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ABSTRACT 

Iron (Fe) is essential for cell growth and replication as many Fe-containing proteins 

catalyse key reactions involved in energy metabolism (cytochromes, mitochondrial 

aconitase and Fe-S proteins of the electron transport chain), respiration (hemoglobin 

and myoglobin) and DNA synthesis (ribonucleotide reductase). If not appropriately 

shielded, Fe could participate in one-electron transfer reactions that lead to the 

production of extremely toxic free radicals. The Fe storage protein, ferritin, is essential 

to protect cells against Fe-mediated oxidative stress by accommodating excess Fe into 

its protein shell (Xu et al., 2005). However, despite intensive research over the last few 

decades, many questions relating to intracellular Fe metabolism, e.g. Fe release from 

ferritin remain unanswered. Therefore, it is important to elucidate the molecular 

mechanisms of Fe trafficking in cells.  

 

At the beginning of my candidature, little was understood regarding the effect of anti-

cancer agents, anthracyclines on the Fe-regulated genes, including transferrin receptor-

1 (TfR1), N-myc downstream-regulated gene-1 (Ndrg1) and ferritin. Furthermore, the 

mechanisms of ferritin-Fe release and anthracycline-mediated ferritin-Fe accumulation 

are unclear. The work presented in Chapters 3 and 4 has addressed these issues. Apart 

from the studies examining the molecular interactions of anthracyclines with Fe, a 

mouse model with perturbed Fe metabolism was used and the marked alterations of 

protein expression in the heart of this knockout mouse model was discussed in Chapter 

5.  
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Chapter 3 

Anthracyclines are effective anti-cancer agents. However, their use is limited by 

cardiotoxicity, an effect linked to their ability to chelate iron (Fe) and perturb Fe 

metabolism (Xu et al., 2005). These effects on Fe-trafficking remain poorly understood, 

but are important to decipher as treatment for anthracycline cardiotoxicity utilises the 

chelator, dexrazoxane. Incubation of cells with doxorubicin (DOX) up-regulated 

mRNA levels of the Fe-regulated genes, transferrin receptor-1 (TfR1) and N-myc 

downstream-regulated gene-1 (Ndrg1). This effect was mediated by Fe-depletion, as it 

was reversed by adding Fe and was prevented by saturating the anthracycline metal-

binding site with Fe. However, DOX did not act like a typical chelator, as it did not 

induce cellular Fe mobilisation. In the presence of DOX and 59Fe-transferrin, Fe-

trafficking studies demonstrated ferritin-59Fe accumulation and decreased cytosolic-

59Fe incorporation. This could induce cytosolic Fe-deficiency and increase TfR1 and 

Ndrg1 mRNA. Up-regulation of TfR1 and Ndrg1 by DOX was independent of 

anthracycline-mediated radical generation and occurred via HIF-1α-independent 

mechanisms. Despite increased TfR1 and Ndrg1 mRNA after DOX treatment, this 

agent decreased TfR1 and Ndrg1 protein expression. Hence, the effects of DOX on Fe 

metabolism were complex due to its multiple effector mechanisms. 

 

Chapter 4 

The Fe storage protein, ferritin, can accommodate up to 4500 atoms of Fe in its protein 

shell (Harrison and Arosio, 1996). However, the underlying mechanism of ferritin-Fe 

release remains unknown. Previous studies demonstrated that anti-cancer agents, 

anthracyclines, led to ferritin-59Fe accumulation (Kwok and Richardson, 2003). The 

increase in ferritin-59Fe was shown to be due to a decrease in the release of Fe from 



 xvii

this protein. It could be speculated that DOX may impair the Fe release pathway by 

preventing the synthesis of essential ferritin partner proteins that induce Fe release. In 

this study, a native protein purification technique has been utilised to isolate ferritin-

associated partners by combining ultra-centrifugation, anion-exchange chromatography, 

size exclusion chromatography and native gel electrophoresis. In addition to cells in 

culture (namely, SK-Mel-28 melanoma cells), liver taken from the mouse was used as 

a physiological in vivo model, as this organ is a major source of ferritin. Four potential 

partner proteins were identified along with ferritin, e.g. aldehyde dehydrogenase 1 

family, member L1 (ALDH1L1). Future studies are required to clarify the relationship 

of these proteins with cellular Fe metabolism and ferritin-Fe release.  

 

Chapter 5 

A frequent cause of death in Friedreich’s ataxia patients is cardiomyopathy, but the 

molecular alterations underlying this condition are unknown. We performed two 

dimensional electrophoresis to characterise the changes in protein expression of hearts 

using the muscle creatine kinase frataxin conditional knockout (KO) mouse. 

Pronounced changes in the protein expression profile were observed in 9-week-old KO 

mice with severe cardiomyopathy. In contrast, only a few proteins showed altered 

expression in asymptomatic 4-week-old KO mice. In hearts from frataxin KO mice, 

components of the iron-dependent complex-I and -II of the mitochondrial electron 

transport chain and enzymes involved in ATP homeostasis (creatine kinase, adenylate 

kinase) displayed decreased expression. Interestingly, the KO hearts exhibited 

increased expression of enzymes involved in the citric acid cycle, catabolism of 

branched-chain amino acids, ketone body utilisation and pyruvate decarboxylation. 

This constitutes evidence of metabolic compensation due to decreased expression of 



 xviii

electron transport proteins. There was also pronounced up-regulation of proteins 

involved in stress protection, such as a variety of chaperones, as well as altered 

expression of proteins involved in cellular structure, motility and general metabolism. 

This is the first report of the molecular changes at the protein level which could be 

involved in the cardiomyopathy of the frataxin KO mouse. 
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CHAPTER 1 2

1.1 GENERAL INTRODUCTION 

Anthracyclines are potent anti-neoplastic agents used extensively to treat a range of 

cancers, including leukemias, lymphomas, sarcomas, and carcinomas (for review, see 

Gewirtz, 1999). Doxorubicin, daunorubicin and epirubicin are clinically used 

anthracyclines (Figure 1.1). The intricate and complex cellular responses to 

anthracyclines hinder efforts to unveil the mechanisms involved in their cytostatic and 

cytotoxic actions. However, anthracyclines are proposed to disrupt macromolecular 

biosynthesis by various mechanisms, including DNA intercalation and the inhibition of 

DNA polymerase and topoisomerase II (Tewey et al., 1984a; Tewey et al., 1984b). 

Anthracyclines can also induce DNA damage by the generation of free radicals that 

react with a variety of macromolecules, thus inhibiting cellular proliferation or causing 

apoptosis (Gewirtz, 1999). Generally, the anti-tumour effect of anthracyclines are 

mainly attributed to their DNA-binding and damaging abilities. Indeed, the 

pharmacological aspects of these drugs have been extensively reviewed (Minotti et al., 

2004a; Myers, 1998), and will not be discussed in depth in this chapter.  

 

A major problem with the clinical use of anthracyclines is their cardiotoxicity, which 

limits administration exceeding an accumulated dose of approximately 550 mg/m2 

(Singal et al., 1997). The toxic effects of anthracyclines to cardiomyocytes are not due 

to inhibition of DNA synthesis, since these cells do not replicate (Myers, 1998). While 

the reasons for the cardiotoxicity of these drugs are not fully understood, a number of 

observations suggest that the interactions of anthracyclines with iron are of great 

importance (Minotti et al., 1998; Kotamraju et al., 2002; Kwok and Richardson, 2002, 

2003). The redox state of iron can be converted between the iron(II) and iron(III) states 

by interaction with anthracyclines, generating toxic reactive oxygen species (ROS) 
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Figure 1.1 Illustration of the structures of doxorubicin (DOX), daunorubicin 
(DAU), epirubicin (EPI), and the iron complex of doxorubicin. 
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(Minotti et al., 2004a; Mizutani et al., 2005; Myers, 1998). Before beginning a 

description of the reactions of anthracyclines with iron, we will first briefly detail the 

molecular mechanisms involved in the processing and trafficking of intracellular iron.  

 

1.2 CELLULAR AND MOLECULAR PHYSIOLOGY OF IRON METABOLISM  

1.2.1 The Transferrin – Transferrin Receptor Mechanism of Iron Uptake 

Iron is a crucial element for living cells and is found in two functional forms of 

macromolecules, i.e. haem and non-haem iron-containing proteins (for review, see 

Richardson and Ponka, 1997). Briefly, ferric iron [iron(III)], is transported through the 

body in a soluble form bound to transferrin (Mr = 80 kDa), a protein mainly 

synthesized by the liver and also sanctuary sites such as the brain and testis. Transferrin 

donates iron to cells through binding to the dimeric transferrin receptor 1 (TfR1) on the 

cell membrane, which is subsequently endocytosed (Figure 1.2). Within late 

endosomes at acidic pH, iron is liberated from transferrin, and in the ferrous form 

[iron(II)] is then transported into the cytosol by the divalent metal transporter 1 (DMT1; 

for review see Napier et al., 2005; Morgan, 1981). The transferrin-TfR1 complex, on 

the other hand, is returned to the cell surface, where apotransferrin is released from its 

receptor into the extracellular space (Figure 1.2). The binding of transferrin to the TfR1 

and the subsequent uptake of iron is regulated by a number of factors, including: (1) 

TfR1 expression, which is modulated by intracellular iron levels (see Section 1.2.2.2); 

(2) the competitive binding of transferrin to the TfR1 by the product of the 

hemochromatosis (HFE) gene (Feder et al., 1996; Lebron et al., 1999; Pietrangelo, 

2002); and (3) the saturation of transferrin with iron, since apotransferrin has a very 

low affinity for the TfR1 in contrast to diferric transferrin. 
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The description of the detailed structure of the iron-transferrin-TfR1 complex has 

unveiled important insights into the iron uptake process (Cheng et al., 2004). This 

latter investigation revealed that HFE and transferrin compete for the same binding site 

on each of the TfR1 monomers which is in agreement with the findings of a previous 

study (Lebron et al., 1999). Interestingly, the apical part of the receptor within the 

transferrin-TfR1 complex remains free and potentially accessible to interaction with 

other molecules. It is possible that DMT1 and/or the postulated ferrireductase, which 

reduces iron(III) to iron(II) within transferrin, could associate with the TfR1 at this site 

(Cheng et al., 2004). 

 

A recently identified second transferrin receptor (TfR2; Kawabata et al., 1999) 

probably plays an important role in iron homeostasis, since mutations of this molecule 

can lead to hemochromatosis (Camaschella et al., 2000). Even though TfR2, like TfR1, 

is a type II membrane protein with a large C-terminal ectodomain and a small N-

terminal cytoplasmic domain, the affinity of TfR2 for transferrin is approximately 25-

times less than TfR1 (Kawabata et al., 1999). On the other hand, TfR1 binds to HFE 

with nanomolar affinity (Lebron et al., 1999), while HFE binding to the TfR2 is not 

detectable (West et al., 2000). In contrast to the iron-dependent, post-transcriptional 

regulation of TfR1, the expression of TfR2 is regulated, at least in part, by the 

erythroid transcription factor, GATA-1 (Kawabata et al., 2001; Vogt et al., 2003). 

Presently, it is unclear whether there is direct interaction between TfR1 and TfR2. 

However, Vogt et al. (2003) have suggested that these molecules form heterodimers 

due to their similar internalization and co-localization patterns.  
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Figure 1.2 Schematic illustration of iron metabolism in human cells. Diferric 
transferrin in the serum avidly binds to TfR1 on the cell membrane. The transferrin-
TfR1 complex is then internalized into an endosome by receptor-mediated endocytosis. 
The iron is released from transferrin by a decrease in endosomal pH that is mediated by 
a proton pump in the endosome membrane. Once iron is released from transferrin, it is 
believed to be reduced by a ferrireductase and is then transported through the 
endosomal membrane by DMT1. Upon leaving the endosome, the iron becomes part of 
a poorly characterised compartment known as the intracellular labile iron pool. Iron 
can be redistributed from the labile iron pool for cellular use, stored in ferritin, or 
potentially pumped out of the cell by ferroportin1. Doxorubicin and other 
anthracyclines bind iron to form drug-iron(III) complex, which is known to generate 
ROS and to lead to cellular damage and apoptosis. 
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1.2.2 Intracellular Iron Metabolism 

1.2.2.1 Hephaestin, Ferroportin and Hepcidin 

Apart from transferrin, TfR1 and TfR2, more recently several other proteins have been 

implicated in the trafficking and release of intracellular iron, including: hephaestin 

(Vulpe et al., 1999), ferroportin1 (Donovan et al., 2000) and hepcidin (for review see 

Ganz, 2003). The hephaestin molecule is a trans-membrane ceruloplasmin homologue 

that is markedly expressed in the intestine and was first identified in the sla mouse 

(Vulpe et al., 1999). The mutation in this animal leads to reduced iron release into the 

circulation, resulting in iron accumulation within enterocytes (Vulpe et al., 1999). 

Therefore, hephaestin may play a role in facilitating iron release in cooperation with 

the iron transporter, ferroportin1, which is believed to be responsible for iron release 

from enterocytes into the bloodstream (Donovan et al., 2000).  

 

Studies over the last 3 years have shown that hepcidin, a peptide hormone secreted by 

the liver, is critical in iron homeostasis by acting as a iron regulatory hormone (Ganz, 

2003). Under conditions of iron overload, hepcidin is highly expressed in the liver 

(Pigeon et al., 2001). It is thought that hepcidin negatively regulates intestinal iron 

absorption, maternal-fetal iron transport across the placenta and iron release from 

hepatic stores and macrophages (Ganz, 2003). Once in the circulation, hepcidin may 

bind to ferroportin1 on the cell membrane leading to its internalization and degradation 

(Nemeth et al., 2004). This results in reduced iron efflux from enterocytes and 

completes a homeostatic loop, whereby iron regulates hepcidin secretion that then 

affects ferroportin 1 expression (Nemeth et al., 2004). In addition to these molecules, 

the serum protein, ceruloplasmin, is also involved in vivo in mediating iron efflux from 

cells (Richardson and Ponka, 1997).  
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1.2.2.2 The Regulation of Iron Homeostasis by Iron-Regulatory Proteins 

The iron-regulatory proteins 1 and 2 (IRP1 and IRP2; Mr 90-95 kDa) are mRNA-

binding molecules involved in the control of normal iron homeostasis (Figure 1.3; for 

review see Hentze and Kuhn, 1996). The IRP1 contains an [4Fe-4S] cluster and is 

identical to cytoplasmic aconitase. Iron-responsive elements (IREs) are present in the 

5' or 3'-untranslated regions of mRNAs of a variety of molecules that play a role in iron 

metabolism, including the TfR1 and ferritin. Within ferritin mRNA, the IRE is found in 

the 5'-untranslated region and its binding with either IRP inhibits translation, thereby 

decreasing iron storage (Hentze and Kuhn, 1996). However, in the case of TfR1 mRNA, 

the IRE is in the 3'-untranslated region and IRP-IRE binding leads to increased 

translation by stabilization of the mRNA against degradation, in turn causing enhanced 

iron uptake via the TfR1. The mRNA-binding activity of IRP1 is determined by the 

presence of the [4Fe-4S] cluster within the protein (Kuhn and Hentze, 1992; Theil and 

Eisenstein, 2000). In cells that are iron-deplete, the [4Fe-4S] cluster is absent (apo-

IRP1) and allows IRP1-IRE binding (Figure 1.3). Conversely, when intracellular iron 

levels are high, the [4Fe-4S] cluster forms within the protein (holo-IRP1) and prevents 

IRP1-IRE binding (Kwok and Richardson, 2002). To date, two forms of IRP1 have 

been well characterised; a high-affinity binding type which spontaneously binds 

mRNA and a low affinity form unable to bind IREs (Figure 1.3). In cellular assays, the 

low affinity form can be converted to the high affinity IRP-RNA-binding molecule by 

the addition of β-mercaptoethanol. This allows an estimate of the total IRP-RNA 

binding activity, thus representing the total IRP present in the cell (Kwok and 

Richardson, 2002). 
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Figure 1.3 The mRNA binding activity of IRP1 is regulated by the presence of an 
[4Fe-4S] cluster within the protein. When cellular iron levels are high, the [4Fe-4S] 
cluster is present in the IRP1, which abrogates mRNA binding and is known as holo-
IRP1 or cytoplasmic aconitase. On the other hand, when cells are iron-depleted, the 
[4Fe-4S] cluster is absent, and the protein has mRNA binding activity and is known as 
apo-IRP1.
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It is noteworthy that IRP1 and IRP2 share extensive sequence homology apart from a 

73 amino acid sequence unique to IRP2 that mediates its degradation  (Theil and 

Eisenstein, 2000). The IRP2 molecule contains no [4Fe-4S] cluster and in iron-replete 

cells, IRP2 is degraded by a proteasome-dependent mechanism (Guo et al., 1995). 

Although both IRPs are ubiquitously expressed, IRP1 is more abundant in most tissues 

(Kim et al., 1995; Kwok and Richardson, 2002; Rouault TA et al., 1990). However, it 

should be noted that IRP2 is not a null protein. In fact, IRP2(-/-) mice develop 

neurodegeneration and movement-disorder symptoms due to significant iron 

accumulation in white matter tracts and nuclei of the brain (LaVaute et al., 2001). In 

contrast, IRP1(-/-) mice demonstrate normal serum chemistry and all major tissues are 

without histological abnormalities (Meyron-Holtz et al., 2004). Consequently, it has 

been argued that IRP2 is highly expressed in many tissues, and in comparison to IRP1, 

appears to dominate the regulation of iron metabolism (Meyron-Holtz et al., 2004). 

 

1.2.2.3 The Intracellular Labile Iron Pool  

After iron(II) is transported out of the endosome, it enters the intracellular iron pool or 

labile iron pool (Figure 1.2). This entity is not well understood, although it is 

classically thought to be composed of chelatable iron [iron(II) and iron(III)], associated 

with low Mr ligands, such as citrate or ATP (Richardson and Ponka, 1997). More recent 

work has failed to demonstrate the presence of low Mr intermediates in the iron uptake 

process and the possible involvement of high Mr iron-binding chaperone molecules 

have been suggested (Petrak and Vyoral, 2001). Alternatively, or in combination with 

iron-binding chaperone proteins, interactions between organelles such as the endosome 

and mitochondrion might be involved in intracellular iron trafficking (Zhang et al., 

2005). Irrespective of its character, the labile iron pool donates iron to a variety of iron-
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containing molecules required for cellular metabolism and also for iron storage in 

ferritin. 

 

The labile iron pool is generally referred to as being cytosolic and represents < 5% of 

total cellular iron (for review see Esposito et al., 2002). A transit pool of chelatable iron 

is also required in the mitochondrion during haem synthesis, and chelatable redox-

active iron may exist within other organelles (Esposito et al., 2002; Gurgueira and 

Meneghini, 1996; Napier et al., 2005; Ponka, 1997). However, the size and molecular 

nature of these different subcellular iron pools remains to be investigated. A growing 

body of evidence suggests that a significant amount of iron, mainly in a redox-active 

form, is located within the lysosome (Persson et al., 2001). The concentration and 

distribution of chelatable iron in different intracellular compartments in rat hepatocytes 

has been determined via quantitative laser scanning microscopy using the fluorescent 

chelator, Phen Green (Petrat et al., 2001). The highest concentrations of iron (15.8 ± 

4.1 μM) was in a subgroup of endosomes and/or lysosomes that may be responsible for 

degrading iron-containing proteins and mitochondria (Petrat et al., 2001). In 

comparison, all other cellular compartments demonstrated significantly lower 

concentrations of chelatable iron, for instance the mitochondria and nucleus had 3-fold 

lower iron levels.  

 

1.2.2.4 Iron Storage in Ferritin and Lysosomal Iron Recycling 

Iron which is not immediately required for cell function or synthesis of hemoproteins is 

deposited in the iron-storage protein, ferritin (Figure 1.2). Ferritin is composed of 24 

subunits categorized into two subtypes: a heavy subunit (H-Ft; Mr = 21 kDa) and a 

light subunit (L-Ft; Mr = 19 kDa) that polymerize into a high Mr polymer (Mr = 430-
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450 kDa; Arosio et al., 1978; Richardson and Ponka, 1997). The H- and L-ferritin 

subunits display about 55% amino acid sequence identity, and have a similar three-

dimensional structure. The ferritin molecule is able to accommodate approximately 

4,500 iron atoms in its protein shell. Ferritin stores iron(II) by forming a solid oxo-

mineral in its core (Theil, 2003). It is suggested that the ferritin H-subunit subunits 

induce a rapid oxidation of iron(II) to iron(III) through a ferroxidase site composed of 

seven conserved residues. The L-ferritin subunit on the other hand, has a nucleation 

site, which is involved in the formation of the iron core (Levi et al., 1992; Wade et al., 

1991). 

 

Present knowledge favours the lysosomal pathway as being a significant route for 

ferritin degradation and re-utilisation of iron (Persson et al., 2001; Radisky and Kaplan, 

1998; Roberts and Bomford, 1988; Sibille et al., 1989). Lysosomes degrade various 

macromolecules, including metalloproteins such as ferritin, and damaged cell 

organelles. Due to lysosomal autophagy, lysosomes become particularly rich in iron 

(Persson et al., 2001; Petrat et al., 2001). Solubilized lysosomal iron is either 

transported to the cytosol by an unknown mechanism or is stored within lysosomes as 

iron(III) in hemosiderin, i.e., partially degraded ferritin (Persson et al., 2001). 

. 

1.3 IRON-RELATED MECHANISMS FOR ANTHRACYCLINE-INDUCED 

CARDIOTOXICITY  

The cardiotoxic effects of anthracyclines have been suggested to be a result of a 

number of different mechanisms. These are discussed below with emphasis on the role 

of iron. 
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1.3.1 Cardiotoxicity Mediated by Iron-Anthracycline Complexes and Free Radical 

Generation 

Anthracyclines bind avidly to iron, forming a 1:1, 2:1 or 3:1 drug-to-metal complex 

(Figure 1.1) with an overall association constant of 1018 (Gianni and Myers, 1992). 

Doxorubicin can directly bind iron and in the presence of oxygen it can cycle between 

the iron(II) and iron(III) states (Figure 1.4). The doxorubicin-iron(III) complex can be 

reduced to the doxorubicin-iron(II) complex in the presence of reducing agents such as 

NADPH cytochrome P450 reductase, glutathione and cysteine. These reactions are 

accompanied by the formation of O2
•-, and the conversion of anthracycline quinone 

moieties to semiquinone free radicals (Figure 1.4). The quinone structure of 

anthracyclines has the potential to act as an electron acceptor from enzymes such as 

flavin reductases, NADH dehydrogenase and cytochrome P450 reductase (Doroshow, 

1983; Gianni and Myers, 1992; Graham et al., 1987). Through the iron-catalysed 

Haber-Weiss reaction, H2O2 and extremely reactive hydroxyl radicals are generated. 

The semiquinone radical may transform to an aglycane C7-centered radical, which is a 

potent alkylating agent (Figure 1.4; Jung and Reszka, 2001). It is well-known that such 

reactive oxygen species (ROS) generation by anthracyclines causes DNA damage and 

apoptosis (Minotti et al., 2004a).  

 

Although neither H2O2 nor O2
•- are particularly reactive, in the presence of redox-

active iron even low quantities of ROS are cytotoxic. Since all cells contain small 

amounts of redox-active iron, formation of hydroxyl radicals, or similarly reactive 

iron-centered (ferryl and perferryl) radicals, can be promoted under appropriate 

conditions. These highly reactive species can attack almost all cellular constituents and 

a number of organelles, and create chain reactions that lead to cell death (Myers, 1998). 
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The increased activity of the anti-oxidant pathways, such as catalase, glutathione 

peroxidase, and glutathione transferase, in anthracycline-exposed cardiomyocytes 

further support the great importance of ROS formation in cardiac injury secondary to 

anthracycline treatment (Jung and Reszka, 2001). However, cardiac tissue is generally 

recognised to be quite vulnerable to free radical damage due to the low activity of anti-

oxidant enzyme systems (Gianni and Myers, 1992). Finally, it should also be noted that 

there is evidence that the cytotoxic mechanisms of anthracyclines can be independent 

of ROS generation (Keizer et al., 1990; Wu and Hasinoff, 2005) 

 

1.3.2 Anthracyclines Mediate Dysregulation of Iron Homeostasis 

A number of studies have provided evidence for mechanisms that could be involved in 

anthracycline mediated cardiotoxicity that are both independent and dependent on iron. 

Below, we focus upon the iron-dependent mechanisms of anthracycline-mediated 

cardiotoxicity. 

 

1.3.2.1 Effect of Doxorubicin on Major Regulators of Iron Homeostasis:  

IRP1 and IRP2 

1.3.2.1.1 The Role of Doxorubicinol in Decreasing IRP-RNA-Binding Activity 

The effect of doxorubicin on cellular iron homeostasis, including IRP levels, has been 

suggested to be a factor contributing to its cardiotoxicity (Minotti et al., 1995, 1998). 

The mechanisms involved in the effect of doxorubicin on IRP1 remain controversial, 

as a number of research groups have shown different results. Initially, doxorubicinol, a 

secondary alcohol metabolite of doxorubicin, was described to interact with the [4Fe-

4S] cluster of IRP1, resulting in the release of iron(II), and a decrease in cytoplasmic 
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Figure 1.4 Illustration of doxorubicin-mediated redox cycling. Doxorubicin can 
bind to iron by forming doxorubicin-iron(III) complexes, which may lead to ROS 
formation and cellular damage. One electron reduction of doxorubicin generates the 
doxorubicin-semiquinone that induces DNA damage and lipid peroxidation by ROS 
formation. The semiquinone radical can be transformed to a C7 radical that can also 
mediate cellular damage. The reduction of doxorubicin by 2 electrons generates a 
secondary alcohol metabolite, doxorubicinol. Although it is clear that doxorubicin 
affects cellular iron regulatory protein 1 (IRP1) RNA-binding activity and iron 
homeostasis, it is debatable whether it is doxorubicinol, the doxorubicin-iron(III) 
complex, or both that are the active molecular effectors.   
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aconitase activity (Brazzolotto et al., 2003; Minotti et al., 1995; Minotti et al., 1998). 

Considering classical IRP theory, decreased cytoplasmic aconitase levels may result in      

increased IRP-RNA-binding (Hentze and Kuhn, 1996). In contrast, doxorubicinol led 

to a decrease in IRP-RNA-binding and this could not be reversed by the reducing agent, 

β-mercaptoethanol (Minotti et al., 1998). It was suggested that doxorubicinol in the 

presence of the aconitase substrate, cis-aconitate, directly removed iron(II) from the 

[Fe-S] cluster from IRP1 by a mechanism independent of free radical generation (Cairo 

et al., 2002; Minotti et al., 1998; Figure 1.5; Scheme 1). Moreover, a generalized model 

was proposed indicating that the interaction of doxorubicinol with IRP1 resulted in 

iron(II) release from the [4Fe-4S] cluster and the reoxidation of doxorubicinol to 

doxorubicin. The iron(II) released then formed a complex with doxorubicin that 

irreversibly inactivated IRP1 (Minotti et al., 1998).  

 

In the investigation of Minotti et al. (1998) described above, lysates from homogenized 

hearts incubated with iron salts and cysteine were implemented to reconstitute the 

[4Fe-4S] cluster of IRP-1. Clearly, this system is undefined and the exact molecular 

site of the iron mobilisation observed in the lysates was not identified. Indeed, it was 

not clear if the iron release in the lysates after incubation with anthracyclines was due 

to mobilisation of iron from IRP1 or other molecules (Minotti et al., 1998). Later 

studies by the same authors showed that incubation of a cardiomyocyte cell line with 

doxorubicin increased active IRP-RNA-binding but decreased aconitase activity 

(Figure 1.5; Scheme 2; Minotti et al., 2001). These authors suggested that the 

sequential action of doxorubicinol and ROS on IRP1 leads to the generation of the null 

protein. However, it was not clear from this latter article why an increase in IRP1-

RNA-binding was observed, which was in contrast to the decrease previously observed 
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in heart lysates (Minotti et al., 1998).  

 

Further studies by other investigators assessed the effect of doxorubicin in GLC4 small 

cell lung carcinoma cells resistant (GLC4
R) and sensitive (GLC4

S) to this agent 

(Brazzolotto et al., 2003). These authors showed that incubating doxorubicin with the 

sensitive cell type resulted in a decrease in IRP-IRE-binding activity, while it had no 

effect on the resistant clone (Brazzolotto et al., 2003). When recombinant human IRP1 

was incubated with very high concentrations of doxorubicin or doxorubicinol (120 

µM), aconitase activity was significantly reduced only after doxorubicinol treatment in 

the presence of oxygen. These concentrations of anthracyclines are well above those 

encountered within human patients administered doxorubicin, where serum 

concentrations reach micromolar levels. In contrast, there was no effect of doxorubicin 

on purified recombinant IRP2, suggesting that doxorubicin targeted IRP1 (Brazzolotto 

et al. 2003). This latter result was not consistent with previous studies which showed 

that incubation of cardiomyocyte cell lines or primary cultures with doxorubicin 

reduced IRP2-RNA-binding activity (Minotti et al., 2001; Kwok and Richardson, 

2002).  

