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Abstract 

This study quantified the systematic effects on wrist joint mechanics of changes in amplitude 

of displacement ranging from within the region of short range stiffness (0.2% of resting 

muscle length) up to 3% of resting muscle length. The joint mechanics were modelled using a 

second order system from which estimates of joint stiffness, viscosity, inertia, natural 

resonant frequency and damping ratio were obtained. With increasing amplitude of 

displacement, the stiffness decreased by 31%, the viscosity decreased by 73%, the damping 

ratio decreased by 71% and the resonant frequency decreased from 10.5 Hz to 7.3 Hz. The 

patterns of change in joint mechanics with displacement amplitude were nonlinear but 

systematic and were well described by power relationships with high R2 values. These 

relationships provide normative data for the adult population and may be used in the 

modelling of human movement, in the study of neurological disorders and in robotics where 

human movement is simulated. The observed patterns of high initial stiffness and viscosity, 

decreasing progressively as displacement amplitude increases, may provide a good 

compromise between postural stability and liveliness of voluntary movement. 
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1. Introduction 

The mechanical properties of joints play a crucial role in the control of movement both by 

influencing the amount of muscle force required to move a limb and by determining the 

reaction forces to perturbations of limb position and trajectory. It is well established that the 

amplitude of limb displacement has an important effect on joint mechanics. The intrinsic 

muscle structures (without stretch reflex input) exhibit high initial ‘short range stiffness’ for 

increases in length up to approximately 1% of the resting muscle length. This is followed by 

a sudden yield, after which the muscle stiffness remains constant at a lower level (Rack and 

Westbury, 1974). Studies of intact joint mechanics (with stretch reflex input) have reported 

that stiffness decreases as displacement amplitude increases, both in humans (Kearney and 

Hunter, 1982; Milner and Cloutier, 1998; Sinkjaer et al, 1988) and decerebrate cats (Nichols, 

1985). Kearney and Hunter (1982) found a decrease in the stiffness of the ankle with 

increasing displacement up to 14° peak to peak amplitude, while Sinkjaer et al (1988) found 

that ankle stiffness decreased only between 1° and 2° of displacement and did not change 

from 2° to 7°. Some of the above studies reported that joint viscosity also decreases with 

displacement amplitude, although Kirsch et al (1994) reported no change in viscosity in 

decerebrate cats.  

 

The pattern of decrease of both stiffness and viscosity with increasing displacement 

amplitude has been found to be nonlinear, with an initial steep decrease followed by a slower 

rate of change (Kearney and Hunter, 1982; Sinkjaer et al, 1988). The ankle was studied in 

both instances and the pattern was found to be consistent in five subjects by Kearney and 

Hunter (Kearney and Hunter, 1982) but less consistent in three subjects studied by Sinkjaer 

(Sinkjaer et al, 1988). Furthermore, the pattern was reported only descriptively and so has not 

been quantified. Such quantification would be useful in the modelling of human movement, 
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in the study of neurological disorders of movement and in robotics where human movement 

is simulated. The purpose of the present study, therefore, was to quantify this relationship 

between amplitude of joint displacement and mechanics at the human wrist. To confirm the 

consistency of the pattern, a larger group of subjects was studied. 

 

In previous studies of this topic, the amplitude of displacement was varied at fixed levels of 

joint torque (Kearney and Hunter, 1982; Sinkjaer et al, 1988). In monitoring joint torque, 

however, the level of co-contraction of muscles operating across the joint was not controlled 

and could have varied with displacement amplitude. Co-contraction is a strategy utilised to 

increase joint stiffness (De Serres and Milner, 1991; Milner et al, 1995) and to a lesser 

degree, damping (Milner and Cloutier, 1998). Hence, unobserved changes in muscle co-

contraction could have influenced joint mechanics in these previous studies. In the present 

study, therefore, we monitored wrist flexor and extensor EMG activity and controlled the 

level of contraction of the wrist flexor as the amplitude of wrist displacement was varied.  

 

2. Methods 

2.1 Subjects 

Ten subjects, five males and five females, with a mean age of 35 years (range 26-50 years) 

and no history of musculoskeletal or neurological diseases, volunteered to participate in this 

study. The University of Sydney Human Ethics Committee approved the experimental 

procedures. Subjects gave their written informed consent prior to testing.  
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2.2 Equipment 

Subjects were seated with the shoulder abducted at approximately 60°, the elbow flexed at 30°
 

from full extension, the forearm supinated and the palm facing medially. The forearm was 

firmly strapped into a manipulandum which allowed rotation of the wrist (Figure 1). The 

wrist was positioned directly above the rotational axis of the manipulandum. The hand was 

then firmly clamped at the distal metacarpals in a padded ‘U’ bracket attached to the 

manipulandum. The bony location chosen for the clamp and the tightness of the clamp 

ensured that the connection was stiff but not so tight as to induce ischemia. To minimise 

movement of the fingers, they were taped together in a flexed posture.  

