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Abstract 
Asthma is an inflammatory disease characterised by tissue remodelling. A prominent 

feature of this remodelling is an increase in the number and size of the blood vessels- 

formed from pre-existing capillaries – angiogenesis (Siddiqui et al., 2007; Wilson, 2003). 

This is triggered by many different endogenous angiogenic stimulators such as vascular 

endothelial growth factor (VEGF), and inhibited by endogenous angiogenic inhibitors 

such as tumstatin. Tumstatin is the non-collagenous domain (NC1) of the collagen IV α3 

chain which, when cleaved, inhibits endothelial cell proliferation and induces apoptosis. 

Experiments described in this thesis have for the first time demonstrated the absence of 

tumstatin in the airways of individuals with asthma and lymphangioleiomyomatosis 

(LAM) as well as the functional responses to tumstatin as an angiogenic inhibitor, both in 

vitro and in vivo, in the airway. 

Although tumstatin was absent from the airways of asthmatic and LAM individuals it 

was present in the airways of individuals with no airways disease, chronic obstructive 

pulmonary disease, bronchiectasis and cystic fibrosis. No significant difference was seen 

in the levels of the Goodpasture Binding Protein (GPBP), a phosphorylating protein 

responsible for the alternate folding of tumstatin, between asthmatic, LAM and 

individuals with no airways disease. The αvβ3 integrin, reported to be necessary for the 

activity of tumstatin, as well as the individual αv and β3 sub-units were shown to be 

equally expressed in the airways of all patient groups. Co-localisation of tumstatin, 

VEGF and the αvβ3 integrin was seen in the disease free airways, however, a different 
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pattern of VEGF and the αvβ3 integrin expression was observed in asthmatic and LAM 

airways with minimal co-localisation. 

Tumstatin was detected in serum and bronchoalveolar lavage fluid (BAL-f) samples from 

asthmatics and individuals with no airway disease, however there was no significant 

difference in the level of expression between the two groups.  It was demonstrated that 

the tumstatin detected in the serum and BAL-f samples from asthmatics and individuals 

with no airway disease was part of the whole collagen IV α3 chain and not in its free and 

potentially active form.  

The ability of recombinant tumstatin to inhibit tube formation and proliferation of 

primary pulmonary endothelial cells was demonstrated for the first time.  Further, the 

functional response of tumstatin was demonstrated in vivo in a mouse model of allergic 

airway disease. Tumstatin inhibited angiogenesis in the airway and decreased airway 

hyperresponsiveness. 

Whether there is potential for tumstatin, or a derivative thereof, to be of therapeutic value 

in airways diseases in which angiogenesis is a component should be the subject of future 

studies.  
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1.1 Chronic respiratory diseases 

Chronic respiratory disease was the third leading cause of death in the world 

in 2002, with 4 million deaths reported worldwide (Yach et al., 2004). 

Currently, 300 million people are suffering from asthma (Masoli et al., 2004) 

and approximately 80 million people have moderate to severe chronic 

obstructive pulmonary disease (COPD) (Lopez et al., 2006). Cystic fibrosis 

(CF) is the most common autosomal genetic disorder in the Caucasian 

population with an estimated frequency of 1: 3,400 live births (McColley et 

al., 2000). Lymphangioleiomyomatosis (LAM) and bronchiectasis are less 

common, but nevertheless are associated with considerable morbidity and 

mortality. Although the cause of most respiratory diseases is unknown, there 

are several contributing factors which may be environmental and/or genetic.   

 

1.1.1 Asthma 

Asthma is a chronic respiratory disease characterised by airway 

inflammation, airflow obstruction, bronchial hyperresponsiveness and airway 

remodelling. The global prevalence of asthma as well as morbidity and 

mortality rates have been increasing for the last 40 years (Braman, 2006). 

The main symptoms of asthma include cough, shortness of breath, tightness 

in the chest and wheezing. The most common triggers include viral 

respiratory infections, exercise, inhaled allergens (e.g. pollens, moulds, 

animal hair and dust mite), cigarette smoke, some foods and food 

preservatives and some occupations. Diagnosis of asthma requires a physical 
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examination, assessment of the reversibility of airway obstruction and the 

exclusion of an alternative diagnosis that mimics asthma. Asthma is 

associated with an increase in the rate of decline in forced expiratory volume 

in the first second (FEV1), however, the effect of asthma is variable and not 

all subjects have steep rates of decline (Bousquet et al., 2000). Symptoms of 

asthma are now effectively controlled in most patients with current therapy, 

which consists of inhaled corticosteroids, long acting or short acting β2 

agonists, anti-cholinergics and monoclonal anti-IgE therapy. However, 

although symptoms are well controlled, aspects of asthma pathology such as 

airway remodelling may not be prevented or reversed. 

 

1.1.2 Lymphangioleiomyomatosis (LAM) 

Lymphangioleiomyomatosis (LAM) is a rare lung disease of uncertain 

etiology which is almost exclusively confined to women. However, there 

have been three cases reported to date of men who have been diagnosed with 

LAM (Schiavina et al., 2007). It is progressive and often fatal. Pulmonary 

LAM can occur either independently or in association with tuberous sclerosis 

complex (TSC), a tumor-suppressor gene syndrome caused by mutations that 

inactivate either TSC1 or TSC2. Histologically LAM is characterised by 

proliferation of abnormal smooth muscle cells (LAM cells) in the lungs, 

lymph nodes and/or other organs. The architecture of the LAM lung is 

grossly altered, with loss of alveolar structure, thickening of interstitial 

connective tissue and the development of cystic spaces (Black et al., 2005; 

Merrilees et al., 2004). Clinical symptoms of LAM include shortness of 
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breath, chest pain, frequent cough with haemoptysis, fatigue, as well as 

recurrent spontaneous pneumothorax and progressive respiratory failure (El-

Hashemite et al., 2005). Diagnosis of LAM is often difficult, as this disease 

presents with similar symptoms to those of asthma, emphysema and 

bronchitis. Chest x-rays, high-resolution computed tomography (CT) scans, 

lung function testing as well as bronchial biopsies are often required in 

diagnosing LAM. Currently there are no known effective treatments for 

LAM, making lung transplantation the only possibility for survival.  

 

1.1.3 Chronic obstructive pulmonary disease (COPD) 

Chronic obstructive pulmonary disease (COPD) is a disease state 

characterised by airflow limitation that is not fully reversible. The airflow 

limitation is progressive and associated with an abnormal inflammatory 

response (increased inflammatory cell infiltrate) of the lungs to noxious 

particles or gases such as cigarette smoke and pollutants (Pauwels et al., 

2001). COPD is a major cause of morbidity and mortality across the world 

and its prevalence continues to increase. A population-based study (12 sites 

worldwide) which identified the prevalence of COPD in stages of severity 

(stage I- mild, II-moderate and III severe COPD) showed the overall 

prevalence of stage II COPD or higher was 10.1% and the risk of having 

stage II COPD or higher increased with age and smoking (Buist et al., 2007). 

Diagnosis of COPD, according to the global initiative for chronic obstructive 

disease (GOLD) standards, should be considered in any patient showing 

symptoms of cough, sputum production or dyspnea. Confirmation of 
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diagnosis is made by spirometry. The presence of a postbronchodilator 

FEV1<80% of the predicted value in combination with an FEV1/ forced vital 

capacity (FVC) ratio of <70% confirms the presence of airflow limitation that 

is not fully reversible. The aim of pharmacological treatment of COPD is to 

prevent or control symptoms as well as to decrease the frequency and 

severity of exacerbations. This treatment consists of short-acting 

bronchodilators and inhaled corticosteroids. However, the current therapeutic 

regimen does not modify the long term decline in lung function.  

 

1.1.4 Cystic fibrosis (CF) 

Cystic fibrosis (CF) is the most common life-shortening autosomal genetic 

disorder in western society. CF results from mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR). Pulmonary infection is the 

dominant clinical feature, however CF manifests as a multiorgan disease 

which involves the pancreas, salivary glands, genital tubes and liver 

canaliculi (Moraes et al., 2006). The genetic defect in this disease leads to a 

greater susceptibility to chronic bacterial infections of the lungs, with 

Pseudomonas species the most common cause. Diagnosis of CF is considered 

in patients who show manifestations of chronic pulmonary disease and 

exocrine pancreatic insufficiency. Confirmation of diagnosis is by a positive 

sweat test which reveals elevated chloride levels. Patients may also present 

with pancreatic sufficiency or other atypical clinical features sometimes in 

association with normal or borderline sweat test results. In such cases, 

detection of CF mutations and measurement of the transepithelial bioelectric 
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properties can be diagnostically useful (Ware, 2007). Mutation analysis can 

also be used for carrier and newborn screening, and prenatal diagnosis. 

Chronic macrolide therapy and inhaled corticosteroids are used as a form of 

treatment for patients with CF. It is important to note these treatments are 

only able to reduce the frequency of exacerbations and not necessarily 

improve lung function (Ware, 2007).  

 

1.1.5 Bronchiectasis  

Bronchiectasis is classified as an uncommon disease. Little is known about 

its prevalence worldwide and its health burden in Australia is unknown. 

However, bronchiectasis has the potential to cause devastating illness, 

including repeated infections requiring antibiotics, disabling productive 

cough, shortness of breath and occasional haemoptysis (Barker, 2002). The 

pathogenesis of bronchiectasis is not fully elucidated, however this disease is 

characterised by permanent abnormal dilation of the bronchi, as well as the 

destruction of the bronchial wall caused by continuous extracellular matrix 

(ECM) damage. Clinically, bronchiectasis is characterised by recurrent 

purulent sputum production (Lee et al., 2007; Zheng et al., 2002). 

Management of this disease is not simple. Therapy includes identification of 

acute exacerbations and administration of antibiotics to suppress microbial 

load, promotion of bronchial hygiene (removal of respiratory secretions), 

control of bronchial hemorrhage (surgical removal of areas subject to 

uncontrolled hemorrhage) and surgical removal of damaged segments or 

lobes that may be a nidus for infection or bleeding (Barker, 2002).    
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In this thesis the focus of experiments is asthma and LAM. Tissue obtained from 

patients with COPD, bronchiectasis and CF has been studied for the purpose of 

comparison, since these diseases share some, but not all of the features of asthma 

and LAM. 

 

1.2 Airway remodelling 

Airway remodelling is a hallmark feature of both asthma and LAM. Remodelling 

results from an ongoing response to stimuli such as inflammation, injury or 

mechanical stress in which an attempt is made to repair the lungs. This leads to 

permanent structural and functional changes. Remodelling can be defined as an 

alteration in the size, mass or number of tissue structural components that occur 

during growth or in response to injury or inflammation (Jeffery, 2001). The 

concept of remodelling suggests that a ‘modelling’ process, considered to be 

normal, must have preceded these events. ‘Modelling’ in the lungs starts from 

about 30 weeks of gestation, when alveoli begin to form. At birth, the number of 

alveoli is between 40-100 million. Up to 8 years of age, the alveoli continue to 

multiply to an adult number of 300 million. This process is thought of as normal 

‘modelling’. Wound healing and repair also falls under the category of normal 

‘modelling’, with formation of fluid exudate and oedema, cellular infiltration 

involving neutrophils, monocytes and lymphocytes, restitution of the epithelium 

and proliferation of blood vessels and fibroblasts constitute a normal response. 

Normal ‘modelling’ turns into abnormal ‘remodelling’ when that remodelling 

becomes chronic. Airway remodelling in asthma is characterised by thickening 

of the basement membrane, an increase in the mass of smooth muscle, ECM 
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deposition, an increase in the number of blood vessels, mucus gland hypertrophy 

and epithelial metaplasia (Chiappara et al., 2001; Locke et al., 2007). (Figure 

1.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.1: Section through a bronchus obtained from an asthmatic (right hand 

side) and a non-asthmatic (left hand side) patient age and sex matched. Sirius red 

was used to stain collagenous structures and picric green for all non-collagenous 

structures. Increased smooth muscle and thickened basement membrane are 

features of the remodelled airway. (Images at X200) 
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1.2.1 Increased airway smooth muscle (ASM) 

A review by James et al (James et al., 2000) confirms that all studies 

conducted to determine the amount of smooth muscle in asthmatic airways, 

irrespective of the method used, showed an increase in the amount of smooth 

muscle in asthmatic airways compared with those of non-asthmatic subjects. 

It is now well established that the increase in airway smooth muscle (ASM) 

in asthmatic airways is attributed to hyperplasia (increase in cell number) 

(Hirst et al., 2004; James et al., 2000; Panettieri, 2003; Yamauchi, 2006), 

although hypertrophy (increase in cell size) is also thought to contribute. A 

histological study by Ebina et al. examined the distribution of hypertrophic 

smooth muscle cells in the airway. They identified the most pronounced 

smooth muscle hypertrophy to be localised in the larger bronchi (Ebina et al., 

1993).  Hyperplasia is an increase in cell number, resulting from an increase 

in proliferation or decreased rates of apoptosis. Johnson et al. showed that 

ASM cells isolated from asthmatics proliferate in vitro at a greater rate than 

ASM cells from non-asthmatics (Johnson et al., 2001). They further proposed 

that the enhanced proliferation seen in asthmatic ASM cells may be mediated 

by the influence of the ECM released by the cells themselves (Johnson et al., 

2004). The mechanism of ASM proliferation has been investigated and a 

number of pathways have been implicated. Polypeptide growth factors that 

activate receptors were shown to induce smooth muscle cell proliferation 

through receptor tyrosine kinase and agonists that bind receptors linked to 

heterotrimeric guanosine triphosphate-binding proteins (Hirst et al., 2004; 

Trian et al., 2007). Airway narrowing is thought to be induced by smooth 
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muscle contraction. ASM hypertrophy and hyperplasia which occur in the 

remodelled airway increase muscle bulk and therefore contribute to airway 

narrowing and airway hyperresponsiveness (Yamauchi, 2006). 

 

1.2.2 Thickening of the basement membrane  

Thickening of the reticular basement membrane (RBM) is one of the first 

changes to occur in the remodelling process seen in asthma. It is a well 

established characteristic feature of asthma. The RBM is not present in the 

foetus but develops later in normal healthy individuals during infancy. 

Remodelling of the RBM occurs early in asthma. Jeffery examined biopsies 

taken from children with a persistent wheeze, who had been unresponsive to 

high doses of corticosteroids. There was a significant increase in the 

thickness of the RBM in asthmatic compared with non-asthmatic children 

(Jeffery, 2001). Niimi et al. measured the RBM from 81 asthmatic and 28 

non-asthmatic patients and concluded that airway wall thickening occurs in 

patients with asthma and is not limited to those with severe asthma (Niimi et 

al., 2000). However, a study by Chetta et al. showed that the degree of 

thickening of the RBM was positively correlated with asthma severity 

(Chetta et al., 1997). Several studies have shown thickening of the RBM to 

be due to collagen deposition and an increase in subepithelial myofibroblasts. 

An excess of interstitial collagens beneath the RBM has been demonstrated 

in asthmatic subjects, with collagen type III and V specifically elevated 

(Roche et al., 1989). A study by Brewster et al. showed a significant 

correlation between the depth of collagen deposition and the number of 
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myofibroblasts in the basement membrane (Brewster et al., 1990). The 

thickening of the RBM has clinical implications for asthmatic patients. It was 

concluded by Hoshino et al. that the thickening of the RBM was due to an 

increase in fibroblasts and an increase in subepithelial collagen, and this 

appeared to be linked to an increase in bronchial responsiveness and 

exacerbation of symptoms (Hoshino et al., 1998b). 

 

1.2.3 Altered extracellular matrix protein deposition 

The ECM in the airway acts as a mechanical support to surrounding tissues. 

The ECM plays an important role in the maintenance of airway structure and 

has the ability to influence different cellular functions. Overproduction of 

matrix molecules is a major contributor to the permanent loss of normal 

tissue structure and function. Alteration in airway ECM protein deposition 

has been reported in asthma and is one of the prominent features of 

remodelling. Histological studies of the ECM in asthmatic airways have 

shown an increase in collagen I, III and V as well as fibronectin, tenascin, 

versican and laminin (Laitinen et al., 1997; Laitinen et al., 1996; Roche et 

al., 1989). In contrast, Bousquet et al. described an abnormal superficial 

elastic fibre network in the asthmatic airways. They reported not only a 

decrease in elastin, but also an abnormal elastolytic process (Bousquet et al., 

1996). In addition, the levels of collagen IV were decreased in asthmatic 

airways compared to non-asthmatics (Bousquet et al., 1992). The 

significance of the altered ECM and its role in the pathogenesis of asthma is 

not well understood. Three dimensional models of the bronchial wall are 
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being studied to examine the importance of mechanical strain on ECM 

remodelling and the potential consequences in the airway (Choe et al., 2006). 

 

1.2.4 Increased angiogenesis 

Angiogenesis is the growth of new capillary blood vessels from pre-existing 

vasculature. It is a vital process required for embryogenesis, growth, tissue 

repair after injury, and a normal function in the female reproductive cycle. 

Bronchial vasculature is essential for maintaining homeostasis, which 

includes the provision of oxygen and nutrients, temperature regulation and 

humidification of inspired air, as well as providing the primary portal for the 

immune response to inspired organisms and antigens (Wilson et al., 2002). 

Under physiological conditions, angiogenesis is regulated by a balance of 

pro- and anti-angiogenic factors within the vascular microenvironment 

(Puxeddu et al., 2005).  

Vascularity is an important component of the remodelling process in airway 

disease and increased vascularity, angiogenesis, is likely to occur in response 

to chronic inflammation. Increased angiogenesis in the airways of asthmatics 

is well reported (Hashimoto et al., 2005; Li et al., 1997) and is now 

considered to be one of the major components of airway remodelling in 

asthma. In healthy individuals, up to 10% of a bronchial biopsy section may 

be covered with vessels and therefore there are over 500 vessels/mm2, 

whereas, in an asthmatic biopsy, up to 17% of the area is vascular with over 

700vessels/ mm2 (Li et al., 1997). Wilson et al. suggested that the angiogenic 

process in asthma could be due to recurrent inflammatory episodes, or a 
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response to the two- to threefold increase in tissue volume that occurs due to 

remodelling (Wilson et al., 1999). Blood vessel size has also been shown to 

be larger in the asthmatic airway (Kuwano et al., 1993; Li et al., 1997). 

Cross-sectional measurements of blood vessels showed over 19% of blood 

vessels in the asthmatic airway to have an area greater than 300µm2, 

compared to 12% in non-asthmatic airways (Li et al., 1997). Increased 

angiogenesis is also reported to be a pathological feature of remodelling in 

COPD, CF and bronchiectasis (Jeffery, 1998; McColley et al., 2000; Shi et 

al., 2007). 

 

1.3 Angiogenesis   

When endothelial cells attach to the basement membrane of an intact 

capillary, which is composed of collagen IV, laminin, heparin sulphate 

proteoglycans, perlecan, collagen XVIII and other molecules, they receive 

signals that promote cell-cell adhesion and inhibit proliferation. At the onset 

of angiogenesis, enzymes such as matrix metalloproteinases (MMPs), which 

are produced by smooth muscle cells, endothelial cells or immune cells 

recruited to the site of inflammation, disassemble the highly cross-linked 

basement membrane and release pro-angiogenic growth factors. The 

degradation of the basement membrane enables the endothelial cells to 

migrate and proliferate and exposes different domains on the ECM proteins 

that would not normally be available for interaction with the endothelial cells 

(Carmeliet, 2004) (figure 1.2). Within a given microenvironment, the 
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angiogenic response is determined by a net balance between pro- and anti-

angiogenic regulators  
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Figure 1.2: Vascular progenitors 

in the embryo and adult. In the 

embryo, endothelial, smooth 

muscle and common vascular 

progenitors contribute to vascular 

development. Smooth muscle 

cells have different origins, as 

indicated. The effect of VEGF 

and platelet-derived growth factor 

BB (PDGF-BB) on these 

progenitors is indicated. Figure 

has been adapted from Carmeliet 

(2004). 
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released from activated endothelial cells, monocytes, smooth muscle cells 

and platelets. 

 

1.3.1 Angiogenic promoters 

Angiogenic promoters are responsible for triggering and sustaining 

angiogenesis. The list of pro-angiogenic cytokines and growth factors is 

extensive and these factors are secreted by inflammatory cells (mast cells and 

macrophages), pericytes, keratinocytes (during epidermal wound healing), 

tumor cells, smooth muscle and fibroblasts. Table 1.1 lists some of the 

known angiogenic promoters and their role in angiogenesis (D'Andrea et al., 

2006; Rundhaug, 2005).  

 

Several angiogenic promoters have been reported to be increased in asthma, 

including vascular endothelial growth factor (VEGF), transforming growth 

factor β (TGFβ), Tumor necrosis factor α (TNFα) and Basic fibroblast growth 

factor (bFGF) (D'Amore, 1992). 
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Table 1.1: List of angiogenic promoters and their role in angiogenesis 

 

 

Angiogenic promoters Role in angiogenesis 

Vascular endothelial growth factor 

(D'Amore, 1992). 

