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1. Pathophysiology of liver sinusoidal endothelial cells and 

their fenestrations 

 

1.1. Introduction 

 

Owing to its strategic position in the liver sinusoid, pathologic and morphologic 

alterations of the Liver Sinusoidal Endothelial Cell (LSEC) have far-reaching 

repercussions for the whole liver and systemic metabolism. LSECs are perforated 

with fenestrations, which are pores that facilitate the transfer of lipoproteins and 

macromolecules between blood and hepatocytes. Loss of LSEC porosity is termed 

defenestration, which can result from loss of fenestrations and/ or decreases in 

fenestration diameter. Gram negative bacterial endotoxin (Lipopolysaccharide, LPS) 

has marked effects on LSEC morphology, including induction LSEC defenestration.  

Sepsis is associated with hyperlipidemia, and proposed mechanisms include inhibition 

of tissue lipoprotein lipase and increased triglyceride production by the liver. The 

LSEC has an increasingly recognized role in hyperlipidemia. Conditions associated 

with reduced numbers of fenestrations such as ageing and bacterial infections are 

associated with impaired lipoprotein and chylomicron remnant uptake by the liver and 

consequent hyperlipidemia. Given the role of the LSEC in liver allograft rejection and 

hyperlipidemia, changes in the LSEC induced by LPS may have significant clinical 

implications.  

 

This literature review summarizes the key concept of the liver sieve including the 

morphology and dynamics of LSEC fenestrations and its significance in 
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pathophysiology. This review also includes details of the immune function of the liver 

with a focus on the LSEC and its response to gram negative bacterial toxins, 

especially LPS. Another gram negative bacterium Pseudomonas aeruginosa, its toxin 

pyocyanin, and its relevance to liver infections have also been discussed. This review 

also encompasses age-related liver sinusoidal changes, which include LSEC 

defenestration, and may impede the transfer of small-lipoproteins and oxygen across 

the sinusoidal endothelium.  
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1.2. The liver acinus and liver sinusoidal cells 

 

In humans, the liver is functionally divided into right (including caudate and quadrate 

lobes) and left lobes and further subdivided into 8 segments by divisions of the right, 

middle and left hepatic veins, each segment receiving its own portal pedicle (Fig. 1.1). 

 

Figure 1.1. Segmental anatomy of the liver showing the eight hepatic segments 

II-IV the left hemiliver; V-VIII the right hemiliver (Kumar and Clark, 2005). 

 

 

 

The liver is supplied by the hepatic artery (25% of the total blood flow and 50% of 

oxygen delivery) and the portal vein (75% of the total blood flow and 50% of oxygen) 

(Kumar and Clark, 2005). 
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The acinus is the functional unit of the liver (Fig. 1.2). Each acinus consists of 

parenchyma composed of hepatocytes supplied by the smallest portal tracts containing 

portal vein radicles, hepatic arterioles and bile ductules. Hepatocytes make up 

approximately 60% of all hepatic cells and 80% of total hepatic volume. The portal 

tract for each acinus is called the portal triad. The hepatic sinusoids which carry blood 

from the hepatic portal vein and the hepatic artery emanate from the portal triad and 

radiate outwards. The hepatocytes are drained by the central veins, also addressed as 

the terminal hepatic veins. The hepatocytes in the surrounding the portal triads 

(periportal area, zone 1) are well supplied with oxygenated blood and are generally 

more resistant to hypoxia and ischaemic injury than the hepatocytes surrounding the 

central veins (pericentral area, zone 3).  

Four types of cells constitute the hepatic sinusoid, namely Liver Sinusoidal 

Endothelial Cells (LSECs), Kupffer cells (KCs), stellate cells (SCs), and pit cells, 

each with specific morphology and function. LSECs make up approximately 20% of 

the hepatic cells, KCs 15%, and SCs 5%. Depending on the disease process, each cell 

type can undergo morphologic or quantitative changes (Fraser et al, 1986; Wisse et al, 

1996).   
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Figure 1.2. Diagram of an acinus 

Zones 1, 2 and 3 are defined according to their relationship to the portal triads and 

central veins.   Zone 1, which is periportal, is best oxygenated. Zone 3 is supplied by 

blood remote from afferent vessels and is in the microcirculatory periphery of the 

acinus. The pericentral area (star shaped green area around THV) is formed by the 

most peripheral parts of zone 3 of several adjacent acini and is the least well 

oxygenated. THV, Terminal Hepatic Venule or Central Vein; PT, Portal Triad 

(Kumar and Clark, 2005). 
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LSECs constitute the liver sinusoidal capillary wall. They lack basement membrane 

and possess pores termed fenestrations (Bouwens et al, 1992; Wisse et al, 1996). KCs 

phagocytose and degrade gastrointestinal antigens, bacteria and toxins which are 

carried by the portal vein to the liver (Bouwens, 1988; Wake et al, 1989). They also 

assist in tissue repair, clearance of senescent and damaged erythrocytes, T and B 

lymphocyte interactions and in antigen presentation (Kmiec, 2001). Stellate cells (Ito 

cells) store retinoids (Kmiec, 2001; Rockey, 1997) in their resting state and contain 

the intermediate filament, desmin. During hepatic injury, they undergo a radical 

transformation into a myofibroblast type cell that produces copious quantities of 

collagen types I, III and IV (Rockey, 1997). Pit cells are situated in liver sinusoidal 

walls, in portal tracts and in granuloma-like cellular aggregates (Bouwens et al, 1990). 

It is speculated that they are hepatic large granular lymphocytes or natural killer cells 

(Bouwens, 1988; Luo et al, 2000). 
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1.3. LSECs contribute to the liver sieve apparatus 

 

LSECs constitute the lining or wall of the hepatic sinusoid. They lack basement 

membrane (Bouwens et al, 1992; Wisse et al, 1996) and possess fenestrations with 

diameters ranging from 100 to 200 nm (Wisse et al, 1996; Wisse et al, 1985). LSEC 

fenestrations are visible on electron microscopy as circular or oval perforations 

arranged in sieve plates within the thin extensions of the cytoplasm (Henriksen et al, 

1984).  Both fenestrations and sieve plates are structurally delineated by cytoskeleton 

elements (Braet(b) et al, 1995). The subendothelial space that lies between the 

sinusoids and hepatocytes is called the space of Disse, which contains a low-density 

matrix of basement membrane constituents and stellate cells.  The LSECs, which 

contain fenestrations arranged in sieve plates, and the subendothelial space of Disse, 

containing extracellular matrix, together constitute the liver sieve. Since LSECs have 

fenestrations and lack basement membrane, molecules from the sinusoidal lumen can 

translocate directly through the fenestrations, to the low-density matrix of the space of 

Disse, to make contact with hepatocyte microvilli, and vice versa (Fraser et al, 1995; 

Wisse et al, 1996). Blood constituents that are too large to pass through fenestrations, 

such as erythrocytes and chylomicrons are excluded from the space of Disse, while 

smaller molecules, such as Chylomicron Remnants (CHR) are able to pass directly 

through the fenestrations (Wisse, 1970). 

 

LSEC porosity is determined by fenestration frequency (F/um2) and fenestration 

diameter (FD). The total area covered by the fenestrations has been estimated to 

account for approximately 10% of the LSEC surface area (Wisse, 1970). The natural 

porosity of the hepatic sinusoids increases from the portal triad (zone 1) towards the 
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central vein (zone 3) owing to a slight increase in fenestration frequency (Horn et al, 

1986; Wisse et al, 1983) and perhaps also an increase in fenestration diameter (Vidal-

Vanaclocha and Barbera-Guillem, 1985; Wisse et al, 1983). Vidal-Vanaclocha and 

co-workers observed approximately double the number of sieve plates and the number 

of fenestrations per sieve plate in the pericentral sinusoids than in the periportal 

sinusoids (Vidal-Vanaclocha and Barbera-Guillem, 1985). They classified 

fenestrations into two types, clustered pores, which are more prevalent in the 

pericentral sinusoids, and free pores, which are more prevalent in the periportal 

sinusoids (Vidal-Vanaclocha and Barbera-Guillem, 1985). 

 

Utilizing “endothelial massage”, erythrocytes and leukocytes may flush plasma 

through the fenestrations in the endothelium (Wisse et al, 1985). Permeation 

selectivity of different molecules is regulated by the fenestration sizes, the molecule 

sizes, and the transport kinetics of the molecules relative to steric and frictional 

properties of the fenestrations. Therefore, passage of small sized particles like 

albumin (7 nm diameter), is probably not size-limited in the normal liver. However, 

passage of larger molecules like IgM antibodies (10- 20 nm diameter) may be size-

limited.  

 

Fenestration diameters and frequency patterns vary from species to species. Utilizing 

fenestration diameter and fenestration frequency as parameters, these patterns have 

been reviewed (Table. 1.1), adapted from(Cogger and Le Couteur, 2008). 
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Table 1.1. Inter-species variations in fenestration parameters 

Adapted from (Cogger and Le Couteur, 2008) 

 

 
 

Fenestrations have been reported in all of the very wide range of species studied. 

Some of the many reports in different species are presented in Table.1.1, showing that 

fenestrations are widespread, and quite similar in size and distribution, in animals and 

humans. Porosity is the % of the surface area of the sinusoid covered with 

fenestrations. The frequency of fenestration refers to the number of fenestrations per 

unit area. 

 

Alterations in fenestration diameter or fenestration frequency can affect exchange of 

plasma across the sinusoidal lumen and the space of Disse, influencing liver function 

Species Porosity 
(area %) 

Diameter 
(nm) 

Frequency 
(per µµµµm2) 

Citation 

Rat (zone 1) 6.0±0.2 111±1 9.1±0.3 (Wisse et al, 1983) 

Rat (zone 3) 7.9±0.3 105±0.2 13.3±0.5 (Wisse et al, 1983) 

Rat 4.1±2.3 73±1 2.7±1.1 (Le Couteur et al, 2001) 

Rat 12.0±2.1 110±7 12.4±3.6 (Fraser et al, 1986) 

Mice 4.1±2.2 74±4  (Warren et al, 2005) 

Rabbit 5.2±0.9 60±5 17.3±3.8 (Fraser et al, 1986) 

Rabbit 4.0±1.5 69±8 12.7±2.5 (Fraser et al, 1986) 

Chicken 3.6±1.6 99±15 3.9±0.9 (Fraser et al, 1986) 

Chicken 2.2±0.6 90±18 2.9±0.3 (Fraser et al, 1986) 

Rainbow trout  123  (McCuskey et al, 1986) 

Gold Fish  50-200  (Nopanitaya et al, 1979) 

Dog 6.7 118±2 7.2 (McCuskey et al, 1986) 

Sheep  60±2  (Wright et al, 1983) 

Baboon 2.6±0.2 50±1 12.1±0.8 (Jamieson et al, 2007) 

Baboon 4.2±0.5 58±1 9.4±0.9 (Cogger et al, 2003) 

Baboon 1.8 82 3.3 (Mak and Lieber, 1984) 

Human (zone 1) 7.6  19 (Horn et al, 1986) 

Human (zone 3) 9.1  23.5 (Horn et al, 1986) 

Human (zone 1) 3.4±0.2 170±12 9.8±1.8 (Madarame et al, 1991) 

Human (zone 3) 4.0±0.4 160±10 11.2±2.6 (Madarame et al, 1991) 
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(Henriksen et al, 1984). Loss of LSEC porosity is termed defenestration and can be 

due to reduction in fenestration frequency and/ or fenestration diameter. In specific 

pathological processes, defenestration occurs along with endothelial thickening and 

deposition of excessive extracellular matrix in the subendothelial space of Disse. 

These changes, called capillarization in cirrhosis and pseudocapillarization in ageing, 

pose an impediment to the transfer of many substrates from the sinusoidal lumen to 

the hepatocytes, through the space of Disse. 

 

Figure 1.3. Transmission electron micrograph of the liver from a young adult rat 

Transmission electron micrograph of the perfused liver (Magnification 17000×) of a 

young adult rat aged 6 months showing the liver sieve apparatus (Le Couteur et al, 

2002); (*, Fenestration; S, Sinusoidal Space; E, Endothelium; D, Space of Disse; H, 

Hepatocyte). 
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1.4. LSEC fenestration morphology and the role of the cytoskeleton in 

fenestration formation and regulation 

 

LSEC fenestrations (* in Fig 1.3) are inducible structures and the cytoskeleton is 

involved in their formation (Braet(a) et al, 1995; Steffan et al, 1987). Each 

fenestration is circumscribed by a filamentous, Fenestration Associated Cytoskeleton 

Ring (FACR). The average filament thickness of the FACR averages around 16 nm 

(Braet(b) et al, 1995). The sieve plates, which enclose fenestrations, are encircled by 

microtubules. The sieve plates and the fenestrations are linked to the cell cytoskeletal 

tree. Agents that alter the sieve plate structure and porosity induce cytoskeletal 

changes and vice versa (Braet(a) et al, 1995). Routinely used actin-disruptor agents 

like cytochalasin B and other actin-disruptor agents including marine-sponge-derived 

macrolides like latrunculin A, jasplakinolides (jaspamides), swinholide A, 

misakinolide A, each with its distinct specific actin-disrupting property, have also 

been used to study LSEC cytoskeletal changes and fenestration dynamics (Braet et al, 

1996; Braet et al, 2003; Braet et al, 1998; Braet et al, 2002; Braet(a) et al, 1995; 

Spector et al, 1999). The findings of these studies are summarized in Table. 1.2. 
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Table 1.2. Use of actin-disrupting agents to elucidate LSEC fenestration 

dynamics 

 

 Treatment Agent 
 

Por 
 

Fen 
Diameter 

Fen 
Freq 

Cytoskeletal 
Changes 

Other 
Changes 

Citations 
 

1 Antimycin A ↓↓↓ ↓↓↓ ↑ 
Actin 
disassembly 

↓ATP + 
Sieve plate 
protrusion 

(Braet et al, 

2003) 

2 Cytochalasin B ↑↑↑ 
None, 
Variable ↑↑ 

Actin 
disassembly + 
↑Polymerization 

FFCs not 
connected to 
fenestrations 

(Braet et al, 

1996; Braet(a) 

et al, 1995; 

Spector et al, 

1999; Steffan 

et al, 1987) 

3 Latrunculin A  ↓ ↑↑ 
Actin 
disassembly + 
↑Polymerization 

FFCs not 
connected to 
fenestrations 

(Braet et al, 

1996; Spector 

et al, 1999) 

4 Misakinolide A  ↓ ↑↑ 
Actin 
disassembly + 
↑Polymerization 

FFCs 
connected to 
fenestrations 

(Braet et al, 

1998; Spector 

et al, 1999) 

5 Swinholide A  ↓ ↑↑ 
Actin 
disassembly + 
↑Polymerization 

FFCs not 
connected to 
fenestrations 

(Braet et al, 

1998; Spector 

et al, 1999) 

6 Jasplakinolide  ↓ ↑ 

Actin 
disassembly + 
F- actin bundle 
loss + 
↑ F- actin dots 

FFCs not 
connected to 
fenestrations 

(Braet et al, 

1998; Spector 

et al, 1999) 

7 Hydrohalichondramide  ↓ ↑↑ 
Actin 
disassembly + 
↑Polymerization 

FFCs not 
connected to 
fenestrations 

(Braet et al, 

2002; Spector 

et al, 1999) 

8 Dihydrohalichondramide  ↓ ↑↑ 
Actin 
disassembly + 
↑Polymerization 

FFCs 
connected to 
fenestrations 

(Braet et al, 

2002; Spector 

et al, 1999) 
 

Por- Porosity; Fen Diameter- Fenestration Diameter; Fen Freq- Fenestration 

Frequency; FFC- Fenestration Forming Center. 
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1.5. Effect of endobiotics, xenobiotics and patho-physiologic processes on LSEC 

fenestration 

 

Some endogenous and exogenous agents and pathophysiologic conditions that alter 

LSEC fenestrations are summarized in Table 1.3. 

 

1.5.1. Autonomic regulation and cellular mediators  

 

Hormones of the autonomic nervous system have effects on LSEC fenestration 

dimensions. Acetylcholine dilates LSEC fenestrations, while noradrenaline constricts 

them (Tsukada et al, 1986; Wisse et al, 1980). Serotonin (5 HT) increases intracellular 

calcium, leading to myosin light chain phosphorylation and constriction of 

fenestrations (Braet(a) et al, 1995; Gatmaitan et al, 1996). This indicates that 

fenestration contraction is active process mediated via LSEC Ca2+.  

 

Ca2+ and adenosine triphosphate (ATP) have been shown to constrict fenestrations, 

thereby reducing porosity (Braet et al, 2003; Gatmaitan et al, 1996; Oda et al, 1993). 

Additionally, the Ca2+-calmodulin-actomyosin system has been implicated in the 

structural regulation of LSEC fenestrations (Oda et al, 1993).   
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1.5.2. Alcohol or nicotine exposure  

 

Acute and medium-term exposure to alcohol in rats in vivo or in isolated LSECs in 

vitro is associated with increased LSEC fenestration diameter, frequency and porosity 

(Braet(a) et al, 1995; Charels et al, 1986; Fraser et al, 1980; Mori et al, 1991; Sarphie 

et al, 1997). In contrast, with chronic long-term alcohol intake, humans (Horn et al, 

1987) and mice (Sarphie et al, 1997) display LSEC defenestration. It has therefore 

been speculated that increased transmission of larger chylomicrons across the LSECs 

with acute and medium term alcohol consumption may be a crucial step in the 

pathogenesis of alcoholic hepatic steatosis (Fraser et al, 1980). Alcoholic liver disease 

can have three overlapping sequential phases, namely alcoholic hepatic steatosis, 

alcoholic hepatitis, and alcoholic cirrhosis. It is possible that following short-

term/medium-term alcohol consumption after the alcoholic steatosis/hepatitis phase 

where the LSEC porosity is increased, and prior to the cirrhotic phase of alcoholic 

liver disease where the LSEC porosity is decreased, LSEC defenestration commences. 

LSEC defenestration has been shown to occur early in the pathogenesis of cirrhosis in 

patients suffering from chronic alcohol abuse (Horn et al, 1987), accompanied by 

hyperlipoproteinemia (Clark et al, 1988).  LSEC defenestration also occurs in animal 

models of cirrhosis (Le Couteur et al, 2005; Nopanitaya et al, 1976).  

 

Nicotine, fed to rats at a weight adjusted dose equivalent to that of a human smoking 

50 to 100 cigarettes per day for 6 weeks, decreased LSEC porosity to about 40% that 

of control animals and induced hypercholesterolemia (Fraser et al, 1988).  
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1.5.3. Exposure to agents present occasionally in the environment  

 

The hepatic carcinogen dimethylnitrosamine, which is found in processed meat, 

induces defenestration (Fraser et al, 1995). The detergent poloxamer-407 induces loss 

of LSEC porosity by decreasing the fenestration frequency with no changes in ATP or 

mitochondrial function, and with marked associated hyperlipidemia (Cogger et al, 

2006).  