 

 
 

The manipulandum was fixed to the shaft of a DC servomotor (Baldor, ASR Servotron 

SD55-15-AI) which provided a peak torque of 16 Nm and was driven by a servo-controller 

(Baldor, UM4-150-2-045) configured to run in position control mode. The reference signal 

was provided from a computer-driven digital to analog card and a rotary variable differential 

transformer (Sakae, KSM-2201) fixed to the shaft of the servomotor provided position 

feedback. Motor torque was monitored using a torque transducer (Transducer Techniques, 

TRT-500) fixed in series between the motor shaft and the manipulandum.  

 

Pairs of silver/silver chloride surface electrodes of 10 mm diameter with centres 

approximately 25 mm apart were applied to measure EMG signals from each subject. Two 

electrodes were attached above flexor carpi radialis (FCR), centred on the midpoint of a line 

from the lateral aspect of the biceps tendon at the elbow crease to the pisiform bone. Another 

Insert Figure 1 here 
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pair was attached above extensor carpi radialis (ECR), centred one third of the distance along 

a line from the lateral end of the elbow crease to the middle of the wrist. This positioning of 

the electrodes allows maximal pick-up of signals from these muscles (Basmajian and 

Blumenstein, 1980). The earth electrode was fixed at the olecranon of the ulna. The EMG 

signals were amplified with a gain of 1000 and band-pass filtered (Biopac Systems, 

EMG100B) between 10 Hz and 5 kHz.  

 

In order to monitor the contraction levels of other muscles acting at the joint, more extensive 

sampling of the muscles around the joint was carried out using intramuscular electrodes in 

one subject. Bipolar fine wire electrodes (221-24-730, Chalgren Enterprises Inc.) were 

employed. Each consisted of two strands of 0.05 mm insulated nickel alloy wire, stripped of 2 

mm of insulation at each end and bent over at the protruding end of a 27 gauge 30 mm long 

hypodermic needle. In addition to flexor carpi radialis, the following prime flexor (Backdahl 

and Carlsoo, 1961) and extensor (McFarland et al, 1962) muscles were sampled: flexor carpi 

ulnaris (FCU), flexor digitorum superficialis (FDS), flexor digitorum profundus (FDP), 

extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB), extensor carpi 

ulnaris (ECU) and extensor digitorum (ED). 

 

The manipulandum angular displacement, torque and EMG signals were sampled at a rate of 

2 kHz with a 16-bit analog to digital converter (Biopac Systems, MP100A) using proprietary 

data acquisition software (AcqKnowledge, Version 3.5.3). 
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2.3 Procedures 

The right arm was tested in all cases. To control for diurnal variation, the sessions were 

conducted at a similar time of day. At the beginning of the session each subject was asked to 

relax completely and a baseline of EMG was recorded. They were then asked to produce 

maximum voluntary contractions (MVC) of FCR and ECR by flexing and then extending 

their wrist against the fixed manipulandum with the wrist in neutral position. Subjects were 

exhorted to make a maximal effort while feedback of contraction levels from the surface 

electrodes overlying FCR and ECR was provided. The contraction level display was 

generated by high pass filtering (10 Hz cut-off), rectifying and low pass filtering (0.5 Hz cut-

off) the surface EMG signal and then subtracting the baseline EMG. The resultant signal was 

displayed as a trace on a computer monitor. Three measures of maximum contraction level 

were obtained at the beginning of each session, with a one-minute rest between each. The 

maximum for the three trials of the peak value reached by the rectified and filtered EMG was 

taken to be the MVC of each muscle. The peak was equivalent to the average level of the 

rectified EMG over a time window of 0.3 seconds.  

 

For the data collection trials, subjects were instructed to flex the wrist against the 

manipulandum while maintaining a target contraction level in FCR of 15% of MVC. This 

produced a net flexor torque at the wrist. The contraction level was chosen to avoid fatigue 

while still providing a reasonable signal-to-noise ratio in the EMG signals. Feedback of 

contraction level was again provided on the computer monitor, scaled so that the target 

contraction level was shown as a horizontal line across the middle of the monitor, with 0% at 

the bottom. The duration of each trial was only 20 seconds and the subjects had no difficulty 

complying with the procedure, so it was anticipated that the contraction levels in all muscles 
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would remain relatively constant throughout the trial. The more extensive muscle sampling in 

one subject was designed to test this assumption.  

 

2.4 Displacement signals 

Sinusoidal displacement signals with six different root mean square (RMS) amplitudes were 

employed: 0.4º, 0.5º, 0.6º, 2º, 4º, 6º RMS. In order to enable determination of wrist joint 

mechanics, 10 different frequencies from 3 Hz to 12 Hz in increments of 1 Hz were 

employed at each amplitude of displacement. Hence, with 10 frequencies and six amplitudes, 

there were a total of 60 displacement signals. Two broad bandwidth (3-12 Hz) displacement 

signals, with RMS amplitude matched to the 0.4º and 2º sinusoidal signals, were also tested. 