 

Induces proliferation, migration 

and tube formation of endothelial 

cells 

Transforming growth factor β  

(D'Amore, 1992). 

Up-regulation of VEGF and 

proteinases 

Tumor necrosis factor α  

(D'Amore, 1992). 

Stimulates migration of endothelial 

cells 

Basic fibroblast growth factor 

(D'Andrea et al., 2006). 

Induces endothelial cell replication, 

migration and extracellular 

proteolysis 

Angiopoietin I and II 

(Rundhaug, 2005) 

Stimulates vessel and endothelial 

cell growth and capillary tube 

formation 

Stimulates the growth of immature 

tumour vessels  

Platelet-derived growth factor  

(Rundhaug, 2005) 

Stabilisation of nascent blood 

vessels via coverage with smooth 

muscle  
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1.3.1.1 Vascular endothelial growth factor  

Vascular endothelial growth factor (VEGF) induces proliferation, migration 

and tube formation of endothelial cells. It is a homodimeric protein belonging 

to the cystine knot growth factor family. The VEGF gene is expressed as four 

different isoforms, VEGF121, VEGF189, VEGF206 and VEGF165 of which 

VEGF165 is the most abundant and most intensely studied. VEGF165 is a 

soluble protein although approximately half of the secreted amount remains 

bound to the cell surface heparin sulphate proteoglycan and the ECM 

(D'Andrea et al., 2006). The effects of VEGF on endothelial cells are 

mediated through signals generated by binding to receptor tyrosine kinases 

(RTKs). Several RTKs for VEGF have been identified, vascular endothelial 

growth receptor (VEGFR)-1, VEGFR-2 and VEGFR-3. VEGFR-1 and 

VEGFR-2 are mostly expressed on endothelial cells, VEGFR-2 is associated 

with integrin-dependent endothelial cell migration because it forms a 

complex with integrin αvβ3 (D'Andrea et al., 2006; Puxeddu et al., 2005). 

VEGFR-1 and VEGFR-2 are the two main receptors for VEGF-signalling in 

human airways (Yancopoulos et al., 2000). 

VEGF plays a role in vascular remodelling (Lee et al., 2004). It is produced 

by ASM cells, and TGFβ, TNFα and interleukin-1 β (IL-1β), all of which are 

increased in asthma, have been shown to increase VEGF expression (Burgess 

et al., 2006; Kazi et al., 2004; Knox et al., 2001). Feltis et al. reported an 

increase in VEGF concentration in bronchoalveolar lavage fluid (BAL-f) in 

asthmatics (Feltis et al., 2006). In addition, increased VEGF levels were also 

reported in induced sputum of asthmatics (Kanazawa et al., 2004; Lee et al., 
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2001).  Bronchial biopsies from asthmatic subjects express higher levels of 

VEGF, VEGF mRNA and VEGF receptors (Hoshino et al., 2001a). The 

increased vessel numbers seen in asthmatic airways are associated with 

increased VEGF expression. Chetta et al. demonstrated an association 

between increased numbers of VEGF positive cells and a thickened basement 

membrane in bronchial biopsies from asthmatic patients (Chetta et al., 2005).  

What is the significance of VEGF expression in the airways of asthmatics? It 

has been suggested that VEGF may contribute to airway remodelling by 

altering the ECM composition (Chetta et al., 2005). Knox et al. proposed two 

theories regarding the significance of the increase in VEGF; increased airway 

wall thickness would cause enhanced airway narrowing on stimulation, 

thereby contributing to airway hyperresponsiveness; increased bronchial 

vasculature could also increase airway hyperresponsiveness by supporting the 

increased airway smooth muscle mass which is the hallmark feature of 

asthma (Knox et al., 2005). 
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1.4 Angiogenic inhibitors 

Endogenous angiogenic inhibitors are naturally present in body fluids and 

tissue. They are potentially able to offer a counterbalance to angiogenic 

promoters (Sund et al., 2005). Anti-angiogenic factors work through many 

different mechanisms. Angiogenic inhibitors have been reported to 

antagonise angiogenic activity induced by growth factors or inhibit the 

proteolytic activity of angiogenic proteinases, endothelial cell proliferation, 

migration or microtube formation (Grant et al., 2005). Endogenous inhibitors 

of angiogenesis include various peptides, hormone metabolites and apoptosis 

modulators, many of which are fragments of naturally occurring ECM and 

BM proteins (Grant et al., 2005; Nyberg et al., 2005). A list of some of the 

known endogenous inhibitors of angiogenesis, both matrix derived and non-

matrix derived are described in table 1.2. 
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Table 1.2: List of identified matrix derived and non-matrix derived 

angiogenic inhibitors (Nyberg et al., 2005) 

Matrix Derived  Non-Matrix Derived 

Arresten  Interferons  

Canstatin  Interleukins  

Endostatin  Platelet factor – 4  

Fibronectin fragments 

 

Angiostatin  

Fibulin  Chondromodulin  

Thrombospondin -1 and -2 

 

TIMPs  

Tumstatin  Troponin -1  

 Vasostatin  

 Prolactin fragments  

 Prothrombin Kringle -2  

 

 

As described in section 1.2.3, the composition and deposition of the ECM is 

altered in asthma, with collagen being one of the altered proteins. Collagen 

derived angiogenic inhibitors have been identified as having a crucial role in 

the inhibition of angiogenesis (Sund et al., 2004) (see table 1.3). 
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Table 1.3: Collagen derived angiogenic inhibitors   

 

Collagen Derived 

Angiogenic Inhibitor 

Collagen 

Type 

Mechanism of Action 

Endostatin 

(Folkman, 2004b) 

Collagen XVIII Inhibits endothelial cell 

migration, proliferation. 

Induces endothelial cell 

apoptosis. Causes G1 arrest 

of endothelial cells 

Restin 

(Sund et al., 2004) 

Collagen XV Inhibits endothelial cell 

migration 

Canstatin 

(Sund et al., 2004) 

Collagen IV α2 

chain 

Inhibits endothelial cell 

migration, proliferation. 

Induces endothelial cell 

apoptosis 

Arresten 

(Sund et al., 2004) 

Collagen IV α1 

chain 

Inhibits endothelial cell 

proliferation, migration, 

tube formation and 

neovascularisation 

Tumstatin 

(Maeshima et al., 

2000) 

Collagen IV α3 

chain 

Induces apoptosis of 

proliferating endothelial 

cells 

 



 

  36

1.4.1 Endostatin 

Endostatin, an internal fragment of the matrix protein collagen XVIII, was 

the first endogenous angiogenesis inhibitor described. Folkman and 

colleagues originally described it in 1997 (Folkman, 2004b) as a 20-kDa 

fragment from the carboxyl-terminal non-collagenous domain 1 (NC1) of 

collagen XVIII. Enzymes, such as pancreatic elastase-like enzyme, 

cathepsins and MMPs cleave endostatin from collagen XVIII (Grant et al., 

2005). This cleavage is necessary for endostatin to be active. 

The anti-angiogenic activity of endostatin works via inhibition of endothelial 

cell proliferation and migration, inducing apoptosis of proliferating 

endothelial cells and causing G1 arrest (Folkman, 2004a). Endostatin has 

been well characterised to inhibit tumour growth and metastasis (O'Reilly et 

al., 1997) however it does not influence pre-existing vessels, but prevents 

revascularisation and can prevent vessel growth during wound healing 

(Boehm et al., 1999).  

One of the mechanisms of action which has been reported for endostatin is 

the interaction between endostatin and VEGF signalling. Endostatin prevents 

migration and angiogenesis via inhibition of VEGF-induced endothelial nitric 

oxide synthase (eNOS) phosphorylation (Kim et al., 2002; Urbich et al., 

2002).  Schmidt et al. demonstrated that the key signalling events for 

endostatin-induced morphogenesis are activation of protein phosphatase 2A 

(PP2A) and subsequent dephosphorylation of extracellular signal-regulated 

kinase 1/2 (ERK1/2), resulting in the retraction of newly formed vessels 

(Schmidt et al., 2006). 
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1.4.1.1 Endostatin in asthma 

To date, endostatin is the only angiogenic inhibitor that has been studied in 

asthma. Although there have been no studies examining asthmatic lung 

tissue, levels of endostatin were measured in asthmatic sputum. Asai et al. 

showed levels of VEGF and endostatin to be significantly increased in 

asthmatic compared to non-asthmatic sputum. They also showed that there 

was an imbalance in the VEGF/endostatin ratio in asthmatics compared to 

non-asthmatics and that the increase reflected in the asthmatic sputum was 

due to an increase in the levels of VEGF and not an increase in endostatin 

(Asai et al., 2002). Suzaki et al. reported that administration of endostatin/Fc 

to ovalbumin sensitised mice inhibited airway hyperresponsiveness, 

pulmonary allergic inflammation, production of ovalbumin-specific IgE and 

markers of lung inflammation. These investigators examined the expression 

of CD31 (an endothelial cell marker) mRNA expression and found it was 

reduced in the endostatin treated mice. Other markers of angiogenesis were 

not examined in this study (Suzaki et al., 2005). 
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1.4.2 Collagen IV 

Asthmatic airways express lower levels of collagen IV compared to normal 

airways (Bousquet et al., 1992). The reduction in collagen IV may have 

profound effects on angiogenesis as three different angiogenic inhibitors have 

been identified within the collagen IV molecule. 

Collagen IV is one of the major components of all basement membranes, and 

is found in the kidney, testis, oesophagus and the lung. It is crucial for the 

stability and assembly of the basement membrane (Timpl et al., 1981). Type 

IV collagen is crucial in endothelial cell proliferation (Madri, 1997) as well 

as the regulation of cell adhesion and migration (Netzer et al., 1998).  

Six different collagen IV α chains, α1-α6, encoded for by three sets of genes 

form collagen IV heterotrimers (Hostikka et al., 1990; Kalluri, 2003; 

Maeshima et al., 2001a; Zhou et al., 1994). Each α chain is composed of 

three domains, a cysteine-rich N-terminal 7S domain, a central triple-helical 

domain and a globular C-terminal NC1 domain. The NC1 domain is involved 

in the initiation and assembly of the α-chain heterotrimers (Soder et al., 

2004) and the 7S domain is involved in the covalent assembly of four 

heterotrimers in a web-shaped structure (Boutaud et al., 2000). Out of 56 

possible combinations of assembly, collagen IV α chains only assemble into 

3 specific trimeric molecules; α1:α1:α2; α3:α4:α5 and α5:α5:α6 (Khoshnoodi 

et al., 2006).  Distribution of the six α chains is variable in that α1 and α2 are 

ubiquitous to all basement membranes, whereas there is a temporal and 

spatial regulation of α3-α6 expression in physiological processes (Sund et al., 

2004). The collagen IV α3 chain has been shown to be abundant in the lung, 
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kidneys and testis (Zeisberg et al., 2001). The α5 chain is mainly expressed 

in the kidneys and the α6 chain in the oesophagus and lung (Ries et al., 

1995).  

Normal assembly of type IV collagen is essential for basement membrane 

function. This is highlighted in diseases such as Alports syndrome, a 

hereditary progressive renal disorder caused by mutations in the type IV 

collagen α3, α4 or α5- chain gene (Heidet et al., 2001). Patients with Alports 

syndrome present with sensorineural hearing loss and less commonly with 

ocular defects such as lenticonus and macular flecks. Pathologically, the 

glomerular basement membrane displays a characteristic ultrastructural 

alteration consisting of diffuse thickening with splitting of the lamina densa 

into multiple interwoven strands (Sasaki et al., 1998). These pathological 

changes are a consequence of the α3 and α5 chain mutations (Wei et al., 

2006). Although levels of collagen IV are reported to be decreased in 

asthmatic lung (Bousquet et al., 1992), it is unknown as to which α chain or 

chains of collagen IV is decreased. 

Proteolytic cleavage of the α-chains of collagen IV leads to the release of the 

NC1 domains. Anti-angiogenic activity has been reported for the α1, α2 and 

α3 chain NC1 domains of type IV collagen. Arrestin, the NC1 domain of the 

collagen IV α1 chain, was originally isolated from human placental basement 

membrane (Colorado et al., 2000). It has been shown to inhibit the 

proliferation of bFGF stimulated human endothelial cells and inhibit 

neovascularisation (Colorado et al., 2000). Canstatin, the NC1 domain of the 

collagen IV α2 chain, was shown to inhibit the proliferation of foetal calf 
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serum-stimulated human endothelial cells and induce apoptosis in these cells 

(Kamphaus et al., 2000). Tumstatin, the NC1 domain of the collagen IV α3 

chain, has received the most interest in the collagen IV group, which has led 

to its characterisation.  

 

1.4.3 Tumstatin 

Tumstatin was identified as the bioactive NC1 domain of the collagen IV α3 

chain (Maeshima et al., 2000). It is a 28kDa, 245 amino acid molecule which 

is liberated from the basement membrane of the lung, kidney and testis. 

Circulating physiological levels of tumstatin in the blood have been shown to 

be between 300-350ng/ml and absence of normal physiological levels of 

circulating tumstatin facilitates pathological angiogenesis and increased 

tumour growth (Hamano et al., 2003; Sund et al., 2005).  

Tumstatin is active as an angiogenic inhibitor when it is cleaved from the 

whole collagen IV α3 chain. Hamano et al. found that active MMP-9 was 

most effective in liberating the NC1 domain from the remaining α3 chain, 

however MMP-2, 3 and 13 were also able to release tumstatin but were 

significantly less efficient (Hamano et al., 2003).  

Recombinant human tumstatin inhibits the proliferation of human, bovine 

and mouse endothelial cells, suppresses tumour growth of renal cells and 

prostate carcinoma cells in xenograft mouse models. It also causes G1 arrest 

of VEGF- and bFGF-stimulated endothelial cells and induces apoptosis of 

proliferating endothelial cells (Maeshima et al., 2000; Maeshima et al., 

2001a; Maeshima et al., 2001b).  
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Using tumstatin knock-out mice, Hamano et al. showed that tumstatin is not 

involved in normal embryogenesis, development and wound healing. 

Tumstatin knock-out mice showed no alterations in litter size or 

development. Closure and repair in skin wounds of these mice progressed at 

the same rate as the wild-type mice, and the regeneration of liver after partial 

hepatectomy was the same as in the wild-type mice. Tumstatin knock-out 

mice developed renal failure and died at around 40 weeks (Hamano et al., 

2003). The effect of this knock-out on the lungs was not examined. 

Using deletion mutagenesis, Maeshima et al. showed tumstatin’s anti-

angiogenic activity to be localised to amino acids 54-132 (tum5), however 

tum5 was only able to inhibit proliferation of endothelial cells and it had no 

effect on proliferating tumor cells. This region was further defined using 

overlapping synthetic peptides. From these studies, T3 peptide (69-88 amino 

acids) and T7 peptide (74-98 amino acids) were identified as having the 

sequences which possess anti-angiogenic activity. T3 and T7 peptides were 

shown to inhibit proliferation and induce apoptosis in bovine pulmonary 

arterial endothelial cells, human umbilical vein endothelial cells (HUVECs) 

and human prostate adenocarcinoma cell lines (Maeshima et al., 2001b). 

 

The collagen IV α3 chain is associated with a complex folding process which 

results in multiple heterotrimer conformers. The non-assembled conformers 

are structures which require specific activation by phosphorylation to enable 

their assembly into a triple helical molecule. The molecular organisation of 

the collagen IV molecule is determined by the NC1 domain. The good 
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pasture antigen-binding protein (GPBP) is a non-conventional 

Serine/Threonine kinase that targets the NC1 domain of the collagen IV α3 

chain and phosphorylates it (Raya et al., 2000). GPBP exists as two isoforms 

generated by alternative splicing, GPBP and GPBPΔ26. Both are preferably 

expressed in skeletal muscle and poorly expressed in the placenta, lung and 

liver (Raya et al., 2000). GPBP is associated with the glomerular basement 

membrane (GBM) collagen organisation. GPBP has been shown to be more 

efficient in phosphorylating collagen IV α3 NC1 than GPBPΔ26 and to have 

a higher binding affinity to the α3 chain. In kidney and pancreas cancer cell 

lines GPBP expression is lower than GPBPΔ26 (Granero et al., 2005; Raya et 

al., 2000), but its expression is higher in apoptotic cell bodies suggesting that 

GPBP is involved in signalling pathways induced during programmed cell 

death.  

 

Goodpastures disease is an autoimmune disease characterised by the 

formation of autoantibodies against the heterotrimeric basement membrane 

type IV collagen, affecting the kidneys and lungs. The pathogenic antibody 

response is directed to the NC1 domain of the α3 chain of collagen IV. 

Increased expression of GPBP is linked to the induction of the pro-

autoimmune inflammatory response and the disorganisation of collagen IV in 

the GBM (Granero et al., 2005), suggesting that the GPBP plays a role in the 

GBM collagen organisation. The levels of the GPBP in the airways of 

asthmatic individuals have not been previously investigated. 
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The mechanism of action of tumstatin is through its interaction with αvβ3-

integrin on endothelial cells, an interaction that is pivotal for its angiogenic 

activity. In β3-integrin deficient mice tumstatin is unable to suppress 

neovascularisation of matrigel plugs, emphasising the importance of this 

interaction (Hynes, 2002). The binding of tumstatin to the αvβ3-integrin on 

endothelial cells prevents VEGF from binding to the endothelial cells thus 

reducing the survival rate and increasing the rate of apoptosis in the 

endothelial cells (Hutchings et al., 2003). Through its interaction with αvβ3-

integrin, tumstatin inhibits activation of focal adhesion kinase (FAK), 

phosphatidylinositol (PI)-3 kinase, protein kinase B (Akt) and mammalian 

target of rapamycin (mTOR) and prevents the dissociation of the eukaryotic 

translation initiation factor 4E/ eukaryotic initiation factor 4E-binding protein 

1 (eIF4E/4E-BP1) complex, resulting in the inhibition of cap-dependent 

protein translation in endothelial cells (Yamamoto et al., 2004). 
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1.5 Aims 

Asthma and LAM are characterised by airway remodelling. Angiogenesis is a 

major feature of this remodelling in asthma but has not been described in 

LAM to date. Angiogenic promoters are elevated in the airways of 

asthmatics. However, the role of angiogenic inhibitors in the airway has yet 

to be characterised. 

The specific aims of this thesis are: 

1) to confirm the presence of angiogenesis in asthmatic and and determine if 

it is present in LAM airways;  

2) to examine the expression of the six collagen IV α chain NC1 domains in 

asthmatic and LAM airways; 

3) to examine the expression of tumstatin in other known chronic respiratory 

diseases; 

4) to investigate the presence and level of expression of the GPBP in 

asthmatic and LAM airways; 

5) to examine the expression of the αvβ3 integrin in asthmatic airways; 

6) to investigate levels of tumstatin in asthmatic individuals; 

7) assess the activity of tumstatin on primary pulmonary endothelial cells; 

8) to identify the functionality of tumstatin in the airway in vivo and to test 

the effectiveness of tumstatin to inhibit AHR and angiogenesis in a mouse 

model of airway hyperresponsiveness.
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Chapter 2  

Collagen IV α3 NC1 domain 
“Tumstatin” an endogenous 

angiogenic inhibitor is 
absent in the airways of 

asthmatic and LAM 
individuals.
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2.1 Introduction 

Angiogenesis, a vital process for embryogenesis and wound healing, is the 

formation of new blood vessels. When blood vessel supply is impaired tissue 

ischaemia results. However, when there is excessive blood vessel formation 

and growth there is excessive growth of inflamed tissue therefore chronic 

inflammatory disorders are aggravated (Carmeliet, 2004). Asthma is an 

inflammatory disease characterised by airway remodelling. One of the major 

features of this remodelling is an increase in the number and size of blood 

vessels in the airways (Hashimoto et al., 2005; Li et al., 1997; Wilson et al., 

2006).  

 

Angiogenesis is triggered by many different endogenous angiogenic 

stimulators such as vascular endothelial growth factor (VEGF) and fibroblast 

growth factors (FGFs) (D'Andrea et al., 2006; Rundhaug, 2005), and is 

inhibited by endogenous angiogenic inhibitors including thrombospondin-1, a 

secreted glycoprotein, endostatin, the non-collagenous domain (NC1) of 

collagen XVIII, and tumstatin, the NC1 domain of the α3 chain of collagen 

IV (Nyberg et al., 2005). Under normal conditions this system exists as an 

equilibrium with both endogenous stimulators and inhibitors being switched 

“on” and “off” when necessary.  