 

1.3.2.1.2 The Role of the Doxorubicin-Iron Complex in Decreasing IRP-RNA-

Binding Activity 

In subsequent studies by others, three anthracyclines, namely doxorubicin, 

daunorubicin and epirubicin, had a complex effect on IRP-RNA-binding activity when 

incubated with cells in culture (Kwok and Richardson 2002). In these experiments, 

active IRP-RNA-binding activity decreased over a 6 h incubation with anthracyclines 

and then subsequently increased, while total IRP-RNA-binding decreased as a function 
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of time. In contrast to a previous investigation by Minotti and co-workers (1998), 

experiments using cell lysates demonstrated that doxorubicinol in the presence or 

absence of cis-aconitate had no effect on IRP-RNA-binding (Kwok and Richardson, 

2002). In contrast, anthracycline-iron and -Cu complexes reduced active IRP-RNA-

binding and this was reversible upon the addition of β-mercaptoethanol (Kwok and 

Richardson, 2002). These latter results differed to those of Minotti and associates 

(1998) using tissue homogenates, which suggested that the doxorubicin-iron complex 

irreversibly inactivated IRP-RNA-binding. This inhibitory effect could be due to the 

ability of the doxorubicin-iron complex to oxidize critical sulfhydryl groups involved 

in IRP-mRNA-binding activity (Philpott et al., 1993; Figure 1.5; Scheme 3). In this 

way, the doxorubicin-iron complex would act similarly to other agents that react with 

sulfhydryl groups, such as diamide (Philpott et al., 1993). Considering this, it is well 

known that the doxorubicin-iron complex catalyses a range of redox reactions. For 

instance, it reacts with reductants including glutathione to yield oxidized thiols and 

oxygen radicals (Gianni and Myers, 1992). 

 

Using primary cultures of cardiomyocytes, Kwok and Richardson (2002) also reported 

that doxorubicin reduced IRP2-RNA-binding binding activity. These studies are similar 

to those reported using the H9c2 cardiomyocyte cell line, where doxorubicin 

irreversibly decreased IRP2-RNA-binding activity (Minotti et al., 2001). Since IRP2 

does not possess an [Fe-S] cluster, it can be speculated that the effects of doxorubicin 

may also be mediated by its ability to oxidize sulphydryl groups involved in mRNA-

binding activity. Indeed, anthracycline-mediated free radical production may be 

involved in this process since 5-iminodaunorubicin that generates far lower levels of 

free radicals does not affect IRP2-RNA-binding activity (Minotti et al., 2001). 
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Figure 1.5 Proposed mechanisms of action of doxorubicin on IRP1-RNA-binding 
activity. There are three main hypotheses of how doxorubicin regulates cellular IRP1 
levels: Scheme 1, doxorubicinol, a secondary alcohol metabolite of doxorubicin, 
together with cis-aconitate may act to remove iron from the [4Fe-4S] cluster of holo-
IRP1. The removal of iron from the cluster results in the oxidation of doxorubicinol to 
doxorubicin and generation of the doxorubicin-iron complex which irreversibly 
converts IRP1 to a null protein (Minotti et al., 1998); Scheme 2, doxorubicin removes 
the [4Fe-4S] cluster of holo-IRP1 and increases IRP-IRE binding (Minotti et al., 2001; 
Kotamraju et al., 2002); Scheme 3, The doxorubicin-iron complex catalyses disulfide 
bridge formation between crucial IRP1 thiol groups inhibiting IRP-IRE binding (Kwok 
and Richardson, 2002).  
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1.3.2.1.3 Doxorubicin Increases IRP-RNA-Binding Activity in Endothelial Cells   

Studies using endothelial cells have shown different effects of doxorubicin on IRP-

RNA-binding activity than those described above. In fact, in an investigation by 

Kotamraju and colleagues (2002), doxorubicin increased IRP-RNA-binding activity 

within 8 h and there was also increased iron uptake and TfR1 expression. These 

experiments suggested that doxorubicin-induced iron uptake occurred via increased 

IRP-RNA-binding activity and the subsequent elevation of TfR1 levels (Kotamraju et 

al., 2002). The authors proposed that oxidative stress generated by doxorubicin 

activated IRP-RNA-binding, as anti-oxidants such as ebselen and Mn(III) tetrakis (4-

benzoic acid) porphyrin complex (MnTBAP) inhibited the effect of doxorubicin on 

TfR1 levels and iron uptake. These results were clearly different to those using lysates 

from the homogenized heart (Minotti et al., 1998) or neoplastic cell lines, where 

doxorubicin decreased IRP-RNA-binding and may indicate a cell type-specific 

response. 

 

In conclusion, the results above demonstrate that the effects of doxorubicin on IRP-

RNA-binding activity are complex. In general, in most cell types, doxorubicin 

decreased active IRP-RNA-binding activity and this will probably result in important 

downstream effects on cellular iron metabolism. Further studies to clarify the precise 

molecular mechanisms involved need to be performed. 

 

1.3.2.2 Effect of Doxorubicin on Iron Trafficking Pathways: Doxorubicin Induces 

Iron Accumulation in Ferritin 

Initial studies assessing the effects of doxorubicin on cellular iron metabolism reported 

that doxorubicin released iron from ferritin (Thomas and Aust, 1986). However, these 



 

CHAPTER 1 21

experiments were performed in vitro using the purified ferritin protein and their 

physiological significance remained unclear. More recent investigations showed that a 

24 h incubation of a range of neoplastic and normal cells with diferric transferrin and 

doxorubicin (1-10 μM) lead to 3- to 8-fold higher ferritin-iron levels compared to 

control cells incubated with diferric transferrin alone (Kwok and Richardson, 2003). 

This accumulation of ferritin-iron was due to the fact that incubation of cells with 

anthracyclines prevented iron release from this molecule (Figure 1.6). Moreover, the 

slight increase in ferritin protein levels observed after incubation with doxorubicin (to 

130% of the control at 5 μM doxorubicin) could not account for the 3 to 8-fold increase 

in ferritin-iron accumulation (Kwok and Richardson, 2003). 

 

Considering the mechanism of ferritin-iron accumulation after incubation with 

doxorubicin, the general process of iron mobilisation from this protein is poorly 

understood. However, catabolism of ferritin by lysosomes has been suggested to be a 

likely mechanism (Radisky and Kaplan, 1998; Persson et al., 2001). In addition, 

anthracyclines are known to accumulate in lysosomes (Hurwitz et al., 1997), and this 

organelle may be a target for these drugs (Figure 1.6). Recent studies have shown that 

ferritin iron mobilisation is an energy-dependent process that also requires protein 

synthesis (Kwok and Richardson, 2004). This latter observation was based on studies 

inhibiting protein synthesis using cycloheximide, which prevented ferritin iron release 

(Kwok and Richardson, 2004). It can be speculated that this effect could be due to the 

requirement for translation of a protein that is involved in ferritin iron mobilisation. 

 

Additional evidence for the involvement of the lysosome in the doxorubicin-mediated 

inhibition of ferritin iron mobilisation was provided by implementing a number of 
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Figure 1.6 Schematic illustration of the effect of doxorubicin on cellular iron 
metabolism. Doxorubicin leads to iron accumulation in ferritin due to inhibition of 
iron mobilisation from this protein. There is no change in the total amount of iron in 
the cell, rather only the intracellular distribution is markedly affected. The mechanism 
of how doxorubicin inhibits iron release from ferritin is not known, but may, at least in 
part, involve disturbance to lysosomal function. Indeed, the lysosome has been 
reported to be involved in ferritin degradation and the release of iron from this protein. 
The inability of ferritin to release iron after exposure to doxorubicin may lead to 
cytotoxic effects due to the requirement of essential metabolic processes for iron e.g., 
DNA synthesis. Clearly, this potential growth inhibitory mechanism is not the only one 
mediated by anthracyclines. 
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lysosomal protease inhibitors (Kwok and Richardson, 2004). Depression of lysosomal 

protease activity using pepstatin A, E64d, or leupeptin, demonstrated that pepstatin A 

had no effect, while E64d and leupeptin increased ferritin iron-loading to a level similar 

to doxorubicin. Considering this, since pepstatin A is an aspartic protease inhibitor, 

while E64d and leupeptin are cysteine or cysteine and serine protease inhibitors, 

respectively, it can be suggested that aspartic proteases are not involved in ferritin-iron 

mobilisation (Kwok and Richardson, 2004). Further support for the role of the 

lysosomes and/or proteosome in ferritin-iron mobilisation was achieved through the use 

of the lysosomotropic agents, NH4Cl, chloroquine and methylamine, and the 

proteasomal inhibitors, MG-132 and lactacystin, that also prevented ferritin-iron 

mobilisation (Kwok and Richardson, 2004). Thus, the lysosome/proteasome pathway 

may be an anthracycline target, inhibiting ferritin iron release that is vital for iron-

requiring processes, e.g., DNA synthesis (Kwok and Richardson, 2004). 

 

In view of the effect of anthracyclines at inhibiting iron mobilisation from ferritin, it 

must be noted that this is only one of the many effects of these drugs that contributes to 

their cytotoxicity. At present, compared to the other cytotoxic effector mechanisms of 

anthracyclines, the extent to which the inhibition of ferritin iron mobilisation 

contributes to cardiotoxicity is not clear. Furthermore, it must be noted that the 

potential cytotoxicity induced by inhibiting ferritin iron mobilisation is at odds with the 

ability of iron chelators to prevent anthracycline-mediated cardiotoxicity (see Section 

1.4 below). In terms of trying to understand this apparent dichotomy, the complexity of 

the mechanisms of action of anthracyclines must be considered (Minotti et al., 2004a). 

In fact, the iron pool or other molecular sites that are targeted by chelators to prevent 

anthracycline-mediated cardiotoxicity are not known and it is of interest that the 



 

CHAPTER 1 24

chelator, dexrazoxane, does not completely prevent this problem (Swain et al., 1997a). 

Additional studies investigating the mechanisms of how chelators inhibit 

anthracycline-mediated cardiotoxicity are required. 

 

Interestingly, similarly to anthracyclines, a number of free-radical generating agents 

(i.e., menadione and paraquat) have also been shown to be effective at increasing 

ferritin iron accumulation, an effect that can be at least partially reversed by free 

radical scavengers (Kwok and Richardson, 2003). It has been proposed that the ability 

of free radical generators to induce ferritin iron accumulation may be mediated via the 

effects of these agents on lysosomal function (Kwok and Richardson, 2004). Further 

evidence for a role of free radical generation in inducing the alterations in ferritin-iron 

metabolism was obtained by Corna and associates (2004) comparing doxorubicin and 

the redox active anthracycline analogues, mitoxantrone and 5-iminodaunorubicin. 

These ROS-generating compounds were found to significantly induce ferritin protein 

expression, especially the H-ferritin subunit, suggesting that doxorubicin regulates 

ferritin levels via ROS formation (Corna et al., 2004). Further experiments revealed 

that enhanced ROS production and ferritin accumulation after doxorubicin treatment 

can be prevented by the ROS scavenger, N-acetylcysteine. Therefore, it was suggested 

that doxorubicin-mediated ROS production was involved in ferritin induction in the 

H9c2 cardiomyocyte cell line (Corna et al., 2004). Concomitant experiments showed 

that preincubation of doxorubicin or mitoxantrone could paradoxically protect H9c2 

cells from cytotoxicity induced by iron loading with ferric ammonium citrate, while 

incubation with 5-iminodaunorubicin did not protect the cell. Considering that 5-

iminodaunorubicin reportedly produces less ROS than either doxorubicin or Mitox, 

these studies suggested that the protective effect of these compounds to iron-loading 
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seemed to correlate with their ability to act as ROS generators (Corna et al., 2004).  

 

Apart from the effect of doxorubicin on ferritin iron-loading, further evidence that 

interactions between doxorubicin and iron metabolism are involved in the cytotoxic 

effects of these drugs has been provided by studies examining HFE knockout mice 

(Miranda et al., 2003). After doxorubicin treatment, HFE knockout mice accumulate 

more iron in the serum and several organs compared to their wild-type counterparts, 

suggesting that HFE deficiency may increase susceptibility to doxorubicin-induced 

toxicity (Miranda et al., 2003). Doxorubicin treated HFE-deficient mice also have 

higher mortality rates and a greater degree of mitochondrial damage compared with the 

control (Miranda et al., 2003).  

 

1.4 AGENTS THAT PREVENT DOXORUBICIN-MEDIATED 

CARDIOTOXICITY BY INTERACTING WITH IRON  

The evidence presented above indicates that anthracyclines markedly disturb 

intracellular iron metabolism and a variety of studies have clearly shown that iron 

plays an important role in the cardiotoxicity mediated by this drug. Apart from this, it 

is well known that the iron chelator, dexrazoxane (also known as ICRF-187), is an 

effective cardioprotective agent against the effects of doxorubicin. Below, we discuss 

the potential of iron chelators as agents to prevent anthracycline-mediated 

cardiotoxicity.  

 

1.4.1 Dexrazoxane  

The only clinically approved chelator that is currently used to alleviate doxorubicin-

induced cardiotoxicity is dexrazoxane (Figure 1.7; Swain et al., 1997a,b; Minotti et al.,  
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Figure 1.7 Illustration of the chemical structures of the iron chelators: 
desferrioxamine, dexrazoxane, pyridoxal isonicotinoyl hydrazone (PIH), 4-[3,5-
bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]- benzoic acid (ICL670A) and 
salicylaldehyde isonicotinoyl hydrazone (SIH). 
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2004). It is suggested that in vivo, dexrazoxane permeates the cell membrane and can 

be rapidly hydrolysed to its metal ion-binding metabolite, ADR925, thus decreasing 

anthracycline-iron binding and ROS formation (Hasinoff, 1998). ADR-925 quickly 

displaces iron(III) and copper(II) from their complexes with anthracyclines, indicating 

that ADR925 chelates iron(III) more strongly than doxorubicin (Hasinoff, 1998). 

Interestingly, metal ions, including the anthracycline-iron(III) complex, promote 

formation of ADR-925 and potentiate its metal chelating effect (Hasinoff, 1998).  

 

Dexrazoxane has shown significant protection against cardiotoxicity caused by 

doxorubicin in numerous animal models, for example, mouse, rat, hamster, rabbit and 

dog (Herman and Ferrans, 1990; Herman et al., 1992; Herman et al., 1988; Imondi et 

al., 1996; Minotti et al., 2004a). In addition, clinical trials showed that dexrazoxane 

protects patients with advanced breast cancer from doxorubicin-induced cardiotoxicity 

(Swain et al., 1997b). With dexrazoxane therapy, patients treated with dexrazoxane-

doxorubicin (ratio 10:1) were only 38% as likely to develop cardiac complications 

compared to treatment with doxorubicin alone (Swain et al., 1997b). Dexrazoxane also 

shows short-term cardioprotection against doxorubicin in childhood cancers (Wexler, 

1998). Because the outcomes of long-term cardioprotection are not clear, dexrazoxane 

is only recommended for adult patients who have received an accumulated dosage of 

doxorubicin ≥ 300 mg/m2 (Hensley et al., 1999). However, this agent does not confer 

absolute cardioprotection (Swain et al., 1997b) and causes myelosuppression (Curran 

et al., 1991). Considering this, other regimens of chelation therapy using a variety of 

ligands have been investigated and these are discussed below. 
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1.4.2 Desferrioxamine 

Desferrioxamine (Figure 1.7) is a hexadentate iron chelator widely used for iron 

overload disease such as β-thalassemia major (Lombardo et al., 1996). 

Desferrioxamine significantly reduces iron storage and ferritin levels and has been 

used for many years to control the iron-loading observed in transfusion-dependent 

anemias (Richardson and Ponka, 1998). However, in comparison, there has been 

relatively few investigations assessing its protective effects against anthracycline-

mediated cardiotoxicity. An early study found that after incubating isolated mice atria 

with doxorubicin (30 μM), desferrioxamine (200 μM) was more effective than 

dexrazoxane (200 μM) at preventing the doxorubicin-induced decrease in contractile 

force (Voest et al., 1994). In addition, Saad et al. (2001) found that desferrioxamine 

was highly effective at protecting against doxorubicin-induced acute cardiotoxicity 

when used at a dose that was 10-fold greater than doxorubicin. Treatment with 

desferrioxamine either prior to or after doxorubicin administration reduced the 

doxorubicin-mediated elevation of cardiac isoenzymes such as creatine kinase 

isoenzyme and lactate dehydrogenase, which are indicators of myocardial damage and 

compromised cellular integrity, respectively (Saad et al., 2001). However, 

desferrioxamine is limited to subcutaneous or intravenous infusion because of its poor 

absorption from the gastrointestinal tract and its short plasma half-life (Aouad et al., 

2002). Moreover, considering that chelator permeability is critical to the ability of 

these compounds to inhibit anthracycline-mediated cardiotoxicity (Voest et al., 1994), 

the limited membrane permeability of desferrioxamine probably explains the need for 

high levels of this chelator to inhibit the effects of doxorubicin (Saad et al., 2001). 

These disadvantages have encouraged the design of orally active chelators with high 

lipophilicity and membrane permeability that can access intracellular iron pools to 
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inhibit anthracycline-mediated cardiotoxicity. 

 

1.4.3 Other Iron Chelators with Potential Cardio-Protective Activity 

Pyridoxal isonicotinoyl hydrazone (PIH; Figure 1.7) is a relatively lipophilic orally 

effective tridentate iron chelator that has high membrane permeability and possesses 

marked iron chelation efficacy (for review see Richardson and Ponka, 1998). In fact, 

PIH is able to remove iron from a variety of rodent models via the biliary route 

(Hershko et al., 1981; Hoy et al., 1979; Ponka et al., 1979a; Ponka et al., 1979b; 

Richardson and Ponka, 1998). Moreover, low doses of PIH (30 mg/kg/day) given to 

human patients increased iron excretion from iron-loaded patients (Brittenham, 1990). 

In a recent in vivo study, PIH pre-treatment protected rabbits from daunorubicin-

mediated toxicity, although its efficacy was not as great as dexrazoxane (Simunek et al., 

2005). This study showed that repeated administration of daunorubicin to rabbits (3 

mg/kg, i.v. once a week for 10 weeks) led to 4 deaths, while all animals survived when 

PIH was administered 60 min prior to daunorubicin. Salicylaldehyde isonicotinoyl 

hydrazone (SIH; Figure 1.7), a PIH analogue, also showed cardioprotective potential 

by restoring a loss in cytochrome P450 activity after daunorubicin treatment 

(Schroterova et al., 2004). Hence, this class of chelators show promise as potential 

cardioprotective agents and require further investigation. 

 

Other chelators with possible potential in the treatment of anthracycline-mediated 

cardiotoxicity include the new orally active chelator, ICL670A (4-[3,5-bis-

(hydroxyphenyl)-1,2,4-triazol-1-yl]- benzoic acid; Figure 1.7). This compound belongs 

to the synthetic tridentate and iron-selective ligands of the bis-hydroxyphenyl-triazole 

class (Schroterova et al., 2004). Using the hypertransfused rat model, ICL670A was 
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able to remove iron from parenchymal iron stores 4 to 5 times greater than 

desferrioxamine, and combination of desferrioxamine and ICL670A demonstrated an 

additive effect at the lower dose range of 25 to 50 mg/kg (Hershko et al., 2001). Phase 

I and II clinical trials of ICL670A were successful in patients with transfusional iron 

overload (Nisbet-Brown et al., 2003). However, a recent study on neonatal rat cardiac 

myocytes showed that ICL670A was unable to protect these cells from doxorubicin-

mediated cardiotoxicity as measured by lactate dehydrogenase release, while 

dexrazoxane significantly prevented this (Hasinoff et al., 2003). The reason for 

inability of ICL-670A to prevent anthracycline mediated cardiotoxicity is puzzling, but 

it could be related to its inability to access appropriate pools of iron that could be the 

potential targets of anthracyclines. Understanding why some chelators are protective 

against anthracycline-mediated cardiotoxicity while others are not is important for the 

rationale design of new cardioprotective agents and understanding the mechanism of 

action of these drugs. 

 

1.5 SUMMARY 

Anthracyclines avidly bind iron and form anthracycline-iron(III) complexes that may 

serve as a regulator of cellular iron homeostasis, by generally decreasing IRP-RNA-

binding activity. However, the precise molecular mechanism of this effect remains 

controversial with the doxorubicin-iron complex and/or doxorubicinol, being involved. 

Another molecular target of doxorubicin includes the iron-storage protein ferritin. 

Recent experiments suggest that anthracyclines prevent ferritin iron mobilisation 

through a mechanism which may involve inhibition of lysosomal function that is 

involved in ferritin degradation. The prevention of iron release from ferritin may be 

detrimental to the cell due to the importance of iron for DNA synthesis and energy 
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metabolism. On the other hand, it has been suggested that doxorubicin-mediated 

ferritin iron accumulation is a protective effect against anthracycline-induced free 

radical generation.  

 

Due to the role of iron in anthracycline-mediated cardiotoxicity, both dexrazoxane and 

other chelators such as desferrioxamine have proven to be successful cardioprotective 

agents. Because these two chelators have limitations, including myelotoxicity and a 

cumbersome administration regimen, respectively, other chelators that are orally 

effective are being developed. Indeed, the ligands PIH, SIH and ICL670A are under 

investigation and their ability to alleviate anthracycline-mediated cardiotoxicity is 

important to evaluate in further studies. 
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2.1 REAGENTS 

2.1.1. General Reagents 

Catalase, ebselen, ferric ammonium citrate (FAC), horse spleen ferritin, menadione, 

sodium thiosulfate (Na2S2O3) and superoxide dismutase (SOD) were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). The Mn(III) tetrakis (4-benzoic acid) porphyrin 

complex (MnTBAP) was obtained from MP Biomedicals (Aurora, Ohio, USA). A 

polyclonal anti-ferritin antibody was obtained from the In-Vitro Technologies (VIC, 

Australia). All other chemicals were of analytical reagent quality.  

 

2.1.2. Anthracyclines and Analogue 

Doxorubicin (DOX), daunorubicin (DAU) and epirubicin (EPI) were obtained from 

Pharmacia (Sydney, Australia). An anthracycline analogue, mitoxantrone, was obtained 

from Sigma-Aldrich (St. Louis, MO, USA). Another analogue named 5-

iminodaunorubicin (5-i-DAU) was kindly provided by Dr. Ven L. Narayanan, Drug 

Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD, USA. 

 

The anthracycline-Fe complexes (DOX-Fe, DAU-Fe and EPI-Fe) were synthesized 

under acidic conditions as previously described (Garnier-Suillerot and Gattegno, 1988; 

Gianni et al., 1985; Kostoryz and Yourtee, 2001; Zweier et al., 1986). Briefly, 

anthracyclines were diluted to 1 mM in 140 mM NaCl and FeCl3·6H2O was diluted to  

1 mM in 1 mM HCl. Then 3 volumes of 1 mM anthracycline was mixed reacted with  

1 volume of 1 mM FeCl3 to synthesize the anthracycline-Fe (3:1) complex. The 

reaction was allowed to proceed for 15 min in the dark, resulting in a purple brown 

solution. These solutions were then adjusted to pH 7.4 and spectroscopic analysis 

performed between 350 and 800 nm. The DOX-Fe complex demonstrated a 
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hypochromic shift at 480 nm and the Fe complex charge-transfer band was 

demonstrated at around 600 nm as demonstrated previously (Garnier-Suillerot and 

Gattegno, 1988; Gianni et al., 1985; Kostoryz and Yourtee, 2001; Zweier et al., 1986). 

 

2.1.3. Iron Chelators 

Desferrioxamine (DFO) was obtained from Novartis Pharmaceutical Co. (Basel, 

Switzerland). The chelators pyridoxal isonicotinoyl hydrazone (PIH) and the PIH 

analogue, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), were 

synthesized using standard procedures (Richardson et al., 1995). Briefly, a Schiff base 

condensation was performed between pyridoxal isonicotinoyl hydrazone or 2-hydroxy-

1-naphthyladehyde and isonicotinic acid hydrazide to yield PIH or 311, respectively 

(Richardson et al., 1995). 

 

PIH was dissolved in dimethyl sulphoxide (DMSO) as 10 mM stock solution 

immediately prior to an experiment and then diluted in medica containing 10% foetal 

calf serum (FCS) giving a final DMSO concentration of less than or equal to 0.5% 

(v/v). Solutions were mixed vigorously to ensure total solubilisation.  

 

2.2 CELL CULTURE 

Human DMS-53 lung carcinoma, human IMR-32 neuroblastoma, human SK-Mel-28 

melanoma, human SK-N-MC neuroepithelioma, human MCF-7 breast cancer, rat H9c2 

cardiomyocyte were obtained from the American Type Culture Collection (Rockville, 

MD, USA). The murine fibroblast cell line from homozygous hypoxia inducible factor-

1α (HIF-1α) knockout mice and its wild-type counterparts were obtained from Dr R. 

Johnson (University of California, San Diego). All cell lines, except rat H9c2 
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cardiomyocytes, were grown in Eagle’s modified minimum essential medium (MEM; 

Gibco BRL, Sydney, Australia) containing 10% fetal bovine serum (Gibco), 1% non-

essential amino acid (Gibco), streptomycin (Gibco; 100 µg/mL), penicillin (Gibco; 100 

U/mL) and fungizone (Squibb Pharmaceuticals, Montreal, Canada; 0.28 µg/mL).  

 

Rat H9c2 cardiomyocytes were grown in Dulbecco's modified Eagle's medium 

(DMEM; Gibco) with 10% fetal bovine serum, 1% non-essential amino acid, 

streptomycin (100 µg/mL), penicillin (100 U/mL) and fungizone (0.28 µg/mL).  

  

2.3 CELL PROLIFERATION ASSAY 

At the end time-point of proliferation experiments, the cells were removed from the 

plate with 1 mM EDTA. The cells were pelleted at 1390 rpm for 5 min and the 

supernatant aspirated. Pelleted cells were then resuspended in fresh media. Trypan blue 

(50 μL; Sigma Aldrich) was added to a 50 μL aliquot of cell suspension and allowed to 

stain for 2-3 min. A visual cell count was next performed using a haemocytometer and 

light microscope. 

 

2.4 RNA ISOLATION AND SEMI-QUANTITATIVE RT-PCR 

2.4.1 Isolation of RNA from Whole Cells  

Total RNA was isolated from whole cells using TRIzol® Reagent (Sigma-Aldrich). 

Whole cell pellets were resuspended in a 1 mL volume of TRIzol®. Briefly, the cell 

lysates were incubated at room temperature for 5 min, then 0.2 mL of chloroform was 

added and the samples shaken vigorously. After another incubation period, the samples 

were centrifuged at 12,000 xg for 15 min at 4°C, and the aqueous phase transferred to a 

0.5 mL volume of isopropanol (Sigma-Aldrich). After a further 10 min incubation, the 
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samples were centrifuged, the supernatant removed and the RNA pellet washed in 75% 

RNA-grade EtOH. RNA pellets were resuspended in DEPC-treated water and 

concentrations determined by UV-Vis spectrophotometry at 260 nm. The quality of the 

RNA was also assessed by 1.5% formaldehyde gel electrophoresis and the bands 

visualised by ethidium bromide (EtBr) staining. 

 

2.4.2 Reverse Transcriptase-Polymerase Chain Reaction 

Isolated total RNA was used to perform semi-quantitative reverse-transcriptase 

polymerase chain reaction (RT-PCR). A typical reaction follows: 0.3 μg of RNA was 

incubated with gene specific oligonucleotides (0.2 μM final primer concentration) in a 

25 μL volume containing 12.5 μL of 2x Reaction Mix (1.6 mM MgSO4 and 200 μM 

dNTP) and 1 μL SuperScript™ III RT/ Platinum® Taq Mix for 30 min at 56°C. After 

reverse transcription the samples were initially denatured for 3 min at 94°C. The 

reactions were then amplified for 23–36 PCR cycles that included a 94°C denaturation 

step for 30 s, 56°C annealing step for 30 – 60 s and a 68°C extension step for 60 s, with 

a final extension time of 5 min. As an internal control, the house-keeping gene β-actin 

was amplified from the same samples. All RT-PCR amplifications were performed with 

a no template control that was always negative. To minimise non-specific amplification 

of genomic DNA, primers were designed to span exons where possible. All RT-PCR 

reaction products were analysed by 1.5% agarose gel electrophoresis and visualised 

with EtBr staining.  
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2.5 DETECTION OF PROTEIN USING WESTERN BLOT ANALYSIS 

2.5.1 Antibodies 

The mouse monoclonal anti-human β-actin antibody (Sigma-Aldrich; clone AC-15) 

was used at a dilution of 1:5,000. The anti-human TfR1 antibody was used ay a 

concentration of 1:4,000 (Sigma-Aldrich). The rabbit monoclonal anti-human Ndrg1 

antibody was used at a dilution of 1:500 (Zymed, Carlsbad, California). The sheep 

monoclonal anti-human ferritin antibody was used at a dilution of 1:1,000 (In-Vitro 

Technologies, Australia). Anti-mouse, anti-rabbit and anti-sheep IgG antibodies 

conjugated with horseradish peroxidase (0.03-0.1 mg/mL; Sigma-Aldrich) were used at 

a dilution of 1:5,000. 