Whereas the sinusoids tested each frequency in separate trials, the broadband signals tested 

each frequency in the same trial and were employed to check the linearity of the mechanical 

frequency response. The disadvantage here was that a trial duration of 60 seconds was 

required with the broadband signals in order to provide a sufficient number of cycles at each 

frequency for adequate reliability of measurement. 

 

Calculations using anatomical (Horii et al, 1993; Lieber et al, 1990) and physiological 

(Campbell and Lakie, 1998; Hill, 1968; Wiegner, 1987) data were carried out to determine 

the changes in muscle length that these signals would produce in FCR. These calculations 

indicated that the six displacement amplitudes corresponded to 0.2, 0.25, 0.3, 1, 2, and 3 

percent of average muscle length. This indicates that the 0.4º, 0.5º, 0.6º RMS displacements 

were within the region of short range stiffness (< 1% of resting length (Rack and Westbury, 

1974) for FCR, while the 2º, 4º and 6º RMS displacements were beyond that range.  
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Repeated measures analyses of variance (ANOVAs) were performed to determine the 

statistical significance of the experimental effects of the two factors of amplitude and 

frequency of displacement.  

 

2.5 Signal analysis 

Matlab (The Mathworks Inc., Version 6) was used for the data analysis. Since the frequencies 

of interest lie in the range below 15 Hz, the displacement and torque signals were low-pass 

filtered at 20 Hz (8th order Butterworth). The EMG signals were first forward and reverse 

passed through a high-pass filter (8th order Butterworth) with a 20 Hz cut-off frequency, in 

order to remove DC offsets and any low frequency movement artefact. The dual-pass process 

ensured that no phase changes were produced. The EMG signals were then full-wave 

rectified and low-pass filtered at 20 Hz (8th order Butterworth). EMG signals processed in 

this way are henceforth referred to as IEMG (see Figure 3). The common low-pass filtering at 

20 Hz precluded any change in the phase relation between displacement, torque and IEMG. 

The filtered signals were then re-sampled at 100 Hz. One second of data was truncated from 

the beginning of all trials to allow for final adjustments of contraction levels by the subjects. 

 

The mechanical properties of the wrist were obtained using a cross-correlation and 

spectrographic analysis (Bendat and Piersol, 1971) to identify the best-fit linear relation 

between torque and displacement signals. This linear relation was described by gain, phase 

and coherence frequency functions. The gain of the mechanical response is defined as the 

amplitude of wrist displacement divided by the amplitude of wrist torque for each frequency 

and expressed in degrees/Nm. The phase of the mechanical response provided a measure (in 

degrees) of the relative time difference between the displacement signal and the torque signal 



Journal of Biomechanics 39 (2006) 2171–2182 

 
 

10

at each frequency. The linearity and goodness of fit of the torque-displacement relation were 

quantified by the coherence square function. 

 

The torque transducer provided a measure of the torque applied by the servomotor to the 

manipulandum. Therefore, by subtracting the torque due to the manipulandum alone from the 

total torque due to the manipulandum plus wrist, the mechanical contribution of the wrist 

alone could be determined. The linearity of these torque-displacement relations was 

confirmed by checking the coherence square between displacement and the torque due to the 

manipulandum alone (mean = 1.00, SD = 0.0002) and between displacement and the torque 

due to the manipulandum plus wrist (mean = 0.99, SD = 0.01). It was important also to 

ensure that the mechanical characteristics of the servomotor and manipulandum were linear 

across different amplitudes of displacement. This was confirmed by the fact that the gain and 

phase frequency response between displacement and the torque due to the manipulandum 

alone was close to identical for all amplitudes of displacement. Hence, any changes observed 

experimentally in the relationship between displacement and the torque due to the 

manipulandum plus wrist could be attributed to altered wrist mechanics and not to 

servomotor and manipulandum nonlinearities. Finally, the displacement signals were 

compared between trials of the manipulandum alone and trials of the manipulandum plus 

wrist (see Figure 3). The average coherence square between the signals was 1.00 

(SD = 0.001), the average gain was 1.07 (SD = 0.08) degree/degree and the average phase 

was 3.20 (SD = 2.32) degrees, thus confirming that the kinematics were close to identical 

between conditions.  
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2.6 Modelling of the mechanical response 

Several investigators have modelled the torque-angle relation of various human joints as a 

second order system and these models have generally provided an adequate description of the 

elastic stiffness, viscosity and inertia in response to various experimental conditions (Bennett 

et al, 1992; de Vlugt et al, 2001; Kearney et al, 1997; Lambertz et al, 2003; Perreault et al, 

1998; Zhang and Rymer 1997). The mechanics of the wrist were also modelled as a second 

order mechanical system in the current study. The second order model can be expressed in 

the time domain as: 

 

τ(t) = I.d2φ(t)/dt2 + B.dφ(t)/dt + K.φ(t)  

where 

τ = Torque (Nm) 

φ = Joint angle (radians) 

K = Torsional stiffness (Nm.rad-1) 

B = Torsional damping coefficient or viscosity (Nm.s.rad-1)  

I = Limb inertia = m r2 (kg.m2)  

m = Mass of hand (kg)   

r = Radius of gyration (m) 

 

The transfer function between joint angle and torque is given by: 

 

 

where s is the Laplace transform. 