 

Collagen IV is a major component in the basement membrane (BM) of many 

tissues, including the kidneys, testis and lungs (Timpl et al., 1981), that forms 

a complex branch network necessary for stability and assembly of the BM 
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(Timpl et al., 1981). Levels of collagen IV have been shown to be decreased 

in the airways of asthmatics. Histological studies of airway biopsies from 

asthmatics and non-asthmatics showed a decrease in the level of collagen IV 

in the asthmatic airway compared to the non-asthmatic (Bousquet et al., 

1992). Johnson et al. demonstrated in vitro that asthmatic airway smooth 

muscle (ASM) cells release less collagen IV than non-asthmatic ASM cells 

(Johnson et al., 2004).  

Collagen IV has six isoforms refered to as α chains (α1-α6), encoded for by 

three sets of genes (Ortega et al., 2002). Each chain consists of a 7S domain 

at the amino terminus, a central collagenous domain and a NC1 domain at the 

carboxyl terminus (Heidet et al., 2001) as represented in figure 2.1. 

 

 

 

 

 

 

Figure 2.1: Triple helical organisation of collagen IV chains. Figure has been 

adapted from Hudson BG 2003.  

 

Six α chains are arranged into three triple helical protomers. The selection of 

α chains for triple helical formation is controlled by the molecular 

recognition sequences encoded within the NC1 domains of the α chains.  
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Central triple helical 
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The macromolecular structure of collagen IV is a network in which 

molecules are connected via like ends, the NC1 domains of two molecules 

become aggregated to form a hexameric complex that is stabilised by the 

intermolecular disulfide bonds. The NC1 domain is crucial in linking two 

molecules via C-terminal ends. Before an intact triple helical molecule is 

generated the NC1 domain is responsible for chain selection and assembly 

(Ries et al., 1995). The six α chains combine into three specific trimeric 

molecules; α1:α1:α2, found in the basement membrane of all tissues, 

α3:α4:α5, occurs in the basement membrane of the kidney, lung, testis, 

cochlea and eye, and α5:α5:α6, found in the skin, smooth muscle, oesophagus 

and kidney (Ries et al., 1995; Sund et al., 2004). The exact distribution of the 

collagen IV α chains in the lung is unknown although α1-α4 have been 

identified in human alveolar basement membrane (Derry et al., 1994).  

 

Fragments of the Collagen IV molecule have anti-angiogenic properties. 

Tumstatin, an angiogenic inhibitor, is the NC1 domain of the α3 chain of 

Collagen IV (Maeshima et al., 2000). Tumstatin inhibits angiogenesis by 

blocking the interactions of VEGF, a promoter of angiogenesis, with the 

αvβ3 integrin (Byzova et al., 1998), on endothelial cells, causing inhibition of 

DNA synthesis and inducing apoptosis of proliferating endothelial cells 

(Maeshima et al., 2001b). Tumstatin inhibits aberrant angiogenesis but is not 

involved in embryogenesis and wound healing. Hamano et al. also showed 

that the inhibitory effects of tumstatin were dependent on its binding to 

integrin αvβ3. They detected αvβ3 integrin on blood vessels and small 
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capillaries in proliferating tumours but did not detect this integrin in blood 

vessels of healing skin wounds or regenerating livers (Hamano et al., 2003).  

 

Integrins are cell surface receptors composed of transmembrane 

glycoproteins, with α and β subunits, which connect adhesive proteins in the 

extracellular matrix (ECM) to the cytoskeleton (Nisato et al., 2005). They act 

as receptors for many proteins and growth factors, the αvβ3 integrin is a 

receptor for various proteins including fibronectin, fibrinogen, 

thrombospondin, tumstatin and the growth factor VEGF (Nisato et al., 2005). 

A variety of cells express the αvβ3 integrin including endothelial cells and 

smooth muscle cells in postangioplasty restenosis, in healing arterial wounds 

and in osteoclasts (Byzova et al., 1998). Integrins are able to mediate a 

number of biological events such as the migration of smooth muscle cells, 

adhesion of osteoclasts to bone matrix and angiogenesis (Kokubo et al., 

2007). Cell adhesion to the ECM mediated by integrins leads to bidirectional 

signalling events that regulate cell migration, survival and proliferation.  

 

 

Goodpasture’s disease results from autoantibodies against collagen IV α3 

NC1. These antibodies are raised against cryptic epitopes in the collagen IV 

α3 NC1 domain in the alveolar and glomerular basement membrane (GBM). 

Collagen IV α3 chain undergoes a complex folding process that results in 

multiple conformers. The non-assembled conformers are structures which 

require specific activation by phosphorylation to enable its assembly into a 
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triple helical molecule (Raya et al., 2000). The NC1 domain is responsible 

for determining the molecular organisation of the collagen IV α chains. The 

good pasture antigen-binding protein (GPBP) is a kinase that targets and 

phosphorylates the NC1 domain of the collagen IV α3 chain (Raya et al., 

2000). Alternative splicing  of the GPBP generates two isoforms, GPBP and 

GPBPΔ26 (Raya et al., 2000) of which GPBP is the most efficient at 

phosphorylating collagen IV α3 NC1 and has a higher binding affinity to the 

α3 chain. GPBP is associated with the GBM collagen organisation. Increased 

expression of GPBP is linked to the induction of the pro-autoimmune 

inflammatory response and a disorganisation of collagen IV in the GBM in 

Goodpastures disease (Granero et al., 2005). This suggests the GPBP plays a 

role in the GBM collagen organisation. New Zealand white mice (NZW) 

naturally over express the GPBP, which results in glomerular abnormalities, 

including defective fusion of epithelial and endothelial components of the 

capillary GBM as well as defective fusion of the α3.α4.α5 and α1.α1.α2 

networks in the capillary GBM (Revert et al., 2007). The mechanism by 

which increased expression of the GPBP induces GBM disruption is 

unknown. Revert et al. suggested that the collagen IV α3 chain NC1 domain 

conformers produced by cells expressing high levels of GPBP, may be 

defective in their assembly of the α1.α1.α2 and α3.α4.α5 protomers, resulting 

in network disassociation and GBM disruption (Revert et al., 2007). 

Increased levels of the GPBP will generate misfolding of the collagen IV α3 

chain (Raya et al., 2000). Levels of the GPBP in association with asthma 

have not been investigated.  
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It was hypothesised that tumstatin plays a crucial role as an angiogenic 

inhibitor in the airway. The specific aims of this study were:  

1) to confirm the presence of angiogenesis in asthmatic and determine if it is 

present in LAM airway samples,  

2) to examine the expression of the six collagen IV α chain NC1 domains in 

diseased (asthma and LAM) and non-diseased lungs,  

3) to investigate the presence and level of expression of the GPBP in 

asthmatic and LAM airways,  

4) to examine the expression of the αvβ3 integrin in asthmatic airways 

compared to non-asthmatic. 
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2.2 Materials and Methods 

2.2.1 Confirmation of angiogenesis 

2.2.1.1 Immunohistochemical detection of angiogenesis 

Paraffin embedded airway sections from asthmatic, non-asthmatic and LAM 

individuals were stained for CD31 platelet/endothelial cell adhesion molecule 

-1 (PECAM-1) and von Willebrand factor (vWF). Sections were de-

paraffinised, and re-hydrated through graded alcohol. Sections were blocked 

with a peroxidase blocking agent (DakoCytomation, Glostrup, CA) for 5 

minutes and then washed with phosphate buffered saline (PBS) buffer. 

Primary antibodies, goat anti-human CD31 (PECAM-1) (Santa Cruz 

Biotechnology Inc, Santacruz, CA) [1µg/ml] and rabbit anti-human von 

Willebrand factor (vWF) (Santa Cruz Biotechnology Inc) [1µg/ml], were 

added and incubated at room temperature for one hour. Sections were washed 

in PBS and the secondary antibodies anti-mouse horseradish peroxidase 

(HRP) (DakoCytomation) and rabbit anti-goat HRP (DakoCytomation), were 

added and incubated at room temperature for one hour. After washing in PBS 

for 5 minutes, substrate chromogen, liquid 3,3'-diaminobenzidine (DAB) 

(DakoCytomation), was added to the sections and incubated for 5 minutes at 

room temperature. Distilled water was used to wash sections for 5 minutes 

and an aqueous mounting medium (Faramount, DakoCytomation) was used 

to mount sections prior to coverslipping.  

Sections were imaged on an Olympus BX51 microscope and processed using 

Leica imaging software IM1000 (Leica, Heerbrugg St Gallen, Switzerland). 
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Detection of angiogenesis was also performed in other chronic respiratory 

diseases. Paraffin embedded tissue sections of bronchial rings from 

individuals with chronic obstructive pulmonary disease (COPD), cystic 

fibrosis (CF) and bronchiectasis were stained for vWF as above, except for 

bronchiectasis sections where fast red, substrate chromogen 

(Dakocytomation) was used. COPD sections stained for vWF were also 

counterstained with Heamatoxylin for 1 minute prior to coverslipping.  

2.2.2 Detection of collagen IV α1-α6 NC1 domains  

Paraffin embedded tissue sections of bronchial rings from asthmatic, non-

asthmatic and LAM individuals were stained for the six collagen IV α chain 

NC1 domains. Sections were deparaffinised and re-hydrated through graded 

alcohol.  Blocking serum (10% non-immune horse serum) was then added to 

the sections for 20 minutes at room temperature. Without rinsing, either 

primary antibodies (collagen IV α1-6 NC1 a kind gift from Dr Sado at Shigei 

Medical Research Institute, Okayama, Japan [1ng/ml]) or isotype control 

antibody (Rat IgG, Jackson ImmunoResearch, West Grove PA [1ng/ml]) 

were added to the sections and incubated for 1 hour at room temperature.  

Sections were then washed with PBS and a goat anti-rat fluorescein 

isothiocyanate (FITC) (MP Biomedicals, Solon, OH, USA [1ng/ml]) or horse 

anti-mouse texas red (Vecta laboratories, Burlingame, CA, USA [1ng/ml]) 

conjugated secondary antibody was added, and incubated for 30 minutes at 

room temperature. Following a rinse with PBS, slides were mounted using 

vectashield mounting media (Vecta Laboratories). Images were taken on an 
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Olympus BX51 fluorescence microscope and captured using Leica imaging 

software IM1000 (Leica). 

In addition, sections from fresh frozen biopsies from asthmatic and non-

asthmatic individuals were also stained for collagen IV α1, 3 and 5 NC1 

domains as above, except frozen sections were thawed and placed into PBS 

buffer for 5 minutes and the deparaffinising step was omitted. 

Semi-quantitative analysis for the presence of collagen IV α1-6 chain NC1 

domains was performed. Images from all asthmatic, non-asthmatic and LAM 

patients were scored by three independent observers, who were blinded to the 

diagnosis of the subject, for the presence and intensity of staining. Images 

were scored as follows; 

0 = Absence of stain 

1 = Thin and discontinuous staining 

2 = Thin and continuous staining 

3 = Strong and continuous staining 

Scores from the three observers were averaged and the standard error of the 

mean was calculated.  

2.2.3 Detection of collagen IV α3 and α5 NC1 domains in COPD, 
CF and bronchiectasis 

Paraffin embedded tissue sections of bronchial rings from individuals with 

COPD, CF and bronchiectasis were stained for collagen IV α3 and α5 chain 

NC1 domains using the same protocol as in 2.2.2 with the exception of the 

primary and secondary antibodies used for the detection of the collagen IV 

α3 chain in CF and bronchiectatic airways, where mouse anti-human collagen 
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IV α3 NC1 (Wieslab, Lund, Sweden) at [1ng/ml] was used, followed by a 

horse anti-mouse texas red conjugated secondary antibody (Vecta 

Laboratories) at [1ng/ml]. Mouse IgG (Chemicon International, Temecula, 

CA) was used at [1ng/ml] as an isotype control. 

 

2.2.4 Detection of collagen IV GPBP  

Frozen sections from asthmatic and non-asthmatic individuals were thawed 

and placed in PBS for 5 minutes. Paraffin sections from asthmatic, non-

asthmatic and LAM individuals were deparaffinised and placed in water for 5 

minutes. Sections were blocked using a peroxidase block (DakoCytomation) 

for 5 minutes. Primary antibodies, mouse anti-human collagen IV α3 NC1 

(Wieslab) at [1ng/ml], chicken anti-human collagen IV GPBP (GenWay 

Biotech, Inc, San Diego, CA) at [1ng/ml] or isotype control antibodies Mouse 

IgG1 (R&D Systems) or Chicken IgY (Abcam, Cambridge, MA) 

respectively, were then added and incubated for 1 hour at room temperature. 

Sections were rinsed with PBS and a secondary peroxidase labelled antibody 

was added, anti-mouse HRP (DakoCytomation) against the α3 NC1 primary 

antibody, rabbit anti-chicken HRP labelled antibody (Abcam) against the 

GPBP antibody, and incubated for 1 hour at room temperature. Following a 

wash in PBS for 5 minutes, substrate chromogen solution (Liquid DAB+) 

(DakoCytomation) was added to the sections for 5 minutes. Distilled water 

was used to rinse the section prior to mounting in an aqueous mounting 

medium (Faramount aqueous mounting medium, DakoCytomation) and 
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coverslipping.  Images were taken on an Olympus BX51 microscope and 

captured and analysed using Leica imaging software IM1000 (Leica). 

The level of expression of the Collagen IV α3 chain NC1 domain and GPBP 

were quantified using grey scale image analysis, with QWIN image analysis 

software (Leica). From each patient within a single image which contained an 

airway and parenchyma, 10 random areas were selected for grey scale 

analysis. Final grey values were obtained by subtracting the corresponding 

grey values obtained from the respective isotype control. Statistical analysis 

was performed using one-way ANOVA with Dunnett’s post test. 

 

2.2.5 Detection of αv and β3 integrins 

Frozen biopsy sections from asthmatic and non-asthmatic individuals were 

thawed and placed into PBS buffer for 5 minutes. Ten percent horse serum 

was used to block any non-specific binding in the sections for 20 minutes at 

room temperature. Sections were then blotted dry and primary antibodies 

added, mouse anti-human integrin αv (Chemicon International) at 1ng/ml or 

mouse anti-human integrin β3 (Chemicon International) at 1ng/ml or isotype 

control antibody (Mouse IgG1 (R&D Systems, Minniapolas, Mn) and 

incubated at room temperature for 1 hour. Following a wash with PBS for 5 

minutes the secondary antibody, horse anti-mouse texas red (Vecta 

Laboratories) at 1ng/ml was added and incubated at room temperature for 30 

minutes. After a wash in PBS for 5 minutes the sections were mounted using 

vectashield mounting media (Vecta Laboratories). Images were taken on an 
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Olympus BX51 fluorescence microscope and captured using Leica imaging 

software IM1000 (Leica). 

 

2.2.6 Co-localisation of αvβ3 integrin with VEGF and tumstatin 
expression  

Paraffin sections from asthmatic, non-asthmatic and LAM individuals were 

deparaffinised and placed in water for 5 minutes. Ten percent horse serum 

was used to block sections for 20 minutes at room temperature. Primary 

antibodies, rat anti-human collagen IV α3 NC1 (Shigei Medical Research 

Institute, Okayama, Japan) at 1ng/ml, mouse anti-human integrin αvβ3 

(Chemicon International) at 1ng/ml, rabbit anti-human VEGF165 (Chemicon 

International) at 1ng/ml, were mixed and added to the sections. Isotype 

controls, rat IgG, (Jackson ImmunoResearch [1ng/ml]), mouse IgG (R&D 

Systems [1ng/ml]), rabbit IgG (R&D Systems [1ng/ml]) were added in the 

same manner as primary antibodies and incubated at room temperature for 1 

hour. Following a wash in PBS for 5 minutes the secondary antibodies Alexa 

fluor 633 anti-rat [1ng/ml], Alexa fluor 405 anti-mouse [1ng/ml] and Alexa 

fluor 488 anti-chicken [1ng/ml] (Molecular Probes, Leiden, Netherlands) 

were added to sections and incubated for 30 minutes at room temperature. 

After a wash in PBS for 5 minutes the sections were mounted using DABCO 

anti-fade mounting medium (Sigma, St Louise, MO). Images were taken 

using the Zeiss LSM 510 Meta confocal microscope which utilises the Zeiss 

LSM 510 imaging software. Images were automatically processed by the 

Zeiss software to generate superimposed images of the three colour channels. 
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Three lasers were employed to excite the different fluorochromes used. For 

the Alexa 633 the red NeHe laser 633nm line was used, for the Alexa 405 the 

404nm diode laser was used and for the Alexa 488 the Argon laser 488nm 

line was used. Z stack images were also obtained, whereby images of the 

section are taken at intervals throughout the whole depth of the tissue. The 

first point of focus of the tissue is set as the starting point and the last point of 

focus as the end point. Interval points are then automatically calculated for 

the three channels, ensuring a slight overlapping in each slice, from the start 

to the end point.   
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2.3 Results 

2.3.1 Patient details 

Asthmatic and non-asthmatic airway sections were obtained from post 

mortem tissue, lung resections, explanted lungs and endobronchial biopsies. 

COPD airway sections were obtained from lung biopsies, LAM airway 

sections were obtained from explanted lungs. CF and bronchiectasis airway 

sections were obtained from lung resections and explanted lungs. Complete 

patient details are found in table 2.1. 

 

2.3.2 Confirmation of angiogenesis 

Angiogenesis is a prominent feature in the airway remodelling seen in asthma 

and is also a feature reported in LAM, CF, COPD and bronchiectasis. The 

airway sections in this study had not previously been examined for the 

presence of angiogenesis. 

Confirmation of increased angiogenesis in asthmatic (n=8) and LAM (n=8) 

tissue was observed as an increase in the number of CD31 and vWF positive 

blood vessels compared to non-asthmatic sections (n=8), figure 2.2. Also, the 

presence of angiogenesis in COPD (n=8), CF (n=4) and bronchiectasis (n=1) 

was observed as an increase in the number of vWF positive blood vessels 

compared to non-asthmatic sections. Images in figure 2.2 are representative 

of all individuals tested. 
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Table 2.1: Patient details 

Patient 

# 

Age Sex Disease Type of sample Derived from Medication 

1 17 Male Asthmatic  Bronchial rings Explanted lung Salbutamol 

2 48 Male Asthmatic  Bronchial rings Explanted lung Prednisone 10mg/day 

 

3 80 Male Asthmatic Bronchial rings Explanted lung Not known 

4 15 Female Asthmatic Bronchial rings Explanted lung Not known 

5 33 Female Asthmatic Bronchial rings Explanted lung Not known 

6 15 Male Asthmatic Bronchial rings Explanted lung Not known 

7 10 Female Asthmatic Bronchial rings Explanted lung Not known 

8 17 Male Asthmatic Bronchial rings Explanted lung Not known 

9 47 Male Non-asthmatic Bronchial rings Explanted lung Not known 

10 62 Male Non-asthmatic Bronchial rings Explanted lung Not known 

11 12 Male Non-asthmatic Bronchial rings Explanted lung Not known 

12 17 Male Non-asthmatic Bronchial rings Explanted lung Not known 

13 15 Female Non-asthmatic Bronchial rings Explanted lung Not known 

14 57 Male Carcinoma Bronchial rings Resection Not known 

15 84 Male Carcinoma Bronchial rings Resection Not known 

16 56 Female Asthmatic Endobronchial 

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 

17 20 Male Asthmatic Endobronchial 

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 

18 42 Male Asthmatic Endobronchial 

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 
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Patient 

# 

Age Sex Disease Type of sample Derived from Medication 

19 45 Male Asthmatic Endobronchial  

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 

20 60 Male Asthmatic Endobronchial 

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 

21 56 Female Asthmatic Endobronchial 

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 

22 20 Male Asthmatic Endobronchial 

biopsy 

Bronchoscopy Inhaled 

corticosteroids/day 

Bronchodilator/week 

23 29 Male Non-asthmatic Endobronchial 

biopsy 

Bronchoscopy Not on medication 

24 20 Male Non-asthmatic Endobronchial 

biopsy  

Bronchoscopy Not on medication 

25 22 Male Non-asthmatic Endobronchial 

biopsy 

Bronchoscopy Not on medication 

26 38 Female LAM Bronchial rings Explanted lung Not known 

27 39 Female LAM Bronchial rings Explanted lung Not known 

28 46 Female LAM Bronchial rings Explanted lung Not known 

29 56 Female LAM Bronchial rings Explanted lung Not known 

30 66 Female LAM Bronchial rings Explanted lung Not known 

31 34 Female LAM Bronchial rings Explanted lung Not known 

32 36 Female LAM Bronchial rings Explanted lung Not known 

33 51 Female LAM Bronchial rings Explanted lung Not known 
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Patient 

# 

Age Sex Disease Type of sample Derived from Medication 

34 57-75 Female COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

35 57-75 Female COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

36 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

37 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

38 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

39 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

40 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Not on medication 

41 57-75 Female COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

42 57-75 Female COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

43 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

44 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

45 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

46 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 
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Patient 

# 

Age Sex Disease Type of sample Derived from Medication 

47 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

48 57-75 Male COPD Endobronchial 

biopsy 

Bronchoscopy Theophylline 

200µg/day 

49 19 Female CF Bronchial rings Explanted lung Not known 

50 22 Female CF Bronchial rings Explanted lung Not known 

51 25 Female CF Bronchial rings Explanted lung Not known 

53 29 Male CF Bronchial rings Explanted lung Not known 

54 46 Male Bronchiectasis Bronchial rings Explanted lung Not known 

COPD patient age- only an age bracket was available.
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Figure 2.2: Angiogenesis in airway sections. Bronchial airway sections stained for CD31 and vWF from asthmatic, non-asthmatic, 

LAM, COPD and CF individuals showing blood vessel detection (arrows) using DAB (brown). Bronchial airway section from 

bronchiectasis showing blood vessels (arrows) detected using fast red (red). Images are representative of all subjects tested (X200). 
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2.3.3 Characterisation of collagen IV α1-α6 chain NC1 domains in 
asthmatic and non-asthmatic airways 

Asthmatic airway sections (n=5) from post mortem tissue were negative for 

the collagen IV α3 chain NC1 domain (tumstatin) and positive for the 

remaining α chain NC1 domains as shown in figure 2.3. Non-asthmatic 

sections (n=4) were positive for all six collagen IV α chain NC1 domains 

(figure 2.4). Asthmatic and non-asthmatic sections were scored for the level 

of staining observed (table 2.2). All asthmatic sections scored 0 for the level 

of tumstatin observed. To confirm that this was not a feature of post mortem 

tissue, asthmatic (n=6) and non-asthmatic (n=5) biopsies taken from live 

volunteers were stained for collagen IV α3 and α5 NC1 domains. Collagen 

IV α5 was chosen as a comparative control as it showed consistent staining 

previously in all asthmatic and non-asthmatic sections. All asthmatic biopsy 

sections were negative for tumstatin and positive for collagen IV α5, non-

asthmatic biopsy sections were positive for both tumstatin and collagen IV 

α5 as shown in figure 2.5. Isotype controls were negative. 