 

1.5.4. Pathophysiologic processes 

 

Cirrhosis and ageing are also associated with marked structural changes in the 

sinusoidal endothelium and space of Disse that influences bulk plasma transfer into 

the space of Disse, through the LSECs (Le Couteur et al, 2005). Capillarization 

associated with cirrhosis differs from ageing-associated pseudo-capillarization by 

having additional features of bridging fibrosis or nodular regeneration, periportal or 

pericentral fibrosis, loss of hepatocyte microvilli, and only minor deposits of collagen 

in the space of Disse. These changes impede the transfer of many substrates including 

chylomicron remnants, albumin, protein-bound drugs and other macromolecules to 

the hepatocytes via the space of Disse (Le Couteur et al, 2002). 

 

Paracetamol overdose dilates fenestrations and causes the generation of large gaps 

(Walker et al, 1983). The hepatic carcinogen dimethylnitrosamine, which is found in 

processed meat, induces defenestration (Fraser et al, 1995). Post-hepatic inferior vena 

cava occlusion dilates fenestration diameter to drastic proportions, while decreasing 
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the fenestration frequency (Nopanitaya et al, 1976). Artificial high perfusion pressure 

through the hepatic portal vein simulating portal hypertension dilates fenestrations 

and also results in the trapping of large chylomicrons (Fraser et al, 1980). This 

particular study also suggests a possible mechanism in the hepatic steatosis seen in the 

"nutmeg liver" of chronic venous congestion. 

 

Though diabetes mellitus is associated with extensive vascular pathology, very little is 

known about its long-term effects on the liver sinusoid and its fenestrations. Possible 

ultrastructural liver sinusoidal changes are important because of the role of LSEC 

fenestrations on the hepatic disposition of lipoproteins. The vascular complications of 

diabetes are well established and are clinically significant (Singleton et al, 2003). In 

old age, there is a substantial loss of fenestrations in the LSEC (Cogger et al, 2003; Le 

Couteur et al, 2001; McLean et al, 2003; Warren et al, 2005), which impairs 

lipoprotein transfer to the hepatocyte (Hilmer et al, 2005). Clearly, there are potential 

parallels between age-related dyslipidemia and diabetes mellitus-related dyslipidemia 

(Adiels et al, 2006; Battula et al, 2000; Mamo et al, 1993). It will be interesting to 

determine whether diabetes mellitus influences liver sinusoidal fenestrations because 

of potential mechanistic implications for diabetic dyslipidemia.  

 

Alterations in fenestration number, frequency, distribution, and diameter by 

hormones, xenobiotics, hepatotoxins, and diseases have important ramifications for 

hepatic microcirculation, substrate handling, drug metabolism, and overall function. 

Chylomicrons (100- 1000 nm diameter) are too large to pass through the fenestrations 

(Naito and Wisse, 1978). Only partially catabolised chylomicrons (chylomicron 

remnants) attain individual dimensions small enough to pass through the fenestrations 
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into the space of Disse (Fraser et al, 1978; Le Couteur et al, 2002). In defenestration 

seen in cirrhosis (Clark et al, 1988; Fraser et al, 1995; Le Couteur et al, 2005), normal 

ageing (Cogger et al, 2003; Hilmer et al, 2005; Le Couteur et al, 2005; McLean et al, 

2003) or treatment with the commonly used detergent poloxamer-407 (Cogger et al, 

2006), distribution of chylomicron remnants was excluded from the space of Disse 

(Cogger et al, 2006).  
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Table 1.3. Effect of commonly exposed agents and pathogenic processes on 

LSEC fenestrations 

 Treatment Agent Por 
% 

Fen 
Diameter 

Fen 
Freq Other Changes Citations 

 
AUTONOMIC AND VASOACTIVE-AGENT REGULATION 

1 Acetylcholine  ↑   
(Tsukada et al, 1986; Wisse et 

al, 1980) 

2 Noradrenaline  ↓   
(Tsukada et al, 1986; Wisse et 

al, 1980) 

3 5HT ↓ ↓  

↑Cell Ca2+ 

↑ cAMP Changes 
blocked    by Ca2+ 
chelation or Ca2+ 

channel blocker 
 

(Braet(a) et al, 1995; Gatmaitan 

et al, 1996) 

4 Endothelin 1  ↓   (Oda et al, 1997) 

5 ETA-R antagonist 
(BQ123)  ↓ ↓  (Watanabe et al, 2007) 

6 Prostaglandin E1  ↑   (Oda et al, 1997) 

7 Pantethine ↑ ↑ ↑  (Fraser et al, 1989) 

 
ALCOHOL OR NICOTINE EXPOSURE 

8 Ethanol ↑ ↑ ↑  

(Braet(a) et al, 1995; Charels et 

al, 1986; Fraser et al, 1980; 

Mori et al, 1991; Sarphie et al, 

1997) 

9 Ethanol (Chronic) ↓  ↓ Hepatic Steatosis 
(Horn et al, 1987; Sarphie et al, 

1997) 
10 Nicotine ↓ ↓ - Hypercholesterolemia (Fraser et al, 1988) 
 

EXPOSURE TO AGENTS PRESENT OCCASIONALLY IN THE ENVIRONMENT 

11 Dimethylnitrosamine 
(Processed meat) ↓    (Fraser et al, 1995) 

12 Poloxamer 407 
(Various products) ↓  ↓ 

No ATP changes 
No Mitochondrial 
dysfunction 

(Cogger et al, 2006) 

 
PATHOLOGICAL PROCESSES 

13 Ageing ↓  ↓ 
↓ Mass ↓ Blood flow ↑ 
Endothelial thickening, 
Pseudocapillarization 

(Cogger et al, 2003; Hilmer et 

al, 2005; Le Couteur et al, 2005; 

McLean et al, 2003) 

14 Cirrhosis ↓  ↓ 

Cirrhotic nodules, 
↑ Endothelial 
thickening, 
Capillarization 

(Clark et al, 1988; Fraser et al, 

1995; Le Couteur et al, 2005; 

Nopanitaya et al, 1976) 

15 Posthepatic Inferior 
Vena Cava occlusion ↑ ↓ ↑ ↑↑  (Nopanitaya et al, 1976) 

16 Portal hypertension ↑  ↑  (Fraser et al, 1980) 
17 Paracetamol overdose  ↑   (Walker et al, 1983) 
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1.6. The Ageing Liver 

 

1.6.1. Effect of ageing on liver, sinusoidal and LSEC morphology 

 

Age-induced liver sinusoidal endothelial changes (pseudocapillarization) include 

increases in endothelial thickness, extra-cellular matrix deposition in the space of 

Disse and decreases in LSEC porosity and fenestration frequency (defenestration) 

(Table. 1.4).  These changes were evident across a range of animal models inclusive 

of rats (Le Couteur et al, 2001), humans (McLean et al, 2003), mice (Warren et al, 

2005), and baboons (Cogger et al, 2003). In the afore-cited studies, the 

ultramicroscopic changes were accompanied by increased von Willebrands factor 

(capillary marker) expression in all species, but increased collagen and laminin 

expression only in humans and rats. Since old age is the pivotal risk factor for most 

diseases including liver disease, studies of the effects of disease on the liver should 

take these age-related changes into consideration. 
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Table 1.4. Effects of ageing on the porosity and thickness of the liver sinusoidal 

endothelium 

 Young Old Fractional 
Change Citation 

ENDOTHELIAL POROSITY % (SEM) 

Mouse 4.1±2.2 2.2±3.5 0.53 (Warren et al, 2005) 

Rat 4.1±2.3 2.5±1.2 0.61 (Le Couteur et al, 2001) 

Baboon 4.2±0.5 2.4±0.4 0.57 (Cogger et al, 2003) 

Human Not done 

FENESTRATION DIAMETER (nm) (SEM) 

Mouse 74±4 58±12 0.78 (Warren et al, 2005) 

Rat 73±1 60±1 0.82 (Le Couteur et al, 2001) 

Baboon 58±1 70±2 1.20 (Cogger et al, 2003) 

Human Not done 

ENDOTHELIAL THICKNESS (nm) (TEM) 

Mouse 154±4 245±8 1.59 (Warren et al, 2005) 

Rat 230±50 320±80 1.39 (Le Couteur et al, 2001) 

Baboon 130±8 186±9 1.43 (Cogger et al, 2003) 

Human 165±17 289±9 1.75 (McLean et al, 2003) 

 

The effects of old age on porosity %, fenestration diameter (nm) and thickness (nm) 

of the hepatic sinusoidal endothelium across four species. Porosity and fenestration 

diameter were elucidated using scanning electron microscopy (SEM) and endothelial 

thickness using transmisson electron microscope (TEM). Adapted from (Warren et al, 

2005). 
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1.6.2. Functional implications of morphologic changes in the ageing liver.    

 
Research into the ageing process of the liver is of paramount importance because of 

the significant decrease in xenobiotic detoxification by the liver in old age (Le 

Couteur and McLean, 1998), and because the liver is the main site for metabolism of 

many substrates associated with age-related problems such as vascular disease, 

neurotoxicity and adverse drug reactions (Le Couteur et al, 2002; Le Couteur and 

McLean, 1998; Le Couteur et al, 2002). 

 

Old age is associated with reduced clearance of highly atherogenic chylomicron-

remnants from the liver (Krasinski et al, 1990; Weintraub et al, 1996). Experimentally 

it has been demonstrated that age-related pseudocapillarization substantially impedes 

small-lipoprotein transfer across the sinusoidal endothelium (Hilmer et al, 2005).  

Though normal hepatic sinusoidal endothelium provides insignificant resistance to 

oxygen transfer (Kassissia et al, 1992), there is a significant diffusion barrier to 

oxygen diffusion posed by the blood vessels in cirrhosis (Froomes et al, 2003; 

McLean and Morgan, 1991) and in normal capillaries in other organs (Cho et al, 

2001; Rose and Goresky, 1985). It is thus of interest to determine whether age-related 

pseudocapillarization constitutes an oxygen diffusion barrier (Fig. 1.4B) similar to 

that seen in cirrhosis (Le Couteur and McLean, 1998). 

 

Phase 1 hepatic drug metabolism, encompassing  oxidation, reduction or hydrolysis of 

drugs, is diminished in old age (Herrlinger and Klotz, 2001; Kinirons and O'Mahony, 

2004). These age-related changes could be caused by one or more of the following: 

decreased liver perfusion (Schmucker, 2001),  possible oxygen-diffusion barrier 

secondary to age-associated liver pseudocapillarization of the liver sinusoidal 
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endothelial cell (Le Couteur et al, 2001), mitochondrial oxidative stress (Sastre et al, 

2003) or mitochondrial dysfunction (Sastre et al, 1996). The differences between in 

vivo and in vitro assessments of phase I drug metabolism in old age (Herrlinger and 

Klotz, 2001; Kinirons and O'Mahony, 2004), could possibly reflect intrahepatocytic 

hypoxia because oxygen is an essential cofactor for cytochrome P450 enzymes (Le 

Couteur and McLean, 1998). Livers from aged rats have decreased high-energy 

phosphate metabolite pools than those from young rats, suggestive of hypoxia (Le 

Couteur et al, 2001) .  Livers from aged mice have less total ATP than those from 

young mice (Selzner et al, 2007), However, this was associated with diminished 

oxygen consumption and ATP production by isolated mitochondria, which is 

suggestive of mitochondrial dysfunction rather than hypoxia (Selzner et al, 2007). 

There is also an upregulation of several genes and proteins that respond to hypoxia in 

old age (Kang et al, 2005).  

 

These age-related changes in liver high-energy phosphate metabolites and 

oxygenation could be caused by decreased oxygen delivery to hepatocytes secondary 

to either reduced liver perfusion (Schmucker, 2001), or an oxygen-diffusion barrier 

secondary to age-associated “pseudocapillarization” of the liver sinusoidal endothelial 

cell (LSEC) (Le Couteur et al, 2001). Augmenting the latter possibility is a study that 

experimentally induced partial pseudocapillarization via ATP depletion (Braet et al, 

2003). Alternatively, the reduction in ATP might also be secondary to age-related 

mitochondrial oxidative stress (Sastre et al, 2003) or mitochondrial dysfunction 

(Sastre et al, 1996). 
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Figure 1.4. Transmission electron micrograph of livers from young versus aged rats  

Transmission electron micrograph of the liver of a young rat showing a normal liver 

sieve (A) and an old rat showing pseudocapillarization with LSEC defenestration, 

endothelial thickening and basement membrane deposition (B) (Hilmer et al, 2005). A 

conceptual illustration is also depicted in this figure (C) (Le Couteur et al, 2002). The 

sinusoidal endothelium is thin and perforated with fenestrae, which permit the passage 

of substrates such as smaller lipoproteins, while excluding larger substrates such as 

chylomicrons. In old age, the endothelium is defenestrated and thickened, with 

deposition of collagen and basal lamina. These changes (pseudocapillarization) will 

impede the transfer of substrates between sinusoidal blood and hepatocytes. (S= 

Sinusoidal Space, A= Chylomicron, E= Endothelium, B= Basement membrane, D= 

Space of Disse, H= Hepatocyte) 
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1.6.3. Stategies to delay ageing- calorie restriction 

 

The outcomes of age-related impairment in liver function are well recognized (Le 

Couteur et al, 2005; Schmucker, 2005). One mechanism for this change is age-related 

alterations in the ultrastructure of the liver sinusoidal endothelium (Le Couteur et al, 

2005). The loss of fenestrations in old age, which is part of pseudocapillariation, 

impedes the transfer of some lipoproteins from the blood to the hepatocytes, which 

provides a mechanism for age-related postprandial hypertriglyceridemia and impaired 

chylomicron remnant clearance (Hilmer et al, 2005; Huet and Villeneuve, 2005).  

 

Caloric restriction (CR) increases longevity and the pathophysiological processes 

which are delayed by CR are considered to be an integral part of the ageing process 

(Ingram et al, 2004; Masoro, 2005; Sinclair, 2005). Reduction in the intake of calories 

delays the onset of age-related diseases and increase maximum lifespan by between 

20% and 40% in many species (Everitt et al, 2005). CR improves lipoprotein profiles 

and delays the onset of vascular disease in animal models (Zhu et al, 2004), with 

similar effects observed in short term studies in humans (Heilbronn et al, 2006). 

 

It is plausible that one mechanism for the effects of CR on lipoprotein metabolism and 

susceptibility to vascular disease may pertain to its effects on the liver sinusoidal 

endothelium and its fenestrations (Le Couteur et al, 2001). The liver sinusoidal 

endothelium is exquisitely sensitive to oxidative stress (Cogger et al, 2001; Cogger et 

al, 2004) and other toxic insults (McCuskey, 2006). Thus, it is possible that its 

ultrastructure may be influenced profoundly by the dietary load, which includes 

oxidants and toxins delivered to the liver via the portal vein. Since age-related hepatic 
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pseudocapillarization may contribute to the pathogenesis of dyslipidemia and since 

CR is a powerful model for the study of ageing as it extends lifespan, it will be 

interesting to determine whether pseudocapillarization is preventable and hence 

unravel a possible novel target for the prevention of age-related dyslipidemias.  
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1.7. Immunological functions of the liver: Focus on hepatic immune response to 

gram negative bacterial toxins 

 

1.7.1. Introduction 

 

The liver contains many immunologically active cells including KCs, LSECs and 

neutrophils and lymphocytes, and perhaps the hepatocytes themselves (Kmiec, 2001; 

Knolle and Gerken, 2000). The liver acts as a filter or a 'sieve' for bacteria and 

antigens carried to it via the portal tract from the gastrointestinal tract (GIT). These 

antigens are phagocytosed and degraded by KCs, which are modified macrophages 

attached to the endothelium (Wake et al, 1989). The near lack of lymphoid tissue 

implies that antigens are degraded without the production of antibody (Kmiec, 2001; 

Knolle and Gerken, 2000). The antigens are thus precluded from reaching other 

antibody-producing sites in the body, thereby preventing adverse systemic 

hypersensitivity. The liver favors the induction of tolerance rather than the induction 

of immunity (Kmiec, 2001; Knolle and Gerken, 2000). Different liver cell types may 

contribute in a myriad of ways to induce liver antigenic tolerance. These may include 

control of antigen presentation (immune ignorance), clonal deletion and immune 

deviation. Naive T cells are activated by LSECs, but do not differentiate into effector 

T cells. These T cells demonstrate a functional phenotype and cytokine induction 

profile typical of tolerance induction (Knolle et al, 1999). Dendritic cells (DCs), 

LSECs, KCs and hepatocytes also contribute to tolerance induction by deletion of T 

cells through induction of apoptosis (Knolle and Gerken, 2000). 
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1.7.2. Kupffer cells 

 

The liver filters bacteria and antigens that come from the gastrointestinal tract via the 

portal vein. These antigens are phagocytosed and degraded by KCs, which are 

predominantly located in the periportal area. The KCs assist in tissue repair, T and B 

lymphocyte interaction, and cytotoxic activity in disease processes (Schumann et al, 

2000). KCs have specific membrane receptors for ligands, and are activated by 

several factors such as infection (Scoazec and Feldmann, 1990). They secrete 

interleukins, tumor necrosis factor-α (TNF-α), collagenase and lysosomal hydrolases. 

KCs are Antigen Presenting Cells (APCs), which modulate immune responses, oral 

tolerance development to bacterial superantigens, and suppression of T-cell activation 

by antigen-presenting LSECs, prostanoids and TNF-α (Knolle and Gerken, 2000; 

Schumann et al, 2000). They play a pivotal role in the clearance of senescent and 

damaged erythrocytes. KCs are also involved in neutrophil adhesion and migration in 

the hepatic sinusoids during liver injury. This is mediated through TNF-α production 

in KCs and Inter Cellular Adhesion Molecule-1 (ICAM-1) expression in LSECs 

(Jaeschke, 1997; Sakamoto et al, 2002). 

 

During acute hepatic insult, KCs secrete enzymes and cytokines that damage 

hepatocytes, and are active in the remodeling of Extracellular Matrix (ECM). 

Following LPS stimulation, KCs release IL-6, IL-8 and TNF-α, which induce liver 

parenchymal damage. These cytokines also stimulate LSECs, stellate cells and natural 

killer cells to release pro-inflammatory cytokines, thus exacerbating the damage 

(Kmiec, 2001).  
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Exposure of KCs to LPS can lead to intensive inflammatory mediator production, and 

subsequently, liver injury. KCs are involved in the initial hepatic insult, followed by 

neutrophils in the latter phase of hepatic injury (Jaeschke and Farhood, 1991; 

Jaeschke et al, 1996), both of them utilizing reactive oxygen species (ROS) to effect 

the injury (Jaeschke, 2002; Jaeschke and Farhood, 1991; Jaeschke et al, 2002).   

 

Alcohol increases gastrointestinal tract permeability, liberating LPS from gut bacteria 

into the blood stream, which stimulates KCs. KCs and gastrointestinal tract-derived 

LPS are crucial in the pathogenesis of alcohol induced hepatotoxicity (Enomoto et al, 

2000). Long-term alcohol exposure changes KC sensitivity to LPS (Enomoto et al, 

2001).  