 

 

τ(s) 

 φ(s) 

I.s2 + B.s+ K 

1
     = 
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For each subject, values of I, B and K were chosen to provide the best fit of the transfer 

function gain and phase versus frequency plots to the measured gain and phase of the wrist 

mechanical response. To achieve this, the RMS value of the differences between the 

modelled and measured gain and phase values of the mechanical response were calculated. 

Since gain and phase values are on different scales and have different offsets, the RMS 

differences between the modelled and measured gain and phase were each normalised to the 

respective average values across frequency of the measured gain and phase. Values of 

mechanical parameters (I, B and K) were iteratively changed to find the minimum average of 

the normalised differences between modelled and measured data. Different weightings on 

gain and phase were explored in this model fitting, from equal weighting on each to 100% 

weighting on either gain or phase (ie, using only the gain or only the phase values). The 

model fitting was found to be robust with respect to weighting scheme. When the values of 

the mechanical parameters derived using equal weighting were compared with those derived 

using only the gain or only the phase values, the average differences in the parameters were 

only 9% and 11% respectively. Hence, the equal weighting scheme was employed. 

 

The goodness of the fit of the modelled data to the measured data, as indicated by the 

variance accounted for (VAF), is shown in Table 1. The VAF is described by the following 

equation: 

measured

error

Variance
Variance1VAF −=  

It can be seen from Table 1 that the model had a good fit to the data in nearly every case, with 

an average VAF for gain of 0.88 and for phase of 0.98.  
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The fit of the model to the experimental gain and phase versus frequency functions is shown 

for two displacement amplitudes in one subject in Figure 2. The measured gain data in this 

subject at these amplitudes appeared to be somewhat noisy and these VAFs were the lowest 

observed in the study (subject 1 in Table 1). Nevertheless, the modelled curves still provided 

a reasonable representation of the measured data. 

 

 
 

2.7 Modelling of the mechanics versus displacement amplitude 

The relations between changes in displacement amplitude and changes in mechanical 

variables (i.e. stiffness, viscosity, damping ratio and natural frequency) were modelled using 

linear regression analyses. In these analyses, the variability across subjects was effectively 

removed by setting the subject factor as random, i.e. using a linear model with a random 

intercept. Such a model also accounts for dependence across amplitudes for individual 

subjects, similar to the procedure employed in a one-way repeated measures analysis of 

variance, where the variability due to individual subjects is taken into account. Additionally, 

a simple interpretation of the slope can be given. 

 

Insert Table 1 here 
 

Insert Figure 2 here 
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3. Results 

3.1 Wrist torque and contraction levels  

Typical torque, displacement and contraction level data are illustrated in Figure 3, which 

shows one second samples for the smallest and largest displacement amplitudes at 5 Hz. The 

reflex modulation of FCR is apparent but because the mean FCR contraction level was 

controlled by the subjects via feedback, it was kept very close to the 15%MVC target level 

(group mean = 14.8% ± 0.4%MVC). The level of activity in the ECR was low, so the net 

torque at the wrist was flexor in all trials. However, this flexor torque decreased by a small 

amount (from 1.5 ± 0.6 Nm to 1.0 ± 0.5 Nm) with increasing displacement amplitude 

(F(5, 45)=19.68, p<0.001). This decrease was due to small but systematic changes in the 

contraction levels of the other flexor and extensor muscles, for which no feedback or 

instructions were given regarding contraction level. Thus, the average contraction level of 

ECR increased across the six displacement amplitudes (see Figure 3) from 2.5%MVC at 0.4° 

RMS to 5.5%MVC at 6° RMS (F(5, 45)=18.10, p<0.01). The intramuscular EMG recordings 

in a single subject showed that the other unmonitored flexor and extensor muscles behaved 

similarly to the surface ECR recordings for the group. The contraction levels were low (mean 

levels across all amplitudes were FDP: 41 ± 10 µV; FDS: 38 ± 12 µV; FCU: 46 ± 6 µV; 

ECU: 33 ± 8 µV; ED: 55 ± 16 µV; ECRL: 61 ± 14 µV; ECRB: 32 ± 9 µV) and all increased 

by a small amount (mean = 27 ± 10 µV) from the smallest to the largest amplitude. By 

contrast, the average level of activity recorded intramuscularly in FCR was 101 ± 18 µV.   