 

2.5.2 Extraction of Protein from Whole Cells  

Cells grown on the flasks were washed with phosphate buffered saline (PBS) and 

stored at -80°C overnight. The cells were thawed on ice and scraped with 250 μL of 

ice-cold lysis solution [150 mM NaCl, 10 mM Tris-HCl (pH 7.4), 1.5% Triton X-100, 

0.5% SDS, 1 mM EDTA, 1mM EGTA, 40 μM NaF and EDTA-free protease inhibitor 

cocktail (Roche, Penzberg, Germany)]. Whole cells were vigorously suspended in lysis 

solution and incubated on ice for 30 min. The samples were subjected to multiple 2 sec 

bursts of sonication on ice and centrifuged at 16,000 xg for 45 min at 4°C. The protein 

lysate supernatants were retained and the protein concentrations were determined using 

the Bio-Rad protein assay reagent (Bio-Rad, Hercules, CA, USA) as described in the 

manufacturer’s directions. 

 

2.5.3 Western Blot Analysis 

Protein lysates were heat denatured at 90°C for 5 min, mixed with loading buffer under 
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non-reducing conditions and then added (100 μg/lane) to a non-reducing PAGE gel. 

This consisted of 4% stacking and 12% separating gels (SDS-PAGE stacking or 

separating buffers with 30% bis-acrylamide, 10% ammonium persulphate (Sigma-

Aldrich), N,N,N’,N’-tetramethyl-ethylenediamine (TEMED; Bio-Rad, Hercules, CA, 

USA) and de-ionised water. Protein standards (Bio-Rad) were run on each gel. 

Following electrophoresis in SDS-PAGE running buffer, proteins were electroblotted at 

30 V onto polyvinyl-difluoride (PVDF) membranes (Amersham Biosciences, 

Buckinghamshire, United Kingdom) overnight at 4°C in 90% SDS-PAGE transfer 

buffer/10% MeOH using standard transfer protocols (Sambrook et al., 1989). The 

membrane was stained with Ponceau S (Sigma-Aldrich) to ensure that all lanes 

contained equal amounts of protein and that the transfer of proteins to the membrane 

had been complete. In all experiments, only membranes with equal protein loads were 

used. As an additional check of protein loading, membranes were also probed for β-

actin. All incubation and washing steps were performed using a platform rocker 

(Bioline, Edwards Instrument Co., Australia). 

 

Membranes were soaked in MeOH and blocked with 5% skim milk in Tris buffered 

saline (TBS) for 2 h at room temperature. The membranes were then washed four times 

with TBS containing 0.1% Tween 20 (Sigma-Aldrich) (TBST). Monoclonal antibodies 

were added to TBS containing 5% skim milk and incubated for 2 h or overnight at 

room temperature. Membranes were then washed four times with TBST. Following 

washing, a secondary antibody conjugated to horseradish peroxidase was incubated 

with the membranes for 1 h at room temperature. After washing, the membranes were 

developed using the Enhanced chemiluminescence (ECL) Plus™ Western blot 

detection reagent (GE Healthcare, Bucks, UK) and exposed to X-ray film. The films 
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were scanned and assembled in Adobe Photoshop then analysed using the 

densitometric software, Quantity One (Bio-Rad). All densitometric data were 

normalised to β-actin loading controls. 

 

2.6 CELLULAR IRON UPTAKE AND MOBILISATION EXPERIMENTS 

2.6.1 Preparation of 59Fe-Transferrin 

Human apotransferrin (apo-Tf; Sigma-Aldrich) was labeled with 59Fe (Dupont NEN, 

MA) to produce 59Fe2-transferrin (59Fe-Tf), as described (Kwok and Richardson, 2003). 

Briefly, apo-Tf was labeled with Fe using the ferric-nitrilotriacetate complex at a ratio 

of 1 Fe to 10 NTA. This complex was prepared in 0.1 M HCl and then this solution 

adjusted to pH 7.4 using 1.4% NaHCO3. This solution was added to apo-Tf and then 

incubated for 1 h at 37oC. Unbound Fe was removed by exhaustive vacuum dialysis 

against 150 mM NaCl adjusted to pH 7.4 using 1.4% NaHCO3. The saturation of Tf 

with Fe was monitored by UV-Vis spectrophotometry with the absorbance at 280 nm 

(protein) being compared with that at 465 nm (Fe-binding site). In all studies, fully 

saturated diferric Tf was used. 

  

2.6.2 Effect of Anthracyclines on 59Fe Efflux from Prelabelled Cells  

Iron efflux experiments examining the ability of various agents to mobilise 59Fe from 

cells were performed using established techniques (Richardson et al., 1995). Briefly, 

cells were prelabelled with 59Fe-Tf ([Tf] = 0.75 µM; [Fe] = 1.5 µM) for 3 h at 37°C. 

This medium was aspirated and the cell monolayer washed four times with ice-cold 

PBS. The cells were then reincubated for 3 to 24 h at 37°C with minimum essential 

medium in the presence or absence of the agents to be tested. After this incubation, the 

overlying media containing released 59Fe were collected in γ-counting tubes. The cells 
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were removed from the Petri dishes and placed in a separate set of tubes. Radioactivity 

was measured in both the cell pellet and supernatant using a Wallac Wizard 1480 3” γ-

counter (Turku, Finland).  

 

2.6.3 The Ability of Iron Chelators and Anthracyclines to Mobilise 59Fe from the 

Cell Lysates 

The 59Fe mobilisation assay was performed to examine the ability of the chelators or 

anthracyclines to chelate 59Fe from the cell lysates using standard procedures (Watts 

and Richardson, 2002). Briefly, cells grown to near confluence in culture flasks were 

labelled with 59Fe-Tf (0.75 µM) for 3 h at 37 °C, placed on a tray of ice, the medium 

decanted and the cell monolayer washed six times with ice-cold BSS. The cells were 

lysed by one freeze-thaw cycle and then detached from the flask using a Teflon spatula 

in the presence of the nonionic detergent Triton X-100 (1.5%) at 4°C. These samples 

were then centrifuged at 16,000 xg for 30 min at 4 °C and the cytosol removed and 

assessed for radioactivity using the γ-counter described above. The cytosolic samples 

were then incubated for 3 h at 37°C with the agents of interest for 24 h. After this 

incubation, the samples were then subjected to centrifugation at 4°C through a 5-kDa 

NMWL exclusion filter unit (Millipore, Billerica, MA, USA). After centrifugation, the 

eluent and eluate were taken to estimate 59Fe levels by the γ-counter.  

 

2.6.4 Effect of Anthracyclines on 59Fe Uptake from Transferrin by Cells 

To examine the ability of various agents to inhibit cellular 59Fe uptake from 59Fe-Tf, 

experiments were performed using standard procedures (Richardson et al., 1995). 

Briefly, cells were incubated with 59Fe-Tf (0.75 µM; i.e., [Tf] = 0.75 µM; 

[Fe] = 1.5 µM) together with the agents of interest for 3 to 24 h at 37°C. This medium 
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was then aspirated and the cell monolayer washed four times with ice-cold PBS. Cells 

were then harvested on ice using a plastic spatula and placed in γ-counting tubes. As a 

measure of cellular density, protein concentrations were assessed using the Bio-Rad 

protein reagent (Bio-Rad, Hercules, CA, USA). The data are expressed as counts per 

minute of 59Fe/mg of protein. Separate experiments demonstrated that cell number was 

directly proportional to protein concentration.   

 

2.7 CELLULAR IRON DISTRIBUTION STUDIES 

2.7.1 Cell Treatments 

To examine cellular 59Fe distribution during 59Fe efflux, cells were pre-labelled with 

59Fe-Tf (0.75 µM) for 3 h at 37°C. Cells were then washed four times with ice-cold 

PBS and reincubated in the presence or absence of agents of interest for 3 to 24 h at 

37°C. Following the reincubation, media was removed and cells stored in -80°C. To 

examine 59Fe distribution during cellular Fe uptake, cells were labelled with 59Fe-Tf 

(0.75 µM), in the presence or absence of the agents of interest, for 3-24 h at 37°C. 

Cells were then washed four times with ice-cold PBS and stored at -80°C. 

 

2.7.2 Cell Lysates 

Cells stored at -80°C were then thawed on ice and then lysed by scraping in the 

presence of 100 µL ice-cold 1.5% Triton X-100 containing 2 mM PMSF (Sigma), 

followed by one freeze-thaw cycle. Samples were then vortexed and spun at 16,000 xg 

for 45 min at 4°C to separate the stromal mitochondrial membrane (SMM) fraction 

from the cytosolic fraction. Under these conditions, the SMM fraction contains the 

disrupted plasma and nuclear membranes, intracellular membranes and a variety of 

organelles including mitochondria and lysosomes (Rickwood and Patel, 1995). 
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2.7.3 Determination of Intracellular Iron Distribution using Native-PAGE-59Fe-

Autoradiography 

Native-gradient-PAGE-59Fe-autoradiography was performed using established 

techniques (Babusiak et al., 2005). Briefly, cells labelled with 59Fe-Tf (0.75 µM) were 

lysed at 4oC in buffer containing 1.5% Triton X-100, 140 mM NaCl and 20 mM 

HEPES (pH 8) supplemented with an EDTA-free protease inhibitor cocktail (Roche, 

Penzberg, Germany). Samples were then vortexed and centrifuged at 16,000 xg for 45 

min at 4°C. The supernatants were loaded onto a native 3-12% gradient PAGE gel (100 

μg protein/lane) and electrophoresis was performed at 20 mA/gel overnight at 4°C. 

Gels were subsequently dried and autoradiography was performed. Bands on X-ray 

film were quantified by scanning densitometry and analysed using the program, 

Quantity One (Bio-Rad, Hercules, CA). 

 

Super-shift experiment was performed as previously described (Kwok and Richardson, 

2003). Briefly, cell lysates were incubated with the anti-ferritin antibody (In-Vitro 

Technologies, VIC, Australia) for 1 h at 37°C. The mixture was then separated using 

the native gradient PAGE.  

 

2.8 3H-LEUCINE INCORPORATION ASSAY 

To assess cellular protein synthesis, 3H-leucine incorporation assay was performed 

using standard procedures (Richardson and Milnes, 1997). Cells were seeded onto petri 

dishes overnight and then incubated with the agents of interest for 22 h at 37°C. The 

cells were then labelled with 3H-leucine (1 µCi/dish) for 2 h at 37°C. After the 

incubation, media was removed and the cells washed four times with ice-cold PBS. 

Cells were then scraped from the plates using 1 mL PBS into scintillation vials along 
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with 4 mL of scintillant and removed into a 5 mL scintillation tube. Radioactivity was 

measured by a Beckman LS 6000 TA β-counter (Beckman Instruments, Irvine, CA). 

Binding of isotope to the plastic wells was corrected for by the preparation of blank 

wells containing all additions apart from the cells. 

 

2.9 TWO DIMENSIONAL GEL ELECTROPHORESIS 

2.9.1 Animals 

The KO and WT animals were obtained from Drs. H. Puccio and M. Koenig (Institut 

de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM, Universite 

Louis Pasteur, Strasbourg, France). These animals were bred and handled using a 

protocol approved by the University of Sydney Animal Ethics Committee. Genotyping 

was performed using tail DNA via standard techniques (Puccio et al., 2001). 

 

2.9.2 Protein Extraction from Mice Hearts or Cells 

Mice hearts were cut into small pieces, washed in PBS buffer and homogenized in a 

buffer for 2D gel electrophoresis (7 M urea, 2 M thiourea and 1% C7bZO) or in a 

buffer for Western blot analysis (50 mM Tris-HCl, 1.5% Triton X100, EDTA-free 

Protease Inhibitor Cocktail (Roche, Penzberg, Germany), pH 7.2). For human SK-Mel-

28 cells, proteins were extracted and homogenized using the buffers mentioned above. 

Homogenisation was performed using a Dounce glass tissue grinder (approximately 10 

strokes, small clearance pestle; Sigma-Aldrich Chemical Co., St. Louis, MO USA) 

followed by sonication (2 x 5 sec, 50% intensity) and then pelleted at 16,000 xg.  
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2.9.3 Two dimensional Gel Electrophoresis 

The supernatants after protein extraction were reduced and alkylated in 5 mM 

tributylphosphine and 10 mM acrylamide monomer for 60 min at 20°C. The reaction 

was quenched by adding 10 mM DTT. Protein concentration was determined using 

Bio-Rad protein assay (Bio-Rad, Hercules, CA, USA). Immobilised pH gradient strips 

(IPG strips, 11 cm, pH 5–8, Bio-Rad) were re-hydrated in 500 µg sample protein 

extract for 6 h at room temperature. The re-hydrated strips were focused using the 

ElectrophoretIQ3 system (Proteome Systems, Boston, MA USA) for a total of 120 kVh. 

IPG strips were then equilibrated using equilibration buffer and loaded onto SDS-

PAGE gels (GelChip™, 2D, 8–16%, 10 cm × 15 cm; Proteome Systems) for second 

dimension separation by the ElectrophoretIQ3 system (50 mA/gel, 15 °C for 120 min; 

Proteome Systems). The gel was fixed in a solution consisting of 25% methanol and 

10% acetic acid and stained using colloidal Coomassie Blue (Proteome Systems). All 

experiments were repeated five times using samples from five different mice. 

 

2.9.4 Image Analysis 

Gels were analyzed using Phoretix 2D Expression software (Nonlinear Dynamics Ltd, 

Newcastle, UK). Following background subtraction and volume normalization of all 

gels (normalization was based on total spot density), average gels were created for 

each pentaplicate. To verify the expression differences (spot volume) between the 

control and frataxin-deleted group, one-way analysis of variance (ANOVA) was 

performed. Spots of interest were recovered for identification by mass spectrometry. 
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2.9.5 Mass Spectrometry (MS) and Database Searching 

Protein spots were cut and de-stained using 25 mM NH4HCO3/ 60% acetonitrile (ACN) 

for 2 × 30 min at 37°C. Each gel piece was incubated with 12.5 ng/mL trypsin 

(sequencing grade; Promega, Madison, WI, USA) in buffer containing 25 mM 

NH4HCO3/0.1% trifluroacetic acid for 45 min at 4°C followed by incubation at 37°C 

for 2 h. The peptide mixtures were purified from the supernatant using C-18 

purification tips (Eppendorf). The samples were eluted from the purification tip onto a 

MALDI sample plate with 3 μL of matrix (5 mg/mL solution of α-cyano-4-hydroxy-

cinnamic acid in 70% ACN/ 0.1% TFA) and allowed to air dry. Samples were then 

analyzed using Qstar XL Excell Hybride MS system (Applied Biosystems, Foster City, 

CA, USA) in positive reflector mode, with delayed extraction. Peak lists in XML data 

format were created using Analysis QS 1.1 (Applied Biosystems). 

 

The peak lists were searched using the MASCOT search engine against the MSDB 

database subset of mouse proteins with the following search settings: peptide tolerance 

of 0.2 Da, missed cleavage site value set to one, and variable modifications including 

oxidation (HW), oxidation (M) and propionamide (C). No restrictions on protein 

molecular weight or pI value were applied. Positive protein identifications were based 

on a significant MOWSE score and sequence coverage. 
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CHAPTER 3: 

IRON CHELATION BY CLINICALLY RELEVANT 

ANTHRACYCLINES: ALTERATIONS IN 

EXPRESSION OF IRON REGULATED GENES 

AND ATYPICAL CHANGES IN INTRACELLULAR 

IRON DISTRIBUTION AND TRAFFICKING 
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anthracyclines: alteration in expression of iron-regulated genes and atypical changes in 

intracellular iron distribution and trafficking. Mol Pharmacol. 73(3):833-44 



 

CHAPTER 3 47

3.1 INTRODUCTION   

Anthracyclines are known iron (Fe) chelators (Figure 3.1A), but their effects on 

cellular Fe metabolism are poorly understood (for review, see Xu et al., 2005). These 

compounds have high activity against hematological malignancies and a variety of 

other tumours (Xu et al., 2005). However, a major problem is their cardiotoxic effect at 

high cumulative doses that limit their clinical use (Gianni and Myers, 1992). The 

mechanism of anthracycline-mediated cardiotoxicity is unclear (Kaiserova et al., 2007), 

probably because of the multiple effects of these agents, including DNA-binding, 

intercalation, alkylation, inhibition of topoisomerase II and the generation of reactive 

oxygen species (ROS; Gianni and Myers, 1992). 

 

Previous studies have indicated that interactions of anthracyclines with cellular Fe 

pools are of great importance in their cardiotoxic effects and ability to induce apoptosis 

(Hershko et al., 1993; Kotamraju et al., 2002). Anthracyclines such as doxorubicin 

(DOX) can directly chelate Fe(III) forming an Fe complex with an overall association 

constant of 1033 (Beraldo et al., 1985; May et al., 1980). Hershko and associates 

demonstrated that Fe-loading potentiates the cardiotoxic effects of anthracyclines 

(Hershko et al., 1993; Link et al., 1996) and some chelators can prevent this (Kaiserova 

et al., 2007). In fact, the clinical intervention for anthracycline cardiotoxicity involves 

the chelator, dexrazoxane (Xu et al., 2005). Hence, understanding the mechanisms of 

how anthracyclines interfere with Fe metabolism is a key for preventing cardiotoxicity.  

 

Iron is transported by its binding to transferrin (Tf) and is delivered to cells via binding 

to the transferrin receptor 1 (TfR1; Xu et al., 2005). After this, Tf is internalized by 

receptor-mediated endocytosis and the Fe is released. Iron is then transported into the 

cell and becomes part of the intracellular Fe pool. Iron that is not used for metabolic 
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requirements is stored in ferritin, a polymeric protein consisting of H- and L-subunits 

(Minotti et al., 2004a).  

 

The translation of TfR1 and ferritin are regulated by the binding of iron regulatory 

proteins (IRPs) to iron-responsive elements (IREs) present in the 5'- or 3'-untranslated 

regions of TfR1 and ferritin mRNAs (Xu et al., 2005). There are two IRPs, IRP1 and 

IRP2, and anthracyclines have been shown to decrease their mRNA-binding activity in 

most cell types (Kwok and Richardson, 2002; Minotti et al., 2001).   

 

Apart from the effect of anthracyclines on IRP-mRNA-binding activity, these agents 

have been shown to affect a variety of molecules and metabolic pathways involved in 

Fe metabolism (Minotti et al., 2004a). For instance, DOX is known to directly bind Fe 

and has been reported to remove Fe from isolated ferritin, Tf and microsomal 

membranes (Xu et al., 2005). However, using intact cells, we showed that incubation 

of many cell types with anthracyclines (Figure 3.1A) such as doxorubicin (DOX), 

daunorubicin (DAU) or epirubicin (EPI) induced ferritin Fe-loading, due to their 

ability to prevent Fe release from this protein (Kwok and Richardson, 2003; Kwok and 

Richardson, 2004). The precise mechanism by which anthracyclines prevent ferritin-Fe 

mobilisation was not clear, but inhibition of protein synthesis and/or 

proteasomal/lysosomal activity were suggested to be involved (Kwok and Richardson, 

2004). Incubation of cells with DOX also increased ferritin expression (Corna et al., 

2004; Kwok and Richardson, 2003) and this was suggested to act as a protective 

response against the ability of DOX to generate ROS (Corna et al., 2004). 
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Figure 3.1 (A) Schematic illustration of doxorubicin (DOX), epirubicin (EPI), 
daunorubicin (DAU) and the Fe complex of DOX. (B) Pre-incubation with DOX 
could not protect cells from the toxicity of subsequent Fe-loading by ferric 
ammonium citrate (FAC). Human SK-Mel-28 melanoma cells or rat H9c2 
cardiomyocytes were pre-incubated with control medium (CON) or DOX (5 μM) for 
24 h at 37oC and then washed. The cells were then reincubated for 16 h at 37oC with 
CON containing increasing concentrations of FAC (250, 500, 750 and 1000 μg/mL). 
Cell viability was examined using Trypan blue staining. The percentage of viable cells 
in control or DOX pre-treated group was plotted comparing to the relative control, 
which was set as 100%. Results are mean ± SD (3 experiments). *p < 0.05, **p < 0.01 
and ***p < 0.001 versus control values (Student’s t-test). 
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In the present study, we demonstrate for the first time that anthracyclines act as 

atypical chelators, having a number of effects on cellular Fe metabolism and the 

expression of Fe-regulated genes, including TfR1, Ndrg1 and ferritin. While Fe 

chelation mediated by anthracyclines increased TfR1 and Ndrg1 mRNA expression, the 

protein levels of these molecules were decreased. Paradoxically, ferritin protein 

expression increased after incubation with DOX as did ferritin Fe accumulation, 

suggesting that anthracyclines have a selective effect on gene expression. The effects 

of anthracyclines on cellular Fe metabolism were complex, probably since they act on 

multiple molecular targets.  
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3.2 MATERIALS AND METHODS 

3.2.1 Reagents 

All reagents used are listed in Section 2.1. The anthralcyline-metal complexes were 

prepared as previousely described (Garnier-Suillerot and Gattegno, 1988; Gianni and 

Myers, 1992) in Section 2.1.2. Pyridoxal isonicotinoyl hydrazone (PIH) was 

synthesized and characterised by standard methods (Ponka et al., 1979b; Richardson et 

al., 1995). 

 

3.2.2 Cell Culture 

Cell lines were obtained from the American Type Culture Collection (Manassas, VA). 

Murine embryonic fibroblasts (MEFs) from wild-type and homozygous hypoxia 

inducible factor-1α (HIF-1α) knockout mice were obtained from Dr. R. Johnson 

(University of California, San Diego, USA). All cells were grown as described in 

Section 2.2. 

 

3.2.3 Effect of Anthracyclines on 59Fe Efflux from Intact Prelabelled Cells 

Experiments examining the ability of agents to mobilise cellular-59Fe were performed 

using standard techniques (Richardson et al., 1995) as described in Section 2.6.2.  

 

3.2.4 Assay for Examining the Ability of Anthracyclines to Bind 59Fe from Cell 

Lysates 

Established methods (Watts and Richardson, 2002) were used to determine the efficacy 

of anthracyclines at mobilising 59Fe from SK-Mel-28 cell lysates (see Section 2.6.3). 
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3.2.5 Fast Pressure Liquid Chromatography (FPLC) and Native Gradient PAGE 

SK-Mel-28 cells were incubated with or without DOX (2 µM) in the presence of 59Fe-

Tf (0.75 μM). Cells were then washed 4-times and lysed on ice in 20 mM HEPES/140 

mM NaCl/1.5% Triton X-100 (pH 8). Cell lysates were centrifuged at 16,000 xg and 

the supernatant was loaded onto a Superdex 200 10/300 GL column (GE Healthcare, 

Bucks, UK) and proteins eluted with 20 mM HEPES/140 mM NaCl (pH 8) using 

FPLC (Bio-Rad, Hercules, CA). Fractions (1 mL) were collected and radioactivity 

examined using the γ-counter above. Fractions were concentrated and desalted using 

the microfilter units described above with a 5 kDa molecular mass (Mr) cut-off. 

Concentrated fractions were then separated and examined via native-gradient-PAGE-

59Fe-autoradiography (Babusiak et al., 2005). 

 

3.2.6 Statistical Analysis  

Data were compared using the Student's t-test. Results were considered statistically 

significant when p < 0.05. 

 

3.2.7 Other Experimental Methods 

All other methods including Western blot, RT-PCR, 3H-leucine incorporation assay and 

Native-PAGE-59Fe-Autoradiography were performed as described in Chapter 2. 
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Table 3.1 Primers for amplification of human and mouse mRNA 
 

Oligonucleotides (5'-3') 
Pair 
No. Organisms 

 

Target 
Gene 

Accession 
No. 

Forward Reverse 

Product 
Size (bp)

 

1 

2 

3 

 
 

Homo 
sapiens 

 

 

β-actin 

Ndrg1  

TfR1 

 

NM_001101 

NM_006096 

NM_003234 

 

CCCGCCGCCAGCTCACCATGG 

CCCTCGCGTTAGGCAGGTGA 

GCTCGGCAAGTAGATGGC 

 

AAGGTCTCAAACATGATCTGGGTC 

AGGGGTACATGTACCCTGCG 

TTGATGGTGCTGGTGAAG 

 

397 

370 

359 

 

4 

5 

6 

7 

8 

Mus 
musculus 

 

 

β-actin  

HIF-1α 

Ndrg1  

TfR1 

VEGF1 

 

NM_007393 

NM_010431 

NM_008681 

NM_011638 

NM_009505 

 

CCCGCCACCAGTTCGCCATGG 

CTGGATGCCGGTGGTCTAGACAGT 

TGCTTGCTCATTAGGTGTGTGATAGC 

TCCCGAGGGTTATGTGGC 

CCATGCCAAGTGGTCCCAG 

 

AAGGTCTCAAACATGATCTGGGTC 

CGAGAAGAAAAAGATGAGTTCTGAACGTCG 

CCATCCTGAGATCTTAGAGGCAGC 

GGCGGAAACTGAGTATGATTGA 

GTCTTTCTTTGGTCTGCATTCACAT 

 

397 

217 

581 

324 

346 
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3.3 RESULTS 

3.3.1 Challenge of DOX-Treated Cells with Iron Leads to Decreased Viability 

Incubation of cells with anthracyclines leads to alterations in Fe metabolism (Corna et 

al., 2004; Kwok and Richardson, 2003; Xu et al., 2005). Initial experiments examined 

if DOX altered the ability of cells to protect against a challenge with excess Fe. In 

these studies, SK-Mel-28 melanoma cells or H9c2 cardiomyocytes were preincubated 

for 24 h at 37oC with DOX (5 µM) and then reincubated for 16 h at 37oC with 

increasing concentrations of ferric ammonium citrate (FAC; 250-1000 µg/mL), that 

donates Fe to cells (Corna et al., 2004). Direct cell counts and viability were then 

assessed using Trypan blue staining. These incubation conditions were identical to 

those used by others to demonstrate the protective effect against an Fe challenge of 

preincubating H9c2 cells with DOX (Corna et al., 2004).  

 

In contrast to results by others (Corna et al., 2004), preincubation with DOX did not 

protect against an Fe  challenge. In fact, it resulted in significantly decreased viability 

of H9c2 and SK-Mel-28 cells at FAC concentrations >500 µg/mL (Figure 3.1B). Hence, 

DOX decreased the ability of cells to appropriately accomodate the Fe load and 

prevent its cytotoxic effects.  

 

3.3.2 DOX Increases mRNA Expression of the Fe-Responsive Genes, TfR1 and 

Ndrg1 

To further understand how DOX affects Fe metabolism, we investigated the effect of 

DOX on TfR1 expression (Figure 3.2). To examine this, SK-Mel-28 human melanoma 

cells were initially used (Figure 3.2A) as their Fe metabolism is well characterised and 

these cells were previously utilised to assess the effects of DOX on Fe
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trafficking (Kwok and Richardson, 2002; Kwok and Richardson, 2003; Kwok and 

Richardson, 2004). 

  

Incubation of cells for 24 h at 37oC with the Fe chelator, desferrioxamine (DFO; 100 

µM), was used as a positive control as it increases TfR1 mRNA and protein expression 

(Hentze and Kuhn, 1996). Incubation of SK-Mel-28 cells with DFO increased TfR1 

expression >6-fold compared to the control (Figure 3.2A). DOX (0.5-5 µM) induced a 

dose-dependent increase in TfR1 mRNA up to 2 µM where its expression was 3-fold 

greater than the control (Figure 3.2A). The up-regulation of TfR1 mRNA after 

incubation with DOX was relatively marked considering the dose maximally up-

regulating its expression (2 µM) was 50-fold lower than DFO (100 µM; Figure 3.2A). 

At 5 µM DOX, TfR1 expression then decreased and this down-regulation may be 

related to the drug acting as a transcriptional inhibitor (Tarr and van Helden, 1990). 

 

The increase in TfR1 mRNA after incubation of SK-Mel-28 cells with DOX may be 

mediated via its ability to act as an Fe chelator (Gianni and Myers, 1992; May et al., 

1980). Examination of four other cell types also demonstrated that DOX increased 

TfR1 mRNA, although the dose-dependence and extent of up-regulation was different 

for each cell type (Figure 3.2B-E). Generally, maximum TfR1 mRNA expression was 

found at 1-2 μM DOX. 

 

Typically, Fe chelation is known to up-regulate TfR1 mRNA by the IRP-IRE 

mechanism (Hentze and Kuhn, 1996). However, the lower DOX concentrations (1-2 

μM) used in this study have little effect on IRP-mRNA-binding activity in SK-Mel-28 

cells (Kwok and Richardson, 2002). Thus, it was unclear if this mechanism was 
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responsible for DOX-mediated up-regulation of TfR1 mRNA (Figure 3.2A). Apart 

from the IRPs, other Fe-sensing mechanisms could be responsible for altering TfR1 

mRNA expression. Considering this, HIF-1α protein expression is known to increase 

after Fe chelation or hypoxia and can transcriptionally up-regulate TfR1 and other 

genes (Beerepoot et al., 1996; Bianchi et al., 1999; Le and Richardson, 2004; Lok and 

Ponka, 1999).  