 

TNF-alpha plays a critical role in the pathogenesis of hepatic injury in response to 

LPS.  Leukotriene D4 and ROS induction seem to precede TNF-α action in the 

induction of LPS-induced hepatitis in the murine endotoxin/ galactosamine TNF-α 

model (Tiegs and Wendel, 1988; Tiegs et al, 1989). Thus, TNF-α is a crucial 

mediator secreted by KCs in LPS induced LSEC apoptosis (Takei et al, 1995). 

Granulocyte-colony stimulating factor (G-CSF) is a negative feedback signal for 

macrophage-derived TNF-α production after LPS induced hepatotoxicity (Gorgen et 

al, 1992). Thalidomide prevents KC mediated LPS-induced liver injury via 

suppression of TNF-α secretion from KCs (Enomoto et al, 2003). 

 

P. aeruginosa exotoxin A induces liver damage not only by inhibition of protein 

synthesis but also by indirectly stimulating TNF-α secretion by KCs (Schumann et al, 
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1998). In order to induce rapid hepatocyte necrosis and apoptosis, P. aeruginosa 

Exotoxin A requires the presence of T cells to stimulate KCs to secrete TNF-α 

(Schumann et al, 1998; Schumann et al, 2000). 

 

In hepatic reperfusion injury, KCs are the predominant cause of initial hepatic 

damage, which is mediated through ROS (Jaeschke and Farhood, 1991). However, 

neutrophils mediate the pathogenesis of later progression phase of hepatic 

ischaemia/reperfusion injury (Jaeschke and Farhood, 1991; Jaeschke et al, 1990). 

 

1.7.3. Neutrophils 

 

In endotoxin mediated liver injury, KCs are involved in the initial insult, followed by 

neutrophils in the latter phase of hepatic injury (Jaeschke et al, 1996), both using ROS 

to effect the damage (Jaeschke, 2002; Jaeschke et al, 2002; Liu et al, 1995). Though 

the significance of the prominent presence of neutrophils in liver parenchyma during 

alcoholic hepatitis is not clear, the presence of neutrophil degranulation and 

chemotactic agent release point to the crucial role of neutrophils in the pathogenesis 

alcoholic hepatitis. In addition, apoptosis-induced transmigration of neutrophils 

during alcoholic hepatitis is certain owing to colocalization between neutrophils and 

apoptotic hepatocytes (Jaeschke, 2002). Neutrophils play a crucial role in the 

pathogenesis of the later progressive phase of hepatic ischaemia/reperfusion injury 

(Jaeschke et al, 1990). 
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1.7.4. Lymphocytes 

 

Mucosal lymphocytes migrate towards the site of hepatic insult. LSECs regulate the 

recruitment of specific lymphocyte subtypes (Klugewitz et al, 2002). LSECs suppress 

IFN- � producing cell expansion. Alternatively, they prime IL-4-expressing Th2 cells, 

creating immune suppression in the liver. Antigen presentation in the liver therefore 

promotes modulation of immunity (Klugewitz et al, 2002). Adhesion molecule 

expression and chemokines initiate lymphocyte adhesion. Many adhesion molecules 

and chemokines are necessary for lymphocyte endothelial binding as enumerated 

elsewhere (Lalor and Adams, 1999; Lalor et al, 2002). Circulation of sustained high 

concentrations of TNF-α, which depends on the presence of T cells, is peculiar 

feature of synergistic P. aeruginosa Exotoxin A  with LPS-induced hepatotoxicity 

(Schumann et al, 2000). LPS suppresses Ag-specific immune responses by CD4+ T 

cells by antigen-presenting LSECs (Knolle et al, 1999).  

 

1.7.5. LSECS: Overall contribution to liver immunology  

 

LSECs are crucial to antigen processing, scavenging and tolerance induction to GIT 

and systemic antigens. LSECs constitutively express all molecules necessary for 

antigen presentation (CD40, CD54, CD80, CD86, MHC-I and MHC-II) and function 

as MHC-I and MHC-II restricted antigen-presenting cells (APC) (Kmiec, 2001; 

Knolle and Gerken, 2000; Knolle et al, 1999; Scoazec and Feldmann, 1991). LSECs 

exhibit antigenic resemblance to dendritic cells by expressing CD4, the mannose 
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receptor and CD 11C (Knolle et al, 1999; Knolle et al, 1998; Magnusson and Berg, 

1989; Scoazec and Feldmann, 1990). LSECs are very good antigen presenting cells 

and have been shown to induce proliferation of, co-stimulate, and upregulate cytokine 

production in CD4+ T Cells (Knolle et al, 1998; Lohse et al, 1996)..  

 

LSECs regulate the recruitment of specific lymphocyte subtypes. CD4 and CD8 T 

cells that simultaneously interact  with LSECs have a tolerant phenotype (Knolle and 

Limmer, 2003). They suppress IFN- � producing cells and promote IL-4-expressing 

helper T cell subset 2 (Th2) cells cells, creating immune suppression in the liver 

(Klugewitz et al, 2002). LSEC primed CD4+ T cells differentiate into regulatory T 

cells, whereas myelocytic APC primed T cells differentiate into helper T cell subset 1 

(Th1) cells (Limmer and Knolle, 2001).  Therefore, LSEC primed CD4+ T cells play 

a crucial role in tolerance induction in the liver. The CD4+ T cells priming activity of 

LSECs can be negatively regulated by prostaglandin E2 (PGE2) and interleukin-10 

(Knolle et al, 1998). LSECs also play a role in the development of tolerance by CD8 

T cells towards orally adminsistered antigens (Limmer et al, 2005). LSECs are also 

important in tolerance induction in liver transplantation. In one study, the rejection of 

donor livers correlated closely with the presence of anti-LSEC antibodies, increased 

activation of T cells and decreased TGF-β (Sumitran-Holgersson et al, 2004). 

 

In addition to the antigen processing, LSECs scavenge antigens such as LPS and 

advanced glycation end products (Knolle and Limmer, 2003; Shnyra et al, 1993; 

Shnyra and Lindberg, 1995; Smedsrod et al, 1990). Scavenging is distinctly different 

from antigen processing. LSECs endocytose glycoproteins, extracellular matrix 
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components, immune complexes, transferrin and ceruloplasmin, thereby clearing 

antigens from the vasculature (Svistounov and Smedsrod, 2004).  

 

LSECs may assist immune surveillance via T cell activation, which in turn is 

influenced by the milieu encompassing bacteria and LPS. LSECs express CD14, the 

LPS-Binding protein receptor (Gong et al, 2002; Scoazec and Feldmann, 1991). 

LSECs may also assist immune surveillance by releasing immunosuppressive 

mediators such as interleukin-10, prostaglandin E2 and transforming growth factor-� 

(TGF-�) (Knolle and Gerken, 2000; Knolle et al, 1998; Sumitran-Holgersson et al, 

2004). LSECs secrete several vasoactive substances and eicosanoids such as 

cytokines, prostanoids, leukotrienes, endothelin-1 and nitric oxide (Knolle and 

Gerken, 2000).  

 

1.7.6. LSECS and lipopolysaccharide 

 

Lipopolysaccharide (LPS or bacterial endotoxin) is a secreted by most gram-negative 

bacteria including P. aeruginosa. LPS is present in normal portal blood at high 

physiological concentrations of 10 pg/ml to 1 ng/ml (Knolle and Gerken, 2000). One 

study done on samples collected from 21 patients with cirrhosis using a limulus-based 

chromogenic assay, estimated the portal venous LPS concentrations to be 142 ± 167 

pg per ml in contrast to the peripheral venous LPS concentration of 82 ± 150 pg per 

ml (P<0.001) (Lumsden et al, 1988).  In another study done using limulus lysate assay 

on samples from 34 elective abdominal surgery patients, 97% of the patients had LPS 

in their portal blood demonstrating that LPS is present normally in portal blood and is 



 50 

not necessarily pathogenic (Jacob et al, 1977). In this study, systemic endotoxemia 

was observed in 3 of the 4 patients who also had liver disease, and none of the 

patients without liver disease. Therefore, pathological concentrations of LPS seem to 

be present in systemic blood only during gram-negative bacterial sepsis or during 

liver disease (Jacob et al, 1977; Yamamoto et al, 1994).  

 

When LSECs are incubated with physiological concentrations of LPS,  specific 

immune responses by CD4+ cells are down-regulated (Knolle et al, 1999). LPS also 

induces LSEC scavenger and endocytotic functions (Shnyra et al, 1993) and 

subsequently antigen presentation to lymphocytes (Knolle et al, 1998; Lohse et al, 

1996). LPS can also induce LSEC apoptosis via TNF secreted by KCs (Takei et al, 

1995). 

 

LPS defenestrates LSECs (Fraser et al, 1995). One intravenous dose of LPS (2 mg/kg 

body weight) in Dark-Agouti rats reduced LSEC porosity significantly, the changes 

being spontaneously reversed after 14 days. With the same LPS dose, Sprague-

Dawley rats showed similar but irreversible changes at-least 3 days after LPS 

challenge (Dobbs et al, 1994). Intravenously injected LPS (2.5 mg/kg body weight) in 

F344 rats resulted in LSEC enlargement, sieve plate disruption and gap formation 6 

hours after LPS challenge (Seto et al, 1998). KCs seem to modulate LPS-induced 

LSEC defenestration and impaired hyaluronan scavenging (Sarphie et al, 1996). Takei 

and co-workers reported that co-incubation of LSECs with LPS-stimulated KCs 

induces significant apoptosis in LSECs that are in contact with KCs, and that anti-

TNF-α antibody prevents this (Takei et al, 1995).  
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Alcohol abuse may promote the uptake of LPS from alcohol lysed gut bacteria or 

from direct injury to the intestinal wall (Enomoto et al, 2000) . LPS could possibly 

induce liver damage, starting with the LSEC (Dobbs et al, 1994) or secondary to 

Kupffer cell and neutrophil (Enomoto et al, 2000; Jaeschke et al, 1996) activation. 

This could be a pivotal pathogenic factor in alcoholic cirrhosis. 

 

1.7.7. LSECS and Pseudomonas aeruginosa  

 

P. aeruginosa is a common nosocomial bacterial pathogen associated with a high 

incidence of morbidity and mortality in acute cases (Gouvea et al, 2004). Post-

operative pseudomonal infections, including P. aeruginosa infections after liver 

transplantation (Gouvea et al, 2004; Iinuma et al, 2004; Korvick et al, 1991; Singh et 

al, 2004) can result in sepsis (Hart et al, 2003; Hart et al, 2003), bacteremia (Iinuma et 

al, 2004; Singh et al, 2004), hepatic damage (Muhlen et al, 2004; Schumann et al, 

2000) and fatal multiple-organ failure (Hart et al, 2003; Hart et al, 2003). The few 

studies which describe the P. aeruginosa as one of the commonest multi-antibiotic 

resistant nosocomial organisms, especially in post-surgical and post-liver transplant 

scenarios, are tabulated in Table. 1.4 below. 
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Table 1.5. Incidence of P. aeruginosa in post-surgical and post-liver 

transplant infections 

 

Study 
Dates 

Patient 
Cohort 

Cohort 
Size 

Pathogen 
Parameter 
Examined 

Cohort %  
with 

Parameter 
Present 

Incidence of 
Pseudomonal 

Infections 

Pathology 
Specifics Citations 

2000-
2003 

Liver 
transplant 30 Bacteremia 30% 44% of bacteremia 

100 % with 
bacteremia 
died 

(Doria and Marino, 

2005) 

1999- 
2003 

Liver 
transplant 103 Bacterial 

pneumonia 32% 17% of pneumonia 
50% with 
pneumonia had 
acute rejection 

(Ma et al, 2005) 

1989-
2003 

Liver 
transplant 233 Bacteremia 52% Topmost  (Singh et al, 2004) 

2001- 
2002 

Living 
donor 
liver 
transplant 

113 Surgical site 
infection 37% 

33 % of Gram 
negative bacterial 
infections 

26% with 
surgical site 
infection died 

(Iinuma et al, 2004) 

1999- 
2002 

Liver 
transplant 99 

Multiple 
antibiotic 
resistance 

57% 23% of all 
bacterial infections 

63% of all 
infections by 
multi-antibiotic 
resistant 
bacteria 

(Gouvea et al, 2004) 

1998-
2001 

Liver 
transplant 401 Pneumonia 5% >57% of 

pneumonia  (Aduen et al, 2005) 

1990- 
1999 

Liver 
transplant 165 

Multiple 
antibiotic 
resistance 

31% 
50% of multi-
antibiotic resistant 
bacteria 

Higher 
mortality 

(Singh et al, 2001) 

1995-
1998 

Liver 
transplant 
in ICU 

90 Pulmonary 
infiltration 40% 27% of pneumonia 

38% with 
infiltrates had 
pneumonia 

(Singh et al, 1999) 

1990- 
1995 

Liver-
lung-heart 
transplant 
in Cystic 
Fibrosis 

10 
Double 
organ 
transplants 

 100% 
100% Multi- 
antibiotic 
resistant 

(Couetil et al, 1995) 

1990-
1993 

Liver 
transplant 284 

Aerobic 
gram –ve 
bacteria 

45% 
Most frequently 
isolated from 
blood 

 (Wade et al, 1998) 

1988- 
1991 

Liver 
transplant 185 Bacteremia 

& fungemia 29% 
10% of 
bacteremias & 
fungemias 

95% of all 
infections 
nosocomial 

(Moreno et al, 1994) 

1985-
1991 

Kidney 
transplant 568 Bacteremia 

& fungemia 11% 19% Bacteremias 
& fungemias 

70% of all 
infections 
nosocomial 

(Moreno et al, 1994) 

1981- 
1984 

Liver 
transplant 129 Early death> 

24 hours 37% 53% of deaths due 
to bacterial sepsis 

Bacterial sepsis 
in 81% of 
deaths 

(Cuervas-Mons et al, 

1986) 
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Pyocyanin, a redox active, pro-inflammatory, pro-apoptotic, cytotoxic and 

immunomodulating phenazine dye is secreted in copious quantities by Pseudomonas 

aeruginosa. Though systemic, portal or hepatic concentrations of pyocyanin have not 

been estimated in Pseudomonal sepsis, it is well known that it is produced in large 

amounts (up to 130 µM) in respiratory secretions from cystic fibrosis and 

bronchiectasis patients with P. aeruginosa infections (Pitt, 1986; Wilson et al, 1987; 

Wilson et al, 1988).  

 

Pyocyanin has been shown to exert its in vivo cytotoxicity by impairing the cellular 

redox status and depleting intracellular GSH and thiols in endothelial cells (Muller, 

2002) and transformed epithelial cells (O'Malley et al, 2004) via superoxide and H2O2 

generation (Muller, 2002; O'Malley et al, 2004), or through direct oxidation of GSH 

(O'Malley et al, 2004). Pyocyanin may possibly induce induce sinusoidal H2O2, which 

may then enter the cell, inducing modifications in the cellular actin cytoskeleton 

leading to altered LSEC morphology.  

 

1.7.8. Hepatic immune response to gram negative bacterial toxins  

 

The liver is the first organ which encounters pathogens or pathogen products from the 

gut. Alcohol-induced gut permeability dependent mechanisms liberate LPS from 

gastrointestinal gram negative bacteria (Enomoto et al, 2000). Alcohol decreases the 

usual endotoxemia- induced increased glucose production and uptake  via inhibition 

of hepatic glucose production and peripheral glucose utilization (Molina et al, 1989). 

Burns sensitize KCs to LPS via gut-derived LPS dependent mechanisms (Enomoto et 

al, 2004). Gram negative bacterial sepsis or liver disease can lead to the presence of 
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high concentrations of systemic and portal LPS (Jacob et al, 1977). As documented in 

the 1.7.2. section on Kupffer cells, exposure of KCs to LPS leads to intensive 

inflammatory mediator production, adhesion molecule expression, neutrophil 

chemotaxis and activation, and subsequent LSEC and hepatocyte injury. These 

findings suggest that LPS-induced structural changes in the liver sinusoid are 

mediated by LPS-induced Kupffer cell activation. Exposure of LSECs to LPS induces 

defenestration (Fraser et al, 1995) and the LSEC functions of scavenging (Shnyra and 

Lindberg, 1995), endocytosis (Shnyra and Lindberg, 1995) and antigen presentation 

to lymphocytes (Knolle et al, 1998; Lohse et al, 1996). LPS induces LSEC apoptosis 

via TNF secreted by KCs (Takei et al, 1995). LPS alters the membrane fluidity of 

hepatocytes (Salgia et al, 1993). LPS may influence hepatocyte-macrophage 

communications (Ogle et al, 1995) and in humans lead to a transient increase in liver 

insulin-like growth factor (IGF) in addition to transient increases in cortisol  and 

pituitary growth hormone, similar to changes seen in acute trauma (Lang et al, 1997). 

In the isolated perfused rat liver model, LPS induces cholestasis without significant 

hepatic damage which suggests a possible role for extrahepatic mechanisms for 

induction of liver damage (Gaeta and Wisse, 1983).  

 

Leukotriene D4 and ROS induction seem to precede TNF-α action in the induction of 

LPS-induced hepatitis (Tiegs and Wendel, 1988; Tiegs et al, 1989). Granulocyte-

colony stimulating factor (G-CSF) is a negative feedback signal for macrophage-

derived TNF-α production after LPS induced hepatotoxicity (Gorgen et al, 1992). 

Superoxide generation in the hepatic sinusoid in response to LPS challenge is likely to 

be a factor involved in liver damage (Yokoyama et al, 1998). LPS is a potent 

stimulator of hepatocyte fibronectin which suggests that hepatocytes may also be 
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directly involved in liver fibrosis (Jia et al, 1998). In one murine model study, co-

administration of non-hepatotoxic doses of the commonly used H2-blocker ranitidine 

and LPS activated the clotting system via over expression of plasminogen-activator 

inhibitor-1 (PAI-1), with fibrin deposition in the liver and hepatocyte damage 

(Luyendyk et al, 2004; Luyendyk et al, 2004). Thrombin is a promoter (Copple et al, 

2003) and a distal mediator (Moulin et al, 1996) of LPS induced hepatotoxicity. LPS 

induces decreased LSEC thrombomodulin which results in sinusoidal microthrombus 

formation and exacerbation of hepatic injury (Kume et al, 2003). Platelets (Pearson et 

al, 1995) and the coagulation cascade (Hewett and Roth, 1995) contribute to LPS 

induced hepatic injury. KCs play an important role in LPS induced sinusoidal 

thrombogenesis, fibrin degradation and deposition (Takeuchi et al, 1994). LPS also 

synergizes with monocrotaline (Yee et al, 2003), aflatoxin B1(Luyendyk et al, 2003), 

polychlorinated biphenyls (Brown et al, 1996) and a range of liver toxins like carbon 

tetrachloride, ethanol, cadmium, halothane and allyl alcohol (Roth et al, 1997) in 

causing hepatic injury.  