 

 

 

Insert Figure 3 here 
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3.2 Mechanics 

The gain and phase of the mechanical responses of the wrist (i.e. between wrist torque and 

displacement) were consistent with those of a second order resonant system with stiffness, 

viscous and inertial components. The frequency of the peak in the gain curves corresponds to 

the system’s damped resonant frequency while the frequency at which the phase crosses 90° 

corresponds to the undamped resonant frequency. Figure 4 shows the mean gain and phase 

between wrist torque and displacement for all amplitudes. Both the gain and phase lag of the 

mechanical response increased with increasing displacement amplitude (F(5, 45)≥35.91, 

p<0.001). The shape of the gain and phase curves also changed with increasing displacement 

amplitude, as shown by significant interactions between amplitude and frequency (F(9, 81) ≥ 

13.57, p<0.001).  

 

 
 

It can also be seen in Figure 4 that the gain and phase curves for the broad bandwidth 

displacement signals at 2° RMS amplitude closely matched the curves from the sinusoidal 

signals at this amplitude. A similar match between broadband and sinusoidal results was also 

found for the 0.4° RMS amplitude (not shown). This confirms the linearity of the mechanical 

frequency response and the validity of the second order model which was used to represent 

the wrist mechanics for all frequencies between 3-12 Hz. 

 

 
 

Insert Table 2 here 
 

Insert Figure 4 here 
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The modelled values of inertia, stiffness, viscosity (damping coefficient), damping ratio and 

natural frequency for each subject are listed in Table 2. The group mean values of stiffness, 

viscosity, damping ratio and natural frequency for the six amplitudes of displacement are 

shown in Figure 5. The values for inertia did not change significantly with amplitude for the 

three smaller displacements nor for the three larger displacements (F(2, 18)≤2.76, p>0.09). 

However, the inertia was larger for the three larger displacements than for the three smaller 

displacements (F(1, 9)=10.55, p<0.05). The stiffness, viscosity and damping ratio decreased 

significantly across all displacements (F(5, 45)≥ 7.86, p<0.001). Post hoc tests showed that 

the changes were not significant for the smaller displacements (F(2, 18)≤2.47, p>0.11) but 

were significant for the larger displacements (F(2, 18)≥8.00, p<0.05). The natural frequency 

decreased with increasing amplitude for all displacements (F(5, 45)≥ 66.04, p<0.001), 

including both smaller and larger displacements (F(2, 18)≥9.01, p<0.01). It may be noted that 

the characteristics of the torque- displacement gain and phase versus frequency plots in 

Figure 4 (eg, the frequency of peak gain, the frequency where the phase lag crossed 90°, the 

shape of the gain and phase curves and the values of the DC gain as extrapolated from the 

curves) change with amplitude in a manner which is entirely consistent with these significant 

changes in the modelled mechanical parameters.  

 

 
 

The modelled values of I were compared to the values calculated from the anthropometric 

data of Winter (1990), where the mass of the hand was taken to be 0.61% of total body mass 

and the radius of gyration of the hand was taken to be 0.56 x hand length, as measured 

between the stylion and the head of metacarpal III. It can be seen from Table 2 that in every 

Insert Figure 5 here 
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case except subject 2, who had the highest values of I in the group, the range of modelled 

values encompassed the value calculated using Winter’s tables.  

 

Since the plots in Figure 5 resemble power relations, log transforms of the data were carried 

out. Figure 6 shows the resulting linear relationships of the log of stiffness, viscosity, 

damping ratio and natural frequency versus the log of displacement amplitude for three 

typical subjects. These relationships could therefore be described by linear regression. 

Regression analyses for each subject revealed that, for every parameter, the slopes of all 

subjects were within two standard deviations of the mean of the group. As can be seen in 

Figure 6, however, the intercept was different for each subject. Therefore, for each of the 

mechanical parameters, all subjects were included in regression analyses with subject as a 

random factor (ie, with a random intercept) and slope set as a fixed factor. These regression 

analyses showed that the relationships between the four mechanical parameters and 

displacement amplitude were as follows: 

 

MP  =  β A α    

Where: 

MP  = Mechanical parameter 

A  = Displacement amplitude (°RMS) 

β  = Subject specific constant with means and ranges as indicated in Table 3 

α  = MP specific constant as indicated in Table 3 

 

 
 

Insert Table 3 here 
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For illustrative purposes, the expanded model of the equation above for the mechanical 

parameter of stiffness (K  =  β A α) is shown for each subject as a function of amplitude as 

follows: 
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As illustrated in Figure 6, the regression lines from the above equation are parallel but have a 

random intercept for each subject. Note the high R2 values for each regression model for the 

group of 10 subjects. The R2 values refer to the fit of the model of the combined data for all 

subjects, with subject as a random factor and slope as a fixed factor, as illustrated by the 

above expanded version of the equation for stiffness. Setting subject as a random factor 

produced regression lines with subject specific intercepts (β) but with the same slope (α) for 

each mechanical parameter.  

