   

Q7pre -.46 .24 --  

SDKpre -.15 .53 .95* -- 

Learning outcomes   

Q5post .87 .55 -.50 -.24 

Q5change .10 -.05 -.46 -.46 

Q6post .70 .67 .10 .36 

Q6change .10 -.31 -.21 -.21 

Q7post -.53 .16 .97** .89* 

Q7change .46 -.24 -1.00** -.95* 

SDKpost .60 .98* .31 .56 

SDKchange .05 -.13 -.53 -.55 

Describe -.11 .57 .86 .92* 

Issues -.05 .53 .50 .55 

HLT .72 .92* .26 .5 

Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = 

knowledge about human impacts on an ecosystem and associated timescales. SDK = system dynamics 

knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final 

assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-test score. post = 

post-test score. change = change in the score between the pre-test and the post-test. 

n = 5.  

*p < .05; **p < .01. 

 

As can be seen in Table 4-17, in the Text group, students who had a higher pre-test score for 

Question 6 also had a higher post-test score for the system dynamics knowledge test. In addition, 
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the significant correlation between the pre-test score assessing knowledge about introduced plant 

species (Question 6) and the Higher Level Thinking section in the final assessment task was 

positive. Students who had a higher pre-test score assessing knowledge about human impacts on 

an ecosystem and associated timescales (Question 7) also had a higher system dynamics pre-test 

score, a higher post-test score for this question and a lower change in the Question 7 score. 

 

The pre-test score assessing system dynamics knowledge was positively and significantly correlated 

with the post-test score for knowledge about human impacts on the environment and associated 

timescales (Question 7); the Describe section of the final assessment task, and negatively and 

significantly correlated with the change in the Question 7 score. 
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Table 4-18: Results of the correlations between learning outcomes in the Text group 
 Learning outcomes 

 Q5post Q5change Q6post Q6change Q7post Q7change SDKpost SDKchange Describe Issues HLT 

Learning outcomes        

Q5post --           

Q5change .41 --          

Q6post .56 -.50 --         

Q6change .15 -.50 .50 --        

Q7post -.65 -.53 .00 -.26 --       

Q7change .50 .46 -.10 .21 -.97** --      

SDKpost .41 .00 .50 -.50 .26 -.31 --     

SDKchange .29 .98** -.62 -.56 -.54 .53 -.05 --    

Describe -.34 -.45 .22 -.45 .88* -.86 .67 -.46 --   

Issues .00 .41 -.21 -.87 .46 -.50 .67 .37 .63 --  

HLT .63 -.21 .87 .05 .14 -.26 .82 -.34 .46 .29 -- 
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Note. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant species. Q7 = knowledge about human impacts on an ecosystem and 

associated timescales. SDK = system dynamics knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final assessment task. HLT 

= Higher Level Thinking section of the final assessment task. post = post-test score. change = change in the score between the pre-test and the post-test. 

n = 5.  

*p < .05; **p < .01. 
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In the Text group, students who had a greater change in the score assessing their knowledge of 

introduced animal species (Question 5) also had a greater change in their score for system 

dynamics knowledge. The post-test score for human impacts on an ecosystem and associated 

timescales (Question 7) was negatively and significantly correlated with the change in this score and 

significantly correlated with the Describe section of the final assessment task.  

4.4.2 Discussion 
The guiding hypothesis for this chapter remains: a system dynamics model is too abstract for high 

school students, and an additional representation that constrained the interpretation of the model 

(one that was familiar to the students, such as the animated representation included in the agent-

based model) will improve interpretation, and therefore understanding. 

 

The hypothesis was supported when the overall scores were analysed previously. If this hypothesis 

continues to be supported by the evidence, students in the SDM group will have few increases in 

knowledge scores, students in the ABM group will be able to increase scores related to the 

representational affordance of the animation provided, and the SDM & ABM group will provide 

students with the benefits of both representations, and allow them to identify the links between the 

micro and macro levels of understanding. This is because the stock and flow diagram should 

provide students with a better understanding of the macro level of the system than the graphs in 

the agent-based model, and the animation should provide students with a better understanding of 

the micro-level as the animation provides a high level of detail. The control group is important in 

this discussion, but only briefly. It should be noted that all students were given the text description, 

and would have been able to achieve similar results if the treatments had no effect on learning 

outcomes.  

 

The remainder of the discussion focuses on the features of the models that allowed students to 

learn or not learn about environmental and system dynamics knowledge. Each of the following 

areas will now be addressed separately: the control group, the affordances of the agent-based 

model, the affordances of the system dynamics model, and the use of multiple representations.  

4.4.2.1 The control group 

Students in the Text group increased their knowledge score for all questions except Question 6, 

assessing knowledge of introduced plant species. The results of the correlations did not help to 
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explain the lack of change in knowledge of introduced plant species. Significant correlations have 

indicated that prior knowledge played a role in students’ interpretation of the text description.  

 

Students in the Text group were able to add to existing knowledge to answer Question 7 (assessing 

knowledge of human impacts on an ecosystem and associated timescales), and students who had 

lower prior knowledge for this question had a greater change in their score. Positive significant 

correlations between the Question 6 pre-test score and the system dynamics knowledge post-test 

score suggest that prior knowledge about introduced plant species allowed students to learn about 

system dynamics knowledge. In addition, the correlation between the Question 6 and the system 

dynamics knowledge pre-test scores was non-significant, which suggests that the materials did 

have an effect on this relationship. The change in the system dynamics knowledge score was 

positively and significantly correlated with the change in the Question 5 score. It may be that 

students who concentrated on learning about introduced animal species were also able to learn 

about system dynamics concepts.  

 

Understanding of the system in the Text group involved both prior knowledge and that which was 

learned from the materials. The Describe section of the final assessment task was positively 

correlated with prior knowledge about system dynamics concepts, and the post-test score 

assessing knowledge of human impacts on an ecosystem and associated timescales (Question 7). 

Investigation of the answers supported the correlation, and showed that students did use their prior 

knowledge of systems concepts and learned knowledge of impacts of humans on an ecosystem to 

describe what happened in the park. The Higher Level Thinking score was positively correlated with 

the pre-test score assessing knowledge of introduced plant species (Question 6). Despite the 

significant correlation, students did not include information about introduced plant species in their 

answers. Nevertheless, examination of the answers showed that students identified appropriate 

management decisions and predictions, including the effects of competition between introduced 

and native animals. Most decisions suggested by students focused on the provision of bins to 

reduce visible litter, rather than a reduction of the waste itself, which reflects the findings of other 

studies that have examined students’ abilities to solve waste management issues (Palmberg & Kuru, 

2000). However, other suggestions included killing feral animals and increasing the cost of entering 

the park to dissuade visitors from coming.  
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Students in the control group were able to increase knowledge scores for every question examined 

except that addressing knowledge about introduced plant species. Prior knowledge was used in 

addition to the materials in order to answer post-test questions and to understand the system. If 

access to a system dynamics model, agent-based model, or both has no effect on students’ 

environmental knowledge, system dynamics knowledge, or understanding of the materials, then the 

results of the following sections would be expected to reflect those found in the control group. 

4.4.2.2 The agent-based model 

Given previous research conducted in the fields of learning from agent-based models and learning 

from animations, it has been predicted that students in the ABM group would learn about those 

areas that are distinctive in the animation used in the agent-based model. Subjects tend to be 

attracted to the information generated by the features in the animation that actually change in a 

contrasted way to the rest of the display (Lowe, 2003, 2004). In particular, this involved Question 5 

(knowledge about introduced animal species), because rats are used to represent introduced animal 

species and are visible in the animated representation. While one of the advantages of learning from 

an agent-based model is to be able to link the behaviour of individuals to system-level effects, this 

is also a challenge for the learner. If this is the case in this study, then it would be expected that 

students would not have increased their scores for Question 7, which requires an application of 

knowledge specific to the system modelled, to another system. 

4.4.2.2.1 Affordances of the agent-based model 

Students in the ABM group were able to significantly increase their knowledge of introduced animal 

and plant species (large effect sizes were associated with each comparison), and a large effect size 

was associated with a non-significant increase in the system dynamics knowledge score. The 

hypothesis proposed suggested that the animation used in the agent-based model would 

particularly influence students to learn about introduced animal species because of the visual 

representation of the introduced animal species (rats) used in the animation (Lowe, 2003, 2004). 

The correlations between the post-test score for Question 5 (assessing knowledge of introduced 

animal species) and other learning outcomes were non-significant in the ABM group. It was 

expected that the pre-test score would be significantly correlated with the post-test score, as 

students were given the opportunity to add to their pre-test answers in the post-test. A correlation 

of 1.00 indicates that the ranks of the marks in the pre- and post-test (of the same question) were 

identical. In this case, because students were not required to re-answer the question if they were 

satisfied with their pre-test answer, it indicates no change in their ranking. A high, significant 
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correlation indicates some deviation in rankings, and therefore from previous answers. When noted 

in combination with a significant increase in the scores (as was reported in the discussion sections 

throughout the thesis), it indicates that students added to their previous knowledge in order to 

answer the post-test questions and simply supports the findings of the Wilcoxon Signed-ranks 

tests. If, however, the value of the correlation was non-significant, then that indicates an area for 

further investigation, because the ranks in the pre- and post-test are markedly different. The non-

significant correlations between the pre-test score and the post-test score suggest that an increase 

in the score for Question 5 was related to the learning materials.  

 

Comparisons of the score assessing knowledge of introduced plant species (Question 6) between 

and within groups indicated that the agent-based model provided materials that allowed students 

to increase their score. Correlations showed that in the ABM group, the pre-test score for Question 

6 and the post-test score were significantly positively correlated, as expected. In addition, students 

who had a higher post-test score also had a higher change in their score. Students in the control 

group did not increase their score for this question. It may be that the agent-based model helped 

students to add to existing knowledge in order to increase their score, while the other 

representations did not. Further investigation of the relationships between this learning outcome 

and how the models were used, in the following chapter, examines this further. 

 

Students in the ABM group increased their system dynamics knowledge score between the pre- and 

post-test. Significant correlations suggest that prior knowledge about the domain as well as system 

dynamics knowledge were related to the post-test score. In particular, the role of knowledge about 

human impacts on an ecosystem and associated timescales (which involved application of 

knowledge learned from the materials to another ecosystem) is unclear. The results suggest that 

students who had a large change in their system dynamics concepts score also had a large change 

in their score for Question 7, however students who had a higher post-test system dynamics 

knowledge score had a lower change in their score for Question 7. It may be that they either had a 

higher post-test system dynamics knowledge score, or they increased their score for Question 7 

(assessing knowledge of human impacts on an ecosystem and associated timescales), and as shown 

in the comparisons between the pre- and post-test scores, they increased their knowledge of 

system dynamics concepts. The way in which the model was used may explain why this relationship 

between the learning outcomes was present. 
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4.4.2.2.2 Limitations of the agent-based model 

Students in the ABM group did not increase the score associated with applying the information 

presented in the materials to another situation (Question 7). This supports the finding of (Levy, Kim, 

& Wilensky, 2004) who showed that students were able to describe both macroscopic and 

microscopic behaviour of a system in chemistry, but unable to relate the two levels to each other. 

Question 7 assessed knowledge of the environmental impacts and respective timescales associated 

with building a road, littering and bushwalking. It may be that students who only used the agent-

based model were unable to connect their specific domain knowledge (in which they did increase 

their scores as discussed above) to reality. Further investigation into any relationships between 

these learning outcomes and the ways in which the model was used will be presented in the 

following chapter. 

4.4.2.2.3 Understanding the system with the agent-based model 

Students who had higher pre-test system dynamics knowledge scores also had higher scores for 

the Describe section of the final assessment task. However, investigation of other learning 

outcomes has shown that students in this group were unable to apply knowledge learned from the 

materials to other systems. In order to understand the system modelled, and score highly on those 

sections assessing understanding, they needed to have a complete mental model. The Describe 

section of the final assessment task includes two questions: one asking students to describe what 

happens in the park; the other asking students to describe the park, in terms of visual features. 

Examination of students’ answers showed that they concentrated on describing what happened in 

the model rather than describing the park itself. It is possible that students did not provide a 

description of the park because this was done by the animation.  

 

The Issues section of the final assessment task assessed students’ ability to identify the main issues 

addressed in the learning materials, both management and environmental. Students who had a 

higher pre-test system dynamics knowledge score also had a higher score for the Issues section of 

the final assessment task. Students who were able to identify management and environmental 

issues identified links between environmental and system dynamics knowledge, links between their 

knowledge of the system and the real world. Significant correlations showed that students who had 

higher scores for the Issues section also had higher scores for Questions 5 and 6 (knowledge of 

introduced animal and plant species) and the system dynamics knowledge test, and also had a 

higher score for the Describe section of the final assessment task. Students who had higher scores 
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for the Issues section also had a lower change in their score assessing knowledge about human 

impacts on an ecosystem and associated timescales (Question 7), in which the group as a whole did 

not increase their score. Students in the ABM group had a statistically similar score to students in 

other groups. This suggests that students were able to link their knowledge the environment and 

system dynamics in the context of the system modelled, however students were not able to apply 

this knowledge to another ecosystem. 

 

The Higher Level Thinking section of the final assessment task includes the answers to three 

questions asking students to outline decisions they would make as managers of the park, make a 

prediction about what would happen next if the model was more detailed, and identify any 

consequences of decisions made. In the ABM group the significant correlation between the pre-test 

score assessing applied system dynamics knowledge and the score for the Higher Level Thinking 

section of the final assessment task indicates that students in this group who had a higher score for 

this section may have already been able to identify whole system concepts. When students’ answers 

were investigated further, it was seen that students who scored highly in making predictions 

included phrases such as “the natural cycle of the ecosystem will be interrupted”, mention the 

effects on tourism and made the connection between increased nutrients and plants growing. 

Further investigation of the effects of the use of the model on learning outcomes may help to 

explain this finding. 

4.4.2.3 The System dynamics model 

Very little empirical work has been done examining what and how students learn from interrogating 

a system dynamics model. Many studies have identified issues concerned with students’ ability to 

use system dynamics models to manage an environmental system (Booth Sweeney & Sterman, 2000; 

Diehl & Sterman, 1995; Kainz & Ossimitz, 2002; Moxnes, 2004). System dynamics models are 

useful for conceptual understanding (Wakeland et al., 2004), and they establish a link between the 

system structure and the system behaviour (Schieritz & Milling, 2003). Students have been shown to 

improve understanding of the scientific concepts underlying modelling, rather than their ability to 

interpret the models after a long-term intervention (Maryland Virtual High School, 2001). However, 

the high cognitive load involved in interpreting the abstract, scientific diagram may result in small 

learning gains (Lowe, 1993; Sweller & Chandler, 1994). Prior knowledge of the domain and system 

dynamics modelling was found to be important in model-building activities in high school students 

(Sins, Savelsbergh, & van Joolingen, 2005), and for interpreting representations (Lowe (1993)). As a 

result of this research, it could be predicted that students would increase their score for the system 
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dynamics knowledge score due to their exposure to a system dynamics model. However, no change 

in environmental knowledge scores were expected, due to the high cognitive load associated with 

making sense of the stock and flow diagram.  

4.4.2.3.1 Affordances of the system dynamics model 

Students in the SDM group did not increase knowledge scores for environmental or system 

dynamics knowledge. Significant correlations showed that a large post-test score was indicative of a 

large change in the system dynamics knowledge score. The hypothesis that the representational 

affordance of the system dynamics model would result in an increase in system dynamics 

knowledge was not supported by these results. Further examination of relationships between this 

learning outcome and the way in which the model was used may explain this further. 

4.4.2.3.2 Limitations of the system dynamics model 

Students in the SDM group did not increase their score for any environmental knowledge question 

or system dynamics knowledge test. In a number of cases (knowledge about introduced animal 

species, about human impacts on an ecosystem and associated timescales, and system dynamics 

knowledge), students in the control group did increase their score. This indicates that the treatment 

had a negative effect on students’ ability to increase their scores for these questions. Significant 

correlations indicated that students using the system dynamics model were not able to link their 

prior knowledge of the domain to interpret the representation. In the following chapter, the 

relationships between students’ prior knowledge and the ways in which students used the model 

will be examined, and this may help to explain why the SDM group did not increase their 

environmental knowledge scores. 

4.4.2.3.3 Understanding the system with a system dynamics model 

Analysis of the knowledge tests showed that students in the SDM group did not increase their score 

for any knowledge test; however they had statistically similar final assessment task scores to 

students in the other groups. It was previously suggested that the system dynamics model provided 

students with a structure to describe what happened and the freedom to imagine what the national 

park looked like. Further investigation of students’ answers showed that there was a mixture of 

both describing the park and identifying what happened in the model. Students in the SDM group 

could visualize a real situation and interpret the materials. However, they did not relate this to the 

environmental knowledge questions. Investigation of answers to the Describe section showed that 



Multiple External Representations 

 

122 

one student mentioned “pests” another “animals” but most concentrated on the inorganic waste and 

the time delay associated with the accumulation of nutrients. It may be that students were 

examining the graphs rather than the stock and flow diagram. This is particularly important given 

the non-significant changes in environmental knowledge scores. This indicates that students were 

engaged and could interpret the system dynamics model. It may be that the cognitive load 

associated with interpreting the new representation was too high to allow students to relate this to 

the environmental knowledge questions.  

4.4.2.4 Multiple representations 

Providing or generating multiple external representations are well-researched strategies for 

understanding complex systems. Advantages include capturing the learners’ interest and providing 

an authentic learning environment for students (1999b; Kozma et al., 2000). In addition, using 

multiple representations provides a safety net in case the student’s reasoning process comes to a 

halt for some reason with a single representation (Savelsbergh et al., 1998). There are challenges 

involved with using multiple external representations. These include students changing their usual 

problem solving processes to accommodate the representation, resulting in further errors 

((Tabachneck-)Schijf & Simon, 1998); and the high cognitive load associated with the coordination 

of information from different representations can be a major cost to learners of using multiple 

representations (Bodemer et al., 2004; de Jong et al., 1998). Regardless of cognitive load, some 

students still fail to coordinate between multiple representations (Ainsworth et al., 1998).  

 

In particular, one strong advantage of using both an agent-based and system dynamics model may 

be to help students to be able to think of the two levels that are modelled at the same time 

(Schieritz & Milling, 2003). The addition of the alternate model may also overcome problems 

observed with learning with both types of model – such as making links between levels in the 

agent-based model and interpreting a new representation in the system dynamics model. The 

multiple representations of the models should constrain students’ understanding by providing a 

combination of a familiar representation and an authentic, scientific system view representation. 

 

The research suggests that students in the SDM & ABM group will increase their knowledge scores 

for Question 5 and 6 (knowledge about introduced animal and plant species, as did students in the 

ABM group) and for the system dynamics knowledge test. It is also predicted that students given 

both models will be able to identify links between knowledge learned about the system studied and 

other systems. Therefore, students in the SDM & ABM group would increase their score for 
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Questions 7. Given these additional links identifiable by students in this group, and not in other 

groups, it is also predicted that students given both models would have a greater score assessing 

their understanding of the system, for all three measures (describing the system, identifying the 

issues, and engaging in higher level thinking).  

4.4.2.4.1 Affordances of multiple representations 

Students in the SDM & ABM group increased their score assessing knowledge of introduced animal 

and plant species, as students did in the ABM group. Significant correlations suggest that the 

increase in knowledge about introduced animal species was due to prior knowledge of this topic. 

Prior knowledge was also related to the post-test score assessing knowledge about introduced 

plant species in both the ABM group and the SDM & ABM group. It may be that the agent-based 

model helped students to add to existing knowledge in order to increase their score, while the other 

representations did not. It should be noted that students in the control group did not increase their 

Question 6 score, which suggests that the ABM and SDM & ABM groups allowed students to increase 

their knowledge about introduced plant species that the text description did not allow. Further 

investigation of the relationships between these learning outcome and how the models were used, 

in the following chapter, may confirm whether students used the agent-based model to increase 

their score for these two questions.  

 

Students in the SDM & ABM group increased the score assessing knowledge of human impacts on 

an ecosystem and associated timescales. Question 7 gave students the opportunity to use 

knowledge about introduced animal and plant species and apply it to impacts other than those 

described in the learning materials. Students in the ABM group and in the SDM group did not 

increase their scores for this question. It may be that students in the SDM & ABM group, because 

they were required to make connections between the representations, were better able to make 

connections between the representation and the real world. There was a significant negative 

correlation between the change in the Question 5 score and the post-test Question 7 score, 

however students in the SDM & ABM group increased both scores. The negative relationship 

between the scores suggests that other factors may be involved. In addition, the change in the 

Question 7 score was negatively and significantly correlated with the pre-test score assessing 

knowledge about introduced plant species (Question 6), and with the pre-test score assessing 

knowledge about system dynamics concepts. These results support the findings of the overall 

scores, that students with lower prior knowledge about the environment had a larger increase in 
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their environmental knowledge score. As in the ABM group, prior knowledge may have guided 

students in their interrogation of the model(s), and further investigation in the following chapter 

may explain this result further. 

 

Students in this group increased the score for both the applied environmental knowledge and 

system dynamics knowledge questions between the pre- and post-tests. It may be that the use of 

the two models will explain any relationship between the two questions, and that a representational 

preference resulted in different knowledge learned.  

4.4.2.4.2 Limitations of multiple representations 

Students in the SDM & ABM group increased their knowledge scores for all measures, unlike either 

of the single model user groups. It may also be that the models were used differently when the 

groups are compared. Further investigation of the relationships between the ways in which the 

models were used and this learning outcome will be reported in the following chapter.  

4.4.2.4.3 Understanding the system using multiple representations 

Students in the SDM & ABM group increased their environmental knowledge scores and could 

identify links between different levels of knowledge; however the score measuring understanding of 

the system was statistically similar to other groups. Investigation of students’ responses to the 

Describe section of the final assessment task showed that, similar to those found in the ABM group, 

students were able to describe what happened in the model rather than describe the park. The 

significant correlations suggest that students who had higher prior knowledge about topics that 

could be learned directly from the model, and who had learned about system dynamics concepts, 

were able to make sense of what happened in the model.  

 

Despite the positive and significant correlation between the score for the Issues section and the 

pre- and post-test score assessing knowledge about introduced plant species (Question 6), 

students did not mention the link between nutrients in the environment and introduced plant 

species. Students mainly discussed introduced animal species, and focused on the issues that 

affected whole system. Answers included reference to visitors and their impact, animal proofing 

bins or just providing more bins. The significant correlation between the Describe section of the 

final assessment task and the Issues section, and between the post-test score assessing system 

dynamics knowledge and the Issues section suggests that students who were able to outline the 



Multiple External Representations 

 

125 

process of what happened in the model identified visitors in the park as the main issue. Thus far, 

the main focus of the benefits of the animated representation has been on directing students’ 

attention to the visual representation of the introduced animal species (rats), and the relationship 

between this and performance on the question assessing knowledge about introduced animal 

species (Lowe, 2003, 2004). The visitors in the park were the other main feature of the 

representation. Further analysis of the relationships between this learning outcome and students’ 

use of the model may help to explain this further.  

 

In order to make decisions, predictions and identify the consequences of these, students used prior 

knowledge of introduced animal species, and impacts of humans on the environment. Examination 

of students’ answers supports this result. Students in the SDM & ABM group gave detailed 

information that was not drawn from the materials. Students identified consequences such as 

increased nutrients resulting in introduced plant species, and competition between feral and native 

animals. Students also identified the elements that were not an issue, such as the accumulation of 

inorganic waste. Students’ answers focused on the reduction of littering (through the use of 

compost bins or animal-proof bins), rather than the reduction of waste products (such as visitors 

taking the waste with them when they leave). This supports findings from other studies that have 

examined students’ abilities to solve waste management issues (Palmberg & Kuru, 2000). The score 

for the Higher Level Thinking section was also positively and significantly correlated with the 

Describe section of the final assessment task. It may be that the process of describing what 

happened in the model, allowed students to make appropriate decisions and predictions.  

4.5CONCLUSION 
The results presented in this chapter served a number of purposes. The first was to support the 

hypothesis that multiple representations are an appropriate strategy to learn about a complex 

socio-environmental system. This was supported in terms of environmental knowledge, and to 

some extent, system dynamics knowledge, but not understanding of the socio-environmental 

system.  

 

Further investigation has revealed that multiple representations allowed students to learn 

environmental knowledge that came directly from the learning materials (as was done by the ABM 

group), and to apply this knowledge to another ecosystem (which was not achieved by students 

given either of the single models). The correlations between learning outcomes and prior 

knowledge showed that both prior knowledge and the representation play a role in this. This 
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supports other research that shows that learner characteristics as well as the representations 

themselves play a role in students’ ability to learn from multiple representations (Ainsworth et al., 

1998). In general, these results suggest that the group using multiple representations was 

successful because certain information was better presented using a particular style of 

representation (for example, the animation) (de Jong et al., 1998), because the links between the 

representations could be easily seen (for example, apply environmental knowledge to another 

ecosystem) (Wisnudel Spitulnik, Stratford, Krajcik, & Soloway, 1998), and because they provided 

learners with the choice of how they wished to learn (Ainsworth, 1999a; Savelsbergh et al., 1998). A 

number of negative correlations between learning outcomes suggested that students were not able 

to learn everything. Further investigation of the use of the models may explain whether this is a 

result of cognitive load (van der Meij & de Jong, 2006) or user preference (Ainsworth, 1999a).  

 

Findings with regards to learning outcomes associated with the use of the agent-based model (such 

as specific environmental knowledge and understanding) supports the current literature related to 

learning from animations (Lowe, 2003, 2004) and relating information at different levels (Levy et al., 

2004). There is little research about learning with system dynamics models, however these 

preliminary findings support research that suggests that the knowledge of system dynamics 

concepts may be important in interpreting stock and flow diagrams (Maryland Virtual High School, 

2001), and that the cognitive load associated with learning from a new, abstract, scientific diagram 

is high, and students may be unable to also engage in relating this to specific knowledge arising 

from the model (Lowe, 1993). Conclusions made about the representational affordances of the 

agent-based model and the system dynamics model will be explored in the following chapter, 

which will report on analyses of data examining the use of the models. 
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5. USE OF THE MODELS 

5.1 RATIONALE 
The process that students use to interrogate a model may affect what they learn from the model; 

however there is little research that examines this process. Patterns of students’ use of the models, 

as well as the preferences that students had with respect to the representations they used when 

given the choice, may aid in understanding differences in learning outcomes, and may be useful in 

general because there is little information about user preferences in interrogating multiple external 

representations (Van Labeke & Ainsworth, 2002).  

 

Findings from the previous chapter indicated that some learning outcomes were not related to prior 

knowledge. In a number of these cases, previous research conducted in the fields of learning from 

animations and learning from agent-based models (for example, (Lowe, 2003, 2004)) and learning 

from abstract diagrams (for example, (Schieritz & Milling, 2003; Wakeland, Macovsky, Gallaher, & 

Aktipis, 2004)) resulted in the prediction that the representation itself encouraged learning about a 

particular area. For example, it has been predicted that students in the ABM group would learn 

about those areas that are distinctive in the animation used in the agent-based model. Subjects 

tend to be attracted to the information generated by the features in the animation that actually 

change in a contrasted way to the rest of the display (Lowe, 2003, 2004). In particular, this involved 

Question 5 (knowledge about introduced animal species), because rats are used to represent 

introduced animal species and are visible in the animated representation. This may allow students 

who have access to the agent-based model to increase the score associated with this learning 

outcome. 

 

Levy and Wilensky (2005) classified styles of interrogating an agent-based model, and related these 

styles to learning outcomes. Further investigation into user preference and strategies used in this 

study will help to understand why the differences in learning outcomes between groups reported in 

Chapter 4 were the case, and will provide much needed research in this field. 
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5.2EXPLORATORY QUESTIONS AND BRIEF INTRODUCTION 
TO THE CHAPTER 

This chapter will address the following exploratory questions: 

 

E1a: Despite the differences in the patterns of use due to the different run times of the agent-based 

and system dynamics models, will students be engaged and use the experiment screen more than 

other screens? 

 

E1b: If students used the agent-based model to constrain interpretation of the system dynamics 

model then this will be reflected in their use of the models, and students will use the system 

dynamics model more than the agent-based model. 

 

E1c: Will the use of the model be related to learning outcomes, particularly those with which prior 

knowledge had no relationship? 

 

E1d: Are the strategies used to interrogate the models dependent on the models used? 

 

The experiment compared measures of the use of the models (proportion of time spent on screens, 

activities, strategies used to change variables) from students randomly allocated to three groups: 

the SDM group, in which students were given a system dynamics model to examine, the ABM group, 

in which students were given an agent-based model of the system, or the SDM & ABM group, in 

which students were given both models. The sample size is smaller for each group included in this 

chapter because not all screen shots were successfully collected. In the ABM group n = 5, in the 

SDM group n = 7, and in the SDM & ABM group n = 6. 

 

Three screens on the system dynamics model were included in the analysis: the information screen, 

the explore the model screen, and the experiment screen. The agent-based model had two screens 

that were analysed, the information screen and the experiment screen. The proportion of time spent 

off task was also calculated for each model. The activities that were analysed were the number of 

times each variable was changed, the number of times the model was run, and the total activity was 

recorded. The variables that could be changed were the number of pieces of rubbish each person 

left (Npr), the proportion of rubbish collected by the garbage collection person (Prc), and the 
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garbage collection time (Gct), these variables will only be analysed with regards to the strategies, 

and not with regards to user preference. Others that were particular to the system dynamics model 

included: explore the model step by step (SbS), explore the model in full (IF), and selection of the 

“ideas” option (a more detailed explanation of each of these screens can be found in Chapter 3). 

The Total Activity included all of the above, as well as other activities not discussed in these results. 

Video screen shots were collected and coded with respect to times, activities and screens. Users’ 

strategies were classified using the same parameters as Levy and Wilensky (2005) (refer to the 

Methods section for further discussion of the parameters used), and some additional parameters 

are also suggested. When the strategies were analysed, the amount of time as well as the 

proportion of time spent on screens was compared between strategies. 

 

For a full discussion of the analyses performed, refer to Chapter 3. In brief, the results of analyses 

carried out on the general measures of use of the model will be compared between all three groups 

and within groups to determine whether there is a general pattern to the use of the models (E1a). 

The use of single models will then be compared to the use of the same type of model when an 

additional model is available (for example the use of the model by the ABM group will be compared 

to the use of the model in the SDM & ABM group). This will help to determine whether students 

used the agent-based model to constrain their interpretation of the system dynamics model 

(Ainsworth, 1999b). If this was the case, students would have used the system dynamics model to 

experiment with, and the agent-based model for context. Students in the SDM & ABM group would 

have a similar level of activity as those in the SDM group (E1b). 

 

The second section will report on the significant correlations between measures of the use of the 

model and learning outcomes. It was suggested in Chapter 4 that the use of the model should be 

investigated specifically for those learning outcomes for which prior knowledge played no part. 

These scores were: knowledge of introduced animal species in the ABM group, knowledge about 

introduced animal species, introduced plant species, human impacts on an ecosystem and 

associated timescales, and system dynamics knowledge and the Issues and Higher Level Thinking 

sections of the final assessment task in the SDM group; and knowledge about system dynamics 

concepts in the SDM & ABM group (E1c). 

 

The final section will identify the strategies used by students to interrogate the models overall and 

to change individual variables. Relationships between these strategies and the general measures of 
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use of the models will help to define the classification system. An analysis of the relationships 

between learning outcomes and the strategies used will help to explain why students adopted 

particular strategies, and what effect these had on their learning outcomes (E1d).  

5.3PATTERNS OF USE AND USER PREFERENCE 
5.3.1 Results 
Results regarding general patterns of use and user preference will be discussed in this section. The 

proportion of time spent on each screen (experiment, information and off task) and the frequency 

of activities performed (including running the model, changing variables, and the total activity) 

common to the agent-based model and the system dynamics model will be compared between the 

groups using Kruskal-Wallis tests. The proportion of time, and the frequency of changes made to 

the three variables will then be compared within each group using Friedman’s ANOVA and Mann 

Whitney tests post-hoc. User preference will then be explored by comparing the use of the single 

models with the use of both models using Mann Whitney tests. Due to the small sample size, large 

effect sizes were taken into account in addition to significance, and are noted where appropriate. 

Spearman’s rho was used to determine the relationships between the measures of the use of the 

model in each group due to the non-parametric nature of the data.  

5.3.1.1 Patterns of use 

Patterns of use were compared to determine whether the representation had an effect on the way in 

which the models were used. The experiment screen is the screen on which the animation and the 

stock and flow diagrams are located, and the screen on which students interact with the models. 

The information screen contains the text description which is given to each group. The proportion 

of time spent off task is the time that was noticeably spent not on task (for example, moving the 

mouse off the main model screen to examine menu items in the list below, or opening files not 

pertaining to the materials). Other screens were accessible however they were not common to both 

models, are not relevant to this study, and are not reported here (more details on these can be 

found in Chapter 3). 

 

The activities performed on the models that were common to both models were pressing ‘go’ 

(running the model), and the total activity (the sum of all activities including those not reported in 

this thesis). 
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Table 5-1: Medians and ranges of the proportion of time spent on each screen and activities 
  Range 

Group Mdn Lower Upper 

ABM    

Exp 79 47 87 

Inf 12 0 32 

OT 6 0 30 

Go 5 1 9 

TA 25 11 28 

SDM    

Exp 57 29 72 

Inf 19 11 40 

OT 3 0 30 

Go 9 2 26 

TA 36 17 65 

SDM & ABMa    

Exp 67 46 79 

Inf 28 9 33 

OT 2 0 6 

Go 9 1 16 

TA 30 8 40 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Go = number of times the model was run. TA = 

total activity.  

atwo models combined 

 

Kruskal-Wallis tests showed that there were non-significant differences between the groups in 

terms of the proportion of time spent on the experiment screen (H (2) = 3.29, p = .19); the 

information screen (H (2) = 0.91, p = .64); and off task (H (2) = 2.13, p = .35). There were also 

non-significant differences between the groups in terms of the number of times the models were 

run (H (2) = 1.47, p = .48), and the total activity (H (2) = 3.69, p = .16).  
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Friedman’s ANOVA was used to compare the use of the model within each group. There was a 

significant difference between the proportions of time spent on each screen in the ABM group (χ2(2) 

= 7.60, p = .02); and in the SDM group (χ2(2) = 8.00, p = .02). There was a significant difference 

between the proportions of time spent on the three screens in the SDM & ABM group with the 

models combined (χ2(2) = 12.00, p = .002); with the use of the agent-based model (χ2(2) = 6.00, p 

= .05); and with the use of the system dynamics model in this group (χ2(2) = 5.44, p = .07). 

Wilcoxon signed-rank tests were conducted as post-hoc tests to compare the proportion of time 

spent on each screen. 

Table 5-2: Results of the Wilcoxon signed-rank tests to compare the proportions of time spent on 
each screen in each group 
 Exp vs. Inf Exp vs. OT Inf vs. OT 

 T T T 

ABM group 0.0* 0.0* 5.0 

SDM group 0.0* 1.0* 3.0a 

SDM & ABM group    

System dynamics model 3.0 0.0a 0.0a 

Agent-based model 3.0* 0.0a 1.0 

Models combined 0.0* 0.0* 0.0* 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Bold typeface indicates a large effect size (r >= | .50 

|). 

ap < .10. *p < .05. 

 

Table 5-1 and Table 5-2 show that in the ABM group, the proportion of time spent on the 

experiment screen was higher than that spent on the information screen and higher than the 

proportion of time spent off task. The proportions of time spent on the information screen and off 

task were statistically similar.  

 

In the SDM group, the proportion of time spent on the experiment screen was higher than that 

spent on the information screen and that spent off task. Students also spent a higher proportion of 

time on the information screen than they spent off task.  
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In the SDM & ABM group, the proportion of time spent on the experiment screen on the agent-

based model was higher than the proportion of time spent on the information screen on this model, 

and higher than the proportion of time spent off task on the agent-based model. The proportion of 

time spent on the experiment screen on the system dynamics model was higher than the proportion 

of time spent off task, and statistically similar to the proportion of time spent on the information 

screen. Students also spent a higher proportion of time on the information screen on the system 

dynamics model than they spent off task.  

 

When the use of the models was combined for the SDM & ABM group, the results show that 

students spent a higher proportion of time on an experiment screen than they spent on an 

information screen which was in turn higher than the proportion of time they spent off task.  

 

Spearman’s rho was used to determine the relationships between the measures of the use of the 

model in each group due to the non-parametric nature of the data. A correlation of 1.00 indicates 

that the ranks of the measures of use were identical. A high, significant correlation indicates some 

deviation in rankings. In all cases this was used only to indicate areas that may require further 

inquiry.  

Table 5-3: Results the correlations comparing the use of the model in the ABM group 
Proportion of time spent on each screen Activity Use of the 

model Exp Inf OT Go TA 

Proportion of time spent on each screen   

Exp --     

Inf -.70 --    

OT -.50 -.20 --   

Activity     

Go .50 -.90* .50 --  

TA .80 -.70 -.20 -- -- 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Go = number of times the model was run. TA = 

total activity.  

n = 5. 

*p < .05. 
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Table 5-3 shows that students who spent a higher proportion of time on the information screen ran 

the model less often.  
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Table 5-4: Results of the correlations comparing the use of the model in the SDM group 
Proportion of time spent on each screen Activity Use of the 

model Exp Inf ETM OT Go IF SbS Ideas TA 

Proportion of time spent on each screen       

Exp --         

Inf -.61 --        

ETM -.32 -.46 --       

OT .00 .16 -.38 --      

Activity         

Go .78* -.63 -.09 .06 --     

IF .14 -.32 -.06 -.31 .06 --    

SbS -- -- -- -- -- -- --   

Ideas .42 -.80* .26 -.36 .39 .74 -- --  

TA .75 -.64 -.04 .13 -- -- -- -- -- 
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Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of time spent on the explore the 

model screen. OT = proportion of time spent off task. Go = number of times the model was run. SbS = number of times explore the model step by step was selected. IF = 

number of times explore the model in full was selected. Ideas = number of times the ideas option was selected. TA = total activity.  

n = 7. 

*p < .05. 
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Table 5-4 shows that in the SDM group, students who spent a higher proportion of time on the 

experiment screen ran the model more often. Students who spent a higher proportion of time on 

the information screen selected the ideas option less often.  

Table 5-5: Results of the correlations comparing the use of the agent-based model in the SDM & 
ABM group 

Proportion of time spent on each screen Activity Use of the 

model Exp Inf OT Go TA 

Proportion of time spent on each screen   

Exp --     

Inf .27 --    

OT .68 -.11 --   

Activity     

Go .68 -.10 .66 --  

TA .52 .09 .55 -- -- 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Go = number of times the model was run. TA = 

total activity.  

n = 6. 

 

Table 5-5 shows that there were no significant correlations between measures of use of the agent-

based model by the SDM & ABM group.  
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Table 5-6: Results of the correlations comparing the use of the model in the SDM & ABM group – system dynamics model only 
Proportion of time spent on each screen Activity Use of the 

model Exp Inf ETM OT Go IF SbS Ideas TA 

Proportion of time spent on each screen      

Exp --         

Inf .63 --        

ETM .19 .47 --       

OT .38 .86* .14 --      

Activity         

Go .94** .69 .25 .55 --     

IF -- -- -- -- -- -- --   

SbS .58 .81* .81* .58 .71 -- --   

Ideas .81* .58 .11 .58 .94** -- .58 --  

TA .93** .73 .38 .54 -- -- -- -- -- 
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Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of time spent on the explore the 

model screens. OT = proportion of time spent off task. Go = number of times the model was run. IF = number of times explore the model in full was selected. SbS = number 

of times explore the model step by step was selected. Ideas = number of times the ideas option was selected. TA = total activity.  

n = 6.  

*p < .05; **p < .01. 
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Table 5-6 shows that in the SDM & ABM group, students who spent a greater proportion of time on 

the system dynamics model experiment screen ran this model more often, selected the ideas option 

more often, and had greater total activity on the system dynamics model. Students who spent a 

greater proportion of their time on the information also spent a greater proportion of time off task 

and selected the explore the model step by step option more often. Students who spent a greater 

proportion of their time on the explore the model screen elected to explore the model step by step 

more often.  

 

Students in the SDM & ABM group, who ran the system dynamics model more often selected the 

ideas option more often in this model.  

Table 5-7: Results of comparing the combined use of the models in the SDM & ABM group  

Proportion of time spent on each screen Activity Use of the 

model SDM Exp Inf OT Go TA 

Proportion of time spent on each screen    

SDM --      

Exp .09 --     

Inf -.31 -.60 --    

OT .23 -.75 .03 --   

Activity     

Go .89* -.09 -.03 .38 --  

TA .89* -.09 -.03 .38 -- -- 

Note. SDM = proportion of time spent on the system dynamics model. Exp = proportion of time spent on the 

experiment screen. Inf = proportion of time spent on the information screen. OT = proportion of time spent off 

task. Go = number of times the model was run. TA = total activity.  

n = 6. 

*p < .05. 

 

Table 5-7 shows that students who spent a greater proportion of time with the system dynamics 

model ran a model more often overall, and had a greater total activity.  

5.3.1.2 User preference 

User preference was examined by comparing use of the model by the ABM group with the use of the 

agent-based model by the SDM & ABM group and similarly for the system dynamics model. Mann 
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Whitney tests were used to do this. Spearman’s rho was used to determine the relationships 

between the measures of the use of the model in each group due to the non-parametric nature of 

the data. Significant positive correlations between measures of use will indicate the rankings of the 

measures of use were identical. An example of such a relationship is a positive, significant 

correlation between the experiment screen and ‘go’ would indicate that students who spent a 

higher proportion of time on the experiment screen ran the model more often. Negative significant 

correlations will suggest screens and activities about which, a choice was made by users. An 

example of such a relationship is a negative, significant correlation between the proportion of time 

spent off task and the change in the Question 5 score would indicate that students who chose to 

spend a larger proportion of time off task did not increase their score for this question. 

Investigation of the correlations between screens and activities will provide information in addition 

to the direct comparisons, about user preference with regards to using the models. In addition to 

the measures discussed in the previous section, an additional screen (explore the model) and 

activities (explore the model in full, explore the model step by step, and the ideas option) are 

included in these analyses as they are available on the system dynamics model. 



Use of the Models 

 

142

Table 5-8: Medians and ranges of the proportion of time spent on each screen and the activities 
performed by the SDM & ABM group 

Agent-based model System dynamics model 

 Range  Range 

Use Mdn Lower Upper Mdn Lower Upper 

Screen       

Exp 45 0 69 15 0 79 

Inf 8 0 33 10 0 32 

ETM -- -- -- 7 0 17 

OT 0 0 3 0 0 6 

Activity       

Go 2 0 3 6 0 16 

IF -- -- -- 0 0 0 

SbS -- -- -- 1 0 2 

Ideas -- -- -- 1 0 2 

TA 9 0 15 17 0 40 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. ETM = proportion of time spent on the explore the model screens. OT = proportion of time 

spent off task. Go = number of times the model was run. IF = number of times explore the model in full was 

selected. SbS = number of times explore the model step by step was selected. Ideas = number of times the 

ideas option was selected. TA = total activity. -- indicates that the activity or screen is not available. 

 

In order to further understand the preferences with regards to the representations used in the SDM 

& ABM group, use of the agent-based model in the ABM group was compared with that of the SDM 

& ABM group, and similarly the use of the system dynamics model in the SDM and SDM & ABM 

groups were compared.  
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Table 5-9: Results of the Mann-Whitney tests comparing the ABM group with the SDM & ABM group 
 U Direction 

Proportion of time spent on each screen   

Exp 6.0 ABM > SDM & ABM 

Inf 13.5 ABM = SDM & ABM 

OT 4.0a ABM > SDM & ABM 

Activity   

Go  3.5* ABM > SDM & ABM 

TA 2.5* ABM > SDM & ABM 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Go = number of times the model was run. TA = 

total activity. Bold typeface indicates a large effect size (r >= | .50 |). 

ap < .10. *p < .05 

 

Students in the ABM group and the SDM & ABM group spent a similar proportion of their time on 

the information screen. Students from the ABM group spent a greater proportion of time on the 

experiment screen (large effect size) and off task (p < .10) than those from the SDM & ABM group. 

More activities were performed on the agent-based model by students in the ABM group than 

students in the SDM & ABM group. 
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Table 5-10: Results of the Mann-Whitney tests comparing the SDM group with the SDM & ABM 
group 

 U Direction 

Proportion of time spent on each screen   

Exp 10.0 SDM = SDM & ABM 

Inf 8.0a SDM > SDM & ABM 

ETM 17.0 SDM = SDM & ABM 

OT 12.0 SDM = SDM & ABM 

Activity   

Go  13.0 SDM = SDM & ABM 

IF 6.0* SDM > SDM & ABM 

SbS 17.5 SDM = SDM & ABM 

Ideas 4.5* SDM > SDM & ABM 

TA 10.0 SDM = SDM & ABM 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. ETM = proportion of time spent on the explore the model screens. OT = proportion of time 

spent off task. Go = number of times the model was run. IF = number of times explore the model in full was 

selected. SbS = number of times explore the model step by step was selected. Ideas = number of times the 

ideas option was selected. TA = total activity. Bold typeface indicates a large effect size (r >= | .50 |).  

ap < .01, *p < .05. 

 

Students in the SDM group and the SDM & ABM group spent a similar proportion of their time on 

the experiment screen, the explore the model screen, and off task. Students from the SDM group 

spent a greater proportion of time on the information screen than those from the SDM & ABM 

group. Most activities were performed a similar number of times by students in the SDM and SDM & 

ABM groups. Students in the SDM group explored the model in full more often than those in the 

SDM & ABM group, and selected the ideas option more often.  

 

The relationships between the activities performed and the screens that students spent time on for 

each model were compared using correlations for the SDM & ABM group. Spearman’s rho was used 

to determine the relationships between the measures of the use of the model in each group due to 

the non-parametric nature of the data.  
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Table 5-11: Results of the correlations comparing the use of the system dynamics model and the 
agent-based model in the SDM & ABM group  

Proportion of time spent on each screen in the agent-

based model 

Activity in the agent-based 

model 

Use of 

the 

model Exp Inf OT Go TA 

Proportion of time spent on each screen in the system dynamics model  

SDM -.83* -.70 -.37 -.56 -.58 

Exp -.99** -.40 -.57 -.63 -.50 

Inf -.58 -.68 -.46 -.19 -.27 

ETM -.06 -.68 .26 -.19 -.44 

OT -.37 -.29 -.48 .02 .02 

Activity in the system dynamics model   

Go -.93** -.28 -.57 -.63 -.50 

IF -- -- -- -- -- 

SbS -.49 -.59 -.24 -.43 -.56 

Ideas -.80 -.10 -.42 -.43 -.25 

TA -.89* -.40 -.44 -.56 -.46 

Note. SDM = proportion of time spent on the system dynamics model. Exp = proportion of time spent on the 

experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of time spent on 

the explore the model screens. OT = proportion of time spent off task. Go = number of times the model was 

run. IF = number of times the activity: explore the model in full was selected. SbS = number of times the 

activity: explore the model step by step was selected. Ideas = number of times the ideas option was selected. TA 

= total activity.  

n = 6. 

*p < .05; **p < .01. 

 

Table 5-11 shows that students who spent a greater proportion of time on the agent-based model 

experiment screen spent a lower proportion of time on the system dynamics model, and spent a 

lower proportion of time on the system dynamics model experiment screen. The proportion of time 

spent on the agent-based model experiment screen was negatively and significantly correlated with 

running the system dynamics model fewer times, and the total activity on the system dynamics 

model. 
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5.3.2 Discussion 
The exploratory questions addressed in this section are: 

 

E1a: Despite the differences in patterns of use due to the different run times of the agent-based 

and system dynamics models, will students will be engaged and use the experiment screen ore than 

other screens? 

 

E1b: If students used the agent-based model to constrain interpretation of the system dynamics 

model then this will be reflected in their use of the models, and students will use the system 

dynamics model more than the agent-based model.  

 

If E1a is supported positively by the evidence, the largest proportion of time will be spent on the 

experiment screen for students in all groups as is was on this screen that student were able to 

interact with the simulation. If E1b is supported by the evidence, user preference will show that 

students in the SDM & ABM group used the system dynamics model more than the agent-based 

model. The agent-based model is familiar to students, while the system dynamics model is more 

abstract. If they concentrate on the abstract representation then the assumption is that they have 

used the familiar representation to aid them in their understanding of the system dynamics model, 

given the success in terms of increase in learning outcomes. The ways in which each of the types of 

model was used will now be discussed: the agent-based model, the system dynamics model, a 

comparison between the two types of model, and use of both the agent-based and system 

dynamics model. 

5.3.2.1 Using the agent-based model 

Students in the ABM group spent the largest proportion of their time on the experiment screen. This 

means that students spent most of their time on the screen where they could interact with the 

model. The difference between the frequencies of changes to the three variables in the ABM group 

was non-significant. The correlations between the experiment screen and other uses of the model 

were non-significant indicating that students may have spent more time observing the animation 

rather than interacting with the model. 
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5.3.2.2 Using the system dynamics model 

Students in the SDM group spent the largest proportion of their time on the experiment screen. This 

means, as for the ABM group, students in the SDM group spent most of their time on a screen 

where they could interact with the model. Students in the SDM group had a higher total activity than 

students from the ABM group. This result was expected due to the differences in the running time 

of each model. The proportion of time spent on the experiment screen was correlated with running 

the model. This indicates that students used the time on the experiment screen to interact with the 

model. 

5.3.2.3 Using the agent-based and the system dynamics model 

5.3.2.3.1 E1a: General patterns of use 

Students in the SDM & ABM group spent the largest proportion of their time on the experiment 

screen when measures of use of the models were combined for the two models and for each model 

separately. This means that students spent most of their time on a screen where they could interact 

with a model. The proportion of time spent on an experiment screen was correlated with most 

activities, and students who spent a greater proportion of time on an experiment screen spent a 

lower proportion of time off task. This implies that students were engaged with the models.  

5.3.2.3.2 E1b: User preference and the coordination of multiple 

representations 

In the SDM & ABM group, students could choose either model and interact with each in almost the 

same way. Students used the system dynamics model in a similar way those in the SDM group, and 

interacted with the agent-based model less than those in the ABM group. Students who used the 

system dynamics model concentrated on the experiment screen and changed the variables 

presented.  