 

Most antioxidant mechanisms are upregulated by LSECs in response to LPS including 

H2O2-detoxifying capacity (Spolarics et al, 1996), LSEC GSH efflux mechanisms 

(Jaeschke, 1992), glucose transporter 1 (GLUT1), glucose-6-phosphate 

dehydrogenase (G6PD) (Spolarics and Navarro, 1994), superoxide dismutases 

(SODs), and glutathione peroxidase (GPx) (Spolarics, 1998). In cirrhosis, there is 

augmented LPS uptake by the liver and increased biliary excretion of LPS (Ueno, 

1990).   
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P. aeruginosa exotoxin A induces liver damage by protein synthesis inhibition, 

activation of KCs to produce TNF-α, and perforin-dependent, Fas-independent, 

apoptotic pathways (Schumann et al, 1998). To induce substantial hepatocyte damage, 

P. aeruginosa exotoxin A requires the presence of T cells to stimulate KCs to secrete 

TNF-α (Schumann et al, 1998; Schumann et al, 2000). For P. aeruginosa exotoxin A 

to synergize with LPS to induce severe hepatotoxicity, T cells are required to produce 

circulation of sustained high concentrations of TNF-α (Schumann et al, 2000). 

 

P. aeruginosa pyocyanin exerts LSEC cytotoxicity by impairing the cellular redox 

status via generation of H2O2, which probably depletes intracellular GSH and thiols in 

endothelial cells (Muller, 2002) and may cause defenestration and its consequences.   
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1.8. Hypertriglyceridemia of sepsis, bacteremia and gram-negative bacterial 

toxemia 

 

Sepsis is associated with free radical induction (Rose et al, 1994), altered redox 

balance (Hart et al, 2003; Hart et al, 2003; Pedersen et al, 1989), cellular NADH/ ATP 

reduction (Hart et al, 2003), cellular cytoskeletal modifications and decreased hepatic 

energy metabolism (Hart et al, 2003; Hart et al, 2003; Spitzer et al, 1989; Spitzer et al, 

1988). Strikingly similar changes can also be induced by gram negative bacterial 

toxins, either LPS (Bannerman and Goldblum, 1999; Jaeschke, 1992; Liu et al, 1995; 

Spolarics, 1996; Yokoyama et al, 1998) or pyocyanin (Britigan et al, 1992; Harman 

and Macbrinn, 1963; Hassett et al, 1992; Landau et al, 1963; Mahajan-Miklos et al, 

1999; Muller, 2002; Muller and Sorrell, 1997; O'Malley et al, 2004; Ran et al, 2003; 

Stewart-Tull and Armstrong, 1972) alone. Conditions including the presence of free 

radicals and cytoskeletal modifying agents are particularly conducive to LSEC 

defenestration.  

 

It is possible that LSEC defenestration induced by bacterial toxins such as LPS or 

pyocyanin may impede hepatic uptake of chylomicron remnants and increase their 

circulation time, leading to the hyperlipidemia of sepsis reported often in literature 

(Harris et al, 2000; Scholl et al, 1984).  The currently accepted hypothesis for 

pathogenesis of sepsis associated hypertriglyceridemia is that sepsis stimulates 

catecholamine release which stimulates release of free fatty acids (FFAs) from 

adipose tissue. The FFAs are taken up by the liver which then releases them as 

triglycerides in lipoproteins (Harris et al, 2000; Spitzer et al, 1988). Alternatively, 

sepsis stimulated TNF-α and IL-1 may suppress lipoprotein lipase (LPL) synthesis, 
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which decreases the rate of triglyceride clearance, leading to hypertriglyceridemia 

(Harris et al, 2000; Spitzer et al, 1988). Both LPS injection and E. coli bacteremia in 

rats result in hypertriglyceridemia and decreased LPL activity.  Experimental sepsis 

stimulates liver putrescine and spermidine synthesis in addition to ornithine 

decarboxylase activation, responses that can also be simulated by LPS and pro-

inflammatory cytokines (Tiao et al, 1995). Therefore it is clear that not only sepsis, 

but also recurrent gram negative infections, bacteremia and toxemia can lead to 

hypertriglyceridemia.  

 

During endotoxemia states, one third of LPS binds to high-density lipoproteins (HDL) 

and is taken up into peripheral tissues. The remaining two thirds are taken up more 

rapidly by predominantly in reticuloendothelial organs with copious phagocytes, 

APCs and cells with scavenger function (Munford and Dietschy, 1985; Munford et al, 

1981). The tissues by which LPS is taken up and the proportion of LPS taken up 

depends upon LPS-HDL binding parameters (Munford et al, 1981). Increased serum 

HDL and its LPS-binding capacity may serve to protect against LPS induced damage 

in chronic alcohol exposure (Kitano et al, 1996; Kitano et al, 1996).  

 

It has been shown that triglyceride-rich lipoproteins including very low density 

lipoproteins (VLDL) and chylomicrons bind LPS.  They form lipoprotein-LPS 

complexes or chylomicron-LPS complexes, modulate the host immune responses and 

therefore impede LPS-induced toxicity (Harris et al, 2000). Chylomicron-LPS 

complexes inhibit nitric oxide release by hepatocytes much better than either of them 

alone, suggesting that chylomicron bound LPS inhibits hepatocyte NF-κB and 

prevents liver damage (Kumwenda et al, 2002). Lipoproteins have also been shown to 
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protect animals from lethal polymicrobial gram-negative bacterial sepsis. Therefore it 

is possible that hypertriglyceridemia could be an innate immune response to gram 

negative sepsis (Read et al, 1995). Alternatively, it could also be a possible 

mechanism to perpetuate LPS-induced toxicity owing to prolonged systemic LPS 

persistence.  

 

In this thesis, an additional mechanism is proposed which could account for the 

hypertriglyceridemia of sepsis. LSEC defenestration in gram negative bacterial 

(including pseudomonal) sepsis induced by toxins such as LPS (Fraser et al, 1995) 

may exclude lipoproteins and chylomicron remnants from the liver. This could lead to 

retention of lipoproteins and chylomicron remnants in the peripheral vasculature 

leading to hyperlipidemia (Fig. 1.5).  
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Figure 1.5. Hypothesised pathogenesis of hyperlipidemia related to pseudomonal 
sepsis 
 
LSEC defenestration in bacterial/ pseudomonal sepsis owing to toxins like pyocyanin 

or LPS may exclude chylomicron remnants from the liver. This could lead to retention 

of lipoproteins in the peripheral vasculature leading to Pseudomonal sepsis-related 

hyperlipidemia. 
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1.9. Conclusions and hypotheses 

 

LPS- or pyocyanin-induced LSEC defenestration may impede hepatic chylomicron 

remnant uptake, increasing the circulation time of chylomicron remnants (Cogger et 

al, 2006; Hilmer et al, 2005) leading to the hyperlipidemia (Fig. 1.5) seen frequently 

in sepsis (Harris et al, 2000; Scholl et al, 1984). The effect of pyocyanin or LPS on 

LSEC fenestrations is likely to be different between young and old animals as healthy 

old animals exhibit decreased porosity and fenestration density (Le Couteur et al, 

2001). Differences in LSEC fenestration status may at least partly account for the 

increased mortality that has been reported in sepsis in older patients. 

 

Contraction of fenestrations is associated with Ca2+ influx (Gatmaitan et al, 1996). 

Endotoxemia alters Ca2+ homeostasis, with minute Ca2+ flux alterations (Deaciuc and 

Spitzer, 1987). These changes, possibly due to catecholamine mediated Ca2+ influx, 

are reversible by Ca2+ channel blockers (Sayeed and Maitra, 1987). Under induced 

endotoxemia, Ca2+ channel blockers limit hepatocyte injury and inhibit LPS-induced 

KC inducible nitric oxide synthase expression (Mustafa and Olson, 1999). LPS 

induced membrane fluidity of hepatocytes can be prevented by Ca2+ channel blockers 

(Salgia et al, 1993). Ca2+ channel blockers may also curb the sepsis induced acute 

phase response by preventing sepsis-related hepatic Ca2+ changes (Rose et al, 1994) 

that lead to reorganization of fenestrations, and so modulate the metabolic response.  

 

Pyocyanin or LPS can trigger oxidant stress. This can lead to an increased sinusoidal 

efflux of GSH and its extracellular oxidation. GSH is depleted in LPS mediated 

hepatic injury (Jaeschke, 1992). Animal models have shown that antioxidants such as 
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GSH (Liu et al, 1994) and adequate nutrition (Wojnar et al, 1995) are protective in 

septic shock. Superoxide generation in the  hepatic sinusoid in response to LPS 

challenge is likely to be a factor involved in liver damage (Yokoyama et al, 1998). 

Superoxide dismutase (SOD), which dismutates superoxide to H2O2 has been shown 

to offer protection against LPS induced liver injury (Rose et al, 1994). Modifying the 

response of LSEC porosity to LPS and P. aeruginosa pyocyanin with calcium channel 

blockers, anti-TNF-α antibody, G-CSF, VEGF, HGF, GSH, N-acetyl cysteine (NAC), 

SOD, and catalase could offer novel therapeutic targets in acute sepsis, especially 

sepsis caused by P. aeruginosa. 

 

It has been clearly demonstared that fenestrations can be regulated with a variety of 

pharmacological agents (Arias, 1990; Braet and Wisse, 2002). Table 1.2 and table 1.3 

clearly summarize these. Morphological changes in liver sinusoidal fenestrations 

seem to have systemic implications particularly for lipoprotein metabolism (Fraser et 

al, 1986), clearance of medications (Le Couteur et al, 2005) and immunity (Warren et 

al, 2006), as well as hepatoprotective effects (Deleve, 2007). Thus the targeting of 

fenestration modulation via development of appropriate pharmacological agents to 

treat pathophysiological states such as dyslipidemias in ageing (Le Couteur et al, 

2007; Le Couteur et al, 2002) and diabetes mellitus is a viable therapeutic option. 

 

VEGF activates endothelial cell division, angiogenesis and vascular permeability. It 

generates fenestrations and caveolae in a number of different endothelial cells 

including tumour (Roberts and Palade, 1997), renal (Chen et al, 2002) and 

adrenocortical (Esser et al, 1998) endothelial cells. In the liver, hepatocytes produce 

VEGF which acts on liver endothelial cells via the receptors: VEGFR1 (Flt-1) and 
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VEGFR2 (KDR/Flk-1) of which VEGFR2 is the most important (Ferrara, 2002; 

Funyu et al, 2001; LeCouter et al, 2003). In isolated liver endothelial cells, VEGF 

increases porosity about twofold, mostly through its effects on the number of 

fenestrations (Funyu et al, 2001; Yokomori et al, 2003). Conversely, transgenic 

inhibition of VEGF receptors altered the hepatic endothelium of early postnatal mice, 

including loss of endothelial lining in many sinusoids (Gerber et al, 1999) and was 

associated with defenestration and hyperlipidemia (Carpenter et al, 2005). VEGF is 

considered to be the major cytokine involved in the regulation of fenestrations (Chen 

et al, 2002). Therefore amongst the currently available fenestration modulating agent 

possibilities (Table. 1.2 and Table. 1.3), VEGF can be considered as a forerunner 

pertaining to therapeutic options to modulate fenestrations in pathophysiological 

states. 

 

In this thesis, the following major hypotheses are explored: 

 

1. Pyocyanin induces defenestration of the LSEC both in vitro and in vivo 

2. The effects of pyocyanin on the LSEC are mediated by oxidative stress  

3. Defenestration induced by old age and poloxamer 407 causes intrahepatocytic 

hypoxia and upregulation of hypoxia-related responses 

4. Defenestration of the LSEC seen in old age can be exacerbated by diabetes 

mellitus and prevented or ameliorated by caloric restriction commencing early in 

life 
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Chapter 2 

 

Liver sinusoidal endothelial cells and 

acute hepatic injury induced by 

Pseudomonas aeruginosa pyocyanin 



 65 

2. Liver sinusoidal endothelial cells and acute hepatic injury 

induced by Pseudomonas aeruginosa pyocyanin 

 

2.1. Introduction 

 

Pseudomonas aeruginosa is an increasingly important cause of sepsis and death in 

organ transplant recipients, particularly those receiving liver transplants (Aduen et al, 

2005; Singh et al, 2004; Wagener and Yu, 1992). P. aeruginosa has a special affinity 

for tissue vasculature, typically surrounding blood vessels circumferentially 

(perivascular cuffing) during infection (Schaber et al, 2007; Soave et al, 1978) or 

congregating in postcapillary venules (Fetzer et al, 1967). P. aeruginosa induces 

apoptosis in the endothelial cell line, ECV304 (Takahashi et al, 1990; Valente et al, 

2000). P. aeruginosa produces a number of virulence factors including pyocyanin, a 

phenazine dye with broad range of activities including: redox activity (Britigan et al, 

1997; Hassan and Fridovich, 1980), immunomodulation (Muhlradt et al, 1986; Muller 

et al, 1989), pro-inflammatory effects (Lau et al, 2004), ROS-generation (Muller, 

2002), succinic dehydrogenase enzyme-inactivation (Harman and Macbrinn, 1963), 

cytotoxicity (Britigan et al, 1997; Lau et al, 2004), pro-apoptotic effects (Usher et al, 

2002), and induction of senescence (Muller, 2006).  

 

There are several reasons to suspect that pyocyanin might have important effects on 

the LSEC. Pyocyanin has been shown to induce oxidative stress and morphological 

changes in endothelial cells (Britigan et al, 1992). Within the liver, the sinusoidal 

endothelial cell (LSEC) is very sensitive to both oxidative stress (Cogger et al, 2001) 
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and the effects of bacterial lipopolysaccharide (LPS) (Dobbs et al, 1994; Seto et al, 

1998). However the effects of pyocyanin have not been described. LSECs are 

perforated with fenestrations, pores with diameters ranging from 30 to 300 nm, that 

facilitate the transfer of lipoproteins, particularly triglyceride-rich chylomicron 

remnants, between blood and hepatocytes (Fraser et al, 1995). Given the role of the 

LSEC in liver allograft rejection (Sumitran-Holgersson et al, 2004) and 

hyperlipidemia (Fraser et al, 1995; Le Couteur et al, 2005), changes in the LSEC 

induced by pyocyanin may have significant clinical implications. Therefore, the 

effects of pseudomonal pyocyanin on the structure of isolated LSECs were 

investigated and whether such effects are mediated by oxidative stress. 

 

Another possible mechanism for possible LSEC changes is the alteration of caveolin-

1 expression. LPS, which induces defenestration in LSECs (Dobbs et al, 1994), also 

induces the overexpression of caveolin-1 (Kamoun et al, 2006), which is a key 

component of fenestrations (Ogi et al, 2003). Similarly, pyocyanin could possibly 

influence fenestrations through its interactions with proteins such as F-actin or 

caveolin-1 that maintain fenestrations (Braet et al, 2003; Ogi et al, 2003).  

 

The LSEC has a key role in the maintenance of liver function and its viability 

following ischemia-reperfusion and transplantation. The rejection of donor livers is 

associated with demonstrable LSEC antibodies (Sumitran-Holgersson et al, 2004). 

LSEC apoptosis correlates with preservation-perfusion related dysfunction of donor 

rat livers (Zhu et al, 2006) and LSEC apoptosis without concomitant hepatocellular 

injury occurs in preservation injury during liver transplantation (Gao et al, 1998). Rat 

livers subjected to cold ischemia-warm reperfusion injury undergo LSEC alterations 
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without accompanying hepatocellular changes (Huet et al, 2004). LSEC responses to 

ischemia-reperfusion injury in donor rat livers influence the outcome of 

transplantation (Shimizu et al, 2001; Sun et al, 2001). For such reasons, changes 

induced in the LSEC are likely to have significant clinical outcomes in terms of liver 

transplantation. 

 

Therefore it was postulated that the effects of pyocyanin on the LSEC are a key 

component of the toxicity of pseudomonal sepsis. Better knowledge of the 

pathogenesis of the changes in LSECs induced by pyocyanin may partially explain the 

mechanisms of liver allograft rejection (Sumitran-Holgersson et al, 2004) and 

hyperlipidemia of sepsis (Fraser et al, 1995; Harris et al, 2000; Spitzer et al, 1988). 

Since P. aeruginosa is a major cause of sepsis and death following liver 

transplantation and the LSEC is critical for graft survival, the effects of P. aeruginosa 

pyocyanin on LSECs were investigated using electron microscopy, 

immunohistochemistry and biochemistry.  
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2.2. Materials and methods 

 

2.2.1. Synthesis of pyocyanin 

 

Pyocyanin was chemically synthesized by the photolysis of phenazine methosulfate 

(Knight et al, 1979) and purified (Muller and Sorrell, 1992) as described earlier. 

Briefly, phenazine methosulfate (P-9625-5g, Sigma-Aldrich Pt Ltd, Sydney, 

Australia) was made up in 0.01 M tris-HCl buffer (pH 7.4) in a round-bottomed Pyrex 

flask and exposed to fluorescent tube light (Phillips TLD 18 W/54) for 2.5 hours. The 

resulting solution was extracted with chloroform and vacuum dried to a powdery 

residue. The residue was dissolved in chloroform and acidified with an equal volume 

of 0.1 M HCl. The red acidic form of pyocyanin was converted into the blue form 

using 0.5 M NaOH. This blue form of pyocyanin, now in the aqueous phase was 

extracted with chloroform and this cycle repeated 3 times. At the end of the last cycle, 

the blue form of pyocyanin was extracted with chloroform; vacuum dried, and hexane 

washed. The residue was dissolved in a small quantity of chloroform and sufficient 

hexane added to precipitate the pyocyanin. This pyocyanin was trapped using a type 

EH 0.5 µm filter, reconstituted in chloroform and purified by thin-layer 

chromatography (HPTLC Pre-coated Silica Gel 60 Plates; Merck Ltd) using an 

equimolar chloroform methanol mixture solvent. The purity of pyocyanin was 

ascertained and it’s concentration quantitated by utilizing its known absorption 

spectrum and extinction coefficient values as elucidated earlier (Watson et al, 1986). 

The pyocyanin thus purified was stored in methanol at -70°C and protected from light 

owing to its photosensitivity. Before use, the methanol solvent was completely 

removed in a stream of nitrogen gas to leave behind a dried pyocyanin residue. When 
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completely dry, the pyocyanin was reconstituted in tissue culture medium or saline 

and immediately used. 

 

2.2.2. Animal protocols, LSEC isolation and pyocyanin treatment and 

enzyme pre-treatment 

 

Animal studies were approved by the Sydney Southwest Area Health Service Animal 

Welfare Committee. All rats were specific pathogen free males obtained from the 

Animal Research Centre (Perth, Australia). Each rat used was anesthetized with 

ketamine and xylazine (50 and 5 mg/kg, respectively, Troy Laboratories, Smithfield, 

Australia) by intraperitoneal injection.  

 

LSECs were harvested from livers of Sprague-Dawley rats (aged 2-3 months, 250-350 

g) according to methodology described previously (Cogger et al, 2004). Briefly, livers 

were perfused with 0.05 % collagenase and LSECs centrifuged with a 2-step Percoll 

gradient. After centrifugation and selective adherence to remove Kupffer cells, LSECs 

were suspended in RPMI-1640 medium (0.02 % L-glutamine, 2% fetal bovine serum, 

100 U/mL penicillin, 100 µg/mL streptomycin). The resulting cells were plated onto 

collagen-coated Thermanox cover slips (Nalge Nunc Int, Rochester, NY) at a density 

of 1.60 × 106 /ml at 37°C in RPMI-1640 media with 2% FCS (GIBCO, Invitrogen 

Pty Limited, Australia) and antibiotics (100 U/ml penicillin, 100 �g/ml streptomycin). 