 

 

 

4. Discussion 

The joint mechanics changed markedly over the range of amplitudes studied. With an 

increase in displacement amplitude from 0.4° to 6° RMS (0.2% to 3% of FCR muscle 

Insert Figure 6 here 
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length), the stiffness decreased by 31%, the viscosity decreased by 73%, the damping ratio 

decreased by 71% and the resonant frequency decreased from 10.5 Hz to 7.3 Hz. The changes 

were consistent with previous findings that both joint stiffness and viscosity decrease with 

increasing amplitude (Kearney and Hunter, 1982; Milner and Cloutier, 1998; Nichols, 1985). 

In this study, we have shown that the decreases in stiffness, viscosity, damping ratio and 

resonant frequency with increasing displacement amplitude can be described by power 

relationships. These relationships were consistent across all subjects and demonstrated 

excellent fit to the data through both the short range stiffness region and larger displacements. 

The models described here therefore provide normative data for the adult population and may 

be used in the modelling of human movement, in the study of neurological disorders of 

movement and in robotics where human movement is simulated.   

 

The actual values of the mechanical parameters varied across subjects but are comparable 

with those reported previously. Milner and Cloutier (1993) determined wrist stiffness 

coefficients between 3.8 and 16 Nm.rad-1 and viscosity between 0 and 0.11 Nm.s.rad-1 at 

15%MVC flexion for various oscillation amplitudes. In a later study, these workers reported 

damping coefficients at the wrist in the range of 0.06-0.075 Nm.s.rad-1 during voluntary 

movement (Milner and Cloutier, 1998). In the current study at 15%MVC, the wrist stiffness 

coefficients ranged between 2.63 and 16.44 Nm.rad-1 and damping coefficients ranged 

between 0.02 and 0.19 Nm.s.rad-1. Other studies have reported stiffness coefficients at the 

wrist between 2-3 Nm.rad-1 for a contraction level of 5%MVC (De Serres and Milner, 1991; 

Gielen and Houk, 1984). Sinkjaer and Hayashi (1989) also reported values for wrist damping 

ratio and natural frequency comparable to values in the current study. The values of inertia 

were comparable with those derived from Winter’s (1990) anthropometric tables. These 

tables can provide only a single estimate of inertia for each subject, whereas in the present 
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study, values were computed for the six displacement amplitudes. These values were found to 

increase significantly between the short range region and larger amplitudes. This suggests 

that there was an increase in acceleration sensitivity at the larger displacements.  

 

Previous studies have shown distinctive differences in stiffness for short range regions and 

larger displacements. Sinkjaer et al (1988) found that at a dorsiflexion contraction of 

30%MVC, the stiffness of the ankle decreased between displacements of 1° to 2° and did not 

change from 2-7°, whereas Kearney and Hunter (1982) found a continuous but nonlinear 

decrease in stiffness and viscosity for displacements up to 14° at small ankle torques of 4-6 

Nm. In the larger group of subjects studied here than in these previous studies, the consistent 

power relationships observed between displacement amplitude and mechanical parameters at 

the wrist more closely matched the findings of Kearney and Hunter.  

 

The mechanical changes with displacement amplitude observed here cannot be attributed to 

the small changes that occurred in joint torque or muscle contraction levels. The reduction in 

net flexor torque was only 0.5 Nm, so the changes in muscle co-contraction would be more 

important in determining the mechanical properties of the joint. The largest contraction level 

was in FCR, which was maintained at the target level via feedback to the subjects, while the 

contraction levels in all other muscles increased with displacement amplitude. These small 

but uniform increases were probably caused by the increase in muscle afferent drive 

associated with greater displacement amplitude, since afferent input has a strong facilitatory 

influence on motorneurons (Macefield et al, 1993). The fact that the net flexor torque 

decreased indicates that the contraction level increases were relatively greater in the extensors 

than the flexors, perhaps because the feedback from FCR constrained the increase in the 

flexors (measured in µV, the increases were similar in extensors and flexors in the 
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intramuscular recordings). Regardless of the underlying mechanisms, however, the result was 

an increase in muscle co-contraction which would be expected to produce an increase in joint 

stiffness (De Serres and Milner, 1991; Milner et al, 1995), rather than the decrease observed. 

Therefore, the decrease in joint stiffness with displacement amplitude is likely to have been 

underestimated by the small increase in co-contraction. A similar co-contraction effect would 

likely have been present in the earlier study by Kearney and Hunter (1982), where torque was 

controlled but no muscle activity was recorded.  

 

The observed wrist joint mechanics hold particular functional implications for the stability 

and mobility of the neuromuscular system. For control of posture, a high resistance to small 

perturbations and damping of small oscillations are desirable. Voluntary movements, 

however, are typically of large amplitude and so a progressive decrease in both stiffness and 

damping with increasing amplitude facilitates a lively response of the neuromuscular system. 

