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INTRODUCTION

High semolina yield is important to the economic returns
of the durum (7riticum turgidum L. ssp. durum (Desf.)
Husn.) milling industry. Chaurand et al. (1999) found
that genetic differences in semolina yield exceeded those
due to environment, and suggested that breeding for
semolina yield and other milling properties was
worthwhile.

Semolina yield is difficult to select in breeding programs
because of the high labour requirement for milling of
samples. Various methods have been proposed to
predict semolina yield, including micro-milling
procedures, near-infrared reflectance spectroscopy
(Ripetti-Ballester et al. 2000), the single kernel
characterization system (Sissons et al. 2000), and image
analysis (Novaro et al. 2001). These techniques show
varying degrees of promise, but all still require labour to
process large numbers of breeding samples.

Another approach to selection for semolina yield would
be discovery and validation of DNA markers that could
be applied to breeding material. Several reports for
common wheat (7. aestivum L.) flour yield support this
approach (eg. Parker et al 1999, Breseghello and
Sorrells 2006). Many of the reported QTL from these
studies reside on the A and B genomes, so similar
research in durum wheat is warranted. There are no
reports in the literature of QTL for durum semolina
yield.

The objective of this work was to use association
mapping of a diverse set of durum genotypes to identify
putative QTL for semolina yield in durum wheat.

MATERIALS AND METHODS

One hundred diverse durum genotypes from Argentina,
Australia, Canada, France, Germany, Italy, Iran, Mexico,
Morocco, New Zealand, Russia, Spain and the United
States were grown in field trials arranged in a 10 X 10
lattice designs with two replications. The trials were
grown under rain-fed conditions at Regina,
Saskatchewan and under irrigation at Vauxhall, Alberta
in 2001 and 2002. Test weight and kernel weight were

determined on all plots. Semolina yield was measured
by milling 2 kg samples on an Allis-Chalmers laboratory
mill as described by Dexter et al. (1990). Eighty-one of
these genotypes overlapped with another study of
linkage disequilibrium (Somers et al. 2007). The
genotypic data from that study, comprising 245
microsatellite markers, were used in conjunction with
the semolina yield data for association mapping using
the 81 lines in common.

A pairwise genetic similarity matrix was calculated
based on Rogers Euclidean distance (Rogers 1972) to
determine population structure for association mapping.
A Bayesian clustering approach was also used to infer
the number of sub-populations (K) and to assign
individuals to sub-populations based on membership
proportion in each sub-population (Q-matrix) with the
software STRUCTURE v.2 (Pritchard et al. 2000).

Marker-trait associations were tested with semolina
yield least squares means for each environment in a
linear mixed model with the program TASSEL 2.0.1
(Yu et al. 2006) using the Q matrix estimated for K=5 as
a covariate. Rare alleles (frequency <5%) were either
combined into a single genotypic class if their combined
frequency was greater than 5%, or scored as missing
data. This left 210 informative microsatellite markers to
be used for the analysis. Significance of associations
between loci and semolina yield was based on an F-test,
at a significance level of P<0.01, corrected for by
performing 10,000 permutations. QTL were considered
significant if probability of at least some of the
chromosome region was <0.01 and not above 0.05, and
at least 3 of the trial environments were involved.

RESULTS AND DISCUSSION

There was good genetic variation for semolina yield,
ranging from approximately 61.5 to 70.5%. Marker
associations for semolina yield were identified on
chromosomes 2A, 2B, 4A, 5B, 6A and 7A (Table 1, Fig.
1). More tentative indications were observed on 1A, 3A,
3B, 5B, and 7B.

Test weight and kernel weight are known to be
positively associated with semolina yield (Marshall et al.
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1986; Dexter et al. 1987), so we checked to see if any of
the observed semolina QTL coincided with test weight
or kernel weight QTL. The 6A region barc3, a weak

Tablel. Chromosome regions markers, and probabilities
associated with semolina yield of durum wheat grown at
Regina (Rg), SK and Vauxhall (Vh), AB in 2001 and
2002.

Rg01 | Rg02 | VhOI | Vh02
1A | wmc59 006 | .011 |.023 |.016
2A | wmes22 078 | .039 |.001 |.025
2B | gwm429 003 | .012 |.007 |[.0001
3A | wmc559 048 | 0.10 | 0.003 | .047
3A | cfa2076 006 | 014 | .147 | .024
3B | gwm493 003 |.030 | .031 |.095

wmc43 039 | .009 |.014 |0.284

gwm340 011 |.031 | .049 |.010
4A | wme313 058 |.004 |.016 |.002
5B | wmedls 017 .027 | .069 |.080

wme508 013 |.004 | .006 |.015
6A | barc3 007 | .014 |.001 |.042
TA | wmc790 003 |.004 | .0001 | .007
TA | wmc809 0008 | .002 | .0001 | .002
7B | gwm333 09 .09 |.003 |.362

semolina yield QTL, was flanked with a moderate test
weight QTL. The 2A region wmce522-gwm95 coincided
with a strong kernel weight QTL. The 7A region
wmc809 coincided with a moderate kernel weight and
moderate to strong test weight QTL. In the latter case,
the QTL associations for kernel and test weight were not
as strong (ie. less significant) as the observed semolina
yield QTL association, suggesting the possibility of
additive effects of this locus on semolina yield. After
discounting loci that are possibly indirectly linked to
semolina yield through test weight or kernel weight,
there were still strong, consistent associations with
semolina yield on chromosomes 2B, 4A, 5B and 7A, and
indications on 1A, 3A and 3B. The number of
chromosome regions associated with semolina yield
strongly suggests quantitative inheritance of the trait.

Flour yield QTL have also been reported on
chromosomes 1A, 2A, 6A and 7A of hexaploid wheat,
although only barc107 on 6A (Kuchel et al. 2006)
appears to be close to that found here
(http://wheat.pw.usda.gov/cgi-
bin/graingenes/quickquery.cgi?query=nearbyloci&argl=
Xbarc107-6A&arg2=10). One would not expect close
agreement of QTL for semolina yield and flour yield
given the differences in the milling procedures.

Further work is required to resolve which of the
chromosome locations and QTL clusters are worth
pursuing for potential marker-assisted selection. To that

end, doubled haploid lines have been generated from an
inter-cross of a high and a low semolina yield line from
this study, and will be genotyped and screened for
semolina yield to further investigate the genome regions
identified here. Additional validation will be carried out
by haplotype analysis of durum lines in registration
trials, which are subjected to rigorous milling
assessment.
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Figurel. Chromosomal locations of QTL for semolina
yield identified in this study (bold underline), reported in
hexaploid wheat (bold); test weight QTL are marked ‘+’
and kernel weight QTL are marked “*’.
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