 

  66

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Detection of the six collagen IV α chain NC1 domains in paraffin embedded airway sections from 2 asthmatic individuals. 

Specific antibodies detected using FITC fluorochrome (green). IgG1 isotype controls were negative for non-specific staining. Images are 

representative of results obtained from 5 asthmatic individuals (all images at X200) 
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Figure 2.4: Detection of the six collagen IV α chain NC1 domains in paraffin embedded airway sections from 2 non-asthmatic 

individuals. Specific antibodies detected using FITC fluorochrome (green). IgG1 isotype controls were negative for non-specific 

staining. Images are representative of results obtained from 4 non-asthmatic individuals (all images at X200).
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 n= α 1 α 2 α 3 α 4 α 5 α 6 
Asthmatic 
(SEM) 

5 2.1 
(±0.3) 

2.55 
(±0.15) 

0 (0) 1.95 
(±0.3) 

2.15 
(±0.21) 

2.38 
(±0.21) 

Non-
asthmatic 
(SEM) 

4 1.72 
(±0.3) 

2.21 
(±0.17) 

2.29 
(±0.20) 

2.72 
(±0.20) 

2.47 
(±0.22) 

2.5 
(±0.20) 

 

Table 2.2: Levels of the six collagen IV α chain NC1 domains observed in 

airway sections from asthmatic and non-asthmatic individuals. Scoring 

results obtained from 3 independent observers using the following scale: 0 = 

Absence of stain, 1 = Thin and discontinuous staining, 2 = Thin and 

continuous staining, 3 = Strong and continuous staining. 

 

 

 

 

 

 

 

 

Figure 2.5: Airway biopsies stained for collagen IV α3 and α5 chain NC1 

domains from asthmatic (n=6 (A)) and non-asthmatic (n=5 (B)) individuals. 

Specific staining was detected using a fluorochrome Texas red (red). Images 

are representative of all individuals tested (all images at X200). 
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2.3.4 Characterisation of collagen IV α1-α6 chain NC1 domains in 
LAM 

Airway sections from LAM individuals (n=8) were negative for collagen IV 

α3 chain NC1 domain (tumstatin) and collagen IV α5 chain NC1 domain. 

The remaining collagen IV α chain NC1 domains were positive, figure 2.6. 

Images were scored as in 2.3.3, results are shown in table 2.3. All LAM 

sections scored 0.5 (± 0.16) for the level of tumstatin observed as well as for 

the α5 chain NC1 domain (0.56 ± 0.12). 

 

 

 

 n= α 1 α 2 α 3 α 4 α 5 α 6 
LAM 
(SEM) 

8 2.16 
(±0.26) 

2.28 
(±0.18) 

0.5 
(±0.16) 

2.63 
(±0.17) 

0.56 
(±0.12) 

2.33 
(±0.12) 

 

Table 2.3: Levels of the six collagen IV α chain NC1 domains observed in 

stained airway sections from LAM individuals. Scoring results obtained from 

3 independent observers using the following scale: 0 = Absence of stain, 1 = 

Thin and discontinuous staining, 2 = Thin and continuous staining, 3 = 

Strong and continuous staining. 
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Figure 2.6: Detection of the six collagen IV α chain NC1 domains in paraffin embedded airway sections from LAM individuals. 

Specific antibodies detected using FITC fluorochrome (green). IgG1 isotype controls were negative for non-specific staining. Images 

are representative of results obtained from 8 LAM individuals (all images at X200).
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2.3.5 Characterisation of tumstatin in other chronic respiratory 
diseases 

To test whether the absence of tumstatin was a feature of all chronic 

respiratory disorders, tissue sections from COPD (n=8), CF (n=4) and 

bronchiectasis (n=1) patients were stained for tumstatin and all were positive 

for tumstatin as shown in figure 2.7. CF and bronchiectasis sections were 

also positive for collagen IV α5 NC1 domain. Positive staining for collagen 

IV α5 NC1 domain in COPD sections was varied across the individuals 

tested with 4 out of 8 individuals examined being negative. 
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Figure 2.7: Bronchial airway sections stained for tumstatin and collagen IV 

α5 chain NC1 domain from COPD (n=8), CF (n=4) and bronchiectasis (n=1) 

individuals. Specific antibody detected using Texas red (red) or FITC (green) 

fluorochrome. Images are representative of all individuals tested.  (All 

images at X200).  

 

2.3.6 Detection of collagen IV GPBP 

Collagen IV GPBP is a protein kinase that binds and phosphorylates the NC1 

domain of the α3 chain (Raya et al., 2000). Levels of expression of the GPBP 

can play an important role in the phosphorylation-dependent folding of the 

α3 chain. An increase in the GPBP in the asthmatic and LAM airway tissue 

may produce misfolded α3 chains which could result in the clearing of the 

tumstatin or make tumstatin undetectable by our antibody. 
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Colorimetric staining was used to enable quantitation by digital image 

analysis. We stained for both tumstatin and the GPBP in 6 asthmatic 

biopsies, 3 non-asthmatic airway sections, 2 non-asthmatic biopsies and 5 

LAM airway sections. As in our earlier findings, the asthmatic biopsies and 

LAM sections were negative for tumstatin and the non-asthmatics were 

positive (figure 2.8). However, all samples were positive for the collagen IV 

GPBP (figure 2.8).  

Digital image analysis revealed a significant difference in the level of 

tumstatin detected between asthmatics and non-asthmatics (p<0.01, students 

t-test), as well as a significant difference between LAM and non-asthmatics 

(p<0.01, students t-test). There was no significant difference in the levels of 

the collagen IV GPBP between asthmatic and non-asthmatic tissue sections 

(p>0.05, students t-test) or LAM and non-asthmatics (p>0.05, students t-test) 

as shown in figure 2.9. 
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Figure 2.8: Bronchial biopsy sections stained for collagen IV α3 NC1 domain 

and collagen IV GPBP in asthmatic (n=6) and non-asthmatic (n=5) 

individuals and bronchial rings from LAM (n=5) individuals. Specific 

antibody detected using DAB (brown). Isotype controls were negative. 

Images are representative of all individuals tested (all images at X200). 
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Figure 2.9: Level of collagen IV α3 NC1 domain and GPBP in asthmatic and 

non-asthmatic biopsies and from LAM airway sections. Levels of α3 and 

GPBP were quantified using grey scale digital image analysis. Final grey 

values were obtained by subtracting the corresponding grey values obtained 

from respective isotype controls. ((*p<0.01 compared to non-asthmatic) (one 

way ANOVA with Dunnett’s post test)). Data is expressed as mean ± 

standard error of the mean. 

 

2.3.7 αv and β3 integrins detected in airway sections 

The anti-angiogenic activity of tumstatin is mediated via the interaction with 

the αvβ3 integrin on endothelial cells. It was important to determine whether 

both subunits of this integrin were present in the airway of asthmatics and 

non-asthmatics. Integrin αv and β3 subunits were both detected in asthmatic 

(n=5) and non-asthmatic (n=4) biopsies. Expression of both integrin subunits 

appears similar in terms of both level of expression and area of distribution in 

asthmatic and non-asthmatic airways (figure 2.10). 
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Figure 2.10: Airway sections and biopsies stained for integrin subunits αv 

and β3 in sections from an asthmatic biopsy and non-asthmatic biopsy. 

Isotype controls were negative. Specific staining was detected using Texas 

red (red) fluorochrome. Images are representative of all individuals tested 

((n=5 asthmatics, n=4 non-asthmatics (all images at X200)). 

 

2.3.8 Co-localisation of VEGF, tumstatin and integrin αvβ3 

Tumstatin binds αvβ3 integrin to exert its anti-angiogenic properties, whereas 

VEGF binds αvβ3 integrin to promote angiogenesis. Co-localisation of both 

factors with the integrin αvβ3 in the airway has not been established. 

Tumstatin was absent in the asthmatic (n=4) sections as seen in previous 

results (2.3.3). The αvβ3 integrin was expressed broadly across the airway 

section from asthmatic individuals with a consistent amount of expression in 

the ASM bundle (figure 2.11). However, VEGF expression was confined, 

with specific localised staining in the ASM bundles. Co-localisation of 

VEGF and the αvβ3 integrin in the asthmatic sections was present on the 

ASM bundles but was minimal overall. This was also true for airway sections 

αv 

A 

Isotype β 3 Isotype 

NA 



 

  77

from LAM (n=3) individuals. In contrast, co-localisation of tumstatin, VEGF 

and the αvβ3 integrin was clearly distinguishable in the non-asthmatic (n=3) 

sections (figure 2.11). Tumstatin was expressed throughout the airways of 

non-asthmatic individuals with a notable increase in expression in the 

basement membrane. VEGF and the integrin αvβ3 were also evenly 

expressed in the non-asthmatic airways. Although there was a clear co-

localisation in the non-asthmatic airways, areas of some ASM bundles as 

well ECM within the airway expressed tumstatin, VEGF and the integrin 

αvβ3 separately. This feature is highlighted in the Z axis slices. As shown in 

figure 2.12 and 2.13, the Z slices from asthmatic and LAM individuals show 

the specific yet separate expression of VEGF and the αvβ3 integrin 

throughout the airway. The Z axis slices from non-asthmatic sections show 

the co-localisation of the three factors as well as their separate expression 

(figure 2.14). 
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Figure 2.11: Bronchial airway sections from non-asthmatic (A and B), asthmatic (C and D) and LAM  (E and F) individuals stained for 

tumstatin (red), αvβ3 integrin (blue) and VEGF (green). Images are representative of all individuals (non-asthmatic n=3, asthmatic n=4 

and LAM n=3) tested. Images A, C and E are at X200 and B, D and F are at X400. 
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Figure 2.12: Consecutive Z-axis slices of bronchial airway section from an asthmatic individual stained for tumstatin (red), VEGF 

(green) and the integrin αvβ3 (blue). Images above represent the three (red, green and blue) merged channels. All images at X100. 

Images are representative of all asthmatic (n=4) individuals tested. 
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Figure 2.13: Consecutive Z-axis slices of bronchial airway section from a LAM individual stained for tumstatin (red), VEGF (green) 

and the integrin αvβ3 (blue). Images above represent the three (red, green and blue) merged channels. All images at X100. Images 

are representative of all LAM (n=3) individuals tested.   
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Figure 2.14: Consecutive Z-axis slices of bronchial airway section from a non-asthmatic individual stained for tumstatin (red), 

VEGF (green) and the integrin αvβ3 (blue). Images above represent the three (red, green and blue) merged channels. All images at 

X100. Images are representative of all non-asthmatic (n=3) individuals tested.   
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2.4 Discussion 

Tumstatin is absent in the airways of asthmatic and LAM individuals and 

present in the airways of non-asthmatic, COPD, CF and bronchiectic 

individuals. Expression of the GPBP was not increased in asthmatic and 

LAM airways compared to non-asthmatics. The αv and β3 integrin subunits 

were present in both asthmatic and non-asthmatic airways. The αvβ3 integrin 

was present in asthmatic, LAM and non-asthmatic individuals, and the co-

localisation between the VEGF and αvβ3 integrin was shown to be limited in 

the asthmatic and LAM airways compared to non-asthmatics. 

 

Angiogenesis is one of the major features of airway remodelling in asthma 

(Hashimoto et al., 2005; Li et al., 1997), yet its role in the airway remains 

undetermined. In order to characterise angiogenic inhibitors in the airway of 

asthmatics and LAM individuals the presence of increased angiogenesis in 

the asthmatic and LAM bronchial airway sections used in this study was 

confirmed. CD31, a cell adhesion molecule expressed on platelets and at 

endothelial cell intercellular junctions as well as vWF, a complex produced 

by endothelial cells and megakaryocytes, were used to identify blood vessels 

in the airway. The presence of increased angiogenesis in the COPD, CF and 

bronchiectasis sections used in this study was also confirmed.  

 

Tumstatin was not present in the airways of asthmatics but was present in the 

airways of non-asthmatic individuals. In contrast, both in asthmatics and non-
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asthmatics the remaining five collagen IV α chain NC1 domains were 

present. It has previously been reported that collagen IV levels are decreased 

in the airways of asthmatics (Bousquet et al., 1992), however it is not known 

if that reduction is due to a specific reduction of one or more α chains. Levels 

of collagen IV were also found to be decreased in asthmatic ASM cells 

compared to non-asthmatics in vitro (Johnson et al., 2004). However, once 

again, it is not known which α chain the collagen IV antibody used in this 

study detected.   

 

Asthma and LAM are both chronic respiratory diseases with reported 

increased angiogenesis. Both disease states were shown to be lacking 

tumstatin in the airway. To establish whether the absence of tumstatin is a 

feature of all chronic respiratory diseases shown to exhibit angiogenesis, 

airway sections from individuals with COPD, CF and bronchiectasis were 

examined for the presence of tumstatin.  The presence of tumstatin was 

confirmed in all three chronic respiratory diseases. Therefore the absence of 

tumstatin is not a feature of chronic respiratory disease but is specific to 

asthma and LAM.   

 

The absence of tumstatin could be implicated in the increase in angiogenesis 

in the asthmatic airway. McDonald reported that the development of 

angiogenesis is necessary to supply nutrients to accumulations of 

inflammatory cells in chronically inflamed tissue (McDonald, 2001). It can 

be hypothesised that the chronic inflammation and structural changes 



 

  84

observed in asthma, such as smooth muscle hyperplasia and hypertrophy, 

both result from the increased supply of nutrients brought into the local 

environment by angiogenesis. Therefore, the absence of the angiogenic 

inhibitor, tumstatin, in asthmatic individuals may result in increased 

angiogenesis in the airway. 

 

Tumstatin, as well as the collagen IV α5 NC1 domain, was absent in the 

airways of LAM individuals. Smooth muscle in LAM airways is 

hyperproliferative (Black et al., 2005; Merrilees et al., 2004), therefore the 

absence of tumstatin in this disease may be further exaggerating this feature, 

again via the increase in the availability of nutrients. The collagen IV α5 

chain NC1 domain to date has not been well characterised but preliminary 

findings suggest  it may also have a role as an angiogenic inhibitor (Ortega et 

al., 2002). The absence of the collagen IV α5 chain in the LAM tissues was 

not further investigated as it was beyond the scope of this thesis. However, 

this would potentially be of interest as the collagen IV α3 and α5 chains are 

associated in other diseases, such as Alports Syndrome where a mutation in 

the collagen IV α3 and α5 gene exists and results in kidney failure (Heidet et 

al., 2001).   

 

The GPBP is a kinase targeting the NC1 domain of the collagen IV α3 chain 

in order to determine its molecular organisation. The collagen IV α3 chain 

has a complex folding process that potentially gives rise to multiple 

conformers. Non-assembled conformers are specifically activated by 
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phosphorylation which is a signal the cell uses to determine the folding of the 

α3 NC1 domain (Raya et al., 2000). The N-terminus of the α3 NC1 domain 

contains a phosphorylation site that the GPBP binds to and phosphorylates. 

Increased expression of GPBP in the airway may generate misfolded 

stuctures of the α3 chain. This misfolding may render the collagen IV α3 

chain NC1 domain unrecognisable by the immune system and therefore lead 

to its destruction. There were no differences in the levels of expression of the 

GPBP between asthmatic, LAM and non-asthmatic individuals. This suggests 

that the lack of detection of tumstatin in the airway of asthmatic and LAM 

individuals is not due to an autoimmune response which leads to the clearing 

of tumstatin from the airways as a result of altered GPBP dependent 

phosphorylation. However, in this study the antibody used to detect the 

GPBP did not differentiate between its two isoforms, of which GPBP and not 

GPBPΔ26 is the more active isoform of the two. Therefore, even though 

there was no difference in the levels detected in the asthmatic, LAM and non-

asthmatic airways, a difference in the ratio of GPBP to GPBPΔ26 could still 

exist.  

 

The angiogenic inhibitory actions of tumstatin occur via its interaction with 

the integrin αvβ3 on endothelial cells, as described in 1.5.1. For tumstatin to 

have a role in the airways of asthmatics as an angiogenic inhibitor, integrin 

αvβ3 must be present in these airways. Both the αv and β3 integrin subunits 

were detected in the airways of asthmatic and non-asthmatic individuals. 

VEGF, a promoter of angiogenesis, also interacts with the αvβ3 integrin to 
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mediate its angiogenic activity. Co-localisation of tumstatin, VEGF and αvβ3 

integrin was possible through the use of confocal microscopy. It was shown 

that in the asthmatic and LAM airways VEGF was localised to specific 

regions on the ASM bundles and elsewhere in the tissue section, whereas the 

expression of the αvβ3 integrin was more widely distributed throughout the 

airway. Some areas in both asthmatic and LAM sections showed co-

localisation between VEGF and the αvβ3 integrin. These results suggest that 

some co-localisation of VEGF and the αvβ3 integrin is occurring in the 

airway of both asthmatic and LAM individuals. However, these two 

molecules were also located in the same regions in the airway but were not 

co-localised. This is made apparent by the lack of colour change in the 

merged images, as co-localisation usually results in a combined colour 

formation. The lack of co-localisation was further confirmed in the Z-

stacking images obtained, where the expression of both VEGF and αvβ3 

integrin were seen at different levels throughout the tissue. In comparison, 

the expression of tumstatin, VEGF and αvβ3 in the non-asthmatic individuals 

was co-localised throughout the airway. It is important to note that certain 

regions in the tissue were expressing tumstatin and VEGF side by side. This 

suggests that tumstatin and VEGF are naturally occurring within the same 

vicinity in the airway for the purpose of maintaining a balance in the 

angiogenic process. This further suggests that the absence of tumstatin seen 

in the asthmatic and LAM airways results in the overexpression of VEGF 

which potentially leads to an increase in angiogenesis due to the lack of 

availability of an ‘off’ switch.   
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The various staining techniques used in this chapter have all confirmed the 

absence of tumstatin in asthmatic and LAM airways tissue. The limiting 

factor in the use of fluorescence staining is the inability to accurately 

quantitate the level of expression. Nevertheless, it was possible to overcome 

this with the use of colormetric staining which allowed for quantitation and 

reconfirmation of the absence of tumstatin in the airway section. The use of 

two different antibodies against tumstatin as well as different detection 

techniques confirmed the specificity of the staining techniques. Homogeneity 

in the staining was observed within each patient group, although fluorescent 

images across each patient group varied slightly in the intensity of signal. 

This was expected as the intensity of the laser used to excite the 

fluorochrome fluctuates. The difference in the intensity of the staining was 

not significantly different within each patient group and furthermore was 

confirmed by the use of quantitated colourmetric images.     

 

In summary, the absence of tumstatin in the airways of asthmatic and LAM 

individuals is a specific feature of both diseases and not a general feature of 

chronic respiratory disease. The lack of alteration in the expression of the 

GPBP in asthmatic and LAM airways compared to non-asthmatics, suggests 

that the absence of tumstatin was not the result of altered phosphorylation. 