 

Students in the SDM and SDM & ABM groups spent similar proportions of time on the experiment 

screen and the explore the model screen and off task. They also interacted with the model in similar 

ways in terms of running the model and the total activity.  

 

There were differences in the ways that students in the two groups used the system dynamics 

model. The system dynamics model itself involves multiple representations, and students could 
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access the text description or explanation of the model structure in order to constrain their 

interpretation of the stock and flow diagram. Students in the SDM group spent a greater proportion 

of time on the information screen than those in the SDM & ABM group; and also elected to explore 

the model in full and select the ideas option more often. This indicates that students in the SDM 

group spent more time accessing the constraining options of the system dynamics model than 

students in the SDM & ABM group. In the SDM group, there was a negative and significant 

correlation between the selection of the ideas option and the proportion of time spent on the 

information screen. This suggests that students in this group acquired their constraining 

information from one of these options, and examined the model in full.  

 

Students in the SDM & ABM group constrained their interpretation by exploring the model step by 

step, and observing the agent-based model. Significant correlations indicate that if students 

explored the model step-by-step, they also spent time on the information screen on the system 

dynamics model (although not as high a proportion of time as students in the SDM group). Students 

from the SDM & ABM group were, on the whole, more successful with respect to learning outcomes 

than those from the SDM group. While the way in which students interacted with the system 

dynamics model was similar, the source for the additional (constraining) information differed. For 

these students, their use of the agent-based model also has to be taken into account.  

 

Students in the SDM & ABM group used the agent-based model less than students in the ABM 

group. Activities in the agent-based model were negatively and significantly correlated with 

activities in the system dynamics model. If students interacted with one model, they did not interact 

with the other. Students in the ABM group spent a greater proportion of time on the experiment 

screen, off task, and undertook all activities more often than those in the SDM & ABM group. 

Students in the SDM & ABM group who used the agent-based model were engaged with the task. 

This is illustrated by the fact that the proportion of time spent on this model was positively and 

significantly correlated with the proportion of time on the experiment screen and changing the 

number of pieces of rubbish. As was expected, more activity on the agent-based model was 

significantly correlated with fewer activities on the system dynamics model.  

 

Students from the ABM and SDM & ABM groups spent similar proportions of time on the information 

screen in the agent-based model. While the proportion of time spent on the information screen on 

the agent-based model was not significantly correlated with any activities in the SDM & ABM group, 
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the screen did provide students with an additional source of constraining information. Additionally, 

students from the SDM group used either the information screen or the ideas option, as well as 

exploring the model in full, however when given the choice, students in the SDM & ABM group used 

the information screen from the agent-based model and explored the model step-by-step (on the 

system dynamics model).  

5.3.3 Conclusions 
When given the choice, regardless of the model type, students choose to interact with the model, 

and not to spend a large proportion of their time off task. When given the choice between two 

models, students used the system dynamics model more than the agent-based model. This 

indicates that students used the agent-based model to constrain their understanding of the system 

dynamics model (Ainsworth, 1999b). The agent-based model includes a representation that is 

familiar to students, while the system dynamics model is more abstract. If students concentrate on 

the abstract representation then the assumption is that they used the familiar representation to aid 

them in their understanding of the system dynamics model. Students in the SDM & ABM group were 

able to add to the knowledge gained by using either of the models individually. Those who used 

only the system dynamics model did not improve knowledge scores, but did use the model similarly 

to students who had access to both. The difference identified in this study between the SDM group 

and the SDM & ABM group (given the similarity in user patterns) was the access to the agent-based 

model, and the ability of students to increase scores associated with direct knowledge, in a 

relatively short period of time, and their ability to transfer this knowledge to other systems. 

 

The results of the correlations suggest that the source of the constraining information was an 

important difference between the groups. Students in the SDM group spent a greater proportion of 

time on the information screen than students in the SDM & ABM group, and explored the model in 

full and selected the ideas option more often. Students in the SDM & ABM group used the agent-

based model. Students in the ABM group spent a similar proportion of time on the agent-based 

model information screen to that spent by students in the SDM & ABM group. These differences may 

help to explain the differences between the groups for specific learning outcomes. The 

relationships between the measures of use of the models and the learning outcomes in each group 

will be explored in the following section. 
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5.4USE OF THE MODELS AND LEARNING OUTCOMES 
5.4.1 Results 
This second section will report on the significant correlations between measures of the use of the 

model and learning outcomes. Preliminary findings from Chapter 4 with regards to learning 

outcomes associated with the use of the agent-based model (such as specific environmental 

knowledge and understanding) supported the current literature related to learning from animations 

(Lowe, 2003, 2004) and relating information at different levels (Levy, Kim, & Wilensky, 2004). There 

is little research about learning with system dynamics models, however the findings supported 

research that suggested that the knowledge of general system dynamics concepts may be important 

in interpreting stock and flow diagrams (Maryland Virtual High School, 2001), and that the cognitive 

load associated with learning from a new, abstract, scientific diagram is high, and students may be 

unable to also engage in relating this to specific knowledge arising from the model (Lowe, 1993). In 

addition, the evidence suggested that the group using multiple representations were successful 

because certain information was better presented using a particular style of representation (for 

example the animation) (de Jong et al., 1998), because the links between the representations could 

be easily seen (for example apply environmental knowledge to another ecosystem) (Wisnudel 

Spitulnik, Stratford, Krajcik, & Soloway, 1998), and because they provided learners with the choice 

of how they wished to learn (Ainsworth, 1999a; Savelsbergh, de Jong, & Ferguson-Hessler, 1998). A 

number of negative correlations between learning outcomes suggested that students were not able 

to learn everything.  

 

It was suggested in Chapter 4 that the use of the model should be investigated specifically for those 

learning outcomes for which prior knowledge played no part. The learning outcomes that this 

applies to are: knowledge of introduced animal species in the ABM group; knowledge about 

introduced animal species, introduced plant species, human impacts on an ecosystem and 

associated timescales, system dynamics knowledge and the Issues and Higher Level Thinking 

sections of the final assessment task in the SDM group; and knowledge about system dynamics 

concepts in the SDM & ABM group (E1c). 

 

Correlations between the measures of the use of the models and both the pre-test scores and the 

learning outcomes will be presented. Positive or negative and significant correlations between pre-

test scores and measures of the use of the models will indicate that a relationship exists between 
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prior knowledge and the preference of the user. In turn, significant (positive or negative) 

correlations between those measures of the use of the models and learning outcomes will indicate 

relationships between user preference and learning outcomes.  

Table 5-12: Results of correlations between pre-test scores and learning outcomes, and the use of 
the model in the ABM group  

Proportion of time spent on each screen Activity Use of the 

model Exp Inf OT Go TA 

Prior knowledge   

Q5pre .46 -.56 .21 .67 .87 

Q6pre .31 -.87 .56 .87 .56 

Q7pre .58 -.63 .05 .63 .95** 

SDKpre .50 -.90* .50 1.00** .60 

Learning outcome     

Q5post -.46 -.10 .82 .36 .10 

Q5change -.78 .11 .89* .11 -.45 

Q6post .36 -.87 .36 .72 .46 

Q6change .29 -.58 .00 .29 .00 

Q7post .50 -.60 .00 .50 .90* 

Q7change -.50 .90* -.50 -1.00** -.60 

SDKpost .50 -.90* .50 1.00** .60 

SDKchange .35 .00 -.35 .00 .71 

Describe .26 -.79 .53 .79 .63 

Issues .31 -.87 .56 .87 .56 

HLT .74 -.95** .21 .95** .79 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Go = number of times the model was run. TA = 

total activity. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant 

species. Q7 = knowledge about human impacts on an ecosystem and associated timescales. SDK = system 

dynamics knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the 

final assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-test score. post 

= post-test score. change = change in the score between the pre- and post-test. 
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n = 5. 

*p < .05; **p < .01. 

 

Table 5-12 shows that students in the ABM group who had a lower pre-test score assessing system 

dynamics knowledge spent a higher proportion of their time on the information screen, and 

students who spent a higher proportion of their time on the information screen had a lower post-

test score for system dynamics knowledge, a lower score for the Higher Level Thinking section of 

the final assessment task and a greater change in the score assessing knowledge of human impacts 

on an ecosystem and associated timescales (Question 7). Students who spent a greater proportion 

of their time off task had a greater change in the score assessing knowledge of introduced animal 

species (Question 5). 

 

Students in the ABM group who had a higher pre-test score assessing system dynamics knowledge 

ran the model more often. Students who ran the model more often had a higher post-test score 

assessing system dynamics knowledge and for the Higher Level Thinking section of the final 

assessment task and a smaller change in their knowledge of human impacts on an ecosystem and 

associated timescales (Question 7). 

 

Students who had a higher pre-test score assessing knowledge about human impacts on an 

ecosystem and associated timescales (Question 7) had a higher total activity. Students who had 

higher total activity had a higher post-test score for this question. 
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Table 5-13: Results of correlations between pre-test scores and the learning outcomes, and the use of the model in the SDM group 
Proportion of time spent on each screen Activity Use of the 

model Exp Inf ETM OT Go IF SbS Ideas TA 

Prior knowledge      

Q5pre .36 .14 -.79* -.02 .22 .50 -- .30 .11 

Q6pre .36 .14 -.76* .12 .19 .17 -- .19 .09 

Q7pre -.27 .87** -.63 .08 -.18 -.26 -- -.70 -.22 

SDKpre .54 -.43 .13 -.38 .02 .06 -- .26 .02 

Learning outcome         

Q5post .90** -.85* -.05 -.06 .84* .35 -- .72 .81* 

Q5change .32 -.79* .76* -.35 .54 -.10 -- .41 .58 

Q6post .78* -.41 -.32 .49 .66 -.36 -- .05 .69 

Q6change .40 -.22 .14 .24 .46 -.74 -- -.39 .54 

Q7post -.87** .61 .12 .06 -.66 -.25 -- -.35 -.67 

Q7change -.04 -.70 .70 .00 .00 .21 -- .62 .04 
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Proportion of time spent on each screen Activity Use of the 

model Exp Inf ETM OT Go IF SbS Ideas TA 

SDKpost -.41 .34 .16 -.67 -.56 -.06 -- -.03 -.63 

SDKchange -.51 .25 .32 -.43 -.08 -.25 -- -.11 -.13 

Describe .06 -.11 .04 -.75 .25 .56 -- .49 .15 

Issues .47 -.32 .04 -.66 .38 .49 -- .36 .34 

HLT .02 .31 -.07 -.37 .28 -.47 -- -.43 .26 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of time spent on the explore the 

model screens. OT = proportion of time spent off task. Go = number of times the model was run. IF = number of times explore the model in full was selected. SbS = number 

of times explore the model step by step was selected. Ideas = number of times the ideas option was selected. TA = total activity. Q5 = knowledge about introduced animal 

species. Q6 = knowledge about introduced plant species. Q7 = knowledge about human impacts on an ecosystem and associated timescales. SDK = system dynamics 

knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final assessment task. HLT = Higher Level Thinking section of the final 

assessment task. pre = pre-test score. post = post-test score. change = change in the score between the pre- and post-test. 

n = 6.  

*p < .05; **p < .01. 
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Table 5-13 shows that in the SDM group, all pre-test scores were non-significantly correlated with 

the proportion of time spent on the experiment screen. Students who spent a larger proportion of 

their time on the experiment screen had higher post-test scores assessing knowledge about 

introduced animal and plant species (Questions 5 and 6), and a lower post-test score assessing 

knowledge of human impacts on an ecosystem and associated timescales (Question 7). 

 

Students who had a higher pre-test score assessing knowledge about human impacts on an 

ecosystem and associated timescales (Question 7) spent a greater proportion of their time on the 

information screen. The proportion of time spent on this screen was negatively and significantly 

correlated with the post-test score assessing knowledge of introduced animal species (Question 5) 

and the change in this score.  

 

Pre-test knowledge about introduced animal and plant species (Questions 5 and 6) scores were 

negatively and significantly correlated with the proportion of time spent on the explore the model 

screen. Students who spent a larger proportion of their time on the explore the model screen had a 

greater change in the Question 5 score. 

 

The significant correlation between running the model and the post-test score assessing knowledge 

about introduced animal species (Question 5) was positive. Students who had a higher total activity 

had a higher post-test score assessing knowledge of introduced animal species (Question 5). 
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Table 5-14: Results of correlations between pre-test scores and learning outcomes, and the use of 
the agent-based model in the SDM & ABM group 

Proportion of time spent on each screen Activity Use of the 

model Exp Inf OT Go TA 

Prior knowledge   

Q5pre -.70 .03 -.65 -.98** -.92** 

Q6pre -.60 -.09 -.03 -.68 -.58 

Q7pre -.66 .15 -.27 -.80 -.64 

SDKpre -.89* .52 -.37 -.93** -.93** 

Learning outcome     

Q5post -.50 -.19 -.35 -.89* -.96** 

Q5change .66 -.42 .78 .42 .13 

Q6post -.81* -.34 -.15 -.56 -.44 

Q6change -.27 -.87* -.14 .20 .06 

Q7post -.59 -.19 -.61 -.11 .05 

Q7change .43 .15 -.03 .68 .70 

SDKpost -.75 .65 -.43 -.71 -.46 

SDKchange -.03 .49 -.17 .02 .31 

Describe -.80 -.03 -.29 -.73 -.56 

Issues -.87* -.31 -.36 -.56 -.44 

HLT -.62 .30 -.42 -.77 -.56 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the 

information screen. OT = proportion of time spent off task. Go = number of times the model was run. TA = 

total activity. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced plant 

species. Q7 = knowledge about human impacts on an ecosystem and associated timescales. SDK = system 

dynamics knowledge. Describe = describe section of the final assessment task. Issues = issues section of the 

final assessment task. HLT = higher level thinking section of the final assessment task. pre = pre-test score. post 

= post-test score. change = change in the score between the pre- and post-test. 

n = 5. 

*p < .05. **p < .01. 
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Table 5-14 shows that in the SDM & ABM group, students who had a lower pre-test score assessing 

system dynamics knowledge spent a greater proportion of their time on the experiment screen on 

the agent-based model. In addition, students who spent a higher proportion of their time on the 

experiment screen on the agent-based model had a lower post-test score assessing knowledge of 

introduced plant species (Question 6) and a lower score for the Issues section in the final 

assessment task. Students who spent a higher proportion of their time on the information screen 

had a smaller change in their knowledge of introduced plant species (Question 6). 

 

Pre-test scores assessing knowledge about introduced animal species (Question 5) were 

significantly and negatively correlated with running the agent-based model, as were pre-test 

system dynamics knowledge scores. Students who ran the agent-based model more often had a 

lower post-test score assessing knowledge of introduced animal species (Question 5).  

 

Students who had a higher pre-test scores assessing knowledge about introduced animal species 

(Question 5) and system dynamics concepts had lower total activity on the agent-based model. 

Students who had lower total activity in the agent-based model had a higher post-test score 

assessing knowledge of introduced animal species (Question 5). 
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Table 5-15: Results of correlations between pre-test scores, learning outcomes and the use of the system dynamics model, SDM & ABM group 
Proportion of time spent on each screen Activity Use of the 

model Exp Inf ETM OT Go IF SbS Ideas TA 

Prior knowledge      

Q5pre .65 .15 .15 -.11 .59 -- .36 .36 .52 

Q6pre .64 -.03 .32 -.34 .58 -- .34 .49 .60 

Q7pre .64 -.12 .06 -.34 .58 -- .19 .49 .54 

SDKpre .06 -.26 .38 -.17 .46 -- .46 .31 .43 

Learning outcome          

Q5post .51 .15 .51 -.23 .45 -- .51 .19 .44 

Q5change -.53 -.13 .66 -.31 -.53 -- .14 -.57 -.39 

Q6post .87* .32 .32 .02 .81 -- .50 .74 .84* 

Q6change .34 .65 .28 .36 .15 -- .30 -.03 .21 

Q7post .52 .30 -.51 .23 .31 -- -.19 .21 .24 

Q7change -.49 -.12 -.64 .17 -.55 -- -.62 -.46 -.60 
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Proportion of time spent on each screen Activity Use of the 

model Exp Inf ETM OT Go IF SbS Ideas TA 

SDKpost .71 -.46 -.13 .07 .74 -- .24 .78 .67 

SDKchange .72 -.25 -.46 .38 .49 -- -.05 .74 .44 

Describe .81* .19 .19 -.02 .81* -- .43 .77 .80 

Issues .91* .60 .34 .43 .97** -- .71 .94** .99** 

HLT .55 -.25 -.25 -.42 .42 -- -.10 .32 .34 

Note. Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of time spent on the explore the 

model screens. OT = proportion of time spent off task. Go = number of times the model was run. IF = number of times explore the model in full was selected. SbS = number 

of times explore the model step by step was selected. Ideas = number of times the ideas option was selected. TA = total activity. Q5 = knowledge about introduced animal 

species. Q6 = knowledge about introduced plant species. Q7 = knowledge about human impacts on an ecosystem and associated timescales. SDK = system dynamics 

knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the final assessment task. HLT = Higher Level Thinking section of the final 

assessment task. pre = pre-test score. post = post-test score. change = change in the score between the pre- and post-test. 

n = 6.  

*p < .05; **p < .01. 
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Table 5-15 shows that students in the SDM & ABM group who spent a higher proportion of time on 

the experiment screen on the system dynamics model had a higher post-test score assessing 

knowledge of introduced plant species (Question 6), and higher scores for the Describe and Issues 

sections of the final assessment task. Students who selected ‘go’ more often on the system 

dynamics model had higher scores for the Describe and Issues sections of the final assessment 

task. The frequency of the selection of the ideas option was positively and significantly correlated 

with the Issues section of the final assessment task. 

 

Students who had higher total activity had higher post-test scores assessing knowledge of 

introduced plant species (Question 6) and a higher score for the Issues section of the final 

assessment task. 
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Table 5-16: Results of the correlations between pre-test scores and learning outcomes, and the 
overall use of the models in the SDM & ABM group 

Proportion of time spent on each screen Activity Use of the 

model SDM Exp Inf OT Go TA 

Prior knowledge   

Q5pre .58 .27 .21 -.46 .52 .52 

Q6pre .60 .66 -.31 -.38 .60 .60 

Q7pre .49 .60 -.03 -.52 .54 .54 

SDKpre .43 .20 .20 -.35 .43 .43 

Learning outcome    

Q5post .62 .35 -.09 -.40 .44 .44 

Q5change -.13 .13 -.66 .13 -.39 -.39 

Q6post .81* .46 -.35 -.06 .84* .84* 

Q6change .52 -.09 -.46 .31 .21 .21 

Q7post .29 .06 .12 -.15 .24 .24 

Q7change -.60 -.37 .26 .12 -.60 -.60 

SDKpost .38 .17 .35 -.16 .67 .67 

SDKchange .00 -.17 .38 .29 .44 .44 

Describe .68 .40 -.06 -.17 .80 .80 

Issues .84* .03 -.06 .29 .99** .99** 

HLT .31 .62 .12 -.72 .34 .34 

Note. SDM = proportion of time spent on the system dynamics model. Exp = proportion of time spent on the 

experiment screen. Inf = proportion of time spent on the information screen. OT = proportion of time spent off 

task. TA = total activity. Q5 = knowledge about introduced animal species. Q6 = knowledge about introduced 

plant species. Q7 = knowledge about human impacts on an ecosystem and associated timescales. SDK = system 

dynamics knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the 

final assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-test score. post 

= post-test score. change = change in the score between the pre- and post-test. 

n = 6. 

*p < .05. **p < .01. 

 



Use of the Models 

 

162

Table 5-16 shows that students who spent a greater proportion of their time on the system 

dynamics model had a higher post-test score assessing knowledge of introduced plant species 

(Question 6) and a higher score for the Issues section of the final assessment task. Students who 

selected ‘go’ more times overall had a higher post-test score assessing knowledge about 

introduced plant species (Question 6) and a higher score for the Issues section of the final 

assessment task. 

 

The total activity was positively and significantly correlated with the post-test scores assessing 

knowledge of introduced plant species and the score for the Issues section of the final assessment 

task. 



Use of the Models 

 

163

5.4.2 Discussion 
The exploratory question addressed in this part of the chapter was: 

 

E1c: Is the use of the model related to learning outcomes, particularly for those with which prior 

knowledge had no relationship? 

 

Investigations of the relationships between prior knowledge and user preference, and between 

measures of use of the models and learning outcomes are presented in this section. In order for the 

hypothesis to be supported, significant correlations between the learning outcomes with which 

prior knowledge had non-significant relationships, and measures of use will be presented. It should 

be briefly acknowledged here that prior knowledge and these measures of use of the models are 

only two variables that could explain differences in learning outcomes between the groups. This 

discussion will elaborate on the informative relationships between measures of use of the models 

and both prior knowledge and learning outcomes for students using: the agent-based model, the 

system dynamics model, and both models. 

5.4.2.1 Learning from the agent-based model 

Findings from the previous chapter indicated that some learning outcomes were not related to prior 

knowledge. In a number of these cases, previous research conducted in the fields of learning from 

animations and learning from agent-based models (for example, (Lowe, 2003, 2004)) resulted in 

the prediction that the representation itself encouraged learning about a particular area. For 

example, it has been predicted that students in the ABM group would learn about those areas that 

are distinctive in the animation used in the agent-based model. Subjects tend to be attracted to the 

information generated by the features in the animation that actually change in a contrasted way to 

the rest of the display (Lowe, 2003, 2004). In particular, this involved Question 5 (knowledge about 

introduced animal species), because rats are used to represent introduced animal species and are 

visible in the animated representation. Research also suggests that the nature of the 

representations used in the agent-based model may make it difficult for students to relate their 

model-specific knowledge to other systems (Levy et al., 2004).  
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5.4.2.1.1 The role of prior knowledge 

There is some research examining students’ interaction with agent-based models; however the role 

of prior knowledge in patterns of use has not yet been explored. It is expected that prior knowledge 

will have some effect, and may explain some differences in the use of the models.  

 

Significant correlations indicate that prior knowledge about the environment and about system 

dynamics were related to the use of the model. Students with lower system dynamics prior 

knowledge spent a greater proportion of time on the information screen, and students with higher 

prior knowledge ran the model more often. Prior knowledge about human impacts on an ecosystem 

was also related to the total activity. These results indicate that generally high domain knowledge 

and system dynamics knowledge was associated with greater interaction with the agent-based 

model. Students who had lower prior knowledge spent a greater proportion of the time on the 

information screen (which contained a text description of the system). It is possible that these 

students used the text description of the system to interpret the results of the model. These 

students did not run the model often, possibly because of the long running time of the agent-based 

model in addition to the greater proportion of time these students spent reading the text. The 

results of the previous section indicated that students may have spent more time observing the 

animation rather than interacting with the model. However, these new results suggest a more active 

learner, at least amongst students with higher prior knowledge. 

5.4.2.1.2 Affordances of the agent-based model 

Students in the ABM group increased knowledge scores assessing knowledge of introduced animal 

and plant species (Questions 5 and 6), and system dynamics knowledge. In the case of knowledge 

about introduced plant species and system dynamics concepts, results presented in Chapter 4 

suggested that prior knowledge played a role in those answers. Correlations between post-test 

scores associated with introduced plant species and measures of use of the model were non-

significant. The ways in which students in the ABM group used the model did not explain the 

increase in the Question 6 score. Knowledge about system dynamics concepts was related to the 

applied environmental knowledge score, and will be discussed in the following section. 

 

Knowledge about introduced animal species was not related to prior knowledge. It was suggested in 

Chapter 4 that the increase in this score in the ABM group was due to the animation used in the 



Use of the Models 

 

165

agent-based model. The post-test score for Question 5 and the proportion of time spent off task 

were positively and significantly correlated. This implies that if students spent a greater proportion 

of time off task, they had a higher post-test score for Question 5, however students in this group 

did significantly increase this score. If the increase in the score is related to the animation used in 

the agent-based model, it may be that a very short exposure to the animation (given the 

relationship with the proportion of time spent off task) allowed students to increase their score for 

this learning outcome. It may also be that a greater proportion of time spent on-task resulted in 

increases in other learning outcomes.  

5.4.2.1.3 Limitations of the agent-based model 

Students in the ABM group did not increase their score for the question that required the 

application of system specific knowledge to other systems. The ability of students to make those 

links using an agent-based model has been identified as challenging for students, however many 

studies have shown that students were successful in this. There was a lack of significant 

correlations to explain the lack of increase in the applied system dynamics knowledge score. 

Significant correlations discussed in Chapter 4 showed that there was a negative relationship 

between the change in the applied environmental knowledge score and the post-test score 

assessing system dynamics knowledge. Investigation of the relationships between the ways in which 

the model was used and these learning outcomes provide further information about why students 

were unable to make these links using this model, and explain the reason for the negative 

relationship between learning outcomes. 

 

It has already been discussed that students who had lower prior system dynamics knowledge spent 

a higher proportion of time on the information screen, and students who had higher environmental 

and system dynamics knowledge interacted more with the agent-based model. Significant 

correlations showed that students who spent a higher proportion of time on the information screen 

had a larger change in the score assessing knowledge of human impacts on an ecosystem and 

associated timescales (applied environmental knowledge). Students in the Text group did increase 

their score for this question, so the text description did allow students to apply their knowledge to 

another system. However, students in the ABM group did not increase their score for this question. 

Post-test system dynamics knowledge scores were positively and significantly correlated with 

running the model. These results suggest that higher prior knowledge about system dynamics 

concepts prompted students to run the agent-based model and change the variables. By doing this, 
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they further increased their score assessing system dynamics knowledge, and had greater access to 

the animated representation (perhaps resulting in the increase in scores assessing knowledge of 

introduced animal and plant species as discussed above). Students who had lower prior knowledge 

about system dynamics concepts spent a greater proportion of time on the information screen, 

perhaps in order to constrain their interpretation of the agent-based model. However, this meant 

that they did not have as much time to spend interacting with the model, and so while they were 

able to apply their knowledge to other ecosystems, they did not increase their system dynamics 

knowledge. The challenge of identifying links between the representation and reality seems to be 

specifically related to the time restrictions and the constraining information used. 

5.4.2.1.4 Understanding the system using the agent-based model 

Three measures of students’ understanding of the system have been examined (describing the 

system, identify the issues, and engaging in higher level thinking). Significant correlations between 

the use of the model and students’ scores in describing the system did not explain students’ 

answers beyond that already discussed in Chapter 4. Correlations between the use of the model and 

the Issues section of the final assessment task were non-significant. However, the discussion of the 

role of the information screen in relation to system dynamics knowledge has prompted a small 

correction of the explanation of the Issues score in the ABM group. It was suggested that in order to 

identify the issues in the materials, students in the ABM group elaborated on events outlined in the 

Describe section and used knowledge gained from the text. However, system dynamics knowledge 

was related to the Describe score; and system dynamics knowledge was not acquired from the text, 

instead from general use of the model. This indicates that students in the ABM group elaborated on 

events outlined in the Describe section and used knowledge gained from general use of the model. 

With respect to the Higher Level Thinking section, significant correlations showed that interacting 

with the model (and not the proportion of time spent on the information screen) as well as prior 

knowledge helped students to make predictions and identify consequences of their decisions.  

5.4.2.2 Learning from the system dynamics model 

There is little research about learning with system dynamics models, however the findings from 

Chapter 4 supported research that suggested that the knowledge of general system dynamics 

concepts may be important in interpreting stock and flow diagrams (Maryland Virtual High School, 

2001), and that the cognitive load associated with learning from a new, abstract, scientific diagram 

is high, and students may be unable to also engage in relating this to specific knowledge arising 
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from the model (Lowe, 1993). Findings from the previous chapter indicated that some learning 

outcomes were not related to prior knowledge. In a number of these cases, previous research 

conducted in the fields of learning from abstract diagrams (for example, (Schieritz & Milling, 2003; 

Wakeland et al., 2004)) resulted in the prediction that the representation itself encouraged or 

discouraged learning about a particular area. Knowledge about introduced animal species, 

introduced plant species, human impacts on an ecosystem and associated timescales, system 

dynamics knowledge and the Issues and Higher Level Thinking sections of the final assessment task 

in the SDM group were all suggested as being related to the use of the system dynamics model.  

5.4.2.2.1 The role of prior knowledge 

The first part of this discussion focuses on the role of prior knowledge in guiding use of the 

models. There is little research examining students’ interaction with system dynamics models, and 

none of it explores this particular question. It is expected that prior knowledge will have some 

effect on the way in which the system dynamics model is used.  

 

Prior knowledge about the environment was related to the type of constraining representation 

students used to help them interpret the results of their interaction with the system dynamics 

model. Students who had higher prior knowledge of human impacts on an ecosystem and 

associated timescales used the explanatory features of the system dynamics model (the information 

screen), and those who lacked knowledge about the areas that the materials presented (knowledge 

about introduced animal and plant species) chose to explore the model. 

5.4.2.2.2 Affordances of the system dynamics model 

Students given the system dynamics model did not increase any knowledge score. All relationships 

between use and learning outcomes for this group will be discussed in the following sections. 

5.4.2.2.3 Limitations of the system dynamics model 

Students in the SDM group had non-significant changes for all three environmental knowledge 

questions and the system dynamics knowledge question. Correlations between the post-test score 

assessing applied environmental knowledge and system dynamics knowledge and the measures of 

use of the model were not useful in explaining the lack of change in these items. However 

environmental knowledge scores were related to the use of the system dynamics model, and will 

each be discussed below. 
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The results of the correlations show that students who used the explore the model screen to 

constrain their interpretation of the system dynamics model, and who did not use the information 

screen, had a greater change in the score assessing knowledge of introduced animal species. 

Students who spent a greater proportion of time on the information screen also had a lower change 

in their score assessing knowledge of introduced plant species. In addition, interaction with the 

system dynamics model (knowledge of introduced animal species) and the proportion of time spent 

on the experiment screen (knowledge of introduced plant species) were positively related to 

system-specific environmental knowledge. These results suggest that for this item, the explore the 

model screen was a more successful additional representation than the text description. It may be 

that students, who explored the model, were then better able to interpret the stock and flow 

diagram than those who had read the text-based information. A number of studies have suggested 

that if learners are already familiar with either the domain or the representation, then there should 

be an increased ability to recognise the connection between the representation and the 

phenomenon represented (Ainsworth, Bibby, & Wood, 1998; Horwitz & Christie, 1999; Seufert, 

Janen, & Brunken, 2007). However these results suggest that, at least for learning from a system 

dynamics model, familiarity with the representation is more important than familiarity with the 

domain for interpreting the model. In order for students to increase their score for this question, 

they also needed to run the model and have generally high activity. Students in the SDM group did 

have high activity, but not significantly higher than the activity in the other groups, and these 

results suggest that the activity was without the necessary representational familiarity to make 

sense of the system dynamics model.  

5.4.2.2.4 Understanding the system using the system dynamics model 

Three measures of students’ understanding of the system have been examined (describing the 

system, identifying the issues, engaging in higher level thinking). Significant correlations between 

the use of the model and students’ scores in describing the system or assessing Higher Level 

Thinking did not explain students’ answers beyond that already discussed in Chapter 4. In Chapter 

4, evidence was outlined to suggest that students in the SDM group used the representation to 

answer the Issues section of the final assessment task. Examination of the potential impacts of 

management decisions (which changing the number of pieces of rubbish allows students to do) may 

have helped students to identify issues in the materials.  
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5.4.2.3 Learning from multiple representations 

Findings from the previous chapter indicated that some learning outcomes were not related to prior 

knowledge. In a number of these cases, previous research conducted in the fields of learning from 

animations and learning from agent-based models (for example, (Lowe, 2003, 2004)) and learning 

from abstract diagrams (for example, (Schieritz & Milling, 2003; Wakeland et al., 2004)) resulted in 

the prediction that the representation itself encouraged learning about a particular area.  

 

Preliminary findings from Chapter 4 with regards to learning outcomes associated with the use of 

the agent-based model (such as specific environmental knowledge and understanding) supported 

the current literature related to learning from animations (Lowe, 2003, 2004) and relating 

information at different levels (Levy et al., 2004). There is little research about learning with system 

dynamics models, however the preliminary findings suggested that the knowledge of system 

dynamics concepts may be important in interpreting stock and flow diagrams (Maryland Virtual High 

School, 2001), and that the cognitive load associated with learning from a new, abstract, scientific 

diagram is high, and students may be unable to also engage in relating this to specific knowledge 

arising from the model (Lowe, 1993). In addition, the evidence suggested that the group using 

multiple representations were successful because certain information was better presented using a 

particular style of representation (for example the animation) (de Jong et al., 1998), because the 

links between the representations could be easily seen (for example apply environmental knowledge 

to another ecosystem) (Wisnudel Spitulnik et al., 1998), and because they provided learners with the 

choice of how they wished to learn (Ainsworth, 1999a; Savelsbergh et al., 1998). A number of 

negative correlations between learning outcomes suggested that students were not able to learn 

everything.  

 

Knowledge about system dynamics concepts in the SDM & ABM group was not related to prior 

knowledge, and this and Question 6 were the only knowledge scores for which there was a non-

significant change in this group, although large effect sizes were associated with each. Investigation 

of the use of the models may explain whether this is a result of cognitive load (van der Meij & de 

Jong, 2006) or user preference (Ainsworth, 1999a). 
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5.4.2.3.1 The role of prior knowledge 

There is little research examining students’ interaction with either system dynamics or agent-based 

models, and none of it explores the role of prior knowledge. However there is research that has 

examined the role of prior knowledge in learning from multiple representations. From this, it is 

expected that prior knowledge will have some effect on the use of the individual models, and on the 

coordination between the two.  

 

In the SDM & ABM group, correlations between the proportion of time spent on either model and 

learning outcomes were non-significant. Instead, interaction with the models was related to 

learning outcomes. Prior environmental knowledge was positively and significantly correlated with 

activities performed on the system dynamics model and prior environmental and system dynamics 

knowledge was negatively and significantly correlated with activities performed on the agent-based 

model and associated screens.  

 

The significant correlations discussed previously indicate that in the ABM group and the SDM group, 

students with lower levels of prior environmental and system dynamics knowledge performed fewer 

activities, and spent a greater proportion of time on the information screen. In the SDM & ABM 

group, lower levels of prior environmental and system dynamics knowledge were associated with 

more activities performed on the agent-based model. Giving students access to both models 

allowed those students with lower prior environmental and system dynamics knowledge to interact 

with a model, an opportunity which was not taken by students with lower prior knowledge in the 

single-model groups.  

5.4.2.3.2 Affordances of multiple representations 

Students in the SDM & ABM group were able to increase knowledge scores for all environmental 

knowledge questions and applied system dynamics knowledge. Prior knowledge was shown to be a 

factor in all these learning outcomes. In addition, the evidence suggested that the group using 

multiple representations was successful because certain information was better presented using a 

particular style of representation (for example the animation) (de Jong et al., 1998), and because the 

links between the representations could be easily seen (for example apply environmental knowledge 

to another ecosystem) (Wisnudel Spitulnik et al., 1998). Significant correlations between use of the 

models and applied environmental knowledge and system dynamics knowledge questions were not 
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able to explain alone whether students were able to increase these knowledge scores because the 

links between the representations could be easily seen. However, some evidence will be presented 

which suggests that certain information was better presented using particular styles of information. 

 

The pre-test score for Question 5 (assessing knowledge of introduced animal species) and for 

system dynamics knowledge were negatively and significantly correlated with measures of 

interaction with the agent-based model. Interaction with the agent-based model was negatively and 

significantly correlated with the post-test Question 5 score. Students in this group increased their 

score for this question. It may be that, as was found in the ABM group, a very short exposure to the 

animation allowed students to increase their score for this learning outcome, and that a greater 

proportion of time spent with the model resulted in increases in other learning outcomes. These 

results do suggest that similar relationships between the use of the animated representation and 

this learning outcome were present in both the ABM and the SDM & ABM groups. 

 

In the SDM & ABM group, the pre- and post-test scores assessing knowledge of introduced plant 

species were significantly correlated with each other. Prior knowledge of introduced plant species 

was related to the use of the system dynamics model, and the post-test score was related to not 

only the proportion of time spent on the experiment screen on the system dynamics model, but 

also to the total activity carried out on this model. The post-test score was negatively and 

significantly correlated with the proportion of time spent on the agent-based model experiment 

screen. The post-test score for this question was also correlated with the proportion of time spent 

on the experiment screen in the SDM group, and negatively correlated with the proportion of time 

spent on the information screen for this group. These results support the findings from the SDM 

group that the constraining representation in combination with interaction with the system 

dynamics model had an effect on post-test scores. Given the significant increase in the score for 

this question in the SDM & ABM group and the non-significant change in the SDM group, the results 

also suggest that using the agent-based model to constrain interpretation of the system dynamics 

model was more successful than using the text description. 
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5.4.2.3.3 Limitations of multiple representations 

Students in the SDM & ABM group did increase the score assessing system dynamics knowledge. 

This was unexpected, given that students in the SDM group did not significantly increase their 

scores. In the SDM & ABM group the post-test score assessing system dynamics knowledge was 

non-significantly correlated with pre-test scores, and non-significantly correlated with the use of 

the system dynamics model. It may be that the cognitive load attached to interpreting the materials, 

translating between them, and increasing their environmental knowledge and applied system 

dynamics knowledge scores was too great. 

5.4.2.3.4 Understanding the system using multiple representations 

Three measures of students’ understanding of the system have been examined. Significant 

correlations between the use of the model and students’ scores assessing Higher Level Thinking did 

not explain students’ answers beyond that already discussed in Chapter 4. 

 

Significant correlations between learning outcomes and examination of the answers outlined in 

Chapter 4 indicated that students in the SDM & ABM group incorporated environmental knowledge 

to interpret the models, but not to describe the national park itself. This is supported by significant 

correlations that show that the use of the system dynamics model, and not the agent-based model, 

was significantly correlated with the score for the Describe section. Students who spent a larger 

proportion of time on the experiment screen and interacted with the system dynamics model had a 

higher score for the Describe section. Despite interaction with the system dynamics model, students 

only answered one part of the Describe section of the final assessment task. It may be that having 

access to the agent-based model gave these students little reason to visualize the park themselves. 

 

In the SDM & ABM group, prior and acquired knowledge scores assessing environmental (introduced 

plant species) and system dynamics knowledge were significantly correlated with the Issues section 

of the final assessment task, however students’ answers concentrated on animals and visitors, 

possibly due to the animation used in the agent-based model. The score for the Issues section was 

negatively and significantly correlated with the proportion of time spent on the experiment screen 

and interaction with the agent-based model. However, this learning outcome was positively and 

significantly correlated with the proportion of time spent on the experiment screen and interaction 

with the system dynamics model. Perhaps students used the agent-based model to interpret the 
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system dynamics model, and were able to identify issues in relation to their experience with the 

agent-based model. 

5.4.3 Conclusion 
In conclusion, prior knowledge had an impact on the use of the agent-based model by the ABM 

group. Prior knowledge of both the domain and general system dynamics concepts had an impact 

on how students used the explanatory features of the model and how they interacted on the 

experiment screen. Higher domain knowledge was related to interaction, and higher general system 

dynamics knowledge to running the model and the time spent on the information screen. Prior 

domain knowledge was also related to the explanatory features students used in the SDM group. 

Those who had higher prior knowledge of human impacts on an ecosystem and associated 

timescales spent a greater proportion of time on the information screen. Students who had higher 

knowledge that came directly from the materials used the explore the model screens. In the SDM & 

ABM group, prior knowledge was related to the model that students chose to use. Students with 

higher prior environmental and system dynamics knowledge chose not to experiment with the 

agent-based model. Giving students access to both models allowed those students with lower prior 

environmental and system dynamics knowledge to interact with a model, an opportunity which was 

not taken by students in the ABM group or the SDM group. 

 

General interaction with the model had an effect on knowledge about introduced animals and 

plants, and students’ ability to describe what happened in the park and what the park looked like in 

the SDM and SDM & ABM groups. Changing specific variables was related to applied environmental 

knowledge in the SDM & ABM group, system dynamics knowledge in the ABM group and SDM 

group, and the ability of students to identify the environmental and management issues presented 

in the materials in the SDM group. 

 

The use of a representation to constrain interpretation of the model for students in each group was 

related to learning outcomes as well as prior knowledge. Use of the information screen (containing 

a text description of the system) enabled students in the ABM group to apply environmental 

knowledge to other systems, while interaction with the model did not. In Chapter 4 it was 

suggested that students were not able to identify links between system specific knowledge and 

other systems because this is challenging with an agent-based model. The results of the use of the 

model indicate that students were able to do this using the text description to constrain their 

interpretation of the materials. Interaction with the model without this constraining information 
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resulted in increases in system dynamics knowledge, and higher scores associated with 

understanding of the system. Use of the explore the model screen in the SDM group was associated 

with a higher post-test scores, whereas the information screen was associated with lower post-test 

scores. Perhaps because the explore the model screen improved students’ knowledge of the 

representation, allowing them to recognise the connection between the representation and the 

domain (Ainsworth et al., 1998; Horwitz & Christie, 1999; Seufert et al., 2007). However these 

results suggest that, at least for system dynamics models, familiarity with the representation is 

more important than familiarity with the domain for interpreting the model. In the SDM & ABM 

group, students used the agent-based model to constrain interpretation of the system dynamics 

model. This allowed them to identify issues in relation to their experience with the agent-based 

model. 

 

To make sense of the patterns of use, they were classified according to Levy and Wilensky’s (2005) 

strategies. The purpose of the following section is to investigate whether these strategies differed 

depending on the model, whether more information can be added to identify and describe 

strategies, and finally whether these strategies were influenced by or influenced learning outcomes.  
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5.5STRATEGIES 
To make sense of the patterns of use, the strategies used by the students to interact with the model 

were classified according to Levy and Wilensky’s (2005) strategies. After examination of the 

individual cases, it was decided that the strategies for changing the three variables would also be 

determined. The use of the model was then compared between the strategies that students used to 

determine whether any more factors could be used to make each classification. Finally, learning 

outcomes were compared between the classifications to investigate the effect of the strategy used 

to interrogate the model, regardless of the model used. 

Table 5-17: Patterns found in Levy and Wilensky’s (2005) study 
 Strategy 

Name Straight to the point Homing in Oscillating 

Description The most informative 

state is accessed 

directly 

The most informative 

state is gradually 

approached through 

decreasing increments 

The model oscillates 

between two regimes, 

back and forth between 

high and low values 

Overall 

observation time 
Lower Lower Higher 

Observation time 

per run 
Higher Lower Lower 

Time between 

actions 
Higher Lower Lower 

Runs Lower Higher Medium 

 

The time observing the model was taken as the time spent on the experiment screen. The time 

spent observing the model in each setting was calculated by dividing the total time spent observing 

the model by number of times ‘go’ was selected. The time spent off-task and spent reading the 

text/instructions were included as a result of the pilot study. The number of runs was equal to the 

number of times ‘go’ was selected. Time per action was calculated by dividing the time observing 

the model by the number of changes made. And the number of changes made was equal to the 

total activity. After examination of the individual cases, it was decided that the strategies for 

changing the three variables would also be determined. The use of the model was then compared 
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between the strategies that students used in order to determine whether any more factors could be 

used to make each classification. Finally, learning outcomes were compared between the 

classifications to investigate the effect of the strategy used to the interrogate the model, regardless 

of the model used. 

5.5.1 Results 
In this section, the overall strategies used to interrogate the models are classified for students in 

each group. Classification criteria are applied to variables, and an additional classification is 

suggested. Kruskal-Wallis tests are used to compare the measures of use of the models between 

strategies, with Mann Whitney tests used post-hoc. Kruskal-Wallis tests are also used to compare 

learning outcomes between strategies; with Mann Whitney tests used post-hoc. Due to the small 

sample size, large effect sizes were taken into account in addition to significance, and are noted 

where appropriate. 

5.5.1.1 Classifications of patterns of use for each group 

Table 5-18: Patterns of use in the ABM group 
Strategy ABM I1 ABM I2 ABM I3 ABM I4 ABM I5 

Observation      

Time observing the model 16:52 (H) 17:21 (H) 13:20 (M) 15:43 (H) 9:29 (L) 

Time observing the model 

in each setting 

3:22 (H) 1:56 (M) 1:54 (M) 15:43 (H) 2:22 (M) 

Time spent off task 0:38 1:17 6:56 0 4:05 

Time spent reading text / 

instructions 

2:20 0 2:41 4:17 6:26 

Explorativeness      

Number of runs 5 (L) 9 (M) 7 (M) 1 (L) 4 (L) 

Action      

Time per action 0:36 (M) 0:40 (M) 0:32 (M) 1:19 (H) 0:52 (M) 

Number of changes made 28 (M) 26 (M) 25 (M) 12 (L) 11 (L) 

Pattern Osc. Osc. Osc. STP STP 

Note. ABM In = student n in the ABM group in the individual learning environment. H = high. M = medium. L = 

low. Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. 
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Table 5-18 shows that in the ABM group, only two patterns were identified. Two students used the 

straight to the point strategy; the remaining students used the oscillating strategy. 
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Table 5-19: Patterns of use - SDM group 
Strategy SDM I1 SDM I2 SDM I3 SDM I4 SDM I5 SDM I6 SDM I7 

Observation        

Time observing the model 9:21 (L) 14:53 (M) 16:11 (H) 12:15 (M) 5:53 (L) 11:23 (M) 9:46 (L) 

Time observing the model in each 

setting 

2:20 (M) 0:41 (L) 0:37 (L) 0:37 (L) 1:28 (M) 5:41 (H) 1:05 (M) 

Time spent off task 0:34 3:15 1:07 0 5:58 0:40 0 

Time spent reading text / instructions 10:05 5:06 5:11 8:38 8:09 7:57 10:14 

Explorativeness        

Number of runs 4 (L) 22 (H) 26 (H) 20 (H) 4 (L) 2 (L) 9 (M) 

Action        

Time per action 0:26 (M) 0:17 (L) 0:15 (L) 0:15 (L) 0:12 (L) 0:40 (M) 0:16 (L) 

Number of changes made 22 (M) 53 (H) 65 (H) 49 (H) 30 (M) 17 (M) 36 (M) 

Pattern STP HI Osc. HI STP STP Osc. 

Note. SDM In = student n in the SDM group in the individual learning environment. H = high. M = medium. L = low. Osc. = oscillating strategy. HI = homing in strategy. STP = 

straight to the point strategy. 
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Students’ patterns of use of the model in the SDM group were recorded and classified using Levy 

and Wilensky’s method. Table 5-19 shows that in the SDM group, all three patterns were identified. 

Three students used the straight to the point strategy; two students used the oscillating strategy; 

and two students used the homing in from one side strategy. 

Table 5-20: Patterns of use - SDM & ABM group (models treated separately) 

Strategy 

SDM & 

ABM I1 

SDM & 

ABM I2 

SDM & 

ABM I3 

SDM & 

ABM I4 

SDM & 

ABM I5 

SDM & 

ABM I6 

Observation       

System dynamics model       

Time observing the model 11:02 (M) 15:49 (H) 2:04 (L) 0 (L) 0 (L) 5:05 (L) 

Time observing the model 

in each setting 

0:41 (L) 1:19 (M) 0:31 (L) 0 (L) 0 (L) 0:38 (L) 

Time spent off task 0:43 0 0 0 0 1:26 

Time spent reading text / 

instructions 

6:10 4:11 0:17 0:06 6:51 11:28 

Agent-based model       

Time observing the model 0:32 (L) 0 (L) 15:29 

(H) 

13:14 

(M) 

16:26 

(H) 

5:45 (L) 

Time observing the model 

in each setting 

0 (L) 0 (L) 5:10 

(H) 

13:14 

(H) 

5:29 (H) 1:55 (M) 

Time spent off task 0 0 0:11 0 0:42 0 

Time spent reading text / 

instructions 

3:24 0 5:47 8:40 0 0 

Explorativeness       

Number of runs – system 

dynamics model 

16 (H) 12 (M) 4 (L) 0 (L) 0 (L) 8 (M) 

Number of runs – agent-

based model 

0 (L) 0 (L) 3 (L) 1 (L) 3 (L) 3 (L) 

Action       

 System dynamics model       
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Strategy 

SDM & 

ABM I1 

SDM & 

ABM I2 

SDM & 

ABM I3 

SDM & 

ABM I4 

SDM & 

ABM I5 

SDM & 

ABM I6 

Time per action 0:17 (L) 0:26 (M) 0:11 (L) 0 (L) 0 (L) 0:13 (L) 

Number of changes made  40 (H) 37 (M) 11 (L) 0 (L) 1 (L) 23 (M) 

Agent-based model       

Time per action 0 (L) 0 (L) 1:02 

(H) 

1:39 

(H) 

1:39 (H) 0:31 (M) 

Number of changes made 0 (L) 0 (L) 15 (L) 8 (L) 10 (L) 11 (L) 

Pattern       

System dynamics model HI HI HI None None HI 

Agent-based model None None STP STP STP STP 

Note. SDM & ABM In = student n in the SDM & ABM group in the individual learning environment. H = high. M = 

medium. L = low. Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. 

 

Students’ patterns of use of the model in the SDM & ABM group were recorded and classified 

separately for the two models using Levy and Wilensky’s method. Table 5-20 shows that in the SDM 

& ABM group, only two patterns were identified. All students using the system dynamics model 

used the homing in strategy, and all students using the agent-based model used the straight to the 

point strategy. Two students only used the system dynamics model, and two only used the agent-

based model.  

 

Most students used only one model rather than changing between the two. The results for the 

overall use of models can be seen in Table 5-21 below. 
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Table 5-21: Patterns of use - SDM & ABM group (models combined) 

Strategy 

SDM & 

ABM I1 

SDM & 

ABM I2 

SDM & 

ABM I3 

SDM & 

ABM I4 

SDM & 

ABM I5 

SDM & 

ABM I6 

Observation       

Time observing the model 11:34 

(M) 

15:49 (H) 17:33 (H) 13:14 

(M) 

16:26 (H) 10:50 

(M) 

Time observing the model 

in each setting 

0:43 (L) 1:19 (M) 2:30 (M) 13:14 (H) 5:29 (H) 0:59 (L) 

Time spent off task 0:43 0 0:11 0 0:42 1:26 

Time spent reading text / 

instructions 

9:34 4:11 6:04 8:46 6:51 11:28 

Explorativeness       

Number of runs 16 (H) 12 (M) 7 (M) 1 (L) 3 (L) 11 (M) 

Action       

Time per action 0:17 (L) 0:26 (M) 0:41 (M) 1:39 (H) 1:30 (H) 0:19 (L) 

Number of changes made 40 (H) 37 (M) 26 (M) 8 (L) 11 (L) 34 (M) 

Pattern HI HI Osc. STP STP Osc. 