 

To determine if HIF-1α activity is affected by anthracyclines, we examined the effect 

of DOX on HIF-1α target gene expression. These studies investigated the metastasis 

suppressor, N-myc downstream regulated gene-1 (Ndrg1), that is known to be up-

regulated after Fe chelation by HIF-1α (Le and Richardson, 2004). This gene was 

important to assess as its anti-proliferative and -metastatic effects could be relevant to 

DOX activity (Kovacevic and Richardson, 2006). Similarly to TfR1, DOX also 

increased Ndrg1 mRNA expression in SK-Mel-28 cells (Figure 3.2A). Assessment of 4 

other cell types demonstrated that as for SK-Mel-28 cells, DFO increased Ndrg1 

mRNA (Figure 3.2B-E). Again, the response of Ndrg1 mRNA levels to increasing 

DOX concentrations was variable in terms of dose-response and the extent of up-

regulation between cell types (Figure 3.2A-E). The differences in gene expression 

between these cell types may relate to variation in the uptake and metabolism of DOX. 

Of interest, the mRNA levels of another HIF-1α target gene, namely Nip3 (Bruick, 

2000), was also up-regulated by DOX in a similar way to TfR1 and Ndrg1 (data not 

shown). Further studies then examined the effect of other anthracyclines on Fe 

metabolism using the SK-Mel-28 cell type. 
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3.3.3 Daunorubicin and Epirubicin also Increase TfR1 and Ndrg1 mRNA 

Expression 

DAU and EPI are structurally-related to DOX (Figure 3.1A) and also increased TfR1 

and Ndrg1 mRNA in a dose-dependent manner (Figure 3.3A). However, the response 

of SK-Mel-28 melanoma cells to each of the anthracyclines was different (Figure 

3.3A). Daunorubicin gradually increased TfR1 and Ndrg1 mRNA up to 5 µM, with the 

effect at this latter concentration being similar to 2 µM DOX (Figure 3.3A). As found 

for DOX, EPI increased TfR1 and Ndrg1 mRNA up to 2 µM and then at the highest 

EPI concentration assessed (i.e., 5 µM), the expression of these genes decreased 

(Figure 3.3A). Generally, these results demonstrated that DOX, DAU and EPI 

increased TfR1 and Ndrg1 mRNA up to a concentration of 1-2 μM.  

 

3.3.4 Anthracyclines Increase TfR1 and Ndrg1 Expression as a Function of Time 

The effect of anthracyclines on TfR1 and Ndrg1 mRNA was then assessed as a function 

of incubation time. The optimal anthracycline concentration that up-regulated gene 

expression in SK-Mel-28, namely 2 μM (Figure 3.2A), was incubated with this cell 

type for 3-24 h at 37oC. The effect of DOX was compared to the positive control, DFO 

(100 μM). In these studies, DFO increased TfR1 and Ndrg1 mRNA expression after 6 h 

(Figure 3.3B). This was in agreement with previous studies using DFO and other cell 

types (Le and Richardson, 2004). A significant (p < 0.05) increase in TfR1 mRNA 

expression after incubation with the anthracyclines was evident after 18 h. However, 

the anthracyclines increased Ndrg1 mRNA expression after only 6 h to a comparable or 

greater extent than DFO (Figure 3.3B). 
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Figure 3.3 Anthracyclines increase TfR1 and Ndrg1 mRNA expression in a (A) 
dose-dependent and (B) time-dependent manner in SK-Mel-28 melanoma cells. (A) 
Cells were incubated for 24 h at 37oC with control medium (CON), ferric ammonium 
citrate (FAC; 100 μg/mL), desferrioxamine (DFO; 100 μM), doxorubicin (DOX; 2 μM), 
or daunorubicin (DAU) or epirubicin (EPI; 0.5, 1, 2 and 5 μM). The expression of TfR1 
and Ndrg1 mRNA levels were evaluated using RT-PCR. (B) Cells were incubated with 
CON, DFO (100 μM), DOX (2 μM), DAU (2 μM) or EPI (2 μM) for 3, 6, 18 and 24 h. 
The expression of TfR1 and Ndrg1 mRNA levels were evaluated using RT-PCR. Gene 
expression was then calculated relative to the β-actin control. Results are typical from 
3 separate experiments performed. 
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3.3.5 The DOX-Mediated Increase in TfR1 and Ndrg1 mRNA is Iron-Dependent  

DOX, DAU and EPI possess the same Fe-binding sites (carbonyl and hydroxyl 

moieties) that are necessary for Fe chelation (Figure 3.1A). The ability of these agents 

to bind Fe was shown in the “test tube” (May et al., 1980), but not in intact cells. 

Certainly, these compounds may be acting as chelators to deplete Fe pools and increase 

TfR1 and Ndrg1 mRNA. To examine this, the effect of DFO (2 μM) was compared to 

the anthracyclines at the same concentration. Furthermore, the efficacy of the 

anthracyclines at increasing Ndrg1 and TfR1 was also compared to their pre-formed 3:1 

ligand-Fe(III) complexes (Figure 3.4A).  

 

After a 24 h incubation, DFO clearly increased TfR1 and Ndrg1 mRNA expression 

(Figure 3.4A). The 1:1 DFO-Fe complex largely prevented TfR1 and Ndrg1 up-

regulation that was observed with DFO. The anthracyclines, DOX, DAU and EPI all 

increased both TfR1 and Ndrg1 mRNA expression, while their Fe complexes were 

significantly (p < 0.001) less effective over 3 experiments. Hence, this suggested that 

up-regulation of TfR1 and Ndrg1 was due to anthracyclines binding cellular Fe (Figure 

3.4A). Interestingly, the effect of the anthracyclines at inducing Ndrg1 expression was 

more pronounced than that observed with TfR1 (Figure 3.4A). 

 

Further experiments assessed whether DOX-mediated up-regulation of TfR1 and Ndrg1 

could be reversed by Fe added as FAC (100 µg/mL; Figure 3.4B, C). SK-Mel-28 cells 

were pre-incubated with control medium (CON), DFO (100 µM) or DOX (2 µM) for 

20 h (primary incubation), and then re-incubated for another 20 h (secondary 

incubation) with CON, FAC (100 µg/mL), DFO (100 µM) or DOX (2 µM). 
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Figure 3.4 Anthracyclines up-regulate TfR1 and Ndrg1 mRNA levels by Fe-
deprivation. (A) Anthracycline-Fe complexes are far less active than their parent 
ligands at increasing gene expression. (B, C) The soluble Fe salt, ferric ammonium 
citrate (FAC), decreases (B) TfR1 and (C) Ndrg1 mRNA expression after 
incubation with anthracyclines. (A) SK-Mel-28 cells were incubated for 24 h at 37oC 
with control medium (CON), DFO (2 μM), the 1:1 DFO-Fe complex (2 μM), DOX (2 
μM), 3:1 DOX-Fe complex (2 μM), DAU (2 μM), 3:1 DAU-Fe complex (2 μM), EPI 
(2 μM) or 3:1 EPI-Fe complex (2 μM). (B and C) SK-Mel-28 cells were pre-incubated 
with CON, DFO (100 μM) or DOX (2 μM) for 20 h at 37oC (Primary Incubation), 
followed by a 20 h re-incubation at 37oC with CON, FAC (100 μg/mL), DFO (100 μM) 
or DOX (2 μM) (Secondary Incubation). The expression of TfR1 and Ndrg1 mRNA 
levels were evaluated using RT-PCR. Densitometric analysis was performed and gene 
expression was then calculated relative to the β-actin control. Results are typical of 3 
experiments performed. 
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After primary incubation with CON, secondary incubation with FAC (Figure 3.4B, C; 

lane 2) decreased TfR1 and Ndrg1 mRNA levels compared to cells treated with CON 

(Figure 3.4B, C; lane 1). The treatment with FAC acted as a positive control to 

demonstrate both genes are Fe-regulated. Cells treated with DFO or DOX followed by 

CON (Figure 3.4B, C; lane 4, 7) led to increased TfR1 and Ndrg1 mRNA expression 

compared to the control (Figure 3.4B, C; lane 1). Depletion of cellular Fe by primary 

and secondary incubation with DFO resulted in more pronounced up-regulation of 

TfR1 and Ndrg1 levels (Figure 3.4B, C; lane 6) in comparison to DFO followed by 

CON (Figure 3.4B; lane 4). Primary and secondary incubation with DOX caused 

similar up-regulation of TfR1 and Ndrg1 (Figure 3.4B, C; lane 9) as DOX followed by 

CON (Figure 3.4B, C; lane 7). Importantly, primary incubation with DFO or DOX and 

reincubation with FAC (Figure 3.4B, C; lanes 5 and 8) significantly (p < 0.01) 

decreased TfR1 and Ndrg1 up-regulation compared to the relative control (Figure 3.4B, 

C; lanes 4 and 7). This further confirmed that anthracyclines increased TfR1 and Ndrg1 

mRNA via Fe chelation and this up-regulation was reversible upon adding Fe.  

 

3.3.6 DOX Does Not Induce Cellular Fe Mobilisation but Causes Intracellular Fe 

Re-distribution 

To understand how DOX affected Fe metabolism to up-regulate TfR1 and Ndrg1 

mRNA, studies examined its effects on cellular 59Fe mobilisation. The ability of DOX 

(0.1-5 μM) at mobilizing 59Fe was compared to the chelators, DFO (100 μM) and PIH 

(25 μM), over 24 h at 37oC (Figure 3.5A). These DOX concentrations were chosen as 

they were used to examine TfR1 and Ndrg1 mRNA expression (Figures 3.2-3.4). Both 

DFO and PIH increased cellular-59Fe mobilisation to 225 and 270% of the control, 

while DOX had no effect (Figure 3.5A). Further studies examined the ability of DOX 
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to mobilise 59Fe from cell lysates. In contrast to the positive control, DFO (100 μM), 

which caused marked 59Fe mobilisation from lysates, DOX (0.5-5 μM) had no effect 

(Figure 3.5B). Collectively, despite DOX having high Fe-binding affinity (May et al., 

1980) and its ability to up-regulate TfR1 and Ndrg1 mRNA by Fe-depletion (Figure 

3.4), it does not act like a typical chelator to induce Fe efflux. 

 

Further studies were performed using FPLC to examine alterations in intracellular 59Fe 

distribution (Figure 3.5C). Cells were labelled with 59Fe-Tf (0.75 μM) in the presence 

or absence of DOX (2 μM) for 24 h at 37oC, then washed, lysed and centrifuged. The 

supernatant was fractionated on a size-exclusion column and the fractions measured for 

59Fe. In control cells, two major high Mr peaks were detected (Figure 3.5C). According 

to the column calibration, the first peak at fraction 12 (F12) represented 59Fe-

containing molecules of ≈ 700 kDa. A second peak at fraction 15 (F15) co-migrated 

with horse spleen ferritin (≈ 400 kDa; Figure 3.5C). After incubation with DOX, 59Fe 

in F12 was significantly (p < 0.01) decreased over 3 experiments. In contrast, in the 

ferritin fraction (F15) there was a significant increase in 59Fe incorporation.  There 

were two other lower Mr peaks eluting at fractions 20 and 27, although there was no 

significant difference between them comparing control and DOX-treated cells (Figure 

3.5C). 

 

To further elucidate the nature of the 59Fe-containing molecules, F12 and F15 were 

concentrated and separated using native-gradient PAGE (Figure 3.5D). These studies 

showed that DOX decreased 59Fe incorporation into high Mr proteins (F12), while 

there was ferritin-59Fe accumulation (F15). The ferritin-59Fe loading was confirmed by 

addition of anti-ferritin antibody to the latter fraction leading to a super-shifted ferritin 
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band (Figure 3.5D). These data demonstrated re-distribution of 59Fe between ferritin 

and other 59Fe-containing proteins, extending our previous observations (Kwok and 

Richardson, 2003; Kwok and Richardson, 2004). This ferritin-59Fe accumulation leads 

to cytosolic Fe-deficiency that may up-regulate TfR1 and Ndrg1 mRNA (Figures 3.2, 

3.3). 

 

3.3.7 HIF-1α-Independent Mechanisms are Involved in Up-Regulation of TfR1 

and Ndrg1 after Incubation with DOX 

The up-regulation of TfR1 mRNA by anthracyclines could occur by the classical IRP 

mechanism (Hentze and Kuhn, 1996) and/or also via HIF-1α since the TfR1 promoter 

contains a hypoxia response element (HRE; Bianchi et al., 1999; Lok and Ponka, 1999). 

The increase in Ndrg1 mRNA expression after Fe chelation by DFO was previously 

shown to occur by HIF-1α-dependent and -independent mechanisms (Le and 

Richardson, 2004). 

 

To examine the role of HIF-1α in TfR1 and Ndrg1 up-regulation after incubation with 

DOX, we utilised HIF-1α knockout (HIF-1α-/-) MEFs in comparison to wild-type 

(HIF-1α+/+) MEFs (Ryan HE, 2000; Figure 3.6A). Both HIF-1α+/+ and HIF-1α-/- 

MEFs were incubated with DFO (100 µM; positive control) or DOX (2 μM) for 8 h 

and then TfR1, Ndrg1 and HIF-1α mRNA expression was assessed (Figure 3.6A). 

Incubation of HIF-1α+/+ or HIF-1α-/- cells with DFO or DOX increased TfR1 mRNA 

levels irrespective of HIF-1α status, suggesting another mechanism was responsible. 

For DFO, this could be mediated by the IRPs (Hentze and Kuhn, 1996). Previous 

studies examining SK-Mel-28 cells demonstrated that at high DOX concentrations (ie., 

20 μM), IRP-mRNA-binding activity was reduced (Kwok and Richardson, 2002).  



 

CHAPTER 3 66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A)

TfR1
Ndrg1
VEGF1
HIF-1α
β-actin

HIF-1α+/+ HIF-1α-/-

C
O

N

D
FO

 (1
00

µM
)

D
O

X 
(2

 µ
M

)

B)

C
O

N

D
FO

 (1
00

µM
)

D
O

X 
(2

 µ
M

)

TfR1

Ndrg1

β-actin

C
O

N

C
O

N
 +

 R
S

D
FO

D
FO

 +
 R

S

D
O

X 

D
O

X 
+ 

R
S

Radical Scavenger 
Combination (RS):
• catalase (1000 U/ml)
• ebselen (15 µM)
• MnTBAP (200 µM)
• SOD (1000 U/ml) 

CON

CON + 
RS

DFO

DFO + 
RS

DOX

DOX + 
RS

C)

CON

DOX 5 
µM

DAU 5 
µM

5-i
-D

AU 5 
µM

3 H
-le

uc
in

e 
in

co
rp

or
at

io
n

(%
 C

O
N

)

TfR1

0

100

200

CON DFO DOX

Tf
R

1
 / 
β-

ac
tin

 (%
 C

O
N

)

HIF-1α+/+
HIF-1α-/-

Ndrg1

0

200

400

CON DFO DOXN
dr

g1
 / 
β-

ac
tin

 (%
 C

O
N

)

HIF1α+/+
HIF1α-/-

VEGF1

0

200

400

CON DFO DOXVE
G

F1
 / 
β-

ac
tin

 (%
 C

O
N

)

HIF-1α+/+
HIF-1α-/-

HIF-1α

0

100

200

CON DFO DOXH
IF

-1
α

 / 
β-

ac
tin

 (%
 C

O
N

)

HIF-1α+/+
HIF-1α-/-

0

300

600

900

1200

R
el

at
iv

e 
de

ns
ity

 (%
 C

O
N

) 
 T

fR
1 

or
 N

dr
g1

 /
 β

-a
ct

in
  

TfR1
Ndrg1

0

40

80

120
- RS
+ RS



 

CHAPTER 3 67

However, at low concentrations (1 μM), IRP-binding was not markedly affected 

(Kwok and Richardson, 2002). This suggested the DOX-induced TfR1 mRNA up-

regulation at 1-2 μM in SK-Mel-28 cells (Figure 3.2A) may not be mediated by IRPs.  

 

The expression of Ndrg1 mRNA was more significantly up-regulated (p < 0.05) by 

DFO in HIF-1α+/+ cells than their HIF-1α-/- counterparts (Figure 3.6A), in agreement 

with previous studies (Le and Richardson, 2004). This suggests that HIF-1α is 

important in up-regulating Ndrg1 mRNA after Fe chelation, but that a HIF-1α-

independent mechanism was also present (Le and Richardson, 2004). The up-

regulation of Ndrg1 mRNA after incubation of DOX occurred in HIF-1α-/- and HIF-

1α+/+ cells (Figure 3.6A), suggesting the response was HIF-1α-independent. In fact, in 

3 experiments, Ndrg1 mRNA up-regulation was significantly (p < 0.045) more marked 

in HIF-1α-/- than HIF-1α+/+ cells (Figure 3.6A).  

 

The effect of DOX and DFO was also examined on the expression of vascular 

endothelial growth factor-1 (VEGF1) mRNA (Figure 3.6A) which is a typical HIF-1α-

regulated gene (Beerepoot et al., 1996). The ability of DFO at increasing VEGF1 

mRNA was more pronounced in HIF-1α+/+ than HIF-1α-/- cells. Hence, similarly to 

Ndrg1, this indicates HIF-1α is important in up-regulating VEGF1 mRNA after DFO, 

but that a HIF-1α-independent mechanism was also present. After incubation with 

DOX, VEGF1 mRNA was more highly expressed in HIF-1α-/- cells than HIF-1α+/+ 

cells, indicating the anthracycline was up-regulating this gene via a HIF-1α-

independent mechanism. 

 

As an appropriate control, HIF-1α status was examined in HIF-1α+/+ and HIF-1α-/- cell 
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types. In these studies, HIF-1α mRNA expression was clearly evident in HIF-1α+/+ 

cells and not markedly affected by the incubation with DFO or DOX. In contrast, and 

as expected, no transcript was detected in HIF-1α-/- cells (Figure 3.6A). 

 

3.3.8 Activity of Free Radical Scavengers on Ndrg1 and TfR1 Expression after 

Incubation with Anthracyclines 

Anthracyclines are well known to generate radicals (Corna et al., 2004) and increased 

TfR1 protein expression occurs after oxidant stress, at least in part, through IRP 

activation (Pantopoulos and Hentze, 1995). To determine the role of anthracycline-

induced oxidant stress in TfR1 and Ndrg1 mRNA expression, we assessed the effect of 

radical scavengers (RS) on DOX-induced TfR1 and Ndrg1 mRNA expression (Figure 

3.6B) and also the ability of DOX to inhibit protein synthesis (Figure 3.6C). In these 

experiments, we combined superoxide dismutase (SOD; 1000 U/mL) and catalase 

(1000 U/mL) with the cell-permeable glutathione peroxidase mimetic ebselen (15 µM) 

and cell-permeable SOD mimetic, MnTBAP (200 µM), as these agents alone and in 

combination are effective RS (Kotamraju et al., 2002; Kwok and Richardson, 2002). 

The addition of the RS had no significant effect on the up-regulation of either TfR1 or 

Ndrg1 mRNA by either DOX or DFO over 3 experiments (Figure 3.6B). This 

suggested TfR1 and Ndrg1 mRNA up-regulation was not due to anthracycline-induced 

oxidant stress. 

 

As a positive control to demonstrate that RS reduced ROS generation and the cytotoxic 

effects of anthracyclines, experiments were performed with various anthracyclines to 

assess their ability to inhibit protein synthesis (3H-leucine incorporation) in the 

presence and absence of the same combination of RS (Figure 3.6C). In these studies, 
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DOX and DAU were compared to 5-imino-daunorubicin (5-i-DAU), that generates less 

ROS than the former anthracyclines (Corna et al., 2004).  

 

All anthracyclines were effective at reducing 3H-leucine incorporation (Figure 3.6C). 

From the anthracyclines examined, DOX was the most effective, while 5-i-DAU 

demonstrated the least ability to inhibit 3H-leucine incorporation (Figure 3.6C). This 

could be because 5-i-DAU is less redox active than DOX (Corna et al., 2004). For all 

anthracyclines, the combination with RS significantly (p < 0.05) increased 3H-leucine 

incorporation compared to their relative controls (Figure 3.6C). Hence, the RS could 

partially rescue the effects of anthracyclines at depressing 3H-leucine incorporation.  

 

3.3.9 DOX Inhibits the Translation of TfR1 and Ndrg1 mRNA into Protein, while 

Ferritin Protein Expression Increases 

The ability of DOX to prevent 3H-leucine incorporation into protein suggested mRNA 

translation could be inhibited. These data agree with our earlier studies using SK-Mel-

28 cells where DOX markedly inhibited 3H-leucine incorporation (Kwok and 

Richardson, 2004).  Hence, it was important to investigate if up-regulation of TfR1 and 

Ndrg1 mRNA after incubation with DOX (Figure 3.2 and 3.3) leads to increased 

protein expression.  

 

At the lowest DOX concentration (0.5 μM), a slight but not significant increase in 

TfR1 protein expression occurred in SK-Mel-28 melanoma cells relative to the control 

(Figure 3.7A). At the same concentration, a more pronounced and significant (p < 0.04) 

increase in Ndrg1 protein expression was found relative to the control (Figure 3.7B). 

However, at higher DOX concentrations (5 and 7.5 μM), TfR1 and Ndrg1 protein  
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expression decreased, potentially due to inhibition of protein synthesis (Figure 3.6C). 

In contrast, ferritin-H and -L protein levels increased in the presence of DOX (Figure 

3.7C), in agreement with previous studies (Corna et al., 2004; Kwok and Richardson, 

2003).  It is also of interest that ferritin –H and –L mRNA increased as a function of 

DOX concentration up to 5 μM (Figure 3.7D), which is in contrast to TfR1 and Ndrg1 

mRNA which decreased at this latter concentration (Figure 3.2A). This indicated 

differential effects of DOX on gene expression.  

 

3.3.10 Preincubation with DOX followed by Labelling with 59Fe-Transferrin 

Decreases Cellular 59Fe Uptake 

Considering the decreased TfR1 protein expression at higher DOX concentrations 

(Figure 3.7A), studies were performed to examine the effect of DOX on 59Fe uptake 

from 59Fe-Tf (Figure 3.7E). After a 24 h preincubation with DOX (2 μM), cells were 

incubated with 59Fe-Tf (0.75 μM) for 0.5-4 h. There was a significant (p < 0.05) 

decrease in 59Fe uptake after 1-4 h in cells preincubated with DOX compared to control 

medium (Figure 3.7E). The intracellular distribution of 59Fe was then assessed using 

native-gradient-PAGE-59Fe-autoradiography (Babusiak et al., 2005; Figure 3.7F). 

Again, cells were preincubated for 24 h at 37oC with control medium or DOX (2 μM), 

washed and then incubated with 59Fe-Tf (0.75 μM) for up to 4 h at 37oC. Most 59Fe 

was incorporated into a band in the middle of the gel which was shown to be ferritin by 

super-shift studies with an anti-ferritin antibody (Figure 3.7F; lanes 9 and 10). 

Transferrin migrated below ferritin as demonstrated using purified 59Fe-Tf (Figure 3.7F; 

lane 11). The ferritin-59Fe uptake was linear up to 4 h, with less 59Fe being incorporated 

into cells preincubated with DOX.  
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Preincubation with DOX decreased both 59Fe-Tf uptake (Figure 3.7E) and 59Fe 

incorporation into ferritin (Figure 3.7F). This was in contrast to studies with no 

preincubation period, where DOX and 59Fe-Tf were incubated together for 24 h, 

leading to ferritin-59Fe accumulation (Figure 3.5C, D). Clearly, preincubation with 

DOX before the addition of 59Fe-Tf inhibits protein synthesis (Figure 3.6C) which is a 

crucial secondary event that decreases TfR1 and thus 59Fe uptake.  
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3.4 DISCUSSION 

Anthracyclines bind Fe and act as bidentate chelators via their carbonyl and hydroxyl 

groups (Figure 3.1A; May et al., 1980). The same ligating sites are involved in Fe 

chelation by the effective chelator, deferiprone (Kalinowski and Richardson, 2005), 

and thus the effects of anthracyclines on Fe metabolism are important to dissect. 

However, the effects of anthracyclines on metabolism are complex since these agents 

have multiple molecular targets (Minotti et al., 2004a; Xu et al., 2005). In this study, 

we demonstrate for the first time that anthracyclines act as atypical chelators, having a 

number of effects on Fe metabolism and the expression of Fe-regulated genes. 

 

Previous work suggested that preincubation with DOX protected cells from an Fe 

challenge due to increased ferritin expression (Corna et al., 2004). In this investigation, 

we repeated this experiment and demonstrated that preincubation with DOX followed 

by an Fe challenge did not protect cells. In fact, it was detrimental, resulting in 

decreased cellular viability (Figure 3.1B). The reason for this observation is probably 

related to several factors. First, it was shown by Link and colleagues (Link et al., 1996) 

that Fe-loading potentiates the cytotoxic effect of DOX, which is probably through the 

generation of a redox-active DOX-Fe complex (Gianni and Myers, 1992). Second, we 

previously demonstrated that incubation of cells with DOX prevented ferritin Fe 

release (Kwok and Richardson, 2004), which may be related to its ability to act as a 

protein synthesis inhibitor and/or inhibit lysosomal and proteasomal activity (Kwok 

and Richardson, 2004). The inability of ferritin to release Fe for essential metabolic 

processes would not be beneficial and could play a role in the cytotoxicity of 

anthracyclines. Third, in combination with the other well characterised cytotoxic 

effects of anthracyclines e.g., inhibition of topoisomerase II, DNA intercalation etc 



 

CHAPTER 3 74

(Minotti et al., 2004b), the multiple effects of preincubating cells with DOX markedly 

affects cellular metabolism, leading to an ineffective response to an Fe challenge. 

 

While chemical studies have shown that anthracyclines directly bind Fe (May et al., 

1980), the intracellular consequences of this Fe-depletion have not been established. 

This is probably due to the complexity of their cellular interactions (Minotti et al., 

2004a; Xu et al., 2005). In this study, we demonstrated that DOX, DAU and EPI could 

act like the well known chelator, DFO, increasing mRNA expression of the Fe-

regulated genes, TfR1 (Hentze and Kuhn, 1996) and Ndrg1 (Le and Richardson, 2004). 

This effect was marked, as at an equimolar concentration to DFO (2 μM), all the 

anthracyclines were as, or more effective at increasing TfR1 and Ndrg1 mRNA (Figure 

3.4A). The high Fe chelation efficacy of the anthracyclines is probably related to their 

marked lipophilicity (Miura et al., 1991), which enables rapid intracellular access in 

comparison to DFO which is hydrophilic and poorly penetrates cells (Richardson and 

Milnes, 1997).  

 

In the current investigation, increased expression of TfR1 and Ndrg1 mRNA acted as a 

sensitive indice of intracellular Fe chelation and could be inhibited by pre-saturating 

the Fe-binding site of anthracyclines with Fe (Figure 3.4A). These Fe complexes still 

entered cells as they are highly hydrophobic (Miura et al., 1991) and this was obvious 

from the red colour of the cell pellets which are usually white. Hence, the formation of 

the Fe complex prevented intracellular Fe chelation, but did not stop cellular access. 

 

The nature of the Fe pools that regulate TfR1 and Ndrg1 expression remains unknown. 

However, these Fe pools influence IRP mRNA-binding activity which post-
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transcriptionally regulates TfR1 mRNA (Hentze and Kuhn, 1996) and HIF-1α that 

transcriptionally up-regulates TfR1, Ndrg1 and VEGF1 (Beerepoot et al., 1996; Bianchi 

et al., 1999; Kalinowski and Richardson, 2005; Le and Richardson, 2004; Lok and 

Ponka, 1999). The DOX concentrations which up-regulate TfR1 mRNA in SK-Mel-28 

cells (ie., 1-2 μM; Figure 3.2A) were previously shown not to markedly affect IRP-

mRNA-binding activity in this cell type (Kwok and Richardson, 2002), suggesting it 

was not an IRP response. Considering this, we also assessed the role of HIF-1α in 

regulating gene expression using HIF-1α knockout (HIF-1α-/-) MEFs compared to their 

wild-type counterparts (HIF-1α+/+). These studies suggested up-regulation of TfR1, 

Ndrg1 and VEGF1 mRNA by DOX occurred via an HIF-1α-independent mechanism, 

as regulation was comparable in the presence or absence of this transcription factor. 

Other studies examining HIF-1α activation by hypoxia also demonstrated that 

regulation of its target genes occurred irrespective of HIF-1α status in MEFs (Helton et 

al., 2005). Moreover, we showed using MEFs that DFO increased Ndrg1 mRNA 

expression by HIF-1α-dependent and -independent mechanisms (Le and Richardson, 

2004). Collectively, the current work and previous studies (Helton et al., 2005; Le and 

Richardson, 2004) indicated functional redundancy in the control of HIF-1α target 

gene expression, with a HIF-1α-independent mechanism responding to Fe chelation. 

This is of interest, as HIF-1α-independent pathways have been identified to be 

involved in the up-regulation of genes by hypoxia (Wood et al., 1998) and may also 

respond to Fe-depletion. Potentially, such pathways could be mediated by molecules 

related to HIF-1α, such as HIF-2α (Hu et al., 2003) and HIF-3α (Gu et al., 1998). 