The absence of this angiogenic inhibitor may be contributing to the increased 

angiogenesis seen in the asthmatic and LAM airways. The presence of the 

αvβ3 integrin in asthmatic and LAM airways, suggest that tumstatin activity 

in the airways is possible.
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3.1 Introduction 

 

Collagen IV α3 chain contains the angiogenic inhibitor tumstatin. It is a 

188kDa molecule, of which tumstatin (28kDa) is the bioactive non-

collagenous domain (NC1). Tumstatin is active as an angiogenic inhibitor 

when it is cleaved from the whole collagen IV α3 chain (Sund et al., 2005). 

Matrix metalloproteinase (MMP)-9 cleaves collagen IV to release tumstatin 

with the greatest efficiency. However, several other matrix proteases such as 

MMP-2, 3 and 13 are also able to cleave tumstatin but less efficiently 

(Hamano et al., 2003). MMP-9 deficient mice exhibited an accelerated rate 

of tumour growth. Yet, upon restoration of physiological levels of tumstatin 

in these mice, tumour growth rate was retarded to that seen in wild-type mice 

(Hamano et al., 2003). Circulating physiological levels of tumstatin in serum 

in mice models, were between 300-350ng/ml (Hamano et al., 2003). Levels 

of tumstatin expression in human serum have not been measured. 

   

Tumstatin blocks angiogenesis by inhibiting the proliferation of endothelial 

cells and inducing apoptosis of proliferating endothelial cells (Maeshima et 

al., 2000). It suppresses tumour growth in renal and prostate carcinoma cells 

as well as inhibiting the proliferation of human, bovine and murine 

endothelial cells. Tumstatin is a 244 amino acid molecule, with the 

angiogenic activity localised to amino acids 54-132. The activity of this 

region is specific for inhibition of proliferating endothelial cells as it had no 

effect on prostate cancer tumour cells (Maeshima et al., 2001a; Maeshima et 
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al., 2001b). This region has been further defined and peptides T3 (69-88 

amino acid) and T7 (74-98 amino acid (figure 3.1)) were identified as having 

anti-angiogenic activity in that inhibition of proliferation and induction of 

apoptosis was seen in bovine pulmonary arterial endothelial cells, human 

umbilical vein endothelial cells (HUVEC’s) and a human prostate 

adenocarcinoma cell line (Maeshima et al., 2001b).  

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Sequence of peptides derived from tumstatin. Figure has been 

adapted from Maeshima et al. (2001). Blue arrows showing T3 and T7 

peptides. 

 

The angiogenic response consists of a balance between pro-angiogenic 

factors and anti-angiogenic factors. Aberrant angiogenesis occurs as a result 

of a disruption to this balance. Angiogenic stimulators such as vascular 

endothelial growth factor (VEGF) and transforming growth factor β (TGFβ) 

are reported to be increased in asthma (Hoshino et al., 2001a; Lee et al., 
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2001). These factors are secreted by inflammatory cells, pericytes, 

keratinocytes, tumour cells and airway smooth muscle cells (ASM) (Hoshino 

et al., 2001b; Knox et al., 2001). VEGF regulates both physiological and 

pathological angiogenesis. It exists in five isoforms, VEGF121, VEGF145, 

VEGF165, VEGF189 and VEGF206, which are generated by alternative splicing 

of a single gene (Hutchings et al., 2003). VEGF165 is the most abundant of 

the isoforms and has a high binding affinity to heparin. Although this 

molecule is secreted by cells, a significant fraction remains bound to the cell 

surface and the extracellular matrix (ECM) (D'Andrea et al., 2006). VEGF165 

adheres to endothelial cells, and this cell adhesion is mediated through the 

αvβ3 integrin, which facilitates the process of angiogenesis. However, 

tumstatin binds to the αvβ3 integrin and inhibits VEGF165 binding of 

endothelial cell (Hutchings et al., 2003). Although VEGF is responsible for 

initiating blood vessel growth, Angiopoietin-1 (Ang-1), an endothelial cell-

specific growth factor, is responsible for the maturation of blood vessels from 

primitive tubes to network blood vessels (Carmeliet, 2004). Ang-1 is widely 

expressed in normal adult tissue, and is essential for the development of 

vasculature. Mice with an Ang-1 deficiency die due to the lack of endothelial 

cell tube maturation into blood vessels (McDonald, 2001). Ang-1 has also 

been reported to exhibit anti-angiogenic activity, in that it can suppress  

tumour angiogenesis in colon cancer (Ahmad et al., 2001; Tian et al., 2002). 

The effects of Ang-1 on blood vessels also serves to inhibit vascular leakage 

and this is due to its interaction with platelet/endothelial cell adhesion 
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molecule (PECAM). Inhibition of vascular leakage is an advantage in 

conditions of sepsis, lung injury and local inflammation.  

 

The specific role of angiogenic inhibitors in the airway has not been 

elucidated. Endostatin (described in 1.4.1.1) is the only endogenous 

angiogenic inhibitor to be examined in asthma (Asai et al., 2002). The levels 

of VEGF and endostatin in asthmatic sputum were measured and an increase 

in the VEGF/endostatin ratio in asthmatics compared to non-asthmatics was 

found. However, the increase in this ratio was due to an increase in the levels 

of VEGF rather than changes in endostatin (Asai et al., 2002). To date there 

are no studies examining the levels of endogenous angiogenic inhibitors in 

tissue from asthmatic patients. 

  

The inhibitory activity of tumstatin has been examined using bovine 

pulmonary arterial endothelial cells, HUVEC, human prostate 

adenocarcinoma cells and mouse endothelial cells (Maeshima et al., 2000; 

Maeshima et al., 2002). The effectiveness of tumstatin in human airways has 

not been directly investigated. Caudroy et al. showed, using human 

pulmonary carcinoma cells, an association between the expression of 

tumstatin and tumour vascularisation. Highly vascularised tumours expressed 

lower levels of tumstatin (Caudroy et al., 2004).   The ability of tumstatin to 

affect human primary pulmonary endothelial cells has yet to be examined.  
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The specific aims of this study were:  

1) to determine and compare the levels of tumstatin in serum and 

bronchoalveolar lavage fluid (BAL-f) samples of asthmatic and non-

asthmatic individuals.  

2) to assess the action of tumstatin on human primary pulmonary endothelial 

cells. 
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3.2 Materials and Methods 

3.2.1 Patient details 

Serum and BAL-f were obtained from individuals with intermittent, mild 

persistent or moderate persistent atopic asthma, according to GINA 

guidelines (Global Initiative for Asthma, Global Strategy for Asthma 

Management and Prevention, NIH Publication, 2005). Patients were included 

if they had asthma symptoms in the preceding 12 months, a positive 

mannitol/methacoline bronchial provocation challenge test and fewer than 5 

pack year history of smoking. Patients were excluded if their baseline forced 

expiratory volume in the first second (FEV1) was less than 60% predicted. 

Non-asthmatic individuals had no history of asthma or other lung disease, 

had normal baseline spirometry (at least 80% predicted), negative 

mannitol/methacoline bronchial challenge test and no significant 

bronchodilator reversibility (12% and 200mL improvement in FEV1).  In this 

chapter these individuals will be referred to as healthy controls. 

 

Mannitol/methacoline bronchial provocation challenge tests were performed 

by Dr Melissa Baraket, whereby volunteers were given increasing 

concentrations of mannitol/methacoline up to a final concentration of 

6.1µmol or a fall in FEV1 of >20% in which case the test was terminated. 

Bronchoalveolar lavage was performed by the instillation of 0.9% sodium 

chloride solution (4 successive aliquots of 60mL, total 240mL) warmed to 

37˚C into the right middle lobe which was then aspirated for collection in a 
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sterile glass bottle (chilled to prevent cellular adhesion to the glass). 

Collection of samples was performed by Dr Melissa Baraket from volunteers 

participating in a clinical study.  

ASM cells, fibroblasts and endothelial cells were isolated from explanted 

lung and resections. ASM cells were also isolated from biopsies. Complete 

patient details are outlined in table 3.1. 
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Table 3.1: Patient details 

Patient # Age Sex Disease Type of sample Derived from 

1 26 Male Healthy control Serum, BAL-f Study participant 

2 22 Male Healthy control Serum, BAL-f Study participant 

3 33 Male Healthy control Serum, BAL-f Study participant 

4 25 Female Healthy control Serum, BAL-f Study participant 

5 26 Male Asthmatic a Serum, BAL-f Study participant 

6 30 Male Asthmatic b Serum, BAL-f Study participant 

7 21 Male Asthmatic a Serum, BAL-f Study participant 

8 21 Male Asthmatic a Serum, BAL-f Study participant 

9 20 Male Asthmatic b Serum, BAL-f Study participant 

10 22 Male Asthmatic b Serum, BAL-f Study participant 

11 27 Male Asthmatic a Serum, BAL-f Study participant 

12 21 Male Asthmatic b Serum, BAL-f Study participant 

13 23 Male Asthmatic a Serum, BAL-f Study participant 

14 64 Female Emphysema Fibroblast cells Lung resection 

15 55 Male Emphysema Fibroblast cells Lung resection 

16 44 Male Pulmonary 

fibrosis 

Fibroblast cells Lung resection 

17 74 Male Carcinoma ASM cells Lung resection 

18 75 Male Carcinoma ASM cells Lung resection 

19 20 Male Healthy control ASM cells Endobronchial 

biopsy 

a-100µg fluticasone twice daily, b- 500µg fluticasone twice daily 
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Patient # Age Sex Disease Type of sample Derived from 

20 56 Female Emphysema  Pulmonary 

endothelial cells 

Explanted lung 

21 23 Male Bronchiesctasis 

 

Pulmonary 

endothelial cells 

Explanted lung 

22 53 Male Bronchiectasis Pulmonary 

endothelial cells 

Explanted lung 

23 55 Male Emphysema  Pulmonary 

endothelial cells 

Explanted lung 

24 64 Female Pulmonary 

fibrosis 

Pulmonary 

endothelial cells 

Explanted lung 

25 56 Female Asthmatic Biopsy Endobronchial 

biopsy 

26 20 Male Asthmatic Biopsy Endobronchial 

biopsy 

27 42 Male Asthmatic Biopsy Endobronchial 

biopsy 

28 45 Male Asthmatic Biopsy Endobronchial 

biopsy 

29 60 Male Asthmatic Biopsy Endobronchial 

biopsy 

30 38 Female LAM ASM Cells Explanted lung 

31 39 Female LAM ASM Cells Explanted lung 

32 46 Female LAM ASM Cells Explanted lung 

33 40 Female LAM ASM Cells Explanted lung 

34 56 Female LAM ASM Cells Explanted lung 

a-100µg fluticasone twice daily, b- 500µg fluticasone twice daily 
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3.2.2 Airway smooth muscle cell isolation 

 

ASM cells were isolated as previously described (Johnson et al., 2001). 

Bronchial airways were dissected from the surrounding parenchyma and 

washed firstly in 70% alcohol followed by Hanks buffered salt solution 

(Trace Scientific, Melbourne, AUS) and cut longitudinally. The bronchus 

was then pinned down in a sterile petri dish with the epithelial surface facing 

upwards. With the use of a dissecting microscope, the epithelium was 

removed with fine forceps in order to expose the smooth muscle bundles. The 

smooth muscle bundles were dissected free from the surrounding tissue and 

placed in a sterile tube containing Hanks buffered salt solution (Trace 

Scientific). The isolated smooth muscle bundles were centrifuged at 150 x g 

for 5 minutes. Isolation medium was aspirated and isolated pieces of muscle 

were placed into 25cm2 vented tissue culture flasks (Becton and Dickinson 

(BD) Franklin Lakes, UA, USA) containing 2.5mls Dulbecco’s Modified 

Eagle’s Medium (DMEM, Invitrogen, Carsbad, CA, USA) supplemented 

with 10% foetal bovine serum (FBS, JRH Biosciences, Melbourne, AUS), 

20U/ml penicillin, 20g/ml streptomycin, and 2.5g/ml amphotericin and 

placed in a humidified CO2 incubator (5% CO2 in air) and maintained at 

37°C. Following 2 weeks of culture at 37°C, 5% CO2, the medium was 

aspirated and fresh medium was added. Cells were confluent in 

approximately 2-3 weeks, and were subcultured (following trypsinisation, see 

below). ASM cells used in this chapter were all between passage 5-7. 
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ASM cells were subcultured using the following procedure. Growth medium 

was aspirated from the culture flasks. Cells were washed in Hanks balanced 

salt solution (Trace Scientific), and incubated with 0.05% trypsin (w/v) 

(Sigma, St Louis, MO) supplemented with 1mM ethylenediaminetetraacetic 

acid solution salt (EDTA) (Biolab Australia, VIC, Australia) in DMEM for 3 

minutes. Confirmation of detachment of cells was obtained using 

microscopy. Trypsinisation was stopped by the addition of 3 times the 

volume of growth medium. The cells were centrifuged at 150 x g for 5 

minutes, and resuspended in 1ml of growth medium. Trypan blue exclusion 

was used for cell counting and viability using manual cell counting 

(haemocytometer).  

Smooth muscle phenotype was confirmed by morphology, and positive 

immunofluorescent staining with a specific α-smooth muscle actin antibody 

and a calponin antibody. 

3.2.3 Pulmonary endothelial cell isolation 

 

Human pulmonary endothelial cells were isolated from explanted lungs. 

Blood vessels were dissected free from surrounding tissue, cut longitudinally 

and then cut into approximately 5mm3 segments. Blood vessel segments were 

then placed in digestive buffer (1mg (250U)/ml type 2 collagenase, 1U/ml 

dispase, 10mg/ml bovine serum albumin (BSA), Sigma) and incubated at 

37°C for 10 minutes with agitation every 2 minutes. The supernatants were 

harvested and replaced with fresh digestive buffer every 10 minutes for a 

total of 50 minutes. To stop the reaction, 10% of the final volume of FBS 
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was added to the supernatants before centrifugation at 200g for 5 minutes. 

The cells were washed with nutrient mixture Ham’s F-12 (F-12) 

supplemented with 10% FBS (JRH Biosciences), 10µg/ml endothelial cell 

growth supplement (BD), 20U/ml heparin (Sigma) and 20U/ml penicillin, 

20g/ml streptomycin and 2.5g/ml amphotericin (Sigma) (culture medium). 

They were then re-centrifuged at 200g for 5 minutes before being placed in a 

75cm2 vented tissue culture flask (BD) containing 10ml of culture medium 

and incubated for 1 hour at 37°C 5% CO2. Unattached cells were harvested, 

centrifuged at 200g for 5 minutes and placed in a new 75cm2 vented tissue 

culture flask (BD) (pre-coated with 0.2% (w/v) gelatine (Sigma) containing 

10ml of culture medium. The flask was then maintained at 37°C in a 

humidified CO2 incubator (5% CO2 in air). Cells were confluent in 

approximately 2-3 weeks and were subcultured (following trypsinisation, 

protocol same as in HASM, see above). Endothelial cells used in this chapter 

were all between passage 4-6. 

Each endothelial cell line isolated was stained for CD105 (an endothelial cell 

specific marker) to confirm cell type.  

 

3.2.4 Dot blot 

 

Using specialised dot blotting equipment (Slot Blot manifold, PR 648, GE 

Healthcare Uppsala, Sweden) the amount of tumstatin and goodpasture 

antigen-binding protein (GPBP) in the serum and BAL-f of asthmatic 

individuals, pre and post steroid treatment (inhaled fluticasone propionate 
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either 100µg or 500µg twice daily) and healthy controls was compared. 

Nitrocellulose (NC) paper was cut to size (Hybond-ECL 0.45µm pore size, 

Amersham) and washed in tris buffered saline with 0.05% Tween (T-TBS) 

for 5 minutes before placing in the blot machine. Fifty µl of serum or 

fractionated BAL-f was loaded into each slot and the vacuum applied until 

samples were completely evacuated. Tumstatin (Recombinant peptide, NC1 

domain from bovine collagen IV, Weislab, Lund, Sweden) was used as a 

positive control for the tumstatin blots and protein extracts from non-

asthmatic lung tissue as the GPBP positive control (see below for method). 

The membrane was then washed twice with T-TBS, which was extracted 

with the aid of the vacuum, before being removed from the blotting apparatus 

and blocked in 5% BSA (w/v) in PBS for 1 hour at room temperature. 

Primary antibody, mouse anti-human collagen IV NC1 domain of the α3 

chain (Wieslab) or chicken anti-human collagen IV α3 GPBP (GenWay 

Biotech, San Diego, CA, USA), was added at  1:1200 and 1:100 dilution in 

0.1% BSA /T-TBS respectively and incubated for one hour at room 

temperature. T-TBS was used to wash the membrane (3 times) and the 

secondary antibody was added (rabbit anti-mouse HRP and rabbit anti-

chicken HRP at a 1:2000 dilution in 0.1% BSA/T-TBS (DakoCytomation, 

Glostrup, Denmark, and Abcam, Cambridge, MA, USA) respectively) and 

incubated for 30 minutes at room temperature. The membrane was then 

washed with T-TBS for 15 minutes with a further 2 washes of 5 minutes 

each. The membrane was visualised, the image captured and densitometry 

calculated using a Kodak 4000MM image station, following the addition of 
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chemiluminescent substrate (West Dura Extended, Pierce, Rockford, IL, 

USA).  

 

Protein from non-asthmatic airway tissue was extracted using the following 

method: airway tissue was dissected free from surrounding parenchyma and 

rinsed in PBS before being snap frozen in liquid nitrogen. Tissue was 

pulverised using a mortar and pestle and placed in ice cold buffer solution 

(PBS containing 0.5% sodium deoxycholate, 1% Sodium dodecyl sulphate 

(SDS), 10% protease inhibitor cocktail set III (Calbiochem, San Diego, CA)) 

for 15 minutes. The sample was then heated at 95۫C for 5 minutes and 

centrifuged at 13000rpm for a further 5 minutes. Supernatant was collected 

and stored at -80۫C until required.   

3.2.4.1 Fractionation 

BAL-f and serum samples were fractionated using centrifugal filter devices 

with a 100kDa pore size (Millipore Corporation, Temecula, CA). One ml of 

sample was loaded into the top tube of the device and capped. Tubes were 

then centrifuged at 4000rpm for 5 minutes. Samples from above and below 

the filter, referred to as top and bottom samples, were collected and analysed 

using the dot blot method described above. 

3.2.5 Western blotting 

 

A non-reducing western blot using antibodies against collagen IV α3 NC1 

domain (tumstatin) was performed. Serum samples from asthmatic and health 

control individuals were used at a 1:500 dilution. Twenty µl of sample was 
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added to 20µl of loading buffer (20% glycerol, 1M Tris HCl pH 6.8, 

bromophenol blue) and loaded onto pre-cast gradient gels, 4%-20%, (Biorad, 

Hercules, CA, USA). The gels were run in running buffer (25mM tris, 

192mM glycine, 1% w/v SDS) at 100 Volts for 1hour and 15 minutes.   

Proteins were than transferred onto polyvinylidene difluoride (PVDF) 

membranes using transfer buffer (25nM tris, 192mM glycine) for 1 hour and 

30 minutes at 30 Volts. Five percent BSA/TBS was used to block the 

membranes for 1 hour at room temperature and primary antibody, mouse 

anti-human collagen IV NC1 domain of the α3 chain (Wieslab) was added at 

a 1:2000 dilution and incubated overnight at 4۫C with rocking. Membranes 

were then washed 3 times with T-TBS and incubated with rabbit anti-mouse 

HRP (DakoCytomation) at a 1:1000 dilution for 1 hour at room temperature. 

Membranes were visualised and images captured using the Kodak 4000MM 

image station, following the addition of chemiluminescent substrate (West 

Dura Extended, Pierce, QLD, AUS). A pre-stained SDS-PAGE standard 

broad range ladder was run to confirm band sizes. 

Gels were checked for complete transfer using coomassie blue staining (50% 

methanol, 0.05% coomassie blue) for 2 hours at room temperature with 

rocking. Acetic acid was used to differentiate the staining and gels were de-

stained for 20 minutes. 
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3.2.6 Inhibition of proliferation 

 

ASM cells from asthmatic and non-asthmatic individuals and primary 

pulmonary endothelial cells from non-asthmatic individuals were seeded in 

96 well plates at 1x104cells /cm2, ASM cells in DMEM containing 5% FBS 

and endothelial cells in F-12 10% FBS (growth medium), for a period of 24 

hours.  The cells were then washed three times using Hanks solution and 

placed in DMEM/F-12 containing 0.1% (v/v) insulin transferrin and selenium 

(ITS) (Invitrogen) for 24 hours.  Following washing as before, growth 

medium was added to the cells.  The synthetic tumstatin derived peptides T3 

(Leu-Gln-Arg-Phe-Thr-Thr-Met-Pro-Phe-Leu-Phe-Cys-Asn-Val-Asn-Asp-

Val-Cys-Asn-Phe) (Phoenix Pharmaceuticals, Burlingame, CA) dissolved in 

water or T7 (Thr-Met-Pro-Phe-Leu-Phe-Cys-Asn-Val-Asn-Asp-Val-Cys-

Asn-Phe-Ala-Ser-Arg-Asn-Asp-Tyr-Ser-Tyr-Trp-Leu) (Phoenix 

pharmaceuticals) dissolved in 4% acetonitrile were added at 4.5μM to some 

wells. Four percent acetonitrile alone was used as a vehicle control. The 

peptides were replaced after the initial 24 hours and then after every 48 

hours. Proliferation was assessed using an MTT [3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl tetrazolium bromide] assay (Sigma) at day 3, 7 and 9. Ten 

µl of MTT was added to each well for 5 hours at 37°C followed by the 

addition of 100µl of filtered 10% SDS in 0.01M HCl overnight.  The specific 

absorption of each well was measured using the Spectramax, MZ (Molecular 

Devices, Union City, CA) plate reader at 690nm (reference) and 570nm. 
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3.2.7 2D endothelial cell tube formation 

 

Endothelial cell tube formation in the presence and absence of tumstatin was 

assessed with a commercial tube formation assay (BD BioCoat Angiogenesis 

system-endothelial cell tube formation, BD Biosciences). Primary pulmonary 

endothelial cells were seeded onto the 96 well plate at 4x105 cells/ml in 10% 

FBS F-12 with endothelial cell growth supplement (ECG, BD Biosciences). 