A series of dose-response experiments in triplicate were performed to assess the 

effects of pyocyanin at the following concentrations: 0, 10, 20, 50 and 100 µM. These 

concentrations were chosen because pyocyanin has been detected in vivo at 
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concentrations of 1-130 µM (Wilson et al, 1988). For the experiments involving anti-

oxidant enzymes, pyocyanin was added to LSECs at a concentration of 10 µM then 

incubated at 37°C for 1 hour prior to sampling. In selected experiments, immediately 

before adding pyocyanin, superoxide dismutase (SOD) (from bovine erythrocytes; 

Sigma-Aldrich, St. Louis, MO, USA; S-2515; at a concentration of 30 U/mL) and/or 

catalase (from bovine liver; Sigma-Aldrich, St. Louis, MO, USA; C-40; at a 

concentration of 3000 U/mL) were added. For ten to thirty scanning electron 

microscopic fields to be studies for each treatment group, experiments were 

performed in triplicate or duplicate. 

 

The in vivo experiments were performed in male Fisher F344 rats (aged 2-3 months, 

approximately 200 g). A midline laparotomy incision was made in anesthetised 

animals and saline (n = 5) or pyocyanin (n = 7) was injected into the portal vein. 

Pyocyanin, when injected portally, was calculated to give a final systemic 

concentration of 11.9 µM. Total blood volume was calculated for each rat using the 

following formula (Lee and Blaufox, 1985), Blood Volume (ml) = 0.06 × BodyWeight 

(g) + 0.77. The laparotomy was closed and respiratory rate monitored. After 30 

minutes, the incision was re-opened. Blood was collected from the inferior vena cava 

for biochemical analysis, and the liver was removed and processed for scanning 

electron microscopy and immunohistochemistry as described previously (Cogger et 

al, 2006; Cogger et al, 2004). Two lobes were snap-frozen in liquid nitrogen for 

biochemical analyses.  
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2.2.3. Electron microscopy  

 

Scanning electron microscopy of LSECs and liver tissue blocks was performed as 

described previously (Cogger et al, 2006; Cogger et al, 2004) with a Jeol JSM-

6380LV scanning electron microscope (Jeol, Akishima-Shi, Japan). All scanning 

electron micrographs were analysed using ImageJ (http://rsb.info.nih.gov/ij/) to 

determine endothelial porosity, average fenestration diameter, fenestration density and 

the presence of gaps. Endothelial porosity is the area of the endothelial surface 

covered with fenestrations is calculated by dividing the sum total of the individual 

area of each fenestration in a given field divided by the total area of that particular 

field examined. Endothelial porosity is expressed as a percentage and is dependent on 

2 parameters, the fenestration diameter and the fenestration density. Fenestration 

density is the number of fenestrations in a specific field measured. Fenestration 

density is expressed as the number of fenestrations/ µm2. Fenestration diameter is 

expressed in nanometers (nm).  

 

For electron microscopic processing of isolated LSECs, LSECs were fixed with 3 % 

glutaraldehyde in 0.1 M Na-Cacodylate buffer with 0.1 M sucrose at room 

temperature for 1 hour, post-fixed with filtered 1% tannic acid in 0.15 mol/L Na-

cacodylate at pH 7.4 for 1 hour and post- fixed yet again with 1% osmium tetroxide in 

0.1 mol/L Na-cacodylate at pH 7.4 for 1 hour. They were dehydrated in a graded 

ethanol series, dried with hexamethyldisilazane, and sputter coated with 10 nm of 

gold. The samples were examined with a Jeol JSM-6380LV scanning electron 

microscope (Jeol, Akishima-Shi, Japan). For analysis of isolated LSECs, three 

representative micrographs from each of four cellular fields per cover-slip were taken 
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at 15000× magnification. The number of fenestrations analyzed for each treatment 

were: control 1860, pyocyanin 10 µM 1084, pyocyanin 10 µM + SOD 1521, 

pyocyanin 10 µM + catalase 1079, and pyocyanin 10 µM + SOD + catalase 2858. 

 

Processing of liver tissue blocks for scanning electron microscopy was performed as 

follows. Liver tissue blocks measuring approximately 1 mm3 each were fixed with 3% 

glutaraldehyde and 2.5 % paraformaldehyde in 0.1 M Na-cacodylate buffer with 0.1 

M sucrose and 2 mmol/ L CaCl2 and postfixed with 1% osmium tetroxide in 0.1 M 

Na-cacodylate at pH 7.4. They were dehydrated using a graded ethanol series, dried 

with hexamethyldisilazane, and sputter coated with 20 nm of platinum. A total of 12 

representative fields from at least 3 liver blocks per animal were photographed at 

25000× magnification.  

 

Transmission electron microscopy of liver tissue sections was performed as described 

previously (Cogger et al, 2004). Briefly, two technically eligible blocks per liver were 

examined. Sections from each block were chosen at random for ultrastructural 

measurement. Twenty representative micrographs per animal were taken at 19000× 

and 10 at 4600× with a Philips CM10 Transmission Electron Microscope fitted with a 

Megaview III camera and Analysis software (Olympus). The 19000× micrographs 

were analysed with Image J to measure endothelial thickness, gap frequency, and 

fenestration frequency. Fenestrations were defined as pores < 300 nm in diameter and 

gaps were defined as pores > 300 nm. The 4600× micrographs were analysed with 

Image J to measure collagen bundle, Kupffer cell activation and hepatocyte 

mitochondria.  
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2.2.4. Light microscopy and immunohistochemistry 

 

Liver specimens were fixed in 4% paraformaldehyde buffered saline and embedded in 

paraffin for light microscopy and immunohistochemistry. 4 µm sections were stained 

with haematoxylin and eosin for light microscopy. Immunohistochemistry was used 

to detect the differences in staining intensity, distribution and pattern of caveolin-1, 

which is present on the plasma membrane of LSEC fenestrations (Ogi et al, 2003); 3-

nitrotyrosine, which marks tyrosine nitration occurring during oxidative stress; and 

malondialdehyde, which indicates lipid peroxidation occurring during oxidative 

stress. Immunohistochemical staining was performed using an indirect polymer 

immunoperoxidase method. Four µm sections of fixed liver tissue were deparaffinized 

in xylene (3×3 min) and taken to absolute ethanol (3×2 min). Endogenous peroxidase 

was blocked by incubating slides in 3% H2O2 in absolute methanol for 10 min at room 

temperature. After hydrating the sections, the slides utilized for nitrotyrosine and 

caveolin-1 immunohistochemistry were heated at 125°C for 4 min in a Decloaking 

Chamber (Biocare Medical) with epitope retrieval buffer and then cooled. This was 

followed by incubation with goat serum for 20 min. Without washing, the primary 

antibodies were applied and incubated overnight. The primary antibodies used were 

rabbit anti-human caveolin-1 antibody (N-20, Cruz Biotechnology, Santa Cruz, CA, 

USA), mouse monoclonal anti-nitrotyrosine antibody (ab7048, Abcam), and rabbit 

polyclonal anti-malondialdehyde antibody (ab6463, Abcam). The epitope retrieval 

buffers used were citrate buffer (0.01 M, pH 6.0) for caveolin-1 and tris buffer (0.05 

M Tris-EDTA, pH 8.0) for 3-nitrotyrosine immunohistochemistry. No pre-treatment 

was needed for tissues for malondialdehyde immunohistochemistry. During the 

immunostaining all slides were washed in washing buffer (0.001 M Tris, pH 7.6) 
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containing Tween 20. After the primary incubation, the secondary antibody, affinity 

purified goat anti-mouse or anti-rabbit immunoglobulin linked polymeric horseradish 

peroxidase (AP340P-50ML/ AP342P-50ML, Chemicon International, Inc. Australia 

Pty Ltd.) was applied for 30 min. After buffer wash, the sections were treated with 

diaminobenzidine (DAB) chromogenic substrate solution for 5 min and slides were 

washed in water. The slides were then immersed in 1% aqueous CuSO4 solution for 

further intensification of staining and counterstained with haematoxylin, dehydrated 

and mounted. The slides were graded consensually by three blinded observers 

according to staining distribution (periportal, zone 2, pericentral) and intensity of 

staining (0, +, ++, +++), and semi-quantitatively assessed. 

 

2.2.5. ATP assay 

 

ATP was measured by the luciferin-luciferase method with a luminometer as per the 

manufacturer's instructions (G7570, CellTiter-Glo™ Luminescent Cell Viability Assay 

kit, Promega, Madison, WI, USA). The luciferase enzyme requires ATP in order to 

generate light. As active cells produce ATP, after an equal volume of CellTiter-Glo™ 

reagent is added to the LSECs, luminescence is measured. The light signal produced 

is proportional to the amount of ATP present. The final ATP concentrations were 

calculated from a calibration curve constructed at the same time by means of standard 

ATP dissolved in the given buffer. Results were normalized to each well containing 

LSECs at density of 1.60 × 106 /ml. 
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2.2.6. Glutathione assay and blood biochemistry 

 

Glutathione levels were assessed in order to determine the existence or absence of 

oxidative stress on pyocyanin treated liver specimens. Liver samples were 

homogenised in ice-cold 10 % 5-sulfosalicylic acid. Samples were centrifuged and 

supernatants removed for analysis. Total glutathione (GSH + GSSG) and glutathione 

disulfide (GSSG) levels were assayed according to the recycling method of Griffith 

(Griffith, 1980). GSSG analysis entailed removal of GSH by addition of 2 µl of 2-

vinylpyridine per 100 µl of supernatant prior to the recycling reaction. 

 

Protein quantitation, blood biochemistry and liver function tests were done by the 

Biochemistry Department, Diagnostic Pathology Unit, Concord RG Hospital, using 

the automated Roche Diagnostics Modular Analytics Serum Work Area (F.Hoffmann-

La Roche Ltd). Briefly, the principles utilized in these assays are enclosed in brackets 

as follows: Total Protein (Biuret/ Endpoint with Blank), Albumin (BCG-Citrate 

buffer), ALT and AST (IFCC Modified), ALP (AMP Buffer- IFCC), LDH (IFCC 

Modified), Creatinine (Alkaline Picrate- Rate- Blank, Compensate), CK (IFCC/ 

Imidazole Buffer), Na+/K+/Cl- (Iron Specific Electrode- Indirect), HCO3
- (Enymatic), 

and Ca++ (Cresol.Complex- No Dialysis). 

 

2.2.7. Western Blot analysis for pyocyanin interaction with caveolin-1  

 

To determine whether pyocyanin irreversibly binds to caveolin-1 and alters protein 

size, caveolin-1 electromobility was examined using Western Blot. Twenty 
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micrograms of cell lysate from SK-HEP-1 cells, an immortal endothelial cell-line 

(Heffelfinger et al, 1992), treated with pyocyanin; and controls were separated by 

SDS-PAGE. Lanes were run with 100 µM pyocyanin or 2 µM pyocyanin in the 

presence of lysate; or with 100 µM pyocyanin alone. Lysate, when loaded, was 

always 20 µg/ well. After transfer onto nitrocellulose membrane (Amersham 

Biosciences, Australia) the blot was blocked, incubated with primary antibodies to 

caveolin-1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), washed and incubated 

with a rabbit anti-goat IgG secondary antibody conjugated to horseradish peroxidase 

(Amersham Biosciences, Australia). Proteins were visualized using 

chemiluminescence. 

 

2.2.8. Statistical analysis 

 

Statistical analysis was performed using SigmaStat Statistics Software (SPSS Inc, 

Chicago, IL). Data are presented as the mean ± standard error of the mean. For 

isolated LSEC morphometry statistical significance levels (P < 0.05) were determined 

by one-way analysis of variance (ANOVA) with Student-Newman-Keuls method for 

post hoc pairwise multiple comparisons. For fenestration morphometry of intact 

sinusoids in the in vivo liver studies, the Mann–Whitney test were used to compare 

groups and considered significant when P < 0.05.  
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2.3 Results 

 

2.3.1. Effect of pyocyanin on porosity of isolated LSECs 

 

Treatment of LSECs with pyocyanin concentrations ranging from 0 to100 µM 

induced a dose-dependent decrease in LSEC porosity (Fig. 2.1) as measured by 

scanning electron micrograph morphometry.  

 

Figure 2.1. Pyocyanin dose and porosity of LSECs 

Porosity (%) of isolated LSECs decreased as concentration of pyocyanin increased 

from 0 to100 µM. 
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2.3.2. Effect of pyocyanin on porosity and fenestrations of isolated LSECs 

 

Treatment with pyocyanin (10 µM) was associated with a significant reduction in 

LSEC porosity from 3.3 ± 1.8 % to 1.2 ± 1.0 % (P < 0.001) with a loss of sieve plate 

organization (Fig. 2.2). This was prevented by the addition of catalase, but superoxide 

dismutase did not have any statistically significant effect (Fig. 2.3). The effects of 

pyocyanin appeared to be mediated by changes in the frequency of the fenestrations. 

Catalase appeared to improve porosity mostly by its effects on the diameter of the 

fenestrations (Fig. 2.2). 

 

2.3.3. Effect of pyocyanin on morphology of isolated LSECs 

 

All changes in cell morphology were dose-dependent (Table. 2.1). Cell membrane 

blebbing, cytoplasmic retraction and cell membrane retraction were extensive at 50 

µM, occasionally present at 10 and 20 µM but not seen at 1 and 5 µM. 
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Figure 2.2. Scanning electron microscopy of control-, pyocyanin and anti-oxidant 

enzyme-treated rat LSECs 

 

Scanning electron microscopy (Magnification 15000 ×) of isolated rat LSECs under 

control incubation conditions (A); after treatment with 10 µM pyocyanin (B); 

pyocyanin and superoxide dismutase (C); and pyocyanin and catalase (D). 

Fenestrations (→) are grouped into sieve plates in A and D. 
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Figure 2.3. Quantification of the porosity, frequency and diameter of fenestrations in 

the LSECs 

There was a reduction in fenestrations after treatment with 10 µM pyocyanin, which 

was reversed by catalase but not superoxide dismutase (* P < 0.05 compared to 

control). 
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Table 2.1. Pyocyanin dose and LSEC morphology 

 

Pyocyanin Concentration (µµµµM)  
0 1 5 10 20 50 100 

Sieve plate obliteration - - - + + +++ - 
LSEC membrane retraction - - - + + +++ - 
Cytoplasmic contraction  - - + + +++ - 
Perinuclear plasma 
membrane blebbing 

- - - - - ++ - 

Cellular disintegration - - - - - + ++ 
 

Cell membrane blebbing, cytoplasmic retraction and cell membrane retraction were 

extensive at 50 µM, occasionally present at 10 and 20 µM but not seen at 1 and 5 µM. 

 

2.3.4. Effects of pyocyanin on ATP content of isolated LSECs 

 

ATP decreases in several cellular systems have been reported with pyocyanin 

treatment. These changes were also evident in a one-off experiment. Antioxidant 

enzymes (SOD and catalase) seemed to have a minimum ameliorating effect on 

pyocyanin-induced ATP decrease (Fig. 2.4). 
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Figure 2.4. Confirmation of cellular ATP fluctuations with pyocyanin treatment 
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ATP decreases were also evident in a one-off experiment not equilibrated with 

protein. SOD and catalase seemed to have a minimum ameliorating effect on 

pyocyanin-induced ATP decrease. 

    

2.3.5. Scanning electron microscopy of liver sinusoids  

 

Scanning electron micrograph analysis of liver sinusoids (Fig. 2.5A, 2.5B) revealed a 

decrease in porosity of liver sinusoids with pyocyanin treatment, with significant 

contributions from both fenestration diameter and fenestration frequency (number of 

fenestrations per square µm) (Table. 2.2). Pyocyanin treatment was associated with 

smaller fenestration diameters than those seen in control liver sinusoids (Fig. 2.5C). 

The number of gaps (diameter > 300 nm) was slightly raised with pyocyanin 

treatment, although statistically insignificant (Fig. 2.5C). 
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2.3.6. Transmission electron microscopy of liver sinusoids and the space of 

Disse  

 

Transmission electron micrograph analysis revealed normal hepatocyte architecture in 

both control and pyocyanin-treatment groups (Fig. 2.6). The hepatocellular nuclei, 

mitochondria and endoplasmic reticulum were well-preserved and had normal 

morphology. Pyocyanin treatment was associated with a statistically significant 

decrease in endothelial thickness from 175.8 ± 5.8 to 156.5 ± 4.0 nm (Fig. 2.6C, 2.6D, 

Table 2.2). No changes in hepatocellular mitochondrial count, collagen bundle count, 

and Kupffer cell count were observable (data not shown). 
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Figure 2.5. Scanning electron microscopy of liver sinusoids from control and 

pyocyanin-treated rats 

The fenestrations of the control liver sinusoid (A) are larger in diameter and higher in 

frequency (number of fenestrations per square µm) than those of the Pyocyanin 

treated liver (B). The arrow-head indicates a single fenestration and the full arrow, a 

sieve-plate circumscribing many fenestrations. Original magnification 25000x, scale 

bar = 1 µm. C is a histogram of fenestration diameters measured on scanning electron 

micrographs, showing a lower proportion of smaller fenestrations in pyocyanin 

treated liver endothelium than in control livers. There was a non-significant trend 

towards an increased number of gaps (> 300 nm) with pyocyanin treatment.  
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Figure 2.6. Transmission electron microscopy of livers from control and pyocyanin-

treated rats 

Organelle size and number were unaffected by pyocyanin treatment with normal 

morphology of mitochondria (M) observed in control and pyocyanin treated rats: A 

Control liver sinusoid, B Pyocyanin treated liver sinusoid. S; sinusoidal lumen, scale 

bar = 2 µm, original magnification 4600x. At original magnification 19000x, a 

decrease in the thickness of the endothelium (E) was seen in the pyocyanin treatment 

group. The space of Disse (D), hepatocytes (H) and hepatocellular endoplasmic 

reticulum (ER) appeared normal in both groups: C Control liver sinusoid, D 

Pyocyanin treated liver sinusoid. F; fenestrations, scale bar = 1 µm. 
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Table 2.2. Electron micrograph morphometry of the liver endothelium and 

peri-sinusoidal hepatocytes from rat livers with and without pyocyanin 

treatment in vivo 

 

 
 No 

Treatment 
(n= 5) 

Pyocyanin 
Treatment 

(n= 7) 
P Value 

SCANNING ELECTRON MICROSCOPY 
Porosity % 3.4 ± 0.2 1.3 ± 0.1 < 0.001 
No. of Fenestrations/ µm2 5.5 ± 0.3 2.4 ± 0.1 < 0.001 
Fenestration Diameter (nm) 80.4 ± 0.6 71.0 ± 0.8 < 0.001 

TRANSMISSION ELECTRON MICROSCOPY 
Endothelial Thickness (nm) 175.8 ± 5.8 156.5 ± 4.0 < 0.01 

 
 
 
With pyocyanin treatment, scanning electron micrograph analysis revealed a decrease 

in porosity, fenestration diameter and fenestration frequency of liver sinusoids. With 

pyocyanin treatment, transmission electron micrograph analysis revealed a decrease in 

endothelial thickness. 