 

While anthracyclines could act like typical chelators such as DFO to bind Fe and 

induce up-regulation of Fe-responsive genes, the effect on cellular 59Fe mobilisation 
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and intracellular 59Fe distribution were atypical compared to other ligands. For instance, 

in contrast to DFO and PIH that induce cellular Fe efflux (Ponka et al., 1979b; 

Richardson and Milnes, 1997), DOX had no effect on 59Fe release from cells or cellular 

lysates at the same concentrations that up-regulated TfR1 and Ndrg1 mRNA. This 

suggests the high lipophilicity of DOX and its 59Fe complex leads to marked retention 

in membranes and organelles, as shown by others (Hurwitz et al., 1997; Jung and 

Reszka, 2001; Miura et al., 1991). 

 

The multi-functional activity of DOX was shown by FPLC to lead to ferritin-59Fe 

accumulation and prevent 59Fe incorporation into high Mr compartments. This work 

confirmed and extended our previous observations demonstrating anthracyclines 

inhibit ferritin-Fe mobilisation, which is probably mediated through inhibition of 

protein synthesis (Kwok and Richardson, 2003; Kwok and Richardson, 2004). 

Moreover, considering the alteration in 59Fe distribution, it can be suggested that 

anthracycline-mediated Fe-deprivation which up-regulates TfR1 and Ndrg1 mRNA 

could not only be due to direct Fe chelation, but also to inhibition of ferritin-Fe 

mobilisation.  

 

An interesting observation which also demonstrated the multi-functional effect of DOX 

was that it acted as an effective protein synthesis inhibitor. This potentially could be 

responsible for the observed decrease in TfR1 and Ndrg1 protein as a function of DOX 

concentration. However, it was paradoxical that increasing DOX concentrations led to 

elevated ferritin protein expression, suggesting selective targeting of gene expression 

or. This finding was surprising, but was in accordance with previous studies 

demonstrating the effect of DOX at differentially targeting the expression of other 
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genes (Chen et al., 1999; Ito et al., 1990). This selective activity of DOX has not been 

reported for genes involved or modulated by Fe metabolism. Alternatively, the 

observed ferritin up-regulation could be induced via hampered lysosomal degradation 

of ferritin, since DOX may interfere with normal lysosomal function (Kwok and 

Richardson, 2004; Persson et al., 2001). At present, it remains uncertain what precise 

molecular mechanism leads to DOX inhibiting TfR1 and Ndrg1 protein expression and 

increasing ferritin protein synthesis. The apparent selectivity in altering gene 

expression could be important for understanding the complex pharmacological effects 

of DOX. 

 

As discussed above, the marked inhibition of TfR1 protein expression by DOX in SK-

Mel-28 cells may be due to the depression of protein synthesis. Hence, this appeared to 

be a secondary response unrelated to Fe chelation which occurred after long 

preincubations with DOX that led to decreased Fe uptake from Tf. Certainly, the 

decreased TfR1 and increased ferritin protein expression observed after incubation 

with DOX is opposite to that found with typical Fe chelators such as DFO (Hentze and 

Kuhn, 1996) that are not potent protein synthesis inhibitors (Richardson and Milnes, 

1997). Our current observations with neoplastic cells were in contrast to results using 

endothelial cells, where anthracyclines induced Fe uptake via increasing TfR1 protein 

(Kotamraju et al., 2002). These latter authors suggested that DOX-mediated apoptosis 

was accompanied by increased Fe uptake via TfR1 that was responsible for inducing 

apoptosis (Kotamraju et al., 2002). This result is controversial, as decreased 

intracellular Fe is generally associated with apoptosis and inhibiting proliferation 

(Kalinowski and Richardson, 2005).  
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In summary, anthracyclines act as atypical chelators up-regulating the mRNA 

expression of the Fe-regulated genes, TfR1 and Ndrg1 by their chelation of intracellular 

Fe. However, this complexation of Fe did not lead to increased TfR1 or Ndrg1 protein 

levels, nor did DOX induce cellular Fe mobilisation. The lack of anthracycline-

mediated Fe efflux was probably because of the high lipophilicity of the so-formed Fe 

complexes that remained intracellular. Considering the effect of anthracyclines on 

TfR1 and Ndrg1 expression, it was surprising and paradoxical that DOX increased 

ferritin protein expression and led to ferritin Fe accumulation. Hence, the effect of 

anthracyclines on Fe metabolism was multi-faceted, probably due to their complicated 

chemical properties which leads to multiple mechanisms of action. 
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4.1 INTRODUCTION 

The iron (Fe) storage protein, ferritin, plays a key role in Fe detoxification and storage 

in almost all mammalian cells (Arosio et al., 1978). Ferritin is composed of a protein 

shell that can accommodate up to 4500 atoms of Fe in its internal cavity (for review, 

see Harrison and Arosio, 1996; Richardson and Ponka, 1997). The protein shell is 

made up of 24 symmetrically related subunits of two types, a light subunit (L-ferritin) 

of about 19 kDa and a heavy subunit (H-ferritin) of about 21 kDa (Hentze et al., 1987). 

In mammals, major Fe storage sites include liver (about one-third), spleen and bone 

marrow (Harrison and Arosio, 1996).  

 

Anthracyclines are effective anti-cancer agents which are widely used for the treatment 

of cancer (for review, see Xu et al., 2005). It has been suggested that the cardiotoxic 

effects of anthracyclines were related to their ability to bind Fe (Garnier-Suillerot and 

Gattegno, 1988). Previous studies showed that incubation of cells in culture with the 

anthracycline, doxorubicin (DOX) led to ferritin-Fe accumulation at very low 

concentrations (1 μM; Kwok and Richardson, 2003). The increase in ferritin-59Fe was 

shown to be due to a decrease in the release of Fe from the protein (Kwok and 

Richardson, 2003).  

 

Interestingly, a protein synthesis inhibitor, cycloheximide (CHX), was also shown to 

markedly increase ferritin-Fe accumulation in a similar way to DOX (Kwok and 

Richardson, 2004). Therefore, we hypothesised that DOX may impair the Fe release 

pathway by preventing ferritin trafficking to lysosomes where degradation and Fe 

release is thought to occur (Radisky and Kaplan, 1998) or alternatively DOX could 

inhibit the synthesis of essential ferritin partner proteins that induce Fe release. In cells, 



 

CHAPTER 4 81

many biological processes are catalysed by protein-protein complexes, e.g. haem 

synthesis (Babusiak et al., 2005). Similarly, the process of ferritin-Fe release may 

require other proteins to catalyse a series of cascade processes that leads to the release 

of Fe from the protein. However, the mechanisms behind Fe mobilisation from ferritin 

remain obscure.  

 

It has been argued that release of Fe from ferritin requires the proteolytic degradation 

of the ferritin shell, and this process takes place within lysosomes by the action of 

lysosomal enzymes operating at acidic pH (Kidane et al., 2006; Persson et al., 2001; Yu 

et al., 2003). Intra-lysosomal ferritin degradation is preceded by lysosomal autophagy 

of cytosolic ferritin, seemingly being a non-specific or at least a non-saturable process 

(Persson et al., 2001; Yu et al., 2003). Depression of lysosomal activity via the enzyme 

inhibitors, E64d and leupeptin, or the lysosomotropic agents, ammonium chloride, 

chloroquine and methylamine, lead to marked ferritin-59Fe accumulation compared to 

the control (Kwok and Richardson, 2004). Additionally, the proteasome inhibitors, 

MG132 and lactacystin, also significantly increased ferritin-59Fe levels compared to the 

control (Kwok and Richardson, 2004). In summary, these results suggest that 

lysosomes and proteosomes play an important role in ferritin-Fe release. 

 

In the present study, we designed a native protein purification technique in an attempt 

to isolate ferritin-binding partners that could potentially play a role in ferritin-Fe 

mobilisation. These techniques included ultra-centrifugation, anion-exchange 

chromatography, size exclusion chromatography and native gel electrophoresis. In 

addition to cells in culture (namely, SK-Mel-28 melanoma cells), liver taken from the 

mouse was used as a physiological in vivo model, as this organ is a major source of 



 

CHAPTER 4 82

ferritin (Aisen and Listowsky, 1980; Drysdale and Munro, 1966). After several initial 

experiments utilising some/all of these techniques, we obtained ferritin protein 

preparations containing potential ferritin-binding partners. Ferritin containing bands 

were sent for liquid chromatography – mass spectrometry (LC-MS), and various 

potential partner proteins were identified along with ferritin. These included aldehyde 

dehydrogenase 1 (family member L1; ALDH1L1) and aspartyl aminopeptidase.  
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4.2 MATERIALS AND METHODS 

4.2.1 Purification of Ferritin and Ferritin Associated Proteins Using Native 

Techniques Combining FPLC and Gradient Gel Electrophoresis 

4.2.1.1 Protein Extraction from Cells and Mouse Liver 

SK-Mel-28 melanoma cells were seeded onto petri dishes (145 mm2, Greiner Bio-One, 

Frickenhausen, Germany) and allowed to adhere overnight. The cells were then 

labelled with 59Fe-Tf (0.75 µM) in the presence of agents of interest for 24 h at 37°C. 

The monolayer was then washed four times with ice-cold PBS (pH 7.4), and lysed on 

ice by 100 uL lysis buffer (20 mM HEPES, pH 8) supplemented with an EDTA-free 

protease inhibitor cocktail (Roche, Penzberg, Germany). Cell lysates were collected 

and thoroughly homogenised using a Dounce glass tissue grinder (approximately 10 

strokes, small clearance pestle; Sigma-Aldrich Chemical Co., St. Louis, MO USA). 

 

Mice were injected with 0.6 mg 59Fe-Tf via the tail vein. After 24 h, the mice were 

sacrificed, the livers surgically removed, cut into pieces and homogenised using 20 

mM HEPES (pH 8) supplemented with an EDTA-free protease inhibitor cocktail. The 

homogenised cell samples and liver samples were centrifuged at 16,000 xg for 45 min 

at 4°C to obtain the soluble protein fractions. After centrifugation, the supernatant was 

collected and the pellet was discarded.  

 

4.2.1.2 Ultra-Centrifugation 

The cell or liver proteins after centrifugation (Section 4.2.1.1) were filtered using a 

0.22 µM filter (Millipore, Billerica, MA, USA) to remove particulate matter. The flow-

through was diluted to 22 mL using 20 mM HEPES (pH 8), and then placed in an ultra-

centrifugation tube (Beckman, Fullerton, CA, USA). The tubes containing cell or liver 
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lysates were carefully balanced and inserted into the Type Ti-60 rotor (Beckman). 

Ultra-centrifugation was performed at 38,000 rpm (102,000 xg) for 70 min at 4°C. 

After centrifugation, a brown pellet was formed at the bottom of the tube, which was 

confirmed to be a protein mixture containing ferritin. The supernatant was discarded 

and the brown pellet was diluted according to the requirements of the next experiment. 

For anion-exchange chromatography, the pellet was diluted in 5 mL HEPES buffer (20 

mM, pH 8), while for size-exclusion chromatography, the pellet was dissolved in 0.5 

mL HEPES buffer (20 mM, pH 8) with 140 mM NaCl. The diluted sample was 

centrifuged at 16,000 xg for 5 min at 4°C to remove any insoluble materials before 

loading onto the column. 

 

4.2.1.3 Anion Exchange Fast Pressure Liquid Chromatography (FPLC) 

Anion exchange liquid chromatographic separation was performed at room 

temperature using the medium-pressure BioLogic Duo Flow system (Bio-Rad, 

Hercules, CA, USA). In these studies, cell lysates from extraction procedures (Section 

4.2.1.1) or from the ultra-centrifugation step (Section 4.2.1.2) were diluted to 5 mL and 

then loaded onto the Mono Q HR 5/5 anion exchange column (GE Healthcare, Bucks, 

United Kingdom) using 20 mM HEPES (pH 8). Proteins and protein complexes 

trapped on the column were eluted with a linear gradient of sodium chloride from 0–1 

M (flow rate 1 mL/min). The elution of 59Fe-labelled proteins was monitored by the γ-

counter. Generally, samples with the highest amount of radioactivity were concentrated 

and desalted using a 5-kDa nominal molecular weight cut-off (NMWL) Microcon filter 

unit (Millipore, Billerica, MA, USA). The concentrated fractions were collected for 

later experiments, e.g. size exclusion chromaography or native gel electrophoresis.  
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4.2.1.4 Size Exclusion Fast Pressure Liquid Chromatography (FPLC) 

Size exclusion chromatography was performed at room temperature using the 

BioLogic Duo Flow system (Bio-Rad, Hercules, CA, USA). The purified cell lysates 

(450 uL, after ultra-centrifugation or anion-exchange chromatography) were loaded 

onto a Superdex 20 10/300 GL column (GE Healthcare, Bucks, United Kingdom) and 

proteins were eluted according to their size using 20 mM HEPES (pH 8.0, containing 

140 mM NaCl). The column was calibrated using the High Molecular Weight Gel 

Filtration Calibration Kit (GE Healthcare) containing thyroglobulin (669 kDa), ferritin 

(440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (44 kDa). Fractions 

(1 mL) were collected and radioactivity was measured using the γ counter. Generally 

fractions with the highest levels of radioactivity were concentrated and desalted using 

Microcon filter units with a 5-kDa NWML (Millipore, Billerica, MA, USA).  

 

4.2.1.5 Native Gradient PAGE  

Concentrated radioactive fractions were separated on a linear gradient (3–12%) 

polyacrylamide gel in the presence of the nonionic detergent Triton X-100, in Tris-

glycine buffer as previously described (Vyoral and Petrak, 1998; Vyoral et al., 1998). 

Exernal cooling was set to 15°C. The separation on Hoefer SE600 glass plates (GE 

Healthcare) proceeded for 12 h at a constant current of 20 mA per gel. Horse spleen 

ferritin (Sigma-Aldrich) was used as control. After electrophoresis, the gel was 

sandwiched between two cellophane foils (soaked and washed four times in 200 mL of 

double distilled water) and vacuum dried for 3 h at 50°C. The dried gels were exposed 

to the X-ray film for 1-7 days. The films were scanned and then analysed using the 

densitometric software, Quantity One (Bio-Rad).  
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4.2.1.6 Silver Staining 

To localise and demonstrate the purity of the Fe-containing bands, a small portion of 

the sample (10%) was separated by the native-gradient PAGE for silver staining 

(Vyoral et al., 1998). Majority of the sample (90%) was loaded onto another gel and 

after the electrophoresis, the radioactive bands were cut for liquid chromatography – 

mass spectrometry (LC-MS). Briefly, the gel for silver staining was fixed in 50% 

methanol, 12% acetic acid (HAc), 0.05% formalin for 2 h, followed by 3 washes in 

35% ethanol (20 min each). The gel was sensitised to 0.01% Na2S2O3 for 2 min 

(Sigma-Aldrich) and then washed three times with H2O (5 min each). After the 

washing, the gel was stained by 0.2% AgNO3/0.076% formalin for 20 min, and then 

washed 2 times with H2O. The gel was developed in 6% Na2CO3, 0.05% formalin and 

0.0004% Na2S2O3 until the bands were visible and clear. The staining process was 

stopped by the addition of 50% methanol, 12% HAc for 5 min. The final gel was stored 

in 1% HAc at 4°C degree. 

 

4.2.1.7 Tryptic Digestion and MS Analysis 

Tryptic digestion and LC-MS analysis were kindly performed by Dr. Mark Raftery 

(Bioanalytical Mass Spectrometry Facility, University of New South Wales, Australia). 

Briefly, detected radioactive protein bands were excised from the gel. The gel slices 

were rehydrated, cellophane removed, cut into small pieces and sonicated for 10 min in 

20 mM DTT, 50 mM Tris-HCl, pH 8.5 in 50% acetonitrile (AcN) to achieve reduction 

of cysteine residues. Proteins were alkylated with 15% acrylamide in 50 mM Tris-HCl, 

pH 8.5 for 40 min at room temperature. The gel pieces were successively sonicated for 

10 min in AcN, water, 50% AcN and dried. Dry gel pieces were reconstituted in 

cleavage buffer containing 0.01% 2-mercaptoethanol, 0.1 M 4-ethylmorpholine acetate, 
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1 mM CaCl2, 10% AcN and sequencing grade trypsin (50 ng/mL; Promega, Madison, 

WI, USA).  

 

Digested peptides were separated by nano-LC using a Cap-LC autosampler system 

(Waters, Milford MA). Samples (5 µL) were concentrated and desalted onto a micro 

C18 precolumn (500 µM x 2 mm, Michrom Bioresources, Auburn, CA) with H2O:AcN 

(98:2, 0.05% heptafluorobutyric acid) at 15 uL/min. After a 4 min wash, the pre-

column was automatically switched (Valco 10 port valve, Houston, TX) into line with a 

fritless nano column (Gatlin, et al., 1998). Peptides were eluted using a linear gradient 

of H2O:AcN (98:2, 0.1 % formic acid) to H2O:AcN (55:45, 0.1 % formic acid) at ~300 

nL/min over 30 min. The precolumn was connected via a fused silica capillary to a low 

volume tee (Upchurch Scientific, Munich, Germany) where high voltage (2400 V) was 

applied and the column tip positioned ~ 1 cm from the Z-spray inlet of a QTof Ultima 

API hybrid tandem mass spectrometer (Micromass, Manchester, UK).  Positive ions 

were generated by electrospray and the QTof was operated in data dependent 

acquisition mode (DDA). A Tof MS survey scan was acquired (m/z 350-1700, 1 s) and 

the 2 largest multiple charged ions (counts > 20) were sequentially selected by Q1 for 

MS-MS analysis. Argon was used as the collision gas and an optimum collision energy 

was chosen (based on charge state and mass).  Tandem mass spectra were accumulated 

for up to 2 s (m/z 50-2000).  Peak lists were generated by MassLynx (version 4.0 SP4, 

Micromass) using the Mass Measure program and submitted to the database search 

program Mascot (version 2.2, Matrix Science, London, England). Search parameters 

were: Precursor and product ion tolerances ± 0.25 and 0.2 Da respectively; Met(O) 

specified as variable modification, enzyme specificity was trypsin, 1 missed cleavage 

was possible and the NCBInr database searched.   
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4.2.2 Other Experimental Methods 

All other experimental methods were performed as described in Chapter 2.  
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4.3 RESULTS 

4.3.1. Examination of Potential Ferritin Partner Protein(s) 

4.3.1.1 DOX and CHX Altered Cellular Protein Profile and 59Fe Distribution  

A well known protein synthesis inhibitor, cycloheximide (CHX), induced ferritin-Fe 

accumulation in the same manner as DOX (Kwok and Richardson, 2004). Both of 

these agents are known to inhibit protein synthesis within cells and it is possible that 

the effect of DOX is due to it acting by this mechanism (Kwok and Richardson, 2004). 

In addition, many biological processes are catalysed by protein-protein complexes, 

such as haem synthesis (Babusiak et al., 2005). Therefore, we hypothesized that ferritin 

has one/several partner protein(s) which is/are involved in ferritin degradation, such as 

ferritin trafficking to lysosomes or ferritin-Fe release. To examine the existence of 

ferritin partner protein(s), ferritin was purified from cells to assess the presence of 

associated molecules. 

 

Considering the effect of DOX and CHX on ferritin Fe-loading (Kwok and Richardson, 

2003), our study focused on the effect of these agents on the alterations of ferritin-59Fe 

levels in SK-Mel-28 cells, as the Fe metabolism of this cell type has been well 

characterised (Kwok and Richardson, 2003). In this study, SK-Mel-28 cells (100 x 106) 

were treated with DOX (5 µM) or CHX (70 µM) in the presence of 59Fe-Tf (0.75 μM) 

for 24 h at 37°C. The cell lysates were then loaded onto a MonoQ anion-exchange 

column and the distribution of 59Fe in the sample was examined using FPLC.  

 

As the ionic strength (0-1M NaCl) of the elution buffer increased, proteins were eluted 

according to their charge (Figure 4.1A). For all samples, the UV-absorbance sharply 

increased at fraction 5, which represented the beginning of elution. The majority of  
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Figure 4.1 Incubation of SK-Mel-28 melanoma cells with DOX and cycloheximide 
alters: (A) UV-Vis absorbance and (B) 59Fe distribution within cellular lysates. (A) 
UV-Vis absorbance trace at 280 nm measured during the protein elution process from 
anion exchange chromatography using FPLC. SK-Mel-28 cells were incubated with 
control media, DOX (5 μM) or CHX (70 μM) in the presence of 59Fe-Tf (0.75 μM) for 
24 h at 37°C. Cells were lysed and cellular proteins were separated using anion-
exchange chromatography via FPLC. (B) The fractions obtained from (A) were 
assessed to determine the amount of 59Fe in each fraction using the γ-counter. Results 
are typical from 3 separate experiments performed. 
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proteins in all samples were eluted in a series of peaks in fractions 5 to 19. These 

include several small peaks, such as at fractions 6, 8, 9, 12 and 13 (Figure 4.1A). 

Several more intense peaks were identified at approximately fractions 15 and 18 

(Figure 4.1A).   

 

Interestingly, CHX and DOX-treated samples showed a similar protein elution profile 

as the control, but the absorbance was generally slightly lower than the control (Figure 

4.1A). These observations agree with the role of CHX and DOX as protein synthesis 

inhibitors (Kwok and Richardson, 2003). From the DOX profile, it is clear that when 

compared to control cells, the peak in fraction 5 is slightly higher, while the peaks at 

fractions 6 and 7 were diminished compared to the control (Figure 4.1A). Generally, 

the whole elution pattern in the DOX-treated sample from fractions 7 to 14 was similar 

to the control. DOX reduced UV-absorbance at fraction 15 to half the control value and 

led to the elimination of a peak at fraction 18 (Figure 4.1A). The protein elution pattern 

from CHX-treated cells was similar to that from cells incubated with DOX, except that 

the UV-absorbance peak at fraction 15 was doubled in intensity (Figure 4.1A). 

 

The 59Fe content of each fraction was then examined and expressed as a percentage of 

the total 59Fe found in all fractions (Figure 4.1B). For all samples, fraction 8 contained 

the largest amount of 59Fe and in control samples this was equal to 17% of the total 

59Fe eluted from the column. Treatment of cells with CHX or DOX increased the 

amount of 59Fe in this fraction to 24% and 26% respectively. Fraction 8 was later 

proven to be ferritin as demonstrated by native-gradient PAGE and super-shift analysis 

using anti-ferritin antibodies (see Section 2.7). Thus, the increase in 59Fe content in 

fraction 8 after incubation with CHX or DOX was consistent with studies 
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demonstrating that these agents induce ferritin-59Fe loading in a similar manner (Kwok 

and Richardson, 2003). Apart from fractions 7 and 8, the percentage of 59Fe in other 

fractions from DOX-treated cells was lower compared to the control (Figure 4.1B). 

This observation is consistent with previous results showing that DOX prevented 59Fe 

redistribution from ferritin to other cellular compartments (see Section 3.3.6). 

 

In summary, these data above strongly support our hypothesis that DOX and CHX 

induce ferritin-Fe accumulation in a similar manner, preventing Fe release from ferritin 

and decreasing the amount of Fe for cellular use.  

 

4.3.1.2 Ferritin-59Fe Distribution is Markedly Changed by DOX and CHX  

Fractions 7-12 in Figure 4.1B from control-, DOX- and CHX-treated cells were 

concentrated using the Microcon filter units with a 5-kDa nominal molecular weight 

cut-off (Section 4.2.1.3) to a final volume of 100 µL. These samples were then 

separated using 3-12% native-gradient PAGE. After electrophoresis, the gels were 

vacuum dried and exposed to X-ray films (Figure 4.2 A, B, C). The radioactive bands 

were visible and the density confirmed the 59Fe distribution data (Figure 4.1B) with the 

majority of 59Fe being observed in fraction 8. These bands were confirmed to be 

ferritin, as they co-migrated with purified horse spleen ferritin and they were super-

shifted by an anti-ferritin antibody (data not shown).  
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Figure 4.2 The distribution of 59Fe in fractions obtained from anion-exchange 
chromatography (see Figure 4.1) determined using native-gradient-PAGE. After 
FPLC (anion-exchange chromatography), fractions from: (A) control, (B) DOX (5 μM) 
and (C) CHX (70 μM) were concentrated and separated by the 3-12% native-gradient-
PAGE. Gels were subsequently dried and autoradiography performed. The bands 
represent ferritin which was confirmed by super-shift studies using an anti-ferritin 
antibody. Results are typical from 3 separate experiments performed. 
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The reason for ferritin being eluted in each fraction may be explained by differential 

glycosylation of ferritin and subunit composition which will result in differences in the 

charge of the protein and its molecular weight and shape (Alpert, 1975; Suryakala and 

Deshpande, 1999).  

 

In the DOX- and CHX-treated samples, the majority of 59Fe-ferritin is eluted in 

fractions 7-9 and 7-8 respectively (Figure 4.2). In the control sample, although the 

majority of 59Fe-ferritin is found in fractions 8-9, fractions 10-12 still contain a 

significant proportion of ferritin-59Fe (Figure 4.2). In spite of the similarity in 59Fe 

distribution between the 3 samples, in both DOX- and CHX-treated samples much less 

ferritin-59Fe is found in fractions 10, 11, and 12 compared to the control (Figure 4.2). 

Thus, in accordance with our hypothesis, treatment with DOX or CHX may lead to less 

diverse forms of ferritin that are not involved in 59Fe release.  

 

4.3.1.3 Primary Investigation of Ferritin Associated Protein(s) by LC-MS 

The radioactive bands shown in Figure 4.2 were carefully cut from the gel and sent for 

LC-MS analysis by Dr. Mark Raftery (Mass Spectrometry Facility, University of New 

South Wales, Australia). The detailed experimental procedures were described in 

Section 4.2. The LC-MS data from 3 different experiments were compiled and 

demonstrated a list of proteins that were identified along with ferritin (Table 4.1).  

Several proteins were commonly identified in most of the bands in all 3 treatments, 

including human elongation factor 2, vesicle amine transporter protein 1 homolog and 

heat shock protein 60 (Hsp60; Table 4.1). 
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Table 4.1 Proteins identified by LC-MS from ferritin bands obtained from SK-Mel-28 cells incubated with control media, DOX (5 μM) 
or CHX (70 μM) for 24 h at 37oC. The presence of the proteins in the ferritin band between 3 different experiments is stated within 
brackets.  
 

 CON DOX CHX 

1 Human elongation factor 2 ( 3/3) Human elongation factor 2 (3/3) Human elongation factor 2 (3/3) 

2 Vesicle amine transporter protein 1 (3/3) Vesicle amine transporter protein 1 (2/3) Vesicle amine transporter protein 1 (3/3) 

3 Heat shock protein 60 (2/3) Heat shock protein 60 (3/3) Heat shock protein 60 (2/3) 

4 Lysosome-associated membrane protein-2 (2/3) Heat shock protein 70 (2/3) L-lactate dehydrogenase B chain (1/3) 

5 Alanyl-tRNA synthetase (1/3) Gelsolin (1/3) Gamma non-muscle actin (2/3) 

6 Melanotransferrin precursor (1/3) 
78 kDa glucose-regulated protein precursor 

(1/3) 
Actin 1 (1/3) 

7 Mutant beta-actin (1/3) 90 kDa heat shock protein (1/3) Glucosidase II alpha subunit (1/3) 

8 
Eukaryotic translation elongation factor 1 γ 

(1/3) 
Alpha-tubulin (1/3) Protein kinase C substrate 80K-H (1/3) 
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Interestingly, Lysosome-associated membrane protein-2 (LAMP2) was found in the 

control sample twice, while it was not identified in DOX or CHX-treated samples 

(Table 4.1). Lysosome-associated membrane proteins are major lysosomal membrane 

proteins (Pillay et al., 2002) and it could be speculated that LAMP2 act as a dock 

protein, which facilitates ferritin uptake and degradation within lysosomes. Inhibition 

of LAMP2 expression by DOX or CHX may prevent ferritin uptake and degradation.  

 

However, none of these proteins have been reported to correlate with mammalian Fe 

metabolism, suggesting these proteins may be contaminants. It should be noted that the 

accuracy of LC-MS analysis is limited by the abundance of target protein compared to 

its contaminating proteins.  

 

In summary, treatment with DOX or CHX altered the cellular protein profile in a 

similar manner compared to the relevant control. The novel protein purification 

techniques are appropriate for ferritin purification. However, to assess the existence of 

ferritin partner proteins, it is necessary to increase their protein levels.    

 

4.3.2 Ferritin Purification by Ultra-Centrifugation, Ion-Exchange FPLC, Size 

Exclusion FPLC and Native-Gradient PAGE. 

Using the techniques above, it was unclear if the proteins present in the bands were 

ferritin-partner proteins or non-specific contaminants. To further define the molecular 

species that were present, another technique of ferritin purification was implemented to 

determine if the same molecular partners could be identified. In this case, ultra-

centrifugation was implemented as a first step, as it has been previously proven to be 

effective for ferritin purification (Winzerling et al., 1995). Subsequent to this, anion-
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exchange chromatography, size exclusion chromatography and native-gradient PAGE 

were performed. 