Baseline tube formation was assessed and tumstatin (Recombinant peptide, 

NC1 domain from bovine collagen IV, Weislab) was added in duplicate wells 

in increasing concentrations from 8.4-2800 pg/ml. Following overnight 

incubation (37°C, 5% CO2) tube formation (angiogenesis) was visualised 

using an inverted light microscope. Images were taken using a digital camera 

(Olympus Camedia C-4000 Zoom digital compact camera 4.O megapixel).  

Human umbilical vein endothelial cells (HUVECS) (American Type Culture 

Collection, Manassas, UA, USA) were used in this assay as a positive control 

for tube formation.  

 

The number of tubes per well were counted and statistical analyses (one way 

ANOVA with Dunnett’s post test) were performed.  

 

3.2.8 3D endothelial cell tube formation 

 

Twelve well plates (Falcon BD Labware) were coated with 400µl of Matrigel 

(BD Biosciences) and incubated at 37°C for 1 hour. Primary pulmonary 
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endothelial cells were seeded into each well of the 12 well plates at 4x104 

cells/ml in 10% FBS/F-12 with endothelial cell growth supplement in the 

presence of VEGF165 100ng/ml (R&D Systems), angiopoietin-1 (Ang-1) 

100ng/ml (R&D Systems), ephrin-B2 (Eph-B2) 300ng/ml (R&D Systems) 

and 5% (w/v) fibrin (Sigma-Aldrich). Tumstatin (Recombinant peptide, NC1 

domain from bovine collagen IV, Weislab) was added at 2800 pg/ml in 

duplicate wells. Plates were incubated at 37°C, 5% CO2 for 7 days. Cells 

were restimulated every 48hrs. Images were taken using a digital camera 

(Olympus Camedia-4000 Zoom Digital Compact Camera 4.O megapixel) 

every day for 7 days.  HUVECS (American Type Culture Collection) were 

used in this assay as a positive control for tube formation.  

 

3.2.9  ASM cell supernatants 

 

ASM cells isolated from asthmatic, non-asthmatic and LAM individuals were 

seeded onto six well plates at a density of 1x 104 cells / cm2 in 5% FBS 

/DMEM /1% Ab for 24hrs. Cells were then quiesced, media was aspirated 

and 0.1% BSA DMEM/1% Ab was added for 24hrs to quiesce cells. Media 

was aspirated and TGFβ (1ng/ml), in 625µl volume, was added to stimulate 

the cells for 8hrs. Supernatants were collected at time 0, 4 and 8hrs.  
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3.2.10 VEGF165 and Ang-1 ELISA 

 

Supernatants generated in 3.2.10 were measured for the level of VEGF165 and 

Ang-1 using an ELISA assay.  

Ninety six well plates (Falcon BD Labware) were coated with 50µl/well of 

capture antibody of either mouse anti-human VEGF at 4μg/ml (R&D 

systems) diluted in 0.1M Na2HPO4 buffer or mouse anti-human Ang-1 at 

4μg/ml (R&D systems) diluted in PBS. Paraffin tape was used to seal plates 

and they were incubated overnight at 4۫C. Plates were washed four times in 

PBS/0.05% Tween 20. One hundred µl of 1% BSA in PBS was used to block 

the plates which were incubated at room temperature for 1 hour on an orbital 

shaker before being washed three times using PBS/0.05% Tween 20. 

Samples and standards were added to appropriate wells (50µl/well) and the 

plate sealed with paraffin tape and incubated at 4۫C overnight. Plates were 

washed four times in PBS/0.05% Tween 20. Detection antibody was added to 

wells, anti-mouse VEGF165 antibody at 100ng/ml, anti-mouse Ang-1 

antibody at 200ng/ml, diluted in 1% BSA/PBS/0.05%Tween 20, and 

incubated at room temperature on an orbital shaker for 1hr. PBS/0.05% 

Tween 20 was used to wash the plates six times. One hundred µl of 

streptavidin (conjugated with HRP) (R&D systems, MN, USA) diluted 1:200 

with 1% (w/v) BSA/PBS-Tween was added to each well and incubated at 

room temperature on an orbital shaker for 30 minutes. Plates were washed 

eight times in PBS/0.05% Tween 20 and developed using 50 µL/well of 2-2’-

azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) liquid substrate (ABTS) 
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(Sigma) on an orbital shaker in the dark until colour developed. The reaction 

was stopped using 1 mM phosphoric acid (Sigma) and quantified by reading 

the plate at 450 nm using the Spectramax MZ, plate reader. 

 

Statistical analysis was performed using a one-way ANOVA to compare 

asthmatics versus non-asthmatic and LAM versus non-asthmatics. 

Comparison was also made between BSA and TGFβ-stimulated cells for 

each patient group using a paired students t-test. 
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3.3 Results  

3.3.1 Detection of tumstatin in serum and BAL-f 

 

The presence of tumstatin was assesed in serum samples from asthmatics pre 

and post steroid treatment and healthy control individuals to determine 

whether the absence of tumstatin detected in the airway sections in our 

asthmatic population was lung tissue specific. Serum and BAL-f samples 

were analysed using the dot blot method (figure 3.2). Densitometric 

evaluation showed no significant difference in the levels of tumstatin 

between asthmatics, pre (n=8) and post steroids (n=8) and healthy controls 

(n=6) in both serum and BAL-f samples as shown in figure 3.3. Fractionated 

samples of serum and BAL-f produced a top and bottom sample, whereby the 

top sample contained molecules greater than and the bottom sample 

molecules smaller than 100kDa. These samples were analysed by dot blot for 

the detection of tumstatin. Tumstatin was only detected in the top samples of 

both serum (figure 3.4) and BAL-f (figure 3.5) from asthmatic (n=10), pre 

and post steroids, and healthy controls (n=8).  
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Figure 3.2: Nitrocellulose membrane showing sample detection using the dot 

blot method. Serum or BAL-f samples were loaded onto the membrane and 

visualised using chemiluminescent substrate. Dot blot membrane is 

representative of all membranes run. Intensity of each band was normalised 

to tumstatin or nonasthmatic protein standard.   

Standard 

2.8pg/ml    6.8pg/ml   8.3pg/ml   14pg/ml 

Serum or BAL-f 

samples loaded into 

slots 
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Figure 3.3: Levels of tumstatin in serum (A) and BAL-f (B) from asthmatics pre (n=8) and post (n=8) steroid treatment and from 

healthy control (HC, n=6) individuals were evaluated using a dot blot. The intensity of each band was normalised to an internal 

tumstatin control. No significant difference was seen in level of expression between any of the groups (One way ANOVA). Data are 

expressed as means ± standard error of the mean. 
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Figure 3.4: Representative nitrocellulose membrane showing the detection of 

tumstatin using the dot blot method. Fractionated serum top (Top) and 

bottom (Bot) samples from asthmatic (n=10) pre- (pre) and post (post)-

steroids and healthy control (n=8) individuals. Membrane is representative of 

all membranes developed. 
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Figure 3.5: Representative nitrocellulose membrane showing the detection of 

tumstatin using the dot blot method. Fractionated BAL-f top (Top) and bottom 

(Bot) samples from asthmatic pre- (pre) and post (post)-steroids and healthy 

control individuals. Image is representative of results obtained from asthmatic 

(n=10) pre- and post-steroids and healthy control (n=10). 
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3.3.2 Detection of tumstatin 28kDa molecule 

 

Tumstatin is only active as an angiogenic inhibitor when it is cleaved from 

the collagen IV α3 chain. Results from the fractionated samples of serum and 

BAL-f indicated that the tumstatin detected in serum and BAL-f was of a size 

greater than 100kDa indicating that tumstatin was not in its free 28kDa active 

form in these solutions. To confirm these results the serum samples were 

analysed using western blots. In both the asthmatic (n=10) and healthy 

control (n=8) serum we detected the whole collagen IVα3 chain at 188kDa 

rather than the active tumstatin at 28kDa (figure 3.6).  
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Figure 3.6: Western blot PVDF membrane showing detection of collagen IV 

α3 chain in serum samples from asthmatic and healthy control individuals. 

The band detected at 188kDa shows tumstatin detection as part of the whole 

collagen IV α3 chain. The positive control, recombinant tumstatin peptide 

(TUM) confirmed that the antibody was able to detect cleaved tumstatin at 

28kDa. Image is representative of results obtained from asthmatic (n=10) 

pre- and post-steroids and healthy controls (n=8).  
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3.3.3 T3 and T7 peptides inhibit proliferation of primary pulmonary 
endothelial cells 

 

Tumstatin inhibits the proliferation of endothelial cells (Maeshima et al., 

2000). The T3 and T7 peptides, regions within the tumstatin peptide 

identified to have anti-angiogenic properties, inhibited the proliferation of 

human prostate carcinoma cells and HUVEC’s (Maeshima et al., 2001a). 

However, the effect of both peptides on primary pulmonary endothelial cells 

was unknown. 

The effect of the tumstatin derived peptides T3 and T7 on the proliferation of 

ASM cells was studied in cells from 4 asthmatic and 4 non-asthmatic 

individuals as well as 5 primary pulmonary endothelial cell lines. Tumstatin 

did not inhibit the proliferation of ASM cells from asthmatic (figure 3.7) or 

non-asthmatic (figure 3.8) individuals over a time course of 9 days, but was 

able to significantly inhibit primary pulmonary endothelial cell (n=5) 

proliferation over the same time period (figure 3.9). 
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Figure 3.7: The proliferation of airway smooth muscle cells was not inhibited 

by the addition of T3 [4.5µM] or T7 [4.5µM] tumstatin derived peptides at  

A 3 days, B 7 days or C  9 days in asthmatic (n=4) individuals. Acetonitrile 

(ACETO) was added as vehicle control used to dissolve the T7 peptide. Data 

is expressed as mean ± standard error of the mean. Statistical analysis was 

performed using a paired students t-test. No significant difference were 

observed between peptides and controls.
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Figure 3.8: The proliferation of airway smooth muscle cells was not inhibited 

by the addition of T3 [4.5µM] or T7 [4.5µM] tumstatin derived peptides at A 

3 day, B 7 days or C 9 days in non-asthmatic (n=4) individuals. Acetonitrile 

(ACETO) was added as vehicle control used to dissolve the T7 peptide. Data 

is expressed as mean ± standard error of the mean. Statistical analysis was 

performed using a paired students t-test. No significant differences were 

observed between peptides and controls. 
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Figure 3.9: The proliferation of non-asthmatic primary pulmonary endothelial 

cells (n=5) was inhibited by the addition of T3 [4.5µM]  or T7 [4.5µM] 

tumstatin derived peptides at day A 3 days, B 7 days and C 9 days. 

Acetonitrile was added as vehicle control used to dissolve the T7 peptide 

(ACETO). Data is expressed as mean ± standard error of the mean. Statistical 

analysis was performed using a paired students t-test * p<0.05 compared to 

FBS, # p<0.05 compared to ACETO. 
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3.3.4 Tumstatin inhibits 2D pulmonary endothelial cell tube 
formation 

 

For the first time, the ability of tumstatin to inhibit primary pulmonary 

endothelial cell tube formation in a concentration related manner was 

demonstrated (figure 3.10). The number of tubes formed per well was 

quantified by manual counting. Tumstatin at concentrations of 28 and 

84pg/ml resulted in a small, but statistically significant, reduction in the 

formation of tubes (p<0.05, n=5, repeated measures one way ANOVA with 

Dunnett’s post test). However at a concentration of 280pg/ml approximately 

40% of the tube formation was inhibited. This inhibition was further 

increased to 60% and 75% when cells were treated with 840 and 2800 pg/ml 

respectively (figure 3.11).  

 

3.3.5 Tumstatin inhibits 3D pulmonary endothelial cell tube 
formation 

 

The tube formation assay is an in vitro method for looking at angiogenesis. 

This assay is however limited as it is unable to demonstrate maturation of 

blood vessels. Therefore, a 3D matrigel experimental method was developed 

which was able to sustain tube formation long enough to observe sprouting 

(figure 3.12). Tumstatin was added to this assay at 2800pg/ml and complete 

inhibition of pulmonary endothelial cell tube formation and sprouting was 

observed (n=4) as shown in figure 3.13. 
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Figure 3.10: Tumstatin at the concentrations shown inhibits pulmonary endothelial cell tube formation in a concentration related 

manner. Images (X100) showing 2D pulmonary endothelial cell tube formation (arrows). Images are representative of all cell lines 

tested (n=5) non-asthmatic primary pulmonary endothelial cells. 
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Figure 3.11: The effect of tumstatin on tube formation of primary pulmonary 

endothelial cells. Number of tubes counted per well from non-asthmatic 

(n=5) primary pulmonary endothelial cell lines.* p<0.05 versus 0 Tumstatin, 

# p<0.01 versus 0 Tumstatin (repeated measures one way ANOVA with 

Dunnett’s post test). Data is expressed as mean ± standard error of the mean.    
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Figure 3.12: 3D endothelial cell tube formation showing sprouting (arrows). 

Images a) and c) are at X100 magnification, b) and d) are at X400 

magnification. Image a) and b) are from patient A, images from c) and d) are 

from patient B. Images are representative of all primary pulmonary 

endothelial cell lines tested (n=4). 
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Figure 3.13: 3D tube formation assay showing primary pulmonary 

endothelial cell tube formation a) x100 and b) x200 and inhibition of tube 

formation by tumstatin at 2800pg/ml c) and d) (x100). Black arrows show 

tube formation, yellow arrow shows sprouting.  Images a) and b) showing 

tube formation in growth medium alone. Images c) and d) showing tube 

formation in the presence of growth medium and tumstatin. Images are 

representative of all primary pulmonary endothelial cell lines tested (n=4). 
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3.3.6 Levels of VEGF and Ang-1 in TGFβ stimulated ASM cells 

 

VEGF is a known potent angiogenic stimulator that requires Ang-1 to 

stabilise blood vessel formation. ASM cells from asthmatic, non-asthmatic 

and LAM individuals were stimulated with TGFβ (1ng/ml) and the level of 

VEGF and Ang-1 released was measured. VEGF release was significantly 

increased in TGFβ stimulated ASM cells from asthmatics (n=5 p<0.02 one-

way ANOVA) and LAM (n=5 p<0.05 one-way ANOVA) individuals 

compared to non-asthmatics (n=5) (figure 3.14). Significant difference was 

also seen within each group when comparing TGFβ stimulated cells to their 

BSA control (asthmatic p<0.01, LAM p<0.05 and non-asthmatic p<0.05 

(paired students t-test)). However, TGFβ did not stimulate the release of 

Ang-1 in asthmatic (n=3), LAM (n=3) or non-asthmatic (n=3) ASM cells 

(Fgure 3.15).   
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Figure 3.14:  Levels of VEGF released into the supernatants by ASM cells in 

BSA and ASM cells stimulated with TGFβ from asthmatic (n=5), LAM 

(n=5) and non-asthmatic (n=5) individuals. (* p<0.02 compared to non-

asthmatic, one-way ANOVA, † p<0.05 compared to non-asthmatic, one-way 

ANOVA, # p<0.01 compared to BSA paired students t-test, ‡ p<0.05 

compared to BSA paired students t-test). 
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Figure 3.15:  Levels of Ang-1 released into the supernatants by ASM cells in 

BSA and ASM cells stimulated with TGFβ from asthmatic (n=3), LAM 

(n=3) and non-asthmatic (n=3) individuals. Data are expressed as mean ± 

standard error of the mean. 
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3.4 Discussion 

 

Tumstatin was detected in serum and BAL-f from asthmatic and healthy 

control individuals, with no significant difference in the levels of expression 

between the two groups. Detection of tumstatin was shown to be as part of 

the whole collagen IV α3 chain and not in its cleaved and therefore active 

form. Recombinant T3 and T7 peptides inhibited primary pulmonary 

endothelial cell proliferation but had no effect on ASM cells. Tumstatin 

inhibited primary pulmonary endothelial cell tube formation. Levels of 

VEGF released were shown to be increased in asthmatic and LAM ASM 

cells stimulated with TGFβ compared to non-asthmatics, whereas Ang-1 

levels were the same in all groups.  

 

 

Tumstatin was shown to be absent in the airways of asthmatic and LAM 

individuals (Chapter 2) but present in non-asthmatics. Therefore, it was 

necessary to determine if this absence was a systemic feature of asthma and 

LAM or if it was limited to the airway. We detected tumstatin in both serum 

and BAL-f from asthmatic individuals. However, the levels of tumstatin 

detected in serum from asthmatic and healthy control individuals’ serum and 

BAL-f were not significantly different. Unfortunately it was not possible to 

investigate this in LAM individuals due to the lack of sample availability.  
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Detection of tumstatin in the serum suggests that tumstatin is being produced 

by asthmatic patients. This also indicates that the absence may be lung 

specific, but detection of tumstatin in the BAL-f samples indicates that 

tumstatin is available within the vicinity of the airways. While tumstatin is 

present in the airway, the question arises as to whether it is in an active state. 

 

Detection of tumstatin in fractionated samples of serum and BAL-f, which 

rendered a top sample consisting of molecules of size greater than 100kDa 

and a bottom sample of molecules less than 100kDa, showed tumstatin to be 

detectable only in the top samples from both serum and BAL-f indicating it 

was part of the whole collagen IV molecule and not cleaved. Similarly, using 

western blotting, tumstatin was detected in the serum of asthmatics and 

healthy controls and was part of the whole collagen IV α3 chain and not 

cleaved tumstatin. Tumstatin is only active as an angiogenic inhibitor when it 

is cleaved from the remaining components of the collagen IV α3 chain. 

Hamano et al. showed that MMP-9 was most effective in releasing the NC1 

domain, tumstatin, from the collagen IV α3 chain in the glomerular basement 

membrane. They showed that mice deficient in MMP-9 had significantly 

decreased levels of tumstatin in their serum (Hamano et al., 2003). Levels of 

MMP-9 are increased in bronchial biopsy specimens, blood, induced sputum 

and BAL-f from patients with severe or uncontrolled asthma (Hoshino et al., 

1998a; Lemjabbar et al., 1999). Other proteases, including MMP-2 have been 

reported to cleave tumstatin but with less efficiency (Hamano et al., 2003).  
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Increased MMP-2 levels are associated with the increased cellular 

proliferation in LAM individuals (Matsui et al., 2000). The levels of MMP-9 

have not been examined in these individuals. The increase in MMP-2 levels 

in the airways of LAM individuals could potentially cleave tumstatin from 

the BM and possibly lead to its clearance from the airway. ASM cells from 

asthmatics on the other hand produce less pro and active MMP-2 compared 

to non-asthmatics, therefore eliminating MMP-2 as a candidate for the 

cleaving of tumstatin in the asthmatic airways. Whilst this study did not 

directly examine the relationship between MMPs and tumstatin in the airway 

it would be of interest to determine the association of these important factors 

in the future.  

 

Our findings suggest that the collagen IV α3 chain is present in the airways 

of asthmatics and LAM individuals as reflected in the serum and BAL-f but 

is not recognised by the antibody in the airway sections. It can be postulated 

that the increase in the levels of MMP-9 in asthmatic airways (Cataldo et al., 

2002; Ko et al., 2005) release tumstatin from the BM and potentially allow 

its clearance from the airway. The presence of another protease, yet to be 

identified, may be responsible for the cleavage and clearance of tumstatin in 

the asthmatic and LAM airways. It is also possible that tumstatin undergoes a 

structural change such that the antigenic site is no longer recognisable by the 

antibody. 