Note. SDM & ABM In = student n in the SDM & ABM in the individual learning environment. H = high. M = 

medium. L = low. Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. 

 

Students’ patterns of use of the model in the SDM & ABM group were recorded and classified for the 

two models combined using Levy and Wilensky’s method. Table 5-21 shows that in the SDM & ABM 

group, all three patterns were identified. Two students used the oscillating strategy; two students 

used the homing in strategy; and two students used the straight to the point strategy.  

5.5.1.2 The classification criteria 

The strategies used by students to change the three variables were also determined using graphs of 

the changes in addition to the parameters outlined above. Table 5-22 shows the classification of 

the strategy for each student. 
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Table 5-22: Patterns of use for each variable - ABM group 
Variable ABM I1 ABM I2 ABM I3 ABM I4 ABM I5 

Change the garbage collection time Osc. Osc. OOT STP STP 

Change the percentage of rubbish collected Osc. HI OOT STP STP 

Change the number of pieces of rubbish Osc. Osc. Osc. STP STP 

Note. ABM In = student n in the ABM group in the individual learning environment. Osc. = oscillating strategy. 

HI = homing in strategy. STP = straight to the point strategy. OOT = oscillating over time strategy. 

 

The patterns used to change each of the variables, in the main, was the same as the overall pattern 

as determined by Levy and Wilensky’s classification scheme for the overall pattern. Examination of 

the graphs of use over time determined that an additional category should be used – that of 

oscillating over time. The graph for one such student can be seen below (Figure 5-1). 

Time

go
change gct
change prc
change npr

 

Figure 5-1: Use of the model by one student in the ABM group 
 

The strategy used for changing the garbage collection time and changing the percentage of rubbish 

collected was classified as oscillating over time. Changing the number of pieces of rubbish was 

classified as oscillating. The differences in the strategies are clear in Figure 5-1. The number of 

pieces of rubbish was increased, decreased, and increased again in the 20 minutes that students 

were given to interact with the model. Both the garbage collection time and the percentage of 

rubbish were increased and decreased during the course of the 20 minutes, however the changes 

were so gradual, and the time limited, that it is expected that they would have increased the 

variable again had the time allowed. 
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Table 5-23: Patterns of use for each variable - SDM group 

Variables 

SDM 

I1 

SDM 

I2 

SDM 

I3 

SDM 

I4 

SDM 

I5 

SDM 

I6 

SDM 

I7 

Change the garbage collection time HI HI OOT HI STP STP STP 

Change the percentage of rubbish collected STP STP STP HI STP STP STP 

Change the number of pieces of rubbish HI HI Osc. HI STP STP Osc. 

Note. SDM In = student n in the SDM group in the individual learning environment. Osc. = oscillating strategy. 

HI = homing in strategy. STP = straight to the point strategy. OOT = oscillating over time strategy. 

 

The patterns used to change each of the variables, in the main, was the same as the overall pattern 

as determined by Levy and Wilensky’s classification scheme. Table 5-23 shows that most students 

used the straight to the point strategy for changing the percentage of rubbish collected. Only two 

students used this approach to interrogate the model as a whole. Other students made many 

changes, and either homed in on an outcome from one direction, while making specific changes to 

other variables, or chose to vary the other variables in an oscillating pattern. One example of this is 

the SDM I2 student as seen in Figure 5-2 below. 

go
change gct
change prc
change npr

 

Figure 5-2: Use of the model by one student in the SDM group 
 

The strategy used to change the garbage collection time and, to a lesser extent to change the 

number of pieces of rubbish, was homing in. This is typified by the steady increase in the value 

used, and the model was run after each change. This student used a straight to the point strategy 

to change the percentage of rubbish collected. The student made a change to the percentage of 
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rubbish collected, ran the model, and continued changing other variables to investigate the effects 

of changing both. 

Table 5-24: Patterns of use – SDM & ABM group 

Strategy 

SDM & 

ABM I1 

SDM & 

ABM I2 

SDM & 

ABM I3 

SDM & 

ABM I4 

SDM & 

ABM I5 

SDM & 

ABM I6 

Change the garbage collection 

time 

Osc. HI Osc. STP HI OOT 

Change the percentage of 

rubbish collected 

OOT HI Osc. STP STP STP 

Change the number of pieces of 

rubbish 

STP HI Osc. STP HI Osc. 

Note. SDM & ABM In = student n in the SDM & ABM group in the individual learning environment. Osc. = 

oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. OOT = oscillating over time 

strategy. 

 

The patterns used to change each of the variables, in the main, was the same as the overall pattern 

as determined by Levy and Wilensky’s classification scheme. Table 5-24 shows that there was no 

clear pattern that students used to interrogate the models in this group. 
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Table 5-25: Summary of patterns of use by group 
 Overall strategy Strategy gct Strategy prc Strategy npr 

ABM     

Osc. 3 2 1 3 

HI 0 0 1 0 

STP 2 2 2 2 

OOT -- 1 1 0 

SDM     

Osc. 2 0 0 2 

HI 2 3 1 3 

STP 3 3 6 2 

OOT -- 1 0 0 

SDM & ABM     

Osc. 3 2 1 2 

HI 1 2 1 2 

STP 2 1 3 2 

OOT -- 1 1 0 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy prc = strategy used to change 

the percentage of rubbish collected. Strategy npr = strategy used to change the number of pieces of rubbish. 

Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. OOT = oscillating over 

time strategy. 

 

Table 5-25 shows that there was no clear relationship between the group and the strategy used. 

Students in the ABM group tended not to use the homing in strategy, and did use the oscillating 

strategy. Students in the other groups used all strategies.  

 

The relationship between the strategies and the measures of use was investigated. For this part of 

the analysis, the representation was ignored, and data was divided according to the strategy that 

the student used to interrogate the model. However, use of specific models was taken into account 

as well as general use. Kruskal-Wallis tests compared measures of the use of the models between 
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the strategies used. Only those measures for which a significant result was found are reported 

below. 

Table 5-26: Results of the Kruskal-Wallis tests comparing the use of the model between the 
strategy overall, and the strategy for each of the three variables 
 Strategy – overall Strategy – gct Strategy – prc Strategy – npr 

InfABM (time) 2.56 9.33* 2.97 8.65* 

GoSDM 8.38* 3.24 2.43 1.79 

NprSDM 7.04* 2.13 3.42 4.13 

GctSDM 6.62* 4.97 2.48 1.59 

SbSSDM 0.49 0.71 8.12* 0.71 

TA 11.12** 3.90 1.83 3.01 

Go 13.28** 7.11 3.49 5.09 

Npr 9.32** 3.48 2.88 7.79* 

Gct 10.49** 10.48* 2.50 5.83 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy prc = strategy used to change 

the percentage of rubbish collected. Strategy npr = strategy used to change the number of pieces of rubbish. Inf 

= proportion of time spent on the information screen. Go = number of times the model was run. Npr = 

frequency of changes to the number of pieces of rubbish. Gct = frequency of changes to the garbage collection 

time. TA = total activity. SbS = number of times the activity: explore the model step by step was selected. ABM = 

specifically the agent-based model. SDM = specifically the system dynamics model. 

*p < .05. **p < .01. 

 

The findings in Table 5-26 indicate that the overall strategy was important with respect to the 

overall use and more particularly the use of the system dynamics model. The strategy for changing 

the garbage collection time was related to the amount of time spent on the agent-based model 

information screen, and changing the garbage collection time in any model. The strategy for 

changing the percentage of rubbish collected was related to the explore the model step by step 

activity. The strategy for changing the number of pieces of rubbish was related to the overall 

measure of this activity, as well as the time spent on the information screen on the agent-based 

model. 
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Table 5-27: Results of the Mann Whitney tests comparing measures of the use of the models 
between overall strategies used 
 System dynamics model use Combined model use 

 Go Npr Gct TA Go Npr Gct 

Osc. Vs.        

HI 4.0 4.0 4.5 4.0 4.0 4.5 5.0 

STP 1.0 3.0 3.5 4.0* 0.0* 8.0 5.0* 

HI vs.        

STP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Note. Go = number of times the model was run. Npr = frequency of changes to the number of pieces of rubbish. 

Gct = frequency of changes to the garbage collection time. TA = total activity. Osc. = oscillating strategy. HI = 

homing in strategy. STP = straight to the point strategy. OOT = oscillating over time strategy. Bold typeface 

indicates a large effect size (r > | .50 |). 

*p < .05.  

 

The medians and ranges are reported below. 

Table 5-28: Medians and ranges of learning outcomes with respect to the strategy overall 
Oscillating Homing in Straight to the point 

Range Range Range 

 

Mdn Lower Upper Mdn Lower Upper Mdn Lower Upper 

GoSDM 9 4 26 20 12 22 2 0 4 

NprSDM 4 2 10 8 6 10 1 0 4 

GctSDM 6 3 16 8 7 14 1 0 6 

TA 31 25 65 49 37 53 12 8 30 

Go 9 5 26 20 12 22 3 1 4 

Npr 4.5 3 10 8 6 10 3 1 5 

Gct 5.5 3 16 8 7 14 1 1 6 

Note. Go = number of times the model was run. Npr = frequency of changes to the number of pieces of rubbish. 

Gct = frequency of changes to the garbage collection time. TA = total activity. SDM = specifically the system 

dynamics model. 
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Table 5-27 and Table 5-28 show the significance and direction of the relationships between 

activities for students using the different strategies overall. Students who used an oscillating 

strategy overall had higher activity in either model than students using the straight to the point 

strategy (large effect size only applied to changing the npr). Similarly, large effect sizes were 

associated with the higher activity that students using the homing in strategy had on the system 

dynamics model and in either model than students who used the straight to the point strategy. 

 

The results for comparisons between the strategies used to change the individual variables are seen 

below. 

Table 5-29: Results of the Mann Whitney tests comparing measures of the use of the models 
between the gct strategy and the npr strategy 
 Agent-based model use Combined model use 

 Inf (time) Gct Npr 

Strategy – gct    

Osc. vs.    

HI 2.0 7.0 -- 

STP 1.0 0.0* -- 

OOT 3.0 5.0 -- 

HI vs.    

STP 0.0a 2.0* -- 

OOT 4.0 6.5 -- 

STP vs.    

OOT 0.0 0.0* -- 

Strategy – npr    

Osc. vs.    

HI 6.0 -- 17.0 

STP 2.0* -- 3.5* 

HI vs.    

STP 0.0* -- 3.0* 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy npr = strategy used to 

change the number of pieces of rubbish. Inf (time) = time spent on the information screen. Npr = frequency of 
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changes to the number of pieces of rubbish. Gct = frequency of changes to the garbage collection time. Osc. = 

oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. OOT = oscillating over time 

strategy. Bold typeface indicates a large effect size (r > | .50 |). 

ap < .10; *p < .05. 

 

The medians and range are reported below. 

Table 5-30: Medians and ranges of measures of use of the models in the strategy – gct and the 
strategy - npr 

Strategy – gct Strategy – npr 

Range Range 

 

Mdn Lower Upper Mdn Lower Upper 

Osc.       

InfABM(time) 2:52 0:00 5:47 1:10 0:00 5:47 

Gct 5.5 5 8 5 3 16 

Npr 4 3 6 5 4 10 

HI       

InfABM(time) 0:00 0:00 0:00 0:00 0:00 0:00 

Gct 7 2 14 7 2 14 

Npr 6 3 10 6 3 10 

STP       

InfABM(time) 6:26 4:17 6:40 5:21 3:24 6:40 

Gct 1 1 3 1 1 8 

Npr 2.5 1 10 2.5 1 5 

OOT       

InfABM(time) 0:00 0:00 2:41 -- -- -- 

Gct 7 4 16 -- -- -- 

Npr 5 4 8 -- -- -- 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy npr = strategy used to 

change the number of pieces of rubbish. Inf (time) = time spent on the information screen. Npr = frequency of 

changes to the number of pieces of rubbish. Gct = frequency of changes to the garbage collection time. Osc. = 

oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. OOT = oscillating over time 

strategy. 
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Table 5-29 and Table 5-30 show the significance and direction of the relationships between 

learning outcomes for students using the different strategies. Students who used the straight to the 

point strategy spent longer on the information screen on the agent-based model than students who 

used the homing in strategy. Students who used the straight to the point strategy to change the 

garbage collection time changed the garbage collection time less often than students using any 

other strategy. 

 

Students who used the straight to the point strategy to change the number of pieces of rubbish 

spent longer on the information screen on the agent-based model than students using the 

oscillating or homing in strategies. Students who used the straight to the point strategy to change 

the number of pieces of rubbish changed the number of pieces of rubbish less often overall (p < 

.05) than students using the oscillating or homing in strategies. 

5.5.1.3 Strategies and learning outcomes 

The relationship between the strategies and the learning outcomes was investigated. For this part of 

the analysis, the representation was ignored, and data was divided according to the strategy that 

the student used to interrogate the model. Kruskal-Wallis tests compared learning outcomes 

between the strategies used. Only those learning outcomes for which a significant result was found 

are reported below. 
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Table 5-31: Results of the Kruskal-Wallis tests comparing learning outcomes between the strategy 
overall, and the strategy for each of the three variables 
 Strategy - overall Strategy – gct Strategy – prc Strategy – npr 

Prior knowledge    

Q6pre 2.55 8.19* 2.68 4.77 

SDKpre 1.80 2.67 8.71* 0.14 

Learning outcomes    

Q5post 8.08* 3.05 3.35 2.78 

Q6post 8.42* 7.74 5.10 3.30 

SDKpost 2.29 6.71 9.61* 1.02 

Issues 7.37* 4.73 9.18* 3.14 

HLT 3.23 5.17 10.58* 2.87 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy prc = strategy used to change 

the percentage of rubbish collected. Strategy npr = strategy used to change the number of pieces of rubbish. Q5 

= knowledge about introduced animal species (Maximum score is 9). Q6 = knowledge about introduced plant 

species (Maximum score is 8). SDK = system dynamics knowledge (Maximum score is 12). Issues = Issues 

section of the final assessment task (Maximum score is 16). HLT = Higher Level Thinking section of the final 

assessment task (Maximum score is 24). pre = pre-test score. post = post-test score. 

*p < .05. 

 

The initial findings seen in Table 5-31 indicate that the overall strategy was important with respect 

to the environmental knowledge that was apparent from the model, and identifying the issues 

present in the materials. Prior knowledge was important in terms of the strategy adopted for 

changing the garbage collection time. The strategy used to change the percentage of rubbish 

collected was important in terms of both understanding and system dynamics knowledge, and prior 

system dynamics knowledge was also important for this. The strategy adopted for changing the 

number of pieces of rubbish was not related to learning outcomes. Mann Whitney tests compared 

individual strategies,  
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Table 5-32: Results of the Mann Whitney tests comparing learning outcomes between the strategy 
overall, the strategy – gct and the strategy – prc 
 Prior knowledge Learning outcomes 

 Q6pre SDKpre Q5post Q6post SDKpost Issues HLT 

Strategy – overall       

Osc. vs.       

HI -- -- 25.5 27.5* -- 19.0 -- 

STP -- -- 39.0a 40.5a -- 39.0* -- 

HI vs.        

STP -- -- 27.0* 27.0* -- 24.0a -- 

Strategy – gct       

Osc. vs.       

HI 16.5 -- -- -- -- -- -- 

STP 22.5* -- -- -- -- -- -- 

OOT 13.0 -- -- -- -- -- -- 

HI vs.        

STP 23.0* -- -- -- -- -- -- 

OOT 10.0 -- -- -- -- -- -- 

STP vs.        

OOT 20.0 -- -- -- -- -- -- 

Strategy – prc       

HI vs.        

STP -- 2.0* -- -- 2.5* 36.0* 39.0** 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy prc = strategy used to change 

the percentage of rubbish collected. Q5 = knowledge about introduced animal species (Maximum score is 9). Q6 

= knowledge about introduced plant species (Maximum score is 8). SDK = system dynamics knowledge 

(Maximum score is 12). Issues = Issues section of the final assessment task (Maximum score is 16). HLT = 

Higher Level Thinking section of the final assessment task (Maximum score is 24). pre = pre-test score. post = 

post-test score.  Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. OOT 

= oscillating over time strategy. Bold typeface indicates a large effect size (r > | .50 |). 

ap < .10; *p < .05; **p < .001.  
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The medians and range are reported below. 

Table 5-33: Medians and ranges of learning outcomes with respect to the strategy overall, the 
strategy – gct and the strategy – prc 

Strategy – overall Strategy – gct Strategy – prc 

Range Range Range 

 

Mdn Lower Upper Mdn Lower Upper Mdn Lower Upper 

Osc.          

Q6pre 3.25 0 4 3.25 1 4 2 1 3 

SDKpre 2.5 0 10 5 1 10 2.5 1 4 

Q5post 4 2 7 3.5 2 4 3 2 4 

Q6post 3.5 0 6 3.5 1 4.5 2 1 3 

SDKpost 5.5 0 10 7.25 5 10 5.5 5 6 

Issues 7 2 9 5.5 2 9 2.5 2 3 

HLT 4.5 2 8 5.5 4 8 5.5 4 7 

HI          

Q6pre 4.5 1 6 4.5 1 8 3.5 1 4 

SDKpre 4 1 5 2.5 0 5 5 4 10 

Q5post 6 5 7 5 1 7 5 3 6 

Q6post 5.5 5 7 5 1 7 5 4.5 5.5 

SDKpost 5 1 6 5 1 7 6 5 10 

Issues 6 3 7 4 2 7 7 6 8 

HLT 7 1 10 5 1 10 8 7 10 

STP          

Q6pre 1 0 8 0 0 1.5 1 0 8 

SDKpre 1 0 7 1 0 7 1 0 7 

Q5post 2.5 0.5 4 2.75 0.5 5.0 3 0.5 7 

Q6post 1 0 2 1 0 2 2 0 7 

SDKpost 1.5 0 7 1.5 0 5 1.5 0 7 

Issues 2 1 5 1.5 1 7 3 1 7 
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Strategy – overall Strategy – gct Strategy – prc 

Range Range Range 

 

Mdn Lower Upper Mdn Lower Upper Mdn Lower Upper 

HLT 2 1 5 2 1 4 2 1 5 

OOT          

Q6pre -- -- -- 4 0 4 4 4 4 

SDKpre -- -- -- 1 0 7 6.5 6 7 

Q5post -- -- -- 6 2 7 5.5 4 7 

Q6post -- -- -- 5 2 6 4.5 4 5 

SDKpost -- -- -- 2 0 7 7.75 7 8.5 

Issues -- -- -- 7 3 9 9 9 9 

HLT -- -- -- 5 2 7 5.5 4 7 

Note. Strategy gct = strategy used to change the garbage collection time. Strategy prc = strategy used to change 

the percentage of rubbish collected. Q5 = knowledge about introduced animal species (Maximum score is 9). Q6 

= knowledge about introduced plant species (Maximum score is 8). SDK = system dynamics knowledge 

(Maximum score is 12). Issues = Issues section of the final assessment task (Maximum score is 16). HLT = 

Higher Level Thinking section of the final assessment task (Maximum score is 24). pre = pre-test score. post = 

post-test score. Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. OOT = 

oscillating over time strategy. 

 

Table 5-32 and Table 5-33 show the significance and direction of the relationships between 

learning outcomes for students using the different strategies. Students who used the oscillating 

strategy overall had a higher post-test score assessing knowledge of introduced animal species 

(Question 5) than those students who used the straight to the point strategy. The post-test score 

for this item was higher amongst students using the homing in strategy than those using the 

straight to the point strategy. Students who used the oscillating strategy overall had a lower post-

test score assessing knowledge of introduced plant species (Question 6) than students using the 

homing in strategy, as did students using the straight to the point strategy. The score for the Issues 

section of the final assessment task was higher for students who used the oscillating strategy than 

students who used the straight to the point strategy, and students; and higher for students who 

used the homing in strategy than who used the straight to the point strategy.  
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Students who used the oscillating strategy to change the garbage collection time had higher prior 

knowledge of introduced plant species (Question 6) than students who used a straight to the point 

approach. The Question 6 pre-test score was higher for students using a homing in strategy than a 

straight to the point strategy. 

 

Students who used the homing in strategy to change the percentage of rubbish collected had a 

higher pre-test system dynamics knowledge score than those who used a straight to the point 

strategy. Students who used the straight to the point strategy to change the percentage of rubbish 

collected had a lower system dynamics post-test score than those who used a homing in strategy. 

The score for the Issues section of the final assessment task was higher for students who used a 

homing in strategy than a straight to the point strategy. Students who used the homing in strategy 

had a higher score for the Higher Level Thinking section of the final assessment task than students 

who used the straight to the point strategy. 
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5.5.2 Discussion  
The exploratory question addressed in this section was: 

 

E1d: Are the strategies used to interrogate the models dependent on the models used? 

 

If E1d is supported positively by the evidence, a typical pattern of use will be identified for each 

group. The discussion that follows outlines the strategies used by students to interrogate the 

models overall and to change individual variables, and uses relationships between these strategies 

and the general measures of use of the models to further define the classification system. The 

results of the relationships between learning outcomes and the strategies used will also be 

discussed.  

5.5.2.1 Classification of strategies used 

All strategies were used by students in the SDM group and the SDM & ABM group, and both the 

oscillating and straight to the point strategies were used by students in the ABM group.  

 

The classification scheme was examined because it was developed for the interrogation of agent-

based models in an activity where students could move on to the next step once a conclusion was 

reached (Levy & Wilensky, 2005). More detailed investigation of the data revealed that the overall 

strategy did not always reflect the strategies used to change the three variables. In some cases, 

students used a combination of strategies, changing one variable using a straight to the point 

strategy while others were changed using one of the other strategies. Analysis of the strategies with 

respect to other measures of use confirmed that the measurement of activities was a valuable 

classification. In particular, the amount of time spent on the information screen was important with 

respect to the straight to the point approach in this study, and indicates that students who used 

this approach were doing so in an informed way. In terms of changing the garbage collection time 

and the number of pieces of rubbish, students who spent a large amount of time on the information 

screen also used a straight to the point approach. This implies that students were making informed 

decisions about their strategy for changing these variables. It was thought that the proportion of 

time spent off task would add information to this classification scheme, however no relationship 

was detected. 
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5.5.2.2 Strategies and learning outcomes 

The overall strategy and the strategies used to change the garbage collection time and percentage 

of rubbish collected were related to learning outcomes. Levy and Wilensky’s original study 

suggested that the straight to the point strategy is a planned approach which may result in a deeper 

understanding of each regime, but that critical settings or transitions may be missed which are 

evident through a broader investigation of the model (Levy & Wilensky, 2005). The oscillating 

approach involved students moving between extremes, constantly comparing results between now 

and previous, however the previous settings tend to disappear, unlike the homing in strategy (Levy 

& Wilensky, 2005). 

5.5.2.2.1 Overall strategy 

Students who used a straight to the point approach overall had a lower post-test score for 

knowledge about introduced animal species (Question 5) than students who used an oscillating or 

homing in strategy; a lower post-test score assessing knowledge about introduced plant species 

(Question 6) than students who used the homing in strategy; and a lower score for the Issues 

section of the final assessment task than students who used the other two strategies. Students who 

used an oscillating strategy had a lower post-test score for Question 6 than those who used the 

homing in strategy. These three learning outcomes address system specific knowledge. The results 

suggest that students who used a broad strategy such as oscillating or homing in, rather than a 

deliberate, straight to the point approach, were better able to answer system-specific questions; 

and that students who used a homing in strategy, that allows students to keep previous system 

states in mind after small changes, were better able to answer system-specific questions than 

students who used an oscillating strategy. These are supported by findings from the original study 

(Levy & Wilensky, 2005). 

5.5.2.2.2 Strategy used to change the variables 

In terms of the strategies used to change the garbage collection time and the percentage of rubbish 

collected, there were two main findings. Students who had less prior knowledge about introduced 

plant species had a straight to the point strategy for changing the garbage collection time. Perhaps 

students with lower prior knowledge in this area spent more time reading the text description, or 

perhaps they had a goal to learn about introduced plant species. Students who had higher prior 

knowledge about introduced plants species used the oscillating or homing in strategy.  
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The strategy used to change the percentage of rubbish collected was related to system dynamics 

knowledge and the Issues and Higher Level Thinking sections of the final assessment task. Students 

who used the straight to the point strategy to change the percentage of rubbish collected had a 

lower score for both general and applied system dynamics knowledge than students who used the 

homing in strategy and the oscillating over time strategy. In addition, students who used the 

oscillating over time strategy had a higher general system dynamics knowledge post-test score 

than students who used the oscillating strategy. Again, the straight to the point approach was not 

successful in terms of gaining general knowledge that should have been apparent by use of the 

model. In this case, the oscillating over time approach was successful which is a strategy that was 

identified in this study. This strategy is a combination of the homing in and the oscillating strategy. 

There is an overall oscillating pattern, but with changes made between the extremes. This strategy 

appears to have similar advantages to the homing in strategy. Both the oscillating over time 

strategy and the homing in strategy were more successful than the other strategies in terms of 

identifying the issues in the learning materials. Finally, students who used the homing in strategy to 

change the percentage of rubbish collected had higher scores for the Higher Level Thinking section 

of the final assessment task than students who used the other three strategies. Once again, the 

planned, but broad strategy of changing this variable allowed to students to make management 

decisions, predictions, and identify the consequences of decisions made. 

5.5.3 Conclusion 
In conclusion, the classification scheme was able to be applied to the use of a system dynamics 

model; an extra classification and an additional criterion were suggested. Prior knowledge had an 

effect on the choice of strategy to change specific variables. The proportion of time spent on the 

information screen was important for students who used the STP strategy. Despite this more 

informed approach to the STP strategy, students who used it overall, and to change specific 

variables (such as the percentage of rubbish collected) had lower post-test environmental 

knowledge scores. The homing in strategy was the most successful of the three in terms of post-

test scores associated with information that came from the materials and the score for the Higher 

Level Thinking section of the final assessment task.  



Use of the Models 

 

199

5.6CONCLUSIONS 
Four hypotheses related to the differences in how the models were used between the groups, with 

respect to learning outcomes, and in terms of strategies used to interrogate the models were 

discussed in this chapter.  

 

General patterns of use of the models were identified. When given the choice, regardless of the 

model type, students choose to interact with the model, and not to spend a large proportion of their 

time off task. When given the choice between two models, students used the system dynamics 

model more than the agent-based model. This indicates that students used the agent-based model 

to constrain their understanding of the system dynamics model (Ainsworth, 1999b).  

 

General interaction with the model had an effect on knowledge about introduced animals and 

plants, system dynamics knowledge, students’ ability to describe what happened in the park and 

what the park looked like, and students’ ability to make predictions and identify consequences of 

their decisions. The strategies used to change the variables also had an effect on learning 

outcomes. Despite the more informed approach to the STP strategy, students who used it overall, 

and to change specific variables (such as the percentage of rubbish collected) had lower post-test 

environmental knowledge scores. The homing in strategy was the most successful of the four in 

terms of post-test scores associated with information that came from the materials and the score 

for the Higher Level Thinking section of the final assessment task.  

 

Students who were given both models not only used the system dynamics model, but they used this 

model in a similar way to those who were in the SDM group. Students from the SDM & ABM group 

were, on the whole, more successful with respect to learning outcomes than those from the SDM 

group. While the way in which students interacted with the system dynamics model was similar, the 

source for the additional (constraining) information differed in that it came from the agent-based 

model rather than the text (as it did for the single model groups).  

 

Prior knowledge of the domain and the representations had an effect on the use of the explanatory 

features such as the information screen in the ABM group and the information and explore the 

model screens in the SDM group. In the SDM & ABM group, prior knowledge had an effect on which 

model students chose to use. Students with higher prior environmental and system dynamics 

knowledge chose not to experiment with the agent-based model. Giving students access to both 
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models allowed those students with lower prior environmental and system dynamics knowledge to 

interact with a model, an opportunity which was not taken by students with lower prior knowledge 

in the ABM group or the SDM group.  

 

The use of the constraining information available for students in each group was also important in 

terms of learning outcomes. Use of the information screen (containing a text description of the 

system) was important in the ABM group for applying their environmental knowledge to other 

systems. The results of the use of the model indicate that students were able to do this using the 

text description to constrain their interpretation of the materials. Interaction with the model without 

this constraining information resulted in increases in system dynamics knowledge, and higher 

scores associated with understanding of the system. Use of the explore the model screen in the 

SDM group was associated with a higher post-test scores, whereas the proportion of time spent on 

the information screen was associated with lower post-test scores. Perhaps because the explore the 

model screen improved students’ knowledge of the representation, allowing them to recognise the 

connection between the representation and the domain (Ainsworth et al., 1998; Horwitz & Christie, 

1999; Seufert et al., 2007). However these results suggest that, at least for system dynamics 

models, it may be that familiarity with the representation is more important than familiarity with the 

domain for interpreting the model. In the SDM & ABM group, students used the agent-based model 

as the explanatory feature for the system dynamics model. This allowed them to identify issues in 

relation to their experience with the agent-based model. 

 

In the following chapter, the examination of learning outcomes and measures of use of the models 

presented in Chapter 4 and Chapter 5 will be explored for students in a collaborative learning 

environment. 
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6. COLLABORATIVE LEARNING 

6.1RATIONALE 
Collaborative learning is a well-researched strategy for understanding complex systems. The aim of 

this part of the study was to determine how learning from models differed between an individual 

learning environment and a collaborative learning environment. Research shows that students learn 

more in a collaborative learning environment because they interact more with the model 

(Singhanayok & Hooper, 1998) and because it encourages students to explain concepts to each 

other (Kramarski, 2004). Studies have found that students in cooperative learning groups out 

performed individual learners in a biology subject (Singhanayok & Hooper, 1998). Cooperative 

learning also supports a range of learning styles (Wang, Hinn, & Kanfer, 2001). Suthers and 

Hundhausen (2001) showed that a shared graphical representation made central characteristics of 

the learning object salient, which provided representational guidance to the learning discourse. In 

particular, it has been suggested that providing multiple representations of the solution combined 

with a strong understanding of the topic will support interaction about science in computer-

supported collaborative learning (Baker, de Vries, Lund, & Quignard, 2001). Research also suggests 

that the learner’s perception of the technology is also an important component of the collaborative 

learning process, as learners must be scaffolded within their learning environments (Beatty & 

Nunan, 2004). In this study, the students were not scaffolded in the collaborative learning 

environment and data related to interaction between partners was not collected (further discussion 

of this limitation can be found in Chapter 3). 

 

A number of authors have investigated collaboration in science education (see for example (Jeong & 

Chi, 2007; Oliveira & Sadler, 2007; Roschelle, 1992; Suthers & Hundhausen, 2003)). These authors 

identify convergence as the main advantage of a collaborative learning environment. Convergence 

occurs when students engage in collaborative inquiry learning and mutually construct 

understanding of the phenomenon (Roschelle, 1992). Jeong and Chi (Jeong & Chi, 2007) analysed 

conversations and determined that the convergence in their study could be attributed to 

collaborative interaction. They also found that a modest amount of convergence is typical in an 

unstructured, naturalistic collaborative learning situation. That suggests that in this study, which is 

similarly unstructured, and in which students were randomly allocated to dyads, some convergence 
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is expected. These authors say that convergence is due to interaction and shared input, in other 

words the materials. Interaction data was not collected as part of this thesis. The purpose of this 

section of the thesis is to make a preliminary comparison of differences in learning outcomes and 

measures of use between students working alone and in dyads. This will provide directions for 

future research in the field of collaborative learning with system dynamics and agent-based 

models. 

6.2HYPOTHESES, AN EXPLORATORY QUESTION AND BRIEF 
INTRODUCTION TO THE CHAPTER 

This chapter addresses three hypotheses and one exploratory question: 

 

H2a: Students working in a collaborative learning environment will have higher scores for all 

learning outcomes than students in an individual learning environment.  

 

H2b: Students working in a collaborative learning environment will interact more with the model 

than students in an individual learning environment.  

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such as the animated representation included in the agent-based model) will improve 

interpretation, and therefore understanding for students in the collaborative learning environment. 

 

E2a: Are the strategies used to interrogate the models independent of the learning environment? 

 

The way in which the agent-based model was used, however, suggests that time factors played a 

role in students’ ability to identify links between system-specific knowledge and other systems. A 

partner is not expected to change this, and the additional time spent in negotiation of the use of 

the model may result in lower learning outcomes. 

 

Research already presented in this thesis suggested that students presented with a representation 

that constrained their interpretation of the system dynamics model had higher post-test scores. 

Comparisons between groups suggested that the second representation should increase students’ 
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familiarity with the main representation, or provide information at a different level, rather than a 

text description. A partner may also help students to interpret the system dynamics model.  

 

Students using multiple representations were able to interpret the system dynamics model using 

the agent-based model, and increase all environmental knowledge scores and the applied system 

dynamics knowledge score. Students in this group did not increase their system dynamics 

knowledge score, and it seemed to have been related to the high cognitive load associated with 

increasing knowledge of all other learning outcomes. The addition of a partner may help to 

decrease this cognitive load. However, given the successful use of the multiple representations by 

individuals, it is not expected that a partner will result in much improvement to learning outcomes 

further beyond this. 

 

In the Text group, students were able to increase knowledge for all learning outcomes except that 

addressing knowledge of introduced plant species. Given the successful use of the materials by 

individuals, it is not expected that a partner will result in much improvement to learning outcomes. 

 

In brief, the first half of this chapter focuses on learning outcomes, and the second half on 

measures of use of the models. The results of analyses carried out on the overall environmental 

knowledge and system dynamics knowledge test scores and the final assessment task score will be 

reported on first. A number of key items and sections within the overall scores will then be 

analysed. Each of these parts has the following structure: 

 

• Comparison of pre-test and post-test scores between learning environments, between groups, 

and comparison of pre-test and post-test scores within each group, 

• Comparison of the change in knowledge scores between learning environments and between 

the groups, and 

• Comparison of the final assessment task scores between learning environments and between 

the groups. 

 

The second half will compare measures of use of the models. In brief, the results of analyses carried 

out on the general measures of use of the model will be compared between all three groups and 

within groups to determine whether there is a general pattern of use of the models in both learning 

environments. The use of single models will then be compared to the use of the same type of model 
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when an additional model is available (for example the use of the model by the ABM group will be 

compared to the use of the model in the SDM & ABM group) in both learning environments. This will 

help to determine whether students used the agent-based model to constrain their interpretation of 

the system dynamics model (Ainsworth, 1999). If this was the case, students would have used the 

system dynamics model to experiment with, and the agent-based model for context. Students in 

the SDM & ABM group would have a similar level of activity as those in the SDM group (H2b). The 

final part of this chapter will identify the strategies used by students to interrogate the models 

overall and to change individual variables in both learning environments. Relationships between 

these strategies and the general measures of use of the models will help to define the classification 

system. When the strategies were analysed, the amount of time as well as the proportion of time 

spent on screens was compared between strategies. An analysis of the relationships between 

learning outcomes and the strategies used in the collaborative learning environment will help to 

explain why students adopted particular strategies, and what effect these had on their learning 

outcomes. For a full discussion of the analyses performed, refer to Chapter 3. 

6.3 MULTIPLE EXTERNAL REPRESENTATIONS 
The experimental design in the collaborative learning environment was the same as that in the 

individual learning environment. The experiment compared the learning outcomes from students in 

four groups: a control group (Text group) in which students were exposed to a text-based 

description of visitor impacts on a national park (see Appendix 1), and three treatment groups, in 

which students were either given a system dynamics model to examine (SDM group), an agent-

based model of the system (ABM group), or both of these combined (SDM & ABM group). The two 

learning environments were an individual learning environment (ILE) in which each student had their 

own computer and were not allowed to interact with other members of their class; and the 

collaborative learning environment (CLE) in which one computer was shared between two students, 

who were allowed to interact with each other during their interrogation of the learning materials, 

but completed all assessment individually.  

 

Learning outcomes were the environmental knowledge and system dynamics knowledge tests (pre-

tests and post-tests allowed the change in knowledge to be determined); and the final assessment 

task (which assessed understanding of this particular system). Total scores will be discussed first, 

followed by key items and sections. The environmental knowledge test has three questions that will 

be discussed individually, and the final assessment task has three. 
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6.3.1 Learning outcomes: Environmental knowledge, 
system dynamics knowledge and understanding 

Students from both School 1 and School 2 participated in the individual learning environment; 

students from School 1 participated in the collaborative learning environment. The comparison 

between learning environments will only include students from School 1 to make sure that the 

comparisons between the learning environments are appropriate. The sample for this section is 

therefore as follows, ILE: Text group, n = 2; ABM group, n = 4; SDM group, n = 4; and SDM & ABM 

group, n = 3. CLE: Text group, n = 3; ABM group, n = 4; SDM group, n = 6; and SDM & ABM group, 

n = 5. The small sample size of the Text group in the individual learning environment meant that it 

was unable to be included in the statistical comparisons, and so differences between this group and 

the findings presented in Chapter 4 are discussed in broad terms. 

6.3.1.1 Results 

As outlined above, this section reports on the results of the analyses performed on overall test 

scores. All pre-test scores and learning outcomes are compared between learning environments 

using Mann Whitney tests. In addition, the following analyses will be reported for both learning 

environments. Pre-test and post-test knowledge test scores will be compared between the groups 

using Kruskal-Wallis tests. Pre- and post-test scores will be compared for each group using 

Wilcoxon signed ranks tests. The results of Kruskal-Wallis tests comparing the change in 

knowledge test scores between groups will then be reported. Final assessment task scores will also 

be compared between groups using Kruskal-Wallis tests. Due to the small sample size, large effect 

sizes were taken into account in addition to significance, and are noted where appropriate. The 

meaning of these results in terms of the hypothesis will then be discussed. 

6.3.1.1.1 Pre- and post-test environmental and system dynamics 
knowledge scores 

Students in each group completed two knowledge tests in a pre- and post-test design. Pre-tests 

were administered before interaction with the materials. Post-tests were completed by students 

after the treatment, and students were given the opportunity to change their original answer, or to 

keep it (see Chapter 3 for further discussion of this). The environmental knowledge test was worth 

32 marks, and contained items that related specifically to the materials and items that required 

application of this knowledge to other systems. The system dynamics knowledge test was worth 12 

marks, and also contained general system dynamics knowledge questions and an applied question.  
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Table 6-1: Median and range of scores for the total environmental knowledge and system dynamics 
knowledge pre-test and post-test for the ILE and the CLE 

ILE CLE 

Range Range 

Group Mdn Lower Upper 

Score > 

50% (%) Mdn Lower Upper 

Score > 

50% (%) 

ILE vs. CLE 

U 

ABM          

EKpre 17 16 25 75 12.75 11.5 18 25 3.0 

EKpost 20.75 13.5 28 75 13.25 12.5 19 25 3.0 

SDKpre 5.5 3 10 50 4 3 7 25 6.0 

SDKpost 7.5 6 10 75 4 3 7 25 1.5a 

SDM          

EKpre 21 10 31 75 18.75 18 23.5 100 10.5 

EKpost 17.5 15 24 75 23.5 19 25 100 4.0 

SDKpre 1 0 4 0 4.5 1 8 33 3.5a 

SDKpost 3.5 0 7 25 7.5 1 10 67 4.5 

SDM & ABM         

EKpre 18.5 17 20.5 100 20 12 21 80 7.0 

EKpost 19.5 17 22.5 100 21 17.5 24 100 5.0 

SDKpre 6 5 7 33 5 3 9 20 5.0 

SDKpost 7 5 8.5 67 6 3 6 0 3.0 

Text         

EKpre 22.75 18.5 27 100 22 21 24 100 -- 

EKpost 23 19 27 100 22 21 24 100 -- 

SDKpre 4.75 2 7.5 50 3 2 3.5 0 -- 

SDKpost 6.25 5 7.5 50 3.5 1 4 0 -- 

Note. ILE = individual learning environment; CLE = collaborative learning environment; EK = environmental 

knowledge score (Maximum score is 32). SDK = system dynamics knowledge score (Maximum score is 12). pre = 

pre-test score. post = post-test score. Bold typeface indicates large effect size (r > | .50 |). 

ap < .10.  
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In the ABM group, students in the individual learning environment had higher scores for the 

environmental knowledge pre- and post-test scores (large effect size) and the system dynamics 

post-test scores (p < .10) than students in the collaborative learning environment. However in the 

SDM group, environmental knowledge post-test scores were higher in the collaborative learning 

environment than the individual learning environment (large effect size). Both pre- (p < .10) and 

post-test (large effect size) system dynamics knowledge scores were higher in the collaborative 

learning environment than the individual learning environment for this group. There were non-

significant differences between the learning environments for these scores in the SDM & ABM 

group.  

 

Kruskal-Wallis tests were used to compare the learning outcomes between the groups. In the 

individual learning environment, there was a non-significant difference between the groups in 

terms of pre-test environmental knowledge scores (H(3) = 1.88, p = .60) and between the groups 

in terms of post-test environmental knowledge scores (H(3) = 1.47, p = .69). However, in the 

collaborative learning environment, pre-test environmental knowledge scores were significantly 

different when the groups were compared (H (3) = 9.81, p = .02) as were the post-test 

environmental knowledge scores (H (3) = 9.00, p = .03). The environmental knowledge scores can 

be seen in Figure 6-1. 
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Figure 6-1: Total environmental knowledge pre-test and post-test scores in each group in the 
collaborative learning environment 

 

In the individual learning environment, there was a non-significant difference between the groups 

when the system dynamics knowledge pre-test was compared (H(3) = 5.88, p = .12) and the post-

test (H(3) = 3.88, p = .28). There was a non-significant difference between the groups in the 

collaborative learning environment when pre-test system dynamics knowledge scores were 

compared (H(3) = 3.95, p = .27), and similarly for the post-test scores (H(3) = 5.55, p = .14). 

 

Mann Whitney tests the groups with respect to the environmental knowledge score in the 

collaborative learning environment (Table 6-2).  
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Table 6-2: Results of the Mann Whitney test comparing total pre- and post-test environmental 
knowledge scores between the groups in the collaborative learning environment 

Group EKpre EKpost 

ABM vs.   

SDM 1.5* 0.5* 

SDM & ABM 3.0 2.0a 

Text 0.0a 0.0a 

SDM vs.   

SDM & ABM 14.0 7.0 

Text 2.0 7.0 

SDM & ABM vs.   

Text 0.5a 5.0 

Note. EK = environmental knowledge score (Maximum score is 32). SDK = system dynamics knowledge score 

(Maximum score is 12). pre = pre-test score. post = post-test score. Bold typeface indicates large effect size (r > | 

.50 |). 

ap < .10; *p < .05. 

 

Table 6-2 shows that in the pre-test environmental knowledge scores, students in the ABM group 

in the collaborative learning environment had lower scores than students in the SDM and Text 

groups. In addition, students in the Text group had higher median scores than students in the SDM 

& ABM groups. When post-test environmental knowledge scores were compared, the Text, SDM and 

SDM & ABM groups were statistically similar, however the differences in the environmental 

knowledge score between the ABM group and the other three groups increased.  
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Table 6-3: Results of the Wilcoxon signed-rank tests comparing total environmental knowledge and 
system dynamics knowledge pre- and post-test scores, for each group in the individual and 
collaborative learning experiments 

 ILE CLE 

 T Direction T Direction 

ABM     

EK 2.5 No change 0.0a Increase 

SDK 0.0 Increase 0.0 No change 

SDM     

EK 4.0 No change 0.0* Increase 

SDK 1.0 Increase 0.0a Increase 

SDM & ABM     

EK 0.0 Increase 0.0 Increase 

SDK 0.0 Increase 3.5 No change 

Text     

EK -- -- 0.0 No change 

SDK -- -- 1.5 No change 

Note. ILE = individual learning environment. CLE = collaborative learning environment. EK = environmental 

knowledge test (Maximum score is 32). SDK = system dynamics knowledge test (Maximum score is 12). Bold 

typeface indicates large effect size (r > | .50 |). 

ap < .10. *p < .05. 

 

There were differences in the results for the Wilcoxon signed ranks test when the individual and 

collaborative learning environments were examined (Table 6-3). The change between the 

environmental knowledge pre- and post-test score in the ABM group in the individual learning 

environment was non-significant. However there was a large effect size associated with an increase 

in the system dynamics knowledge test. There was a significant (p < .10) increase between the 

environmental pre- and post-test in the collaborative learning environment. However, in the system 

dynamics knowledge test, the change was non-significant.  

 

In the SDM group, in the individual learning environment the change in the environmental 

knowledge score was non-significant, whereas students in the collaborative learning environment 
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significantly increased their environmental knowledge score. There was a large effect size 

associated with the increase in the system dynamics knowledge score in the individual learning 

environment, and a significant (p < .10) increase in the collaborative learning environment. 

 

Large effect sizes were associated with increases in environmental knowledge scores in the SDM & 

ABM groups in both learning environments. Only those students in the individual learning 

environment had a large effect size associated with an increase in the system dynamics knowledge 

score.  

 

In the Text group, the change in both scores in the collaborative learning environment was non-

significant. 

6.3.1.1.2 The change in the environmental and system dynamics 
knowledge scores 

The change in the knowledge scores was calculated by subtracting the pre-test score from the 

post-test score. The purpose of comparing these changes is to determine whether the treatments 

had an effect on the size of the difference between the scores. 
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Table 6-4: Median and range of the change in scores for the environmental knowledge and system 
dynamics knowledge scores for the individual and collaborative learning environments 

ILE CLE 

Range Range 

Group Mdn Lower Upper 

Increase in 

score (%) Mdn Lower Upper 

Increase in 

score (%) 

ILE vs. 

CLE: 

U 

ABM          

EKchange 2.5 -3 6 75 1 0 1 75 4.0 

SDKchange 1 0 5 50 0 0 0 0 4.0 

SDM          

EKchange -0.5 -16 8 50 3.5 0 7 83 11.0 

SDKchange 1 -1 7 50 2.25 0 4 67 9.5 

SDM & ABM         

EKchange 1 0 2 67 3 0 6 60 5.0 

SDKchange 0 0 2.5 33 0 -3 2 40 5.0 

Text          

EKchange 0.25 0 0.5 50 0 0 0 0 -- 

SDKchange 1.5 0 3 50 0 -1 1 33 -- 

Note. EK = environmental knowledge score (Maximum score is 32). SDK = system dynamics knowledge score 

(Maximum score is 12). pre = pre-test score. post = post-test score. Bold typeface indicates large effect size (r > | 

.50 |) 

 

In the ABM group, there was a non-significant difference between the change in the environmental 

knowledge score when the two learning environments were compared (Table 6-4). There was a 

large effect size associated with the larger change in the system dynamics knowledge score in the 

individual learning environment than that in the collaborative learning environment.  

 

There were non-significant differences in the change in both the environmental knowledge and 

system dynamics knowledge scores when the individual and collaborative learning environments 

were compared in the SDM group and in the SDM & ABM group.  

 

Kruskal-Wallis tests showed that there was a non-significant difference between the groups in 

terms of the change in the environmental knowledge score in the individual learning environment 
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(H (3) = 0.85, p = .84). There was also a non-significant difference between the groups with 

respect to the change in the system dynamics knowledge score (H (3) = 0.59, p = .90). Similarly in 

the collaborative learning environment, there were non-significant differences between the groups 

with regards to the change in the environmental knowledge score (H (3) = 5.78, p = .12) and the 

change in the system dynamics knowledge score (H (3) = 5.33, p = .15). 

6.3.1.1.3 Understanding of the system: Final assessment task scores 
The final assessment contained five questions that allowed students to assume the role of a 

national park manager. Questions addressed areas such as self-reported interrogation of the 

materials, description of the system, environmental and management issues raised by the materials, 

and decisions, predictions and consequences of the decisions suggested. The purpose of these 

questions was to assess understanding of the system itself, rather than more general environmental 

knowledge. 

Table 6-5: Median and range of scores for the final assessment task in the individual and 
collaborative learning environments 

ILE CLE 

Range Range 

Group Mdn Lower Upper 

Score > 

50% (%) Mdn Lower Upper 

Score > 

50% (%) 

ILE vs. CLE 

U 

ABM 23 16 36 0 19 16 34 0 7.0 

SDM 21.75 19 24 0 19.5 16 29 0 9.5 

SDM & ABM 32 21 34 0 20 8 32 0 2.5 

Text 33 29 37 0 30 21 37 0 -- 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Bold typeface indicates 

large effect size (r > | .50 |). Maximum score is 91. 

 

There was a large effect size associated with the higher final assessment task score that students in 

the individual learning environment in the SDM & ABM group had when compared to those in the 

collaborative learning environment. There were non-significant differences between the learning 

environments when the final assessment task score was compared in the other groups. 

 

In the individual learning environment, there was a non-significant difference between the groups 

when the final assessment task scores were compared (H (3) = 4.13, p = .25). There was similarly a 
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non- significant difference between the groups in the collaborative learning environment (H (3) = 

3.39, p = .36). 

6.3.1.2 Discussion 
Two hypotheses were associated with this part of the analysis: 

 

H2a: Students working in a collaborative learning environment will have higher scores for all 

learning outcomes than students in an individual learning environment.  

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such as the animated representation used in the agent-based model) will improve 

interpretation, and therefore understanding in a collaborative learning environment. 

 

As this was an experimental design, the control group will be described first, followed by a 

discussion of the effect of the collaborative learning environment on learning from agent-based 

models, learning from system dynamics models, and learning from multiple representations. 

6.3.1.2.1 The control group 

Chapter 4 showed that students in the Text group in the individual learning environment were able 

to increase knowledge for the total environmental and system dynamics knowledge scores. Given 

the successful use of the materials by individuals, it is not expected that a partner will result in a 

large improvement to learning outcomes. 

 

In the collaborative learning environment, the only significant increase between pre- and post-test 

scores was found in the environmental knowledge test, and not the system dynamics knowledge 

scores. This is in contrast to the results discussed above.  