 

2.3.7. Light microscopy and immunohistochemistry of livers 

 

Light microscopy (Fig. 2.7A, 2.7B), 3-nitrotyrosine immunohistochemistry (Fig. 

2.7C, 2.7D) and malondialdehyde immunohistochemistry (Fig. 2.7E, 2.7F) of livers 

revealed no observable changes with pyocyanin treatment. 
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2.3.8. Investigation of relationship of caveolin-1 to pyocyanin-induced 

endothelial changes 

 

Caveolin-1 immunohistochemistry (Fig. 2.7G, 2.7H) of livers revealed no observable 

changes with pyocyanin treatment. During Western Blot analysis for caveolin-1 (Fig. 

2.8), pyocyanin treatment of SK-HEP-1 cells did not alter caveolin-1 mobility.  
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Figure 2.7. Light microscopy and immunohistochemistry of livers from control and 

pyocyanin groups 

Light microscopy of liver sections stained with eosin and haematoxylin staining A 

Control liver, B Pyocyanin treated liver), malondialdehyde immunohistochemistry (C 

Control liver, D Pyocyanin treated liver), 3-nitrotyrosine immunohistochemistry (E 

Control liver, F Pyocyanin treated liver) and caveolin-1 immunohistochemistry (G 

Control liver, H Pyocyanin treated liver) revealed no changes across the hepatic 

lobule with pyocyanin treatment. Immunohistochemical stains appear brown, original 

magnification 100x. 
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Figure 2.8. Western blot analysis for caveolin-1  

SDS page gel run with 20 µl of SK-HEP-1 cells-lysate with 2 µM pyocyanin (Lane 

A), 100 µM pyocyanin (Lane B) or no pyocyanin (Lane D & E); or with 100 µM 

(Lane C) pyocyanin alone and stained for caveolin-1. Lysate, when loaded, was 

always 20 µg/ well (Lane A, B, D & E). Band migration was unaltered for SK-HEP-1 

cell lysate with and without pyocyanin treatment. 

 

 

2.3.9. Blood glutathione and biochemistry 

 

The GSSG to GSSG + GSH ratio was 60 ± 15 % of that seen in controls and was 

statistically insignificant. Serum biochemistry including liver function tests (total 

protein, albumin, ALT, AST, ALP) and analysis of markers of cytolysis (LDH, CK, 

creatinine, K+) showed no significant change with pyocyanin treatment (Table 2.3). 
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Table 2.3. Liver function tests and markers of cytolysis with and without 

 in vivo pyocyanin 

 

 No Treatment 
(n= 5) 

Pyocyanin 
 (n= 7) 

ELECTROLYTES 
Na+ (mmol/ L) 134.5 ± 0.6 134.6 ± 0.4 
Ca++ (mmol/ L) 2.5 ± 0.0 2.7 ± 0.1 
Cl- (mmol/ L) 96.5 ± 0.6 95.6 ± 0.5 
HCO3- (mmol/ L) 28.5 ± 1.0 26 ± 0.9 

LIVER FUNCTION TESTS 
ALP (U/L) 186.6 ± 16.7 174.2 ± 12.2 
ALT(U/L) 69.0 ± 13.7 71.5 ± 8.4 
AST(U/L) 90.6 ± 14.3 120.2 ± 33.4 
Protein (g/L) 52.0 ± 1.2 54.4 ± 1.0 
Albumin (g/L) 33.2 ± 0.8 34.4 ± 0.8 

MARKERS OF CYTOLYSIS 
LDH (U/L) 264.3 ± 24.8 747 ± 227.8 
CK Total (U/L) 832.4 ± 128.0 1642.7 ± 348.2 
Creatinine (mmol/ L) 28.4 ± 1.0 30.2 ± 1.9 
K+ (mmol/ L) 6.4 ± 0.2 5.9 ± 0.2 

 

Serum electrolytes, liver function tests and markers of cytolysis showed no 

statistically significant changes with pyocyanin treatment.  
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2.4. Discussion 

 

This study demonstrates that pyocyanin treatment over a wide range of concentrations 

is associated with a substantial loss of LSEC porosity. Pyocyanin also induces 

significant acute changes in the in vivo liver sinusoidal endothelium without evidence 

that these changes are mediated by reactive oxygen and nitrogen species. These LSEC 

changes were not accompanied by evidence of structural or biochemical 

hepatocellular changes. 

 

Many toxins have been shown to induce LSEC injury. In particular, oxidative stress 

has been shown to have dramatic effects on the morphology of the LSEC. We found 

that H2O2 (0.7 mM) delivered via the portal vein in the perfused liver had effects that 

were largely confined to the perisinusoidal areas (Cogger et al, 2001) and that tert-

butyl hydroperoxide injected into the portal vein in vivo and in isolated LSECs caused 

disruption of the liver sieve plates (Cogger et al, 2004). Regards pyocyanin, Britigan 

and coworkers used spin trapping to show that pyocyanin induced oxidative injury via 

the hydroxyl free radical in pulmonary artery endothelial cells (Britigan et al, 1992; 

Miller et al, 1996).  

 

Pyocyanin-induced H2O2 production by human umbilical vein endothelial cells with 

marked depletion of intracellular glutathione, and these changes were preventable by 

catalase (Muller, 2002). In this study exploring the effects of pyocyanin on isolated 

LSECs, catalase which inactivates hydrogen peroxide to water, prevented pyocyanin-

induced morphological changes in the LSECs, specifically defenestration. In this 

study in intact livers in vivo, portally injected pyocyanin (blood concentration of 11.9 



 92 

µM for 30 min) induced a dose-dependent loss of porosity in isolated LSECs. 

Furthermore, portally injected pyocyanin in vivo led to a significant reduction in 

porosity of the endothelium showing that this effect is seen both in vivo and in vitro. 

In addition, a decrease in endothelial thickness with pyocyanin was noted, a change 

that has not been reported with any other toxic injury to the LSEC. 

 

It is important to note that the ultramicroscopic LSEC changes were present without 

any morphological hepatocellular alterations including mitochondrial morphology and 

frequency or any other signs of hepatocyte injury or oxidative stress. This indicates 

that the LSEC is initial site of injury induced by pyocyanin, and indeed may even 

have a role in protecting hepatocytes from endo- and xenobiotics. There were no 

changes in malondialdehyde and 3-nitrotyrosine immunohistochemistry. A decrease 

in 3-nitrotyrosine immunohistochemical staining was expected because of  previous 

reports incriminating pyocyanin in the inhibition of nitric oxide production (Warren et 

al, 1990) via guanylyl cyclase inhibition (Hussain et al, 1997), but no differences 

accruing with pyocyanin treatment were observed in this study. Likewise, although an 

increase in malondialdehyde immunohistochemistry was expected owing to the 

possibility of increased membrane-lipid peroxidation via H2O2 production with 

pyocyanin treatment (Muller, 2002), no differences were oberved. This is in 

contradistinction to the studies in isolated LSECs where an increase in markers of 

oxidative stress was found. It is plausible that in vivo, hepatocyte-derived antioxidants 

prevented any overall changes in markers of oxidative stress but not sufficient to 

prevent defenestration of the LSEC. Alternatively, it is possible that pyocyanin 

induces defenestration through mechanisms independent of oxidative stress.  
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To explore this possibility, caveolin-1, a membrane protein involved in the 

maintenance of fenestrations, was studied (Braet et al, 2003; Ogi et al, 2003). It has 

been demonstrated that LSEC defenestration, which occurs in models of pathological 

liver states such as cirrhosis (Nopanitaya et al, 1976) and type 1 diabetic liver 

(Jamieson et al, 2007), is accompanied by caveolin-1 overexpression. Similarly, LPS 

which induces defenestration in LSECs (Dobbs et al, 1994), also induces the 

overexpression of caveolin-1 (Kamoun et al, 2006) (Table 2.4). However, there were 

no caveolin-1 immunohistochemical changes with the liver endothelial defenestration 

induced by pyocyanin. The possibility of pyocyanin binding to caveolin-1 or altering 

the properties of caveolin-1 was also investigated. Again, there was no alteration in 

caveolin-1 using an immunoblot method. These results exclude the possibility that 

pyocyanin induces defenestration via any major effects on caveolin-1. Therefore it is 

possible that pyocyanin induces defenestration through mechanisms independent of 

oxidative stress or interaction with caveolin-1. As pyocyanin has been shown to 

influence the expression and secretion of numerous cytokines (Leidal et al, 2001; 

Muhlradt et al, 1986), further investigations into the expression and activity of these 

cytokines may serve to partly or fully unravel the appropriate mechanism (Table 2.4). 

 

The observation that pyocyanin influences endothelial morphology may have 

significant clinical implications. LSECs are important in tolerance induction in liver 

transplantation and rejection of donor livers correlates closely with the presence of 

LSEC antibodies (Sumitran-Holgersson et al, 2004). Furthermore, LSEC responses to 

ischemia-reperfusion injury in the donor organ influences outcome of liver 

transplantation (Shimizu et al, 2001; Sun et al, 2001). Thus damage to the LSEC 

induced by pyocyanin could impact graft outcome and prognosis following 
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pseudomonal sepsis. It has also been reported that hyperlipidemia is an important 

response to sepsis. The mechanism for sepsis-associated hyperlipidemia is 

multifactorial, but impaired catabolism of lipoproteins is a contributory factor (Harris 

et al, 2000; Spitzer et al, 1988). LSECs, which are perforated with fenestrations that 

facilitate the transfer of lipoproteins between blood and hepatocytes, have an 

increasingly recognized role in hyperlipidemia (Fraser et al, 1995). Conditions 

associated with reduced numbers of fenestrations such as ageing (Hilmer et al, 2005) 

and treatment with the surfactant poloxamer 407 (Cogger et al, 2006) are associated 

with impaired lipoprotein uptake by the liver and hypertriglyceridemia. The results 

here with pyocyanin support the concept that hyperlipidemia associated with sepsis 

might in part be a result of LSEC defenestration. Pseudomonal sepsis may cause the 

release of toxins like pyocyanin and LPS which may lead to endothelial changes 

including loss of LSEC porosity, subsequently excluding lipoproteins from the liver, 

leading to lipoprotein retention in the peripheral vasculature. This mechanism may 

account for sepsis-related hyperlipidemia (Fig. 2.9). In the current study, the 30 min 

of pyocyanin exposure would not have been sufficient to cause profound changes in 

blood lipoprotein levels.  

 

In conclusion, the P. aeruginosa toxin, pyocyanin caused loss of fenestrations over a 

range of concentrations in isolated LSECs as well as the in vivo liver endothelium. 

This has potential implications for mechanisms for liver transplantation and for 

hyperlipidemia associated with sepsis. The ultrastructural LSEC changes in the 

absence of hepatocellular injury indicate that the LSEC is a prime target for 

pyocyanin and support the sentinel role of the LSEC in hepatoprotectivity. Pyocyanin-
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induced LSEC changes seen in vivo in the absence of free radical or oxidative stress 

injury points to a novel mechanism for the pathogenesis of P. aeruginosa pyocyanin.  

 

Figure 2.9. Possible pathogenetic mechanism of pseudomonal sepsis-related 

hyperlipidemia 

 
LSEC defenestration in bacterial/ pseudomonal sepsis owing to toxins like pyocyanin 

or LPS may exclude lipoproteins from the liver leading to lipoprotein retention in the 

peripheral vasculature accounting for bacterial/ pseudomonal sepsis-related 

hyperlipidemia. 

 
 
 

 
 

 
 
 
 
 
 
 

Table 2.4 . Possible defenestration mechanisms of pseudomonal agents  

 
 Pseudomonal agent 

inducing defenestration 
Location of 

LSECs in study 
Possible 

mechanism 
Mechanisms 

excluded 
Citations 

1 Pyocyanin Isolated LSECs in 
vitro ROS  - This study 

2 Pyocyanin 
Intact in vivo liver 
sinusoids (this 
study only) 

Cytokines?  
Vasoactive 
mediators? 

ROS, 
caveolin-1 

This study, 

(Leidal et al, 

2001; Muhlradt 

et al, 1986) 

3 
LPS (E. coli LPS- 
structurally similar to 
pseudomonal LPS) 

Isolated LSECs in 
vitro and intact in 
vivo liver sinusoids 

Caveolin-1? 
Vasoactive 
mediators? 

 

(Dobbs et al, 

1994; Kamoun 

et al, 2006) 

 
 

Possible mechanisms behind pseudomonal agent-induced defenestration 

Defenestrated 
 

LSECs 
LSEC layer 

Hepatocyte 

Pseudomonal 
toxin induced 
defenestration 

Space of Disse 

 
Hyperlipidemia of sepsis 

Lipoproteins Lipoproteins 
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3. The effect of old age on liver oxygenation, sinusoidal 

fenestrations and the expression of VEGF and VEGFR2 

 

3.1 Introduction 

 

It has been well established that phase 1 hepatic drug metabolism, which involves 

oxidation, reduction or hydrolysis, is diminished in old age (Herrlinger and Klotz, 

2001; Kinirons and O'Mahony, 2004). These age-related changes could be caused by 

decreased liver perfusion (Schmucker, 2001), oxygen-diffusion barrier secondary to 

age-associated liver pseudocapillarization of the liver sinusoidal endothelial cell (Le 

Couteur et al, 2001), mitochondrial oxidative stress (Sastre et al, 2003) or 

mitochondrial dysfunction (Sastre et al, 1996). In the oxygen diffusion barrier 

hypothesis, it was proposed that the disparity between in vivo and in vitro measures of 

phase I drug metabolism in old age (Herrlinger and Klotz, 2001; Kinirons and 

O'Mahony, 2004), could reflect intrahepatocytic hypoxia because oxygen is an 

essential cofactor for cytochrome P450 enzymes (Le Couteur and McLean, 1998). 

Using 31P-nuclear magnetic-resonance studies on freeze-clamped samples, it was 

reported that aged rat livers have decreased ATP and high-energy phosphate 

metabolite pools, suggestive of hypoxia (Le Couteur et al, 2001). Others have shown 

that livers from old mice have less total ATP (Selzner et al, 2007). However, this was 

associated with diminished oxygen consumption and ATP production by isolated 

mitochondria, which is suggestive of mitochondrial dysfunction rather than hypoxia 

(Selzner et al, 2007). Apart from changes in ATP levels, it has also been reported that 

there is upregulation of several genes and proteins that respond to hypoxia in old age. 
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Using Western Blotting and RT-PCR it was shown that the hypoxia marker Hypoxia 

Inducible Factor-1α (HIF-1α) and hypoxia-responsive products such as Heme 

Oxygenase-1 (HO-1), Vascular Endothelial Growth Factor (VEGF), Erythropoietin, 

and inducible nitric oxide synthase (iNOS) were increased in aged rat liver (Kang et 

al, 2005). Age-related changes in hepatic ATP and oxygenation could be caused by 

decreased oxygen delivery to hepatocytes secondary to either reduced liver perfusion 

(Schmucker, 2001), or an oxygen-diffusion barrier secondary to age-associated 

“pseudocapillarization” of the liver sinusoidal endothelial cell (LSEC) (Le Couteur et 

al, 2001). On other hand, the reduction in ATP might also be secondary to age-related 

mitochondrial oxidative stress (Sastre et al, 2003) or mitochondrial dysfunction 

(Sastre et al, 1996). 

 

Alterations in liver oxygen and ATP will have specific implications for age-related 

changes in the LSECs. Morphological age-related changes in the hepatic sinusoid 

include endothelial thickening, defenestration, basement membrane formation and 

sporadic collagen disposition in the space of Disse, collectively called age-related 

‘pseudocapillarization’ (Le Couteur et al, 2005). Pseudocapillarization impedes 

transfer of substrates such as lipoproteins from the sinusoidal lumen to the hepatocyte 

(Hilmer et al, 2005). Although the normal hepatic sinusoidal endothelium provides an 

insignificant resistance to oxygen transfer (Kassissia et al, 1992; Le Couteur et al, 

1999), there is a significant diffusion barrier to oxygen diffusion posed by the blood 

vessels in cirrhosis (Froomes et al, 2003; McLean and Morgan, 1991) and in normal 

capillaries in other organs (Cho et al, 2001; Rose and Goresky, 1985). It was therefore 

hypothesized that age-related pseudocapillarization might also constitute an oxygen 

diffusion barrier analogous to that seen in cirrhosis (Le Couteur and McLean, 1998). 



 99 

Age-related changes in the LSEC (‘pseudocapillarization’) have been partially 

induced by ATP depletion (Braet et al, 2003). 

 

Furthermore, age-related changes in hepatic oxygen-dependent metabolism and 

oxygenation might contribute to age-related pseudocapillarization of the LSEC. 

Depletion of ATP has been shown to induce marked defenestration of isolated LSECs 

(Braet et al, 2003). Hypoxia also induces VEGF and VEGF receptors. VEGF is a 

potent stimulus for the generation of fenestrations in isolated LSECs (Funyu et al, 

2001) and the VEGFR2 knockout mouse is defenestrated (Carpenter et al, 2005). The 

effects of old age on LSEC ATP levels and liver VEGF and VEGFR2 expression are 

not established but may have implications for the pathogenesis of ageing change in 

the hepatic sinusoid. 

 

Therefore, here it was investigated whether ageing is associated with in vivo hypoxia 

in the aged rat liver. Immunohistochemistry with pimonidazole, and ATP levels in 

isolated LSECs were used to determine the presence of hypoxia in the hepatocytes 

and LSECs, respectively. 2-Nitroimidazoles including pimonidazole have been 

reliably used as in vivo hypoxia markers in a number of systems (Arteel et al, 1998). 

Nitroimidazole-adduct formation, which is increased in regions with low oxygen 

tension, is determined by immunohistochemistry. Staining is substantially increased 

when the intracellular oxygen tension falls below 10 mm Hg (Gross et al, 1995). 

Here, pimonidazole immunohistochemistry was performed on four young (4-month 

old) and six old (2-year old) rats in an attempt to directly visualize and compare the 

distribution and intensity of hypoxic areas in young and old rat livers. The ubiquitous 

synthetic surfactant poloxamer 407 was also used to induce defenestration of the 
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LSEC in livers of young rats (Cogger et al, 2006) in order to determine whether 

structural changes in the LSEC can induce hypoxia and thus test the concept of an 

oxygen diffusion barrier. Poloxamer 407 induces defenestration of the LSEC, 

probably by coating the LSEC cell membrane (Cogger et al, 2006). Finally, the effects 

of age on the expression of VEGF and VEGFR2 were studied because these respond 

to hypoxia (Ferrara, 2004; Ferrara et al, 2003) and also because any changes in their 

expression may shed light on the pathogenesis of pseudocapillarization of the LSEC. 