 



 

  131

Levels of VEGF in TGFβ-stimulated ASM cells were increased in asthmatics 

and LAM individuals compared to non-asthmatic individuals. However, 

levels of Ang-1 expression were the same in asthmatic, LAM and non-

asthmatic individuals indicating that Ang-1 expression is not modulated by 

TGFβ. These results further confirm the inbalance between the pro- and anti-

angiogenic factors in the asthmatic and LAM airways. The presence of Ang-

1, despite it not being modulated, in this system confirms the potential for 

blood vessel stabilisation induced by the increased VEGF released by the 

ASM cells. 

 

Proliferation of ASM cells was not inhibited by the addition of the tumstatin 

derived T3 and T7 peptides, whereas primary pulmonary endothelial cell 

proliferation was inhibited by both peptides. For the first time, the ability of 

tumstatin to inhibit primary pulmonary endothelial cell tube formation was 

demonstrated and that inhibition was shown to be concentration dependent. 

Pulmonary vessels were used to isolate the endothelial cells used in these 

experiments. Ideally it would have been desirable to be able to isolate 

bronchial vessels, however this was not possible due to the limitations of the 

currently available methods.  

 

The ability of these peptides to only inhibit endothelial cell proliferation is 

consistent with previous findings by Maeshima et al. who showed the 

inhibition of proliferation of bovine pulmonary arterial endothelial cells, 

HUVECs and a human prostate adenocarcinoma cell line by T3 and T7 
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peptides  (Maeshima et al., 2001b). The inability of these peptides to inhibit 

the proliferation of ASM cells indicates the specificity of tumstatin’s 

inhibitory action. ASM cells do express the αvβ3 integrin (chapter 2) which 

is required by tumstatin for the inhibition of angiogenesis. This would 

suggest that tumstatin should be able to interact with these cells. However, 

the effects of tumstatin on other funcions (such as cytokine release and 

extracellular matrix protein production) of ASM cells were not examined in 

this study.  It would be of interest to characterise such effects in the future.   

The lack of effect of tumstatin in ASM cells despite the presence of the 

relevant integrin would indicate that the action of tumstatin in inhibiting 

proliferation is cell type specific.  

 

Addition of tumstatin, in both the 2D and 3D tube formation assays, inhibited 

pulmonary endothelial cell tube formation in a concentration-related manner. 

This is the first report on the effect of tumstatin on primary pulmonary 

endothelial cells, and the effectiveness of tumstatin as an angiogenic inhibitor 

in the airways had not previously been examined. The results confirm the 

potential for tumstatin to act as an angiogenic inhibitor in the airways as it is 

now clear that tumstatin is able to exert its anti-angiogenic properties on 

pulmonary endothelial cells. The highest concentration of tumstatin 

administered in these experiments was approximately 300-fold lower than 

physiological levels reported in mouse models (Hamano et al., 2003), yet it 

was able to inhibit almost all tube formation. It is expected that lower 

concentrations of tumstatin would be effective in a cell culture system as it is 
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less complex than in an animal model. However, the ability to inhibit tube 

formation at such a low concentration suggests that tumstatin may have a 

strong potency in the airways. Tumstatin causes tumour regression by 

inhibiting aberrant blood vessel formation resulting from the presence of the 

tumour. So, having demonstrated tumstatin’s ability to inhibit blood vessel 

formation in the airways, the administration of tumstatin to asthmatic and 

LAM airways can potentially inhibit the angiogenesis seen in these airways 

and as a consequence decrease the amount of smooth muscle present. 

Decreasing the amount of smooth muscle present in the airways of asthmatics 

and LAM patients would potentially decrease airway hyperresponsiveness 

(AHR).  

 

Improvement of AHR by reducing the ASM in the airways has been 

demonstrated with the use of thermoplasty (Cox et al., 2007). This method 

uses controlled thermal energy which is delivered to the airway wall during a 

series of bronchoscopies (Pavord et al., 2007).  However, this is not only an 

invasive technique but is only applied to airways between three and 10mm in 

diameter. Administration of an alternate therapy using a less invasive method 

would be a more desirable way to decrease smooth muscle bulk.  

 

Tumstatin has demonstratable effects in cell culture systems, however it is 

important to examine these effects in an in vivo system as it is a multicellular 

environment which could potentially influence the action of tumstatin. 

Chapter 4 in this thesis describes the effects of tumstatin in a virus-induced 
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mouse model of angiogenesis as well as a mouse model of ovalbumin-

induced airway hyperresponsiveness.   
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Chapter 4  

Effect of tumstatin in the 
airway ‘in vivo’ 
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4.1  Introduction 

 

Tumstatin is a potent angiogenic inhibitor. Its ability to inhibit tumour 

growth and endothelial cell proliferation as well as induce apoptosis of 

proliferating endothelial cells has been well documented (Maeshima et al., 

2000; Maeshima et al., 2001a; Maeshima et al., 2001b).  

 

Knock-out mouse models have been used to further characterise the role of 

tumstatin. Hamano et al. using a collagen IV α3 chain knock-out mouse 

model (Andrews et al., 2002) showed that tumours from lewis lung 

carcinoma cells placed on the backs of tumstatin deficient mice grew at a 

faster rate than those placed on wild-type mice and were eventually more 

than twice the size of wild-type tumors.  Upon administration of tumstatin, at 

physiological concentrations (336±28ng/ml), the tumour growth rate 

decreased to that in wild-type mice (Hamano et al., 2003). Characterisation 

of the role of tumstatin in an animal model of allergic airway disease has not 

previously been reported. 

 

Animal models of asthma are now widely used to investigate both the 

immunological and physiological events occurring in this disease. The 

current chronic mouse model of asthma, which uses repetitive allergen 

exposure, is able to mimic important features seen in this human disease such 

as Th-2 dependent allergic inflammation, airway remodelling and airway 
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hyperreactivity (Braun et al., 2006). However, this model is still missing 

some aspects of this human disease like acute ‘asthma attacks’.  

 

Respiratory syncitial virus (RSV) is one of the respiratory viruses implicated 

in asthma exacerbations (Dodge et al., 1996). Infection with RSV occurs in 

annual epidemics infecting almost all children within the first two years of 

life (Weinberger, 2003) and is the most common cause of wheezing episodes 

in children. It has been reported that RSV infection causes vascular 

endothelial growth factor (VEGF)- a known angiogenic promoter- release in 

the airways (Lee et al., 2000). Human bronchial epithelial cells were infected 

with RSV and levels of VEGF were increased only two hours post infection. 

Increased VEGF levels were sustained for up to 48 hours. Mouse models of 

RSV infection have been used to examine the pathogenesis of allergic 

responses to inactivated RSV virions and individual RSV components. This 

model is limited, as RSV is not a mouse pathogen and therefore produces 

only minimal symptoms and rapidly aborted primary infections (Byrd et al., 

1997). Bonville et al. established a mouse model of infection using a natural 

mouse pathogen pneumonia virus of mice (PVM) which resulted in an 

infection that replicated many of the symptoms of severe RSV infections in 

humans (Bonville et al., 2003). RSV and PVM are both from the same 

family- Paramyxoviridae, subfamily Pneumovirinae. Chambers et al. 

isolated and characterised the nine distinct genes of PVM. They showed that 

the nucleoprotein and phosphoprotein in both PVM and RSV have conserved 

epitopes, suggesting that the immune response to these viruses would be 
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similar in their respective natural hosts (Chambers et al., 1990). PVM mouse 

models have the potential to be used as a representative model of human 

respiratory infection. 

 

A widely used mouse model of allergic airway disease is the chronic 

ovalbumin challenged BALB/c mice model. This model was shown to 

exhibit features of airway remodelling such as increased smooth muscle in 

the airways and angiogenesis in both the bronchus and surrounding 

parenchyma, as well as airway hyperresponsiveness (AHR) (Lee et al., 

2006). Mice chronically exposed to ovalbumin (OVA) developed increased 

angiogenesis (Lee et al., 2006). Recently, Asosingh et al. also reported 

increased angiogenesis in airway sections from ovalbumin-challenged mice 

(Asosingh et al., 2007). Furthermore, Suzaki et al. assessed AHR as an 

increase in PenH (enhanced respiratory pause) in response to increased doses 

of methacholine (Suzaki et al., 2005). PenH is representative of the phase 

shift in thoracic and nasal flow curves; increased phase shift correlates with 

increased respiratory resistance. The authors showed that ovalbumanin-

sensitised mice had an increased PenH value compared to control mice 

(Suzaki et al., 2005).  However, assessment of AHR using the the whole-

body plethysmograph allows for measaurements of parameters such as 

resistance and compliance (Braun et al., 2006), which are thought to provide 

better correlates to human asthma. In addition, this method is suitable for 

longitudinal studies and allows large throughput of animals for screening 

purposes which made it more suitable for this study.  Therefore, the 
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assessment of AHR in this chapter was performed using the whole-body 

plethysmograph.   

 

Endostatin is an endogenous angiogenic inhibitor that has been studied in a 

mouse model of asthma. Suzaki et al. showed, using ovalbumin-sensitised 

mice, that administration of endostatin/Fc inhibited AHR and pulmonary 

allergic inflammation. They also examined the expression of CD31 (an 

endothelial cell marker) and found it was reduced in the endostatin treated 

mice (Suzaki et al., 2005).  

 

Angiogenesis is a critical point in the development of most human tumours 

and angiogenic inhibitors have been trialled in mouse models to assess their 

ability to cause tumour regression. TNP-470, a synthetic analogue of 

fumagillin known to block a broad spectrum of angiogenic regulators, was 

shown to inhibit the growth of both B16 melanoma and AKR lymphoma 

tumours in mice (Kaptzan et al., 2006). The ability of TNP-40 to inhibit 

angiogenesis in the airways was not examined. 

 

The specific aims of this study were: 

1) to identify the time required for angiogenesis to develop in the airways 

using a viral mouse model  

2) to identify the efficacy of tumstatin in inhibiting AHR and angiogenesis in 

the airway in vivo using a mouse model of allergic airway disease. 
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4.2 Materials and Methods 

 

Mouse models were generated in collaboration with: Prof Paul S. Foster, 

A/Prof Philip M. Hansbro and Dr Nicole G. Hansbro,  

Priority Research Centre for Asthma and Respiratory Disease, School  

of Biomedical Sciences, Faculty of Health, The University of   

Newcastle and Vaccines, Immunity, Viruses and Asthma Group, Hunter   

Medical Research Institute, Newcastle, Australia; and the  Division of 

BioSciences, John Curtin School of Medical Research, Australian National 

University, Canberra, Australia.  

 

All measurements in the live mice were carried out by the collaborators in 

their laboratories in Newcastle. All experiments were approved by The 

University of Newcastle Animal Care and Ethics Committee (approval # 

1001). 

 

4.2.1 Mouse model of respiratory infection with pneumonia virus 
of mice (PVM)   

 

Newborn BALB/c mice (<24 hrs old) were infected intranasally (IN) with a 

low dose (2.5 plaque forming units) of PVM strain J3666 in 5ul Dulbecco's 

Modified Eagle's Medium (DMEM) containing 10% foetal bovine serum 

(FBS). Tumstatin (Recombinant peptide, NC1 domain from bovine collagen 

IV, Weislab, Lund, Sweden) reconstituted in phosphate buffered saline 
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(PBS) was given to the mice IN at 300ng per 20g body weight. Tumstatin 

was administered daily for the first 10 days, and then at days 21, 24 and 27 

post infection (figure 4.1). As per ethical guidelines, mice were lightly 

anaesthetised once they were 10 days old with isofluorane prior to the 

administration of tumstatin. Mice were sacrificed and the left lung removed, 

and fixed in 4% formaldehyde solution and paraffin embedded prior to 

immunohistochemical analysis.  

 

 

 

 

 

 

 

 

 

Figure 4.1: Pneumonia virus of mice (PVM) mouse model regime. 
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4.2.2 Mouse model of ovalbumin-induced airway 
hyperresponsiveness 

 

Adult BALB/c mice (6-8 weeks old, ARC, Perth, Australia) were 

administered ovalbumin (OVA) on days 0, 7, 14 and 21: 25 μg OVA and 1 

mg aluminium hydroxide in 200 μl sterile PBS were given subcutaneously 

(SC).  On days 26, 29 and 31, 20 ng OVA in 50 μl sterile PBS was 

administered intranasally (IN), and then twice weekly from days 32 – 115.  

Some of the mice were administered tumstatin (reconstituted in PBS) IN at 

either 600ng or 300ng per 20g body weight once a day from days 25-115. 

OVA was omitted from sham-treated mice (figure 4.2). 
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Figure 4.2: Chronic asthma mouse model regime. 
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The airway resistance to inhaled methacholine (10 mg/ml) was calculated on 

day 115 (see following for method), at this time point the animals were 

sacrificed and the left lung removed and inflated with 30% formalin/PBS for 

10 minutes. Lungs were then fixed in 4% formaldehyde solution and paraffin 

embedded prior to use in immunohistochemical analysis. 

 

AHR was assessed to inhaled methacholine  in vivo by measuring changes in 

transpulmonary resistance (RL) and dynamic compliance (Cdyn) using a 

supine whole-body plethysmograph (Buxco Electronics Inc, USA) attached 

to a computer. Mice were anaesthetised with an intraperitoneal injection of 

ketamine/xylazine and cannulated via the trachea with an 18G metal tube. 

Mice were mechanically ventilated by a minivent mouse ventilator at a rate 

of 120 breaths per minute and a tidal volume of 8ml/kg. Changes in lung 

volume were detected by a calibrated differential transducer connected to the 

plethysmograph chamber lumen which measured volume changes due to 

thoracic expansion with ventilation. A pressure transducer with a port near 

the tracheal tube measured alterations in forced ventilation tracheal pressure 

as a function of airway calibre. Aerosolised acetyl-β-methacholine 

(10mg/ml) in PBS generated by an ultrasonic nebuliser was delivered directly 

to the lungs via the inspiratory line for 5 minutes. The peak response to 

methacholine was compared to the response to saline alone. 

 

 



 

  145

4.2.3 Statistical analysis 

 

For the analysis of AHR comparison between control (sham mice) and OVA 

exposed mice a one way analysis of variance (ANOVA) with Dunett’s 

Multiple Comparison test was used. For comparison between OVA and 

tumstatin administered mice a two way ANOVA with Bonferroni post test 

was used. For the analysis of airway conductance a two way ANOVA with 

Bonferroni post test was used. 

 

4.2.4 Detection of angiogenesis in PVM model 

 

Paraffin embedded lung tissue sections were placed in xylene for 30 mins for 

de-paraffinisation, and re-hydrated through graded alcohol. Sections were 

blocked with a pre-made peroxidase blocking agent (DakoCytomation, 

Glostrup, Denmark) for 5 minutes. Sections were then washed with PBS and 

primary antibodies added, goat anti-mouse CD31 (PECAM-1) (Santa Cruz 

Biotechnology Inc, Santacruz, CA, USA) at 1ng/ml and rabbit anti-mouse 

von Willebrand factor (vWF) (Santa Cruz Biotechnology Inc) at 1ng/ml, and 

incubated at room temperature for one hour. Both CD31 and vWF are blood 

vessel markers. Sections were washed in PBS and the secondary antibodies 

added, pre-made anti-rabbit horseradish peroxidase (HRP) 

(DakoCytomation) and rabbit anti-goat HRP (DakoCytomation) respectively, 

and incubated at room temperature for one hour. Sections were washed in 

PBS for 5 minutes and a pre-made substrate chromogen, liquid 3,3’-
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diaminobenzidine (DAB) (DakoCytomation), was added to the sections and 

incubated for 5 minutes at room temperature. Sections were then washed in 

distilled water for 5 minutes and mounted using an aqueous mounting 

medium (Faramount, DakoCytomation) and coverslipped. Images were taken 

on an Olympus fluorescence microscope BX51 and captured using Leica 

imaging software IM2000 (Leica, Heerbrugg St Gallen, Switzerland).  

Four independent observers counted the number of blood vessels in four 

random fields from each of the six mice at days 14, 28 and 35, in comparison 

to images of the appropriate isotype controls, for each factor (CD31 or vWF) 

investigated. 

 

4.2.5 Detection of angiogenesis in ovalbumin model 

 

Paraffin embedded lung tissue sections were placed in xylene for 30mins, for 

de-paraffinisation and then re-hydrated through graded alcohol. Four slides 

per lung were selected at random for staining. Sections were blocked with 

peroxidase blocking agent (DakoCytomation) for 5 minutes before washing 

with PBS and the addition of primary antibody rabbit anti-mouse vWF (Santa 

Cruz Biotechnology Inc.) at 1ng/ml, for one hour at room temperature.  

Sections were washed in PBS and the secondary antibody added, anti-rabbit 

HRP (DakoCytomation) and incubated at room temperature for one hour. 

After washing in PBS for 5 minutes the substrate chromogen, liquid DAB 

(DakoCytomation) was added to the sections and incubated for 5 minutes at 

room temperature. A final wash in distilled water for 5 minutes was carried 
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out before sections were mounted using an aqueous mounting medium 

(Faramount, DakoCytomation) and coverslipped. Images were taken on an 

Olympus BX51 fluorescence microscope and captured using Leica imaging 

software IM 1000 (Leica). 

 

4.2.6 Statistical analysis 

 

Four mice from each group, SAL/SAL/OVA, OVA/OVA/OVA, 

OVA/OVA/TUM 300, OVA/OVA/TUM 600, were analysed. For each 

mouse, four slides per lung were selected at random and the entire section 

imaged. The total area of each field was measured and the number of blood 

vessels and the area of each vessel calculated. The mean blood vessel area, 

per field, was determined by dividing the total blood vessel area by the 

number of blood vessels in that field normalised to the total area of the 

section.  
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4.3 Results 

4.3.1 Detection of angiogenesis in PVM model 

 

We assessed the lungs of the mice (six per timepoint), which received 

treatment with PVM alone, for the presence of angiogenesis. There was a 

clear increase in blood vessel number at day 28, compared to the earlier time 

points (days 7 and 14) which subsequently decreased at the latter time points 

(days 35 and 49) (figure 4.3). 

The mean number of blood vessels per image (combined CD31 and vWF) at 

day 14 was 0.63 ± 0.31 (SEM), which dramatically increased at day 28 to 

35.6 ± 3, and subsequently reduced to 0.34 ± 0.34 by day 35.  
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Figure 4.3: Detection of angiogenesis, in PVM infected mice, at days 7, 14, 

28, 35 and 49 using CD31 and vWF staining. Positivity for the antibodies is 

indicated by the brown staining (DAB) compared to the isotype controls. 

These immunohistochemical images are derived from 5 different mice (one 

mouse per timepoint) and are representative of all six mice tested at each 

time point.   
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4.3.2 Inhibition of angiogenesis by tumstatin in PVM mouse model 

 

The results indicated angiogenesis was occurring at day 28, therefore we 

investigated whether the addition of tumstatin to this system could inhibit the 

development of pulmonary angiogenesis. As shown in figure 4.4, tumstatin at 

300ng/20g body weight was able to inhibit pulmonary angiogenesis seen in 

this model. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Detection of angiogenesis, in PVM infected mice, at day 28 with 

and without 300ng/20g body weight tumstatin (T300) using CD31 and vWF 

staining. Positivity for the antibodies is indicated by the brown staining 

(DAB) compared to the isotype controls. These immunohistochemical 

images are derived from 2 different mice (one mouse per treatment group) 

and are representative of all six mice which had PVM infection alone and the 

4 mice which received tumstatin treatment in addition to PVM infection. 
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4.3.3 Inhibition of angiogenesis by tumstatin in ovalbumin mouse 
model 

 

An increase in the number of blood vessels was observed in airway sections 

taken from OVA (OVA/OVA/OVA)-challenged mice when compared to the 

control mice (SAL/SAL/OVA) as shown in figure 4.5. Mice that were 

challenged with ovalbumin and administered with 300 or 600 ng/20g body 

weight of tumstatin (OVA/OVA/TUM) showed significant inhibition of 

angiogenesis compared to the untreated group (OVA/OVA/OVA).  

The OVA/OVA/OVA mice had significantly more blood vessels and greater 

blood vessel area than the SAL/SAL/OVA, OVA/OVA/TUM 300 and 

OVA/OVA/TUM 600 mice. There was no significant difference between the 

SAL/SAL/OVA, OVA/OVA/TUM 300 and OVA/OAV/TUM 600 mice 

(figure 4.6). 
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Figure 4.5: Detection of Angiogenesis in a mouse model of airway 

hyperresponsiveness. Angiogenesis in airway sections from control 

(SAL/SAL/OVA), ovalbumin-challenged (OVA/OVA/OVA), ovalbumin and 

tumstatin 300ng/20g body weight (OVA/OVA/TUM 300) and ovalbumin 

and tumstatin 600ng/20g body weight (Ova/Tum 600) mice was detected 

using vWF staining.  Blood vessels (indicated by arrows) are stained brown 

(DAB). Images are representative of results obtained from 4 mice in each 

group. 