6.3.1.2.2 Learning from the agent-based model 

Previous research has shown that students in a collaborative learning environment have had a 

greater understanding of the system than those in the individual learning environment when using 

an agent-based model (Abrahamson & Wilensky, 2005). However, the results discussed in this 

thesis have suggested that time factors played a role in students’ ability to identify links between 

system-specific knowledge and other systems when using the agent-based model. A partner is not 
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expected to change this, and the additional time spent in negotiation of the use of the model may 

result in lower learning outcomes. 

 

Students in the collaborative learning environment in the ABM group increased their environmental 

knowledge score, while students in the individual learning environment increased their system 

dynamics score. Students in the collaborative learning environment had lower environmental 

knowledge (pre- and post-test) and system dynamics knowledge (post-test) scores than those in 

the individual learning environment. In fact, students in the collaborative learning environment had 

significantly lower pre- and post-test environmental knowledge scores than students in all other 

groups. Students in the two learning environments had similar final assessment task scores. These 

findings do not provide clear support for the hypothesis, and further investigation of key items is 

needed. 

6.3.1.2.3 Learning from the system dynamics model 

It was expected that students in the collaborative learning environment learning from a system 

dynamics model would have greater understanding and higher knowledge scores than those in the 

individual learning environment due to studies that have focussed on general collaborative learning 

(Abrahamson & Wilensky, 2005; Johnson & Johnson, 1985; Kozma, 2003). However there have been 

no specific studies comparing learning from system dynamics models in the two learning 

environments. Research already presented in this thesis suggested that students presented with a 

representation that constrained their interpretation of the system dynamics model had higher post-

test scores. Comparisons between groups suggested that the representation should increase 

students’ familiarity with the representation, or provide information at a different level, rather than 

a text description. A partner may also help students to interpret the system dynamics model.  

 

The hypothesis was supported with respect to environmental knowledge in the SDM group. 

Students in the two learning environments had similar pre-test environmental knowledge scores, 

and those in the collaborative learning environment had higher post-test environmental knowledge 

scores than students in the individual learning environment. Only those students in the 

collaborative learning environment increased their environmental knowledge score. Students in the 

SDM group increased their system dynamics knowledge scores in both learning environments; 

although students in the collaborative learning environment had higher pre- and post-test scores 

than those in the individual learning environment. Students in the two learning environments in 

most groups had similar final assessment task scores.  
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6.3.1.2.4 Learning from multiple representations 

Research has shown that the collaborative learning environment may result in greater 

understanding of the system for students given multiple representations (Kozma, 2003). As has 

already been discussed in this thesis, students using multiple representations were able to interpret 

the system dynamics model using the agent-based model, and increase all environmental 

knowledge scores and the applied system dynamics knowledge score. Students in this group did 

not increase their system dynamics knowledge score, and it may have been related to the high 

cognitive load associated with increasing knowledge of all other learning outcomes. The addition of 

a partner may help to decrease this cognitive load. However, given the successful use of the 

multiple representations by individuals, it is not expected that a partner will result in a large 

improvement to learning outcomes. 

 

The hypothesis was not supported by the results found in the SDM & ABM group. Students in the 

individual and collaborative learning environments had similar environmental and system dynamics 

knowledge scores in both the pre-test and post-test. Students from both learning environments 

increased their environmental knowledge score, and only students from the individual learning 

environment increased their system dynamics score. Students from the individual learning 

environment had a higher score for the final assessment task than those from the collaborative 

learning environment (a large effect size was associated with this difference).  

 

It was also expected that students given multiple representations would be the most successful of 

any of the groups. This was due to the findings outlined in Chapter 4 and Chapter 5, and a number 

of studies reporting on the advantages of multiple representations (for example (Ainsworth, 1999; 

Ainsworth, Bibby, & Wood, 1998; Tsui & Treagust, 2003)). However, this hypothesis was not 

supported. In the collaborative learning environment, there was a large effect size associated with 

an increase between the pre- and post-test environmental knowledge score in the ABM, SDM and 

SDM & ABM groups. This increase was significant only in the SDM group; therefore the SDM group 

was the most successful in terms of an increase in knowledge about the environment. 

6.3.1.3 Conclusion 

The main hypothesis, that a collaborative learning environment would produce higher learning 

outcomes than an individual learning environment was only supported by results from the SDM 

group. Students had similar results in the individual and collaborative learning environments in the 
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SDM & ABM group for environmental knowledge. The individual learning environment resulted in 

higher system dynamics knowledge scores for the ABM group, and a higher final assessment task 

score in the SDM & ABM group. In terms of the hypothesis that multiple external representations 

and a collaborative learning environment would be the most successful, this was not the case; the 

SDM group was the most successful. Further examination of the learning outcomes and use of the 

models will explain this further. 

6.3.2 Individual Questions 
The following hypotheses also apply to this section of the chapter: 

 

H2a: Students working in a collaborative learning environment will have higher scores for all 

learning outcomes than students in an individual learning environment.  

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such as the animated representation included in the agent-based model) will improve 

interpretation, and therefore understanding in the collaborative learning environment. 

 

As for the individual learning environment, presented in Chapter 4, key items and sections of the 

environmental knowledge test will be compared between pre- and post-tests for each group. Each 

pre-test, post-test, change in knowledge test and final assessment task score for these sections 

will be compared between the groups and between the learning environments.  

6.3.2.1 Results of the analysis of key items 
As outlined above, this section reports on the results of the analyses performed on key test scores. 

All pre-test scores and learning outcomes are compared between learning environments using 

Mann Whitney tests. In addition, the following analyses will be reported for both learning 

environment. Pre-test and post-test knowledge test scores will be compared between the groups 

using Kruskal-Wallis tests. Pre- and post-test scores will be compared for each group using 

Wilcoxon signed ranks tests. The results of Kruskal-Wallis tests comparing the change in 

knowledge test scores between groups will then be reported. Final assessment task scores will also 

be compared between groups using Kruskal-Wallis tests. Due to the small sample size, large effect 

sizes were taken into account in addition to significance, and are noted where appropriate. The 

meaning of these results in terms of the hypothesis will then be discussed. 
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6.3.2.1.1 Pre- and post-test environmental knowledge scores 
Three questions were analysed as part of the environmental knowledge tests. Question 5 (9 marks) 

questioned students about the types of activities that could cause an increase in the number of 

introduced animal species, and asked them to name one effect of such an increase. Question 6 (8 

marks) asked students to identify the types of activities that could cause an increase in the number 

of introduced plant species, and what the effects of such an increase might be. Question 7 (12 

marks) asked students to describe the impact of building a road, littering and bushwalking in terms 

of the initial impact, the time scale involved in that impact, any further impacts, and their 

associated time scales. 
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Table 6-6: Median and range of scores for key questions in the environmental knowledge pre-test 
and post-test, and the results of the Mann Whitney tests comparing learning environments 

ILE CLE 

Range Range 

Question Mdn Lower Upper 

Score > 

50% (%) Mdn Lower Upper 

Score > 

50% (%) 

ILE vs. CLE 

U 

ABM          

Q5pre 2.5 2 6 25 2.75 2 3 0 8.0 

Q5post 5.5 3 7 50 3.25 3 4 0 3.5 

Q6pre 3.75 1 4 0 1.75 0.5 3 0 3.0 

Q6post 4.75 1 6 75 1.75 1.5 3 0 4.0 

Q7pre 9.5 9 12 100 6.5 4 11 50 3.0 

Q7post 10 4 12 75 6 4 11 50 5.0 

SDM          

Q5pre 5.5 1 8 75 3 2 5 17 6.5 

Q5post 5.5 1 7 75 5 4 5 67 8.0 

Q6pre 5 1 8 50 2.75 2 5.5 17 7.5 

Q6post 5.5 1 7 75 5 3.5 6 67 9.5 

Q7pre 9.5 5 12 75 10 9 12 100 10.0 

Q7post 8 2 10 75 11.25 8 12 100 2.5* 

SDM & ABM         

Q5pre 3 3 5 33 3 2 4 0 5.0 

Q5post 4 3 6 33 5 3 7 60 6.0 

Q6pre 4 2 4.5 33 4 1 5 40 7.0 

Q6post 4 2 5.5 33 4.5 0.5 6 60 7.0 

Q7pre 10 8 11 100 10 5 11 80 7.5 

Q7post 10 7 12 100 10.5 8 12 100 6.0 

Text          

Q5pre 2.75 0.5 5 50 5 3 6 67 -- 

Q5post 3.5 3 4 0 4 4 5 33 -- 

Q6pre 5 3 7 50 4 3 5 33 -- 
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ILE CLE 

Range Range 

Question Mdn Lower Upper 

Score > 

50% (%) Mdn Lower Upper 

Score > 

50% (%) 

ILE vs. CLE 

U 

Q6post 4.5 1 8 50 5 4 5 67 -- 

Q7pre 12 12 12 100 11 10 11 100 -- 

Q7post 12 12 12 100 10 10 11 100 -- 

Note. Q5 = knowledge about introduced animal species (Maximum score is 9). Q6 = knowledge about 

introduced plant species (Maximum score is 8). Q7 = knowledge about human impacts on an ecosystem and 

associated timescales (Maximum score is 12). pre = pre-test score. post = post-test score. Bold typeface indicates 

large effect size (r > | .50 |). 

*p < .05.  

 

In the ABM group large effect sizes were associated with higher pre-test scores assessing 

knowledge about introduced plant species (Question 6) and human impacts on an ecosystem and 

associated timescales (Question 7) in the individual learning environment that the collaborative 

learning environment.  

 

In the SDM group, students in the collaborative learning environment had a significantly (p < .05) 

higher post-test score assessing knowledge of human impacts on an ecosystem and associated 

timescales (Question 7) than students in the individual learning environment.  

Table 6-7: Results of the Kruskal-Wallis tests for each question in each learning environment 

Pre-test Post-test 

Question ILE CLE ILE CLE 

Q5 1.70 5.19 1.53 6.70a 

Q6 1.29 5.45 0.57 6.08 

Q7 3.42 3.61 4.67 4.76 

Note. Q5 = knowledge about introduced animal species (Maximum score is 9). Q6 = knowledge about 

introduced plant species (Maximum score is 8). Q7 = knowledge about human impacts on an ecosystem and 

associated timescales (Maximum score is 12). 

ap < .10.  
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In the collaborative learning environment, there was a significant difference when the groups were 

compared in terms of the post-test score assessing knowledge of introduced animal species 

(Question 5). Mann Whitney tests were carried out (Table 6-8).  

Table 6-8: Results of the Mann Whitney tests comparing the groups in the individual and 
collaborative learning environment 

 CLE 

 Q5post 

ABM vs.  

SDM 1.0* 

SDM & ABM 3.5 

Text 1.0 

SDM vs.  

SDM & ABM 15.0 

Text 6.0 

SDM & ABM vs.  

Text 6.0 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Q5post = post-test score 

assessing knowledge of introduced animal species (Maximum score is 9). Bold typeface indicates large effect 

size (r > | .50 |). 

*p < .05. 

 

In the collaborative learning environment, students in the ABM group had a lower post-test score 

assessing knowledge of introduced animal species (Question 5) than students in the SDM group. 
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Table 6-9: Results of the Wilcoxon Signed Ranks tests for each question in each learning 
environment 

 ILE CLE 

 T Direction T Direction 

ABM group     

Q5 0.0a Increase 0.0a Increase 

Q6 0.0 Increase 0.0 Decreased range 

Q7 1.0 No change 0.0 Decrease 

SDM group     

Q5 3.0 No change 0.0a Increase 

Q6 4.0 No change 0.0* Increase 

Q7 2.0 No change 2.5 No change 

SDM & ABM group    

Q5 0.0 Increase 0.0a Increase 

Q6 0.0 Increase 3.0 No change 

Q7 1.5 No change 0.0 Increase 

Text group     

Q5 -- -- 1.0 No change 

Q6 -- -- 0.0 Increase 

Q7 -- -- 0.0 Decrease 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Q5 = knowledge about 

introduced animal species (Maximum score is 9). Q6 = knowledge about introduced plant species (Maximum 

score is 8). Q7 = knowledge about human impacts on an ecosystem and associated timescales (Maximum score 

is 12). Bold typeface indicates large effect size (r > | .50 |). 

ap < .10. *p < .05. 

 

In the ABM group, students in both learning environments significantly (p < .10) increased their 

score assessing knowledge about introduced animal species (Question 5). There was a large effect 

size associated with the increase in scores assessing knowledge of introduced plant species 

(Question 6). A non-significant change in the score assessing knowledge of human impacts on the 

environments and the associated time scales (Question 7) was found in the individual learning 
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environment. In the collaborative learning environment the median Question 7 score was lower in 

the post-test than in the pre-test.  

 

In the SDM group, there was a non-significant change between the Question 7 pre- and post-test in 

both learning environments. In the collaborative learning environment there were significant 

increases in the scores for the questions involving introduced animal and plant species (Question 5 

and Question 6). In the individual learning environment, the changes in these questions were non-

significant.  

 

In the SDM & ABM group, students in both learning environments increased their Question 5 score 

between the pre- and post-test (large effect size in the individual learning environment, significant 

(p < .10) in the collaborative learning environment). In the individual learning environment there 

was an increase in the score assessing knowledge of introduced plant species (Question 6), and not 

in the collaborative learning environment. Students in the collaborative learning environment 

increased the score assessing their knowledge of human impacts on environments and the 

associated time scales (Question 7), while students in the individual learning environment did not.  

 

In the Text group, students in the collaborative learning environments did not change their score 

assessing knowledge of introduced animal species (Question 5). In the collaborative learning 

environment the score assessing knowledge of introduced plant species (Question 6) increased 

between the pre- and post-test. In the collaborative learning environment the score assessing 

knowledge of human impacts on an ecosystem and associated timescales (Question 7) decreased 

between the pre- and post-test.  
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6.3.2.1.2 The change in the environmental knowledge scores 
The change in the knowledge scores was calculated by subtracting the pre-test score from the 

post-test score. The purpose of comparing these changes is to determine whether the treatments 

had an effect on the size of the difference between the scores. 

Table 6-10: Median and range of the change in key questions in the environmental knowledge 
scores, and the results of the Mann Whitney tests comparing learning environments 

ILE CLE 

Range Range 

Question Mdn Lower Upper 

Increased 

score (%) Mdn Lower Upper 

Increased 

score (%) 

ILE vs. CLE 

U 

ABM          

Q5change 1 1 5 100 1 0 1 75 4.5 

Q6change 1 0 2 75 0 0 1 25 3.5 

Q7change 0 -5 1 25 0 -1 0 0 7.0 

SDM          

Q5change 1 -7 4 50 1.5 0 3 67 11.0 

Q6change 1.5 -7 4 75 1.5 0 4 83 11.5 

Q7change -1 -9 3 25 0.25 -1 2 50 8.0 

SDM & ABM         

Q5change 1 0 1 67 2 0 3 80 2.5 

Q6change 0 0 1 33 0 -3 1 40 7.0 

Q7change 0 -1 1 33 0 0 3 40 4.5 

Text          

Q5change 0.75 -1 2.5 50 0 -2 1 33 -- 

Q6change -0.5 -2 1 50 0 0 2 33 -- 

Q7change 0 0 0 0 0 -1 0 0 -- 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Q5 = knowledge about 

introduced animal species (Maximum score is 9). Q6 = knowledge about introduced plant species (Maximum 

score is 8). Q7 = knowledge about human impacts on an ecosystem and associated timescales (Maximum score 

is 12). change = change in the score between the pre- and post-test. Bold typeface indicates large effect size (r > | 

.50 |). 
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In the ABM group, students in the individual learning environment had a larger change in the score 

assessing knowledge of introduced plant species (Question 6) than students in the collaborative 

learning environment (large effect size). In the SDM & ABM group, a large effect size indicated that 

students in the collaborative learning environment had a larger change in the score assessing 

knowledge of introduced animal species (Question 5) than students in the individual learning 

environment.  

 

In the individual learning environment, the difference between the groups was non-significant when 

the change in Question 5 was compared (H (3) = 0.99, p = .80), and similarly the difference was 

non-significant when the change in knowledge about introduced plant species (Question 6) was 

compared (H (3) = 1.91, p = .59). There was also a non-significant difference observed when 

comparing the change in the score assessing knowledge of human impacts on an ecosystem and 

associated timescales (Question 7) (H (3) = 0.36, p = .95).  

 

In the collaborative learning environment, the difference between the groups was non-significant 

when the change in Question 5 was compared (H (3) = 5.19, p = .16), and similarly the difference 

was non significant when the change in knowledge about introduced plant species (Question 6) was 

compared (H (3) = 5.30, p = .15). There was also a non-significant difference observed when 

comparing the change in the score assessing knowledge of human impacts on an ecosystem and 

associated timescales (Question 7) (H (3) = 4.18, p = .24).  
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6.3.2.1.3 Understanding of the system – key outcomes 
Individual questions in the final assessment task were grouped into three sections. The first section 

assessed students’ abilities to describe what they saw in the model (Describe, 8 marks). The second 

section addressed students’ abilities to identify the issues that were raised by the materials (Issues, 

16 marks), and the third assessed students’ abilities to make decisions, predictions, and identify 

the consequences of their decisions (Higher Level Thinking, 24 marks). 

Table 6-11: Median and range of scores for key sections of the final assessment task, and the 
results of the Mann Whitney tests comparing learning environments 

ILE CLE 

Range Range 

Question Mdn Lower Upper 

Score > 

50% (%) Mdn Lower Upper 

Score > 

50% (%) 

ILE vs. CLE 

U 

ABM          

Describe 3 2 5 25 2 0 4 0 6.0 

Issues 6.5 2 9 50 4 1 8 25 5.0 

HLT 7 2 8 0 4 1 8 0 5.0 

SDM          

Describe 4 3 5 25 3 1 4 0 5.5 

Issues 5 3 7 25 5 2 9 17 11.5 

HLT 5 1 7 0 4.5 3 8 0 12.0 

SDM & ABM         

Describe 4 4 4 0 4 0 5 20 6.0 

Issues 7 5 9 25 6 0 9 40 5.0 

HLT 5 4 10 0 4 0 11 0 4.0 

Text          

Describe 5 4 6 50 3 2 5 33 -- 

Issues 8.5 8 9 100 6 4 9 33 -- 

HLT 8 5 11 0 6 5 7 0 -- 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Describe = Describe 

section of the final assessment task (Maximum score is 8). Issues = Issues section of the final assessment task 

(Maximum score is 16). HLT = Higher Level Thinking section of the final assessment task (Maximum score is 

24). Bold typeface indicates large effect size (r > | .50 |). 
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No significant differences in understanding were found when the learning environments were 

compared. 

 

In the individual learning environment, the differences between the groups were non-significant 

when the Describe section (H (3) = 3.33, p = .34), the Issues section (H (3) = 3.63, p = .31) and the 

Higher Level Thinking section (H (3) = 1.69, p = .64) of the final assessment task were compared. 

In the collaborative learning environment, the differences between the groups were also non-

significant when the Describe section (H (3) = 0.90, p = .83), the Issues section (H (3) = 0.92, p = 

.82) and the Higher Level Thinking section (H (3) = 2.21, p = .53) of the final assessment task were 

compared. 

6.3.2.2 Discussion 
Two hypotheses were associated with this part of the analysis: 

 

H2a: Students working in a collaborative learning environment will have higher scores for all 

learning outcomes than students in an individual learning environment.  

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such as the animated representation included in the agent-based model) will improve 

interpretation, and therefore understanding in the collaborative learning environment. 

 

As this was an experimental design, the control group will be described first, followed by a 

discussion of the effect of the collaborative learning environment on learning from agent-based 

models, learning from system dynamics models, and learning from multiple representations. 

6.3.2.2.1 The control group 

In the Text group, students in the individual learning environment were able to increase knowledge 

for all learning outcomes except those addressing knowledge of introduced plant species and 

system dynamics concepts, although changes in both were associated with large effect sizes. Given 

the successful use of the materials by individuals, it is not expected that a partner will result in a 

great improvement in learning outcomes. 
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Students in the collaborative learning environment increased their score assessing knowledge of 

introduced plant species, which students in the individual learning environment did not. Students in 

the two learning environments learned about different areas of the materials. A collaborative 

learning environment did allow students to increase their score assessing knowledge of introduced 

plant species, which was not achieved in the individual learning environment. 

6.3.2.2.2 Learning from the agent-based model 

Previous research has shown that students in a collaborative learning environment have had a 

greater understanding of the system than those in the individual learning environment when using 

an agent-based model (Abrahamson & Wilensky, 2005). However, the results discussed in this 

thesis have suggested that time factors played a role in students’ ability to identify links between 

system-specific knowledge and other systems when using the agent-based model. A partner is not 

expected to change this, and the additional time spent in negotiation of the use of the model may 

result in lower learning outcomes. 

 

Students in the ABM group in the collaborative learning environment did not have higher learning 

outcomes than those in the individual learning environment. Students in both learning 

environments increased their scores assessing knowledge of introduced plant species; however 

students in the individual learning environment had a greater change in this score. Students in the 

individual learning environment had a higher post-test score assessing system dynamics knowledge 

than students in the collaborative learning environment.  

6.3.2.2.3 Learning from the system dynamics model 

It was expected that students in the collaborative learning environment learning from a system 

dynamics model would have greater understanding and higher knowledge scores than those in the 

individual learning environment due to studies that have focussed on general collaborative learning 

(Abrahamson & Wilensky, 2005; Johnson & Johnson, 1985; Kozma, 2003). However there have been 

no specific studies comparing learning from system dynamics models in the two learning 

environments. Research already presented in this thesis suggested that students presented with a 

representation that constrained their interpretation of the system dynamics model had higher post-

test scores. Comparisons between groups suggested that the representation should increase 

students’ familiarity with the representation, or provide information at a different level, rather than 

a text description. A partner may also help students to interpret the system dynamics model.  
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The hypothesis was supported with respect to environmental knowledge in the SDM group. 

Students in the collaborative learning environment significantly increased the score assessing 

knowledge of introduced animal and plant species, which was not the case for students in the 

individual learning environment. Students in the collaborative learning environment also had higher 

post-test scores assessing knowledge of human impacts on an ecosystem and associated 

timescales. The answers for this question were more closely examined for students in both learning 

environments. Students in the collaborative learning environment did apply the knowledge learned, 

indicated by their inclusion of impacts of different activities on a different system such as an 

increase in soil nutrients, increased rodent populations and increased waste left at the site. 

Students in the individual learning environment, however, only changed their answers to address 

the effects of the impacts of littering rather than being able to apply this knowledge to other types 

of impacts. 

 

The hypothesis was not supported with respect to system dynamics knowledge. Both groups 

experienced an increase in the system dynamics score.  

6.3.2.2.4 Learning from multiple representations 

Research has shown that the collaborative learning environment may result in greater 

understanding of the system for students given multiple representations (Kozma, 2003). As has 

already been discussed in this thesis, students using multiple representations were able to interpret 

the system dynamics model using the agent-based model, and increase all environmental 

knowledge scores and the applied system dynamics knowledge score. Students in this group did 

not increase their system dynamics knowledge score, and it may have been related to the high 

cognitive load associated with increasing knowledge of all other learning outcomes. The addition of 

a partner may help to decrease this cognitive load. However, given the successful use of the 

multiple representations by individuals, it is not expected that a partner will result in a large 

improvement to learning outcomes. 

 

The results suggested that students in the SDM & ABM group learned about different areas of 

environmental knowledge in the two learning environments. In the collaborative learning 

environment, students had a larger change in the score assessing knowledge of introduced animal 

species, and increased their score assessing knowledge of human impacts on an ecosystem and 

associated timescales. On further examination of the answers to Question 5, assessing knowledge 

of introduced animal species, it can be seen that the increase in the score came from the ability of 
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students to identify a greater number of activities that could result in an increased number of 

introduced animal species. Such activities included littering, which was not identified in any pre-test 

answer for this group. In the individual learning environment, students increased their score 

assessing introduced plant species. The collaborative learning environment enhanced the advantage 

of multiple representations in allowing students to identify the links between knowledge gained 

from the materials and reality. The way in which students used both models was found to be key in 

explaining the success of this group, and further investigation is required into differences between 

the learning environments. 

 

It was also expected that students given multiple representations would be the most successful of 

any of the groups. This was due to the findings outlined in Chapter 4 and Chapter 5, and a number 

of studies reporting on the advantages of multiple representations (for example (Ainsworth, 1999; 

Ainsworth et al., 1998; Tsui & Treagust, 2003)). While students in the SDM & ABM group were 

successful in different areas in the learning environments, those in the SDM group were more 

successful in the collaborative learning environment than in the individual environment, and also 

the most successful of all the groups in the collaborative learning experiment. Students in the ABM 

group increased their score for both environmental knowledge and system dynamics knowledge, 

while those in the SDM & ABM group only increased their environmental knowledge scores. These 

results indicate that individual models may be more effective in a collaborative learning 

environment than multiple models. These results also indicate that in terms of using a system 

dynamics model, a partner provides a similar advantage to an additional representation to make 

sense of the representation.  

6.3.2.3 Conclusion 

The collaborative learning environment provided an advantage for students in the control group, 

and for the group given only the system dynamics model. There was not a clear advantage for 

students in either the ABM group or the SDM & ABM group. The findings from the previous chapter 

outlining the role of the way in which the models are used, particularly the way in which explanatory 

features are used, may help to explain these differences. These findings will be extended in the 

following section. 
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6.4 USE OF THE MODELS 
The process that students use to interrogate a model may affect what they learn from the model; 

however there is little research that examines this process. Findings from the previous chapters 

indicate that some learning outcomes were related to the ways in which the models were used. 

Patterns of students’ use of the models, as well as the preferences that students had with respect to 

the representations they used when given the choice may aid in understanding differences in 

learning outcomes, and may be useful in general because there is little information about user 

preferences in interrogating multiple external representations (Van Labeke & Ainsworth, 2002). 

 

In a number of these cases, previous research conducted in the fields of learning from animations 

and learning from agent-based models (for example, (Lowe, 2003, 2004)) and learning from 

abstract diagrams (for example, (Schieritz & Milling, 2003; Wakeland, Macovsky, Gallaher, & Aktipis, 

2004)) resulted in the prediction that the representation itself encouraged learning about a 

particular area. For example, it has been predicted that students in the ABM group would learn 

about those areas that are distinctive in the animation used in the agent-based model. Subjects 

tend to be attracted to the information generated by the features in the animation that actually 

change in a contrasted way to the rest of the display (Lowe, 2003, 2004). In particular, this involved 

Question 5 (knowledge about introduced animal species), because rats are used to represent 

introduced animal species and are visible in the animated representation.  

 

Levy and Wilensky (2005) classified styles of interrogating an agent-based model, and related these 

styles to learning outcomes. Further investigation into user preference and strategies used will help 

to understand why the differences in learning outcomes between groups reported above were the 

case, and will provide much needed research in this field. 

 

This section addresses the following hypotheses: 

 

H2b: Students working in a collaborative learning environment will interact more with the model 

than students in an individual learning environment.  

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 
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students, such as the animated representation included in the agent-based model) will improve 

interpretation, and therefore understanding. 

 

Video screen shots were collected and coded with respect to times, activities and screens. The 

system dynamics model had three screens: the background information screen, the explore the 

model screen, and the experiment screen. The agent-based model had two screens, the 

information screen and the experiment screen. For both models the proportion of time spent off 

task was also calculated. The variables that could be changed were the number of pieces of rubbish 

each person left (npr), the proportion of rubbish collected by the garbage collection person (prc), 

and the garbage collection time (gct). Others that are reported on from the system dynamics model 

relate to the explore the model screen – step by step (SbS) and in full (IF). Also, the system 

dynamics model had an “ideas” option which gave students suggestions of how to interact with the 

model. The total activity included all of the above, as well as other activities not discussed in these 

results. The sample size for this section of the chapter is smaller than the first section because not 

all video screen shots were successful, and there was only one video screen shot for each pair of 

students. In the collaborative learning environment, for the ABM group n = 2, for the SDM group n 

= 4, and for the SDM & ABM group n = 2. 

 

This half of the chapter will compare measures of use of the models. In brief, the results of analyses 

carried out on the general measures of use of the model will be compared between all three groups 

and within groups to determine whether there is a general pattern of use of the models in both 

learning environments. The use of single models will then be compared to the use of the same type 

of model when an additional model is available (for example the use of the model by the ABM group 

will be compared to the use of the model in the SDM & ABM group) in both learning environments, 

however only descriptively given the small sample sizes. This will help to determine whether 

students used the agent-based model to constrain their interpretation of the system dynamics 

model (Ainsworth, 1999). If this was the case, students would have used the system dynamics 

model to experiment with, and the agent-based model for context. Students in the SDM & ABM 

group would have a similar level of activity as those in the SDM group (H2b). The final part of this 

chapter will identify the strategies used by students to interrogate the models overall and to change 

individual variables in both learning environments. Relationships between these strategies and the 

general measures of use of the models will help to define the classification system. An analysis of 
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the relationships between learning outcomes and the strategies used will help to explain why 

students adopted particular strategies, and what effect these had on their learning outcomes.  

6.4.1 Patterns of Use and User Preference 
6.4.1.1 Results 

Results regarding general patterns of use and user preference will be discussed in this section. All 

measures of use are compared between learning environments using Mann Whitney tests. In 

addition, the following analyses will be reported for both learning environment. The proportion of 

time spent on each screen (experiment, information and off task) and the frequency of activities 

performed (running the model, and the total activity) common to the agent-based model and the 

system dynamics model will be compared between the groups using Kruskal-Wallis tests. The 

proportion of time will then be compared within each group using Friedman’s ANOVA and Mann 

Whitney tests post-hoc. User preference will then be explored by comparing the use of the single 

models with the use of both models using Mann Whitney tests. Due to the small sample size, large 

effect sizes were taken into account in addition to significance, and are noted where appropriate. 

6.4.1.1.1 Patterns of use 
Patterns of use were compared to determine whether the representation had an effect on the ways 

in which the models were used. The experiment screen is the screen on which the animation and 

the stock and flow diagrams are located, and the screen on which students interact with the 

models. The information screen contains the text description which is given to each group. The 

proportion of time spent off task is the time that was noticeably spent not on task (for example, 

moving the mouse off the main model screen to examine menu items in the list below, or open files 

not pertaining to the materials. Other screens were accessible however they were not common to 

both models, are not relevant to this study, and are not reported here. 

 

The activities performed on the models that were common to both models were ‘go’ (running the 

model), and the total activity (the sum of all activities including those not reported in this thesis. 
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Table 6-12: Medians and ranges of the proportion of time spent on each screen and activities, and 
the results of the Mann Whitney tests comparing the two learning environments 

ILE CLE 

Range (%) Range (%) ILE vs. CLE 

 

Mdn (%) Lower Upper Mdn (%) Lower Upper U 

ABM       

Exp 84 58 87 76 70 81 -- 

Inf 12 0 12 18 17 18 -- 

OT 6 3 30 6 0 13 -- 

Go 7 5 9 6 6 6 -- 

TA 26 25 28 24.5 23 26 -- 

SDM       

Exp 61 47 72 57 44 68 7.0 

Inf 18 11 40 7 2 18 2.0 

ETM 9 4 12 7 1 13 8.0 

OT 4 0 14 26 9 35 1.0a 

Go 21 4 26 14 4 19 3.5 

IF 1 0 1 1 0 1 8.0 

SbS 1 1 1 0.5 0 1 4.0 

Ideas 2 2 3 3.5 1 5 4.5 

TA 51 22 65 40.5 12 52 4.0 

SDM & ABM       

Exp 66 53 79 80 77 84 -- 

Inf 22 11 32 7 4 10 -- 

OT 2 0 4 6 0 13 -- 

Go 14 12 16 11 3 19 -- 

TA 38.5 37 40 32 14 50 -- 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Exp = proportion of time 

spent on the experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of 

time spent on the explore the model screen. OT = proportion of time spent off task. Go = number of times the 
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model was run. IF = number of times explore the model in full was selected. SbS = number of times explore the 

model step by step was selected. Ideas = number of times the ideas option was selected. TA = total activity. 

Bold typeface indicates a large effect size (r > | .50 |). 

ap < .10. 

 

Table 6-12 shows that large effect sizes were associated with a larger proportion of time spent on 

the information screen by students in the individual learning environment than the collaborative 

learning environment in the SDM group. Students in the SDM group in the collaborative learning 

environment spent a significantly higher proportion of time off task than students in the individual 

learning environment.  

 

In the SDM group, students in the individual learning environment explored the model step by step 

more often than students in the collaborative learning environment (large effect size).  

 

In the individual learning environment, Kruskal-Wallis tests showed that the difference between the 

groups was non-significant when the proportion of time spent on an experiment screen (H (2) = 

1.71, p = .43), spent on an information screen (H (3) = 1.94, p = .38), and spent off task (H (2) = 

2.02, p = .36) were compared. In the collaborative learning environment there was a significant 

difference between the groups in terms when the proportion of time spent on an experiment screen 

(H (3) = 5.50, p = .06) were compared; however the differences between the groups when the 

proportion of time spent on an information screen (H (3) = 2.79, p = .25), and off task (H (3) = 

3.08, p = .22) were compared were non-significant. Mann Whitney tests were unable to be 

performed post-hoc due to the sample size for the ABM and SDM & ABM groups. Examination of the 

median proportions shows that students in the ABM group spent 84% of their time on the 

experiment screen, while students in the SDM group spent 61% and in the SDM & ABM group spent 

66% of their time on an experiment screen.  

 

In the individual learning environment, Kruskal-Wallis tests also showed that the difference between 

the groups was non-significant when the number of times: ‘go’ was selected (H(2) = 2.50, p = .29), 

and the total activity (H(2) = 2.50, p = .29) were compared. In the collaborative learning 

environment, the difference between the groups was non-significant when the number of times: 

‘go’ was selected (H(2) = 0.63, p = .73), and the total activity (H(2) = 0.50, p = .78) were compared.  
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Friedman’s ANOVA was used to compare the use of the model for each group in the individual 

learning environment. The difference between the proportions of time spent on each screen in the 

ABM group (χ2(2) = 4.67, p = .10) was non-significant. There was a significant difference between 

the proportions of time spent on the three screens in the SDM group (χ2(2) = 6.50, p = .04). The 

differences between the proportions of time spent on the three screens in the SDM & ABM group 

with the models combined (χ2(2) = 4.00, p = .14), the use of the agent-based model (χ2(2) = 2.00, 

p = .37), and the use of the system dynamics model (χ2(2) = 4.00, p = .14) were non-significant.  

 

Wilcoxon Signed Rank tests were carried out post-hoc for the SDM group. Students in the SDM 

group in the individual learning environment spent a significantly greater proportion of their time 

on the experiment screen than they did on the information screen (T = 0.00, p = .07, r = -.91), and 

greater than they spent off task (T = 0.00, p = .07, r = -.91). However, the difference between the 

proportion of time spent off task and on the information screen was not significant (T = 1.00, p = 

.14, r = -.73). 

 

In the collaborative learning environment Friedman’s ANOVA showed that the difference between 

the proportions of time spent on each screen in the ABM group (χ2(2) = 4.00, p = .14) was non-

significant. There was a significant difference between the proportions of time spent on the three 

screens in the SDM group (χ2(2) = 6.50, p = .04). The differences between the proportions of time 

spent on the three screens in the SDM & ABM group with the models combined (χ2(2) = 3.00, p = 

.22), the use of the agent-based model (χ2(2) = 3.71, p = .16), and the use of the system dynamics 

model (χ2(2) = 2.00, p = .37) were non-significant.  

 

Wilcoxon Signed Rank tests were carried out post-hoc for the SDM group. Students in the SDM 

group spent a greater proportion of their time on the experiment screen than they did on the 

information screen (T = 0.00, p = .07, r = -.91), and greater than they spent off task (T = 0.00, p = 

.07, r = -.91). However, the difference between the proportion of time spent off task and on the 

information screen was not significant (T = 1.00, p = .14, r = -.73). 

6.4.1.1.2 User preference 
User preference was examined by comparing the use of the model by the ABM group with the use of 

the agent-based model by the SDM & ABM group and similarly with the use of the system dynamics 

model in a descriptive way only due to the small sample sizes in this part of the analysis.  
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Table 6-13: Medians and ranges of the proportion of time spent on the individual model screens 
and the activities performed on each in the SDM & ABM group 

ILE CLE 

Range Range 

 

Mdn Lower Upper Mdn Lower Upper 

Agent-based model      

Exp 1 0 2 53 23 84 

Inf 8 0 16 2 0 4 

OT 0 0 0 6 0 13 

Go 0 0 0 2 1 3 

TA 0 0 0 8 2 14 

ABM 9 0 18 62 23 100 

System dynamics model     

Exp 65 51 79 27 0 53 

Inf 12 11 14 5 0 10 

ETM 11 9 13 6 0 12 

OT 2 0 3 0 0 0 

Go 14 12 16 9 0 18 

IF 0 0 0 0 0 0 

SbS 1.5 1 2 0.5 0 1 

Ideas 1.5 1 2 0.5 0 1 

TA 38.5 37 40 24 0 48 

SDM 91 82 100 38 0 77 

Note. ILE = individual learning environment. CLE = collaborative learning environment. Exp = proportion of time 

spent on the experiment screen. Inf = proportion of time spent on the information screen. ETM = proportion of 

time spent on the explore the model screen. OT = proportion of time spent off task. Go = number of times the 

model was run. IF = number of times explore the model in full was selected. SbS = number of times explore the 

model step by step was selected. Ideas = number of times the ideas option was selected. TA = total activity. 

ABM = proportion of time spent on the agent-based model. SDM = proportion of time spent on the system 

dynamics model.  
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In the SDM & ABM group, students in the collaborative learning environment (Mdn = 53%) spent a 

higher proportion of time on the experiment screen on the agent-based model than students in the 

individual learning environment (Mdn = 1%). Students in the individual learning environment (Mdn 

= 12%) also spent a greater proportion of time on the information screen on the system dynamics 

model than students in the collaborative learning environment (Mdn = 5%). 

 

In the SDM & ABM group, students in the collaborative learning environment (MdnGo = 2, MdnTA = 8) 

ran the agent-based model more often, and had greater total activity on the agent-based model 

than those in the individual learning environment (MdnGo = 0, MdnTA = 0). Students in the individual 

learning environment (Mdn = 1.5) selected explore the model step by step and ideas more often 

than those in the collaborative learning environment (Mdn = 0.5). 

 

Students spent a greater proportion of time on the system dynamics model in the individual 

learning environment (Mdn = 91%) than the collaborative learning environment (Mdn = 38%); and a 

greater proportion of time on the agent-based model in the collaborative learning environment 

(Mdn = 62%) than in the individual learning environment (Mdn =9%).  

 

In order to further understand the preferences with regards to the representations used in the SDM 

& ABM group, use of the agent-based model in the ABM group was compared with that of the SDM 

& ABM group, and similarly the use of the system dynamics model in the SDM and SDM & ABM 

groups were compared in the two learning environments in a descriptive manner.  

 

Students in the individual learning environment spent a greater proportion of time on the 

experiment screen in the ABM group (Mdn = 84%) than on the experiment screen on the agent-

based model in the SDM & ABM group (Mdn = 1%), and similarly for the proportion of time spent off 

task (MdnABM = 6%, MdnSDM & ABM = 0%). Students in the collaborative learning environment spent 

comparatively similar proportions of time on the experiment screen in the ABM (Mdn = 53%) and 

SDM & ABM (Mdn = 76%) groups. However, students in the ABM group (Mdn = 18%) spent a greater 

proportion of time on the information screen than those in the SDM & ABM group (Mdn = 2%).  

 

In terms of the activities, students in the ABM group (Mdn = 26) did all activities more often than 

students in the SDM & ABM (Mdn = 0) group in the individual learning environment. In the 

collaborative learning environment, students in the ABM group (Mdn = 24.5) also did all activities 

more often than students in the SDM & ABM group (Mdn = 8).  
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In the individual learning environment, students spent a greater proportion of time on the 

information screen in the SDM group (Mdn = 18%) than the SDM & ABM group (Mdn = 12%), and 

students in the SDM & ABM group (Mdn = 11%) spent a greater proportion of their time on the 

explore the model screen than students in the SDM group (Mdn = 9%). In the collaborative learning 

environment, students in the SDM group (Mdn = 26%) spent a greater proportion of their time off 

task than students in the SDM & ABM group (Mdn = 0%).  

 

Students performed most activities a similar number of times (ILE: MdnSDM = 51, MdnSDM & ABM = 

38.5; CLE: MdnSDM = 40.5, MdnSDM & ABM = 24), except explore the model in full and the selection of 

the ideas option. In both learning environments, students from the SDM group (ILE: MdnIF = 1, 

MdnIdeas = 2; CLE: MdnIF = 1, MdnIdeas = 3.5) performed these activities more often than those in the 

SDM & ABM group (ILE: MdnIF = 0, MdnIdeas = 1.5; CLE: MdnIF = 0, MdnIdeas = 0.5). In the individual 

learning environment students in the SDM & ABM group (Mdn = 1.5) selected the explore the model 

step by step option more often than students in the SDM group (Mdn = 1). 

6.4.1.2 Discussion 
This section addresses the following hypotheses: 

 

H2b: Students working in a collaborative learning environment will interact more with the model 

than students in an individual learning environment.  

 

H2c: A system dynamics model is too abstract for high school students, and an additional 

representation that constrained the interpretation of the model (one that was familiar to the 

students, such as the animated representation included in the agent-based model) will improve 

interpretation, and therefore understanding. 

 

If H3b is supported by the evidence, students in the collaborative learning environment will spend a 

greater proportion of time on the experiment screen than students in the individual learning 

environment, and perform all activities more often. If H3c is supported by the evidence, user 

preference will show that students in the SDM & ABM group used the system dynamics model more 

than the agent-based model, similarly to students in the individual learning environment. The ways 

in which each of the types of model was used will now be discussed: the agent-based model, the 

system dynamics model, a comparison between the two types of model, and use of both the agent-
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based and system dynamics model in relation to the comparison between the learning 

environments. 

6.4.1.2.1 Using the agent-based model 

Previous research has shown that students in a collaborative learning environment have had a 

greater understanding of the system being modelled than those in the individual learning 

environment when using an agent-based model (Abrahamson & Wilensky, 2005). However, the 

results discussed in this thesis have suggested that time factors played a role in students’ ability to 

identify links between system-specific knowledge and other systems when using the agent-based 

model. A partner is not expected to change this, and the additional time spent in negotiation of the 

use of the model may result in lower learning outcomes. As already discussed in this chapter, 

students in the ABM group in the two learning environments had similar learning outcomes, and in 

some cases, such as knowledge about introduced plant species, students in the individual learning 

environment had higher changes in the post-test scores (Question 6) than students in the 

collaborative learning environment. This suggests that when examined, students in the two learning 

environments will have similar patterns of use. 

 

Students in both learning environments, in the ABM group, when given the choice, chose to interact 

with the model, and not to spend a large proportion of their time off task. Students in this group in 

both learning environments spent statistically similar proportions of time on the experiment screen, 

the information screen and off task. Students in both learning environments had similar levels of 

total activity when the learning environments were compared. Students in the collaborative learning 

environment spent a higher proportion of their time on the information screen than students in the 

individual learning environment.  

6.4.1.2.2 Using the system dynamics model 

It was expected that students in the collaborative learning environment learning from a system 

dynamics model would have greater understanding and higher knowledge scores than those in the 

individual learning environment due to studies that have focussed on general collaborative learning 

(Abrahamson & Wilensky, 2005; Johnson & Johnson, 1985; Kozma, 2003). However there have been 

no specific studies comparing learning from system dynamics models in the two learning 

environments. Research already presented in this thesis suggested that students presented with a 

representation that constrained their interpretation of the system dynamics model had higher post-

test scores. Comparisons between groups suggested that the representation should increase 
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students’ familiarity with the representation, or provide information at a different level, rather than 

a text description. A partner may also help students to interpret the system dynamics model.  

 

As has already been discussed in this chapter, students in the SDM group in the collaborative 

learning environment had a higher environmental knowledge post-test score and increased two 

environmental knowledge scores, which students in the individual learning environment did not do. 

However, learning outcomes associated with system dynamics knowledge were similar when the 

groups were compared. If the higher learning outcomes in the collaborative learning environment 

are due to the use of the materials, a difference in the patterns of use will be observed. If the 

patterns are not observed, this indicates that it may have been interaction with a partner that 

helped students to interpret the system dynamics model. 

 

When given the choice, students in the SDM group chose to interact with the model, and not to 

spend a large proportion of their time off task. There were differences between the learning 

environments for some measures. These included the higher proportion of time spent off task by 

students in the collaborative learning environment. Students in the individual learning environment 

had greater interaction with the model than those in the collaborative learning environment. 

Differences were mainly concerned with the explanatory features of the models, such as the 

proportion of time spent on the information screen (higher in the individual learning environment) 

and the explore the model step by step option (used more often by students in the individual 

learning environment). These similar results in terms of the use of the model itself suggest that it 

was interaction with a partner, rather than interaction with the materials, that resulted in the higher 

learning outcomes.  

6.4.1.2.3 Using the agent-based and the system dynamics models 

Research has shown that the collaborative learning environment may result in greater 

understanding of the system for students given multiple representations (Kozma, 2003). As has 

already been discussed in this thesis, students using multiple representations were able to interpret 

the system dynamics model using the agent-based model, and increase all environmental 

knowledge scores and the applied system dynamics knowledge score. Students in this group did 

not increase their system dynamics knowledge score, and it may have been related to the high 

cognitive load associated with increasing knowledge of all other learning outcomes. The addition of 

a partner may help to decrease this cognitive load. However, given the successful use of the 

multiple representations by individuals, it is not expected that a partner will result in a large 
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improvement to learning outcomes. As discussed already in this chapter, in the collaborative 

learning environment, students had a larger change in the score assessing knowledge of introduced 

animal species, and increased their score assessing knowledge of human impacts on an ecosystem 

and associated timescales. In the individual learning environment, students increased their score 

assessing introduced plant species. The collaborative learning environment enhanced the advantage 

of multiple representations in allowing students to identify the links between knowledge gained 

from the materials and reality.  

 

There were also differences in system dynamics knowledge. Students in the individual learning 

environment had a higher system dynamics knowledge post-test score than those in the 

collaborative learning environment, although students in neither group increased their scores. 

There was a very small sample size for the SDM & ABM group in the collaborative learning 

environment with data regarding the use of the models, and further investigation shows that one 

student used both models and the other only the agent-based model. However, the majority of the 

comparisons between single and multiple model use were similar in the two learning environments.  

 

When given the choice, students chose to interact with the model, and not to spend a large 

proportion of their time off task. There were differences between the learning environments for 

some measures. These involved the model choice in the SDM & ABM group. In the individual 

learning environment, students chose to use the system dynamics model more than the agent-

based model. This indicates that students used the agent-based model to constrain their 

understanding of the system dynamics model (Ainsworth, 1999). However, in the collaborative 

learning environment, students chose to use the agent-based model more than the system 

dynamics model. This indicates that students used the system dynamics model to construct a 

deeper understanding of the agent-based model (Ainsworth, 1999).  

 

Specifically, students in the collaborative learning environment spent a greater proportion of time 

on the agent-based model experiment screen and a lower proportion of time on the information 

screen on the system dynamics model than those in the individual learning environment. Overall, 

students in the individual learning environment spent a greater proportion of time on an 

information screen (either model) than those in the collaborative learning environment. Students in 

the SDM & ABM group had higher activity on the agent-based model. With respect to the overall 

activity, students in the two learning environments had similar levels of activity.  
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In addition to spending more time using the agent-based model, students used the agent-based 

model in a similar way to students in the ABM group. Students in the ABM and SDM & ABM groups 

in the collaborative learning environment spent similar proportions of time on the experiment and 

information screens and off task, while students in the individual learning environment spent a 

statistically larger proportion of time on the experiment screen than other screens in both these 

groups. However, when the use of the model was compared between the learning environments, 

students spent similar proportions of time on the experiment screen and off task. Students in the 

ABM group spent a greater proportion of time on the information screen. Students in both learning 

environments interacted more with the agent-based model in the ABM group than the SDM & ABM 

group.  

 

In the collaborative learning environment, students in the SDM and SDM & ABM groups spent 

statistically similar proportions of time on the experiment screen, as they did in the individual 

learning environment. Students in the SDM group spent more time off task than those in the SDM & 

ABM group in the collaborative learning environment, which was not the case in the individual 

learning environment. Students in the individual learning environment in the SDM & ABM group 

spent a greater proportion of their time on the explore the model screen than students in the SDM 

group. However, neither of these differences explains the differences in learning outcomes. 

Students in the two groups in the collaborative learning environment spent similar proportions of 

time on the information screen, whereas in the individual learning environment, students in the 

SDM group spent longer on this screen than those in the SDM & ABM group. The patterns of the 

activities that students engaged in were similar in the two learning environments. Students 

manipulated the system dynamics model in the same way in both groups in both learning 

environments for all activities except exploring the model in full and selecting ideas, both of which 

were done more often in the SDM group than the SDM & ABM group in both learning environments. 

In addition, in the individual learning environment, students in the SDM & ABM group selected the 

explore the model step by step option more often than students in the SDM group. These are 

explanatory activities and perhaps students with access to the agent-based model tended to use 

that for explanation instead. 

 

In the collaborative learning environment, students spent the same proportion of time on the 

experiment screen in the ABM group and the SDM & ABM group. Students also spent the same 

proportion of time on the experiment screen in the SDM and SDM & ABM groups, but had similar 
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activity in the two groups. While students in the collaborative learning environment did use the 

system dynamics model for experimenting, they spent longer on the agent-based model 

experiment screen than those in the individual learning environment. Students spent less time on 

the information screens in the collaborative learning environment on either model. Perhaps as part 

of the negotiation of the use of the models, students used the agent-based model for longer before 

experimenting with the system dynamics model as before. Students in the SDM & ABM group in the 

collaborative learning environment did have a greater change in knowledge of introduced animal 

species (Question 5) than those in the individual learning environment, which was thought to be 

related to the animated representation. 

6.4.1.3 Conclusions 

The hypothesis that a collaborative learning environment encourages interaction with the model 

was not supported by these findings. Instead, there were differences in how the explanatory 

features of the models were used (information screen in the ABM group, explore the model step-

by-step in the SDM group and the alternate model in the SDM & ABM group). It may be that the 

patterns of use of the models were different (rather than generally higher in one learning 

environment than the other) and that this allowed difference connections to be made between prior 

knowledge and learning outcomes. The relationships between these measures will be analysed 

below. 