 



 101 

3.2  Materials and methods 

 

3.2.1. Animal protocols 

 

The studies had approval by the Sydney Southwest Area Health Service Animal 

Welfare Committee. Rats were anesthetized with Ketamine and Xylazine (50 and 5 

mg/kg respectively, Troy Laboratories, Smithfield, Australia) by intraperitoneal 

injection. Blood was collected from the inferior vena cava and the liver removed and 

processed for scanning electron microscopy and immunohistochemistry as described 

previously (Cogger et al, 2001). For the pimonidazole studies to determine the effect 

of ageing on hepatic oxygenation, specific pathogen free male Fisher F344 rats were 

obtained from the National Institute of Aging, Bethesda, Maryland, USA. Young (4 

months, 315-346 g; n = 4) and old (24 months, 322-440 g; n = 6) rats were used. 

Pimonidazole (HP1-1000, Chemicon) was administered by intraperitoneal injection at 

a dose of 120 mg/ kg body weight two hours prior to harvesting the livers. For the 

poloxamer 407 study, male Sprague-Dawley rats (3-4 months, 381-477 g) obtained 

from the Animal Research Centre (Perth, Australia) were used. In this study, 

poloxamer 407 (gifted by BASF Australia Ltd, Sydney, Australia; 1 g/ kg body 

weight, n = 5) was administered in the test rats by intraperitoneal injection 24 hours 

prior harvesting the livers.  
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3.2.2. Immunohistochemistry  

 

Immunohistochemical staining was performed using an indirect polymer 

immunoperoxidase method. Liver specimens were fixed in 4% phosphate buffered 

formalin and embedded in paraffin. Four micrometer sections were deparaffinized in 

xylene (3 × 3 min) and taken to absolute ethanol (3 × 2 min). Endogenous peroxidase 

was blocked by incubating slides in 3% H2O2 in absolute methanol for 10 min at room 

temperature. After hydrating the sections, the slides were heated at 125°C for 4 min in 

a pressure cooker (Decloaking Chamber, Biocare Medical) with epitope retrieval 

buffer and then cooled. This was followed by treatment with goat serum for 5 min. 

The primary antibody was applied and incubated overnight. The primary antibodies 

used were Hypoxyprobe Mab-1 (HP1-1000, Chemicon) for pimonidazole 

immunohistochemistry, mouse monoclonal VEGF antibody (ab1316, Abcam), and 

rabbit polyclonal VEGFR2 antibody (ab2349, Abcam). The epitope retrieval buffers 

used were citrate buffer (0.01 M, pH 6.0) for pimonidazole and VEGF 

immunohistochemistry, and Tris buffer (0.05 M Tris-EDTA, pH 8.0) for VEGFR2 

immunohistochemistry. The slides were washed in Tris wash buffer (0.01 M Tris-

EDTA, pH 7.6). Then the secondary antibody, goat anti-mouse immunoglobulin 

polymer conjugated with horseradish peroxidase (TL-060-HL, LabVision, DKSH 

Australia Pty Ltd.) was applied for 30 min. After buffer wash, the sections were 

treated with diaminobenzidine (DAB) substrate for 5 min treated with 1% CuSO4, 

counterstained with haematoxylin, dehydrated and mounted. Sixteen random 

photographs per blinded slide were taken, graded by four observers blinded to the 

identity of the slides, according to staining distribution (periportal, zone 2, pericentral) 

and intensity of staining (0, +, ++, +++). Subsequently, after reaching a consensus, the 
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resultant grading was semi-quantitatively assessed by using Chi-square analysis for 

intensity differentiation. 

 

3.2.3. Scanning electron microscopy  

 

Scanning electron microscopy was performed as described previously (Cogger et al, 

2001; Le Couteur et al, 2001; McLean et al, 2003). Briefly, liver specimen blocks 1 

mm3 each were fixed with 3 % glutaraldehyde in 0.1 M Na-Cacodylate buffer with 

0.1 M sucrose and post- fixed with 1% osmium tetroxide in 0.1 mol/L Na-cacodylate 

at pH 7.4. They were dehydrated using a graded ethanol series, dried with 

hexamethyldisilazane, and sputter coated with 15- 20 nm of platinum. These were 

examined with a Jeol JSM-6380LV scanning electron microscope (Jeol, Akishima-

Shi, Japan). A total of 12 representative fields from at-least 3 liver blocks per animal 

were photographed at 25000× magnification. Using the photographs thus obtained the 

software program ImageJ (http://rsb.info.nih.gov/ij/) was used to determine 

endothelial porosity, average fenestration diameter, and fenestration density. 

Endothelial porosity, the percentage area of the endothelial surface covered with 

fenestrations is dependent on 2 parameters, the fenestration diameter and the 

fenestration density which is the sum total of the individual area of each fenestration 

in a given field divided by the total area of the field examined, expressed as a 

percentage. 
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3.2.4. LSEC isolation 

 

The method for the isolation of LSECs has been described (Braet et al, 1994; 

Smedsrod et al, 1985). The livers of young and old male F344 rats were perfused with 

collagenase A (Sigma) and the cell suspension centrifuged at 100 × g for 5 min. The 

supernatant, containing a mixture of sinusoidal liver cells, was layered on a 2-step 

Percoll gradient (25–50%) and centrifuged for 20 min at 900 × g. The intermediate 

zone was enriched in LSECs. LSEC purity was enhanced by selective adherence of 

Kupffer cells onto untreated plastic Petri dishes for 5 min. For SEM, LSECs were 

cultivated in 24-multiwell plates on collagen coated Thermanox cover slips in serum-

free culture medium consisting of RPMI-1640 with 2 mmol/l L-glutamine, 100 U/ml 

penicillin, and 100 g/ml streptomycin.  

 

3.2.5. ATP and protein assays 

 

For the determination of cellular ATP, LSECs were plated at 0.8 × 106 cell/ml (100 

�l/well) into clear bottom, opaque wall 96-well tissue culture plates and cultured for 

16 h (37oC/5% CO2) in RPMI-1640 with fetal bovine serum (5%), L-glutamine (2 

mmol/L), penicillin (100 U/mL) and streptomycin (100 g/ml). ATP was assayed using 

a CellTiter-Glo luminescent cell viability assay kit (Promega, Sydney) with an ATP 

standard curve. The luminescent signal was detected using a FluorStar Optima plate 

reader equipped with a luminescence probe. To determine cellular protein content, 

cells were washed twice with PBS to remove serum and protein quantified using the 

bicinchoninic acid protein determination kit (Sigma, Sydney). 
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3.2.6. Statistics 

 

SigmaStat Statistics Software (SPSS Inc, Chicago, IL) was used for statistical 

analysis.  Data are presented as mean ± standard deviation. The Chi-squared test and 

the Mann-Whitney test were used to compare the groups and considered significant 

when P < 0.05. 
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3.3 Results 

 

3.3.1. The effect of old age and poloxamer 407 on pimonidazole staining 

 
Pimonidazole staining was most often encountered in the pericentral region in livers 

from both young and old F344 rats (Fig. 3.1) and staining intensity increased 

manifold between periportal and pericentral region (Fig. 3.2A, 3.2B, 3.3A). This is 

consistent with the decline in sinusoidal oxygen tension as blood flows from the 

portal vein via zone 2 to the central vein. There were no effects of age on the intensity 

or distribution of pimonidazole staining. Furthermore, there was no effect of 

poloxamer 407 on pimonidazole staining in young Sprague Dawley rats, despite the 

induction of significant defenestration of the LSEC (Fig. 3.2C, 3.2D). 

 

3.3.2. The effect of age on LSEC ATP levels 

 

The ATP content of LSECs isolated from livers from old F344 rats (n = 4) was not 

significantly decreased compared to livers from young F344 rats (n = 4): young 

versus old: 3.6 ± 1.4 nmol versus 2.7 ± 1.8 nmol ATP per 106 cells. 

 

3.3.3. The effect of age on VEGF expression 

 

There was no difference in the expression of VEGF between livers from young (n = 

4) and old (n = 6) F344 rats (Fig. 3.3B, 3.4A, 3.4B). Staining was more intense in the 
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pericentral regions than in the periportal regions and paralleled the distribution of 

staining seen for pimonidazole (Fig. 3.3B, 3.3A).  

 

Figure 3.1. Zonal distribution of pimonidazole staining (hypoxic areas) in young and 

old rats 

Zonal distribution of pimonidazole-adduct immunohistochemical staining in young 

and old rat livers. The distribution is depicted as the % of hypoxic liver zones ± SEM. 
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Figure 3.2. Pimonidazole immunohistochemistry of young and old rat livers 

Pimonidazole immunohistochemistry (light microscopic sections 10×) in livers from: 

(A) Young F344 rat; (B) Old F344 rat; (C) Young Sprague Dawley rat; and (D) 

Young Sprague Dawley rat treated with poloxamer 407. There is zonal gradation of 

staining with increased intensity towards the pericentral regions, but no differential 

effect of ageing or poloxamer 407. 
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Figure 3.3. Quantification and comparison of pimonidazole and VEGF staining in 

livers from young and old rats  

Quantification of pimonidazole (A) and VEGF (B) staining in livers from young and 

old rats shows a zonal gradient in intensity of staining from much less than + in the 

periportal region to about ++ (in a scale ranging over 0, +, ++, +++) in the pericentral 

zone. The intensity of pimonidazole and VEGF immunohistochemical staining in 

young and old rat livers are expressed in arbitrary units ± SEM. There was no 

statistically significant effect of age on the intensity of staining pimonidazole and 

VEGF. 

 

 



 110 

3.3.4. The effect of age on VEGFR2 expression 

 

The intensity of sinusoidal and perisinusoidal staining for VEGFR2 was significantly 

increased (P < 0.001) in the livers from old F344 rats (2.5 ± 0.9; Fig. 3.4D, 3.4F; n = 

6) when compared to livers from young F344 rats (1.1 ± 1.1; 3.4C, 3.4E; n = 4). On 

higher magnification (Fig 3.4E, 3.4F), it was observed that there is both increased 

diffuse staining in the LSECs and punctate expression along the sinusoids, possibly in 

LSECs or Kupffer cells or stellate cells. 

 

3.3.5. Scanning electron microscopy 

 

Total fenestration porosity was reduced in the old F344 rats (young 3.4 ± 1.2 %; n = 4 

versus old 2.9 ± 1.5 %; n = 6), P < 0.05, as represented in Fig. 3.4A, 3.4B, with a 

trend towards reduction in fenestration diameter (young 75 ± 11 nm versus old 72 ± 

11 nm, P = 0.07).  

 

Poloxamer 407 reduced the porosity in Sprague Dawley rats (rats without poloxamer 

407, 3.0 ± 1.7 %; n = 5 versus rats with poloxamer 407, 2.2 ± 1.0 %; n = 5), P < 

0.005, as represented in Fig. 3.4C, 3.4D, with no statistically significant effect on 

diameter (80 ± 12 nm versus 77 ± 12 nm, P = 0.2). 
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Figure 3.4. Immunohistochemistry (light microscopic sections 10×) for VEGF and 

VEGFR2 in livers from young and old rats  

Immunohistochemistry (light microscopic sections 10×) for VEGF in livers from 

young (A) and old (B) rats does not show any significant change. 

Immunohistochemistry for VEGFR2 shows in an increase in expression in old (D) 

versus young (C) livers. On higher magnification (40×), the increase in VEGFR2 

expression appears to be related to an increase in staining in liver sinusoidal 

endothelial cells as well as punctate perisinusoidal staining in old (F) versus young 

(E) livers. The full arrow points to a stained sinusoid, the interrupted arrow to a 

stained stellate cell and the arrow-head to a cell displaying Kupffer cell morphology. 
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Figure 3.4. Scanning electron micrographs of sinusoids from livers from young and 

old rat livers as well as young rat livers untreated or treated with poloxamer 407 

Scanning electron micrographs (25000×) of sinusoids from livers from young and old 

rat livers. There is a reduction in number of fenestrations (arrows) in young F344 rats 

(A) compared with old rats (B). Administration of poloxamer 407 reduced the number 

of fenestrations in young control Sprague Dawley rats: (C) Liver from control rat; (D) 

Liver from rat administered Poloxamer 407. The full arrow points at a sieve-plate 

circumscribing many fenestrations. The arrow-head indicates a single fenestration. 
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3.4. Discussion 

 

The role of oxygen in ageing has been studied widely but primarily with respect to its 

role in free radical formation and oxidative stress. Tissue hypoxia secondary to 

vascular disease occurs with ageing (Katschinski, 2006). However there are also a few 

studies directly suggestive of impaired tissue oxygenation in old age. For example in 

the aged kidney, an increase in tissue hypoxia has been detected using pimonidazole 

staining (Tanaka et al, 2006). In the liver, indirect evidence for possible hypoxia 

comes from studies reporting lower levels of ATP measured in liver samples (Le 

Couteur et al, 2001; Selzner et al, 2007) and upregulation of hypoxia-responsive 

genes (Kang et al, 2005). It was suggested that age-related change in the in vivo 

activity of cytochrome P450 enzymes might be evidence of diminished hepatocyte 

oxygenation. Importantly it was hypothesized that age-related pseudocapillarization 

of the liver sinusoidal endothelium might impair oxygen diffusion from the blood to 

the hepatocytes (Le Couteur and McLean, 1998), somewhat similar to the oxygen 

limitation theory of cirrhosis of the liver (McLean and Morgan, 1991). However, in 

this study no evidence was found of intrahepatocytic hypoxia as assessed by 

pimonidazole immunohistochemistry. In addition the effects of the synthetic 

surfactant, poloxamer 407 which reduces fenestrations in the LSEC probably by 

coating the sinusoidal cell membrane (Cogger et al, 2006) was investigated. Although 

this induced a 30% reduction in fenestration porosity with poloxamer 407, it was not 

associated with any change in pimonidazole staining, indicating that convective flow 

of oxygen in plasma through fenestrations is not a rate-limiting step for hepatocyte 

oxygenation. These results do not support the concept of an oxygen diffusion barrier 

generated by age-related changes in the liver sinusoids or LSECs. Therefore, it can be 
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concluded that pseudocapillarization does not pose any significant barrier to oxygen 

uptake and that the age-related decline in ATP in the liver is most likely secondary to 

impaired mitochondrial function. The question arises as to alternate mechanisms for 

the age-related decrease in liver ATP levels. This is possibly attributable to decreased 

liver mass (Schmucker, 2001), mitochondrial oxidative stress (Sastre et al, 2003) or 

mitochondrial dysfunction (Sastre et al, 1996) in aged livers rather than intracellular 

hypoxia. The increased expression of HIF-1α and hypoxia-responsive genes observed 

earlier in the old rat liver (Kang et al, 2005) is unlikely to be secondary to hypoxia, 

and presumably is secondary to other age-related processes such as increased 

production of free radicals. 

 

Pimonidazole has been used to assess hypoxia in many tissues including the liver 

(Arteel et al, 1997; Arteel et al, 1996; Arteel et al, 1995) and nitroimidazole staining 

becomes intense when cellular oxygen partial pressure falls below 10 mmHg (Gross 

et al, 1995). Most staining was in the pericentral region, with a clear gradient of 

intensity from the periportal to pericentral region. Most other studies in the normal 

liver have also shown staining confined to the pericentral region (Arteel et al, 1997; 

Arteel et al, 1995; Rosmorduc et al, 1999; Zhong et al, 2001), which is consistent with 

the loss of oxygen as blood flows down the hepatic sinusoid. Given that hypoxia is a 

potent stimulus for VEGF expression, it would be expected that there is a sinusoidal 

gradient in VEGF that corresponds with pimonidazole staining. Indeed increased 

VEGF expression was seen mostly in the pericentral hepatocytes, which are more 

hypoxic. There have been some similar reports (Corpechot et al, 2002; Maharaj et al, 

2006; Turley et al, 1998), but also a few other reports that failed to find any such 

lobular gradient (Donahower et al, 2006; Ishikawa et al, 1999; Nyska et al, 2002). In 
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this study, the zonal gradation seen in VEGF expression (increasing from the 

periportal zone towards the pericentral zone via zone 2) is consistent with the zonal 

gradation in sinusoidal oxygenation evident in our pimonidazole 

immunohistochemical studies, as well as the metabolic zonal gradation observed in a 

number of previous studies (Jungermann and Kietzmann, 1996; Jungermann and 

Kietzmann, 2000). 

 

The association between ageing and VEGF is of considerable interest because of the 

significant effects it has on new vessel growth. However, the effects of old age on 

VEGF expression are inconsistent, with reports in different tissues of both increased 

expression (Tanaka et al, 2006), and decreased expression (Di Giulio et al, 2005; 

Picciotti et al, 2004; Ryan et al, 2006). In the liver VEGF is especially important 

because of its effects on the LSEC and fenestrations. Hepatocytes produce VEGF and 

the LSECs express both VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-

1) where VEGFR2 is the main receptor mediating permeability effects and is 

expressed only on endothelial cells (Ferrara, 2002; Funyu et al, 2001; LeCouter et al, 

2003). Treatment of LSECs with VEGF increases fenestrations two- to fourfold 

(Funyu et al, 2001; Yokomori et al, 2003). On the other hand genetic downregulation 

of VEGFR2 causes a loss of endothelial lining (Gerber et al, 1999) and disrupted 

sinusoids with reduced numbers of fenestrations (Carpenter et al, 2005). Old age is 

associated with marked changes in the LSEC that have been called 

‘pseudocapillarization’ (Le Couteur et al, 2001), including increased thickness of the 

LSEC, reduced fenestrations and altered expression of various endothelial antigens 

and stains (Cogger et al, 2003; Le Couteur et al, 2001; McLean et al, 2003). Therefore 

it was plausible that any age-related reduction in VEGF production by hepatocytes 
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might be important in the pathogenesis of pseudocapillarization. Using Western 

blotting and RT-PCR, it has been reported that VEGF expression is increased in old 

age in the rat (Kang et al, 2005).  However, age-related changes in VEGF in the liver 

were not seen using immunohistochemistry. Whether VEGF is unchanged or 

increased in old age, age-related pseudocapillarization is not secondary to a reduction 

in VEGF production by hepatocytes in old age.  

 

However, there was an increase in the sinusoidal expression of VEGFR2 in the old 

livers and almost no expression in the livers of young animals. The expression in the 

old livers was evident as diffuse staining along the sinusoids almost certainly within 

the LSECs and there was also some perisinusoidal punctate staining. VEGFR2 is 

found exclusively in endothelial cells (Quinn et al, 1993) and in the normal liver, 

VEGFR2 is expressed mostly in the larger vessels, however becomes expressed in the 

LSECs following partial hepatectomy. Recently stellate cells have been reported to 

express both VEGF receptors with upregulation of VEGFR1 following hypoxic 

stimuli (Ankoma-Sey et al, 2000). Our results indicate that old age is also associated 

with upregulation of VEGFR2 in the LSEC. The punctate staining might represent 

either karyomegalic endothelial cells (Nyska et al, 2002), or stellate cells which are 

increased and fat-engorged in old age (Tanuma and Ito, 1978; Vollmar et al, 2002; 

Warren et al, 2005; Yokoi et al, 1984), or Kupffer cells (Yamaguchi et al, 2000). The 

effects of age on VEGFR2 expression have rarely been reported. Expression was 

reported to be unchanged in the inner ear (Picciotti et al, 2004) and increased in the 

corpus cavernosum (Neves et al, 2006). In the liver, genetic downregulation of 

VEGFR2 is associated with defenestration (Carpenter et al, 2005) therefore it is 

unlikely that the age-related increase in VEGFR2 expression is involved in the 
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pathogenesis of pseudocapillarization where fenestrations are reduced in size and 

probably diameter (Le Couteur et al, 2001; McLean et al, 2001). On the other hand, it 

is possible that the increase in VEGFR2 is a compensatory response, perhaps 

attempting to increase fenestrations in response to pseudocapillarization. 