Then, in maintaining limb position at the termination of voluntary movements, high 

resistance to small perturbations and damping of small oscillations are again required. 

Therefore, the observed mechanical properties of higher initial stiffness and viscosity which 

decrease progressively and nonlinearly as displacement amplitude increases may provide a 

good compromise between postural stability and liveliness of voluntary movements.  
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Table and Figure Captions 
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Table 1: VAF values representing the goodness of the fit of the models to the measured data 
for both gain and phase for all displacement amplitudes and all subjects. 

VAF 
Gain 

0.4° 
RMS 

0.5° 
RMS 

0.6° 
RMS 

2° 
RMS 

4° 
RMS 

6° 
RMS Mean 

sub1 0.58 0.65 0.82 0.55 0.97 0.98 0.76 
sub2 0.96 0.94 0.98 0.93 0.99 0.99 0.97 
sub3 0.97 0.91 0.92 0.96 0.98 0.98 0.95 
sub4 0.75 0.78 0.70 0.66 0.84 0.95 0.78 
sub5 0.78 0.93 0.93 0.81 0.91 0.94 0.88 
sub6 0.84 0.87 0.91 0.90 0.93 0.97 0.90 
sub7 0.96 0.77 0.83 0.84 0.96 0.94 0.88 
sub8 0.76 0.90 0.85 0.92 0.86 0.90 0.87 
sub9 0.76 0.78 0.87 0.89 0.83 0.98 0.85 
sub10 0.95 0.89 0.93 0.82 0.95 0.95 0.92 
Mean 0.83 0.84 0.87 0.83 0.92 0.96 0.88 

VAF 
Phase 

0.4° 
RMS 

0.5° 
RMS 

0.6° 
RMS 

2° 
RMS 

4° 
RMS 

6° 
RMS Mean 

sub1 0.99 0.98 1.00 0.97 0.98 1.00 0.98 
sub2 0.99 0.99 0.99 0.97 0.98 0.97 0.98 
sub3 1.00 0.97 0.98 0.98 0.97 0.99 0.98 
sub4 0.98 0.99 0.99 0.93 0.95 0.98 0.97 
sub5 0.98 0.98 0.98 0.98 0.98 0.94 0.97 
sub6 0.98 0.98 0.98 0.97 0.99 0.99 0.98 
sub7 0.99 0.99 0.98 0.93 0.94 0.97 0.97 
sub8 0.98 0.95 0.98 0.95 0.91 0.97 0.96 
sub9 0.96 0.99 0.99 0.97 0.98 0.99 0.98 
sub10 0.97 0.99 0.97 0.98 0.99 0.96 0.98 
Mean 0.98 0.98 0.98 0.96 0.97 0.98 0.98 
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Table 2: Individual subject values and group means and standard error of inertia, stiffness, 
viscosity, damping ratio and natural frequency. The inertia values estimated using Winter’s 
tables (Winter, 1990) are also indicated for comparison with modelled values 