 

In the collaborative learning environment, students used the two models in a more balanced way, 

but had a similar pattern in terms of what the models were used for as those who used them in the 

individual learning environment. This suggests that user preference was, in the main, independent 

of the learning environment. However, students in the SDM & ABM group used the agent-based 

model and not the system dynamics model. Further research into interaction between the partners, 

decision making, and with a larger sample size are needed to explain this. 
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6.4.2 Strategies 
To make sense of the patterns of use, they were classified according to Levy and Wilensky’s (2005) 

strategies. The purpose of this section is to investigate whether these strategies differed depending 

on the model, whether more information can be added to identify and describe strategies, and 

finally whether these strategies were influenced by or influenced learning outcomes in the 

collaborative learning environment, and whether the strategies differed depending on the learning 

environment.  

Table 6-14: Patterns found in Levy and Wilensky’s (2005) study 

 Strategy 

Name Straight to the point Homing in Oscillating 

Description The most informative 

state is accessed 

directly 

The most informative 

state is gradually 

approached through 

decreasing increments 

The model oscillates 

between two regimes, 

back and forth between 

high and low values 

Overall observation 

time 
Lower Lower Higher 

Observation time 

per run 
Higher Lower Lower 

Time between 

actions 
Higher Lower Lower 

Runs Lower Higher Medium 

 

The time observing the model was taken as the time spent on the experiment screen. The time 

spent observing the model in each setting was calculated by dividing the total time spent observing 

the model by number of times ‘go’ was selected. The time spent off-task and spent reading the 

text/instructions were added as a result of the pilot study. The number of runs was equal to the 

number of times ‘go’ was selected. Time per action was calculated by dividing the time observing 

the model by the number of changes made. And the number of changes made was equal to the 

total activity. After examination of the individual cases, it was decided that the strategies for 

changing the three variables would also be determined. The use of the model was then compared 

between the strategies that students used to determine whether any more factors could be used to 
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make each classification. Finally, learning outcomes were compared between the classifications to 

investigate the effect of the strategy used to the interrogate the model, regardless of the model 

used. 

 

Chapter 5 outlined the following boundaries for classifying the overall strategy used in 

interrogating the model (Table 6-15). 

 

Table 6-15: Boundaries for classifying the overall strategy used to interrogate the model, based on 
Chapter 5 

 Low Medium High 

Time observing the model 0-10:00 10:01-15:00 15:01-20:00 

Time in each setting 0:00-1:00 1:01-2:30 2:31-20:00 

Runs 1-5 6-15 16-50 

Time per action 0-0:20 0:21-1:00 1:01-2:00 

Total number of actions 0-15 16-39 40-65 

 

After the investigation of the strategies used by students in the individual learning environment, a 

number of conclusions were made. Examination of the strategies used to change individual 

variables was also valuable. Students preferred to use the straight to the point strategy to alter the 

percentage of rubbish collected, in particular students in the SDM group preferred to use this 

strategy. However, the remaining strategies were not affected by the representation. The amount of 

time spent on explanatory features of the model was also found to be informative, particularly with 

respect to the use of the straight to the point approach. 

6.4.2.1 Results 

In this section, the overall strategies used to interrogate the models are classified for students in 

each group. Classification criteria are applied to variables, and an additional classification is 

suggested. Kruskal-Wallis tests are used to compare the measures of use of the models between 

strategies, with Mann Whitney tests used post-hoc. Kruskal-Wallis tests are also used to compare 

learning outcomes between strategies; with Mann Whitney tests used post-hoc. Due to the small 

sample size, large effect sizes were taken into account in addition to significance, and are noted 

where appropriate. 
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6.4.2.1.1 Classifications of patterns of use for each group 

Table 6-16: Patterns of use in the ABM group in the collaborative learning environment 

Strategy ABM C1 ABM C2 

Observation   

Time observing the model 16:20 (H) 14:01 (M) 

Time observing the model in each setting 2:43 (H) 2:20 (M) 

Time spent off task 0:00 2:32 

Time spent reading text / instructions 3:40 3:23 

Explorativeness   

Number of runs 6 (M) 6 (M) 

Action   

Time per action 0:43 (M) 0:32 (M) 

Number of changes made 23 (M) 26 (M) 

Pattern Osc. Osc. 

Note. ABM Cn = student n in the ABM group in the collaborative learning environment. H = high. M = medium. L 

= low. . Osc. = oscillating strategy. 

 

Students’ patterns of use of the model in the ABM group were recorded and classified using Levy 

and Wilensky’s method. In the collaborative learning environment (Table 6-16), only the oscillating 

strategy was identified. 
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Table 6-17: Patterns of use in the SDM group in the collaborative learning environment 

Strategy SDM C1 SDM C2 SDM C3 SDM C4 

Observation     

Time observing the model 9:10 (L) 9:28 (L) 15:57 (M) 15:05 (M) 

Time observing the model in 

each setting 

0:42 (L) 2:22 (M) 0:50 (L) 1:00 (L) 

Time spent off task 7:12 6:04 2:07 4:59 

Time spent reading text / 

instructions 

4:30 4:28 5:20 2:43 

Explorativeness     

Number of runs 13 (M) 4 (L) 19 (H) 15 (M) 

Action     

Time per action 0:13 (L) 0:47 (M) 0:18 (L) 0:23 (M) 

Number of changes made 42 (H) 12 (L) 52 (H) 39 (M) 

Pattern HI STP HI Osc. 

Note. SDM Cn = student n in the SDM group in the collaborative learning environment. H = high. M = medium. L 

= low. Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. 

 

Students’ patterns of use of the model in the SDM group were recorded and classified using Levy 

and Wilensky’s method. Table 6-17 shows that in the SDM group in the collaborative learning 

environment, all three patterns were identified. One student used the straight to the point strategy, 

one student used the oscillating strategy, and two students used the homing in strategy.  
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Table 6-18: Patterns of use in the SDM & ABM group (models treated separately) in the collaborative 
learning environment  

Strategy SDM & ABM C1 SDM & ABM C2 

Observation   

System dynamics model   

Time observing the model 10:41 (M) 0:00 (L) 

Time observing the model in each setting 0:36 (L) 0:00 (L) 

Time spent off task 0:00 0:00 

Time spent reading text / instructions 4:40 0:00 

Agent-based model   

Time observing the model 4:39 (L) 16:43 (H) 

Time observing the model in each setting 4:39 (H) 5:34 (H) 

Time spent off task 0:00 2:30 

Time spent reading text / instructions 0:00 0:47 

Explorativeness   

Number of runs – system dynamics model 18 (H) 0 (L) 

Number of runs – agent-based model 1 (L) 3 (L) 

Action   

System dynamics model   

Time per action 0:13 (L) 0:00 (L) 

Number of changes made  48 (H) 0 (L) 

Agent-based model   

Time per action 2:20 (H) 1:12 (H) 

Number of changes made 2 (L) 14 (L) 

Pattern   

System dynamics model HI None 

Agent-based model STP STP 

Note. SDM & ABM Cn = student n in the SDM & ABM group in the collaborative learning environment. H = high. 

M = medium. L = low. HI = homing in strategy. STP = straight to the point strategy. 
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Students’ patterns of use of the model in the SDM & ABM group were recorded and classified 

separately for the two models using Levy and Wilensky’s method. In the collaborative learning 

environment, one student only used the agent-based model, and used a straight to the point 

strategy. The other student used the homing in strategy on the system dynamics model, and the 

straight to the point strategy on the agent-based model. 

 

The results for the overall use of models can be seen in Table 6-19 below. 

Table 6-19: Patterns of use in the SDM & ABM group (models treated combined) in the collaborative 
learning environment  

Strategy SDM & ABM C1 SDM & ABM C2 

Observation   

Time observing the model 15:20 (H) 16:43 (H) 

Time observing the model in each setting 0:48 (L) 5:34 (H) 

Time spent off task 0:00 2:30 

Time spent reading text / instructions 4:40 0:47 

Explorativeness   

Number of runs 19 (H) 3 (L) 

Action   

Time per action 0:18 (L) 1:12 (H) 

Number of changes made 50 (H) 14 (L) 

Pattern HI STP 

Note. SDM & ABM Cn = student n in the SDM & ABM group in the collaborative learning environment. H = high. 

M = medium. L = low. HI = homing in strategy. STP = straight to the point strategy. 

 

Students’ patterns of use of the model in the SDM & ABM group were recorded and classified for the 

two models combined using Levy and Wilensky’s method. In the collaborative learning environment, 

in terms of overall use of the models, one student used the homing in strategy and the other the 

straight to the point strategy.  
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6.4.2.1.2 Strategies used to change variables 

The strategies used by students to change the three variables were also determined using graphs of 

the changes in addition to the parameters outlined above. Table 6-20 shows the classification of 

the strategy for each student. 

Table 6-20: Patterns of use for each variable – ABM group in the collaborative learning environment 

Strategy ABM C1 ABM C2 

Change the garbage collection time Osc. Osc. 

Change the percentage of rubbish collected Osc. Osc. 

Change the number of pieces of rubbish Osc. Osc. 

Note. ABM Cn = student n in the ABM group in the collaborative learning environment. H = high. M = medium. L 

= low. Osc. = oscillating strategy.  

 

The patterns used to change each of the variables were the same as the overall pattern as 

determined by Levy and Wilensky’s classification scheme.  

Table 6-21: Patterns of use for each variable – SDM group in the collaborative learning environment 

Strategy SDM C1 SDM C2 SDM C3 SDM C4 

Change the garbage collection time HI Osc. HI HI 

Change the percentage of rubbish collected STP STP HI Osc. 

Change the number of pieces of rubbish HI STP STP Osc. 

Note. SDM Cn = student n in the SDM group in the collaborative learning environment. H = high. M = medium. L 

= low. Osc. = oscillating strategy. HI = homing in strategy. STP = straight to the point strategy. 

 

The patterns used to change each of the variables, in the main, were the same as the overall pattern 

as determined by Levy and Wilensky’s classification scheme. Three of the four students held one 

variable constant, and changed the others. The remaining student changed the three variables in 

different ways. 
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Table 6-22: Patterns of use for each variable – SDM & ABM group in the collaborative learning 
environment 

Strategy SDM & ABM C1 SDM & ABM C2 

Change the garbage collection time HI Osc. 

Change the percentage of rubbish collected Osc. OOT 

Change the number of pieces of rubbish Osc. HI 

Note. SDM & ABM Cn = student n in the ABM group in the collaborative learning environment. H = high. M = 

medium. L = low. Osc. = oscillating strategy. HI = homing in strategy. OOT = oscillating over time. 

 

The patterns used to change each of the variables, in the main, were the same as the overall pattern 

as determined by Levy and Wilensky’s classification scheme. None of the students in the 

collaborative learning environment used a straight to the point strategy. Students changed all 

variables many times, and used a homing in strategy to change at least one of the variables while 

oscillating the others. 

Table 6-23: Summary of patterns of use by learning environment 

 Overall strategy Strategy gct Strategy prc Strategy npr 

 ILE CLE ILE CLE ILE CLE ILE CLE 

Osc. 8 3 4 4 2 4 7 4 

HI 3 3 5 4 3 1 5 2 

STP 7 2 6 0 11 2 6 2 

OOT -- -- 3 0 2 1 0 0 

Note. Strategy gct = the strategy used to change the garbage collection time. Strategy prc = the strategy used to 

change the percentage of rubbish collected. Strategy npr = the strategy used to change the number of pieces of 

rubbish. ILE = individual learning environment. CLE = collaborative learning environment. Osc. = the oscillating 

strategy. HI = the homing in strategy. STP = the straight to the point strategy. OOT = the oscillating over time 

strategy. 

 

Table 6-23 shows that there was no clear preference for the overall strategy in the collaborative 

learning environment for any of the patterns.  
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Table 6-24: Summary of patterns of use by group 

Overall strategy Strategy gct Strategy prc Strategy npr  

ILE CLE ILE CLE ILE CLE ILE CLE 

ABM         

Osc. 3 2 2 2 1 2 3 2 

HI 0 0 0 0 1 0 0 0 

STP 2 0 2 0 2 0 2 0 

OOT -- 0 1 0 1 0 0 0 

SDM         

Osc. 2 1 0 1 0 1 2 1 

HI 2 2 3 3 1 1 3 1 

STP 3 1 3 0 6 2 2 2 

OOT -- 0 1 0 0 0 0 0 

SDM & ABM         

Osc. 3 0 2 1 1 1 2 1 

HI 1 1 2 1 1 0 2 1 

STP 2 1 1 0 3 0 2 0 

OOT -- 0 1 0 1 1 0 0 

Note. Strategy gct = the strategy used to change the garbage collection time. Strategy prc = the strategy used to 

change the percentage of rubbish collected. Strategy npr = the strategy used to change the number of pieces of 

rubbish. ILE = individual learning environment. CLE = collaborative learning environment. Osc. = the oscillating 

strategy. HI = the homing in strategy. STP = the straight to the point strategy. OOT = the oscillating over time 

strategy. 

 

Table 6-24 shows that there was no clear relationship between the group and the strategy used. 

Students in the ABM group tended to use an oscillating strategy, however there were only two 

students in this group, so generalizations should not be made. In the collaborative learning 

environment students in the SDM and SDM & ABM groups used all strategies to change the three 

variables.  
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The relationship between the strategies and the measures of use was investigated. For this part of 

the analysis, the representation was ignored, and data was divided according to the strategy that 

the student used to interrogate the model. Mann Whitney tests were used to compare measures of 

use of the models in each strategy between learning environments. Kruskal-Wallis tests compared 

measures of the use of the models between the strategies used. Only those measures for which a 

significant result was found are reported below. 

Table 6-25: Results of the Mann Whitney tests used to compare the use of the model for each 
strategy for overall model use, between the learning environments 

 Oscillating Homing in 

 U Direction U Direction 

System dynamics model    

OT 0.0 ILE < CLE 3.0 ILE = CLE 

Total time 0.0 ILE > CLE 4.0 ILE = CLE 

SbS 0.5 ILE > CLE 3.0 ILE = CLE 

Ideas 0.5 ILE < CLE 2.5 ILE = CLE 

Npr 2.0 ILE = CLE 0.0 ILE > CLE 

Prc 2.0 ILE = CLE 0.0 ILE < CLE 

Overall     

Npr 11.0 ILE = CLE 0.0 ILE > CLE 

Prc 10.5 ILE = CLE 0.0 ILE < CLE 

Note. OT = proportion of time spent off task.  Go = number of times the model was run. SbS = number of times 

the activity: explore the model step by step was selected. Ideas = number of times the ideas option was 

selected. Npr = frequency of changes to the number of pieces of rubbish. Prc = frequency of changes to the 

percentage of rubbish collected. Total time = total time spent on the model. Bold typeface indicates a large 

effect size (r > | .50 |). 

 

Students who used the oscillating strategy overall in the individual learning environment spent a 

lower proportion of time off task on the system dynamics model, and selected ideas less often; 

spent a greater amount of time on the system dynamics model and explored the model step by step 

more often than those in the collaborative learning environment. Large effect sizes were associated 

with all these comparisons. 
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Large effect sizes were associated with a higher frequency of changes made to the number of 

pieces of rubbish overall and on the system dynamics model for students who used the homing in 

strategy overall, in the individual learning environment. Students in the individual learning 

environment changed the percentage of rubbish collected less often overall and on the system 

dynamics model (large effect size). 

Table 6-26: Results of the Mann Whitney tests comparing the use of the model for each strategy 
used to change the garbage collection time between the learning environments 

 Strategy – gct 

 U Direction 

Oscillating   

GoSDM 0.50 ILE > CLE 

Ideas 0.50 ILE > CLE 

NprSDM 0.00 ILE > CLE 

PrcSDM 0.50 ILE > CLE 

Go 2.00 ILE > CLE 

TA 1.00a ILE > CLE 

Homing in   

SbS 5.00 ILE > CLE 

PrcSDM 0.50* ILE < CLE 

Prc 0.50* ILE < CLE 

Note SbS = number of times the activity: explore the model step by step was selected. Ideas = number of times 

the ideas option was selected. Npr = frequency of changes to the number of pieces of rubbish. Prc = frequency 

of changes to the percentage of rubbish collected. TA = total activity. SDM = specifically on the system dynamics 

model. Bold typeface indicates a large effect size (r > | .50 |). 

ap < .10. *p < .05. 

 

Students who used the oscillating strategy to change the garbage collection time had significantly 

higher activity in the individual learning environment than in the collaborative learning environment 

(p < .10). Large effect sizes were associated with higher frequency of running the system dynamics 

model, selecting ideas and changing the number of pieces of rubbish and the percentage of rubbish 

collected on the system dynamics model. Students who used this strategy in the individual learning 

environment also ran a model more often than students in the collaborative learning environment 
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(large effect size). Students who used the homing in strategy in the individual learning environment 

had generally similar activity to students in the collaborative learning environment. Students in the 

individual learning changed the percentage of rubbish collected in the system dynamics model 

(pand overall less often than those in the collaborative learning environment (p < .05 for both).  

 

Kruskal-Wallis tests compared measures of the use of the models between the strategies used. Only 

those measures for which a significant result was found are reported below. 

Table 6-27: Results of the Kruskal-Wallis tests comparing the use of the model between the 
strategy overall, and the strategy for each of the three variables in the collaborative learning 
environment 

 Strategy – overalla Strategy – gctb Strategy – prca Strategy – npra 

TA 6.25* 5.33* 3.46 0.13 

Go 5.49 5.46* 4.24 1.06 

Prc 5.56 4.08* 2.54 0.13 

Note. Strategy gct = the strategy used to change the garbage collection time. Strategy prc = the strategy used to 

change the percentage of rubbish collected. Strategy npr = the strategy used to change the number of pieces of 

rubbish left for each person. Go = number of times the model was run. Prc = frequency of changes to the 

percentage of rubbish collected. TA = total activity. 

adf= 2. bdf = 1. 

*p < .05. 

 

In the collaborative learning environment, the overall strategy influenced the total activity. Mann 

Whitney tests were carried out to determine differences between individual strategies. Students 

using the homing in strategy had higher total activity than those using the oscillating strategy (U = 

0.00, p = .10, r = -.80).  

 

In the collaborative learning environment, the strategy for changing the garbage collection time was 

relevant for running any model, changing the percentage of rubbish collected and the total activity 

overall. Mann Whitney tests compared the strategies used to change the garbage collection time. 

Students who used the homing in strategy to change the garbage collection time had a higher total 

activity than students using the oscillating strategy (U = 0.00, p = .03, r = -.82). Students who 

used the homing in strategy also ran the model more often than students who used the oscillating 

strategy (U = 0.00, p = .03, r = -.83). Finally, students who used the homing in strategy to change 
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the garbage collection time changed the percentage of rubbish collected more often than those who 

used the oscillating strategy (U = 1.00, p = .06, r = -.71).  

6.4.2.1.3 Strategies and learning outcomes 

The relationship between the strategies and the learning outcomes was investigated. For this part of 

the analysis, the representation was ignored, and data was divided according to the strategy that 

the student used to interrogate the model. Kruskal-Wallis tests were used to determine whether 

there were differences in the learning outcomes between the overall strategy used, and between the 

strategies for the individual variables. Only significant results are reported. All reported differences 

are associated with large effect sizes. 

Table 6-28: Results of the Mann Whitney tests comparing learning outcomes between learning 
environments in terms of the overall strategy 

 Oscillating Homing in 

 U Direction U Direction 

Environmental knowledge test   

Q5post 12.0 ILE = CLE 1.0 ILE > CLE 

Note. Q5 = knowledge about introduced animal species (Maximum score is 9). post = post-test score. Bold 

typeface indicates large effect size (r > | .50 |). 

ap < .10. 

 

Students who used the homing in strategy overall in the individual learning environment had a 

higher post-test score assessing knowledge of introduced animal species (Question 5) than those in 

the collaborative learning environment. 
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Table 6-29: Results of the Kruskal-Wallis tests comparing learning outcomes between strategies 
used overall, to change the garbage collection time, the percentage of rubbish collected, and the 
number of pieces of rubbish 

 Strategy – overallb Strategy – gctc Strategy – prcb Strategy – nprb 

Environmental and system dynamics knowledge tests  

Q6post 2.42 4.18* 0.60 1.88 

Q6change 3.74 3.45a 4.53 1.06 

Note. Strategy gct = the strategy used to change the garbage collection time. Strategy prc = the strategy used to 

change the percentage of rubbish collected. Strategy npr = the strategy used to change the number of pieces of 

rubbish. Q6 = knowledge about introduced plant species (Maximum score is 8). post = post-test score. change = 

the change between the pre- and post-test score.  

bdf = 2. cdf = 1. 

ap < .10. *p < .05. 

 

The findings presented in Table 6-29 indicate that post-test knowledge of introduced plant species 

(Question 6), and the change in this score were affected by the strategy used to change the garbage 

collection time. The medians and ranges for these learning outcomes are reported below. 

Table 6-30: Medians and ranges of learning outcomes with respect to the strategy – gct in the 
collaborative learning environment 

Range  

Mdn Lower Upper 

Osc.    

Q6post 2.5 1.5 4.5 

Q6change 0.5 0 1 

HI    

Q6post 5 4 6 

Q6change 1.5 1 4 

Note. Osc. = the oscillating strategy. HI = the homing in strategy. Q6 = knowledge about introduced plant 

species (Maximum score is 8). post = post-test score. change = the change between the pre- and post-test score.  

 

Mann Whitney tests compared learning outcomes between the strategies used to change the 

garbage collection time. Students who used the homing in strategy to change the garbage 

collection time had a higher post-test score for knowledge of introduced plant species’ than those 
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who used the oscillating strategy (U = 1.00, p = .06, r = -.72) and a large effect size associated 

with a greater change in this question (U = 2.00, p = .11, r = -.66).  

6.4.2.2 Discussion 

The exploratory question addressed in this section was: 

 

E2a: The strategies used to interrogate the models will be independent of the learning environment 

 

If E2a is positively supported by the evidence, similar patterns of use will be identified when 

learning environments are compared. The discussion that follows outlines the strategies used by 

students to interrogate the models overall and to change individual variables. For a more detailed 

discussion of the classification system, please see Chapter 5. The results of the relationships 

between learning outcomes and the strategies used in the collaborative learning environment will 

also be discussed.  

6.4.2.2.1 Classification of strategies used 

Given the small sample size in the collaborative learning environment, it is difficult to make 

conclusions but there was no evidence to discount the findings from the individual learning 

environment that there was not a relationship between the strategy used and the representation. 

There was also not a relationship between the strategy used and the learning environment. 

 

The classifications identified in the individual learning environment for individual variables were 

applied in the collaborative learning environment. Differences that were identified between 

strategies in terms of the use of the model were related to explanatory features, such as 

information screens, and options available on the system dynamics model such as explore the 

model step by step or ideas. Other differences in use involved the proportion of time spent off task. 

And differences were also noted that were concerned with interaction with the models. These are 

discussed separately below. 

 

It was suggested in Chapter 5, that students who used the straight to the point strategy to change 

two of the variables spent a higher proportion of time on the information screen than students 

using other strategies in order to determine which changes to make to the model. Students in the 

individual learning environment who used a straight to the point strategy overall, to change the 

percentage of rubbish collected, and the number of pieces of rubbish spent a greater proportion of 
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time on the information screen than students in the collaborative learning environment. It may be 

that decisions were made after interaction within the dyad rather than after gathering information 

from the text description (information screen).  

 

Differences were observed in proportion of time spent off task; however they were not related to a 

specific strategy or variable. Students in the collaborative learning environment spent a greater 

proportion of time off task than students in the individual learning environment when using the 

oscillating strategy overall. It may be that during this time spent off task, students were interacting 

with each other. Differences in levels of interaction with the models may help to explain this result. 

 

Students in the individual learning environment who used the oscillating strategy to change the 

garbage collection time had greater total activity and ran the model more often than students in the 

collaborative learning environment. This higher level of interaction suggests that students in the 

individual learning environment had a more chaotic approach to interacting with the model than 

students in the collaborative learning environment.  

 

Students who used the homing in strategy overall in the individual learning environment had higher 

levels of interaction, involving changing the number of pieces of rubbish on the system dynamics 

model and overall. Students in the collaborative learning environment who used the homing in 

strategy overall, and to change the garbage collection time changed the percentage of rubbish 

collected more often on the system dynamics model and overall. These results indicate that 

students in the individual learning environment were homing in on the number of pieces of rubbish, 

and in the collaborative learning environment, students were homing in on the percentage of 

rubbish collected. In both cases this strategy was associated with higher use of the system 

dynamics model. 

6.4.2.2.2 Strategies and learning outcomes 

The overall strategy and the strategy used to change the garbage collection time were related to 

learning outcomes. The original study suggested that the straight to the point strategy is a planned 

approach which may result in a deeper understanding of each regime, but that critical settings or 

transitions may be missed which are evident through a broader investigation of the model (Levy & 

Wilensky, 2005). The oscillating approach involved students moving between extremes, constantly 

comparing results between now and previous, however the previous settings tend to disappear, 

unlike the homing in strategy (Levy & Wilensky, 2005). Due to these challenges, the oscillating 
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strategy is considered to be the riskiest, followed by the straight to the point strategy, and the 

homing in strategy is a safe option for students to interrogate the models. 

6.4.2.2.2.1 Overall strategy 

The differences between learning environments with respect to prior knowledge are related to one 

of the two strategies described as risky, the oscillating strategy. Students in the individual learning 

environment who used this strategy had lower prior knowledge about system dynamics than 

students in the collaborative learning environment. In a collaborative learning environment, 

students have to agree on a strategy to use, it may be that students needed a higher level of prior 

knowledge in order to be confident enough to convince their partner to adopt a risky strategy. It 

may also be that there was additional prior knowledge available given that additional time was 

spent on explanatory features such as an information screen or exploring the model step-by-step 

in the individual learning environment than in the collaborative learning environment for both 

strategies discussed above. Perhaps students did not need as much prior knowledge in the 

individual learning environment because they used knowledge gained from the materials to inform 

the choice of the strategy.  

 

The homing in strategy is a safe option, and one that allows students to undertake a planned, broad 

approach to interrogating the model. Students who used the homing in strategy in the individual 

learning environment had a higher post-test score for knowledge about introduced animal species 

(Question 5) than those in the collaborative learning environment. Previous discussion has 

suggested that the representational affordance of the agent-based model, and the (informed) use 

of the system dynamics model allowed students to improve their score for Question 5. The homing 

in strategy was associated with the use of the system dynamics model in the collaborative learning 

environment. These findings support the suggestion that the agent-based model was valuable in 

increasing knowledge associated with this learning outcome.  

6.4.2.2.2.2 Strategy used to change the variables 

The Homing In strategy was a successful strategy to use with respect to environmental knowledge 

scores in the collaborative learning environment. Students who used a homing in strategy to change 

the garbage collection time had a higher post-test score assessing knowledge of introduced plant 

species (Question 6), and a higher change in this score than those who used an oscillating strategy. 

Question 6 assesses knowledge that can be learned directly from interrogating the learning 

materials, a structured interrogation strategy should result in knowledge gain. Students who used 
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the homing in strategy to change the number of pieces of rubbish in the individual learning 

environment had a higher score assessing knowledge of human impacts on an ecosystem and 

associated timescales than students in the collaborative learning environment.  

6.4.2.3 Conclusion 

The use of the models in each strategy did differ between the learning environments, with respect 

to the proportion of time spent on the information screen, off task, and general interaction with the 

models. Students in the individual learning environment were homing in on the number of pieces of 

rubbish, and in the collaborative learning environment, on the percentage of rubbish collected. In 

both cases this strategy was associated with higher use of the system dynamics model.  

 

Prior knowledge had an effect on the choice of strategy to change specific variables. The proportion 

of time spent on the information screen was important for students who used the oscillating 

strategy in the individual learning environment. A higher level of prior knowledge was associated 

with this strategies in the collaborative learning environment compared to the individual learning 

environment. While it is not clear whether the effects of the differences in levels of prior knowledge 

was because students needed to convince their partner to undertake the risky behaviour; or 

because students in the individual learning environment spent a greater proportion of time on the 

information screen, therefore decreasing the time available to interact with the model, it is clear 

that students in the individual learning environment who used these strategies were not successful. 

The homing in strategy was the most successful of the three in terms of post-test scores associated 

with information that came from the materials and that benefited from a broad, planned approach. 

6.5CONCLUSIONS 
The purpose of this chapter was to make a preliminary comparison of differences in learning 

outcomes and measures of use between students working alone and in dyads in order to provide 

directions for future research in the field of collaborative learning with system dynamics and agent-

based models. 

 

A collaborative learning environment provided advantages for those instances where students 

needed to interpret a representation or make a decision. The instances identified in this chapter 

were the case of learning from a system dynamics model and undertaking risky strategies to 

interrogate any model. In those instances where students had access to a partner, they had higher 
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environmental knowledge scores and greater understanding of the system. Further research into 

students’ interaction in these situations would provide further insight into how students interpret a 

system dynamics model, and how they make decisions about interrogating a model. 

 

A collaborative learning environment was not an advantage for students in the ABM group, probably 

because of the time constraints and similarities in the use of the model, or for students learning 

from multiple representations. In both these cases, this is contrary to findings reported in the 

literature. Due to specific circumstances, the collaborative learning environment was not required to 

improve knowledge or understanding. Further research that addressed the limitations of this study, 

such as a longer treatment time and the collection of interaction data, will provide greater 

understanding of the processes involved in collaborative learning from agent-based models and 

multiple representations. 
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7. CONCLUSIONS 
The aim of this thesis was to compare different ways for school-aged children to understand a 

complex socio-environmental system, namely the environmental impacts of recreational use of a 

national park. The study addressed Rickinson’s 2001 recommendation that more research needed 

to occur that addressed “The processes, experiences and contexts of young people’s environmental 

learning, including what kinds of conditions are helpful for which kinds of students undertaking 

which kinds of learning.” p. 307. 

 

This study had three main limitations: 

 

• Small sample size 

 

• This is common in educational research, and in all relevant instances in this study, effect 

sizes were reported which take sample size into account 

 

• The sample size limits the generalisability of the study, and conclusions are limited to these 

experiments 

 

• Short treatment time 

 

• 20 minutes is a short amount of time during which to expect learning to occur. For practical 

reasons, it was necessary for this study. However, the results do show that increases in 

knowledge scores and understanding can be achieved in a short amount of time. This is 

relevant for environmental educators who often have time restrictions in their programs. 

 

• No interaction data for the collaborative learning environment 

 

• The literature agrees that the benefits that a collaborative learning environment brings to 

learners are related to the interaction between learners. For practical reasons, this data was 

not collected in this study. However, the investigation of differences in use of learning 
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outcomes have suggested specific areas for further research and provided information 

about general patterns of use and learning. 

 

This study is innovative because 

 

• Experimental design 

 

• Studies in education rarely use an experimental design with a random allocation of students 

into control and treatment groups. This is often because an experimental design has the 

potential to disadvantage some students. By choosing a subject area not covered 

specifically in the curriculum, and allowing all students access to the materials after the 

experiment was finished, experiments were able to be carried out without disadvantaging 

participants. 

 

• Systematic comparison of learning outcomes and measures of use of the models between 

treatment and control groups 

 

• The range of information that was collected allowed knowledge and understanding and the 

application of this, as well as measures of the ways in which the models were used, and 

user preferences to be systematically compared between the treatment and control groups. 

This has not been done in any of the fields of learning from agent-based models, learning 

from system dynamics models or learning from multiple representations. 

 

• Application of a classification system 

 

• The application of the patterns of use classification framework to the use of system 

dynamics models has not been done before. The investigation of the impact on learning 

outcomes and the role of prior knowledge in the choice of strategies is also new research. 

 

Specific findings in the areas of learning from agent-based models, learning from system dynamics 

models, and learning from representations will be discussed below. The pedagogical implications of 

the findings will be presented, and further areas of research will be identified. 
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7.1LEARNING FROM THE AGENT-BASED MODEL 
Students who used the agent-based model: 

 

• Increased scores assessing system-specific knowledge due to the representational affordance 

of the animation used to represent the system. 

 

• Did not increase scores requiring the application of system-specific knowledge to other 

systems due to the poor use of the text description to constrain understanding of the agent-

based model, and due to time limitations. 

 

• Were able to identify links between levels of the system that was modelled. 

 

• Did not have higher learning outcomes in a collaborative learning environment because 

students had the same patterns of use of the agent-based model. 

7.2LEARNING FROM THE SYSTEM DYNAMICS MODEL 
Students who used the system dynamics model: 

 

• Did not increase any environmental knowledge scores or the system dynamics knowledge score 

in the individual learning environment due to poor use of the step by step explanation of the 

stock and flow diagram to constrain understanding of the system dynamics model. 

 

• Were able to describe what happened in the model and visualise the system. 

 

• Were able to increase environmental knowledge scores in the collaborative learning 

environment despite similar patterns of use of the system dynamics model, suggesting that 

interaction with a partner was responsible. 
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7.3LEARNING FROM MULTIPLE EXTERNAL 
REPRESENTATIONS 

Students who used both the agent-based model and the system dynamics model: 

 

• Increased system-specific environmental knowledge scores due to the representational 

affordance of the agent-based model in the individual and collaborative learning environment. 

 

• Increased scores requiring the application of system-specific environmental and system 

dynamics knowledge to other systems due to the coordinated use of the agent-based model 

and the system dynamics model in the individual and collaborative learning environment. 

 

• Were successful in the individual learning environment because students could choose which 

representation to use, because some information is better presented using different 

representations, and because the representations could be used to identify links between levels 

of information. 

 

• Used the agent-based model to constrain their interpretation of the system dynamics model in 

the individual learning environment; and used the system dynamics model to deepen their 

understanding of the agent-based model in the collaborative learning environment. 

7.4PATTERNS OF USE 
Investigation of the pattern of use of the model overall and the strategies used to change the 

variables showed: 

 

• That the classification system developed for use of an agent-based model could be applied to 

the use of a system dynamics model. 

 

• That the strategies used to change variables were independent of the model used and 

independent of the learning environment. 

 

• The role of prior knowledge and the use of the text description, in combination with the 

learning environment are important predictors of the successful use of risky strategies. 

 



Conclusions 

 

268 

• A broad, planned strategy used to change the variables allowed students to increase system-

specific and applied environmental knowledge scores, and improved understanding of the 

system. 

7.5PEDAGOGICAL IMPLICATIONS 
This thesis has added to the theory about multiple external representations, learning from system 

dynamics models, learning from agent-based models and collaborative learning. In all cases, it has 

extended the current theory into areas not studied elsewhere. There are clear observations and 

recommendations that can be made as a result of these studies. 

 

Students who learn from agent-based models: 

 

• Need instruction with regards to the use of a constraining representation, such as a text 

description, in order to apply system-specific knowledge to other systems. 

 

• Given the choice, will spend time with the animation rather than the text description. 

 

• May need more than 20 minutes interrogation time in order to apply system-specific knowledge 

to other systems.  

 

• Will not benefit from a collaborative learning environment if the way in which the model is used 

does not change. 

 

Students who learn from system dynamics models: 

 

• Need support to interpret the stock and flow diagram. Successful support (identified in this 

study) includes a step-by-step explanation of the stock and flow diagram, an agent-based 

model, or a partner. The text description may not be as useful for students. 

 

• Given free choice, will use the support provided by an agent-based model or a partner, and will 

not use the step-by-step explanation of the stock and flow diagram. 

 

Students who learn from multiple representations: 
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• Are able to coordinate representations without additional instruction. 

7.6FURTHER RESEARCH 
This study has raised areas for further research. These include research examining: 

 

• The effect of the representation on retention of knowledge and understanding  

 

• The effect of treatment time on learning outcomes when using an agent-based model 

 

• An experimental comparison of constraining representations in the use of a system dynamics 

model 

 

• Interaction between students when learning from models in a collaborative learning 

environment 

 

• An experimental comparison of strategies used to interrogate models and their effect on 

learning outcomes. 

7.7CONCLUSIONS 
These experiments have provided evidence that strategies for understanding complex systems 

provide viable methods of communicating complex ideas to school-aged students with varying 

levels of prior knowledge. In particular, multiple external representations provided students with 

flexibility in how they learned; models allowed students to experiment with a system otherwise not 

allowed; and a collaborative learning environment facilitated students’ interpretation of a system 

dynamics model. 



References 

 

270 

8. REFERENCES 
(Tabachneck-)Schijf, H. J. M., & Simon, H. A. (1998). One Person, Multiple Representations: An 

Analysis of a Simple, Realistic Multiple Representation Learning Task. In M. W. van Someren, 

P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with Multiple Representations 

(pp. 197-236). Oxford: Elsevier Science Ltd. 

Abdel-Hamid, T. K. (2003). Exercise and diet in obesity treatment: An integrative System Dynamics 

perspective. Medicine & Science in Sports & Exercise, 35, 400-414. 

Abrahamse, W., Steg, L., Vlek, C., & Rothengatter. (2005). A review of intervention studies aimed at 

household energy conservation. Journal of Environmental Psychology, 25, 273-291. 

Abrahamson, D., & Wilensky, U. (2005). Prolab goes to school: Design, teaching, and learning of 

probability with multi-agent interactive computer models. Paper presented at the Fourth 

Conference of the European Society for Research in Mathematics Education. 

Adam, P., Stricker, P., & Anderson, D. J. (1989). Species-richness and soil phosphorus in plant 

communities in coastal New South Wales. Australian Journal of Ecology, 14, 189-198. 

Adamson, D. A., & Fox, M. D. (1982). Change in Australiasian Vegetation since European Settlement. 

In J. M. B. Smith (Ed.), A History of Australasian Vegetation (pp. 109-146). Sydney: McGraw-

Hill Book Company. 

Ainsworth, S. (1999a). Designing effective multi-representational learning environments: University 

of Nottingham, ESRC Tech report No. 58. 

Ainsworth, S. (1999b). The functions of multiple representations. Computers & Education, 33, 131-

152. 

Ainsworth, S., & Loizou, A. T. (2003). The effects of self-explaining when learning with text or 

diagrams. Cognitive Science, 27, 669-681. 

Ainsworth, S., & Van Labeke, N. (2002). Using a multi-representational design framework to develop 

and evaluate a dynamic simulation environment. Paper presented at the International Workshop 

on Dynamic Visualizations and Learning, Tübingen. 

Ainsworth, S. E., Bibby, P. A., & Wood, D. J. (1998). Analysing the Costs and Benefits of Multi-

Representational Learning Environments. In M. W. van Someren, P. Reimann, H. P. A. 

Boshuizen & T. de Jong (Eds.), Learning with Multiple Representations (pp. 120-134). 

Oxford: Elsevier Science Ltd. 



References 

 

271 

Alberti, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, C. (2003). 

Integrating humans into ecology: opportunities and challenges for studying urban 

ecosystems. BioScience, 53(12), 1169-1179. 

Aleixandre, M. P. J., & Rodriguez, R. L. (2001). Designing a field code: environmental values in 

primary school. Environmental Education Research, 7(1), 5-22. 

Alerby, E. (2000). A way of visualising children's and young people's thoughts about the 

environment: a study of drawings. Environmental Education Research, 6(3), 205-222. 

Alessi, S. (2000). The application of system dynamics in elementary and secondary school 

curricular.   Retrieved 29 October 2003, from 

  http://www.c5.cl/ieinvestiga/actas/ribie2000/charlas/alessi.htm  

Anglin, G. J., Vaez, H., & Cunningham, K. L. (2003). Visual representations and learning: The role of 

static and animated graphics. In D. Jonassen (Ed.), Handbook of Research for Educational 

Communications and Technology (2 ed., pp. 865-916). Mahwahm NJ: Erlbaum. 

Arocena, J. M., Nepal, S. K., & Rutherford, M. (2006). Visitor-induced changes in the chemical 

composition of soils in backcountry areas of Mt Robson Provincial Park, British Columbia, 

Canada. Journal of Environmental Management, 79, 10-19. 

Asch, J., & Shore, B. M. (1975). Conservation behavior as the outcome of environmental education. 

Journal of Environmental Education, 6(4), 25-33. 

Avni, T. (1999). Simulation modeling primer. IIE Solutions, September, 38-41. 

Baker, M., de Vries, E., Lund, K., & Quignard, M. (2001). Computer mediated epistemic interactions 

for co-constructing scientific notions: lessons learned from a five year research 

programme. Paper presented at the Proceedings of EuroCSCL 2001 - European Perspectives 

on Computer-Supported Collaborative Learning, Maastricht. 

Ballantyne, R., Fien, J., & Packer, J. (2001). School environmental education programme impacts 

upon student and family learning: a case study analysis. Environmental Education Research, 

7(1), 23-37. 

Bamberg, S., & Moser, G. (2007). Twenty years after Hines, Hungerford, and Tomera: A new meta-

analysis of psycho-social determinants of pro-environmental behaviour. Journal of 

Environmental Psychology, 27, 14-25. 

Barr, S., & Gilg, A. W. (2005). Conceptualising and analysing household attitudes and actions to a 

growing environmental problem. Development and application of a framework to guide 

local waste policy. Applied Geography, 25, 226-247. 

http://www.c5.cl/ieinvestiga/actas/ribie2000/charlas/alessi.htm


References 

 

272 

Bayraktar, S. (2001/2002). A meta-analysis of the effectiveness of computer-assisted instruction in 

science education. Journal of Research on Computing in Education, 34(2), 173-188. 

Beadle, N. C. W. (1954). Soil phosphate and the delimitation of plant communities in Eastern 

Australia. Ecology, 35(3), 370-375. 

Beatty, K., & Nunan, D. (2004). Computer-mediated collaborative learning. System, 32, 165-183. 

Bellinger, G. (2003). Modeling and Simulation, an introduction.   Retrieved 12/10/2003, from 

http://www.systems-thinking.org/modsim/modsim.htm  

Benda, L. E., Poff, L., Tague, C., Palmer, M. A., Pizzuto, J., Cooper, S., et al. (2002). How to avoid 

train wrecks when using science in environmental problem solving. BioScience, 52(12), 

1127-1136. 

BenDor, T. K., & Metcalf, S. S. (2006). The spatial dynamics of invasive species spread. System 

Dynamics Review, 22(1), 27-50. 

Benson, D., & Howell, J. (1990). Taken for Granted. The Bushland of Sydney and its Suburbs. Sydney: 

Kangaroo Press in Association with the Royal Botanic Gardens. 

Bieri, J. A., & Roberts, C. A. (2000). Using the Grand Canyon River Trip Simulator to Test New Launch 

Schedules on the Colorado River. AWIS Magazine, 29, 6-10. 

Bilkstein, P., & Wilensky, U. (2005). Less is More: Agent-Based Simulation as a Powerful Learning 

Tool in Materials Science, Paper presented at the IV International Joint Conference on 

Autonomous Agents and Multiagent Systems (AAMAS 2005)   Utrecht, Holland. 

Bjerknes, A.-L., Totland, O., Hegland, S. J., & Nielsen, A. (2007). Do alien plant invasions really 

affect pollination success in native plant species? Biological Conservation, 138, 1-12. 

Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple representations. 

Computers in Human Behavior, 22, 27-42. 

Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of information 

during learning with dynamic and interactive visualisations. Learning and Instruction, 14, 

325-341. 

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human 

systems. Proceedings of the National Academy of Sciences, 99 (suppl. 3), 7280-7287. 

Booth Sweeney, L., & Sterman, J. D. (2000). Bathtub dynamics: initial results of a systems thinking 

inventory. System Dynamics Review, 16(4), 249-286. 

Borden, R. J., & Schettino, A. P. (1979). Determinants of environmentally responsible behavior. 

Journal of Environmental Education, 10(4), 35-39. 

http://www.systems-thinking.org/modsim/modsim.htm


References 

 

273 

Borshchev, A., & Filippov, A. (2004). From system dynamics and discrete event to practical agent 

based modeling: reasons, techniques, tools.   Retrieved 12/8/2004, 2004, from 

www.xjtek.com/files/papers/fromsystemdynamics2004.pdf 

Boshuizen, H. P. A., & (Tabachneck-)Schijf, H. J. M. (1998). Problem Solving with Multiple 

Representations by Multiple and Single Agents: An Analysis of the Issues Involved. In M. W. 

van Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with Multiple 

Representations (pp. 137-151). Oxford: Elsevier Science Ltd. 

Boulain, N., Simioni, G., & Gignoux, J. (2007). Changing scale in ecological modelling: A bottom up 

approach with an individual-based vegetation model. Ecological Modelling, 203, 257-269. 

Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: a review. 

Ecological Modelling, 176, 313-332. 

Brackney, M., & McAndrew, F. T. (2001). Ecological worldviews and receptivity to different types of 

arguments for preserving endangered species. The Journal of Environmental Education, 

33(1), 17-20. 

Brown, D. G., Page, S. E., Riolo, R., & Rand, W. (2004). Agent-based and analytical modeling to 

evaluate the effectiveness of greenbelts. Environmental Modelling & Software, 19, 1097-

1109. 

Buckley, B. C., & Boulter, C. J. (1999). Analysis of representations in model-based teaching and 

learning in science. In R. Paton & I. Neilson (Eds.), Visual Representations and 

Interpretations (pp. 289-294). London: Springer-Verlag London Limited. 

Buckley, B. C., Gobert, J. D., Kindfield, A. C. H., Horwitz, P., Tinker, R. F., Gerlits, B., et al. (2004). 

Model-based teaching and learning with BioLogica: What do they learn? How do they learn? 

How do we know? Journal of Science Education and Technology, 13(1), 23-41. 

Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as student aids in 

learning computer algorithms. Computers & Education, 33, 253-278. 

Calvert, F. (2004). The Role of Research in Cool Communities. Paper presented at the Effective 

Sustainability Education: What Works? Why? Where Next? Linking Research and Practice, 

Sydney, Australia. 

Campbell Bradley, J., Waliczek, T. M., & Zajicek, J. M. (1999). Relationship between environmental 

knowledge and environmental attitude of high school students. The Journal of 

Environmental Education, 30(3), 17-. 

http://www.xjtek.com/files/papers/fromsystemdynamics2004.pdf


References 

 

274 

Carbonell, G., Ramos, C., Pablos, M. V., Ortiz, J. A., & Tarazona, J. V. (2000). A system dynamic 

model for the assessment of different exposure routes in aquatic ecosystems. Science of 

the Total Environment, 247(2-3), 107-118. 

Caro, T., Borgerhoff Mulder, M., & Moore, M. (2003). Effects of conservation education on reasons 

to conserve biological diversity. Biological Conservation, 114, 143-152. 

Castillo, A., Garcia-Ruvalcaba, S., & Martinez R., L. M. (2002). Environmental education as facilitator 

of the use of ecological information: a case study in Mexico. Environmental Education 

Research, 8(4), 395-411. 

Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. 

British Journal of Educational Psychology, 62(2), 233-246. 

Chang, C.-Y. (1997). Using computer simulation to manage the crowding problem in parks: a study. 

Landscape and urban planning, 37, 147-161. 

Cheng, P. C.-H. (1999). Unlocking conceptual learning in mathematics and science with effective 

representational systems. Computers & Education, 33, 109-130. 

Cheng, P. C.-H., Lowe, R. K., & Scaife, M. (2001). Cognitive Science approaches to understanding 

diagrammatic representations. Artificial Intelligence Review, 15, 79-94. 

Cole, D. N. (1993). Minimising conflict between recreation and nature conservation. In D. S. Smith & 

P. C. Hellmund (Eds.), Ecology of Greenways: Design and Function of Linear Conservation 

Areas (pp. 105-122). Minneapolis, MN.: University of Minnesota Press. 

Cole, D. N., & Hammitt, W. E. (2000). Wilderness management dilemmas: Fertile ground for 

wilderness management research. Paper presented at the Wilderness science in a time of 

change conference, Missoula, MT. 

Cole, D. N., & Landres, P. B. (1996). Threats to wilderness ecosystems: impacts and research needs. 

Ecological Applications, 6(1), 168-184. 

Commission on Sustainable Development. (2001). Education and public awareness for sustainable 

development: United Nations, Economic and Social Council. 

Cooke, D. L. (2003). A system dynamics analysis of the Westray mine disaster. System Dynamics 

Review, 19(2), 139-166. 

Corraliza, J. A., & Berenguer, J. (2000). Environmental values, beliefs, and actions. A situational 

approach. Environment and Behavior, 32(6), 832-848. 

Costanza, R., Duplisea, D., & Kautsky, U. (1998). Introduction to special issue: Ecological Modelling 

on modelling ecological and economic systems with STELLA. Ecological Modelling, 110, 1-

4. 



References 

 

275 

Costarelli, S., & Colloca, P. (2004). The effects of attitudinal ambivalence on pro-environmental 

behavioural intentions. Journal of Environmental Psychology, 24, 279-288. 

Cox, R. (1999). Representation construction, externalised cognition and individual differences. 

Learning and Instruction, 9, 343-363. 

Coyle, G. (2000). Qualitative and quantitative modelling in system dynamics: some research 

questions. System Dynamics Review, 16(33), 225-244. 

Culen, G. R., & Volk, T. L. (2000). Effects of an extended case study on environmental behavior and 

associated variables in seventh- and eighth-grade students. The Journal of Environmental 

Education, 31(2), 9-15. 

Cumming, J. (1998). Why are misconceptions in science so hard to change? Paper presented at the 

British Educational Research Association Annual Conference, Queen's University of Belfast, 

Northern Ireland, 27th - 30th August 1998. 

Daniel, B., Stanisstreet, M., & Boyes, E. (2004). How can we best reduce global warming? School 

students' ideas and misconceptions. International Journal of Environmental Studies, 61(2), 

211-222. 

Daniels, S. E., & Walker, G. B. (2001). Working through environmental conflict: the collaborative 

learning approach. Westport: Praeger Publishers. 

Darlington, P., & Black, R. (1996). Helping to protect the Earth - the Kosciusko National Park 

Education Program. Australian Journal of Environmental Education, 12, 3-8. 

Davies, C. H. J. (2002). Student engagement with simulations: a case study. Computers & Education, 

39, 271-282. 

Davies, R., & Webber, L. (2004). Enjoying our backyard buddies - social research informing the 

practice of mainstream community education for the conservation of urban wildlife. Paper 

presented at the Effective Sustainability Education: What Works? Why? Where Next? Linking 

Research and Practice, Sydney, Australia. 

Davison, K. (2000). A Discrete Event Simulation Model of Visitor Usage at Botany Bay National Park, 

Kurnell., The University of New South Wales, Sydney. 

de Hoog, R., de Jong, T., & de Vries, F. (1991). Interfaces for instructional use of simulations. 