SAL/SAL/OVA OVA/OVA/OVA OVA/OVA/TUM 300 OVA/OVA/TUM 600 
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Figure 4.6:  Tumstatin inhibits blood vessel formation in the airway of OVA 

treated mice. The number of blood vessels counted per area and the total 

blood vessel area divided by the total field area divided by the blood vessel 

count in airway sections from ovalbumin-challenged mice (OVA), control 

mice (SAL), ovalbumin and tumstatin 300ng/20g body weight (Tum 300) 

and ovalbumin and tumstatin 600ng/20g body weight (Tum 600). Results 

were obtained from 4 mice from each group. Data are expressed as mean ± 

standard error of the mean. (* p< 0.02 compared to OVA, one way 

ANOVA). 
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4.3.4 Effect of tumstatin on AHR in ovalbumin mouse model 

 

The mice which received treatment with OVA alone demonstrated an 

increase in airway resistance to methacholine at a concentration of 10mg/ml 

in comparison to control animals demonstrating that a murine model of AHR 

had been successfully established (p<0.01, n=4, one way ANOVA with 

Dunnett's Multiple Comparison Test, figure 4.7). The mice which received 

concurrent treatment of OVA with tumstatin at 300 ng and OVA had reduced 

airway resistance to methacholine (10 mg/ml) in comparison to OVA alone 

(p<0.01, n=4, two way ANOVA with Bonferroni post tests, figure 4.8). 

Moreover, the mice which received concurrent treatment of OVA with 

tumstatin at 600 ng also had reduced airway resistance to methacholine (10 

mg/ml) in comparison to OVA alone (p<0.01, n=4, two way ANOVA with 

Bonferroni post tests, figure 4.7). Similarily, mice which were sensitised and 

subsequently chronically exposed to OVA had decreased airway conductance 

in comparison to sham-treated mice (p<0.05, n=4, two way ANOVA with 

Bonferroni post tests). However concurrent administration of tumstatin and 

OVA significantly increased airway conductance in comparison to the OVA 

sensitised and exposed group only in the mice administered 600 ng tumstatin 

(p<0.05, n=4, two way ANOVA with Bonferroni post tests figure 4.8). 
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Figure 4.7: AHR induced by inhalation of methacholine (10 mg/ml) in mice 

chronically exposed to ovalbumin (OVA), ovalbumin plus 300ng of 

tumstatin (300ng Tumstatin), ovalbumin plus 600ng of tumstatin (600ng 

Tumstatin) and naïve mice (Sham). * p<0.01 compared to Sham, # p<0.01 

compared to OVA (two way ANOVA with Bonferroni post tests n=4). Data 

are expressed as mean ± standard error of the mean.   
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Figure 4.8: Specific airway conductance in mice chronically exposed to 

ovalbumin (OVA), ovalbumin plus 300ng of tumstatin (300ng Tumstatin), 

ovalbumin plus 600ng of tumstatin (600ng Tumstatin) and naïve mice 

(Sham). * p<0.05 compared to Sham, # p<0.05 compared to OVA (two way 

ANOVA with Bonferroni post tests, n=4). Data are expressed as mean ± 

standard error of the mean. 
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4.4 Discussion 

 

This study examined the efficacy of tumstatin in the regulation of 

angiogenesis during allergic airway inflammation. Firstly, the ability of 

tumstatin to act as an angiogenic inhibitor in the lung was determined, using 

a virus mouse model (PVM model). In this model, tumstatin was able to 

inhibit pulmonary angiogenesis. Further,  a well established mouse model of 

allergic airway disease, which exhibits features similar to those seen in 

human allergic asthma (Asosingh et al., 2007; Lee et al., 2006; Suzaki et al., 

2005), was employed to directly examine tumstatin’s effectiveness in 

inhibiting angiogenesis and its effect on lung function (AHR).  Tumstatin 

was able to inhibit angiogenesis but also improve AHR in this model.  

 

Viral respiratory infections (VRI) in early childhood have been linked to the 

development of asthma (Weinberger, 2003). RSV infections trigger an 

inflammatory response in the airways which leads to epithelial damage as 

well as hypersecretion of mucus and oedema (Holt et al., 2002). Tissue repair 

in the airways in humans is apparent within days post infection (Hall et al., 

1978). Therefore, the potential for remodelling, which includes angiogenesis, 

in the airway of PVM-infected mice was very likely and would occur in a 

shorter period of time than in a chronic mouse model.  

The PVM model was used in this study as an initial step to evaluate the 

development of angiogenesis, which was identified in the airways at 28 days 
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post infection, and then to investigate whether tumstatin could prevent this 

angiogenesis with the knowledge that angiogenesis was detectable and that 

the effect of tumstatin was demonstrable at a defined time point. The PVM 

model made it possible to then investigate the effects of tumstatin on 

angiogenesis in the airways in an animal model. Tumstatin was able to inhibit 

angiogenesis in the airway, demonstrating for the first time the potential for 

tumstatin to be an effective angiogenic inhibitor in the airways.  

 

VEGF is a potent angiogenic promoter, that is reported to increase vascular 

permeability (Lee et al., 2004). Tumstatin has been shown to block VEGF-

induced neovascularisation in C57BL/6 using a matrigel assay (Maeshima et 

al., 2001a; Maeshima et al., 2001b). Yamamoto et al. showed the inhibitory 

effect of tumstatin on monocyte/macrophage recruitment in diabetic mice 

(C57BL/6 mice infected with streptozotocin) which led them to speculate 

that this inhibition was due to the inhibition of VEGF activity (Yamamoto et 

al., 2004).  VEGF levels are elevated in asthma and inflammatory cell influx 

is increased in the airways of asthmatics in the vicinity of the airway smooth 

muscle (ASM) (Belda et al., 2005). This cell influx, consequently supports 

the increased ASM proliferation and hence the remodelling in the airways.  

The improvement in AHR observed in mice administered tumstatin in 

concert with OVA in the present study may be due to the inhibition of 

inflammatory cells, which could in part be due to the decreased blood 

vessels, as well as a decrease in the permeability of the existing blood 

vessels. The decrease in permeability may be in part due to the inhibition of 
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VEGF binding by tumstatin. Yamamoto et al. showed, using a mouse model 

of diabetes, that treatment with tumstatin inhibited VEGF but had no effect 

on Ang-1 levels. In contrast, levels of Ang-2, an endogenous antagonist of 

Ang-1 involved in the induction of sprouting angiogenesis, was decreased 

upon administration of tumstatin (Yamamoto et al., 2004). Levels of VEGF, 

Ang-1 and Ang- 2 were not measured in the asthma mouse model used in this 

study. It would be of interest in the future to determine the level of 

expression of these three factors and the effect of tumstatin on their level of 

expression in the airways and the consequences on AHR. 

 

The assessment of lung function in a mouse model is not simple. The 

comparison between mouse and human can be difficult as, for example, the 

tidal volume of a mouse is approximately 0.2ml compared to 500ml in 

human. This problem has been overcome with the use of orotracheally 

intubated mice and the ability therefore to measure parameters such as 

resistance and compliance repetitively, as was used in this study. The 

improvement in AHR was seen at 10mg/ml of inhaled methacoline. These 

results show the ability of tumstatin to reverse bronchoconstriction, however, 

a direct relationship to humans cannot be drawn from concentrations used in 

this animal model. Further investigation would be needed to examine the 

ability of tumstatin to improve AHR in humans.  

 

The ECM plays a big role in the remodelling of the airways. There is a 

complex interaction between the ECM and lung cells in the airway. For 
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instance, the response to different ECM components, such as collagen, may 

alter the proliferation, survival and inflammatory mediator release of ASM 

cells (Hirst et al., 2000; Peng et al., 2005). Tumstatin is able to affect ECM 

protein deposition, as was shown in diabetic mice whereby the administration 

of tumstatin inhibited the glomerular accumulation of collagen IV 

(Yamamoto et al., 2004). Levels of collagen IV were not examined in this 

study, however it would be interesting to see whether any alterations have 

occurred in the levels of collagen IV or other ECM proteins as a result of the 

inhibition of angiogenesis by tumstatin.    

 

Physiological angiogenesis, associated with tissue repair, is unaffected by 

tumstatin.   Closure and repair of skin wounds in tumstatin deficient mice 

progressed at the same rate as in wild-type mice. In addition rates of 

regeneration of liver after partial hepatectomy were the same for both groups 

(Hamano et al., 2003). The mouse model of asthma used in this study did not 

exhibit any growth related problems due to the administration of tumstatin as 

mice treated with tumstatin developed at the same rate as control mice. 

Therefore, the angiogenesis observed in this model was a feature of the 

remodelling caused by the chronic exposure to ovalbumin, which in turn was 

inhibited by tumstatin. Although limitations in this model exist, such as the 

inability of mice to exhibit allergen independent chronification or acute 

asthma attacks, it still exhibits a majority of the symptoms seen in asthma. 

The ability of tumstatin to inhibit the hallmark features of asthma suggests 

that tumstatin deficiency in asthma may be critically important to 
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remodelling and to alterations in lung function. Indeed, in a recent case 

report, a patient with concomitant severe persistent asthma was treated for 

rheumatoid arthritis with an angiogenic inhibitor (MEDI-522). It was noted 

that during the trial the patient had significant and substantial improvement in 

lung function (Saadeh et al., 2007). Tumstatin could play a significant role in 

the inhibition of neovascularisation and inflammation in asthmatic airways, 

as well as decreasing AHR. 
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Chapter 5  

Summary and conclusion 



 

  163

5.1 General introduction 

 

It is well recognised that airway remodelling is a characteristic feature of 

chronic persistent asthma. One of the prominent features of this remodelling 

is angiogenesis. Angiogenesis is controlled by both pro- and anti-angiogenic 

factors which under homeostatic conditions are in a state of equilibrium 

(Carmeliet, 2004). Levels of pro-angiogenic factors, such as vascular 

endothelial growth factor (VEGF), are reported to be increased in the airways 

of asthmatics (Chetta et al., 2005; Feltis et al., 2006; Hoshino et al., 2001b; 

Lee et al., 2001). However, the levels of angiogenic inhibitors have not been 

closely examined in asthma. Evidence to date suggests an imbalance between 

the pro-angiogenic factors and the anti-angiogenic factors, with the scale 

appearing to be tipped towards the pro-angiogenic factors.  

 

Experiments described in this thesis, have for the first time described the 

expression of the endogenous angiogenic inhibitor tumstatin in the airways of 

asthmatics and its functional role in the airway. The absence of tumstatin in 

the airways of asthmatics was demonstrated, and tumstatin was shown to 

have a functional role as an inhibitor of angiogenesis in the airways, in 

addition to improving AHR in a mouse model of allergic airways 

hyperresponsiveness.  
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5.2 Characterisation of tumstatin in chronic respiratory disease 

 

As shown in chapter two of this thesis, tumstatin is absent from the airways 

of individuals with asthma and lymphangioleiomyomatosis (LAM). 

However, in asthmatic individuals, the remaining collagen IV α chain non-

collagenous (NC1) domains are present. The collagen IV α5 chain NC1 

domain is also absent from LAM airways, however this was not further 

investigated in this thesis. It would be of interest to follow up this 

observation in LAM, since the absence of both the collagen IV α3 and α5 

chains are reported in other disease states such as Alports Syndrome. The 

absence of both chains in LAM individuals may have similar consequences 

to those seen in the other disease states such as deficiencies of the kidney. By 

examining airway sections from individuals with chronic obstructive 

pulmonary disease (COPD), bronchiectasis and cystic fibrosis (CF) it was 

confirmed the absence of tumstatin was not a general feature associated with 

chronic respiratory diseases. Tumstatin was present in these three disease 

states, suggesting the absence seen in asthmatic and LAM individuals is a 

specific defect in those diseases. Levels of collagen IV are reported to be 

decreased in the airways of asthmatics, however it is not known if this 

decrease is a result of a specific decrease in one or more of the α chains of 

collagen IV. The absence of tumstatin may be a contributing factor to the 

decrease seen in the asthmatic airway. 
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The collagen IV α3 chain has a complex folding process that results in a 

number of different conformers, some of which require specific activation by 

phosphorylation to determine their folding. The good pasture antigen-binding 

protein (GPBP) is responsible for this phosphorylation and an increase in the 

GPBP can result in an increase in misfolding of the collagen IV α3 chain. 

Misfolding of the collagen IV α3 chain may have resulted in a 

conformational change which could result in failure of the antibody used in 

this study to recognise the altered form. However, levels of GPBP were 

examined in asthmatic and LAM individuals and no significant difference 

was found compared to the non-asthmatic individuals. The lack of difference 

in the expression of the GPBP between asthmatic, LAM and non-asthmatics 

suggests this is not the cause of the difference in the level of detection of 

tumstatin that is reported in this study. 

 

Tumstatin exhibits its anti-angiogenic properties through binding to the αvβ3 

integrin. Both the αv and β3 subunit were shown to be present and equally 

expressed in asthmatic and non-asthmatic individuals. The limiting factor in 

this technique was the inability to perform digital analysis in order to 

quantify the levels of expression in each tissue section, however, upon visual 

examination no difference was apparent. The presence of both the αv and β3 

subunits in both asthmatic and non-asthmatic individuals indicates that 

tumstatin, when present, is able to be active as an angiogenic inhibitor. 

Further, the co-localisation of tumstatin, VEGF and the αvβ3 integrin  

showed that, as in the previous finding, tumstatin was absent in the asthmatic 
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and LAM airways and that VEGF and, in addition, the αvβ3 integrin co-

localisation was minimal in the airways of asthmatic and LAM individuals. 

Co-localisation between the three molecules in the non-asthmatic airway was 

clearly seen. This confirms that, under normal conditions, both VEGF and 

tumstatin are within reach of the αvβ3 integrin to act as the “on” (VEGF) and 

“off” (tumstatin) switch for angiogenesis when necessary.  

  

5.3 Functional role of tumstatin in vitro 

 

To determine whether the absence of tumstatin is a general feature of asthma, 

or if it is specific to the airway, serum and BAL-f samples were examined 

from asthmatic individuals. It was not possible to further investigate the 

absence of tumstatin in LAM individuals due to the lack of availability of 

suitable samples. As shown in chapter 3, tumstatin was detected in both the 

serum and the BAL-f of asthmatic individuals. The presence of tumstatin in 

the asthmatic BAL-f samples suggests that asthmatic individuals have the 

ability to produce tumstatin in the airway but are unable to sequester it in the 

matrix/basement membrane. Matrix metalloproteinase (MMP) -9 activity is 

increased in bronchial biopsy specimens, blood, induced sputum and BAL-f 

from patients with severe or uncontrolled asthma (Hoshino et al., 1998a; 

Lemjabbar et al., 1999). MMP-9 is the most efficient protease for cleaving 

tumstatin.  It can be postulated that the increase in the levels of MMP-9 in 

asthmatic airways are causing excess amounts of tumstatin to be released and 

potentially cleared from the airway. Alternatively, an as yet unidentified 
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protease may be responsible for the cleavage and clearing of tumstatin in the 

airways.  

 

Using primary pulmonary endothelial cells, this thesis shows, for the first 

time, the ability of tumstatin to inhibit pulmonary endothelial cell tube 

formation in a dose-related manner, as well as to inhibit the proliferation of 

pulmonary endothelial cells. To date, reports on tumstatin have described its 

activity in tumour cells, prostate carcinoma cells and human umbilical vein 

endothelial cells (HUVECs), whereas its potential activity in the airway had 

not been investigated. The findings from chapter three suggest the presence 

of tumstatin in the airway has the potential to play a functional role in the 

inhibition of angiogenesis. 

5.4 Functional role of tumstatin in vivo 

 

As shown in chapter four, the ability of tumstatin to act as an angiogenic 

inhibitor in vivo in the airway was determined using a viral-induced mouse 

model of angiogenesis. Results showed that administration of tumstatin in 

this model was successful in inhibiting the angiogeneis caused by the viral 

infection in the lungs of mice. This is consistent with previous reports in the 

literature on the effectiveness of tumstatin administration in inhibiting 

angiogenesis. Hamano et al. showed, using tumstatin knock-out mice, that 

when tumstatin was administered to the mice, tumour growth was reduced to 

that of the wild-type (Hamano et al., 2003). The use of the viral mouse model 

established the fact that tumstatin is able to inhibit angiogenesis in the lung. 
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Further, a chronic model of allergic airway disease that exhibits similar 

features to those seen in asthma, was employed to directly examine 

tumstatin’s effectiveness in inhibiting angiogenesis in asthma and its effects 

on AHR. Tumstatin inhibited the angiogenesis associated with remodelling, 

decreased airway resistance and increased conductance in the mice. The 

decrease in AHR seen in this model as a result of tumstatin administration 

could be due to the reduction of inflammatory cell influx due to the reduction 

in the number of blood vessels and blood vessel permeability. VEGF is 

known to increase vascular permeability, therefore in turn increases the 

influx of inflammatory cells into the airway. However, tumstatin has been 

shown to block VEGF activity, thereby reducing cellular influx and 

potentially decreasing AHR. Saadeh et al. described a clinical trial in which a 

patient was being treated for rheumatoid arthritis with an angiogenic inhibitor 

(MEDI-522), the patient was also diagnosed with moderately severe 

persistent asthma. It was noted that, during the trial, the patient had 

significant and substantial improvement in lung function (Saadeh et al., 

2007). With this in mind and the results from the in vivo study, tumstatin has 

potential as a therapeutic intervention in asthma.  

 

Figure 5.1 summarises the major findings of the preceding chapters, in 

addition to previous relevant reports in the literature. 



 

  169

 Pro-angiogenic Anti-angiogenic 

In Vitro
In Vivo

VEGF 

Primary pulmonary 
Endothelial Cell 

Tube formation 

Tumstatin 

TGFβ 

VEGF 

ASM 

Asthmatic 

Tumstatin 

↓ Angiogenesis + 
 ↓ AHR 

Primary Pulmonary 
Endothelial Cell 

Tube formation 

PVM 

Angiogenesis 

Ovalbumin 

Angiogenesis + 

AHR  

PVM

↓ Angiogenesis 

Ovalbumin

Tumstatin 

Asthmatic 

Collagen IV 

X Tumstatin 

Differential distribution of VEGF and αvβ3 

VEGF 

Figure 5.1 summarises the major findings of the preceding chapters, in addition to previous relevant reports in the literature. 
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Future directions 
The absence of tumstatin in the asthmatic airway, as shown in chapter two 

and its presence in asthmatic serum and BAL-f as shown in chapter three 

suggests that there is an underlying mechanism responsible for clearing 

tumstatin out of the airway in asthmatic individuals. It would be interesting 

and clinically beneficial to further investigate and identify all the agents 

which could cleave tumstatin and determine their roles in the airway, and 

further classify whether any changes in these agents exist in the asthmatic 

airway compared to the non-asthmatic.  The identification of the mechanism 

responsible for clearing tumstatin in the airways and whether this process is 

altered in the asthmatic airway would be of great importance in any attempt 

to restore physiological tumstatin levels in the asthmatic airways.  

 

The absence of tumstatin and the collagen IV α5 chain NC1 domain in LAM 

individuals, as shown in chapter two, raises the question of the role of 

collagen IV α5 chain in the airways and whether the absence of tumstatin and 

the α5 chain are related to each other in this disease. Alports Syndrome is a 

disease which features both collagen IV α3 and α5 chain mutations. This 

suggests the simultaneous absence of both molecules may play an 

aetiological role in the disease. Further characterisation of the role of the 

collagen IV α5 chain may possibly add some clarity to the relevance of its 

absence in LAM. In this thesis samples of blood and BAL-f could not be 

obtained from LAM individuals. If this problem can be overcome, it would 
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be ideal to further characterise tumstatin and the collagen IV α5 chain NC1 

domain in serum and BAL-f samples of LAM individuals. 

 

It is unknown if there is any genetic involvement in the absence of tumstatin 

in the asthmatic and LAM airways. The characterisation of the collagen IV 

α3 gene in asthmatic and LAM individuals may shed some light as to 

whether any mutations in this gene exist and are potentially the cause of the 

absence of tumstatin seen in both asthmatic and LAM airways. 

 

Tumstatin decreased AHR in vivo in the mouse model of AHR used in this 

study, as shown in chapter four. However, the question of how tumstatin was 

able to decrease AHR remains unanswered. This thesis postulated that this 

mechanism may be due to the inhibition of VEGF, which in turn is inhibiting 

inflammation and decreasing AHR.  Further investigation into the role of 

VEGF and tumstatin in this model may help to identify the mechanism of 

action involved. Levels of collagen IV in this model were not measured, thus 

it may be interesting to quantify the levels of collagen IV in these mice and 

identify whether tumstatin is having any effects on ECM protein deposition 

in the airways, as occurs in the kidney in diabetic mice. 

 

Tumstatin can inhibit angiogenesis associated with tissue remodelling. In the 

airways in mice, it is capable of inhibiting aberrant angiogenesis as well as 
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decreasing AHR. Evidence from this thesis strongly suggests that tumstatin 

or a derivative has therapeutic potential in asthma. 
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