 Displacement amplitude (RMS) 
    0.4° 0.5° 0.6° 2° 4° 6° Winter 
Inertia  sub1 0.22 0.19 0.17 0.28 0.39 0.38 0.39
I (x 10-2 kg.m-2) sub2 0.56 0.47 0.54 0.49 0.52 0.52 0.45
 sub3 0.20 0.23 0.21 0.20 0.20 0.21 0.20
 sub4 0.37 0.39 0.39 0.33 0.49 0.54 0.39
 sub5 0.15 0.16 0.19 0.21 0.19 0.17 0.17
 sub6 0.12 0.10 0.13 0.14 0.17 0.17 0.16
 sub7 0.15 0.16 0.19 0.28 0.34 0.30 0.28
 sub8 0.15 0.15 0.13 0.23 0.21 0.20 0.19
 sub9 0.11 0.16 0.16 0.20 0.21 0.21 0.16
 sub10 0.09 0.09 0.10 0.13 0.14 0.11 0.11
 Mean 0.21 0.21 0.22 0.25 0.28 0.28 0.24 
 SE 0.05 0.04 0.04 0.03 0.04 0.05 0.04
Stiffness  sub1 13.01 11.62 10.59 10.19 11.42 10.20 
K (Nm.rad-1) sub2 16.44 13.74 15.99 11.89 11.22 9.19 
 sub3 5.00 5.38 4.64 4.10 3.22 2.63 
 sub4 14.49 15.10 14.35 9.63 11.01 10.40 
 sub5 5.83 5.18 5.56 5.66 3.93 2.92 
 sub6 5.43 4.49 4.91 4.26 4.45 4.16 
 sub7 8.16 8.21 7.70 7.67 8.08 6.71 
 sub8 7.50 6.96 6.24 7.60 5.29 4.07 
 sub9 5.52 6.87 6.51 6.50 6.69 5.80 
 sub10 4.45 4.19 3.91 4.57 4.42 3.06 
 Mean 8.58 8.17 8.04 7.21 6.97 5.91  
 SE 1.39 1.25 1.33 0.85 1.02 0.97  
Viscosity sub1 0.19 0.17 0.17 0.11 0.06 0.04 
B (Nm.s.rad-1) sub2 0.12 0.11 0.12 0.09 0.06 0.06 
 sub3 0.07 0.06 0.06 0.03 0.03 0.02 
 sub4 0.18 0.18 0.19 0.14 0.08 0.06 
 sub5 0.08 0.09 0.09 0.04 0.02 0.03 
 sub6 0.08 0.08 0.07 0.04 0.02 0.02 
 sub7 0.15 0.14 0.12 0.08 0.06 0.05 
 sub8 0.11 0.12 0.10 0.06 0.05 0.03 
 sub9 0.09 0.09 0.08 0.05 0.03 0.03 
 sub10 0.08 0.07 0.07 0.03 0.02 0.02 
 Mean 0.11 0.11 0.11 0.07 0.04 0.03  
 SE 0.01 0.01 0.01 0.01 0.01 0.01  
Damping  sub1 0.56 0.56 0.64 0.34 0.14 0.10 
Ratio DR sub2 0.20 0.22 0.20 0.18 0.13 0.14 
 sub3 0.35 0.27 0.31 0.18 0.17 0.15 
 sub4 0.39 0.37 0.40 0.39 0.17 0.12 
 sub5 0.45 0.50 0.43 0.19 0.14 0.21 
 sub6 0.46 0.58 0.44 0.26 0.13 0.11 
 sub7 0.68 0.60 0.49 0.27 0.17 0.16 
 sub8 0.50 0.58 0.57 0.23 0.22 0.14 
 sub9 0.55 0.42 0.41 0.24 0.15 0.12 
 sub10 0.61 0.59 0.57 0.23 0.11 0.14 
 Mean 0.48 0.47 0.45 0.25 0.15 0.14  
 SE 0.04 0.04 0.04 0.02 0.01 0.01  
Natural sub1 12.2 12.3 12.4 9.7 8.7 8.3 
Frequency sub2 8.6 8.6 8.6 7.8 7.4 6.7 
Wn (Hz) sub3 8.0 7.7 7.5 7.2 6.4 5.6 
 sub4 10.0 9.9 9.7 8.6 7.6 7.0 
 sub5 9.8 9.1 8.7 8.4 7.3 6.6 
 sub6 10.5 10.9 9.8 8.9 8.2 7.9 
 sub7 11.7 11.5 10.0 8.3 7.7 7.5 
 sub8 11.4 10.9 11.0 9.1 8.0 7.1 
 sub9 11.2 10.3 10.0 9.2 9.0 8.3 
 sub10 11.2 10.9 10.2 9.5 9.0 8.3 

 Mean 10.5 10.2 9.8 8.7 7.9 7.3  
 SE 0.4 0.4 0.4 0.2 0.3 0.3  
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Table 3: The values for α and the mean and range of values for β for each mechanical 
parameter in the mathematical relationships between joint mechanics and displacement 
amplitude. 

 

 

MP β mean (range) α 

K (Nm.rad-1) 6.94 (4.17 – 13.25) -0.11 

B (Nm.s.rad-1) 0.08 (0.05 – 0.14) -0.47 

Damping ratio 0.32 (0.20 – 0.39) -0.48 

Wn (Hz) 9.26 (7.27 – 10.83) -0.12 
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Figure 1: Experimental set-up.   
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Figure 2: Measured (o) and modelled (solid line) gain and phase for 0.4° and 2° RMS 
displacement amplitudes for Subject 1, who had the lowest VAFs observed in the study (cf, 
Table 1).
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Figure 3: Raw data from Subject 1 indicating, from top down, displacement of the 
manipulandum alone, displacement of manipulandum + wrist, torque of manipulandum + 
wrist, rectified and filtered EMG (20 Hz cut-off, 8th-order Butterworth) from FCR and ECR 
for the 0.4°RMS and 6°RMS displacements at 5 Hz. Note the different scaling for the 
displacement and torque signals for the 0.4°RMS and 6°RMS displacements.  
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Figure 4: Group average (a) gain and (b) phase vs frequency for the six displacement 
amplitudes with the sinusoidal signals and a single broad bandwidth signal at 2° RMS 
amplitude. 
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Figure 5: Average (± standard error) across all subjects for (a) stiffness, (b) viscosity, (c) 
damping ratio and (d) natural frequency versus displacement amplitude.  
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Figure 6: (a) Log(stiffness), (b) log(viscosity), (c) log(damping ratio) and (d) log(natural 
frequency) versus log(displacement amplitude) and linear regression lines for 3 subjects. The 
R2 values show the variance across all subjects accounted for by the random subject factor 
model. For each mechanical parameter, the intercept is different for each subject but the slope 
of the regression line is the same for every subject. Note: Subject 4 had one of the lowest 
average VAFs (cf, Table 1). 
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