Education & Computing, 6, 359-385. 

de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., et al. (1998). 

Acquiring knowledge in science and mathematics: The use of multiple representations in 

technology-based learning environments. In M. W. van Someren, P. Reimann, H. P. A. 



References 

 

276 

Boshuizen & T. de Jong (Eds.), Learning with Multiple Representations (pp. 9-40). Oxford: 

Elsevier Science Ltd. 

de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of 

conceptual domains. Review of Educational Research, 68(2), 179-201. 

Department of Environment and Climate Change NSW. (2007). Education Resources.   Retrieved 

12/11/07, 2007, from http://www.environment.nsw.gov.au/education/index.htm 

Department of Environment and Conservation (NSW). (2004). Who Cares about the Environment in 

2003? Sydney: Department of Environment and Conservation (NSW). 

Department of Environment and Conservation (NSW). (2006). Living Parks. A sustainable visitation 

strategy. Sydney: Department of Environment and Conservation (NSW). 

Dettmann-Easler, D., & Pease, J. L. (1999). Evaluating the effectiveness of residential environmental 

education programs in fostering positive attitudes toward wildlife. The Journal of 

Environmental Education, 31(1), 33-39. 

Diehl, E., & Sterman, J. D. (1995). Effects of feedback complexity on dynamic decision making. 

Organizational Behavior and Human Decision Processes, 62(2), 198-215. 

Doyle, J. K. (1997). The cognitive psychology of systems thinking. System Dynamics Review, 13, 

253-265. 

Doyle, J. K., & Ford, D. N. (1998). Mental models concepts for system dynamics research. System 

Dynamics Review, 14, 3-29. 

Doyle, J. K., Radzicki, M. J., & Trees, W. S. (1998). Measuring change in mental models of dynamic 

systems: An exploratory study. 

Draper, F. (1993). A proposed sequence for developing systems thinking in a grades 4-12 

curriculum. System Dynamics Review, 9(2), 207-214. 

Dudley, R. G. (2004). Modeling the effects of a log export ban in Indonesia. System Dynamics 

Review, 20(2), 99-116. 

Duffus, D. A., & Dearden, P. (1990). Non-consumptive Wildlife-Oriented Recreation: A conceptual 

framework. Biological Conservation, 53, 213-231. 

Duit, R. (1995). The Constructivist View: A Fashionable and Fruitful Paradigm for Science Education 

Research and Practice. In L. P. Steffe & J. Gale (Eds.), Constructivism in Education (pp. 271-

285). New Jersey: Lawrence Erlbaum Associates. 

Edwards, L. D., Coddington, A., & Caterina, D. (1997). Girls teach themselves, and boys too: Peer 

learning in a computer-based design and construction activity. Computers & Education, 

29(1), 33-48. 

http://www.environment.nsw.gov.au/education/index.htm


References 

 

277 

Environment Australia. (2000). Environmental Education for a Sustainable Future, National Action 

Plan. Canberra: The Department of Environment and Heritage. 

Environment Protection Authority. (2003). Patches of Green. Early childhood environmental 

education in Australia: Scope, status and direction. Sydney: Environment Protection 

Authority. 

Faust, L. J., Jackson, R., Ford, A., Earnhardt, J. M., & Thompson, S. D. (2004). Models for 

management of wildlife populations: lessons from spectacled bears in zoos and grizzly 

bears in Yellowstone. System Dynamics Review, 20(2), 163-178. 

Faust, L. J., Thompson, S. D., Earnhardt, J. M., Brown, E., Ryan, S., Sherman, M., et al. (2003). Using 

stage-based system dynamics modeling for demographic management of captive 

populations. Zoo Biology, 22, 45-64. 

Feinstein, A. H., & Cannon, H. M. (2002). Constructs of simulation evaluation. Simulation and 

Gaming, 33(4), 425-440. 

Field, A. (2005). Discovering Statistics Using SPSS (2nd ed.). London: SAGE Publications Ltd. 

Fien, J. (1993). Education for the Environment. Critical Curriculum Theorising and Environmental 

Education. Geelong: Deakin University. 

Fien, J. (2000). 'Education for the Environment: a critique' - An analysis. Environmental Education 

Research, 6(2), 179-182. 

Fleer, M. (2002). Curriculum compartmentalisation?: a futures perspective on environmental 

education. Environmental Education Research, 8(2), 137-154. 

Forrester, J. W. (1961). Industrial Dynamics. Cambridge, Massachusetts: The M.I.T. Press. 

Forrester, J. W. (1968). Industrial Dynamics - A response to Ansoff and Slevin. Management Science, 

14(9), 601-618. 

Forrester, J. W. (1971). World Dynamics. Massachusetts: Wright-Allen Press, Inc. 

Forrester, J. W. (1992). System dynamics and learner-centred-learning in kindergarten through 12th 

grade education.   Retrieved 1/8/2005, 2005, from 

http://sysdyn.clexchange.org/sdep/Roadmaps/RM1/D-4337.pdf 

Friedman, W., & McMillian Culp, K. (2001). Evaluation of the CoreModels Project. Maryland: 

Education Development Center/Center for Children & Technology. 

Gigliotti, L. M. (1990). Environmental education: What went wrong? What can be done? Journal of 

Environmental Education, 22(1), 9-12. 

http://sysdyn.clexchange.org/sdep/Roadmaps/RM1/D-4337.pdf


References 

 

278 

Gilbert, J. K., & Boulter, C. J. (1998). Learning Science through models and modelling. In B. J. Fraser 

& K. G. Tobin (Eds.), International Handbook of Science Education (Vol. 2, pp. 53-66). 

Dordrecht: Kluwer Academic Publishers. 

Gilioli, G., & Pasquali, S. (2007). Use of individual-based models for population parameters 

estimation. Ecological Modelling, 200, 109-118. 

Gilllies, R. M. (2003). Structuring cooperative group work in classrooms. International Journal of 

Educational Research, 39, 35-49. 

Gimblett, R., Roberts, C. A., Daniel, T. C., Ratliff, M., Meitner, M. J., Cherry, S., et al. (2000a). An 

Intelligent Agent Based Model for Simulating and Evaluating River Trip Scenarios Along the 

Colorado River in Grand Canyon National Park. In R. Gimblett (Ed.), Integrating GIS and 

Agent based modeling techniques for Understanding Social and Ecological Processes (pp. 

245-275). New York: Oxford Press. 

Gimblett, R., Roberts, C. A., Daniel, T. C., Ratliff, M., Meitner, M. J., Cherry, S., et al. (2000b). An 

intelligent agent based model for simulating and evaluating river trip scenarios along the 

Colorado River in Grand Canyon National Park. In H. R. Gimblett (Ed.), Integrating GIS and 

agent based modeling techniques for understanding social and ecological processes (pp. 

245-275): Oxford Press. 

Ginot, V., Le Page, C., & Souissi, S. (2002). A multi-agents architecture to enhance end-user 

individual-based modelling. Ecological Modelling, 157(1), 23-41. 

Glenberg, A. M., & Langston, W. E. (1992). Comprehension of illustrated text: Pictures help to build 

mental models. Journal of Memory and Language, 31, 129-151. 

Gobert, J., Snyder, J., & Houghton, C. (2002). The influence of students' understanding of models on 

model-based reasoning. Paper presented at the American Educational Research Association 

Meeting. 

Gobert, J. D., & Pallant, A. (2004). Fostering Students' epistemologies of models via authentic 

Model-based tasks. Journal of Science Education and Technology, 13(1), 7-22. 

Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and 

idealized simulations. The Journal of the Learning Sciences, 14(1), 69-110. 

Gough, A. (2002). Mutualism: A different agenda for environmental and science education. 

International Journal of Science Education, 24(11), 1201-1215. 

Gough, A. (2004). Achieving "sustainability education" in primary schools as a result of the Victorian 

Science in Schools Research Project. Paper presented at the Effective Sustainability 



References 

 

279 

Education: What Works? Why? Where Next? Linking Research and Practice 18-20 February 

2004, Sydney, Australia. 

Grimm, V. (1999). Ten years of individual-based modelling in ecology: what have we learned and 

what could we learn in the future? Ecological Modelling, 115, 129-148. 

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard 

protocol for describing individual-based and agent-based models. Ecological Modelling, 

198, 115-126. 

Größler, A. (2004). Don't let history repeat itself - methodological issues concerning the use of 

simulators in teaching and experimentation. System Dynamics Review, 20(3), 263-274. 

Guo, H. C., Liu, L., Huang, G. H., Fuller, G. A., Zou, R., & Yin, Y. Y. (2001). A system dynamics 

approach for regional environmental planning and management: A study for the Lake Erhai 

Basin. Journal of Environmental Management, 61(1 Special Issue), 93-111. 

Guthrie, S., & Fisher, D. (1999). Systems thinking and system dynamics in the CC-STADUS high 

school project (How high school students become system thinkers).   Retrieved 07/05/06, 

2006, from http://www.clexchange.org/ftp/documents/Implementation/IM1997-

07SDLeveragePoints.pdf 

Halford, G. S. (1993). Children's understanding. The development of mental models.: Lawrence 

Erlbaum Associates, Publishers. 

Halford, G. S., & Andrews, G. (2004). The development of deductive reasoning: how important is 

complexity? Thinking and Reasoning, 10(2), 123-145. 

Ham, S. H., & Sewing, D. R. (1988). Barriers to environmental education. Journal of Environmental 

Education, 19(2), 17-24. 

Hare, M., & Deadman, P. (2003). Further towards a taxonomy of agent-based simulation models in 

environmental management. Mathematics and Computers in Simulation, in press. 

Harre, R. (1999). Models and Type-hierarchies: Cognitive Foundations of Iconic Thinking. In R. 

Paton & I. Neilson (Eds.), Visual Representations and Interpretations (pp. 97-111). London: 

Springer-Verlag London Limited. 

Harvey, J. T. (2002). Keynes' Chapter 22: A System Dynamics Model. Journal of Economic Issues, 

XXXVI(2), 373-381. 

Haslett, T. (2001). Experiences and reflections on the transition from classroom to practice. System 

Dynamics Review, 17(2), 161-169. 

http://www.clexchange.org/ftp/documents/Implementation/IM1997


References 

 

280 

Hausbeck, K. W., Milbrath, L. W., & Enright, S. M. (1992). Environmental knowledge, awareness and 

concern among 11th-grade students: New York State. Journal of Environmental Education, 

24, 27-34. 

Hill, W., & Pickering, C. M. (2006). Vegetation associated with different walking track types in the 

Kosciuszko alpine area, Australia. Journal of Environmental Management, 78, 24-34. 

Hillery, M., Nancarrow, B., Griffin, G., & Syme, G. (2001). Tourist perception of environmental 

impact. Annals of Tourism Research, 28(4), 853-867. 

Hilty, L. M., Arnfalk, P., Erdmann, L., Goodman, J., Lehmann, M., & Wager, P. A. (2006). The 

relevance of information and communication technologies for environmental sustainability 

- A prospective simulation study. Environmental Modelling & Software, 21, 1618-1629. 

Hoody, L. (1995). The educational efficacy of environmental education. San Diego, California: State 

Education and Environment Roundtable. 

Hopson, M. H., Simms, R. L., & Knezek, G. A. (2001/2002). Using a technology-enriched 

environment to improve higher-order thinking skills. Journal of Research on Computing in 

Education, 34(2), 109-119. 

Horwitz, P., & Christie, M. A. (1999). Hypermodels: Embedding curriculum and assessment in 

computer-based manipulatives.   Retrieved 12/8/2004, 2004, from 

www.virtual.gmu.edu/EDIT611/BioLogic.pd 

Hsu, S.-J. (2004). The effects of an environmental education program on responsible environmental 

behavior and associated environmental literacy variables in Taiwanese college students. The 

Journal of Environmental Education, 35(2), 37-49. 

Hungerford, H. (2002). Environmental Educators: A conversation with Bora Simmons. The Journal of 

Environmental Education, 33(3), 5-9. 

Hungerford, H. (2004). Responsible citizenship and the affective domain in environmental 

education.   Retrieved 10/6/04, from 

http://plaza1.snu.ac.kr/~enviedu/plus/board/include/DOWNLOAD.php3?table=colloquium

&l=7&inc=local&f=upfile. 

Hungerford, H., & Volk, T. L. (1990). Changing learner behavior through environmental education. 

Journal of Environmental Education, 21(3), 8-21. 

Hunter, L. M., & Rinner, L. (2004). The association between environmental perspective and 

knowledge and concern with species diversity. Society and Natural Resources, 17, 517-532. 

http://www.virtual.gmu.edu/EDIT611/BioLogic.pd
http://plaza1.snu.ac.kr/~enviedu/plus/board/include/DOWNLOAD.php3?table=colloquium


References 

 

281 

Hwang, Y.-H., Kim, S.-I., & Jeng, J.-M. (2000). Examining the causal relationships among selected 

antecedents of responsible environmental behavior. The Journal of Environmental 

Education, 31(4), 19-25. 

isee Systems. (2005). Build understanding in environmental sciences.   Retrieved 11/4/05, 2005, 

from http://www.iseesystems.com/community/downloads/EducationDownloads.aspx 

isee Systems. (2007). Chapter 1: Systems Thinking and the STELLA software: Thinking, 

communicating, learning and acting more effectively in the new millennium.   Retrieved 

08/11/07, from http://www.iseesystems.com/Resources/Whitepapers.aspx 

Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational 

importance and implications for the learning sciences. The Journal of the Learning Sciences, 

15(1), 11-34. 

Jenkins, E. W., & Pell, R. G. (2006). "Me and the Environmental Challenges": A survey of English 

secondary students' attitudes towards the environment. International Journal of Science 

Education, 28(7), 765-780. 

Jeong, H., & Chi, M. T. H. (2007). Knowledge convergence and collaborative learning. Instructional 

Science, 35, 287-315. 

Jickling, B., & Spork, H. (1998). Education for the environment: A critique. Environmental Education 

Research, 4(3), 309-328. 

Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case 

study on students' understanding of trajectory motion. Computers & Education, 36, 183-

204. 

Johnson, D. W., & Johnson, R. T. (1985). The internal dynamics of cooperative learning groups. In R. 

Slavin, S. Shlomo, K. Spencer, R. Hertz-Lazarowitz, C. Webb & R. Schmuck (Eds.), Learning 

to cooperate, cooperating to learn (pp. 103-124). New York: Plenum. 

Jonassen, D. (2000). Computers as mindtools for schools. Engaging critical thinking. (2nd ed.): 

Merrill. 

Jonassen, D. (2003). Using cognitive tools to represent problems. Journal of Research on 

Technology in Education, 35(3), 362-381. 

Jonassen, D. H., Carr, C., & Yueh, H.-P. (1998). Computers as mindtools for engaging learners in 

critical thinking. TechTrends, 43(2), 24-32. 

Jones, A., Seville, D., & Meadows, D. (2002). Resource sustainability in commodity systems: the 

sawmill industry in the Northern Forest. System Dynamics Review, 18(2), 171-204. 

http://www.iseesystems.com/community/downloads/EducationDownloads.aspx
http://www.iseesystems.com/Resources/Whitepapers.aspx


References 

 

282 

Jurin, R. R., & Fortner, R. W. (2002). Symbolic beliefs as barriers to responsible environmental 

behavior. Environmental Education Research, 8(4), 373-394. 

Kainz, D., & Ossimitz, G. (2002). Can students learn stock-flow-thinking? An empirical 

investigation. Paper presented at the 2002 System Dynamics Conference, Palermo, Italy. 

Kelleher, R. (2000). A review of recent developments in the use of information communication 

technologies (ICT) in science classrooms. Australian Science Teachers Journal, 46(1), 33-38. 

Kennedy, G. E., & Judd, T. S. (1007). Expectations and reality: Evaluating patterns of learning 

behaviour using audit trails. Computers & Education, 49, 840-855. 

Kennedy, G. E., & Judd, T. S. (2007). Expectations and reality: Evaluating patterns of learning 

behaviour using audit trails. Computers & Education, 49, 840-855. 

Kiboss, J. K., Ndirangu, M., & Wekesa, E. W. (2004). Effectiveness of a Computer-Mediated 

simulations program in school biology on pupils' learning outcomes in cell theory. Journal 

of Science Education and Technology, 13(2), 207-213. 

Knussen, C., Yule, F., MacKenzie, J., & Wells, M. (2004). An analysis of intentions to recycle 

household waste: The roles of past behaviour, perceived habit, and perceived lack of 

facilities. Journal of Environmental Psychology, 24, 237-246. 

Kolsto, S. D. (2006). Patterns in students' argumentation confronted with a risk-focused socio-

scientific issue. International Journal of Science Education, 28(14), 1689-1716. 

Kozma, R. (2003). The material features of multiple representations and their cognitive and social 

affordances for science understanding. Learning and Instruction, 13, 205-226. 

Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the 

chemistry laboratory and their implications for chemistry learning. The Journal of the 

Learning Sciences, 9(2), 105-143. 

Kramarski, B. (2004). Making sense of graphs: does metacognitive instruction make a difference on 

students' mathematical conceptions and alternative conceptions? Learning and Instruction, 

14, 593-619. 

Kurtz dos Santos, A. C., Thielo, M. R., & Kleer, A. A. (1997). Students modelling environmental 

issues. Journal of Computer Assisted Learning, 13, 35-47. 

Lacitignola, D., Petrosillo, I., Cataldi, M., & Zurlini, G. (2007). Modelling socio-ecological tourism-

based systems for sustainability. Ecological Modelling, 206, 191-204. 

Land, S. M., & Hannafin, M. J. (2000). Student-Centered Learning Environments. In D. H. Jonassen & 

S. M. Land (Eds.), Theoretical foundations of learning environments (pp. 1-24). New Jersey, 

USA: Lawrence Erlbaum Associates Inc. 



References 

 

283 

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. 

Cognitive Science, 11, 65-99. 

Lee, H., Plass, J. L., & Homer, B. D. (2006). Optimizing cognitive load for learning from computer-

based science simulations. Journal of Educational Psychology, 98(4), 902-913. 

Leeming, F. C., Dwyer, W. O., Porter, B. E., & Cobern, M. K. (1993). Outcome research in 

environmental education: A critical review. Journal of Environmental Education, 24(4), 8-21. 

Levy, S. T., Kim, H., & Wilensky, U. (2004). Connected Chemistry - A study of secondary students 

using agent-based models to learn Chemistry. Paper presented at the Annual Meeting of 

the American Educational Research Association, San Diego, CA. 

Levy, S. T., & Wilensky, U. (2005). An analysis of student' patterns of exploration with NetLogo 

models embedded in the Connected Chemistry environment: Center for Connected Learning 

and Computer-Based Modeling, Northwestern University, Evanston, IL. 

Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and 

Instruction, 13, 177-189. 

Limburg, K. E., O'Neill, R. V., Costanza, R., & Farber, S. (2002). Complex systems and valuation. 

Ecological Economics, 41, 409-420. 

Linke, R. D. (1980). Environmental Education in Australia. North Sydney: George Allen & Unwin. 

Littledyke, M. (1997). Science education for environmental education? Primary teacher perspectives 

and practices. British Educational Research Journal, 23(5), 641-659. 

Littledyke, M. (2000). Science education and the environment. Paper presented at the British 

Educational Research Association Conference, Cardiff University, September 7-10 2000. 

Lohner, S., & van Joolingen, W. R. (2002). The effect of representations on communication and 

product during collaborative modeling. Paper presented at the Proceedings of CSCL, 2002, 

Boulder, Colorado. 

Loiselle, S., Carpaneto, G. M., Hull, V., Waller, T., & Rossi, C. (2000). Feedback analysis in reserve 

management: studying local myths using qualitative models. Ecological Modelling, 129, 25-

37. 

Loughland, T., Reid, A., Walker, K., & Petocz, P. (2003). Factors influencing young people's 

conceptions of environment. Environmental Education Research, 9(1), 3-20. 

Lowe, R. (1993). Constructing a mental representation from an abstract technical diagram. Learning 

and Instruction, 3, 157-179. 

Lowe, R. K. (2003). Animation and learning: selective processing of information in dynamic 

graphics. Learning and Instruction, 13, 157-176. 



References 

 

284 

Lowe, R. K. (2004a). Animation and learning: Value for money? Paper presented at the ASCILITE, 

Perth. 

Lowe, R. K. (2004b). Interrogation of a dynamic visualisation during learning. Learning and 

Instruction, 14, 257-274. 

Lucas, A. M. (1979). Environment and Environmental Education: Conceptual Issues and Curriculum 

Implications: Australia International Press and Publications Pty. Ltd. 

Lundegard, I., & Wickman, P.-O. (2007). Conflicts of interest: An indispensable element of education 

for sustainable development. Environmental Education Research, 13(1), 1-15. 

Ma, X., & Bateson, D. J. (1999). A multivariate analysis of the relationship between attitude toward 

science and attitude toward the environment. The Journal of Environmental Education, 

31(1), 27-32. 

Maloney, J., & Simon, S. (2006). Mapping children's discussions of evidence in science to assess 

collaboration and argumentation. International Journal of Science Education, 28(15), 1817-

1841. 

Manlove, S., Lazonder, A. W., & de Jong, T. (2005). Regulative support for collaborative scientific 

inquiry learning. Journal of Computer Assisted Learning, 22, 87-98. 

Martinez Fernandez, J., & Esteve Selma, M. A. (2004). The dynamics of water scarcity on irrigated 

landscapes: Mazarron and Aguilas in south-eastern Spain. System Dynamics Review, 20(2), 

117-137. 

Martinez-Fernandez, J., Esteve-Selma, M. A., & Calvo-Sendin, J. F. (2000). Environmental and 

socioeconomic interactions in the evolution of traditional irrigated lands: a dynamic system 

model. Human Ecology, 28(2), 279-299. 

Martinez-Moyano, I. J., Sallah, D. L., Bragen, M. J., & Thimmapuram, P. R. (2007). Design for a 

multilayer model of financial stability: Exploring the integration of system dynamics and 

agent-based models. Paper presented at the 2007 International Conference of the System 

Dynamics Society and 50th Anniversary Celebration, Boston, Massachusetts, USA. 

Maryland Virtual High School. (2001). CoreModels Final Report (9707702) Findings.   Retrieved 

08/11/07, from http://mvhs.shodor.org/coremodels/cmindex.html 

May, T. S. (2000). Elements of success in environmental education through practitioner eyes. The 

Journal of Environmental Education, 31(3), 4-11. 

Mayer, R. E., Dow, G. T., & Mayer, S. (2003). Multimedia learning in an interactive self-explaining 

environment: What works in the design of agent-based microworlds? Journal of Educational 

Psychology, 95(4), 806-813. 

http://mvhs.shodor.org/coremodels/cmindex.html


References 

 

285 

McCleave, J., Espiner, S., & Booth, K. (2006). The New Zealand people-park relationship: An 

exploratory model. Society and Natural Resources, 19, 547-561. 

Medeiros, R., Ramos, J. A., Paiva, V. H., Almeida, A., Pedro, P., & Antunes, S. (2007). Signage reduces 

the impact of human disturbance on little tern nesting success in Portugal. Biological 

Conservation, 135, 99-106. 

Metz, K. (1998). Scientific Inquiry within reach of young children. In B. J. Fraser & K. G. Tobin (Eds.), 

International Handbook of Science Education (Vol. 2, pp. 81-96). Dordrecht: Kluwer 

Academic Publishers. 

Milfont, T. L., & Duckitt, J. (2004). The structure of environmental attitudes: A first- and second-

order confirmatory factor analysis. Journal of Environmental Psychology, 24, 289-303. 

Milrad, M. (2002). Using construction kits, modeling tools and system dynamics simulations to 

support collaborative discovery learning. Educational Technology and Society, 5(4), 76-87. 

Milrad, M., Spector, M., & Davidsen, P. I. (2003). Model facilitated learning. In S. Naidu (Ed.), 

Learning & teaching with technology: principles and practices (pp. 13-27). London: Kogan 

Page Ltd. 

Monticino, M., Acevedo, M., Callicott, B., Cogdill, T., & Lindquist, C. (2007). Coupled human and 

natural systems: A multi-agent-based approach. Environmental Modelling & Software, 22, 

656-663. 

Moore, P. J. (1993). Metacognitive processing of diagrams, maps and graphs. Learning and 

Instruction, 3, 215-226. 

Morgan, J. W. (1998). Patterns of invasion of an urban remnant of a species-rich grassland in 

southeastern Australia by non-native plant species. Journal of Vegetation Science, 9, 181-

190. 

Morgan, M., & Soucy, J. (2006). Usage and evaluation of nonformal environmental education 

services at a state park: Are anglers catching more than fish? Environmental Education 

Research, 12(5), 595-608. 

Moxnes, E. (1998). Overexploitation of renewable resources: The role of misperceptions. Journal of 

Economic Behavior & Organization, 37, 107-127. 

Moxnes, E. (2000). Not only the tragedy of the commons: misperceptions of feedback and policies 

for sustainable development. System Dynamics Review, 16(4), 325-348. 

Moxnes, E. (2004). Misperceptions of basic dynamics: the case of renewable resource management. 

System Dynamics Review, 20(2), 139-162. 

Munson, B. H. (1994). Ecological misconceptions. Journal of Environmental Education, 25(4), 30-34. 



References 

 

286 

Murdock, E. (2004). Understanding recreation flow to protect wilderness resources at Joshua Tree 

National Park, California. Working Papers of the Finnish Forest Research Institute 2   

Retrieved 22/11/2007, 2007, from 

http://www.metla.fi/julkaisut/workingpapers/2004/mwp002.htm 

Murray, T., Winship, L., Bellin, R., & Cornell, M. (2001). Toward glass box educational simulations: 

Reifying models for inspection and design. Paper presented at the External Representations 

in AIED: Multiple Forms and Multiple Roles, San Antonio, Texas. 

Nagel, M. (2005). Constructing apathy: How environmentalism and environmental education may be 

fostering "learned hopelessness" in children. Australian Journal of Environmental Education, 

21, 71-80. 

Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), 

Mental Models (pp. 7-14). New Jersey: Lawrence Erlbaum Associates, Inc., Publishers. 

NSW Council on Environmental Education. (2001). Environmental Education in NSW: Towards a 

three-year plan. Sydney South: NSW Council on Environmental Education. 

NSW Department of Education and Training. (2001). Environmental Education Policy for Schools. 

Sydney: The Department of Education and Training, Curriculum Support Directorate. 

Oliveira, A. W., & Sadler, T. D. (2007). Interactive patterns and conceptual convergence during 

student collaborations in science [Electronic Version]. Journal of Research in Science 

Teaching, Early View: DOI 05/11/2007. Retrieved 03/12/2007. 

Orams, M. B. (1997). The effectiveness of environmental education: Can we turn tourists into 

'greenies'? Progress in Tourism and Hospitality Research, 3, 295-306. 

Osgood, N. (2007). Using traditional and agent based toolsets for system dynamics: Present 

tradeoffs and future evolution. Paper presented at the 2007 International Conference of the 

System Dynamics Society and 50th Anniversary Celebration, Boston, Massachusetts, USA. 

Ossimitz, G. (1997). The Development of Systems Thinking Skills Using System Dynamics Modelling 

Tools.   Retrieved 6 April 2004, from http://www.uni-

klu.ac.at/users/gossimit/sdyn/gdm_eng.htm  

Ozkan, O., Tekkaya, C., & Geban, O. (2004). Facilitating conceptual change in students' 

understanding of ecological concepts. Journal of Science Education and Technology, 13(1), 

95-105. 

Pahl-Wostl, C. (2007). The implications of complexity for integrated resources management. 

Environmental Modelling & Software, 22, 561-569. 

http://www.metla.fi/julkaisut/workingpapers/2004/mwp002.htm
http://www.uni


References 

 

287 

Pallant, A., & Tinker, R. F. (2004). Reasoning with atomic-scale molecular dynamic models. Journal 

of Science Education and Technology, 13(1), 51-66. 

Palmberg, I. E., & Kuru, J. (2000). Outdoor activities as a basis for environmental responsibility. The 

Journal of Environmental Education, 31(4), 32-36. 

Palmer, J. A. (1999). Research matters: A call for the application of empirical evidence to the task of 

improving the quality and impact of environmental education. Cambridge Journal of 

Education, 29(3), 379-395. 

Parrott, L., & Kok, R. (2001). A generic primary producer model for use in ecosystem simulation. 

Ecological Modelling, 139, 75-99. 

Patterson, T., Gulden, T., Cousins, K., & Kraev, E. (2004). Integrating environmental, social and 

economic systems: a dynamic model of tourism in Dominica. Ecological Modelling, 175, 

121-136. 

Pooley, J. A., & O'Connor, M. (2000). Environmental education and attitudes. Emotions and beliefs 

are what is needed. Environment and Behavior, 32(5), 711-723. 

Potential, T. (1992). Systems thinking encourages interdisciplinary approach. T H E Journal 

(Technological Horizons In Education), 20(4), 43-44. 

Powers, A. L. (2004). Evaluation of one- and two-day forestry field programs for elementary school 

children. Applied Environmental Education and Communication, 3, 39-46. 

Ragan, S. (1999). Student-built computer models enhance learning in science and mathematics.   

Retrieved 18/4/05, 2005, from http://mvhs1.mbhs.edu/mvhsproj/coremodels/mast.html 

Railsback, S. F. (2001). Concepts from complex adaptive systems as a framework for individual-

based modelling. Ecological Modelling, 139, 47-62. 

Ramsey, D. C., & Ramsey, P. L. (2002). Reframing the perfectionist's Catch 22 dilemma: a systems 

thinking approach. Journal for the education of the gifted, 26(2), 99-111. 

Ramsey, J., Hungerford, H., & Tomera, A. N. (1981). The effects of environmental action and 

environmental case study instruction on the overt environmental behavior of eighth-grade 

students. Journal of Environmental Education, 13(1), 24-30. 

Reimann, P., Thompson, K., & Weinel, M. (2007). Decision making patterns in virtual teams. . Paper 

presented at the Supporting learning flow through integrative technologies, Amsterdam. 

Rickinson, M. (2001). Learners and Learning in Environmental Education: a critical review of the 

evidence. Environmental Education Research, 7(3), 207-320. 

Rieber, L. P. (1990). Using computer animated graphics in science instruction with children. Journal 

of Educational Psychology, 82(1), 135-140. 

http://mvhs1.mbhs.edu/mvhsproj/coremodels/mast.html


References 

 

288 

Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based 

on the blending of microworlds, simulations and games. Educational Technology Research 

and Development, 44(2), 43-58. 

Rieber, L. P., Tzeng, S.-C., & Tribble, K. (2004). Discovery learning, representation, and explanation 

within a computer-based simulation: finding the right mix. Learning and Instruction, 14, 

307-323. 

Roberts, C. A., & Gimblett, H. R. (2000). Computer simulation for rafting traffic on the Colorado 

River. Paper presented at the 4th Biennial Conference of Research on Colorado Plateau. 

Roberts, C. A., Stallman, D., & Bieri, J. A. (2002). Modeling complex human-environment 

interactions: The Grand Canyon river trip simulator. Ecological Modelling, 153, 181-196. 

Robottom, I. (2004). Environmental Education and local initiatives: a rationale, international 

examples and an issue for research. Applied Environmental Education and Communication, 

3, 21-28. 

Rohr, M., & Reimann, P. (1998). Reasoning with Multiple Representations when Acquiring the 

Particulate Model of Matter. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen & T. de 

Jong (Eds.), Learning with Multiple Representations (pp. 41-66). Oxford: Elsevier Science 

Ltd. 

Romesburg, H. C. (1974). Scheduling models for wilderness recreation. Journal of Environmental 

Management, 2, 159-177. 

Roschelle, J. (1992). Learning by collaborating: Convergent conceptual change. The Journal of the 

Learning Sciences, 2(3), 235-276. 

Roth, W.-M., & Bowen, G. M. (1999). Complexities of graphical representations during ecology 

lectures: an analysis rooted in semiotics and hermeneutic phenomenology. Learning and 

Instruction, 9, 235-255. 

Rouwette, E. A. J. A., Vennix, J. A. M., & Thijssen, C. M. (2000). Group model building: a decision 

room approach. Simulation & Gaming, 31(3), 359-379. 

Satsangi, P. S., Mishra, D. S., Gaur, S. K., Singh, B. K., & Jain, D. K. (2003). Systems dynamics 

modelling, simulation and optimization of integrated urban systems: a soft computing 

approach. Kybernetes, 32(5/6), 808-817. 

Savelsbergh, E. R., de Jong, T., & Ferguson-Hessler, M. G. M. (1998). Competence-Related 

Differences in Problem Representations: A Study in Physics Problem Solving. In M. W. van 

Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with Multiple 

Representations (pp. 263-282). Oxford: Elsevier Science Ltd. 



References 

 

289 

Saysel, A. K., Barlas, Y., & Yenigun, O. (2002). Environmental sustainability in an agricultural 

development project: A system dynamics approach. Journal of Environmental Management., 

64(3), 247-260. 

Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? 

International Journal of Human-Computer Studies, 45, 185-213. 

Schaffernicht, M. (2006). LaTina - An online system for teaching and learning stock-and-flow 

thinking skills. Paper presented at the 24th International Conference of the System 

Dynamics Society, Nijmegen, The Netherlands. 

Schieritz, N. (2002). Integrating system dynamics and agent-based modelling.   Retrieved 

12/8/2004, 2004, from iswww.bwl.uni-mannheim.de/lehrstuhl/ 

mitarbeiter/schieritz/Palermo%202002.pdf   

Schieritz, N., & Grossler, A. (2003). Emergent structures in supply chains - a study integrating 

agent-based and system dynamics modelling. Paper presented at the Proceedings of the 

36th Hawaii International Conference on System Sciences. 

Schieritz, N., & Milling, P. M. (2003). Modeling the forest or modeling the trees. A comparison of 

system dynamics and agent-based simulation. Paper presented at the 21st International 

System Dynamics Society Conference, New York City, USA. 

Schmidt, J. C., Webb, R. H., Valdez, R. A., Marzolf, G. R., & Stevens, L. E. (1998). Science and values 

in river restoration in the Grand Canyon. BioScience, 48(9), 735-760. 

Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. 

Educational Psychology Review, 14(1), 101-120. 

Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple 

representations. Learning and Instruction, 13, 141-156. 

Scholl, H. J. (2001). Agent-based and System Dynamics Modeling : A Call for Cross Study and Joint 

Research. Paper presented at the 34th Annual Hawaii International Conference on System 

Sciences, Maui, Hawaii. 

Sengupta, P., & Wilensky, U. (1999). N.I.E.L.S 1: An Emergent Multi-Agent Based Modeling  

Environment for learning Physics Retrieved 31/5/06, 2006, from 

https://ccl.northwestern.edu/papers/AAMAS-Pratim.pdf 

Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. 

Learning and Instruction, 13, 227-237. 

http://www.bwl.uni-mannheim.de/lehrstuhl/
https://ccl.northwestern.edu/papers/AAMAS-Pratim.pdf


References 

 

290 

Seufert, T., Janen, I., & Brunken, R. (2007). The impact of intrinsic cognitive load on the 

effectiveness of graphical help for coherence formation. Computers in Human Behavior, 23, 

1055-1071. 

Shechter, M., & Lucas, R. C. (1980). Validating a large scale simulation model of wilderness 

recreational travel. INTERFACES, 10(5), 11-18. 

Sheehy, N. P., Wylie, J. W., McGuinness, C., & Orchard, G. (2000). How children solve environmental 

problems: using computer simulations to investigate systems thinking. Environmental 

Education Research, 6(2), 109-126. 

Sherwood, D. (2002). Seeing the forest for the trees. A manager's guide to applying systems 

thinking. London: Nicholas Brealey Publishing. 

Short, J., Turner, B., & Risbey, D. (2002). Control of feral cats for nature conservation. III. Trapping. 

Wildlife Research, 29, 475-487. 

Siemer, W. F., & Knuth, B. (2001). Effects of fishing education programs on antecedents of 

responsible environmental behavior. The Journal of Environmental Education, 32(4), 23-29. 

Simmons, B., & Volk, T. L. (2002). Environmental Educators: A conversation with Harold Hungerford. 

The Journal of Environmental Education, 34(1), 5-8. 

Simmons, D., & Widmar, R. (1990). Motivations and barriers to recycling: Toward a strategy for 

public education. Journal of Environmental Education, 22(1), 13-18. 

Singhanayok, C., & Hooper, S. (1998). The effects of cooperative learning and learner control on 

students' achievement, option selections, and attitudes. Educational Technology, Research 

and Development, 46(2), 17-32. 

Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific 

modelling: An analysis of novices' reasoning during computer-based modelling. 

International Journal of Science Education, 27(14), 1695-1721. 

Slavin, R. E. (1983). When does cooperative learning increase student achievement? Psychological 

Bulletin, 94(3), 429-445. 

Slavin, R. E. (1996). Research for the future. Research on Cooperative learning and achievement: 

What we know, what we need to know. Contemporary Educational Psychology, 21, 43-69. 

Spector, J. M. (2000). System dynamics and interactive learning environments: Lessons learned and 

implications for the future. Simulation & Gaming, 31(4), 528-535. 

Spector, J. M., & Davidsen, P. I. (1997). Creating Engaging Courseware Using System Dynamics. 

Computers in Human Behavior, 13(2), 127-155. 



References 

 

291 

Stave, K. A. (2002). Using system dynamics to improve public participation in environmental 

decisions. System Dynamics Review, 18(2), 139-167. 

Stave, K. A. (2003). A system dynamics model to facilitate public understanding of water 

management options in Las Vegas, Nevada. Journal of Environmental Management, 67(4), 

303-313. 

Stavredes, T. (2001). A system dynamics evaluation model and methodology for instructional 

technology support. Computers in Human Behavior, 17, 409-419. 

Stenning, K. (1998). Representation and Conceptualisation in Educational Communication. In M. W. 

van Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with Multiple 

Representations (pp. 320-333). Oxford: Elsevier Science Ltd. 

Sterman, J. D. (2000). Business Dynamics. Systems Thinking and Modeling for a Complex World.: 

McGraw-Hill Higher Education. 

Sterman, J. D. (2001). System Dynamics Modeling: Tools for learning in a complex world. California 

Management Review, 43(4), 8-27. 

Sterman, J. D., & Booth Sweeny, L. (2002). Cloudy skies: assessing public understanding of global 

warming. System Dynamics Review, 18(2), 207-240. 

Stieff, M., & Wilensky, U. (2002). ChemLogo: An emergent modeling environment for teaching and 

learning chemistry. Paper presented at the fifth biannual International Conference of the 

Learning Sciences, Seattle, WA, USA. 

Stieff, M., & Wilensky, U. (2003). Connected chemistry - Incorporating interactive simulations into 

the chemistry classroom. Journal of Science Education and Technology, 12(5), 285-302. 

Stratford, S. J., Krajcik, J., & Soloway, E. (1998). Secondary students' dynamic modeling processes: 

Analyzing, reasoning about, synthesizing, and testing models of stream ecosystems. 

Journal of Science Education and Technology, 7(3), 215-234. 

Stuntz, L. (2000). Building system dynamics skills in K-3 (Ages 5-8) students. Paper presented at 

the 18th International Conference of The System Dynamics Society: Sustainability in the 

Third Millennium, Bergen, Norway. 

Stylianidou, F., Boohan, R., & Ogborn, J. (2004). Science Teachers' transformations of the use of 

computer modeling in the classroom: using research to inform training. Science Education, 

89(1), 56-70. 

Sun, D., & Walsh, D. (1998). Review of studies on environmental impacts of recreation and tourism 

in Australia. Journal of Environmental Management, 53, 323-338. 



References 

 

292 

Sureda, J., Oliver, M. F., & Castells, M. (2004). Indicators for the evaluation of environmental 

education, interpretation and information in protected areas. Applied Environmental 

Education and Communication, 3, 171-181. 

Suthers, D. D., & Hundhausen, C., D. (2003). An experimental study of the effects of 

representational guidance on collaborative learning processes. Journal of the Learning 

Sciences, 12(2), 183-218. 

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 

12(3), 185-233. 

Sycara, K. P. (1998). Multiagent systems. AI Magazine, Summer, 79-92. 

Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A computational 

model of multiple representations. Cognitive Science, 21(3), 305-350. 

Talsma, V. (2001). The rouge education project: challenges of implementation. The Journal of 

Environmental Education, 32(3), 26-30. 

Thomas, G. (2005). Facilitation in Education for the environment. Australian Journal of 

Environmental Education, 21, 107-116. 

Tilman, D. (1987). Secondary succession and the pattern of plant dominance along experimental 

nitrogen gradients. Ecological Monographs, 57(3), 189-214. 

Tisue, S., & Wilensky, U. (2004a). NetLogo: A Simple Environment for Modeling Complexity Paper 

presented at the International Conference on Complex Systems, Boston. 

Tisue, S., & Wilensky, U. (2004b). NetLogo: Design and Implementation of a Multi-Agent Modeling 

Environment Paper presented at the SwarmFest, Ann Arbor. 

Tsui, C.-Y., & Treagust, D. F. (2003). Genetics reasoning with multiple external representations. 

Research in Science Education, 33, 111-135. 

Tversky, B., Bauer Morrison, J., & Betrancourt, M. (2002). Animation: can it facilitate? International 

Journal of Human-Computer Studies, 57, 247-262. 

Uchmanski, J. (2000). Resource partitioning among competing individuals and population 

persistence: an individual-based model. Ecological Modelling, 131, 21-32. 

Underwood, J. D. M., & Underwood, G. (1990). Helping children acquire thinking skills: Basil 

Blackwell. 

United Nations. (1992). Agenda 21 - Chapter 36.   Retrieved 16/7/2004, 2004, from 

http://www.un.org/esa/sustdev/documents/agenda21/english/agenda21chapter36.htm 

Usher, M. B., Kruger, F. J., Macdonald, I. A. W., Loope, L. L., & Brockie, R. E. (1988). The ecology of 

biological invasions into nature reserves: An introduction. Biological Conservation, 44, 1-8. 

http://www.un.org/esa/sustdev/documents/agenda21/english/agenda21chapter36.htm


References 

 

293 

van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in 

a dynamic simulation-based learning environment. Learning and Instruction, 16, 199-212. 

van Joolingen, W. R., & Lohner, S. (2001). Representations in collaborative modeling tasks. Paper 

presented at the AI-ED Workshop. External Representations in AIED: Multiple forms and 

multiple roles, San Antonio, Texas. 

Van Labeke, N., & Ainsworth, S. (2002). Representational decisions when learning population 

dynamics with an instructional simulation. Paper presented at the 6th International 

Conference ITS 2002, Berlin. 

van Wagtendonk, J. W. (2004). Simulation modeling of visitor flows: Where have we been and where 

are we going? Paper presented at the Proceedings of the Second International Conference 

on Monitoring and Management of Visitor Flows in Recreational and Protected Areas. 

Vaske, J. J., & Kobrin, K. C. (2001). Place attachment and environmentally responsible behavior. The 

Journal of Environmental Education, 32(4), 16-21. 

Verona, M. E., Ragan, S., Shaffer, D., & Trout, C. (2001). Working paper: A case study of materials 

development fostered by the MVHS CoreModels Project.   Retrieved 18/4/05, from 

mvhs1.mbhs.edu/mvhsproj/workmatdev.pdf 

Volk, T. L., & Cheak, M. J. (2003). The effects of an environmental education program on students, 

parents, and community. The Journal of Environmental Education, 34(4), 12-25. 

Wakeland, W. W., Macovsky, L. M., Gallaher, E. J., & Aktipis, C. A. (2004). A comparison of system 

dynamics and agent-based simulation applied to the study of cellular receptor dynamics. 

Paper presented at the 37th Hawaii International Conference on System Sciences, Hawaii. 

Walker, P. A., Greiner, R., McDonald, D., & Lyne, V. (1999). The tourism futures simulator: a systems 

thinking approach. Environmental Modelling & Software, 14, 59-67. 

Wang, B., & Manning, R. E. (1999). Computer simulation modeling for recreation management: A 

study on carriage road use in Acadia National Park, Maine, USA. Environmental 

Management, 23(2), 193-203. 

Wang, M., & Grimm, V. (2007). Home range dynamics and population regulation: An individual-

based model of the common shrew Sorex araneus. Ecological Modelling, 205, 397-409. 

Wang, X. C., Hinn, D. M., & Kanfer, A. G. (2001). Potential of computer-supported collaborative 

learning for learners with different learning styles. Journal of Research on Technology in 

Education, 34(1), 75-85. 

Weclaw, P., & Hudson, R. J. (2004). Simulation of conservation and management of woodland 

caribou. Ecological Modelling, 177, 75-94. 



References 

 

294 

Whelan, J., Flowers, R., & Roberto Guevara, J. (2004). An imbalance between what is researched and 

practiced: a case for researchers to direct more attention to popular and informal 

environmental education. Paper presented at the Effective Sustainability Education: What 

Works? Why? Where Next? Linking Research and Practice 18-20 February 2004, Sydney, 

Australia. 

Wild, M., & Quinn, C. (1998). Implications of educational theory for the design of instructional 

multimedia. British Journal of Educational Technology, 29(1), 73-82. 

Wilensky, U. (2003). Statistical mechanics for secondary school: The gaslab multi-agent modeling 

toolkit. International Journal of Computers for Mathematical Learning, 8, 1-41. 

Wilensky, U. (2007). NetLogo User Manual. Version 4.0. Evanston, IL: Center for Connected Learning 

and Computer-Based Modeling, Northwestern University. 

Wilensky, U., & Reisman, K. (2006). Thinking like a Wolf, a Sheep, or a Firefly: Learning biology 

through constructing and testing computational theories - an embodied modeling 

approach. Cognition and Instruction, 24(2), 171-209. 

Wisnudel Spitulnik, M., Stratford, S., Krajcik, J., & Soloway, E. (1998). Using Technology to Support 

Students' Artefact Construction in Science. In B. J. Fraser & K. G. Tobin (Eds.), International 

Handbook of Science Education (Vol. 2, pp. 363-381). Dordrecht: Kluwer Academic 

Publishers. 

Woodwell, J. C. (1998). A simulation model to illustrate feedbacks among resource consumption, 

production, and factors of production in ecological-economic systems. Ecological 

Modelling, 112(2-3), 227-247. 

Woolsey, K., & Bellamy, R. (1997). Science education and technology: opportunities to enhance 

student learning. The Elementary School Journal, 97(4), 385-399. 

Xu, H.-g. (2001). Exploring effective policies for underground water management in artificial oasis: 

a systems dynamics analysis of a case study of Yaoba Oasis. Journal of Environmental 

Sciences, 13(4), 476-480. 

Young, G. (1996). New South Wales Environment Protection Authority environmental Education: The 

place of theory, models and concepts in developing policy, strategy and programs: NSW 

Environment Protection Authority. 

Young, R. M. (1983). Surrogates and mappings: two kinds of conceptual models for interactive 

devices. In D. Gentner & A. L. Stevens (Eds.), Mental Models (pp. 35-52). New Jersey: 

Lawrence Erlbaum Associates, Inc., Publishers. 



References 

 

295 

Zelezny, L. C. (1999). Educational interventions that improve environmental behaviors: a meta-

analysis. The Journal of Environmental Education, 31(1), 5-14. 

Zhang, J. (1997). The nature of external representations in problem solving. Cognitive Science, 

21(2), 179-217. 

Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks Cognitive Science, 

18, 87-122. 

 

 



Appendix 1: Text Description of the System 

 

296 

APPENDIX 1: TEXT DESCRIPTION OF THE 
SYSTEM 
The University of 

Sydney  

Centre for Research on Computer-Supported  
Learning and Cognition - CoCo 
Faculty of Education and Social Work 
College of Humanities & Social Sciences 
NSW 2006 Australia 

VISITOR USAGE OF A NATIONAL PARK 

The public visits a national park for a number of reasons. One is to have a picnic. Visitors who visit 

this national park for the purpose of a picnic have a unique arrival cycle. The arrival cycle is the 

distribution of times that visitors arrive at the park. Most visitors tend to arrive around lunch time 

and fewer arrive before 11:00am and after 2pm, although some still do. The departure cycle of the 

visitors is also unique. There are a steady number of people leaving between 1pm and 5pm, and 

then this increases between 5pm and 7pm. In the case in question, the park closes at 7:30pm. 

Some days there are more visitors than others, for example, a weekend will have more people 

visiting than a weekday. However, school holidays may not mean that more visitors are in the park. 

So what impact could visitors having a picnic have on a national park? Some people will leave their 

rubbish on the ground, or collect firewood for bbq's, and some will bring their pets. All of these 

activities will have an impact on the natural ecosystem. Even if the visitors do the right thing and 

put their rubbish in the rubbish bins provided, they can still have an impact on the ecosystem. We'll 

assume for a moment that each person in a group leaves one piece of rubbish in the bin. And we'll 

also assume that half of this is inorganic rubbish (bottles, plastic, anything that will not decompose) 

and the other half is organic rubbish (food scraps, anything that CAN decompose). So, how does the 

rubbish get removed from the park? A garbage collector comes around and empties the bins once a 

day. We'll assume that the garbage collector arrives at 5pm every day. We're going to assume that 

each time he collects about 95% of the rubbish in the bins. The rubbish that is left in the bins is 

either inorganic, which means that it will not decompose, and so it stays in the bin until visitors 

arrive the next day and put their rubbish in, or organic. If the rubbish is organic then it will either 

begin to decompose, or it may be eaten by animals. We will assume that half is eaten by animals 

and the other half decomposes. Organic rubbish like this tends to attract introduced species like 

rats or mice, which in turn attract feral cats. These animals are often nocturnal, or at least do not 

come out while there are a lot of people around. Decomposing organic rubbish adds nutrients to 

the environment, which has further impacts on the ecosystem. In our case, we will assume that it 
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takes 3 days from the organic waste being left in the bin and it being broken down and resulting in 

the addition of nutrients to the environment. And then the cycle continues the next day. As the 

cycle continues the amount of waste increases, as does the amount of nutrients in the environment. 

 

So, what’s important about all this? Well for a start, the time that the garbage collector comes is 

important. What do you think this could influence? Also, the percentage of rubbish that is collected 

could be different, let’s assume either 90% (0.9), 95% (0.95) or 100% (1). What do you think will be 

the implications of that? 