 

The common protein purification method, immuno-affinity chromatography was not 

used as it will introduce a large amount of ferritin antibodies. The binding of ferritin 

antibody-ferritin may induce dissociation of ferritin associated proteins. Furthermore, 

the antibody will introduce a large amount of noise signal to the LS-MS analysis. 

Indeed, four commercially available anti-ferritin antibodies were tested using immuno-

precipitation. However, all the antibodies appeared to bind to multiple targets apart 

from ferritin which had been proved by coomassie staining (data not shown). Therefore, 

immuno-affinity chromatography was not used.  

 

4.3.2.1 Combination of Ultra-Centrifugation, Anion-Exchange and Size Exclusion 

Chromatography 

SK-Mel-28 cells (1 x 109) were treated with the Fe donor, ferric ammonium citrate 

(FAC, 100 µg/mL), for 72 h at 37°C to elicit Fe-loading and ferritin expression. To 

identify ferritin-59Fe, cells were subsequently incubated with 59Fe-Tf (0.75 µM) for 24 

h/37°C. The cells were then harvested and homogenised as described in Section 4.2.1. 

Cellular proteins were collected and diluted in HEPES buffer (20 mM, pH 8.0) before 

ultra-centrifugation. A brown pellet was obtained after ultra-centrifugation at 37,000  

xg/70min/4oC (Figure 4.3), which may contain ferritin, ferritin-associated proteins, 

large molecular weight protein complexes and membranes. This pellet was then 

dissolved in 5 mL of HEPES buffer (20 mM, pH 8.0) and loaded onto an anion-

exchange chromatography column as described in Section 4.2 (Figure 4.4A). In the 

elution profile, there were three major peaks at fractions 5, 19 and 27. The first peak 
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was flow-through which did not bind to the column, while the next two peaks were 

possibly 59Fe-ferritin-containing proteins. After examining the radioactivity of each 

fraction, peak 2 (fractions 18 and 19) was confirmed to be the major 59Fe-containing 

peak, with 800 and 2400 cpm, respectively (Figure 4.4A). These two fractions were 

combined and concentrated by a 5 kDa NMWL filter (see Section 4.2).  

 

The sample was concentrated to a final volume of 500 µL and then separated using 

size-exclusion chromatography as described in Section 4.2.1.4. This purification step 

was successful, resulting in a major peak at fractions 14 and 15 (Figure 4.4B). 

Consistent with the protein elution profile, the 59Fe distribution confirmed that these  

two fractions contained the majority of 59Fe (Figure 4.4B). Considering this, fractions 

14 and 15 were combined and concentrated to 100 µL using the 5-kDa NMWL filter 

units.  
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Figure 4.3  Isolation of ferritin by ultra-centrifugation using lysates obtained from 
SK-Mel-28 melanoma cells incubated with the Fe-donor, ferric ammonium citrate. 
Molecules including ferritin with large Mr were pelletd by ultra-centrifugation (38,000 
xg, 70 min, 4°C). In these studies, cells were incubated with FAC (100 μg/mL) for 72 h 
at 37°C. Then 59Fe-Tf (0.75 μM) was added to trace label ferritin for the last 24 h of 
the incubation. Cells were washed, harvested, homogenised and centrifuged (16,000 xg 
for 45 min at 4oC) to remove nuclei, plasma membrane, mitochondria and cell debris. 
The supernatant was collected and ultra-centrifugation performed. A brown pellet 
formed at the bottom of the tube that was consistent with ferritin. Results are typical 
from 3 separate experiments performed. 
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Figure 4.4 Anion-exchange chromatography (A) followed by (B) size exclusion 
chromatography of samples obtained from ultra-centrifugation of lystates from 
SK-Mel-28 cells loaded with Fe using the Fe donor, FAC, for 72 h and trace 
labelled with 59Fe-Tf (0.75 μM) for the final 24 h. (A) The brown pellet from ultra-
centrifugation (Figure 4.3) was dissolved in 20 mM HEPES (pH 8) and loaded onto a 
MonoQ anion exchange column and separated via FPLC. Proteins were eluted using 
increasing ionic strength (0-1 M NaCl/20 mM HEPES, pH 8). Radioactivity of each 
fraction was examined using a γ-counter. (B) Fractions 18 and 19 from (A) were 
concentrated by a Micron filter unit and separated by size-exclusion chromatography 
(Superdex 20 10/300 GL column) using FPLC. 1 mL fractions were collected and 
radioactivity of each fraction examined. Results are typical from 3 separate 
experiments performed. 
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4.3.2.2 Native-Gradient PAGE and Silver Staining Confirmed Ferritin  

Two 3-12% native-gradient gels were prepared as described in Section 4.2.1.5. A small 

proportion (10 µL; 10%) of the sample from size exclusion chromatography was 

loaded onto one gel for silver staining. The silver staining result showed a single band, 

which co-migrated with purified horse spleen ferritin (data not shown). The majority of 

the sample (90 µL; 90%) was separated on another gel and the radioactive bands were 

cut for LC-MS analysis. It was noted that after electrophoresis, a brown band was 

visible on the gel (data not shown), which had the same colour compared to the pellet 

that was observed after ultra-centrifugation (Figure 4.3). This brown band was thought 

to be ferritin. To further confirm the identity of the band, autoradiography was 

performed. On the X-ray film, a dark band was visible which corresponded to the 

brown band on the native gel (data not shown). This 59Fe-containing band was excised 

and sent for LC-MS analysis.  

 

4.3.2.3 Ferritin Identified by LC-MS Analysis  

The LC-MS analysis detected ferritin in the brown band. However, no partner protein 

or co-migrating molecules were detected (data not shown). Compared to the 

experiments in Section 4.3.1, we used two extra purification steps in addition to anion-

exchange chromatography and native-gradient PAGE, namely ultra-centrifugation and 

size exclusion FPLC. It could be suggested that these extra steps lead to ultra-purified 

ferritin where ferritin-partner proteins may have disassociated during these extra 

purification procedures. Considering this, further experiments employed less 

purification steps and also utilised mouse liver which was rich in ferritin and this was 

compared to ferritin purified from SK-Mel-28 melanoma cells cultured in vitro. 
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4.3.3 Ferritin Purification from SK-Mel-28 Cells and Mouse Liver, by Efficient 

Native Separation Techniques  

The previous studies described above showed either a large amount of potential ferritin 

partner proteins (Section 4.3.1) or over-purification of ferritin (Section 4.3.2). 

Therefore, a new combination of native purification techniques was utilised. 

Considering this, the ultra-centrifugation step proved highly successful in enabling 

separation of small molecular weight proteins from high molecular weight molecules 

(including ferritin and/or associate partner proteins). Indeed, ultra-centrifugation alone 

was shown to be a very successful ferritin purification procedure leading to a brown 

pellet at the bottom of the tube (Figure 4.3) and appeared to be an important step in the 

ferritin purification process.  

 

However, the next step in the purification procedure of ferritin involving ion-exchange 

chromatography separated ferritin-59Fe in several fractions (Figure 4.2) instead of one 

fraction and this markedly increased the chance of dissociation of ferritin and ferritin 

partner protein(s). Thus, we decided to remove the anion-exchange FPLC step from the 

procedure in 4.3.2 to enable identification of potential ferritin partner proteins. 

 

4.3.3.1 Ultra-Centrifugation and Size Exclusion Chromatography are Efficient 

Procedures to Separate Ferritin 

In these studies, mouse liver was used because it is rich in ferritin (Aisen and 

Listowsky, 1980; Drysdale and Munro, 1966). The SK-Mel-28 cell line was still used 

as a control, since we have successfully purified ferritin from these cells in Section 

4.3.2.   
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In this investigation, nine-week-old mice were injected with 59Fe-Tf (0.6 mg) via the 

tail vein and 24 h later the mice were sacrificed to isolate the radioactive liver. The 

livers were homogenised and cytosolic proteins were extracted as described in Section 

4.2.1. SK-Mel-28 cells were treated as described in Section 4.3.2. Briefly, SK-Mel-28 

cells were grown to confluence in the presence of the Fe-donor, FAC (100 µg/ml), for 

72 h at 37°C and then incubated with 59Fe-Tf (0.75 μM) to trace label the Fe stores for 

the last 24 h at 37°C. The cells were then homogenised and the proteins extracted.  

 

The two samples obtained after homogenisation (i.e., mouse liver lysate and cell lysate) 

were diluted in HEPES buffer (20 mM, pH 8.0) and then ultra-centrifugation was 

performed (Section 4.2.1). Consistently, a brown pellet formed at the bottom of the 

tube from both samples (Figure 4.5). This suggested that ferritin was successfully 

isolated.  
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Figure 4.5 Ferritin from mouse livers and iron loaded SK-Mel-28 cells was 
isolated using ultra-centrifugation. SK-Mel-28 cells were incubated with the Fe 
donor, FAC (100 μg/ml), for 72 h at 37°C and trace labelled with 59Fe-Tf (0.75 μM) for 
the final 24 h of this incubation. Mice were injected with 59Fe-Tf (0.6 mg) via the tail 
vein and sacrificed 24 h later to isolate the radioactive liver. SK-Mel-28 cells and 
mouse liver were homogenised and centrifuged (16,000 xg for 45 min/4°C) to obtain 
cytosol. The cytosol was dissolved in 20 mM HEPES (pH 8) and ultra-centrifugation 
was performed (38,000 xg, 70 min, 4°C). Brown pellets were obtained that were 
consistent with ferritin. This result is typical from three experiments performed. 

pellet from 
mouse liver

pellet from 
SK-Mel-28 
cell lysate
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The pellets were then dissolved in 0.5 mL of HEPES buffer (20 mM, pH 8) containing 

140 mM NaCl and separated by size exclusion column chromatography using FPLC. 

The SK-Mel-28 cell lysates showed a broad elution peak in fractions 10-15 (Figure 

4.6A). The UV-absorbance began to decrease at fraction 14, but formed a small plateau 

between fraction 14 and 15, before the absorbance decreased at fractions 16 and 17 

(Figure 4.6A). The radioactivity of each sample was examined and the majority of 59Fe 

was in fractions 14, 15 and 16. Previous data using the same chromatography 

conditions showed ferritin was eluted at fraction 15 (Section 3.3.6), which agreed with 

the present result where the greatest radioactivity was found in fraction 15 (Figure 

4.6A inset). Hence, ultra-centrifugation purified the sample removing all small 

molecular weight molecules < ~200 kDa, as no peaks were visible after fraction 16 

(Figure 4.6A).  

 

Similarly, the mouse liver sample showed a major UV-Vis absorption peak in fractions 

10-13 (Figure 4.6B). However, this peak was less pronounced compared to the cell 

sample (Figure 4.6 A). A second peak was also observed at fraction 15. In line with the 

results in Figure 4.6A, the majority of liver 59Fe was in fraction 14 and 15 (Figure 4.6B 

inset). To minimise contamination, fraction 15 was selected for native PAGE analysis.  
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Figure 4.6 Size exclusion chromatography of samples obtained from ultra-
centrifugation of lystates from (A) Fe-loaded SK-Mel-28 cells and (B) mouse liver. 
(A) Fe-loaded SK-Mel-28 cells and (B) mouse liver were homogenised and ultra-
centrifuged to obtain a ferritin pellet (see Figure 4.5). The pellets were dissolved in 20 
mM HEPES/140 mM NaCl (pH 8) and then separated by size exclusion 
chromatography (Superdex 20 10/300 GL column) using FPLC. The amount of 59Fe in 
each fraction was examined using a γ-counter. Results are typical from 3 separate 
experiments. 
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After concentration of fraction 15 from the cell and mouse liver samples using the 5-

kDa NMWL units, these were then separated using 3-12% native-gradient PAGE. A 

small portion (10%) of both samples was separated by native PAGE and then silver 

staining perfomed (Figure 4.7). Lysates from SK-Mel-28 cells showed a major brown 

band (Figure 4.7, lane 2) that co-migrated with dialysed horse spleen ferritin (Figure 

4.7, lane 1). This band was later confirmed to contain human ferritin by LC-MS. The 

purified mouse liver ferritin presented a different pattern (Figure 4.7, lane 3) compared 

to commercial horse spleen ferritin and also ferritin SK-Mel-28 cells (Figure 4.7). The 

purified mouse liver ferritin was located at a higher position (Figure 4.7, lane 3) in the 

gel compared to horse spleen ferritin (Figure 4.7, lane 1). Later LC-MS analysis 

proved that the former band was murine ferritin (Table 4.2). 

 

After size-exclusion FPLC, approximately 90% of the sample from SK-Mel-28 

melanoma cells and mouse liver was separated by native-gradient PAGE. Two brown 

bands were visible on the gel (data not shown), which was consistent with the ferritin 

pattern shown by silver staining (Figure 4.7). These brown bands were directly excised 

from the gel and sent for LC-MS analysis. Both SK-Mel-28 cell and mouse liver 

ferritin samples were selected from fraction 15 derived from size exclusion FPLC, 

which suggested they had a similar molecular weight. However, their migration on 

native PAGE was dissimilar (Figure 4.7), suggesting differences in charge or shape. 
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Figure 4.7 Ferritin from SK-Mel-28 melanoma cells and mouse liver was isolated 
by ultra-centrifugation and size exclusion chromatography (Figure 4.6) was 
separated by native-gradient PAGE and visualised by silver staining. After size-
exclusion chromatography, fractions containing 59Fe-ferritin were concentrated using 
the 5 kDa NMWL ultra-filtration units and then separated by native-gradient PAGE. 
Silver staining was performed and ferritin bands were visualised. Dialysed horse 
spleen ferritin was used as a standard (Lane 1). Results are typical from 3 separate 
experiments performed. 
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4.3.3.2 Proteins of Interest after LC-MS Analysis 

The 59Fe-ferritin band from mouse liver that was prepared above in Section 4.3.3.1 was 

excised from the gel and sent for LC-MS analysis, which confirmed the presence of 

mouse ferritin. These experiments were repeated three times and interestingly, several 

proteins that consistently co-migrated with ferritin were identified, including: aldehyde 

dehydrogenase 1 (member L1; ALDH1L1), UDP-glucose pyrophosphorylase 2, 

glutamine synthetase and aspartyl aminopeptidase (Table 4.2).   
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Table 4.2 Proteins identified by LC-MS using ferritin-containing samples from mouse livers that were isolated using ultracentrifugation, 
size-exclusion chromatography and native-gradient PAGE. 
 

 Mice 1 Mice 2 Mice 3 

1 Ferritin light chain  Ferritin light chain Ferritin light chain 

2 Aaldehyde dehydrogenase 1, member L1 Aldehyde dehydrogenase 1, member L1 Aldehyde dehydrogenase 1 , member L1 

3 UDP-glucose pyrophosphorylase 2 UDP-glucose pyrophosphorylase 2 UDP-glucose pyrophosphorylase 2 

4 Glutamine synthetase Glutamine synthetase Glutamine synthetase 

5 Aspartyl aminopeptidase Aspartyl aminopeptidase Aspartyl aminopeptidase 

6 Ferritin heavy chain  Ferritin heavy chain  Ferritin heavy chain  

7 ATP citrate lyase Alpha glucosidase 2 alpha Tripeptidyl peptidase II 

8 C1-tetrahydrofolate synthase 40S ribosomal protein S7 UDP glucuronosyltransferase 2 

9 Glutamate dehydrogenase 1 Ribosomal protein L27 Cytochrome P450, family 2, subfamily d 

10 SEC24 related gene family, member D Retinol dehydrogenase 7 Formiminotransferase cyclodeaminase 

11 Betaine-homocysteine methyltransferase Transitional endoplasmic reticulum ATPase Proteasome subunit beta type 4 
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4.4 DISCUSSION 

Ferritin degradation is important for Fe recycling, but the mechanisms by which Fe is 

released from ferritin for metabolic use are poorly understood (Kwok and Richardson, 

2004). Previous and current studies showed that incubation of cells with anthracyclines 

leads to 59Fe accumulation within ferritin (Kwok and Richardson, 2003, 2004; Xu et al., 

2007). This was shown to be due to the effect of anthracyclines at preventing Fe 

release from this molecule, while the exact molecular mechanism was not clear (Kwok 

and Richardson, 2003). In addition, the protein synthesis inhibitor, CHX, also mediated 

ferritin-59Fe accumulation in a similar manner to anthracyclines (Kwok and Richardson, 

2003). 

 

It has been suggested that ferritin degradation within lysosomes is essential for Fe 

release (Persson et al., 2001; Radisky and Kaplan, 1998; Roberts and Bomford, 1988). 

Furthermore, recent studies employing a variety of well-characterised lysosomal 

enzyme inhibitors (E64d and leupeptin), lysosomotropic agents (ammonium chloride, 

chloroquine and methylamine) and proteasomal inhibitors (MG132 and lactacystin) all 

lead to marked Fe accumulation within ferritin (De Domenico et al., 2006; Kwok and 

Richardson, 2004). Therefore, ferritin degradation may occur within lysosomes or 

proteasomes. 

 

Collectively, we hypothesised that DOX prevented Fe release from ferritin by 

inhibiting the expression of ferritin partner protein(s) which facilitate ferritin 

trafficking to lysosomes or ferritin-Fe release. Therefore, examination of novel ferritin 

partner protein(s) became important.  
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We first identified that treatment with DOX or CHX altered the cellular protein profile 

using anion exchange chromatography via the FPLC technique (Figure 4.1A). SK-Mel-

28 cells treated with DOX (5 μM) or CHX (70 μM) lead to lower UV-absorbance 

compared to the control, suggesting protein synthesis was inhibited by these two agents 

(Figure 4.1A). However, the proportion of 59Fe within ferritin was markedly increased 

by incubating cells with DOX or CHX compared to the control (Figure 4.1B), which 

was consistent with previous studies showing that DOX and CHX lead to ferritin-59Fe 

accumulation (Kwok and Richardson, 2003).  

 

After separation by anion exchange FPLC, 59Fe containing fractions from control-, 

DOX- and CHX-treated samples were examined by native-gradient PAGE. Consistent 

with the 59Fe profile (Figure 4.1B), the ferritin-59Fe bands were visible by 

autoradiography (Figure 4.2). Interestingly, treatment with DOX and CHX led to a 

narrower distribution of 59Fe-ferritin with the majority being found in 2 and 3 fractions, 

respectively (Figure 4.2). In contrast in control cells, 59Fe-ferritin was spread over 5 

fractions. Considering this, several hypotheses can be made to explain these 

observations. First, it could be speculated that in control cells, ferritin could exist in 

equilibrium between several states, that are involved in Fe-release or Fe-uptake 

processes. However, treatment with DOX or CHX may largely decrease the ability of 

ferritin to convert or exist in these forms. Second, it has been shown that ferritin is a 

glycoprotein and the effect of DOX and CHX on these glycosylation processes may 

result in alterations of the charge and shape of ferritin (Alpert, 1975; Suryakala and 

Deshpande, 1999). Third, DOX and CHX could potentially inhibit the expression of 

ferritin partner proteins, and subsequently lead to a narrower range of ferritin protein 

complexes.  
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After anion-exchange chromatography and native-gradient PAGE, a number of 

proteins were commonly identified by LC-MS in control, DOX and CHX treated 

samples, including elongation factor 1, vesicle amine transporter protein 1 and heat 

shock protein 60. However, assessment of the literature demonstrated no correlation 

between these proteins with cellular Fe metabolism. Moreover, none of the proteins 

were identified in later experiments using more refined ferritin purification techniques 

(see below).  

 

To verify the presence of the potential ferritin partner proteins identified by anion 

exchange chromatography, native PAGE and LC-MS, another purification protocol was 

important to examine. To do this, ultra-centrifugation, size exclusion FPLC and native-

gradient PAGE were utilised (see Section 4.3.3). Using normal mouse liver, four 

potential ferritin partner proteins were consistently identified over 3 separate 

experiments, including ALDH1L1, UDP-glucose pyrophosphorylase 2, glutamine 

synthetase and aspartyl aminopeptidase. Below is a discussion on the molecular 

properties and potential roles of these proteins in cellular iron metabolism. 

 

Aldehyde dehydrogenase 1 family, member L1 

Aldehyde dehydrogenase 1 family, member L1 (ALDH1L1, 10-formyltetrahydrofolate 

dehydrogenase; EC 1.5.1.6) is developmentally regulated in the cerebellum (Kuhar et 

al., 1993). ALDH1L1 is a tetramer with a Mr ~ 440 kDa, which is very similar to 

ferritin and thus there is some concern that this protein could be a contaminant due to 

its similar size (Schirch et al., 1994). It is one of the most abundant enzymes involved 

in folate metabolism, comprising about 1% of the total pool of soluble cell protein in 

liver cytosol (Kisliuk, 1999).  
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ALDH1L1 catalyses the NADP-dependent oxidation of 10-formyltetrahydrofolate (10-

FTHF) to tetrahydrofolate (THF; Vasiliou et al., 2000). 10-FTHF represents one of the 

major forms of folate in the cell which is involved in the de novo purine biosynthesis 

(Krupenko and Wagner, 1999) and the methylation potential of the cell (Anguera et al., 

2006). The ALDH1L1-catalysed reaction is important for recycling the excess 10- 

FTHF in the cell (Krupenko and Wagner, 1999). This process appears to be important 

for the clearance of formate protecting the cell from formate intoxication (Tephly, 

1991). Furthermore, ALDH1L1 is significantly down-regulated in several different 

tumours (Krupenko and Oleinik, 2002; Oleinik and Krupenko, 2003). However, the 

precise physiological role of ALDH1L1 in vivo is unclear .  

 

Interestingly, it has been reported that iron deficiency decreased serum folate levels in 

rats and humans (Oppenheim et al., 2001). Moreover, increased ferritin H-subunits 

induced the expression of the folate-dependent enzyme, cytoplasmic serine hydroxyl-

methyltransferase (cSHMT; Oppenheim et al., 2001). This enzyme catalyses the THF-

dependent interconversion of glycine and serine, which is an important pathway 

involved in the circulation of 10FTHF/THF.  

 

The latter authors suggested that cSHMT is a key regulatory enzyme in folate 

metabolism and responded to the altered Fe status and metabolism (Oppenheim et al., 

2001; Oppenheim et al., 2000). The precise molecular mechanism of Fe altered folate 

metabolism needs to be further clarified. However, considering the significance of 

ALDH1L1 in folate metabolism it is possible to speculate upon some association 

between this molecule and ferritin where formation of a high molecular weight 

complex could be beneficial in the efficient coupling of metabolic intermediates. 
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UDP-glucose pyrophosphorylase 

UDP-glucose pyrophosphorylase (EC 2.7.7.9), also known as glucose-1-phosphate 

uridylyl-transferase or UGPase, catalyses the formation of UDP-glucose from glucose-

1-phosphate and UTP (Holden et al., 2003; Thoden and Holden, 2007). This protein 

has not yet been shown to correlate with cellular Fe metabolism. Furthermore, this 

molecule has a Mr around 450 kDa (Aksamit and Ebner, 1972; Turnquist et al., 1974), 

suggesting it may be a co-migrating contaminant.  

 

Aspartyl aminopeptidase and glutamine synthetase 

Aspartyl aminopeptidase (EC 3.4.11.21) has been reported to be the major 

aminopeptidase in rabbit brain homogenates that degrades N-terminal acidic acid-

containing peptides (Kelly et al., 1983; Wilk et al., 1998). It has been shown that this 

protein has a Mr of 440 kDa, which is similar to ferritin (Wilk et al., 1998).  

Furthermore, glutamine synthetase (EC 6.3.1.2)  is a large molecule with Mr ~ 600 kDa 

(Blanco et al., 1989; Yin et al., 1998). The high molecular weight of these two 

molecules suggests that they may be contaminants.  

 

It should be noted that the four potential ferritin partner proteins described above from 

mouse liver were not observed in initial studies using human SK-Mel-28 melanoma 

cells where we identified elongation factor 1, vesicle amine transporter protein 1 and 

heat shock protein 60 as potential ferritin partners. This could be explained by the fact 

that different cell types were used and the separation procedure was also distinct.  

 

In conclusion, ferritin was purified along with several high molecular weight proteins. 

Among the possible ferritin partner proteins identified, ALDH1L1 was considered as 



 

CHAPTER 4 116

the most likely candidate for future study considering its involvement in 10FTHF/THF 

cycle, which could be regulated by ferritin H-subunit. Further studies need to be 

performed to clarify the correlation of this protein with cellular Fe metabolism.  



 

CHAPTER 5 117

 

CHAPTER 5  

PROTEOMIC ANALYSIS OF HEARTS FROM 

FRATAXIN KNOCKOUT MICE: MARKED 

REARRANGEMENT OF ENERGY 

METABOLISM, A RESPONSE TO 

CELLULAR STRESS AND ALTERED 

EXPRESSION OF PROTEINS INVOLVED IN 

CELL STRUCTURE, MOTILITY AND 

METABOLISM  

 

This work has been published in: 

 

Sutak, R., Xu, X., Whitnall, M., Kasham, M. A., Vyoral, D and Richardson, D.R. (2008) 

Proteomic analysis of hearts from frataxin knockout mice: marked rearrangement of 

energy metabolism, a response to cellular stress and altered expression of proteins 

involved in cell structure, motility and metabolism. Proteomics. 8:1731-41 

         



 

CHAPTER 5 118

5.1 INTRODUCTION 

Friedriech’s ataxia (FA) is an autosomal recessive, progressively lethal disease 

affecting 1 in 50,000 caucasians (Lodi et al., 2006). It is the commonest form of 

inherited ataxia, with over 95% of patients having an abnormal expansion of a GAA 

triplet repeat in intron 1 of the FA gene on chromosome 9 (Campuzano et al., 1996; 

Lodi et al., 2006). The repeat expansion leads to a marked decrease in the expression 

of a 210-amino acid protein, frataxin, that has an N-terminal mitochondrial targeting 

sequence  (Campuzano et al., 1997; Koutnikova et al., 1997). 

 

The common features of cells with decreased frataxin expression are the presence of 

increased mitochondrial iron, decreased respiratory chain activity and oxidative 

damage (Pandolfo, 2006). The exact function of frataxin is still unknown and 

currently this is the subject of intense investigation (Lodi et al., 2006). Nevertheless, 

involvement of frataxin in mitochondrial iron metabolism is apparent, there being 

increased iron uptake by the mitochondrion in the absence of this molecule and 

decreased iron sulfur cluster (ISC) synthesis (Babcock et al., 1997; Becker et al., 2002; 

Foury and Cazzalini, 1997; Muhlenhoff et al., 2002; Napier et al., 2005; Nie et al., 

2006; Pandolfo, 2006; Shan et al., 2007; Wilson, 2006). The decreased expression of 

frataxin and its homologs result in the deficiency of ISC-dependent enzyme activities 

(Muhlenhoff et al., 2002; Rotig et al., 1997), impairment of heme biosynthesis 

(Lesuisse et al., 2003) and accumulation of intra-mitochondrial iron (Babcock et al., 

1997; Foury and Cazzalini, 1997; Puccio et al., 2001).  

 

Whether frataxin is directly involved in iron detoxification remains unclear, although 

a number of studies have suggested that the molecule can directly bind iron (Cavadini 
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et al., 2002; Park et al., 2003). The oxidative damage associated with frataxin 

deficiency (Calabrese et al., 2005) could simply be a secondary effect of impaired iron 

homeostasis and respiratory chain dysfunction caused by defects in ISC and/or heme 

protein biosynthesis. However, mutations of frataxin have been described that 

increase the sensitivity of yeast cells to oxidative stress, but do not affect the activity 

of ISC-dependent enzyme aconitase or mitochondrial iron content (Gakh et al., 2006). 

This could suggest frataxin may be involved in iron detoxification independently of 

the biosynthesis of ISC and heme proteins (Gakh et al., 2006). 

 

Cardiac involvement is present in most FA patients and therefore complications of 

cardiomyopathy are a frequent cause of death (Durr et al., 1996). To study this 

problem, a conditional gene targeting strategy has generated muscle creatine kinase 

(MCK) conditional frataxin knockout (KO) mice lacking a full-length frataxin 

transcript in the heart and skeletal muscle (Puccio et al., 2001). This mouse line 

exhibits classical phenotypic traits of the cardiomyopathy in FA, including cardiac 

hypertrophy, cytoplasmic vacuolization in myocytes and post-necrotic fibrosis (Puccio 

et al., 2001). Hence, it is an excellent model to study the molecular alterations that 

could play an important role in the pathogenesis of FA. In agreement with the 

hypothesis that frataxin functions in mitochondrial iron homeostasis, there is also 

mitochondrial iron accumulation and deficiency in ISC-dependent enzyme complexes 

observed in the hearts of these KO mice (Puccio et al., 2001).  This cardiac pathology 

is not apparent in young animals (4-week-old), but becomes evident as they age (7-9 

weeks-old) with death occurring at 10.9 + 1.4-weeks (Puccio et al., 2001). 

 

In the current study, we analysed the changes in the protein expression profile of 
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hearts from 4- and 9-week-old KO mice in comparison to their wild-type (WT) 

controls. We observed a pronounced rearrangement of energy metabolism pathways, 

some of which start at 4 weeks of age where no gross pathology was apparent (Puccio 

et al., 2001). Moreover, a marked increase in the expression of proteins functioning in 

cell stress protection as well as cellular structure, motility and general metabolism 

were demonstrated. 
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5.2 MATERIALS AND METHODS 

5.2.1 Animals 

The KO and WT animals were obtained from Drs. H. Puccio and M. Koenig (Institut 

de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM, Universite 

Louis Pasteur, Strasbourg, France). These animals were bred and handled using a 

protocol approved by the University of Sydney Animal Ethics Committee. 