 

You’ll be asked to describe how the visitors influence the running of the park. Think about what will 

happen if the amount of rubbish that each person leaves changes (1, 2 or 3 pieces of rubbish). 

Combine this with different percentages of rubbish removal and different collection times. 

 

You'll be given paper to draw graphs and make notes as you go. 
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APPENDIX 2: SYSTEM DYNAMICS MODEL 
EQUATIONS 
Additional_Nutrients_in_the_soil(t) = Additional_Nutrients_in_the_soil(t - dt) + (nutrients__to_the_soil) * dt 

INIT Additional_Nutrients_in_the_soil = nutrients__to_the_soil 

nutrients__to_the_soil = CONVEYOR OUTFLOW 

decomposing_waste(t) = decomposing_waste(t - dt) + (decomposition - nutrients__to_the_soil) * dt 

INIT decomposing_waste = 0 

 TRANSIT TIME = 84 

 INFLOW LIMIT = ° 

 CAPACITY = ° 

decomposition = 0.25*waste_accumulating__at_the_site 

nutrients__to_the_soil = CONVEYOR OUTFLOW 

Visitors_at_picnic_ground_1(t) = Visitors_at_picnic_ground_1(t - dt) + (arrival_cycle_1 - departure_cycle_1) * dt 

INIT Visitors_at_picnic_ground_1 = 0 

arrival_cycle_1 = GRAPH(TIME) 

(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.00), (5.00, 19.0), (6.00, 9.00), (7.00, 12.0), (8.00, 

17.0), (9.00, 22.0), (10.0, 18.0), (11.0, 35.0), (12.0, 4.00), (13.0, 10.0), (14.0, 10.0), (15.0, 0.00), (16.0, 0.00), 

(17.0, 4.00), (18.0, 4.00), (19.0, 0.00), (20.0, 0.00), (21.0, 7.00), (22.0, 0.00), (23.0, 0.00), (24.0, 0.00), (25.0, 

0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), 

(34.0, 6.00), (35.0, 5.00), (36.0, 2.00), (37.0, 7.00), (38.0, 3.00), (39.0, 0.00), (40.0, 0.00), (41.0, 2.00), (42.0, 

0.00), (43.0, 0.00), (44.0, 0.00), (45.0, 0.00), (46.0, 0.00), (47.0, 0.00), (48.0, 0.00), (49.0, 0.00), (50.0, 0.00), 

(51.0, 0.00), (52.0, 0.00), (53.0, 0.00), (54.0, 0.00), (55.0, 0.00), (56.0, 0.00), (57.0, 0.00), (58.0, 0.00), (59.0, 

0.00), (60.0, 19.0), (61.0, 0.00), (62.0, 0.00), (63.0, 2.00), (64.0, 3.00), (65.0, 0.00), (66.0, 5.00), (67.0, 2.00), 

(68.0, 2.00), (69.0, 9.00), (70.0, 8.00), (71.0, 7.00), (72.0, 7.00), (73.0, 0.00), (74.0, 0.00), (75.0, 0.00), (76.0, 

3.00), (77.0, 0.00), (78.0, 0.00), (79.0, 0.00), (80.0, 0.00), (81.0, 0.00), (82.0, 0.00), (83.0, 0.00), (84.0, 0.00), 

(85.0, 0.00), (86.0, 0.00), (87.0, 0.00), (88.0, 1.00), (89.0, 0.00), (90.0, 0.00), (91.0, 0.00), (92.0, 0.00), (93.0, 

8.00), (94.0, 4.00), (95.0, 0.00), (96.0, 4.00), (97.0, 0.00), (98.0, 5.00), (99.0, 0.00), (100, 0.00), (101, 0.00), 

(102, 0.00), (103, 0.00), (104, 0.00), (105, 6.00), (106, 0.00), (107, 0.00), (108, 0.00), (109, 0.00), (110, 0.00), 

(111, 0.00), (112, 0.00), (113, 0.00), (114, 0.00), (115, 0.00), (116, 0.00), (117, 0.00), (118, 5.00), (119, 0.00), 

(120, 0.00), (121, 5.00), (122, 0.00), (123, 3.00), (124, 0.00), (125, 0.00), (126, 2.00), (127, 0.00), (128, 0.00), 

(129, 4.00), (130, 0.00), (131, 0.00), (132, 0.00), (133, 5.00), (134, 0.00), (135, 0.00), (136, 0.00), (137, 0.00), 

(138, 0.00), (139, 0.00), (140, 0.00), (141, 0.00), (142, 0.00), (143, 1.00), (144, 0.00), (145, 0.00), (146, 4.00), 

(147, 0.00), (148, 6.00), (149, 7.00), (150, 6.00), (151, 9.00), (152, 1.00), (153, 0.00), (154, 8.00), (155, 0.00), 

(156, 0.00), (157, 0.00), (158, 0.00), (159, 0.00), (160, 0.00), (161, 0.00), (162, 0.00), (163, 0.00), (164, 0.00), 

(165, 0.00), (166, 0.00), (167, 0.00), (168, 0.00), (169, 0.00), (170, 0.00), (171, 0.00), (172, 0.00), (173, 0.00), 
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(174, 0.00), (175, 1.00), (176, 6.00), (177, 0.00), (178, 8.00), (179, 2.00), (180, 4.00), (181, 0.00), (182, 0.00), 

(183, 0.00), (184, 0.00), (185, 0.00), (186, 0.00), (187, 0.00), (188, 0.00), (189, 0.00), (190, 0.00), (191, 0.00), 

(192, 0.00), (193, 0.00), (194, 0.00), (195, 0.00), (196, 0.00) 

departure_cycle_1 = GRAPH(TIME) 

(0.00, 0.00), (1.00, 0.00), (2.00, 0.00), (3.00, 0.00), (4.00, 0.00), (5.00, 0.00), (6.00, 0.00), (7.00, 0.00), (8.00, 

0.00), (9.00, 4.00), (10.0, 9.00), (11.0, 0.00), (12.0, 2.00), (13.0, 6.00), (14.0, 0.00), (15.0, 0.00), (16.0, 14.0), 

(17.0, 21.0), (18.0, 0.00), (19.0, 13.0), (20.0, 15.0), (21.0, 22.0), (22.0, 38.0), (23.0, 27.0), (24.0, 0.00), (25.0, 

0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), 

(34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 5.00), (40.0, 6.00), (41.0, 2.00), (42.0, 

2.00), (43.0, 0.00), (44.0, 7.00), (45.0, 3.00), (46.0, 0.00), (47.0, 0.00), (48.0, 0.00), (49.0, 0.00), (50.0, 0.00), 

(51.0, 0.00), (52.0, 0.00), (53.0, 0.00), (54.0, 0.00), (55.0, 0.00), (56.0, 0.00), (57.0, 0.00), (58.0, 0.00), (59.0, 

0.00), (60.0, 0.00), (61.0, 0.00), (62.0, 0.00), (63.0, 0.00), (64.0, 0.00), (65.0, 5.00), (66.0, 0.00), (67.0, 0.00), 

(68.0, 5.00), (69.0, 0.00), (70.0, 2.00), (71.0, 0.00), (72.0, 12.0), (73.0, 7.00), (74.0, 4.00), (75.0, 21.0), (76.0, 

8.00), (77.0, 0.00), (78.0, 0.00), (79.0, 0.00), (80.0, 3.00), (81.0, 0.00), (82.0, 0.00), (83.0, 0.00), (84.0, 0.00), 

(85.0, 0.00), (86.0, 0.00), (87.0, 0.00), (88.0, 0.00), (89.0, 1.00), (90.0, 0.00), (91.0, 0.00), (92.0, 0.00), (93.0, 

0.00), (94.0, 0.00), (95.0, 0.00), (96.0, 0.00), (97.0, 0.00), (98.0, 4.00), (99.0, 5.00), (100, 0.00), (101, 3.00), 

(102, 0.00), (103, 5.00), (104, 0.00), (105, 4.00), (106, 0.00), (107, 0.00), (108, 6.00), (109, 0.00), (110, 0.00), 

(111, 0.00), (112, 0.00), (113, 0.00), (114, 0.00), (115, 0.00), (116, 0.00), (117, 0.00), (118, 0.00), (119, 0.00), 

(120, 0.00), (121, 0.00), (122, 0.00), (123, 0.00), (124, 3.00), (125, 0.00), (126, 0.00), (127, 0.00), (128, 0.00), 

(129, 0.00), (130, 0.00), (131, 5.00), (132, 9.00), (133, 0.00), (134, 2.00), (135, 5.00), (136, 0.00), (137, 0.00), 

(138, 0.00), (139, 0.00), (140, 0.00), (141, 0.00), (142, 0.00), (143, 0.00), (144, 0.00), (145, 0.00), (146, 0.00), 

(147, 0.00), (148, 0.00), (149, 0.00), (150, 4.00), (151, 6.00), (152, 2.00), (153, 0.00), (154, 4.00), (155, 3.00), 

(156, 5.00), (157, 14.0), (158, 4.00), (159, 0.00), (160, 0.00), (161, 0.00), (162, 0.00), (163, 0.00), (164, 0.00), 

(165, 0.00), (166, 0.00), (167, 0.00), (168, 0.00), (169, 0.00), (170, 0.00), (171, 0.00), (172, 0.00), (173, 0.00), 

(174, 0.00), (175, 0.00), (176, 0.00), (177, 0.00), (178, 0.00), (179, 0.00), (180, 3.00), (181, 0.00), (182, 6.00), 

(183, 0.00), (184, 0.00), (185, 0.00), (186, 0.00), (187, 0.00), (188, 0.00), (189, 0.00), (190, 6.00), (191, 6.00), 

(192, 0.00), (193, 0.00), (194, 0.00), (195, 0.00), (196, 0.00) 

waste_accumulating__at_the_site(t) = waste_accumulating__at_the_site(t - dt) + (remaining_waste - 

inorganic_waste - eaten_by_animals - decomposition) * dt 

INIT waste_accumulating__at_the_site = 0 

remaining_waste = Pulse(Waste_left_at_the_site-garbage_services,26,28) 

inorganic_waste = 0.5*waste_accumulating__at_the_site 

eaten_by_animals = 0.25*waste_accumulating__at_the_site 

decomposition = 0.25*waste_accumulating__at_the_site 

Waste_left_at_the_site(t) = Waste_left_at_the_site(t - dt) + (accumulation + inorganic_waste - garbage_services - 

remaining_waste) * dt 

INIT Waste_left_at_the_site = 0 
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accumulation = departure_cycle_1*number_of_pieces_of_rubbish_per_person 

inorganic_waste = 0.5*waste_accumulating__at_the_site 

garbage_services = pulse(Waste_left_at_the_site*amount_of_garbage_collected,garbage_collection_time,28) 

remaining_waste = Pulse(Waste_left_at_the_site-garbage_services,26,28) 

amount_of_garbage_collected = 0.9 

garbage_collection_time = 18 

number_of_pieces_of_rubbish_per_person = 1 
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APPENDIX 3: AGENT-BASED MODEL 
EQUATIONS 
breed [ person-32-1 ] 

breed [ person-32-2 ] 

breed [ person-32-4 ] 

breed [ person-32-6 ] 

breed [ orgrubbish-1 ] 

breed [ inorgrubbish-1 ] 

breed [ orgrubbish-2 ] 

breed [ inorgrubbish-2 ] 

breed [ garbage-person ] 

breed [ garbage-truck ] 

breed [ rat-1 ] 

breed [ rat-2 ] 

breed [ decomp-1-1 ] 

breed [ decomp-1-2 ] 

 

globals [time  

        wait-time-1  

        wait-time-2  

        wait-time-26 

        minutes 

        bin-1 

        bin-1-1 

        time-rat-2 

        orgrubbish-to-be-eaten-1 

        orgrubbish-to-be-eaten-2 

        number-people-1 

        number-people-9 

        decomp-time-4-2 

        decomp-time-8-1 

        day 

        time-clock-hour 

        time-clock-minutes 

        time-clock-ampm 
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        minutes-15-list 

        minutes-30-list 

        minutes-45-list 

        hour-5-list 

        hour-11-list 

        hour-12am-list 

        hour-12pm-list 

        hour-1-list 

        hour-4-list 

] 

 

to setup 

  ca 

  import-pcolors "picnic 220905 1.png" 

  set time 0 

  set minutes 0 

  wait-time-set 

  create-rat-1 30 

  create-rat-2 30 

  set bin-1 0 

  set bin-1-1 0 

  set bin-2 0 

  set bin-2-1 0 

  set number-of-people-list (list 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) 

  set garbage-1 0 

  set garbage-2 0 

  set garbage-wait-time 0 

  set-number-people 

  set decomp-time-4-1 10000 

  set decomp-time-4-2 10000 

  set decomp-time-8-1 10000 

  set decomp-time-8-2 10000 

  set decomp-time-18-1 10000 

  set decomp-time-18-2 10000 

  set decomp-time-20-1 10000 

  set decomp-time-20-2 10000 

  set decomp-time-21-1 10000 
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  set decomp-time-21-2 10000 

  set decomp-time-22-1 10000 

  set decomp-time-22-2 10000 

  set decomp-time-32-1 10000 

  set decomp-time-32-2 10000 

  set hour-5-list (list 540 840 1380 1680 2220 2520 3060 3360 3900 4200

 4740 5040 5580 5880) 

  set hour-6-list (list 15 600 855 1440 1695 2280 2535 3120 3375 3960

 4215 4800 5055 5640) 

  set hour-7-list (list 30 660 870 1500 1710 2340 2550 3180 3390 4020

 4230 4860 5070 5700) 

  set hour-8-list (list 45 720 885 1560 1725 2400 2565 3240 3405 4080

 4245 4920 5085 5760) 

  set hour-9-list (list 60 735 900 1575 1740 2415 2580 3255 3420 4095

 4260 4935 5100 5775) 

  set hour-10-list (list 120 750 960 1590 1800 2430 2640 3270 3480 4110

 4320 4950 5160 5790) 

  set hour-11-list (list 180 765 1020 1605 1860 2445 2700 3285 3540 4125

 4380 4965 5220 5805) 

  set hour-12am-list (list 780 1620 2460 3300 4140 4980 5820) 

  set hour-12pm-list (list 240 1080 1920 2760 3600 4440 5280) 

  set hour-1-list (list 300 792 1140 1632 1980 2472 2820 3312 3660 4152

 4500 4992 5340 5832) 

  set hour-2-list (list 360 804 1200 1644 2040 2484 2880 3324 3720 4164

 4560 5004 5400 5844) 

  set hour-3-list (list 420 816 1260 1656 2100 2496 2940 3336 3780 4176

 4620 5016 5460 5856) 

  set hour-4-list (list 480 828 1320 1668 2160 2508 3000 3348 3840 4188

 4680 5028 5520 5868) 

  set minutes-15-list (list 4 19 34 49 75 135 195 255 315 385

 435 495 555 615 675 724 739 754 769 783 795

 807 819 831 844 859 874 889 915 975 1035 1095

 1155 1225 1275 1335 1395 1455 1515 1564 1579 1594 1609

 1623 1635 1647 1659 1671 1684 1699 1714 1729 1755 1815

 1875 1935 1995 2065 2115 2175 2235 2295 2355 2404 2419

 2434 2449 2463 2475 2487 2499 2511 2524 2539 2554 2569

 2595 2655 2715 2775 2835 2905 2955 3015 3075 3135 3195
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 3244 3259 3274 3289 3303 3315 3327 3339 3351 3364 3379

 3394 3409 3435 3495 3555 3615 3675 3745 3795 3855 3915

 3975 4035 4084 4099 4114 4129 4143 4155 4167 4179 4191

 4204 4219 4234 4249 4275 4335 4395 4455 4515 4585 4635

 4695 4755 4815 4875 4924 4939 4954 4969 4983 4995 5007

 5019 5031 5044 5059 5074 5089 5115 5175 5235 5295 5355

 5425 5475 5535 5595 5655 5715 5764 5779 5794 5809 5823

 5835 5847 5859 5871) 

  set minutes-30-list (list 8 23 38 53 90 150 210 270 330 390

 450 510 570 630 690 728 743 758 773 786 798

 810 822 834 848 863 878 893 930 990 1050 1110

 1170 1230 1290 1350 1410 1470 1530 1568 1583 1598 1613

 1626 1638 1650 1662 1674 1688 1703 1718 1733 1770 1830

 1890 1950 2010 2070 2130 2190 2250 2310 2370 2408 2423

 2438 2453 2466 2478 2490 2502 2514 2528 2543 2558 2573

 2610 2670 2730 2790 2850 2910 2970 3030 3090 3150 3210

 3248 3263 3278 3293 3306 3318 3330 3342 3354 3368 3383

 3398 3413 3450 3510 3570 3630 3690 3750 3810 3870 3930

 3990 4050 4088 4103 4118 4133 4146 4158 4170 4182 4194

 4208 4223 4238 4253 4290 4350 4410 4470 4530 4590 4650

 4710 4770 4830 4890 4928 4943 4958 4973 4986 4998 5010

 5022 5034 5048 5063 5078 5093 5130 5190 5250 5310 5370

 5430 5490 5550 5610 5670 5730 5768 5783 5798 5813 5826

 5838 5850 5862 5874) 

  set minutes-45-list (list 12 27 42 57 105 165 225 285 345

 405 465 525 585 645 705 732 747 762 777 789

 801 813 825 837 852 867 882 897 945 1005 1065

 1125 1185 1245 1305 1365 1425 1485 1545 1572 1587 1602

 1617 1629 1641 1653 1665 1677 1692 1707 1722 1737 1785

 1845 1905 1965 2025 2085 2145 2205 2265 2325 2385 2412

 2427 2442 2457 2469 2481 2493 2505 2517 2532 2547 2562

 2577 2625 2685 2745 2805 2865 2925 2985 3045 3105 3165

 3225 3252 3267 3282 3297 3309 3321 3333 3345 3357 3372

 3387 3402 3417 3465 3525 3585 3645 3705 3765 3825 3885

 3945 4005 4065 4092 4107 4122 4137 4149 4161 4173 4185

 4197 4212 4227 4242 4257 4305 4365 4425 4485 4545 4605

 4665 4725 4785 4845 4905 4932 4947 4962 4977 4989 5001
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 5013 5025 5037 5052 5067 5082 5097 5145 5205 5265 5325

 5385 5445 5505 5565 5625 5685 5745 5772 5787 5802 5817

 5829 5841 5853 5865 5877) 

end 

 

to go 

  set time time + 1 

  ifelse time >= 0 and time < 840 

    [move-day-1] 

    [ifelse time >= 840 and time < 1680 

      [move-day-2] 

      [ifelse time >= 1680 and time < 2520 

        [move-day-3] 

        [ifelse time >= 2520 and time < 3360 

          [move-day-4] 

          [ifelse time >= 3360 and time < 4200 

            [move-day-5] 

            [ifelse time >= 4200 and time < 5040 

              [move-day-6] 

              [ifelse time >= 5040 and time < 5880 

                [move-day-7] 

                      [stop]]]]]]] 

  if time = 720  

    [night-1] 

  if time = 840  

    [day-2] 

  if time = 1560 or time = 2400 or time = 3240 or time = 4080 or time = 4920 or time = 5760  

    [night-time] 

  if time = 1680 or time = 2520 or time = 3360 or time = 4200 or time = 5040 or time = 5820 

    [day-time]   

  waste-accumulation-1 

  waste-accumulation-2 

  garbage-service 

  garbage-pick-up-1 

  garbage-pick-up-2 

  rat-loose-organic-1-1 

  rat-loose-organic-1-2 
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  rat-loose-organic-1-3 

  rat-loose-organic-2-1 

  rat-loose-organic-2-2 

  rat-loose-organic-2-3 

  rat-time-set-1 

  rat-time-set-2 

  decomposition-stage-1-1 

  decomposition-stage-1-2 

  decomposition-stage-1-1-a 

  decomposition-stage-1-2-a 

  decomposition-stage-2-1 

  decomposition-stage-2-2 

  decomposition-stage-2-1-a 

  decomposition-stage-2-2-a 

  decomposition-stage-3-1 

  decomposition-stage-3-2 

  time-display 

  decomp-time-set-1 

  decomp-time-set-2 

  do-plotting 

end 

 

to night-1 

  ask patches [ 

    if pcolor = 85.9 or pcolor = 85.8 or pcolor = 86.0 or pcolor = 97.1 or pcolor = 76.9 or pcolor = 97.0 or 

pcolor = 86.1 

          [set pcolor 91] 

    if pcolor = 87.6 or pcolor = 87.8 or pcolor = 87.7 or pcolor = 86.6 or pcolor = 86.8 or pcolor = 87.0 or 

pcolor = 87.3 or pcolor = 86.4 

          [set pcolor 95] 

      ] 

end 

 

to day-2 

  ask patches  [ 

    if pcolor = 91 

      [set pcolor 85.9] 
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    if pcolor = 95 

        [set pcolor 87.6]] 

end 

 

to night-time   

  ask patches [ 

    if pcolor = 85.9 

      [set pcolor 91] 

    if pcolor = 87.6 

        [set pcolor 95] 

      ] 

end 

 

to day-time 

  ask patches  [ 

    if pcolor = 95 

      [set pcolor 87.6] 

    if pcolor = 91 

      [set pcolor 85.9] 

    ] 

end 

 

to move-day-1 

  move-person-4-6 

  move-person-4-1 

  move-person-4-3 

  move-person-4-5 

  move-person-4-4 

  move-person-4-2 

  move-person-4-9 

  move-person-4-7 

  move-person-4-10 

  move-person-4-8 

end 

 

to move-person-4-6 
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  if time = 163 or time = 165 or time = 175 or time = 210 or time = 218 or time = 252 or time = 276 or time = 

311 or time = 405 

    [create-custom-person-4-6 1 [ 

         setxy -125 -77 

         set shape "person picnic 6" 

         set size 25 

         set heading 0 

         ]  

       ] 

  if time = 163 

    [spot-1-arrive] 

  if time >= 163 and time <= 655  

    [set wait-time-1 time - 163] 

  if time >= 163 and time <= 655 and wait-time-1 = 492 

    [set person-number-1 number-people-6 

     spot-1-depart] 

  if time = 165 

    [spot-3-arrive] 

  if time >= 165 and time <= 368 

    [set wait-time-3 time - 165] 

  if time >= 165 and time <= 368 and wait-time-3 = 203 

    [set person-number-2 number-people-6 

     spot-3-depart] 

  if time = 175   

    [spot-4-arrive] 

  if time >= 175 and time <= 560 

    [set wait-time-4 time - 175] 

  if time >= 175 and time <= 560 and wait-time-4 = 385 

    [set person-number-1 number-people-6 

     spot-4-depart] 

  if time = 210 

    [spot-6-arrive] 

  if time >= 210 and time <= 635 

    [set wait-time-6 time - 210] 

  if time >= 210 and time <= 635 and wait-time-6 = 425 

    [set person-number-2 number-people-6 

     spot-6-depart] 
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  if time = 218 

    [spot-8-arrive] 

  if time >= 218 and time <= 552 

    [set wait-time-8 time - 218] 

  if time >= 218 and time <= 552 and wait-time-8 = 334 

    [set person-number-1 number-people-6 

     spot-8-depart] 

  if time = 252 

    [spot-12-arrive] 

  if time >= 252 and time <= 682 

    [set wait-time-12 time - 252] 

  if time >= 252 and time <= 682 and wait-time-12 = 430 

    [set person-number-2 number-people-6 

     spot-12-depart] 

  if time = 276 

    [spot-10-arrive] 

  if time >= 276 and time <= 641 

    [set wait-time-10 time - 276] 

  if time >= 276 and time <= 641 and wait-time-10 = 365 

    [set person-number-2 number-people-6 

     spot-10-depart] 

  if time = 311 

    [spot-16-arrive] 

  if time >= 311 and time <= 497 

    [set wait-time-16 time - 311] 

  if time >= 311 and time <= 497 and wait-time-16 = 186 

    [set person-number-2 number-people-6 

     spot-16-depart] 

  if time = 405 

    [spot-23-arrive] 

  if time >= 405 and time <= 659 

    [set wait-time-23 time - 405] 

  if time >= 405 and time <= 659 and wait-time-23 = 254 

    [set person-number-1 number-people-6 

     spot-23-depart]   

end   
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to spot-1-arrive 

  ask turtles at-points [[-125 -77]] [  

    rt 45 

    fd 90 

    rt 40 

    fd 120]     

end 

 

to spot-1-depart 

  ask turtles at-points [[58 -3]] [ 

    rt 150 

    fd 40 

    set bin-1-1 who + 1 

    set bin-1 who + 1 

    rt 30 

    fd 110 

    lt 40 

    fd 75 

    die] 

end 

 

to waste-accumulation-1  

  if bin-1 = bin-1-1 

    [ifelse random 2 > 0 

      [create-custom-orgrubbish-1 item person-number-1 number-of-people-list * pieces-of-rubbish-per-

person 

       [setxy 34 -46 

       set shape "apple" 

       set size 5 

       set color red 

       set heading (random 360) 

       fd random 7] 

         ] 

       [create-custom-inorgrubbish-1 item person-number-1 number-of-people-list * pieces-of-rubbish-per-

person 
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         [setxy 34 -46 

          set shape "bottle" 

          set size 5 

          set color blue 

          set heading (random 360) 

          fd random 7] 

          ] 

     set bin-1-1 0]        

end 

 

to garbage-service 

  if garbage-collection-time = "5:00pm" 

    [set garbage-time-collect 540] 

  if garbage-collection-time = "5:30pm" 

    [set garbage-time-collect 570] 

  if garbage-collection-time = "6:00pm" 

    [set garbage-time-collect 600] 

  if garbage-collection-time = "6:30pm" 

    [set garbage-time-collect 630] 

  if garbage-collection-time = "7:00pm" 

    [set garbage-time-collect 660] 

  if time = garbage-time-collect or time = garbage-time-collect + 840 or time = garbage-time-collect + 1680 

or time = garbage-time-collect + 2520 or time = garbage-time-collect + 3360 or time = garbage-time-collect 

+ 4200 or time = garbage-time-collect + 5040 

      [create-custom-garbage-truck 1 [ 

        setxy -100 -77 

        set shape "truck" 

        set size 75 

        set heading 0 

        ] 

      ] 

   if time >= garbage-time-collect and time <= garbage-time-collect + 30 

     [set garbage-wait-time time - garbage-time-collect 

     collect-garbage] 

   if time >= garbage-time-collect + 840 and time <= garbage-time-collect + 870 

     [set garbage-wait-time time - (garbage-time-collect + 840) 

     collect-garbage] 
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   if time >= garbage-time-collect + 1680 and time <= garbage-time-collect + 1710 

     [set garbage-wait-time time - (garbage-time-collect + 1680) 

     collect-garbage] 

   if time >= garbage-time-collect + 2520 and time <= garbage-time-collect + 2550 

     [set garbage-wait-time time - (garbage-time-collect + 2520) 

     collect-garbage] 

   if time >= garbage-time-collect + 3360 and time <= garbage-time-collect + 3390 

     [set garbage-wait-time time - (garbage-time-collect + 3360) 

     collect-garbage] 

   if time >= garbage-time-collect + 4200 and time <= garbage-time-collect + 4230 

     [set garbage-wait-time time - (garbage-time-collect + 4200) 

     collect-garbage] 

   if time >= garbage-time-collect + 5040 and time <= garbage-time-collect + 5070 

     [set garbage-wait-time time - (garbage-time-collect + 5040) 

     collect-garbage] 

   if time >= garbage-time-collect and garbage-wait-time = 10 

     [ask garbage-truck at-points [[-100 -77]] 

       [die] 

     ] 

end 

 

to collect-garbage 

    if time = garbage-time-collect or time = garbage-time-collect + 840 or time = garbage-time-collect + 1680 

or time = garbage-time-collect + 2520 or time = garbage-time-collect + 3360 or time = garbage-time-collect 

+ 4200 or time = garbage-time-collect + 5040  

      [create-custom-garbage-person 1 [ 

        setxy -99 -54 

        set shape "person truck" 

        set size 25 

        set heading 0] 

    ] 

  if time = garbage-time-collect + 1 or time = garbage-time-collect + 841 or time = garbage-time-collect + 

1681 or time = garbage-time-collect + 2521 or time = garbage-time-collect + 3361 or time = garbage-time-

collect + 4201 or time = garbage-time-collect + 5041 

    [move-bin-1] 
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  if time = garbage-time-collect + 4 or time = garbage-time-collect + 844 or time = garbage-time-collect + 

1684 or time = garbage-time-collect + 2524 or time = garbage-time-collect + 3364 or time = garbage-time-

collect + 4204 or time = garbage-time-collect + 5044 

    [move-bin-1-bin-2] 

  if time = garbage-time-collect + 7 or time = garbage-time-collect + 847 or time = garbage-time-collect + 

1687 or time = garbage-time-collect + 2527 or time = garbage-time-collect + 3367 or time = garbage-time-

collect + 4207 or time = garbage-time-collect + 5047 

    [move-bin-2] 

end 

 

to move-bin-1 

  ask garbage-person at-points [[-99 -54]] 

    [rt 45 

    fd 30 

    rt 45 

    fd 95 

    set garbage-1 1]  

end 

 

to move-bin-1-bin-2 

  ask garbage-person at-points [[17 -33]] 

    [lt 135 

     fd 100 

     set garbage-2 1] 

end 

 

to move-bin-2 

  ask garbage-person at-points [[-53 38]] 

    [lt 115 

    fd 85 

    rt 45 

    fd 20 

    die] 

end 

   

to garbage-pick-up-1 

  if garbage-1 = 1 
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    [let rubbish-1 turtles with [breed = orgrubbish-1 or breed = inorgrubbish-1] 

    set sub-total-rubbish-1 (percentage-of-rubbish-collected * (count rubbish-1)) 

    ask n-of sub-total-rubbish-1 rubbish-1 [die] 

    ] 

  set garbage-1 0 

end 

 

to rat-loose-organic-1-1 

  if count orgrubbish-1 > 1 

    [if time = time-rat-1 

        [create-custom-rat-1 1 [ 

          setxy 122 -90 

          set shape "rat-1" 

          set size 19 

          set heading 0 

        ] 

      ] 

    ] 

    if time = time-rat-1 and count orgrubbish-1 > 1 

      [rat-bin-1-1] 

    if time = time-rat-1 + 5 and count orgrubbish-1 > 1 

      [rat-eat-bin-1] 

    if time = time-rat-1 + 10 

      [rat-1-leave-1] 

end 

 

to decomp-time-set-1 

  if time = 720 

    [set decomp-time-4-1 800 + random 30] 

  if time = 1560 

    [set decomp-time-8-1 1640 + random 30] 

  if time = 2400 

    [set decomp-time-18-1 2480 + random 30] 

  if time = 3240 

    [set decomp-time-20-1 3320 + random 30] 

  if time = 4080 

    [set decomp-time-21-1 4160 + random 30]   



Appendix 3: Example of Agent-Based Model Equations 

 

315 

  if time = 4920 

    [set decomp-time-22-1 5000 + random 30] 

  if time = 5760 

    [set decomp-time-32-1 5840 + random 30] 

end 

 

to decomposition-stage-1-1 

  if time = decomp-time-4-1 or time = decomp-time-8-1 or time = decomp-time-18-1 or time = decomp-

time-20-1 or time = decomp-time-21-1 or time = decomp-time-22-1 or time = decomp-time-32-1 

    [ask orgrubbish-1 

      [ifelse random 2 = 0 

        [setxy 43 + random 10 -49 - random 13] 

        [setxy 8 + random 16 -53 - random 9]] 

     ask orgrubbish-1  

       [set breed decomp-1-1 

        set shape "apple" 

        set size 5 

        set color red]] 

end 

 

 

to decomp-time-set-2 

  if time = 720 

    [set decomp-time-4-2 800 + random 55] 

  if time = 1560 

    [set decomp-time-8-2 1640 + random 55] 

  if time = 2400 

    [set decomp-time-18-2 2480 + random 55] 

  if time = 3240 

    [set decomp-time-20-2 3320 + random 55] 

  if time = 4080 

    [set decomp-time-21-2 4160 + random 55]   

  if time = 4920 

    [set decomp-time-22-2 5000 + random 55] 

  if time = 5760 

    [set decomp-time-32-2 5840 + random 55] 

end 
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to decomposition-stage-1-2 

  if time = decomp-time-4-2 or time = decomp-time-8-2 or time = decomp-time-18-2 or time = decomp-

time-20-2 or time = decomp-time-21-2 or time = decomp-time-22-2 or time = decomp-time-32-2 

    [ask orgrubbish-2 

       [ifelse random 2 = 0 

         [setxy -56 + random 8 40 + random 8] 

         [setxy -72 + random -17 28 - random 4]] 

      ask orgrubbish-2 

        [set breed decomp-1-2 

         set shape "apple" 

         set size 5 

         set color red]] 

end 

 

to do-plotting 

  set-current-plot "Additional Nutrients in the Environment" 

  set-current-plot-pen "Nutrients" 

  plot count decomp-3-1 + count decomp-3-2 

  set-current-plot "Waste accumulating" 

  set-current-plot-pen "Waste" 

  plot count orgrubbish-1 + count inorgrubbish-1 + count orgrubbish-2 + count inorgrubbish-2 

end 
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System Dynamics as a Mindtool for Environmental Education: In a Classroom and in a 

National Park: 1 of 7 317 

 

APPENDIX 4: BACKGROUND 
QUESTIONNAIRE 
The University of 

Sydney  

Centre for Research on Computer-Supported  
Learning and Cognition - CoCo 
Faculty of Education and Social Work 
College of Humanities & Social Sciences 
NSW 2006 Australia 

BACKGROUND QUESTIONS 
Personal Information 

1. What is your date of birth?     

2. What school do you attend?        

3. What is your science teacher’s name?       

4. What suburb do you live in?       

5. What is your gender?  (Please circle)  Male Female 

6. Is English the primary language spoken at home? (Please circle)Yes  No 

If no, what is the primary language spoken at home?      

Your computer skills 
7. Have you been taught to use computers during (Please circle one) 

Primary school?  Yes No 

High school?  Yes  No 

8. In what subjects have you used a computer this year?     

           

           

       

9. How would you rate your experience in using the following (please tick the circle): 
a. An Apple Macintosh computer 
No experience Beginner Competent Experienced 

    
b. Microsoft Windows 
No experience Beginner Competent Experienced 

 
 

   



Appendix 4: Background Questionnaire 

 

System Dynamics as a Mindtool for Environmental Education: In a Classroom and in a 

National Park: 2 of 7 318 

 

c. Word 
No experience Beginner Competent Experienced 

 
 

   

d. Excel 

e. Powerpoint 
No experience Beginner Competent Experienced 

 
 

   

f. Dreamweaver 
No experience Beginner Competent Experienced 

 
 

   

g. Flash 
No experience Beginner Competent Experienced 

 
 

   

h. Photoshop 
No experience Beginner Competent Experienced 

 
 

   

i. Stella 
No experience Beginner Competent Experienced 

 
 

   

j. NetLogo 
No experience Beginner Competent Experienced 

 
 

   

Science skills 
10. What was your science grade in the last half yearly exam?    

11. What was your science grade in the most recent yearly exam?    

12. What was your mathematics grade in the most recent yearly or half yearly exam?  
 Please indicate the extent to which you agree or disagree with the following 
statements by ticking the appropriate circle 

a. I enjoy science 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

No experience Beginner Competent Experienced 
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b. I enjoy my science class 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

c. It is important to know science to get a good job 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

d. I will use science knowledge in may ways as an adult 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

e. Science is useful in every day life 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

f. Science helps me to think in a logical way 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

g. Whether the science content is difficult or easy, I am sure that I will be  
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

h. able to understand it 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

i. I am not confident that I will be able to understand difficult science concepts 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

j. I am sure that I can do well in science tests 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

k. No matter how much effort I put in, I cannot understand science 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

l. When I am learning new science concepts, I try to understand them 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
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m. When I am learning new science concepts, I try to memorise them 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

n. When I am learning new science concepts, I try to connect them to the knowledge  
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

o. that I already have about science 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

p. When I do not understand a science concept, I try to find other relevant information 
that will help me to understand 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

q. When I do not understand a science concept, I discuss it with the teacher to clarify 
my understanding 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

r. When I do not understand a science concept, I discuss it with other students to 
clarify my understanding 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

s. During the learning process I try to make connections between the concepts that I 
learn 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

t. When I make a mistake, I try to find out what was wrong 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

u. When new science concepts that I have learned conflict with my previous 
knowledge, I try to find out why 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

v. In science, I think it is important to learn to solve problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
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w. When learning science, it is important to have the opportunity to satisfy my own 
curiosity 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

 

Attitudes about the environment 
13. Define the term: ecosystem 
            
            
            
             
14. Please indicate the extent to which you agree or disagree with the following statements by 

ticking the appropriate circle 
a. Humans have the right to alter nature to satisfy wants and desires 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

b. Science knowledge forms the basis for solving environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

c. Nature consists of resources for humans to use 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

d. A change in attitudes and values is necessary in order to solve environmental 
problems 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

e. Humans should live in harmony with the rest of nature 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

f. There is a limit to the number of people that the Earth can support 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

g. Present generations of humans have moral duties and obligations to future 
generations 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
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h. Litter in streets and parks does not bother me 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

i. I want to inform people of the importance of pollution and environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

j. I want to participate in protest activities against environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

k. I do participate in protest activities against environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

l. I am interested in attending lectures on pollution and other environmental 
problems 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

m. I attend lectures on pollution and other environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

n. Pollution does not affect my life 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

o. I want to take an active part in solving environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

p. I take an active part in solving environmental problems 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

q. I separate waste materials for recycling 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

r. Humans will survive, even if the natural environment loses equilibrium 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
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s. Even rich countries will not survive if pollution becomes serious 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

t. I do not think that pollution could cause the extinction of many species 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

 
15. Consider the following situation: 

‘You read in the newspaper that greenhouse gas emissions have increased more than expected. The 
authorities plan to do nothing. You believe – for one reason or another – that people should do 
anything they can to stop the steady increase in greenhouse gas emissions.’ 
 
Indicate how much you think you can influence the outcome of this situation, where 1 represents 
the statement: “I have absolutely no ability to influence the outcome” and 10 represents the 
statement: “I can influence the situation’s outcome completely” 

1 2 3 4 5 6 7 8 9 10 
       

 
   

 
Indicate how much you feel you would have control over a similar situation in the future, where 1 
represents the statement: “I have absolutely no ability to influence the outcome” and 10 represents 
the statement: “I can influence the situation’s outcome completely”  

1 2 3 4 5 6 7 8 9 10 
       

 
   

 
16. Consider the following situation: 

 ‘You take a walk in the forest and see dying trees. You believe people should do anything they can 
to stop the demise of the forests.’  
Indicate how much you think you can influence the outcome of this situation, where 1 represents 
the statement: “I have absolutely no ability to influence the outcome” and 10 represents the 
statement: “I can influence the situation’s outcome completely” 

1 2 3 4 5 6 7 8 9 10 
       

 
   

 
Indicate how much you feel you would have control over a similar situation in the future, where 1 
represents the statement: “I have absolutely no ability to influence the outcome” and 10 represents 
the statement: “I can influence the situation’s outcome completely”  

1 2 3 4 5 6 7 8 9 10 
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APPENDIX 5: KNOWLEDGE TESTS 
The University of 

Sydney  

Centre for Research on Computer-Supported  
Learning and Cognition - CoCo 
Faculty of Education and Social Work 
College of Humanities & Social Sciences 
NSW 2006 Australia 

PRE-TEST AND POST-TEST 
You will be asked to complete the answers to these questions at the beginning of the task. After 

you have finished the activities you have been given, you will be asked to revise your answers in the 

space provided. Please provide the most complete answer that you can. If you do not want to revise 

your answer please write “as above”. 

General Environmental Knowledge Questions 
1. What do you think is the most important environmental issue? 

Pre-test 

 

 

Post-test 

 

 

2. What activities could a person engage in if they were visiting a National Park?  

Pre-test 

 

 

Post-test 

 

 

3. What environmental features could you find in a National Park (e.g. trees)?  

Pre-test 
 
 
Post-test 
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Environmental Impacts 
4. Choose one effect of the loss of vegetation on: 

 Soil Water run-off The whole ecosystem 

Pre-test 

 

 

 

   

Post-test 

 

 

 

   

 

5. Have a think about introduced species of animals (such as cats, rats or mice) 

a.  Please circle any of the following activities that you think would cause an increase 
in the number of introduced species of animals 

Pre-test:  

Bushwalking Fishing Having a 

picnic 

Going 

for a 

drive 

Horseriding Walking 

a dog 

Littering  

 

Collecting 

fire wood 

 

Collecting 

shells 

 

Post-test 

Bushwalking Fishing Having a 

picnic 

Going 

for a 

drive 

Horseriding Walking 

a dog 

Littering  

 

Collecting 

fire wood 

 

Collecting 

shells 

 

 

b. Name one effect of introduced animals on the environment? 
Pre-test 

 

 

Post-test 
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6. Now think about introduced species of vegetation 

a. Please circle any of the following activities that you think would cause an increase 
in the number of introduced species of vegetation 

Pre-test:  

Bushwalking Fishing Having a 

picnic 

Going 

for a 

drive 

Horseriding Walking 

a dog 

Littering  

 

Collecting 

fire wood 

 

Collecting 

shells 

 

Post-test 

Bushwalking Fishing Having a 

picnic 

Going 

for a 

drive 

Horseriding Walking 

a dog 

Littering  

 

Collecting 

fire wood 

 

Collecting 

shells 

 

b. Name one effect of the introduction of non-native vegetation on native vegetation?
  

Pre-test 

 

 

Post-test 

 

 

 

7. Now imagine you are in an ecosystem that is not a national park, for example a beach, a 

mangrove swamp, or a local creek. Please complete the following table. For each activity 

listed identify one effect on the ecosystem, choose one possible further effect and indicate 

how long these effects would take to occur. 
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Pre-test 
Time Scale (tick one) Time Scale (tick one) Activity Initial impact 

on ecosystem Same day 1 week 1 year More than 1 year 
What further 
effects? Same day 1 week 1 year More than 1 year 

          
          

Building a 
road 

          

          
          

Littering 

          
          
          

Bushwalking 

          

Post-test 
Time Scale (tick one) Time Scale (tick one) Activity Initial impact 

on ecosystem Same day 1 week 1 year More than 1 year 
What further 
effects? Same day 1 week 1 year More than 1 year 

          
          

Building a 
road 

          

          
          

Littering 

          
          
          

Bushwalking 
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System dynamics questions 
Some of the following questions are multiple choice questions. If you do not know the answer to a 

question PLEASE do not guess, and instead choose option e) I do not know. 

8. Please choose the definition of time delay that best fits your understanding of the term with 

respect to system dynamics  

 Pre-test Post-test 

a) when the cause and effect are separated by time    

b) when you are running late for an appointment   

c) when something scheduled is late   

d) when something is postponed   

e) I do not know   

9. Identify one environmental impact that involves a time delay from any that you have 

discussed so far and indicate the approximate length of time involved (short term or long 

term).  

Pre-test 

 

 

Post-test 

 

 

10. Which of the following describes the term reinforcing feedback as it relates to system 

dynamics? 

 Pre-test Post-test 

a) the two variables change in the same direction   

b) the two variables change in opposite directions   

c) positive information that a teacher gives you about your work   

d) a loop that exists between an audio input and an audio output   

e) I do not know   
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11. Which of the following is an example of reinforcing feedback as it relates to system 
dynamics? 

 Pre-test Post-test 

a) interest added to a bank account   

b) lake shrinking due to evaporation   

c) “your assignment was good, though your spelling needs some 

work” 

  

d) when a microphone is placed in the general direction of the 

output speakers resulting in a high-pitched squealing 

  

e) I do not know   

 

12. Which of the following describes the term balancing feedback as it relates to system 
dynamics? 

 Pre-test Post-test 

a) the two variables change in opposite directions   

b) the two variables change in the same direction   

c) negative information that a teacher gives you about your work   

d) a loop that exists between an audio input and an audio output   

e) I do not know   

 

13. Which of the following is an example of balancing feedback as it relates to system 
dynamics? 

 Pre-test Post-test 

a) lake shrinking due to evaporation   

b) interest in a bank account   

c) “your assignment was terrible, you didn’t try at all”   

d) when a microphone is placed in the general direction of the 

output speakers resulting in a high-pitched squealing 

  

e) I do not know   
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14. How would you describe the behaviour of the variables of the two graphs below: 

(i)  

(ii)  

 Pre-test Post-test 

a) (i) exponential growth and (ii) exponential decay   

b) (i) exponential decay and (ii) exponential growth   

c) (i) equilibrium and (ii) exponential decay   

d) (i) oscillation and (ii) equilibrium   

e) I do not know   
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15. How would you describe the system represented by the graph below? 

 

 Pre-test Post-test 

a) equilibrium   

b) exponential growth   

c) exponential decay   

d) oscillation   

e) I do not know   
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16. Case study 

Fossil Fuels

Fossil Fuel Emissions

Terrestrial  
Death

Atmosphere

Terrestrial  
Biosphere

Marine  
Biosphere

Terrestrial Dead  
Organic Matter

Marine Dead  
Organic Matter

Terrestrial  
Decomposition

Terrestrial  
Respiration

Terrestrial  
Photosynthesis

Marine  
Decomposition

Marine DeathMarine  
Photosynthesis

Marine  
Respiration

 

What environmental issue is this model describing? 

Pre-test 

 

 

Post-test 

 

 

What element of the system is not in balance? 

Pre-test 

 

Post-test 

 

What are the potential issues if the system is not balanced? 

Pre-test 

 

Post-test 
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APPENDIX 6: FINAL ASSESSMENT TASK 
The University of 

Sydney  

Centre for Research on Computer-Supported  
Learning and Cognition - CoCo 
Faculty of Education and Social Work 
College of Humanities & Social Sciences 
NSW 2006 Australia 

FINAL ASSESSMENT 
1.  What variables did you alter? What happened to the system when you altered the variables? 

(You can include graphs or diagrams) 
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2.  What are the management issues that are involved in looking after this area of the National 

Park? 

            

            

            

            

             

3.  What decisions would you make if you were the manager of this park? 

            

            

            

            

             

4.  If this description (the model/s and the text) of the National Park was more detailed, what 

do you think would happen next? What are the possible problems that could occur for the 

environment? 
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5.  Imagine you are the manager of this National Park, and you have to write a report for your 

boss who has never been to the park before. Describe the park, what happens in the park, what the 

main issues are, and the consequences of the different management options. 
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APPENDIX 7: EVALUATION 
The University of 

Sydney  

Centre for Research on Computer-Supported  
Learning and Cognition - CoCo 
Faculty of Education and Social Work 
College of Humanities & Social Sciences 
NSW 2006 Australia 

EVALUATION 
1. Please indicate the extent to which you agree with the following statements: 

a. I would have preferred more guidance in doing this activity 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

 
b. The content was interesting 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

 
c. The pre-test was challenging 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

 
d. The post-test was challenging 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

 
e. Understanding how to use the representations (text, system dynamics model or 

animated model) was easy 
Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
f. I found the text difficult to understand 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
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g. I needed more time to examine the materials 
Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 

  
 

   

 
h. I found it easy to relate one representation to another (text, system dynamics 

model or animated model) 
Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
i. I was able to visualise what the real situation was like 

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree 
  

 
   

 
j. There was too much information 

Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
k. I didn’t like working with a partner 

Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
l. I would have preferred a partner to help me understand 

Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
m. Being in the national park helped me to understand what the representations meant 

Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 
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n. Being in the national park made the task too confusing 
Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
o. I would like to learn like this more often 

Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
p. This activity improved my opinion about science 

Strongly 
disagree Disagree Neutral Agree 

Strongly 
agree 

This question doesn’t 
apply to my activity 

 
 

     

 
2. What did you like the most?        

           

           

           

            

3. What did you like the least?        

           

           

           

            

4. What would you change in this activity?       
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5.            

      

6. Other comments?         
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APPENDIX 8: EXAMPLE OF VIDEO CODING 

Time Screen Time Activity 

Total 

time 

screen 

Total 

time 

activity Screen 

Total 

time Time (%) Activity 

Instances 

(frequency) 

Instances 

(%) 

06:17 Home   02:49  Home 04:06 20.50% Go 9 25.00% 

09:06 Explore the model 09:08 In full 00:07 00:05 Explore the model 03:37 18.08% Step-by-step 1 2.78% 

09:13 Home   00:08  Experiment 09:46 48.83% Reset 4 11.11% 

09:21 Experiment   00:22  Information 02:31 12.58% In full 3 8.33% 

09:43 Home   00:03  Off task 00:00 0.00% Explore model 0 0.00% 

09:46 Information   00:03     Ideas 3 8.33% 

09:49 Explore the model 09:50 Step-by-step 03:07 03:06 TOTAL 20:00 100.00% Change NPR 10 27.78% 

12:56 Home   00:03     Change PRC 3 8.33% 

12:59 Information   02:17     Change GCT 3 8.33% 

15:16 Explore the model 15:19 In full 00:09 00:06    Misc 0 0.00% 

15:25 Home   00:04        

15:29 Experiment 15:32 Ideas 02:35 00:19    TOTAL 36 100.00% 

   15:51 Change NPR=2  00:14         

   16:05 Ideas  00:25         
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Time Screen Time Activity 

Total 

time 

screen 

Total 

time 

activity Screen 

Total 

time Time (%) Activity 

Instances 

(frequency) 

Instances 

(%) 

   16:30 Change NPR=3  00:01         

   16:31 Go  00:14         

   16:45 Change NPR=1  00:01         

   16:46 Go  00:14         

   17:00 Change NPR=4  00:03         

   17:03 Go  00:17         

   17:20 Reset  00:16         

   17:36 Change NPR=2  00:01         

   17:37 Go  00:04         

   17:41 Change NPR=1  00:02         

   17:43 Go  00:07         

   17:50 Reset  00:14         

18:04 Home   00:05          

18:09 Experiment   00:01          

18:10 Home   00:01          

18:11 Explore the model 18:14 In full 00:06 00:03         

18:17 Explore the model   00:06          
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Time Screen Time Activity 

Total 

time 

screen 

Total 

time 

activity Screen 

Total 

time Time (%) Activity 

Instances 

(frequency) 

Instances 

(%) 

18:23 Home   00:03          

18:26 Explore the model   00:02          

18:28 Experiment   00:03          

18:31 Home   00:02          

18:33 Information   00:11          

18:44 Home   00:48          

19:32 Experiment 21:31 Change GCT=6:00 06:45 00:05         

   21:36 Ideas  00:11         

   21:47 Change PRC=1.0  00:03         

   21:50 Go  00:27         

   22:17 Change NPR=4  00:01         

   22:18 Go  01:00         

   23:18 Reset  00:05         

   23:23 Change NPR=2  00:04         

   23:27 Change GCT=6:00  00:04         

   23:31 Change PRC=1.0  00:08         

   23:39 Change NPR=1  00:01         
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Time Screen Time Activity 

Total 

time 

screen 

Total 

time 

activity Screen 

Total 

time Time (%) Activity 

Instances 

(frequency) 

Instances 

(%) 

   23:40 Reset  00:01         

   23:41 Go  00:05         

   23:46 Change NPR=2  00:03         

   23:49 Change GCT=6:00  00:02         

   23:51 Change PRC=1.0  00:02         

   23:53 Go  02:24         

26:17 End             
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APPENDIX 11: SCRIPT 
Hello everyone. My name is Kate Thompson and I would like you to call me Kate. I’m a PhD student 

at the University of Sydney, and the work that you do today will help me out with my PhD project. A 

PhD is a degree at university, that you do after you’ve done your first degree, and you do the one 

project for about three years. I did my first degree in environmental science. For my PhD, I want to 

find out how students your age learn about environmental systems. The first thing that I’m going to 

ask you to do is to fill in the background information questionnaire that’s in front of you. This asks 

information about you, and about your attitudes and thoughts toward science and the environment. 

This is because some other people think that there are relationships between attitudes towards the 

environment and how students learn about the environment. If I ask you these questions too, then 

analyse the results, I may be able to see if these people are right. Also, if there are any strange 

results that I get at the end, then I can look back at this information I asked you in the beginning 

and see if any of that explains the results.  

 

So, can you all fill out the background questions and then I’ll collect them and tell you about the 

next section. Please don’t talk to your friends about the answers, if you have any questions then put 

your hand up and I’ll come over and help. 

 

In order for me to see what differences there are in the ways that you all learn about environmental 

systems, I have to see how what you know or understand changes. So, I’m going to give you what’s 

called a pre-test and a post-test. The pre-test is a test given to you before you have a look at the 

materials, the post-test is the test given to you after you look at the materials. That way, I can not 

only compare you to each other (taking into account that information I asked you in the background 

questions) but also compare you to yourselves. This test will be exactly the same. So, rather than 

asking you to write the same things twice, I’m going to collect your pre-tests after you’ve 

completed them and photocopy them. When you do the post-test, I’ll give you this photocopy and 

you can make any changes to your earlier answers that you’d like to.  

 

So, now can you do the pre-test. Remember, please don’t talk to your friends about the answers. If 

you don’t know the answer to a question, please write that, or select “I do not know” as an option. 

That’s important as far as my study is concerned, because if you didn’t know something at the 

beginning, but you did after you look at the materials, then that’s important. 
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Now that you’ve done all the paperwork for now, you’re going to look at the materials. In order to 

investigate the different ways that you learn about environmental systems I’m going to give you 

different things to look at. We call these representations. All of you will get to read a text-based 

description of the environmental system I’ve chosen. Some of you will look at a system dynamics 

model, and some of you will look at an agent-based model, and some of you will look at both. You 

will half an hour to do this, and then I will give you the post-test again, and ask you to do two more 

things. 

 

Before then, I need to give you a few instructions. The system dynamics model looks like this:  

  

There are certain variables that can be manipulated. The time that the rubbish is collected and the 

percentage of rubbish that is collected. By changing these two variables and watching the graph 

here, you should be able to make conclusions about the system. You start the exercise on this 

screen  
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 with 

the text description, and you can navigate through the model using the buttons here.  

 

The agent-based model looks like this:  
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  You 

can change the same variables as in the system dynamics model, and you can view the same 

graphs. You can read the text description by clicking on the information tab. If you change a 

variable you need to press the setup button before you start the simulation. You can pause anytime 

by pressing the ‘go’ button, and you can manipulate the speed here. 

 

You all have paper to make notes on as you go. You will have half an hour to look at whatever 

model, text or combination of these that you have. Please only look at your own computer screen 

and if you have any questions just put your hand up and I will come and help. I’ll give you a warning 

when you have five minutes until the end. Ok, you can start. 

You have five minutes. 

 

Ok, time is up. The first thing that I’m going to ask you to do is this. This is just one double sided 

piece of paper. On the first side I want you to write down a description of what you think was 

happening in the national park. This is so I can figure out what you’ve learnt in your own words. So 

imagine you’re explaining to someone what the environmental system was all about, and write 

down that description on the front of this piece of paper. On the back is space for you to draw a 

concept map. This takes account of different students’ abilities to explain concepts. I’ll give you ten 

minutes to do this. 
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Thanks everyone, that’s been ten minutes. Now I’d like you to go through your pre-test again and 

make any changes to your answers from before you learnt about the system. Your answers may be 

exactly the same, if this is the case, just write “see above” or something like that in the box. If you’d 

like to make a small change then you can add something, or if you’d like to make a major change, 

there’s room to do that too. You have 10 minutes to go through. 

 

And now, the final thing I need to ask you to do. This is a very short evaluation questionnaire. This 

is for me to see what you thought of the whole experience. It shouldn’t take you very long at all. 

 

Ok. Thank you so much for coming today and helping me out with my study. Once I have some 

results, which will happen when I have done lots of sessions like this one, I will get in touch with 

your teacher and let them know where you can access the results online if you’re interested. 

 

Thanks again. 
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APPENDIX 12: TESTS FOR NORMALITY 

OF LEARNING OUTCOMES 
 Skewness Kurtosis Kolmogorov-Smirnova 

 zskewness zkurtosis Statistic Sig. 

Total scores     

EKpre -0.90 -0.17 0.18 .20* 

EKpost -0.17 0.52 0.23 .20* 

EKchange 2.61 3.09 0.29 .05 

SDKpre -0.28 -0.77 0.14 .20* 

SDKpost 0.08 -0.36 0.14 .20* 

SDKchange 1.34 0.74 0.23 .20* 

FAT 0.58 -0.79 0.20 .20* 

Key questions     

Q5pre 1.00 0.15 .21 .20* 

Q5post 0.29 -0.95 .19 .20* 

Q5change 0.86 -1.51 .39 .00 

Q6pre -0.82 -0.93 .25 .15 

Q6post -0.18 -1.02 .18 .20* 

Q6change 1.59 0.58 .28 .07 

Q7pre -1.05 -0.18 .21 .20* 

Q7post -1.36 1.29 .19 .20* 

Q7change 2.72 3.41 .29 .04 

Q8-15pre -0.11 -0.80 .16 .20* 

Q8-15post 0.55 0.39 .26 .11 

Q8-15change 0.81 -0.01 .22 .20* 

Q16pre 0.00 -0.81 .19 .20* 

Q16post -0.71 -0.78 .24 .20 

Q16change 2.59 2.16 .44 .00 
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 Skewness Kurtosis Kolmogorov-Smirnova 

 zskewness zkurtosis Statistic Sig. 

Describe 0.73 -1.51 .29 .04 

Issues 1.35 0.18 .32 .02 

HLT 1.85 2.27 .34 .01 

Note. EK = environmental knowledge score. SDK = system dynamics knowledge score. FAT = final 

assessment task score. Q5 = knowledge about introduced animal species. Q6 = knowledge about 

introduced plant species. Q7 = knowledge about human impacts on an ecosystem and associated 

timescales. Q8-15 = general system dynamics knowledge. Q16 = applied system dynamics 

knowledge. Describe = Describe section of the final assessment task. Issues = Issues section of the 

final assessment task. HLT = Higher Level Thinking section of the final assessment task. pre = pre-

test score. post = post-test score. change = change in the score between the pre-test and post-test. 

Bold typeface indicates data deviates from normal distribution 

adf = 8 

*p is at the lowest boundary 

.  
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APPENDIX 13: TESTS FOR NORMALITY 

OF USE OF THE MODELS 
 Skewness Kurtosis Kolmogorov-Smirnov 

 zskewness zkurtosis Statistic Sig. 

Screens     

ExpSDM -.06 -1.50 0.23 .20* 

ExpABM -1.43 -0.24 .25 .15 

Exp -1.09 -0.23 .19 .20* 

InfSDM 1.17 -0.13 0.20 .20* 

InfABM 2.53 2.47 .31 .02 

Inf 0.05 -1.52 .26 .13 

OTSDM 2.59 2.15 0.44 .00 

OTABM 3.12 3.76 .37 .00 

OT 2.19 1.83 .23 .20* 

ETM 2.99 3.75 0.32 .20* 

Activities     

‘go’SDM 0.53 -1.14 .21 .20* 

‘go’ABM -0.36 -1.49 .32 .02 

‘go’ 0.38 -0.92 .20 .20* 

IF     

SbS 0.54 -0.15 .26 .11 

Ideas 0.54 -0.15 .26 .11 

nprSDM 1.03 -0.02 .21 .20* 

nprABM 0.36 -1.49 .32 .02 

Npr 2.15 2.13 .25 .15 

prcsdm 0.95 -1.20 .30 .04 

prcABM 0.83 -1.14 .30 .04 

Prc 0.00 -0.81 .11 .20* 



Appendix 13: Tests for Normality of Use of the Models 

 

354 

 Skewness Kurtosis Kolmogorov-Smirnov 

 zskewness zkurtosis Statistic Sig. 

gctSDM 0.70 -0.53 .21 .20* 

gctABM 0.52 -0.83 .25 .16 

Gct 0.92 0.41 .20 .20* 

TASDM 0.37 -1.30 .21 .20* 

TAABM -0.29 -1.23 .19 .20* 

TA 0.01 -1.00 .19 .20* 

ABM 0.03 -1.49 .26 .12 

SDM -0.03 -1.49 .26 .12 

Note. . Exp = proportion of time spent on the experiment screen. Inf = proportion of time spent on 

the information screen. ETM = proportion of time spent on the explore the model screens. OT = 

proportion of time spent off task. Go = number of times the model was run. IF = number of times 

explore the model in full was selected. SbS = number of times explore the model step by step was 

selected. Ideas = number of times the ideas option was selected. Npr = frequency of changes to the 

number of pieces of rubbish. Prc = frequency of changes to the percentage of rubbish collected. Gct 

= frequency of changes to the garbage collection time. TA = total activity. ABM = proportion of 

time spent on the agent-based model. SDM = proportion of time spent on the system dynamics 

model. SDM = on the system dynamics model. ABM = on the agent-based model. Bold typeface 

indicates data deviates from normal distribution.  

adf = 8 

*p is at the lowest boundary 
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APPENDIX 14: ANSWERS TO THE FINAL ASSESSMENT TASK 
Q1. WHAT VARIABLES DID YOU ALTER? WHAT HAPPENED TO THE SYSTEM WHEN YOU ALTERED THE VARIABLES? 
Code and Group Response 

S020, SDM group, ILE get to experiment with the different times and work out the general curves. The dram matic differences between the curves when altering the 
number of pieces of rubbish per person. Provided graphs 

S027, ABM group, CLE I altered the percentage of rubbish collected to 100%. Instead of a little rubbish left over each time the rubbish collector was there, there was no 
rubbish. Overall amount of rubbish decreased, but the pattern (of the graph) of the amount of rubbish did not change. Provided graphs. 

S033, ABM group, ILE time when collecting garbage, amount of garbage per person. Sometimes there would be more nutrients added sometimes less. No graphs 
provided 

S037, SDM & ABM group, 

CLE 

The later the garbage collection time the more rubbish is accumulated. The less garbage collected, the more nutrients in the environment. The 
more rubbish per person, the more rubbish accumulated. Provided graphs 

S038, SDM & ABM group, 

CLE 

Altered "garbage collection time", "amount of garbage collected" and "rubbish per person". As the number of pieces of rubbish left behind 
increases, accumulated nutrients increases. The later the collection time and the more garbage that is collected, the less accumulated nutrients 
remain. No graphs provided 

S039, SDM & ABM group, 

CLE 

Garbage collection time - later it is, the less number of nutrients in the soil. Amount of garbage collected - the less collected, the more nutrients 
and more waste accumulated. Pieces of rubbish left per person - increase in number of overall rubbish  = more nutrients + waste. No graphs 
provided. 

S045, SDM group, CLE Garbage collection time (later) - less nutrients in soil, less waste. No graphs provided. 

S047, ABM group, CLE variables altered - garbage collection time, pieces of rubbish per person, percentage of rubbish collected. Additional nutrients increased while the 
accumulation of wastes generally decreased. Graphs provided. 

S048, SDM & ABM group, 

CLE 

When the garbage was collected at 7pm and at 5pm. It seemed similar but the amound of nutrients was more when the rubbish was collected at 
7pm. Graphs provided. 
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Code and Group Response 

S050, SDM group, ILE The garbage collection time - as it increased, the number of additional nutreints decrease the number of wastes left at the site increased (at the 
beginning) greatly but at the end of the day decreased. Number of pieces of rubbish per person - As it increased, the accumulation of nutreints in 
the environment also increased as well as the wastes left on site. When the 2 variable were both increased, both the nutrients in the environment 
and the wastes left on site were smaller than if just if the number of pieces of rubbish per person was increased. No graphs provided. 

S052, SDM group, ILE Altered the garbage collection time and rubbish per person. The best results for lower nutrient addition came when garbage collection time was 
7:30pm. No graphs provided. 

S053, Text group, CLE the time the garbage collector came, the percentages of the rubbish collected, pieces of rubbish per person. Graphs provided. 

S061, ABM group, CLE the time (from 5:00pm to 7:00pm) - people starting coming later (not as much waste at start). Rubbish per person (from 1 to 4) - rapid increase in 
wastes. % of rubbish collected (from 100% to 90%) - more nutrients into the environment. Graphs provided. 

S062, ABM group, CLE Garbage collecting time - people come later/earlier. Pieces of rubbish/person - more / less organic wastes. % of rubbish collected - less / more 
unit of nutrient added, more / less animals eating organic rubbish. Graphs provided. 

S067, ABM group, ILE Graphs provided 

S069, ABM group, ILE Garbage collection time, rubbish left per person, percentage of garbage collected. When less rubbish was collected, there was a sudden increase in 
nutrients in the environment. With so much rubbish, the system (rubbish bins) were almost always full. Graphs provided. 

S073, SDM & ABM group, 

CLE 

garbage - collection time. I gave less time for rubbish to accumulate. Pieces-of-rubbish-per-person (had more to collect). Percentage-of-rubbish-
collected (had less left over). Graphs provided. 

S076, SDM & ABM group, ILE (1) altering amount of garbage left behind. With just one piece, additional nutrients to the soil rises as in graph A. as rubbish pieces increased the 
constant part of the graph remained on the next park followed approx. same trend. Same for "waste left at site" (B). (2) altering time of garbage 
collection. as time became higher trend followed a decreasing version of trend described above. (3) altering the amount of rubbish collected. as 
the percentage collected increased the graphs followed the same trends followed in A and B except they decreased. Graphs provided. 

S077, Text group, CLE Rubbish collection time changed from 5pm to 7pm. As the sheet says, there is a steady increase in the departure of visitors between 5pm-7pm. At 
this time, (at the end of the day) more visitors are dropping off their rubbish than before 5pm. If the time is changed to 7pm, more rubbish is 
collected and consequently, less rubbish is left overnight to decompose (and add more nutrients in teh ecosystem) and less rats (introduced 
species) come to eat the decomposible rubbish. percentage of rubbish collected changed from 0.95 to 0.9. less rubbish would be collected than 
normal. more nutrients in ecosystem. more introduced species in the park. No graphs provided. 
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Code and Group Response 

S078, SDM & ABM group, ILE garbage time, amount of garbage collection. Graphs provided. 

S079, SDM group, CLE 1. Garbage collection time - later times - less additional nutrients and less waste left at site. 2. Amount of garbage collected. 3. More rubbish per 
person - increase in additional nutrients. No graphs provided. 

S080, SDM group, CLE garbage collection time, amount of garbage collected. Later times equals less nutrients in soil. This is because more rubbish was collected at later 
times. More rubbish equals more nutrients. No graphs provided. 

S081, SDM group, CLE garbage collecting time, amount of rubbsih collected, rubbish per person. The later the rubbish was collected, the more rubbish was left at site 
and more nutrients was in the soil. More rubbish per person icnrease when garbage collection does not change. Graphs provided. 

S082, SDM group, CLE the garbage collection time, additional nutrients in soil and the amoutn of garbage collected - waste left at site, and rubbish per person - waste 
left at site. Graphs provided. 

S083, SDM group, ILE Number of pieces of rubbish per person; the additional nutrients in the soil increased as more rubbish was left by each person. (after resetting) the 
time rubbish was collected; the later the rubbish was collected the lower the amount of additional nutrients. No graphs provided. 

S087, Text group, CLE Variable changed: time garbage collector comes, from 5pm changed to 7pm. This would result in more of the garbage removed, and less left 
behind to take an impact during the night until the next day. [the amount of garbage collected, 95% at 7pm, would be more than 95% at 5pm, as 
amount of people leaving at the end of the day and dropping of their rubbish increases.] Percentage of rubbish collected each time decreases from 
0.95 to 0.9, then amount of rubbish left behind would increase, having more impact on the ecosystem. No graphs provided. 

S091, ABM group, ILE Variables altered - time garbage collected, piece of rubbish collected per person, percentage of rubbish collected. Day 1 - the highest number of 
rubbish was 293. Day 2 - it dropped to 52 and went up to 112. Day 3 - dropped to 13 and went up to 134. Day 4 - dropped to 18 and went up to 
57. day 5 - dropped to 14 and went up to 54. day 6 - dropped to 10 and went up to 100. day 7 - dropped to 8 and went up to 29. no graphs 
provided. 

S098, SDM & ABM group, ILE I changed the time the garbage was collected to 7:00pm the percentage of rubbish collecte to 100% and the pieces of rubbish per person to one. 
The waste accumulating spiked the highest on day one and a lot lower on the other days. The additional nutrients in the environment graph stayed 
at zero till it rose slightly at the start of day five and stayed level. in the picture they was decomposing rubbish around the bin. No graphs 
provided. 

S099, SDM & ABM group, ILE I changed the garbage collection time to 7pm, the pieces of rubbish per person to 2 and made 0.95% of rubbish collected. On day one, we had the 
most pieces of rubbish and the highest number of rubbish was 293. Day 2 we had 92 pieces. Day 3 we had 134. day 4 was 46. Day 5 was 53. day 6 
was 85. and day 7 we had 35. no graphs provided. 

S101, SDM & ABM group, ILE Garbage collection time, rubbish per person, rubbish collection time. Rubbish that was not being collected increased. Feral animals and native 
animals came into the area. No graphs provided. 
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Code and Group Response 

S105, ABM group, ILE 5:00pm garbage collection time, 1 piece of rubbish per person, 90% rubish collected on day one the number of pieces off rubbish was the highest 
at 120.7 pieces of rubbish. On day 2 it went down to 110.7 pieces, by day 7 it had lowered up to only 13.6 pieces. Graphs provided. 

S106, Text group, ILE No graphs provided. 

S109, SDM group, ILE I altered how much rubbish per person and also the amount of garbage collected. No graphs provided. 

S110, SDM group, ILE as the number of rubbish left by the people that came to this National Park increased, the graph at the very start was at its highest but then later 
on in the day, the rubbish levels decrease. No graphs provided. 

S111, SDM group, ILE I altered the amount of garbagge collected, the collection time. The graph came up with colourful lines. No graphs provided. 

S113, Text group, ILE The amount of rubbish collected amount of people in the park, different days when the rubbish is collected, different times when the rubbish is 
collected, different amounts of organic and inorganic rubbish left behind, different foods eaten, amout of bbqs in use, rubbish eaten by animals. 
the system can change by the amount of rubbish collected and the time it was collected because the more poeple there are, the more rubbish is 
left behind, or is needed to be picked up by the garbage truck, and in turn, more animals that get attracted to the area, and the more amount of 
nutrience that is put into the ground which can effect the ecosystem because the animals can choke out the other species of native animals. No 
graph provided. 

S116, SDM group, ILE I altered the garbage collection time, and the amount of garbage collected as well as chanign the amount of rubbish left per person. I changed 
each of these variables twice and this showed me that when the garbage collection time was at 7:30pm, more rubbish was collected, and there 
were less additional nutrients found in the soil. also when the rubbish per person was a 4 there was a high amount of of waste left at the site. 
Graphs provided. 

S118, Text group, ILE I altered the time the rubbish was collected. By making the time the rubbish was collected later it means there would be less people in the park to 
place rubbish in the bins after it has been collected. Therefore more rubbish will be collected and less waste left in the park. if there is less waste 
then less animals will come and eat it. therefore elading to more rodents and introduced species. No graphs provided. 

S119, SDM group, ILE I altered the amount (from 1 to 2) of rubbish per person, the garbage collection time (from 18 to 20) and the amount of garbage collected (from 
0.9 to 1). The added nutrients in the soil increased, and so did the amount of waste left at the site, compared to the original settings. No graphs 
provided. 

S120, SDM & ABM group, ILE the amount of garbage collected, the collection time and the amount of rubbish per person. The grass started to change colour and the organic 
waste started to decompose. 
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Q2. WHAT ARE THE MANAGEMENT ISSUES THAT ARE INVOLVED IN LOOKING AFTER THIS AREA OF THE NATIONAL PARK? 
Code and Group Response 

S020, SDM group, ILE sustainability of the environment, waste management. 

S027, ABM group, CLE waste management. Trying to maintain a clean environment for the animals that inhabit the national park and keeping vegetation clean and 
healthy. Figuring out the best alternatives to keeping the amount of rubbish as low as possible is also important. 

S033, ABM group, ILE when to collect rubbish 

S037, SDM & ABM group, CLE rubbish collection, introduced species, bushfires, land management, management of biodiversity. 

S038, SDM & ABM group, CLE The amount of waste which is left behind by the visitors have to be managed. So the garbage collection time has to be organised. 

S039, SDM & ABM group, CLE cost, waste disposal, amount of visitors left by visitors and its impact on native species. 

S045, SDM group, CLE waste management, collection of waste 

S047, ABM group, CLE ensuring that visitors are not littering (thus impacting the whole of the environment negatively), thus waste management is vital. Air quality, 
land/water management should also be taken into account. 

S048, SDM & ABM group, CLE The waste produced by park users. People bringing in introduced species - rats - cats. Other issues relevant for Nparks - erosion - land 
management, salinity, water management - algal blooms. 

S050, SDM group, ILE the garbage collection time and managing the amount of wastes left behind by visitors. 

S052, SDM group, ILE managing the amount of rubbish per person or at least providing them with more bins to reduce littering; garbage collection - times, ways to 
increase amount of garbage collected so everything gets collected. 

S053, Text group, CLE cost of upkeep, transport of cleaning services, rubbish, burning wood 

S061, ABM group, CLE waste 

S062, ABM group, CLE making sure that people are aware of the disposing rubbish correctly by placing signs. Waste issues. 

S067, ABM group, ILE What time the garbage is collected, what percentage of the garbage is collected. Other issues - how much garbage is left behind per person, 
how many people visit, how much scavenging animals eat, how many scavenging animals there are. 
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Code and Group Response 

S069, ABM group, ILE When to collect garbage, how much to collect, starting and closing times of the park, how much garbage can be brought by each person, how 
many bins in the area. 

S073, SDM & ABM group, CLE -- 

S076, SDM & ABM group, ILE park opening and closing hours, situation of picnic sites, quality of rubbish collectors, frequency of rubbish collectors, installation of animal 
proof bins. 

S077, Text group, CLE Waste management (Rubbish collecting times, estimating the amount of rubbish to be collected.), management of introduced species, 
management of fire safety, management of visitors (their pets etc). 

S078, SDM & ABM group, ILE the garbage co-ordination, time collection, ammount. 

S079, SDM group, CLE the frequency and efficiency of rubbish collection. The regulations regarding littering. Determining areas open to the general public for 
picnicking etc. 

S080, SDM group, CLE waste management for visitors and the ecosystem. 

S081, SDM group, CLE time of garbage collection and number of people collecting the rubbish, therefore amount of rubbish collection. 

S082, SDM group, CLE the time rubbish is collected and amount of rubbish that is collected. 

S083, SDM group, ILE making sure the rubbish is collected; monitoring the number of people going in and out of the park (kind of like crowd control); making sure 
people abide by the rules so as to protect the animals. 

S087, Text group, CLE pollution due to rubbish left behind (waste management), firewood amount in park, introduced species control (pets). 

S091, ABM group, ILE garbage collector 

S098, SDM & ABM group, ILE the collection of rubbish, the amount of bins in the park. 

S099, SDM & ABM group, ILE garbage collection 

S101, SDM & ABM group, ILE inconsistent rubbish collection (not picking up enough rubbish) 

S105, ABM group, ILE garbage collecting. 

S106, Text group, ILE The management issues that are involved in looking after this area of the national park are the garbage collectors, emptying the bins. 
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Code and Group Response 

S109, SDM group, ILE keeping the national park clean and litter free, providing more rubbish bins. Everyone is to clean up after themselves. 

S110, SDM group, ILE keeping the national park clean and hygienic. The amount of rubbish should be decreased and their should be more bins. 

S111, SDM group, ILE controlling the amount of rubbish, keeping the park clean. 

S113, Text group, ILE The time that the garbage truck comes, the amount of bins placed around the area, keeping the amount of introduced species down. 

S116, SDM group, ILE What time the national park opens and what time it closes, when the garbage is collected, inhabitants of the park. 

S118, Text group, ILE time the rubbish is collected, time the park closes, type of things allowed into the park eg pets bikes, sporting equipment etc, the areas people 
are allowed in, what parts visitors allowed to drive through. 

S119, SDM group, ILE opening/closing times of the park, rubbish collectino times/ amounts, inhabitants of the park, park resources (e.g. water) 

S120, SDM & ABM group, ILE rubbish collection, controlling the amount of rubbish collected, keeping the park clean 

Q3. WHAT DECISIONS WOULD YOU MAKE IF YOU WERE THE MANAGER OF THIS PARK? 
Code and Group Response 

S020, SDM group, ILE more resources to keep the environment as stable as possible, more rubbish bins, easier access to the popular areas. 

S027, ABM group, CLE I would find out the best way to control the amount of rubbish in the park and to keep the amount of rubbish as low as possible. 

S033, ABM group, ILE to collect 100% of the rubbish, and collect it at 7:00pm or collect garbage more frequently. If this way followed it would reduce the amount of 
rats, but the amount of nutrients added to the environment is also reduced. 

S037, SDM & ABM group, CLE I would collect 95% of the rubbish at 6:00pm everyday. 

S038, SDM & ABM group, CLE Leave garbage collection till closing time. If garbage is collected beforehand, newly put rubbish will remain - accumulation for the next day. 

S039, SDM & ABM group, CLE do garbage collection earlier so that it will lead to more nutrients in the soil, but not too early so that the rubbish re accumulates before closing. 

S045, SDM group, CLE time that waste is collected. Amount of waste collected. 
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Code and Group Response 

S047, ABM group, CLE establish a fine system, where when a visitor litter, s/he is fired for it. Build more bins, collect rubbish more frequently. Develop brochures / 
signs about The impact of litter and pollution on our environment. 

S048, SDM & ABM group, CLE Try and educate park users about the issues. Collect all rubbish more often. 

S050, SDM group, ILE -- 

S052, SDM group, ILE make garbage collection at 7:30pm. Encourage people to take certain pieces of rubbish home. Make bins more efficient so rubbish doesn't 
spil/easier to take 100% of rubbish out. E.g. using rubbish bags or bigger bin. 

S053, Text group, CLE make policy - take own rubbish with you when you go home. Make garbage collector come at 7:30pm or later. Make garbage collector collect all  
inorganic materials 

S061, ABM group, CLE collect rubbish more often or build more bins to put the rubbish in. 

S062, ABM group, CLE make sure that garbage collections are more frequent. Providing more bins. Make sure garbage collectors collect 100% of the rubbish. Hire 
patrol officers to reinforce littering consequences. 

S067, ABM group, ILE have the garbage collected later so that more rubbish is collected because people often stay late, and have 100% of the garbage collected. Some 
still gets left behind so the nutrients from the decay of the organic matter are still gained. 

S069, ABM group, ILE more rubbish bins to encourage no littering policy, more percentage of rubbish collection. 

S073, SDM & ABM group, CLE -- 

S076, SDM & ABM group, ILE I would close the park earlier, allowing rubbish collectors to collect before nightfall and the arrival of animals. I would only hire very effective 
rubbish collectors. I would also situate picnic areas in large open areas where littering is easily spotted by rangers. 

S077, Text group, CLE change the collection time for the rubbish from 5pm to 7pm and make sure that the rubbish efficiency is higher. Make sure that visitors know of 
the rubbish rules and regulations in the park (e.g. scoop up dog droppings, no littering and no bushwalking off the track). 

S078, SDM & ABM group, ILE not collect all rubish every day - 95% late rubish collection. 

S079, SDM group, CLE 1. Employ the garbage collector to come at 7:30pm to decrease the amount of waste left at the site, hence the number of additional nutrients 
(also, ensure maximum efficiency). 2. Ask visitors to dispose of no more than 2 pieces of rubbish to keep nutrient/waste levels low. 

S080, SDM group, CLE I would try to let there be more nutrients absorbed in the soil. The garbage collection I would choose at 5:30pm and a percentage of 95% with 
the assumption of one rubbish per person. 
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Code and Group Response 

S081, SDM group, CLE when rubbish was collected, amount of workers, days rubbish can be collected more often. 

S082, SDM group, CLE to collect the rubbish more regularly and collecte more rubbish. I would also put fines for people caught littering. 

S083, SDM group, ILE Have organic and inorganic bins separately so that all the waste that cannot be decomposed is collected and decomposable waste can be 
'composted' so the park still gets the additional nutrients. Monitor that people are not taking too much fire wood, or walking in special habitats; 
as well as making sure people use the bins. 

S087, Text group, CLE apply limits for firewood collection, later rubbish collection times, owners to scoop up pet droppings, have on leash so they won't destroy the 
natural park environment. 

S091, ABM group, ILE more bins, more rubbish collectors. 

S098, SDM & ABM group, ILE to put some more bins in that have lids and to collect the rubbish at the cloestest time to the park closing. 

S099, SDM & ABM group, ILE have a recycling system, where all organic waste can be decomposed and put back into the park so as the vegetation can still get nutrients. 

S101, SDM & ABM group, ILE have a consistant timeing for rubbish collection. See that every day 3 times a day a rubbish collection run is completed. 

S105, ABM group, ILE more rubbish collecting, more bins. 

S106, Text group, ILE decisions that I would make if I were the manager of this park is to make different type of recycle bins. 

S109, SDM group, ILE if someone is seen littering they would be fined/prosecuted straight away. 

S110, SDM group, ILE add more bins and an actual seating and eating place for people to eat. 

S111, SDM group, ILE more rubbish bins, with dog poopy bags. Picnic tables with bins really close by. 

S113, Text group, ILE I would make the collection of rubbish two time a day, set up animal traps to kill of introduced species like rats, mice and feral cats, put in more 
bins. 

S116, SDM group, ILE open the park at 11am and close it before the rubbish was collected. So if the rubbish is collected at 6:00pm the park could close at 5:30pm. 

S118, Text group, ILE make rubbish collecting later so less rubbish is thrown away after the collector has arrived. Not allow animals into the park - or keep animals on 
leash at all times. Make people pay more so they are less wanting to come ina nd I get more money! 
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S119, SDM group, ILE arrange for 2 garbage collections per day 

S120, SDM & ABM group, ILE more rubbish bins, doggy poop bags, compost bins for organic waste, recycling bins etc. 

Q4. IF THIS DESCRIPTION OF THE NATIONAL PARK WAS MORE DETAILED, WHAT DO YOU THINK WOULD HAPPEN NEXT? WHAT 
ARE THE POSSIBLE PROBLEMS THAT COULD OCCUR FOR THE ENVIRONMENT? 
Code and Group Response 

S020, SDM group, ILE from added nutrients, there could be more introduced species of animals, more non-native species taking over the natures. 

S027, ABM group, CLE ran out of time 

S033, ABM group, ILE The animals will become more dependent on the food scrapes and the natural cycle of the ecosystem will be interrupted. 

S037, SDM & ABM group, CLE -- 

S038, SDM & ABM group, CLE An abundance of nutrients at the park. More rubbish is accumulated as not all the rubbish is collected every day. 

S039, SDM & ABM group, CLE more introduced species of animals (such as mice) are attracted by the food - competition with native animals. 

S045, SDM group, CLE birds, eat picnic food / food from bin, add waste, plants grow that are unaactive, e.g. "tomato tree" 

S047, ABM group, CLE there would be more additional nutrients and waste accumulation is still present. Some problems that may arise are pollution to plants + water, 
thus animals that depend on them may become ill, and flora growth may be shunted. 

S048, SDM & ABM group, CLE More rubbish would have built up and released more nutrients and attracted more introduced species. 

S050, SDM group, ILE -- 

S052, SDM group, ILE -- 
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S053, Text group, CLE the animals can eat something bad for them, eg wipes - chemicals in them, bad food (off). The animals will relocate to somewhere else due to 
excessive noise etc. The habitat (trees and grass etc) will suffer from wood burning etc. air pollution from burning. 

S061, ABM group, CLE I don't know 

S062, ABM group, CLE more Co2 - trees would be overworked. Global warming. Smelly national park because of rotting litter. 

S067, ABM group, ILE nutrients in the soil could cause plants to grow. Depending on how much of the garbage is collected, the garbage could accumulate unitl it 
becomes a big issue. 

S069, ABM group, ILE I think the park would become full of introduced species (eg rats) because of the amount of organic waste left. Possible problems = littering 
could affect tourism appeal, blockage of water supply = inhabited by introduced species. 

S073, SDM & ABM group, CLE -- 

S076, SDM & ABM group, ILE the steady rise in the amount of nutrients in the soil might mean that some forms of vegitation growing close to the picnic sites may become 
"too dominant"? The pieces of rubbish left at the site is not a particular worry as this seems to level out. 

S077, Text group, CLE -- 

S078, SDM & ABM group, ILE long term effects of feral animals and their impact on the native animals. The build up of rubish over time. 

S079, SDM group, CLE additional nutrients could be introduced into water/river systems through run off causing algal blooms and eutrophication. Remaining litter may 
be eaten by animals and cause them to get sick, depleting numbers. 

S080, SDM group, CLE there may be mre plant growth because of the amount of nutrients in the soil. We need to take into account the animals which might benefit 
from this added growth. 

S081, SDM group, CLE the amount of rubbish can impact on the environment by making soil containing more nutrients which will prmote growth, but more rubbish can 
harm natural habitats for animals in short term. 

S082, SDM group, CLE the habitats of plants and animals or numbers of certain species will decrease. 

S083, SDM group, ILE the "not collected and non-decomposable" waste will accumulate over time. Animals may be harmed if they eat some of the waste left around / 
in the bins. Excess of nutrients from the decomposing waste. 

S087, Text group, CLE I don’t understand the question. 
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S091, ABM group, ILE -- 

S098, SDM & ABM group, ILE the comming of non native animals to the park. 

S099, SDM & ABM group, ILE increased nutrients levels, animals feeding on litter leading them to become dependant on it as a source for food. 

S101, SDM & ABM group, ILE the environment could become more polluted. 

S105, ABM group, ILE -- 

S106, Text group, ILE -- 

S109, SDM group, ILE heavier pollution, animals dieing due to swallowing rubbish. 

S110, SDM group, ILE more and more litter would be produced which can spread unhygienic diseases to animals that feed there and for humans who go to eat there. 

S111, SDM group, ILE if there was a lot of litter, animals may come and die. 

S113, Text group, ILE there would be an over population of introduced species and native species would become more and more rare until they all DIE! 

S116, SDM group, ILE -- 

S118, Text group, ILE more rodents come and eat the rubbish - feral animals (cats) are attracted to the rodents and they eat them, causing an increase in feral cats. 
Possums and other natural animals are endangered 

S119, SDM group, ILE I don't know… what a weird question. 

S120, SDM & ABM group, ILE -- 
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Q5. IMAGINE YOU ARE THE MANAGER OF THIS NATIONAL PARK, AND YOU HAVE TO WRITE A REPORT FOR YOUR BOSS WHO 
HAS NEVER BEEN TO THE PARK BEFORE. DESCRIBE THE PARK, WHAT HAPPENS IN THE PARK, WHAT THE MAIN ISSUES ARE, AND 
THE CONSEQUENCES OF THE DIFFERENT MANAGEMENT OPTIONS. 
Code and Group Response 

S020, SDM group, ILE The state of the National Park I’m am currently in management of requires several lines of attention. 
The park is a popular spot for young families to enjoy picnics all year round. 
As you are probably already aware of the environmental issues that people can have on the environment. The amount of rubbish that are deposited in the 
bins are collected at 5pm everyday. I believe this still creates room for the other waste to seem into the environment through animals and therefore added 
nutrients to the environment. 

S027, ABM group, 

CLE 

ran out of time. 

S033, ABM group, ILE The park seems very popular among the public. Many people go there. The park is a favourite site for families to go picnicing. As a result a large amount 
of rubbish is accumulated each day. This causes rats, but the organic rubbish decomposes to form nutrients for the environment.  
Recently we have decided to collect 95% of rubbish in the garbage bins at 7:00pm each day. This way organic rubbish is allowed to accumulate to 
decompose in the nutrients. We decided to collect rubbish as 7:00pm because that is around closing time.  
The problem is, because we collect on 95% there are still some rats. 

S037, SDM & ABM 

group, CLE 

The park is a wonderful place and open to anyone who would like to visit. We get visiters from all around coming to simply enjoy their time outdoors with 
their friends and family. This means that we also get a lot of rubbish and litter throughout the day, most of which is conected, the rest left to decompose 
and return nutrients to the soil. There is a small dilemma however, as to when to collect the rubbish and how much exactly to collect. Collecting more 
would not allow for decomposition of organic substances, feeding nutrients to the soil. However, collecting less would increase the amount of inorganic 
materials in the environment which could be of harm to local animals and have serious consequences for the near end for future. 

S038, SDM & ABM 

group, CLE 

Most people came in at about noon. The place becomes crowded and the amount of waste left behind by the visitors begin to increase. Therefore the 
amount of waste left over at the end of the day increases. Right now 95% of garbage is collected however if it is possible to get to 100% it would be for 
more advantageous. 
When rodents come out at night and search through the bins, they take some non-organic waste out of it. These things are unable to decompose and the 
amount of rubbish will gradually increase. 
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Code and Group Response 

S039, SDM & ABM 

group, CLE 

Most people visit the park between 11am and 2pm to generally have a picnic and a walk to enjoy our unique landscapes. But there are also environmental 
impacts as well. Our visitors leave rubbish behind, which can attract foreign species of animals into our balanced ecosystem. The rubbish presently is 
collected at 5pm every day but by changing the times, we can change the impacts in the park. Collecting later in the day decreases the number of 
nutrients and decreases the number of waste left over. Collecting too early means the rubbish has the opportunity to reaccumulate thus leading to 
nocturnal introduced species being attracted. Earlier collection also leads to more nutrients in the soil, which can be a breeding ground for foreign 
vegetation. 

S045, SDM group, 

CLE 

Park is fairly small, it thrives on tourism 
Main issues are concerning waste disposal –  
o What time waste is collected, and 
o Amount of waste collected 
The issues affect the population of mice and rats (and consequently, feral cats) in the park. They also affect the types of plants that thrive, as organic 
waste contributes to the nutrients in the soil; some plants thrive on certain nutrients. 
Foreign plants may also be encouraged to grow, due to the organic waste. 
By increasing the amount of waste collected, there is less nutrients left for the soil 
By collecting waste at a later time, more waste is collected and less nutrients are left for the soil 
If both options are taken again, less nutrients, and better control of rodent population. 

S047, ABM group, 

CLE 

This National Park is at risk of certain issues, and the most serious of which is pollution not all visitors abide to the ‘No littering’ rule, and not all rubbish 
are placed in bins, but grasslands and in water areas. 
This effects the whole of the National Park environment – the atmosphere, hydrosphere, flora and fauna, and there natural features interact with each 
other, thus problems turn to plagues of problems as rubbishes in grasslands and lakes will decrease in quality (in terms of cleanliness). It will also affect 
the health and well being of the fauna that inhabit this national park, and extinction may result from the irresponsibility of humans. This also applies for 
the growth of plants. The decrease in air/water/land quality and health of flora/fauna means an imbalanced system, an unhealthy environment. 

S048, SDM & ABM 

group, CLE 

The park is coastal and used by many people. The park is used mostly for picnics. This means issues arise relating to litter and introduced species such as 
cats and rats. These issues can be managed by stopping people dropping litter, changing the time litter is collected and how much is collected. This can 
be a problem because of the cost involved. However if it is left unchanged rats are attracted which in turn attracts cats which hunt native animals. If a 
greater percentage litter is collected and people drop less rubbish, the amount of litter in the park is less. This means there are more nutrients. 
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S050, SDM group, ILE The park is currently in good condition and is open to the general public. However the general public have a tendency of littering and using inorganic 
products whilst in the park participating in activities such as picnics and bushwalking. The main issue of the park is the accumulation of litter and the 
inorganic products we have no problem with but the later the rubbish is collected, the less nutrients the part gets from the organic products but more of 
the wastes are being collected and keeping the park clean. 

S052, SDM group, ILE The park is currently open to the public to have picnics and used as an area for recreational activities such as walking the dog. The detrimental affect of 
these activities is the accumulation of rubbish that adds nutrients to the soil. At present a garbage collector collects the rubbish at 5pm, 2 hours before 
closing time. He usually picks up 90% of rubbish leaving approximately 10%. Though the amount of rubbish varies each day, rubbish is an unnatural 
substance that should be removed as much as possible to maintain a cleaner environment. 

S053, Text group, 

CLE 

Currently the Alison National park has been fairly productive, profit and economy-wise and has been very supportive of environmental improvement 
strategies. The park has bbq facilities, bathrooms, picnic area and regular garbage collecting. The main issues of concern is the impact of running this 
area on the earth environmental-wise and this is becoming evident through the data we have been keeping. So, an idea is proposed to limit this, by 
making sure no inorganic materials are left behind at the park, and this will hopefully stabalize the ecosystem’s food chain. However, currently only 90% 
of inorganic materials are being collected and this can have a gradual change in our environment. I also propose to change bbq maintaining methods by 
using electricity (rooted from methods besides burning) to maintain the bbq’s fuel source. This will hopefully change the environment positively by 
releasing no greenhouse gases. 

S061, ABM group, 

CLE 

I don't know 

S062, ABM group, 

CLE 

the national park when it is not visited by people having picnics, is a serene and green place. It is glowing with trees, a river, picnic area and plants. 

S067, ABM group, ILE The park is a national park with water elements and lots of tourist appeal. A lot of people visit the park at first, but this number decreases as it goes 
along. Garbage collection is the main issue. It is best for the garbage to be collected later and for 100% of it to be collected. If some garbage is left 
behind, however, the organic components will decompose, adding nutrients to the soil. 
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S069, ABM group, ILE The park is visited by approximately 100 people per day, it is a popular site for picnicking. 
At the park, visitors bring rubbish can be restricted by [?] (about 50% organic and 50% non-organic) and management chooses when to collect rubbish 
and how much to collect. 
Main issues = as above. 
Consequences = more rubbish = more introduced species, more nutrients in the environment, full bins most of time. 
Less rubbish = opposite 
Early collection time = more rubbish 
Late collection time = vice versa. 

S073, SDM & ABM 

group, CLE 

-- 

S076, SDM & ABM 

group, ILE 

National Park Report. 
This national park is one which receives many visitors who come here to picnic. 
Our main issues are the efficiency of the garbage collection, the severity of the littering and the time of garbage collection. 
In respone to these main issues it can be seen the park is most efficiently run if 100% of garbage is collected, littering is restrained as much as possible 
and collections are carried out as late as possible. 

S077, Text group, 

CLE 

The national park is complex system, further complicated by human activities, for example; picnicking of visitors in the national park. 
The arrival and departure of visitors to the park greatly affects the biotic and abiotic environments. As visitors arrive (around noon) they bring foreign 
articles (food, rubbish etc) into the park and as they depart (steadily between 1pm-5pm and peaking at 5pm-7pm), the deposit the rubbish into our 
rubbish bins. 
The current rubbish collection time is 5pm, just before the peak departure time. If the rubbish collection time was moved to 7pm and the rubbish 
collecting efficiency increased, the visitor impact on the park is lessened. For example; less food would be left in the bins overnight, meaning that less 
non-native animal species would be drawn to the park (e.g. rats, mice, feral cats), also less nutrients would be introduced to the environment. Less 
foreign plants would be introduced as seeds, etc are introduced into the park. 

S078, SDM & ABM 

group, ILE 

The park is by a lake and is often a popular spot with many people. The main impact of these people is litter. There are several ways of handling this and 
the key issues are how much rubbish they leave, the time it is collected and how much is collected. 
The time it’s collected effects the amount of nutrients that go into the soil. If it is collected well before the park shuts more rubbish goes into the bin 
before the day finishes and there is more nutrients available for decomposition. The amount of rubish left behind just increases or decreases the amount 
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of rubish within the system. 
S079, SDM group, 

CLE 

The park is quite popular with the general public as it has pleasant picnic facilities. The majority of visitors arrive at around lunch time and leave between 
5 and 7pm. Unfortunately, picnic activities introduce both organic and inorganic wastes to the park. If left to decay, the organic materials can introduce 
additional nutrients into the soil, leading to algal blooms and other such effects in local river systems. In order to minimise these harmful effects, it would 
be wise to employ a garbage collector at 7:30pm as this ensures the majority of rubbish left by visitors is collected, hence less rubbish is left to decay 
overnight and possibly be consumed by animals. Regulations to limit the amount of rubbish disposed of by each person will also decrease additional 
nutrient levels and the amount of remaining waste. 

S080, SDM group, 

CLE 

The park is filled with many trees, bushes, flowers and rocks. Also, there are a lot of wildlife which live in the park. There are usually picnics, bushwalks 
and various family occasions in the park. Main issues are to protect the environment from visitors. 

S081, SDM group, 

CLE 

Boss, 
As manager of this National Park I have been aware of the everyday happenings in and around the area. I have to inform you that this park has regular 
visitors with the amount of visitors peaking during the working week. The rubbish will accumulate, therefore I strongly urge you to hire more staff to 
accommodate the demand for rubbish collection. 
The rubbish does not affect the environment as ‘additional’ nutrients within the first few days of the week, but by the end of the week it is clear that extra 
nutrients are in the soil, making the soil very fertile. This will promote growth but too much growth will cause over abundance and imbalance in the park. 

S082, SDM group, 

CLE 

Littering. 
The national park attracts many tourists each day and with the tourists come rubbish. 
To keep the park’s ecosystem functioning as well as it possibly can we can choose what time to collect the rubbish and how much rubbish is collected. 
If we choose to collect the rubbish later the additional nutrients left in the soil increases and waste left at site increases however after 9:00pm the 
additional nutrients in the soil start decreasing. If the tourists leave more rubbish per person than rubbish collected then more waste is left on the site. 

S083, SDM group, ILE The National Park is often filled with people having picnics, on school tours, or bushwalking groups. This means there must be a steady limit of people 
permitted in so as to prevent major disruption to the parks ecosystems. One of the problems the park faces is the waste left on site. Waste is collected 
daily however not all of it is always removed. This means small amounts of waste are slowly accumulating. Another issue is the time the waste is 
collected. The later it is removed from the park, the more that is left over. The waste mentioned is a combination of organic and inorganic wastes so the 
decomposition of the waste as a whole is varied. 
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S087, Text group, 

CLE 

The national park is a popular, and often busy place, with many visits from the ppublic everyday of the year.  
Visitors for picnics mostly come during lunch time, and only a few arrive before 11:00am and after 2pm (although some still do). There is a steady 
number of these people leaving between 1pm and 3 pm, and then this increases between 5pm and 7pm. 
The park closes at 7:30pm. On certain days we have more visitors than others such as the weekend, however school holidays may not mean that more 
visitors are in the park. The main issues that we face in the park are waste management, firewood collection, and impact of introduced species on the 
natural/native environment (people who bring their pets). At the moment our garbage collector comes at 5pm to collect the rubbish, but with different 
timeslot that he can come at, say, at 7pm, this would mean more garbage collected and less impact on the environment. 

S091, ABM group, ILE   

S098, SDM & ABM 

group, ILE 

there needs to be more rubbish bins but the rest of the things in the park are fine their was only one animal that ate out of the bin and everything runs 
smoothly. 

S099, SDM & ABM 

group, ILE 

-- 

S101, SDM & ABM 

group, ILE 

-- 

S105, ABM group, ILE -- 

S106, Text group, ILE -- 

S109, SDM group, ILE This is the national park, this park is full of nature’s gifts: trees, plants, insects, birds. The greenery is beautiful, families enjoy coming here for picnics or 
just a day to relax. 
One of the main issue is people littering and not cleaning up after themselves. Some consequences of this include animals mistaking rubbish for food, 
and choking on the rubbish. 
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S110, SDM group, ILE The National park would consist of a lake, a place to hire boats, playground equipment, an arrange seating place and bbqs. 
The lake would be useful for people to fish or just enjoy the water. People can hire boats and either fish on the boat or just enjoy being and floating on 
water. The playground equipment would be good for the children and the arranged seating place would be for people who are going to eat there or have 
a bbq. The would also be grass so people could also decide to sit on the grass and eat. 
The main issue is the amount of rubbish. To fix it, I would place more clean bins that don[‘t smell or attract pests and insects. 

S111, SDM group, ILE -- 

S113, Text group, ILE -- 

S116, SDM group, ILE The garbage is collected at 7:00pm, becaues the park closes at 6:30pm, before that time there would still be a lot of garbage left which could create 
problems for the park. 

S118, Text group, ILE -- 

S119, SDM group, ILE The park is a fairly clean environment, but there are a afew issues within the environment, including; 
Visitors will normally have picnics, walk their pets, have barbeques etc. 
Inorganic rubbish accumulation – rubbish bins are collected once a day, but littering causes an issue. 
Altering the number of times rubbish is collected will result in less inorganic matter accumulating. 

S120, SDM & ABM 

group, ILE 

-- 
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