Genotyping was performed using tail DNA via standard techniques (Puccio et al., 

2001). 

 

5.2.2 Western Blot Analysis 

The samples were separated on NuPAGE Bis–Tris 4–12%, 1.5 mm gels (Invitrogen, 

Carlsbad, CA, USA) and then transferred to Invitrolon™ PVDF membranes 

(Invitrogen). The polyclonal antibodies against Hsp25 (rabbit; Abcam, Cambridge, 

UK), SDHA (goat; Santa Cruz Ltd, Santa Cruz, CA, USA) and GAPDH (rabbit; Santa 

Cruz) were used at a 1:1000 dilution. The secondary antibodies used were anti-goat 

antibody (1:5,000 dilution, Santa Cruz) or anti-rabbit antibody (1:5,000 dilution, 

Sigma) conjugated with horseradish peroxidase. The protein bands were visualized 

using ECL reagent (Pierce Chemical Co., Rockford, IL, USA). Bands on X-ray film 

were quantified by scanning densitometry and analyzed using the program, Quantity 

One (Bio-Rad, Hercules, CA). 

 

5.2.3 Statistics 

Data was analysed using ANOVA except for the densitometric assessment of Western 

blots which implemented Student’s t-test. Results were considered statistically 

significant when p < 0.05. 
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5.2.4 Other Experimental Methods 

All other methods including two dimensional gel electrophoresis and proteomic 

analysis were performed as described in Chapter 2. 
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5.3 RESULTS 

5.3.1 Two Dimensional Electrophoresis and Proteomic Analysis Reveals Marked 

Alterations in the Expression of Proteins Involved in Energy Metabolism and 

Response to Cellular Stress 

In order to characterise the alterations in protein expression related to FA, we 

performed two dimensional electrophoresis analysis and proteomic analysis (Kashem 

et al., 2007) of cellular protein extracts from hearts of KO mice and compared them to 

their WT counterparts. For each group of animals, 5 different mice were utilised for 

statistical analysis. After differential analysis of protein profiles of hearts from 4- and 

9-week-old KO mice and their WT controls, we analyzed the spots with statistically 

significant changes in volume (p < 0.05) by MALDI-TOF mass spectrometry.  

 

Comparing 4-week-old, asymptomatic KO mice to their WT counterparts, we 

identified 6 differentially abundant spots (Figure 5.1). The corresponding proteins 

(Table 5.1) were identified as the components of NADH dehydrogenase (Ubiquinone), 

branched-chain ketoacid dehydrogenase and pyruvate dehydrogenase. Two spots 

corresponded to the flavoprotein of the succinate dehydrogenase complex (SDHA) 

and one protein was an unnamed protein product.  

 

In 9-week-old KO animals that possessed severe pathology including cardiomyopathy, 

weight loss and mitochondrial iron accumulation (Puccio et al., 2001), the abundance 

of 51 spots was changed compared to their WT counterparts. The spots that showed a 

statistically significant difference in volume between KO and WT hearts are shown in 
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Figure 5.1. 2D gel electrophoresis analysis of proteins from wild type (WT) and frataxin knockout (KO) hearts taken from 4-week-old 
mice. Spots with significantly (p < 0.05) increased volume in WT mice are displayed in the WT gel. The spots with significantly (p < 0.05) 
increased volume in KO mice are displayed in the KO gel. The figure is a representative gel from 5 separate gels for each group of mice. 
Corresponding proteins are listed in Table 5.1. 
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Table 5.1 Heart proteins differentially expressed in 4- and 9-week-old KO mice 
relative to their corresponding WT controls. 

   NCBI Fold Change 
Spot Name Accession  number 9-week 4-week 
  Energy metabolism       
1 succinate dehydrogenase, subunit A, flavoprotein Q3UKP7 -5.753 -1.258 
2 succinate dehydrogenase, subunit A, flavoprotein Q3UKP7 -9.161 -1.215 
3 succinate dehydrogenase, subunit A, flavoprotein Q3UKP7 -12.28   
4 NADH dehydrogenase (ubiquinone) 1α, 10 BAC32674 -4.302   
5 NADH dehydrogenase (Ubiquinone) flavoprotein 2 Q8K2L0 -13.182 -1.205 
6 NADH dehydrogenase (ubiquinone) Fe-S protein 3  Q8BTZ3 -6.121   
7 enolase 3, beta muscle P21550 -1.587   
8 creatine kinase M chain Q9D6U7 -2.1   
9 NADH dehydrogenase (ubiquinone) 1β, 5 BAB23279 -7.994   
10 malate dehydrogenase, cytoplasmic P14152 -1.633   
11 NADH dehydrogenase (ubiquinone) Fe-S protein 2 Q99L23 -5.169   
12 enoyl coenzyme A hydratase 1, peroxisomal AAB84224 -2.097   
13 malate dehydrogenase, cytoplasmic P14152 -3.256   
14 NADH dehydrogenase (ubiquinone) Fe-S protein 3  Q8BTZ3 -2.061   
15 adenylate kinase 1 Q9R0Y4 -2.088   
16 E2 component of pyruvate dehydrogenase complex Q91ZB1 +25.695   
17 E2 component of oxoglutarate dehydrogenase Q4FK55 +5.724   
18 branched chain ketoacid dehydrogenase E1, α  Q99L69 +5.334 +2.065 
19 succinyl-CoA:3-ketoacid-coenzyme A transferase 1 BAB27562  +1.816   
20 isocitrate dehydrogenase 3 (NAD+) α BAB26679 +1.402   
21 E2 component of pyruvate dehydrogenase complex Q91ZB1 +31.816 +3.439 
22 mitochondrial acyl-CoA thioesterase  Q3T9C9 +1.813   
23 ATP synthase, mitochondrial F0 complex, subunit d Q9DCX2 +1.962   
24 pyruvate dehydrogenase E1 component subunit β Q9D051 +2.113   
25 pyruvate dehydrogenase E1 component subunit β Q9D051 +2.665   
  Stress, protection and anti-oxidation       
26 peroxiredoxin-2  Q61171 -1.852   
27 glutathione S-transferase Ω 1 BAC25667 +4.44   
28 αB-crystallin AAA37472 +3.868   
29 GrpE-like 1, mitochondrial BAC33437 +1.938   
30 serine protease HTRA2 Q3TXN0 +2.376   
31 heat shock protein 25 AAA37862 +3.151   
32 heat shock protein 27 AAA18336 +21.62   
33 Prohibitin AAH89034 +1.874   
34 protein DJ-1  Q99LX0 +2.038   
  Cell structure & motility       
35 Sarcalumenin BAC29409 -1.855   
36 Sarcalumenin BAC29409 -1.593   
37 fibrinogen, B β polypeptide Q3TGR2 -1.531   
38 F-actin capping protein α-2 subunit P47754 -1.464   
39 F-actin-capping protein subunit β AAA52226 -2.29   
40 cardiac troponin T isoform A3b AAA85352 -7.195   
41 moesin  AAA39728 +4.724   
42 moesin  P26041 +2.797   
43 glial fibrillary acidic protein CAA26571 +2.117   
44 glial fibrillary acidic protein CAA26571 +1.419   
  Miscellaneous       
45 nitrilase family, member 2 Q9JHW2 -1.837   
46 D-dopachrome decarboxylase O35215 -2.002   
47 Transthyretin Q5M9K1  -1.435   
48 unnamed protein product Q8BTN3 -4.567   
49 proteasome (prosome, macropain) 28 subunit, α Q5HZK3 -1.5   
50 unnamed protein product BAC26453 +2.084 +1.16 
51 purine-nucleoside phosphorylase Q543K9 +2.117   
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SUPPORTING INFORMATION  

  

spot no. 
NCBI 
accession no. 

sequence  
coverage 
(%) 

MOWSE 
score 

peptides 
matched change fold  

normalised 
volume WT 
(SEM) 

normalised 
volume KO 
(SEM) 

9 weeks               

1 Q3UKP7 29 77 19 -5.753 
0.124 
(0.033) 

0.022 
(0.005) 

2 Q3UKP7 31 84 23 -12.28 
0.058 
(0.010) 

0.005 
(0.001) 

3 Q3UKP7 39 97 28 -9.161 
0.128 
(0.021) 

0.014 
(0.004) 

4 BAC32674 50 97 34 -4.302 
0.244 
(0.040) 

0.057 
(0.005) 

5 Q8K2L0 52 65 18 -10.182 
0.225 
(0.022) 

0.022 
(0.003) 

6 Q8BTZ3 65 71 31 -6.121 
0.333 
(0.024) 

0.054 
(0.004) 

7 P21550 58 138 37 -1.587 
0.093 
(0.010) 

0.058 
(0.005) 

8 Q9D6U7 58 168 30 -2.1 
0.182 
(0.031) 

0.087 
(0.006) 

9 BAB23279 41 92 8 -7.994 
0.045 
(0.008) 

0.006 
(0.003) 

10 P14152 44 89 18 -1.633 
0.209 
(0.031) 

0.128 
(0.011) 

11 Q99L23 70 120 38 -5.169 
0.370 
(0.036) 

0.072 
(0.011) 

12 AAB84224 53 69 32 -2.097 
0.621 
(0.025) 

0.296 
(0.015) 

13 P14152 43 75 14 -3.256 
0.102 
(0.019) 

0.031 
(0.009) 

14 Q8BTZ3 33 84 10 -2.061 
0.050 
(0.005) 

0.024 
(0.003) 

15 Q9R0Y4 55 63 9 -2.088 
0.511 
(0.048) 

0.245 
(0.070) 

16 Q91ZB1 13 69 6 25.695 
0.010 
(0.005) 

0.270 
(0.033) 

17 Q4FK55 46 77 27 5.724 
0.035 
(0.006) 

0.203 
(0.026) 

18 Q99L69 45 60 28 5.334 
0.008 
(0.001) 

0.044 
(0.003) 

19 BAB27562  60 143 35 1.816 
0.043 
(0.013) 

0.077 
(0.035) 

20 BAB26679 37 108 16 1.402 
0.269 
(0.027) 

0.377 
(0.021) 

spot no. NCBI 
accession no. 

sequence  
coverage 

(%) 

MOWSE 
score 

petides 
matched change fold 

normalised 
volume WT 

(SEM) 

normalised 
volume KO 

(SEM) 

21 Q91ZB1 19 85 12 31.816 
0.011 
(0.003) 

0.340 
(0.072) 

22 Q3T9C9 62 97 40 1.813 
0.218 
(0.021) 

0.395 
(0.109) 
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23 
Q9DCX2 91 77 24 1.962 

0.083 
(0.014) 

0.163 
(0.014) 

24 Q9D051 56 85 19 2.113 
0.326 
(0.040) 

0.690 
(0.031) 

25 Q9D051 34 56 15 2.665 
0.024 
(0.008) 

0.063 
(0.016) 

26 Q61171 37 104 9 -1.852 
0.079 
(0.012) 

0.043 
(0.005) 

27 BAC25667 42 69 12 4.44 
0.006 
(0.001) 

0.027 
(0.007) 

28 AAA37472 76 134 20 3.868 
0.010 
(0.003) 

0.038 
(0.008) 

29 BAC33437 70 137 17 1.938 
0.015 
(0.005) 

0.029 
(0.002) 

30 Q3TXN0 20 75 12 2.376 
0.009 
(0.002) 

0.020 
(0.005) 

31 AAA37862 55 96 13 3.151 
0.070 
(0.010) 

0.222 
(0.016) 

32 AAA18336 62 86 14 21.62 
0.004 
(0.002) 

0.094 
(0.008) 

33 AAH89034 66 145 20 1.874 
0.150 
(0.016) 

0.280 
(0.023) 

34 Q99LX0 34 77 11 2.038 
0.008 
(0.002) 

0.016 
(0.001) 

35 BAC29409 50 75 31 -1.855 
0.141 
(0.009) 

0.076 
(0.013) 

36 BAC29409 47 74 24 -1.593 
0.258 
(0.017) 

0.162 
(0.017) 

37 Q3TGR2 67 80 70 -1.531 
0.091 
(0.010) 

0.059 
(0.004) 

38 P47754 48 89 13 -1.464 
0.024 
(0.003) 

0.016 
(0.001) 

39 AAA52226 59 135 21 -2.29 
0.011 
(0.002) 

0.005 
(0.001) 

40 AAA85352 36 155 19 -7.195 
0.356 
(0.030) 

0.050 
(0.019) 

41 AAA39728 42 70 31 4.724 
0.012 
(0.002) 

0.058 
(0.006) 

42 P26041 34 88 25 2.797 
0.023 
(0.007) 

0.064 
(0.005) 

43 CAA26571 65 67 34 2.117 
0.042 
(0.014) 

0.089 
(0.014) 

44 CAA26571 65 67 34 1.419 
0.404 
(0.036) 

0.284 
(0.014) 

 
spot no. 

NCBI 
accession no. 

sequence  
coverage 
(%) 

MOWSE 
score 

petides 
matched change fold  

normalised 
volume WT 
(SEM) 

normalised 
volume KO 
(SEM) 

45 Q9JHW2 42 86 12 -1.837 
0.025 
(0.004) 

0.014 
(0.002) 

46 O35215 87 102 15 -2.002 
0.038 
(0.006) 

0.019 
(0.001) 

47 Q5M9K1  67 76 9 -1.435 
0.046 
(0.005) 

0.032 
(0.001) 

48 Q8BTN3 29 72 10 -4.567 
0.018 
(0.004) 

0.004 
(0.001) 

49 Q5HZK3 48 114 15 -1.5 
0.058 
(0.006) 

0.039 
(0.003) 

SUPPORTING INFORMATION Table 5.1 - Continued
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50 
BAC26453 35 105 13 2.084 

0.021 
(0.002) 

0.044 
(0.004) 

51 Q543K9 36 76 12 2.117 
0.005 
(0.002) 

0.011 
(0.001) 

 
 
 
4 weeks               

1 Q3UKP7 29 77 19 -1.258 
0.293 
(0.007) 

0.233 
(0.013) 

2 Q3UKP7 31 84 23 -1.215 
0.233 
(0.012) 

0.192 
(0.013) 

5 Q8K2L0 52 65 18 -1.205 
0.242 
(0.007) 

0.201 
(0.003) 

18 Q99L69 44 89 18 2.065 
0.022 
(0.007) 

0.046 
(0.004) 

21 Q91ZB1 19 85 12 3.439 
0.042 
(0.006) 

0.146 
(0.016) 

50 BAC26453 35 105 13 1.16 
0.104 
(0.005) 

0.120 
(0.004) 
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Figure 5.2 and Table 5.1. Some proteins were identified in more than one spot (e.g., 

SDHA; Figure 5.3), suggesting the presence of isoforms and/or post-translational 

modifications that affect the pI and/or molecular mass of the protein. The 51 

differentially expressed proteins are involved in energy metabolism (49%), cell 

structure and motility (19%), stress protection and anti-oxidation (18%) and other 

functions (14%).  

 

In hearts from 9-week-old KO animals relative to WT mice, we observed decreased 

expression of components of the iron-dependent complex I and II of the mitochondrial 

electron transport chain and enzymes involved in ATP homeostasis (creatine kinase, 

adenylate kinase; Stryer, 1980). Interestingly, the frataxin KO hearts displayed 

increased expression of enzymes participating in the citric acid cycle (isocitrate 

dehydrogenase, oxoglutarate dehydrogenase, pyruvate dehydrogenase; Stryer, 1980), 

catabolism of branched-chain amino acids (branched-chain ketoacid dehydrogenase 

E1; Stryer, 1980) and ketone body utilisation (succinyl-CoA:3-ketoacid-coenzyme A 

transferase 1; Stryer, 1980). Moreover, proteins functioning in protection against 

stress, such as glutathione S-transferase Ω 1 and a variety of chaperones also showed 

increased expression in the KO relative to the WT mice. Some of the spots displayed a 

10- to 30-fold change in abundance between 9- week-old KO mice and their WT 

controls (Figure 5.3). These spots were identified as SDHA, NADH dehydrogenase 

flavoprotein 2, E2 component of pyruvate dehydrogenase complex and heat shock 

protein 27.  
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Figure 5.2 2D-gel electrophoresis analysis of proteins from WT and frataxin KO hearts taken from 9-week-old mice. Spots with 
significantly (p < 0.05) increased volume in WT mice are displayed in the WT gel. The spots with significantly (p < 0.05) increased volume in 
KO mice are displayed in the KO gel. The figure is a representative gel from 5 separate gels for each group of mice. Corresponding proteins are 
listed in Table 5.1. 
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Figure 5.3 Spots with greater than a 10-fold volume change taken from a 
representative 2D-gel of WT and KO hearts from 9-week-old mice. The figure is a 
representative gel from 5 separate gels for each group of mice.  

Succinate Dehydrogenase
Subunit A

WT KO

E2 Component of Pyruvate
Dehydrogenase Complex
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NADH Dehydrogenase
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5.3.2 Western Blot Analysis Confirms Decreased Expression of SDHA and Up-

Regulation of Hsp25 

The significant alterations in protein expression from two dimensional electrophoresis 

analysis above were obtained from 5 individual animals in each group. As a further 

validation check of the expression changes observed, we performed western blot 

analysis using antibodies against SDHA and heat shock protein 25 (Hsp25; Figure 

5.4). Validation of all 51 alterations in protein expression was not possible due to cost 

considerations and the lack of appropriate antibodies. Two dimensional 

electrophoresis analysis (Table 5.1) demonstrated these two proteins showed marked 

down-regulation (SDHA; -5 to -12-fold) or moderate up-regulation (Hsp25; +3-fold). 

Both proteins examined by western blotting showed the same pattern of expression as 

obtained from two dimensional electrophoresis analysis. That is, SDHA expression 

was significantly (p < 0.001) decreased, while Hsp25 expression was significantly (p 

< 0.01) increased in 9-week-old animals (Figure 5.4). 
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Figure 5.4 Western blot and densitometric analysis of succinate dehydrogenase subunit A (SDHA) and heat shock protein 25 (Hsp25) in 
wild type (WT) and knockout (KO) hearts from 4- and 9-week-old mice. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as 
a control for equal loading of proteins. Representative experiment from 4 performed. 
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5.4 DISCUSSION 

Despite many studies examining the role of frataxin in the pathogenesis of FA, 

surprisingly little is known about the function of this protein (Lodi et al., 2006). 

Moreover, the molecular alterations that occur during the cardiomyopathy observed in 

this disease are very poorly understood. In this study, we analysed changes in protein 

expression caused by deletion of frataxin in the hearts of MCK KO mice compared to 

their WT counterparts using two dimensional electrophoresis and proteomic analysis. A 

marked change in protein expression profile was observed in 9-week-old KO mice 

which developed severe cardiomyopathy (Puccio et al., 2001). The expression of 5 

proteins that were markedly altered in 9-week-old KO mice were also significantly 

changed in 4-week-old KO mice (Table 5.1) that do not show any marked pathology 

(Puccio et al., 2001).  

 

The proteins corresponding to the 51 spots showing significantly changed abundance 

in the KO mice can be divided into 4 groups: (1) enzymes of energy metabolism; (2) 

proteins involved in stress, protection and anti-oxidation; (3) cell structure & motility 

related proteins and (4) miscellaneous proteins with a variety of functions. An analysis 

of the roles of these proteins and their relevance to FA and the cardiomyopathy 

observed in the KO mouse is described below. 

 

5.4.1 Proteins Involved in Energy Metabolism 

The KO mice displayed a dramatic re-arrangement in mitochondrial energy 

metabolism (Figure 5.5). In 4-week-old KO mice, we observed a decrease in the 

expression of the components of complex I and II of oxidative phosphorylation chain 

and an increase in the components of pyruvate dehydrogenase complex and branched-
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Figure 5.5 Schematic diagram illustrating the rearrangement of energy 
metabolism in the heart of MCK KO mice. Components of the oxidative 
phosphorylation complex I and II display decreased expression. Expression of enzymes 
participating in the citric acid cycle, the catabolism of branched-chain amino acids, 
ketone body utilisation and pyruvate decarboxylation are increased. Abbreviations: 
BCAA, branched-chain amino acids; BCAT, branched-chain amino acid 
aminotransferase; BCKDH, branched chain ketoacid dehydrogenase; CoA, Coenzyme 
A; PDC, pyruvate dehydrogenase complex; 3-OHBD, 3-hydroxybutyrate 
dehydrogenase; SCOT, succinyl-CoA:3-ketoacid-coenzyme A transferase; ID, 
isocitrate dehydrogenase; OGDH, oxoglutarate dehydrogenase. 
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chain ketoacid dehydrogenase. These changes were intensified in 9-week-old KO mice 

resulting in a 10-fold decrease in the expression of NADH dehydrogenase flavoprotein 

2 and a 30-fold increase in the E2 component of pyruvate dehydrogenase complex. We 

hypothesise that in the heart of KO mice, failure to synthesise ISCs causes decreased 

expression of ISC-dependent complex I and II (Figure 5.6), the enzymatic activities of 

which are known to be significantly reduced in the MCK model (Puccio et al., 2001). 

These alterations in expression would result in decreased ATP production that leads to 

metabolic compensation from the activation of several energy metabolism pathways 

(Figure 5.6). These include the citric acid cycle, branched-chain amino acid catabolism 

pathways, ketone body utilisation and pyruvate decarboxylation. We observed 

increased expression of at least one component of each of these metabolic pathways 

(Figure 5.5).  

 

Although we did not observe any change in the expression of the enzymes participating 

in β-oxidation (i.e., fatty acid catabolism; Stryer, 1980), there was a significant increase 

in the expression of mitochondrial acyl-CoA thioesterase. This enzyme cleaves acyl-

CoAs into fatty acids and coenzyme A and is thought to provide a means of removing 

excessive acyl-CoA from β-oxidation (Hunt and Alexson, 2002). Thus, we can 

hypothesise that the catabolism of fatty acids is probably also affected. 

 

The current study also identified elevated expression of one of the subunits of the ATP 

synthase and a decrease in the expression of two enzymes involved in ATP homeostasis, 

namely creatine kinase and adenylate kinase. These changes probably reflect another 

response to the deficit in mitochondrial ATP production in cardiac muscle (Figure 5.6) 

that has been previously observed in skeletal muscle of FA patients (Lodi et al., 1999). 
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Figure 5.6 Schematic illustration of the proposed mechanism of the 
cardiomyopathy associated with FA. Impairment in the formation of ISC causes 
insufficient oxidative phosphorylation, resulting in metabolic compensation and the 
subsequent activation of different catabolic pathways (e.g., pyruvate dehydrogenase 
etc). Oxidative stress that may be the result of the accumulation of mitochondrial iron 
or defects in the respiratory chain induce the expression of different proteins 
functioning in protection against oxidative stress (e.g., glutathione-S-transferase, heat 
shock protein 27 etc). The resulting hypertrophy is associated with changed expression 
of proteins involved in ATP homeostasis and cell structure and motility. 
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Considering this, decreased adenylate kinase expression has also been identified as a 

new biomarker in the diseased diaphragm muscle from an X-linked muscular 

dystrophy animal model (Doran et al., 2006). In conjunction with creatine kinase, 

adenylate kinase provides a major nucleotide metabolizing pathway and the decrease 

of this key enzyme could lead to an abnormal regulation of nucleotide ratios. This 

appears to be a metabolic defect in dystrophinopathy (Doran et al., 2006) and also the 

heart of MCK KO mice.  

 

It should be noted that disruption of respiratory chain complex activities (Puccio et al., 

2001; Rotig et al., 1997; Wilson and Roof, 1997), decreased expression of succinate 

dehydrogenase (Tan et al., 2003) and abnormal tissue energy metabolism (Lodi et al., 

1999; Lodi et al., 2001) have previously been documented in yeast and animal models 

of frataxin deficiency and also in FA patients. However, the current work is the first 

investigation to define the detailed molecular alterations in energy metabolism and 

metabolic compensation that occurs within the heart in vivo in frataxin KO mice.  

 

5.4.2 Proteins Involved in Stress, Protection and Anti-Oxidation 

It was demonstrated previously that frataxin deletion in cardiac tissue of KO mice 

leads to mitochondrial iron accumulation (Puccio et al., 2001). Considering the high 

potential of iron to participate in formation of reactive oxygen species, this could lead 

to oxidative stress (Eaton and Qian, 2002). Evidence of oxidative stress in FA patients 

includes elevated 8-hydroxy-2’-deoxyguanosine levels in urine as a marker of 

oxidative DNA damage (Schulz et al., 2000) and raised plasma malondialdehyde levels, 

suggesting increased lipid peroxidation (Emond et al., 2000). In the heart of KO mice, 

we observed a pronounced increase in expression of a battery of chaperones (Hsp27, 
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Hsp25, αB-crystallin), co-chaperones (GrpE) and other proteins involved in protection 

against cellular stress. Of these proteins, Hsp27 showed the greatest fold change (> 21-

fold increase), with the functionally related proteins αB-crystallin, Hsp25 and 

mitochondrial GrpE, also being up-regulated (1.9- to 3.9-fold) in KO relative to WT 

mice (Table 5.1). These molecules enhance cellular survival upon exposure to noxious 

stimuli and play roles in protection against toxicity mediated by aberrantly folded 

proteins, myocardial ischaemia, oxidative stress and apoptosis  (Arrigo, 2007; Arrigo et 

al., 2007; Borges et al., 2003; Jaattela, 1999). As an example of their crucial function, 

mutation of the human αB-crystallin gene causes a multi-system, protein aggregation 

disease that includes cardiomyopathy (Rajasekaran et al., 2007). Interestingly, response 

to stress via the up-regulation of heat shock proteins (e.g., cvHsp) has also been 

identified as an important cellular mechanism in dystrophic muscle and has been 

suggested to be an exploitable approach to counteract muscle degeneration (Doran et 

al., 2006). 

 

In addition to the molecular chaperones, the expression of a number of other protective 

molecules was also increased in the KO mice (Table 5.1). The more significant of these 

included: glutathione-S-transferase-Ω 1, that is known to protect against oxidative 

stress through its ability to conjugate glutathione to toxic metabolites (Hayes et al., 

2005; Kolsch et al., 2004); DJ-1, which has a role in scavenging mitochondrial H2O2 

(Andres-Mateos et al., 2007); and the serine protease, HTRA2, that is a survival 

enhancing protein induced by heat shock or toxins (Gray et al., 2000).  

 

Collectively, the up-regulation of this armamentarium of molecular chaperones and 

protective molecules indicates that depletion of frataxin induces a marked stress 
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response (Figure 5.6). The origin of this response could be the oxidant stress that is 

known to exist in FA patients (Emond et al., 2000; Schulz et al., 2000). This may be 

mediated by the mitochondrial Fe-loading that occurs in the absence of frataxin and/or 

the disturbance in the respiratory chain due to dysfunctional ISC synthesis (Figure 5.6). 

Irrespective of the origin of the oxidant stress, the effectiveness of anti-oxidants such 

as idebenone, coenzyme Q and vitamin E (Di Prospero et al., 2007a; Di Prospero et al., 

2007b; Hart et al., 2005) and the potential use of iron chelators in the treatment of FA 

(Richardson, 2003), can now be rationalized at the molecular level. 

 

5.4.3 Proteins Involved in Cell Structure & Motility 

The 9-week-old KO mice showed a severe cardiomyopathy that included marked 

cardiac hypertrophy (Puccio et al., 2001). Considering this, several proteins involved in 

cell structure and motility were differentially expressed in the hearts of this model. The 

most marked change in expression in this group of proteins was found for cardiac 

troponin T isoform A3b which was reduced 7.2-fold in KO mice relative to the WT. 

This class of molecules plays a role in modulating cardiac muscle contraction, in 

particular the sensitivity to Ca2+ and inhibition of force development (Gomes et al., 

2002a; Gomes et al., 2002b). The importance of troponin T in cardiac contraction is 

demonstrated by the fact that mutations in this molecule are thought to be involved in 

the genesis of familial dilated cardiomyopathy (Martins et al., 2006). We also 

demonstrated a reduction in the expression of sarcalumenin, a calcium-binding protein 

contributing to calcium buffering within the longitudinal sarcoplasmic reticulum 

(Yoshida et al., 2005). Of interest, the decreased expression of sarcalumenin has been 

observed in the cardiomyopathy associated with Duchenne muscular dystrophy (Lohan 

and Ohlendieck, 2004). 
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Of the proteins in this group that demonstrated increased expression, moesin showed 

the greatest fold change (Table 5.1). Moesin is an important signal transducer during 

actin re-organization and plays roles in cell membrane organization, cell migration, 

phagocytosis and apoptosis (Niggli and Rossy, 2007; Tamma et al., 2007). Hence, 

moesin may be involved in marked cytoskeletal alterations that probably occur in the 

heart when frataxin is absent (Figure 5.6). Another protein that demonstrated increased 

expression was glial fibrillary acidic protein. This intermediate filament protein has 

been shown to be an indicator of stress in central nervous system astrocytes and radial 

glia of the retina (Hagemann et al., 2005; Lewis and Fisher, 2003).  

 

5.4.4 Miscellaneous Proteins 

Seven proteins with markedly different functions were identified to be differentially 

regulated in the hearts of KO mice compared to their WT counterparts (Table 5.1). 

Purine nucleoside phosphorylase was up-regulated in the KO mouse and plays a key 

role in the purine salvage pathway and is responsible for the dephosphorylation of 

purine ribonucleosides and 2'-deoxyribonucleosides (Silva et al., 2007). The increased 

expression of this enzyme indicates active DNA metabolism that could be necessary 

during the hypertrophy of the heart in the KO animal. Proteins that were down-

regulated included: D-dopachrome decarboxylase, nitrilase family member 2, 

transthyretin and proteasome 28 subunit α that play roles in melanisation (Jiao et al., 

2006), cell growth suppression (Lin et al., 2007), thyroid hormone/retinol binding 

protein transport (Hamilton and Benson, 2001) and proteasome function (Hanna and 

Finley, 2007), respectively. Of interest, a recent study has also demonstrated that there 

is a decrease in proteasome activity using the yeast model of Friedreich’s ataxia 
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(Bulteau et al., 2007). 

 

In summary, frataxin deficiency in the heart from MCK KO mice caused a marked 

rearrangement of energy metabolism, increased expression of proteins involved in 

protection against stress, differential expression of structural/motility proteins and 

alterations in the expression of proteins that play miscellaneous roles in metabolism 

(Figure 5.6). Our study indicates that changes in expression of proteins involved in 

these processes are involved in the development of the cardiomyopathy observed in 

this model. Hence, the current results deepen our understanding of the molecular 

mechanisms of the cardiomyopathy associated with FA. Moreover, proteins whose 

expression is affected in this disease may provide tools for monitoring FA prognosis 

and also the investigation of potential treatment strategies. 
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6.1 IRON CHELATION BY CLINICALLY RELEVANT ANTHRACYCLINES: 

ALTERATIONS IN EXPRESSION OF IRON REGULATED GENES AND 

ATYPICAL CHANGES IN INTRACELLULAR IRON DISTRIBUTION AND 

TRAFFICKING 

6.1.1 Summary of Principal Findings – Chapter 3 

It was previously demonstrated that anthracyclines altered cellular Fe metabolism and 

led to 59Fe accumulation within ferritin (Kwok and Richardson, 2002, 2003 and 2004). 

Importantly, anthracyclines bind Fe and act as bidentate chelators (May et al., 1980). 

Thus, it is important to elucidate the molecular mechanism of anthracyclines on 

cellular Fe metabolism, especially their effect on the expression of iron regulated 

molecules, namely TfR1, Ndrg1 and ferritin. 

 

We demonstrated that DOX, DAU and EPI could act like the well known chelator, 

DFO, increasing mRNA expression of the Fe-regulated genes, TfR1 (Hentze and Kuhn, 

1996) and Ndrg1 (Le and Richardson, 2004). Indeed, the increased expression of TfR1 

and Ndrg1 mRNA acted as a sensitive indice of intracellular Fe chelation and could be 

inhibited by pre-saturating the Fe-binding site of anthracyclines with Fe (Figure 3.4A). 

Therefore, the formation of the Fe complex prevented intracellular Fe chelation. 

 

Our studies suggested up-regulation of TfR1, Ndrg1 and VEGF1 mRNA by DOX 

occurred via an HIF-1α-independent mechanism, as regulation was comparable in the 

presence or absence of this transcription factor. Collectively, the current work and 

previous studies (Helton et al., 2005; Le and Richardson, 2004) indicated functional 

redundancy in the control of HIF-1α target gene expression, with a HIF-1α-

independent mechanism responding to Fe chelation. 
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Although anthracyclines could act like typical chelators such as DFO to bind Fe and 

induce up-regulation of Fe-responsive genes, the effect on cellular 59Fe mobilisation 

and intracellular 59Fe distribution were atypical compared to other ligands. For instance, 

DOX had no effect on 59Fe release from cells or cellular lysates at the same 

concentrations that up-regulated TfR1 and Ndrg1 mRNA. 

 

In contrast to its effect on TfR1 and Ndrg1 mRNA levels, DOX decreased TfR1 and 

Ndrg1 protein as a function of DOX concentration, which could be potentially 

explained by its role as a protein synthesis inhibitor. However, it was paradoxical that 

increasing DOX concentrations led to elevated ferritin protein expression, suggesting 

selective targeting of gene expression. This finding was surprising, but was in 

accordance with previous studies demonstrating the effect of DOX at differentially 

targeting the expression of other genes (Chen et al., 1999; Ito et al., 1990). This 

selective activity of DOX has not been reported for genes involved or modulated by Fe 

metabolism. At present, it remains uncertain what precise molecular mechanism leads 

to DOX inhibiting TfR1 and Ndrg1 protein expression and increasing ferritin protein 

synthesis. The apparent selectivity in altering gene expression could be important for 

understanding the complex pharmacological effects of DOX. 

 

In summary, we demonstrate for the first time that anthracyclines act as atypical 

chelators, having a number of effects on Fe metabolism and the expression of Fe-

regulated genes, probably due to their complicated chemical properties which leads to 

multiple mechanisms of action. 
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6.2 INVESTIGATION OF NOVEL FERRITIN PARTNER PROTEIN(S)  

6.2.1 Summary of Principal Findings – Chapter 4 

Ferritin degradation is probably important for Fe recycling, but the mechanisms by 

which Fe is released from ferritin for metabolic use are poorly understood (Kwok and 

Richardson, 2004). Previous and current studies showed that incubation of cells with 

anthracyclines or the protein synthesis inhibitor, CHX, leads to 59Fe accumulation 

within ferritin in a similar manner (Kwok and Richardson, 2003, 2004; Xu et al., 2007).  

This was shown to be due to the effect of anthracyclines at preventing Fe release from 

this molecule, while the exact molecular mechanism was not clear (Kwok and 

Richardson, 2003).  

 

It has been suggested that ferritin degradation within lysosomes is essential for Fe 

release (Persson et al., 2001; Radisky and Kaplan, 1998; Roberts and Bomford, 1988). 

Collectively, we hypothesised that DOX prevented Fe release from ferritin by 

inhibiting the expression of ferritin partner protein(s) which facilitate ferritin 

trafficking to lysosomes or ferritin-Fe release. Therefore, examination of novel ferritin 

partner protein(s) became important.  

 

We first identified that treatment with DOX or CHX altered the cellular protein profile 

using anion exchange chromatography via the FPLC technique (Figure 4.1A). After 

anion-exchange chromatography and native-gradient PAGE, a number of proteins were 

commonly identified by LC-MS in control, DOX and CHX treated samples, including 

elongation factor 1, vesicle amine transporter protein 1 and heat shock protein 60. 

However, assessment of the literature demonstrated no correlation between these 

proteins and cellular Fe metabolism.  
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To verify the presence of the potential ferritin partner proteins, an improved 

purification protocol was employed by using ultra-centrifugation, anion-exchange 

FPLC, size exclusion FPLC and native-gradient PAGE (see Section 4.3.2). Using 

normal mouse liver, four potential ferritin partner proteins were consistently identified 

over 3 separate experiments, including ALDH1L1, UDP-glucose pyrophosphorylase 2, 

glutamine synthetase and aspartyl aminopeptidase. The latter three proteins have not 

yet been shown to correlate with cellular Fe metabolism. 

 

ALDH1L1 catalyses the NADP-dependent oxidation of 10THF to THF (Oppenheim et 

al., 2001). It has been reported that increased ferritin H-subunits induced the 

expression of the folate-dependent enzyme, cSHMT, which is involved in 

10FTHF/THF circulation (Oppenheim et al., 2001). The precise molecular mechanism 

of Fe altered folate metabolism needs to be further clarified.  However, considering the 

significance of ALDH1L1 in folate metabolism, it is possible to speculate upon some 

association between this molecule and ferritin where formation of a high molecular 

weight complex could be beneficial in the efficient coupling of metabolic intermediates.  

 

It should be noted that the three potential ferritin partner proteins described above from 

mouse liver were not observed in initial studies using human SK-Mel-28 melanoma 

cells where we identified elongation factor 1, vesicle amine transporter protein 1 and 

heat shock protein 60 as potential ferritin partners. This could be explained by the fact 

that different cell types were used and the separation procedure was also different.  
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In conclusion, ferritin was purified along with several high molecular weight proteins. 

Among the possible ferritin partner proteins identified, ALDH1L1 was considered as 

the most likely candidate for further study considering its involvement in the 

10FTHF/THF cycle, which could be regulated by the ferritin H-subunit. Further studies 

need to be performed to clarify the correlation of this protein with cellular Fe 

metabolism. 
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6.3 PROTEOMIC ANALYSIS OF HEARTS FROM FRATAXIN KNOCKOUT 

MICE: MARKED REARRANGEMENT OF ENERGY METABOLISM, A 

RESPONSE TO CELLULAR STRESS AND ALTERED EXPRESSION OF 

PROTEINS INVOLVED IN CELL STRUCTURE, MOTILITY AND 

METABOLISM 

6.3.1 Summary of Principal Findings – Chapter 5 

Friedriech’s ataxia (FA) is an autosomal recessive disease, featuring markedly 

decreased frataxin protein expression in patients (Campuzano et al., 1997; Koutnikova 

et al., 1997). It has been shown that decreased frataxin expression led to increased 

mitochondrial iron, decreased respiratory chain activity and oxidative damage 

(Pandolfo, 2006). Despite many studies examining the role of frataxin in the 

pathogenesis of FA, little is known about the function of this protein (Lodi et al., 2006). 

Moreover, the molecular alterations that occur during the cardiomyopathy observed in 

this disease are very poorly understood.  

 

In this study, we discovered marked alterations in protein expression caused by the 

deletion of frataxin in the hearts of 9-week-old MCK KO mice compared to their WT 

counterparts, using two dimensional electrophoresis and proteomic analysis (Table 5.1).  

A total of 51 proteins were identified as showing significant changes in the KO mice, 

and can be divided into 4 groups: (1) enzymes of energy metabolism; (2) proteins 

involved in stress, protection and anti-oxidation; (3) cell structure & motility related 

proteins and (4) miscellaneous proteins with a variety of functions. 

 

These results suggested that in the heart of KO mice, failure to synthesise iron-sulfur 

clusters (ISCs) causes decreased expression of ISC-dependent complex I and II (Figure 
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5.6), resulting in decreased ATP production that leads to metabolic compensation from 

the activation of several energy metabolism pathways (Figure 5.6). The current work is 

the first investigation to define the detailed molecular alterations in energy metabolism 

and metabolic compensation that occurs within the heart in vivo in frataxin KO mice. 

 

A number of molecular chaperones, e.g. Hsp27, and protective molecules e.g. 

glutathione-S-transferase-Ω 1 were up-regulated to protect against oxidative stress 

(Hayes et al., 2005; Kolsch et al., 2004), suggesting that the depletion of frataxin 

induces a marked stress response (Figure 5.6). Therefore, the effectiveness of anti-

oxidants such as idebenone, coenzyme Q and vitamin E (Di Prospero et al., 2007a; Di 

Prospero et al., 2007b; Hart et al., 2005) and the potential use of iron chelators in the 

treatment of FA (Richardson, 2003), can now be rationalised at the molecular level. 

 

In conclusion, frataxin deficiency in the hearts of MCK KO mice caused a marked 

rearrangement of energy metabolism, increased expression of proteins involved in 

protection against stress, differential expression of structural/motility proteins and 

alterations in the expression of proteins that play miscellaneous roles in metabolism 

(Figure 5.6). Our study indicates that changes in the expression of proteins involved in 

these processes are involved in the development of the cardiomyopathy observed in 

this model. Hence, the current results deepen our understanding of the molecular 

mechanisms of the cardiomyopathy associated with FA. Moreover, proteins whose 

expression is affected in this disease may provide tools for monitoring FA prognosis 

and also the investigation of potential treatment strategies. 
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6.4 FUTURE DIRECTIONS 

6.4.1 The Molecular Mechanisms of Anthraclines on Altered Fe Metabolism 

We are the first to demonstrate that anthracyclines act as atypical chelators up-

regulating the mRNA expression of the Fe-regulated genes, TfR1 and Ndrg1 by their 

chelation of intracellular Fe. However, this complexation of Fe did not lead to 

increased TfR1 or Ndrg1 protein levels, nor did DOX induce cellular Fe mobilisation. 

Although anthracyclines mediated a dose-dependent reduction of TfR1 and Ndrg1 

protein expression, it paradoxically increased ferritin protein expression and led to 

ferritin Fe accumulation. Hence, the effect of anthracyclines on Fe metabolism was 

multi-faceted, probably due to their complicated chemical properties which leads to 

multiple mechanisms of action. The cardiotoxic effects induced by anthracyclines are 

still unclear. Therefore, it is necessary to extend our research by using novel Fe 

chelators, which could be a solution for the treatment of anthracycline-mediated 

cardiotoxicity. Furthermore, animal models will be used, which will help us to 

understand the mechanisms of anthracycline-mediated toxicity. 

 

6.4.1.1 Novel Fe Chelators 

Previous studies showed that Fe potentiates anthracycline toxicity and the Fe chelator 

DFO, which is used to treat Fe overload disease, has been shown to reduce the 

cardiotoxic effect of DOX in Fe-loaded myocardial cells (Hershko et al., 1993) and in 

vivo animal models (Saad et al., 2001). Therefore, to test the ability of chelators to 

inhibit anthracycline mediated alterations of Fe-regulated genes maybe a potential key 

to treat anthracycline-mediated cardiotoxicity.  

 

Previous results in our laboratory showed that DFO is effective at inhibiting DOX-
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mediated ferritin-Fe accumulation in cardiomyocytes (Kwok and Richardson, 2003). 

Thus, it would be interesting to test the effect of DFO at preventing DOX-induced 

changes in Fe regulated genes, such as TfR1, Ndrg1 and ferritin. However, the low 

membrane permeability of DFO and its short plasma half-life (Chaston and Richardson, 

2003) limit its ability to inhibit anthracycline-mediated cardiotoxicity. Another Fe 

chelator known as dexrazoxane (ICRF-187) is used clinically to reduce the 

anthracycline-induced toxcicity. However, this agent does not confer abosolute 

cardioprotection (Kwok and Richardson, 2000; Swain et al., 1997b). Hence, there is a 

need for the development of novel cardioprotective agents, such as membrane-

permeable chelators. As a result, a novel group of orally effective and highly 

membrane permeable Fe chelators were developed, called the 2-pyridylcarboxaldehyde 

isonicotinoyl hydrazone (PCIH) analogues (Becker and Richardson, 1999; Wong et al., 

2004). These properties overcome the disadvantages of the clinically used chelator, 

DFO, that requires long sc infusion (12-24 h/day, 5-6 days/week), is orally inactive and 

suffers from poor patient compliance (Chaston and Richardson, 2003). It has been 

demonstrated that PCIH inhibits DOX-mediated ferritin-Fe accumulation and does not 

interfere with the anti-tumour activity of DOX (Kwok and Richardson, 2003; Wong et 

al., 2004). Our laboratory demonstrated that the PCIH analogue, PCTH (2-

pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone), is effective at inducing Fe 

mobilisation in vivo and is well tolerated (Wong et al., 2004).   

 

Furthermore, a novel Fe chelator with high membrane-permability, known as di-2-

pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), has been synthesised and 

discovered to be a highly effective anti-cancer agent (Whitnall et al., 2006). A group of 

novel chelators, 2-benzoylpyridine thiosemicarbazone series, has also been synthesised 
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and characterised by our group and has prominent anti-tumour effects (Kalinowski et 

al., 2007). 

 

A well known chelator, namely pyridoxal isonicotinoyl hydrazone (PIH) has shown to 

prevent anthracycline-mediated cardiotoxicity in rabbits (Simunek et al., 2005). 

However, this agent is not protected by an international patent and would not be of 

interest for pharmaceutical development. In contrast, our PCIH chelators are protected 

by world wide patents. Furthermore, since our PCIH chelators are highly membrane-

permeable (Becker and Richardson, 1999; Wong et al., 2004) and inhibit anthracycline-

mediated ferritin-Fe accumulation (Kwok and Richardson, 2003), their effect at 

preventing anthracycline-mediated cardiotoxicity needs to be assessed.  

 

6.4.2 Assessment of the Ability of Fe Chelators to Prevent Anthracycline-Mediated 

Cardiotoxicity In Vivo 

6.4.2.1 Investigate the Effect of Anthracyclines at Inducing Ferritin-Fe 

Accumulation In Vivo & the Ability of Chelators to Prevent Cardiotoxicity 

Anthracyclines induce ferritin-Fe accumulation in cardiomyocytes, which could be a 

potential reason for their cardiotoxicity (Kwok and Richardson, 2003). Therefore, it is 

important to examine the effect of these agents in vivo. More importantly, we need to 

assess whether our novel chelators can prevent cardiotoxicity in vivo.   

 

The only widely used chelator for anthracycline-mediated toxicitiy is ICRF-187 (Kwok 

and Richardson, 2000). However, this agent does not confer absolute cardioprotection 

(Swain et al., 1997b) and causes myelosuppression (Curran et al., 1991). Thus, novel 

cardioprotective agents are required. It has been shown that DFO inhibits DOX-



 

CHAPTER 6 154

mediated cardiotoxicity (Hershko et al., 1993) but is required to be at very high levels 

(Saad et al., 2001) due to its low membrane permeability (Chaston and Richardson, 

2003; Richardson et al., 1994). Future experiments will use highly permeable and 

orally effective chelators such as PCIH ligands (Wong et al., 2004). These chelators 

will be used as cardioprotective agents and given prior to DOX. The aim is to prevent 

cardiotoxicity by limited Fe chelation rather than whole body Fe depletion.  

 

6.4.2.2 In Vivo Studies – Single Bolus Administration to Mimic Acute DOX 

Cardioxtocicity 

In “acute” bolus studies, a vehicle control (saline) or saline plus DOX (25 mg/kg; 

Chaston and Richardson, 2003) will be examined. This DOX dose results in 

cardiotoxicity as shown by histopathology using H&E staining and increased serum 

levels of creatine kinase isoenzyme (CK-MB), troponin I, lactate dehydrogenase 

(LDH), creatinine, urea and transaminases (ALT & AST; Wong et al., 2004). Mice will 

be given 1 bolus i.v. injection of DOX (25 mg/kg) or the vehicle (saline) during a 48 h 

period (Chaston and Richardson, 2003). Twenty four hours prior to euthanasia, mice 

will be injected with saline or 6 uCi of 59Fe-Tf via the tail vein which results in 

physiolological labelling of 59Fe in organs (Wong et al., 2004).  

  

In studies on the effects of chelators in inhibiting ferritin-59Fe loading, mice will be 

injected i.v. with chelator or vehicle 30 min prior to injection of DOX, as performed by 

Saad (Saad et al., 2001) using DFO. We will compare DFO and ICRF-187 to our 

chelator, PCTH, that shows high Fe chelation efficacy in vitro & in vivo (Bernhardt et 

al., 2001; Wong et al., 2004). The dose of chelators will be equal to 5-10-times that of  

DOX (i.e. 25, 125 & 250 mg/kg), as DFO doses in excess of that found for DOX are 
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protective against cardiotoxicity (Saad et al., 2001). The efficacy of PCTH administed 

i.v. or orally at inhibiting DOX-medicated cardiotoxicity will be examined.  

 

At the end of the experiment, mice will be sacrificed and blood collected by cardiac 

puncture. The kidney, liver, heart and skeletal muscle will be collected for 

histopathology and determination of total 59Fe activity. To confirm acute DOX toxicity, 

tissues will be harvested, fixed and stained with H&E. DOX-induced heart toxicity will 

be qualitatively assessed by examining histopathological changes e.g., myocardial fiber 

swelling, interstitial oedema and necrosis of myofibers (Saad et al., 2001). Markers of 

cardiac damage will be assessed including creatine kinase isoenzyme (CK-MB) 

relative to total CK and tropinin I. Moreover, the level of LDH, creatinine, urea, AST 

and ALT will be assessed.  

 

6.4.2.3 In Vivo Studies – Repeated Administration to Simulate Chronic DOX 

Toxicity 

In this study, the vehicle control (saline) or DOX (2 mg/kg) will be given to mice by 

tail vein once every 3 days for 10 weeks (Nakamura et al., 2000). As in 7.5.2.2, 24 h 

prior to euthanasia, mice will be injected with saline or 6 uCi of 59Fe-Tf via the tail 

vein. PCTH (2, 10 and 20 mg/kg) will be administered i.v. or orally 30 min before each 

dose of DOX. Before therapy starts and every 3 weeks thereafter, heart functions will 

be assessed using echocardiography to measure heart wall thickness and percentage 

fractional shortening of the left ventricle as an indicator of systolic function (Nakamura 

et al., 2000). At the end of the study, mice will be euthanased, then blood and organs 

will be collected for biochemistry, histopathology and native PAGE 59Fe-

autoradiography. Animal weight will be recorded as a function of time twice weekly 
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and prior to euthanasia. The heart will be weighed to calculate organ:body weight 

ratios to help identify the hypertrophy that occurs after chronic DOX treatment 

(Nakamura et al., 2000).  

 

6.4.3 Further Investigations on Ferritin Partner Proteins and the Effect of DOX 

on Ferritin-Fe Accumulation  

6.4.3.1 Confirm the Involvement of ALDH1L1 in Ferritin Metabolism 

Anthracyclines induced marked 59Fe accumulation within ferritin and prevented Fe 

release from this molecule (Kwok and Richardson, 2003), which could play an 

important role in anthracycline-mediated cardiotoxicity. We hypothesised that DOX 

prevented Fe release from ferritin by inhibiting the expression of ferritin partner 

protein(s) which facilitate ferritin trafficking to lysosomes or ferritin-Fe release. 

Therefore, examination of novel ferritin partner protein(s) is important.  

 

Our study demonstrated that ALDH1L1 co-migrated with ferritin utilising a 

combination of native separation techniques, including ultra-centrifugation, size 

exclusion FPLC, native gradient PAGE and LC-MS. Although ALDH1L1 shows 

indirect correlations with the ferritin H-subunit (Oppenheim et al., 2001), it is 

necessary to confirm the association of ALDH1L1 with ferritin.  

 

In this study, nine-week-old mice will be sacrificed to isolate the liver. The livers will 

be homogenised and cellular proteins extracted as described in Section 4.2.1.1. Protein 

A/G (Pierce, Rockford, IL) gel will be used for immunoprecipitation. In an eppendorf 

tube, 1mL of protein extracts will be added to an optimised amount of anti-ferritin 

antibody (In-Vitro Technologies, Australia). The reaction will then be incubated 
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overnight at 4ºC. Protein A/G slurry (100uL) will be added to the antigen-antibody 

complex and incubated for 2 hours at room temperature with gentle mixing. 

Immunoprecipitation (IP) buffer (0.5 mL; 25 mM Tris, 150 mM NaCl, pH7.2) will be 

added and the tube will be centrifuged for 1-3 minutes at 2,500 xg. The supernatant 

will be discarded and this step will be repeated several times. To elute the immune 

complex, electrophoresis loading buffer will be added to the complex-bound gel and 

incubated for 5 min at 95ºC. The gel mixture will be centrifuged at 2500 xg, the 

supernatant will be collected and evaluated by SDS-PAGE. Anti-ALDH1L1 antibody 

(Abcam, Cambridge, MA) and anti-ferritin antibody (In-Vitro Technologies, VIC, 

Australia) will be used to detect the co-existence of these two proteins. If both of these 

proteins are detected, ALDH1L1 will be confirmed to be a ferritin associated protein. 

 

To further elucidate the role of ALDH1L1 in Fe metabolism, SK-Mel-28 cells will be 

used and RNA interference studies will be performed. In brief, Adenovirus will be 

purchased from Sigma-Aldrich that expresses small interfering RNA strands (siRNA), 

which contain complementary nucleotide sequences to the ALDH1L1 mRNA. SK-

Mel-28 cells will be transfected with this adenovirus and the translation of ALDH1L1 

will be markedly decreased (ALDH1L1 knockout cell line). The ferritin protein level 

in this knockout cell line will be examined using Western Blot and compared to the 

control. Theoretically, the down-regulation of ALDH1L1 will impair ferritin-Fe 

metabolism and then alter the expression of ferritin levels. Moreover, 59Fe uptake and 

efflux experiments will be performed using both the control and knockout cell lines 

(Section 2.6). If the 59Fe-uptake and efflux levels are changed in the knockout cell line, 

ALDH1L1 will be assured to be a ferritin associated protein.   
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6.4.3.2 Examine the Effect of DOX on ALDH1L1 

If ALDH1L1 is confirmed to be a ferritin associated protein, it is necessary to examine 

the effect of DOX on this protein. Previous studies showed that DOX mediated 59Fe 

accumulation within ferritin and prevented Fe release from this molecule (Kwok and 

Richardson, 2003). The detailed molecular mechanism of DOX on ferritin-Fe 

accumulation is unclear. However, the role of DOX as a protein synthesis inhibitor 

could be a key answer to this effect. For instance, DOX could inhibit the expression of 

one/several ferritin associated proteins, which may be involved in ferritin-Fe release.  

 

To examine the effect of DOX on ALDH1L1 levels in vivo, mice will be treated with 1 

bolus i.v. injection of DOX (25 mg/kg) or the vehicle (saline) for 48 h. In parallel 

experiments, SK-Mel-28 cells will be treated with DOX (5 μM) for 24 h. Protein from 

mouse liver tissue and human SK-Mel-28 cells will be extracted and the expression of 

ALDH1L1 protein will be examined by Western blot.  

 

6.4.3.3 Investigate the Effect of DOX on Lysosomes 

Intriguingly, anthracyclines accumulate in lysosomes (Hurwitz et al., 1997) and this 

organelle has been implicated in Fe release from ferritin (Radisky and Kaplan, 1998).  

Previous studies have shown that inhibitors of lysosomal protease and lysosomotropic 

agents induce ferritin Fe-loading in a similar way as that found with DOX (Kwok and 

Richardson, 2004). If lysosomes are involved in ferritin degradation and Fe release, it 

would be expected that lysosomes and ferritin would co-localise.  

 

Therefore, it is important to examine the (1) effect of DOX on lysosomes; (2) the 

accumulation and (3) trafficking of ferritin after incubation with DOX. For this study, 
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electron microscopy (EM) coupled to immunogold labelling will be utilised. This work 

will be carried out by Ms Jennifer Norman (Microscopy Unit, UNSW). In brief, 

cardiomyocytes will be incubated in the presence or absence of 5 μM DOX for 24 h. 

Samples will be fixed and processed as described previously (Miyazaki et al., 2002). 

Ultra-thin sections will be incubated with anti-ferritin antibody and incubated with goat 

anti-sheep IgG coupled with colloidal gold particles (10 nm diameter; Proscitech). The 

sections will be washed, dried, counterstained with lead and examined using EM. 

Controls will be used including (1) sections incubated without the primary ferritin 

antibody and (2) the use of antibodies against the lysosome-associated membrane 

proteins 1 and 2 (LAMPS 1 and 2; Santa Cruz) that make up 50% of lysosomal 

membrane proteins (Pillay et al., 2002) and will be critical for positively identifying 

lysosomes. These EM studies will examine if DOX induces alterations in ferritin 

trafficking and its accumulation within the lysosome.  

 

6.4.4 Examine the Effect of Novel Fe Chelators on Cellular Protein Profiles using 

Two Dimensional Electrophoresis  

The current study has identified seven proteins which are differentially regulated by 

DFO (Chapter 6). These proteins are involved in DNA damage repair, oxidative stress  

and cell migration, etc. However, the effectiveness of desferrioxamine is greatly 

hindered by a range of disadvantages, including a short plasma half-life, poor 

membrane permeability, and the requirement for long s.c. infusion (Lovejoy and 

Richardson, 2003). Therefore, our laboratory has designed two novel chelators, PCIH 

and PCTH (Section 7.5.1.1), which are orally effective and highly membrane 

permeable (Becker and Richardson, 1999; Wong et al., 2004). These chelators are 

highly effective anti-cancer agents as they overcome the disadvantages of DFO. Hence, 
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it is necessary to investigate the molecular targets of these chelators.  

 

In this study, human SK-Mel-28 melanoma cells will be treated with control media, 

PCIH (50 μM) or PCTH (50 μM) for 24 h. Cellular proteins will be extracted and two 

dimensional electrophoresis performed as described in Section 2.9. The altered protein 

expression profiles from these two agents will be compared to DFO. If any common 

protein is found to be altered by all three chelators, this protein could play an important 

role in the chelator-mediated anti-cancer effect.  
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Conclusion Remarks 

 

In summary, this project has contributed significant new data relating to the molecular 

mechanisms of Fe metabolism in both normal and neoplastic cells. This information is 

crucial for further understanding of the anti-tumour activities of anthracyclines and Fe 

chelators. This is a vital step in the development of novel treatment regimens with 

improved anti-cancer efficacy. Furthermore, this project demonstrated the marked 

alterations of protein expression in the MCK KO mouse model, which provides critical 

information for designing novel treatments for FA patients.    
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