 

Finally the effect of ageing on ATP levels in LSECs was determined. Previously a 

reduction of ATP in whole liver homogenates has been seen (Le Couteur et al, 2001). 

Furthermore, we also found that depletion of ATP by antimycin A caused a marked 

loss of fenestrations in isolated LSECs (Braet et al, 2003). Here we found that old age 

was not associated with any reduction in ATP levels in isolated LSECs. It should be 

noted that the isolation and culture of LSECs may have differential effects in old age 

and the measurement of ATP in isolated LSECs may not represent levels seen in vivo. 

Even so, our results suggest that mitochondrial function is reasonably well preserved 

in old age in this cell type and that ATP depletion is unlikely to be a contributory 

factor in the development of pseudocapillarization. 

 

In conclusion, old age is not associated with hepatocyte hypoxia, LSEC ATP 

depletion or changes in VEGF expression. However, VEGFR2 expression along the 

sinusoids is increased. Therefore age-related reduction in liver ATP levels is more 

likely secondary to mitochondrial dysfunction rather than deficits in oxygen delivery. 

There are no changes in LSEC ATP and hepatocyte production of VEGF that would 

contribute to the pathogenesis of pseudocapillarization of the LSEC. The increase in 

VEGFR2 may reflect a response to age-related pseudocapillarization. 
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Table 3.1. Possible  mechanisms and outcomes of age-related hepatic 

pseudocapillarization  

 

Parameters altered with age 

Reviewed in (Le Couteur et al, 2008) 

Relevant 

citations 

Possible mechanisms 

Reviewed in (Le Couteur et al, 2006) 

Relevant 

citations 

Lipoprotein uptake and 

metabolism 

(Hilmer et al, 2005) Primary ageing 

(Le Couteur et al, 

2001) 

Protein and drug uptake 

(Brouwer et al, 1985; 

Ito et al, 2007) 
Systemic vascular disease (Lakatta, 2003) 

Endocytosis (Ito et al, 2007) Mitochondrial parameters (Sastre et al, 2000) 

Immunotolerance 

(Hilmer et al, 2007; 

Ito et al, 2007) 
Dietary factors 

(Clark et al, 1988; 

Fraser et al, 1995) 

Normal adhesion molecule 

expression 

(Ito et al, 2007; Le 

Couteur et al, 2001) 

Age-related vascular 

inflammation 

(Brod, 2000; Hager 

et al, 1994; Paolisso 

et al, 1998) 

Normal hepatic perfusion 

(Brouwer et al, 1985; 

Ito et al, 2007) 

Gram-negative bacterial 

toxic and immune insult 

This study , (Dobbs 

et al, 1994) 

  Occult liver disease  
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Chapter 4 

 

Scanning electron microscopic analysis 

of two models of altered liver sinusoidal 

porosity: Diabetes mellitus 1 and 

Calorie-restriction 
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4. Scanning electron microscopic analysis of two models of 

liver sinusoidal porosity intervention: Diabetes mellitus 1 

model and Calorie-restriction model 

 

These two studies were led by Dr. Hamish Jamieson. My contribution to these studies 

was to process baboon and rat liver specimens, perform scanning electron microscopy 

on processed liver specimens, scanning electron micrograph morphometry and 

statistical analysis. These components were pivotal to the studies. 
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4.1. Scanning electron microscopic analysis of baboon livers: Diabetes mellitus 1 

model 

 
 

4.1.1. Introduction  

 

Though diabetes mellitus is associated with extensive vascular pathology, little is 

known about its long-term effects on the liver sinusoidal endothelial cell (LSEC). 

Potential diabetic changes in the LSEC are important because of the role of 

fenestrations in the LSEC on the hepatic disposition of lipoproteins. The vascular 

complications of diabetes mellitus are well established and have major clinical 

significance (Singleton et al, 2003). However, little is known about the effects of 

diabetes mellitus on the hepatic microvasculature. In the introductory chapter of this 

thesis, the hepatic microvasculature was described to encompass innumerable porous 

web-like sinusoids that connect afferent portal triads to exiting central hepatic 

venules. These sinusoids form the rich capillary network of the liver, permitting the 

copious hepatic blood flow to flow slowly and intimately between the hepatocyte 

layers (Fraser et al, 1995; Le Couteur et al, 2005). In diabetes mellitus, LSEC 

fenestrations appear to act as conduits for the transfer of some lipoproteins, especially 

chylomicron remnants, between the blood and hepatocytes (Fraser et al, 1995; Le 

Couteur et al, 2002). In old age, there is a substantial loss of fenestrations in the LSEC 

(Cogger et al, 2003; Le Couteur et al, 2001; McLean et al, 2003; Warren et al, 2005), 

which impairs lipoprotein transfer to the hepatocyte (Hilmer et al, 2005). This 

provides a mechanism for age-related impairment in chylomicron remnant clearance 

and post-prandial hypertriglyceridemia, and thus might contribute to the enhanced 

vascular risk of older people (Le Couteur et al, 2002). As such, there are potential 
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parallels with dyslipidemia in diabetes mellitus (Adiels et al, 2006; Battula et al, 

2000; Mamo et al, 1993). The paucity of research into the effects of diabetes mellitus 

on the LSEC probably reflects the considerable risk of liver biopsy in humans. 

Furthermore, many experimental animal models do not fully reflect the metabolic 

changes seen in humans with diabetes mellitus (Goldberg and Dansky, 2006; 

Heffernan et al, 1995). The Australian National Primate colony has a long established 

non-human primate colony (Papio hamadryas) in which type 1 diabetes mellitus was 

induced using streptozotocin administered at an average two years of age (Heffernan 

et al, 1995). Streptozotocin destroys the insulin secreting beta cells of the pancreas 

and creates a hypoinsulinemic, hyperglycaemic state that is similar to type 1 diabetes 

mellitus (Rees and Alcolado, 2005). In many animal models, streptozotocin-induced 

diabetes mellitus has been shown to closely resemble that seen in humans (Heffernan 

et al, 1995) and is generally considered to be an excellent model for the study of type 

1 diabetes (Szkudelski, 2001). The hyperglycaemia in these baboons is partly 

controlled with once daily insulin injections to avoid weight loss and it has been 

possible to obtain a degree of control of type 1 diabetes similar to that in less well 

controlled humans with type 1 diabetes (Heffernan et al, 1995). The diabetic baboons 

have non-diabetic aged-matched controls. Previous data from this same baboon 

colony from the kidney and peripheral nerves has led the researchers to the conclusion 

that the structural and functional changes are similar to those seen in human diabetes 

and different from that of diabetic rats (Birrell et al, 2002; Heffernan et al, 1996). In 

this study, open liver biopsies from diabetic baboons and age-matched controls were 

obtained in order to study the effects of chronic, insulin-treated type 1 diabetes 

mellitus on the ultrastructure of the hepatic microvasculature. The key objective of 

this study was to determine whether diabetes mellitus influences fenestrations in the 
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LSEC because of potential mechanistic implications for diabetic dyslipidemia. 

Surgical liver biopsies for electron microscopy were obtained from baboons with 

long-standing streptozotocin-induced and insulin-treated diabetes mellitus and 

compared with age-matched controls using scanning electron microscopy. 
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4.1.2. Materials and methods  

 

4.1.2.1. Animal protocols and specimen collection 

 

Baboons (Papio hamadryas) were recruited from the National Baboon Colony, 

Sydney, Australia. The animals are members of a breeding colony of P. hamadryas. 

Streptozotocin (60mg/kg, intravenous) had been injected into the baboons at an 

average two years of age to create a diabetic state (Birrell et al, 2002; Heffernan et al, 

1996; Heffernan et al, 1995). Capillary blood glucose levels are measured second 

daily in the diabetic baboons and subcutaneous insulin (human regular and ultralente, 

approximately a total of 4 units) is administered daily according to the trend of 

glucose levels and the glycated hemoglobin (HbA1c) level. The overall target levels 

are a random plasma glucose level of 15 to 30 mmol/L and HbA1c level from 8.0 to 

10.0%, reflecting sub-optimally controlled human type 1 diabetes. All animals are 

housed in family groups and are fed a standard diet and are under the supervision of 

experienced veterinarians. Ethics approval for this procedure was obtained from the 

Central Sydney Area Health Service Animal Welfare Ethics Committee and in 

accordance with the Principles of Laboratory Animal Care (NIH Publication 85-23, 

revised 1985). Four diabetic baboons aged ten to fifteen years, with diabetes duration 

of approximately 10 yrs, were randomly chosen from the colony. Four non-diabetic 

control animals were matched with the diabetic baboons based on age and body 

weight. They were fasted on the night before the procedure. Intramuscular ketamine 

was used to induce general anaesthesia. A 1 cm3 open liver biopsy was taken by an 

experienced human and primate surgeon. Approximately one third of the liver biopsy 

was fixed in 4% phosphate buffered paraformaldehyde. The remaining liver was 



 125 

perfusion-fixed for electron microscopy as previously published (Cogger et al, 2003). 

An aliquot (1-2 ml) of fixative (2% glutaraldehyde and 3% paraformaldehyde in 0.1 

M sodium cacodylate buffer 0.1 M sucrose, 2 mM CaCl2) was injected slowly into the 

liver sample using a 25G needle until the tissue hardened. 

 

4.1.2.2. Scanning electron microscopy 

 

Fixed liver tissue was treated with 1% osmium, dehydrated in an ethanol gradient to 

and incubated for ten minutes in hexamethyldisilazane (Sigma, St Louis, MO). 

Samples were mounted, and then splutter-coasted with gold. Specimens were 

visualized using a Joel JSM 6380 scanning electron microscope. Twelve random 

sinusoids, at 25000 times magnification, were photographed from each liver. All 

scanning electron micrographs were analysed using ImageJ (http://rsb.info.nih.gov/ij/) 

to determine endothelial porosity, average fenestration diameter and fenestration 

density. 

 

4.1.2.3. Statistics 

 

Results are expressed as mean ± standard error of the mean. Comparisons of the blood 

results and electron microscopy data were performed using either the Students t-test 

or Mann-Whitney rank sum test for nonparametric data. Differences were considered 

significant when P < 0.05.  
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4.1.3. Results  

 

4.1.3.1. Age, weights and blood results 

Diabetic and control animals were well matched for body weight and age (Table. 4.1). 

Fasting bloods showed significantly elevated HbA1c and glucose in the diabetic 

group. Plasma triglyceride levels were increased substantially (P < 0.05). 

 

Table 4.1. Age, weight and blood tests for control and diabetic baboons 

 

 Controls Diabetics P Value 
Age (years) 12.8 ± 2.21 12.8 ± 2.0 ns 
Weight  (kilograms) 22.3 ± 1.2 21.2 ± 2.7 ns 
Glycated haemoglobin (%) 3.6 ± 0.25 7.8 ± 0.7 P < 0.05 
Random plasma glucose (mmol/L) 9.2 ± 2.2 31 ± 6.2 P < 0.05 
Cholesterol (mmol/L) 2.3 ± 0.4 2.8 ± 0.2 P < 0.05 
Triglycerides (mmol/L) 0.3 ± 0.1 2.3 ± 0.65 P < 0.05 

 

Fasting bloods showed statistically significantly elevation of HbA1c, glucose and 

triglyceride. 
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4.1.3.2. Scanning electron microscopy 

 

 The porosity of the LSECs was significantly reduced to nearly one half in the 

diabetic livers (1.4 ± 0.1% versus 2.6 ± 0.2%, P < 0.01, Table. 4.2, Fig. 4.1). This was 

secondary to both a reduction in fenestration diameter and frequency. 

 

Table 4.2. Ultrastructural sinusoidal changes in control versus diabetic baboons 

 

 Controls Diabetics P Value 
Porosity (%) 2.6 ± 0.2 1.4 ± 0.1 < 0.01 
Fenestration diameter (nm) 50 ± 1 43 ± 1 < 0.01 
Fenestration frequency (per µm2) 12.1 ± 0.8 7.8 ± 0.8 < 0.01 
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Figure 4.1. Scanning electron microscope images of liver sinusoids of 

diabetic and age-matched control baboons  

Scanning electron microscope images (20000×) of liver sinusoids in diabetic baboon 

(A) and age-matched control (B). There are fewer fenestrations (→) in the diabetic 

livers.  

 

 

 

Sinusoidal porosity in diabetic rat livers was reduced to nearly 50% of the age- and 

weight- matched controls (P < 0.01). This was secondary to both a reduction in 

fenestration diameter and frequency. 
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4.1.4. Discussion 

 

The streptozotocin-induced diabetic Papio hamadryas baboon colony has proven to 

be a very useful animal model for the study of type 1 diabetes mellitus (Birrell et al, 

2002; Heffernan et al, 1996; Heffernan et al, 1995). In this study, data are presented 

from middle-aged baboons (approximately 13 yrs of age compared with maximum 

life expectancy of 25-30 yrs) that have been treated with insulin for over a decade. 

Blood results revealed the expected features of diabetes mellitus such as elevated 

glucose, HbA1c and markedly elevated triglycerides.  

 

This study focused on the effects of diabetes on the LSEC because recent reports 

indicate an association between pathological changes in the LSEC and dyslipidemia 

(Fraser et al, 1995; Hilmer et al, 2005; Le Couteur et al, 2002). In the diabetic livers, 

the porosity of fenestrations was reduced by about 50%. These are substantial changes 

and are of a similar magnitude to those reported in old age (Cogger et al, 2003; Le 

Couteur et al, 2001; McLean et al, 2003; Warren et al, 2005). The ultrastructural 

changes noted confirm that diabetes mellitus is associated with significant changes in 

the hepatic sinusoid and LSEC. 

 

Although the microvascular complications of diabetes mellitus are well established 

(Singleton et al, 2003), there have been few previous reports of the effects of diabetes 

mellitus on the hepatic microvasculature or that have specifically studied LSEC 

fenestrations. Berneau and colleagues (Bernuau et al, 1982) studied liver biopsies of 

12 insulin-dependent diabetic patients aged 23-56 years. Moderate increases in 

collagen and basal lamina deposition in the space of Disse were reported compared 
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with slightly younger subjects with unconjugated hyperbilirubinemia (aged 31-42 

yrs). Perisinusoidal deposition of collagen was noted, both in the diabetic and non-

diabetic BB rats (Bernuau et al, 1985). In both these reports, the endothelial cells were 

stated to be unaffected. On the other hand, a pilot scanning electron microscopy study 

of rats 8 months after administration of streptozotocin found a small but significant 

increase in fenestration diameter and a reduction in fenestration frequency (Jamieson 

et al, 2001).  

 

This study demonstrates that diabetes mellitus is associated with liver sinusoidal 

defenestration. This has potential implications for liver function, particularly the 

hepatic clearance of lipoproteins such as chylomicron remnants (Fraser et al, 1995). 

One of the initial steps in the metabolism of lipoproteins is that chylomicron remnants 

pass through fenestrations into the Space of Disse for receptor-mediated uptake and 

subsequent processing in hepatocytes. This study demonstrated the strong association 

between loss of porosity and loss of fenestrations with impaired lipoprotein transfer 

across the liver sinusoidal endothelium. Lipoproteins of an average diameter of 56 nm 

freely cross the liver endothelium in young rats. However defenestration associated 

with old age (Hilmer et al, 2005) and treatment with a surfactant, poloxamer 407 

(Cogger et al, 2006) is associated with impaired transfer of lipoproteins and 

hypertriglyceridemia. Delayed chylomicron remnant clearance and subsequent 

postprandial hypertriglyceridemia are features of type I diabetes (Adiels et al, 2006; 

Battula et al, 2000; Mamo et al, 1993). It is thus possible that the substantial loss of 

fenestrations may contribute to this dyslipidemia. A possible explanation as to the 

cause of these changes involves oxidative stress, which is increased in diabetes 
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(Ceriello, 2006), also has marked effects on the structure of the LSEC (Cogger et al, 

2001; Cogger et al, 2004). 

 

In conclusion, there are significant diabetes-related hepatic microvascular changes, 

namely defenestration of the liver sinusoidal endothelium. Such changes are likely to 

have a significant effect on liver function and the clearance of many components of 

the blood, including lipoproteins. This could contribute to the pathogenesis of 

systemic macrovascular disease associated with diabetes mellitus. 
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4.2. Scanning electron microscopic analysis of rat livers: Calorie-restriction 

model 

 

4.2.1. Introduction 

 

The implications of age-related impairment in liver function are well recognized (Le 

Couteur et al, 2005; Schmucker, 2005). One mechanism for this change is age-related 

alterations in the ultrastructure of the liver sinusoidal endothelium (Le Couteur et al, 

2005). The liver sinusoidal endothelium of young adults is very thin and perforated by 

fenestrations. In old age, there is a 30-50% reduction in the area of the endothelium 

perforated by fenestrations (‘porosity’). This is associated with increased endothelial 

thickness and extracellular matrix in the space of Disse, including collagen and basal 

lamina (Cogger et al, 2003; Le Couteur et al, 2001; McLean et al, 2003; Warren et al, 

2005). All of these age-related changes have been termed age-related 

pseudocapillarization, reflecting the shift to a typical capillary morphology. The 

thickened endothelium and defenestration are likely to reduce the transfer of many 

substrates between the sinusoid and hepatocytes (Le Couteur et al, 2005), particularly 

lipoproteins (Hilmer et al, 2005; Le Couteur et al, 2002). It was recently shown that 

the loss of fenestrations in old age impedes the transfer of some lipoproteins from the 

blood to the hepatocytes, which provides a mechanism for age-related postprandial 

hypertriglyceridemia and impaired chylomicron remnant clearance (Hilmer et al, 

2005; Huet and Villeneuve, 2005). Therefore it is of therapeutic interest to determine 

whether pseudocapillarization is preventable through the effects of caloric restriction 

(CR). 
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CR increases longevity and those physiological and pathological changes delayed by 

CR are generally considered to be an integral part of the ageing process (Ingram et al, 

2004; Masoro, 2005; Sinclair, 2005). Reducing caloric intake delays the onset of age-

related diseases and increase maximum lifespan by between 20% and 40% in many 

species (Everitt et al, 2005). CR influences lipoprotein profiles and the onset of 

vascular disease in animal models (Zhu et al, 2004) and similar effects have replicated 

in short term studies in humans (Heilbronn et al, 2006). 

 

One mechanism for the effects of CR on lipoprotein metabolism and susceptibility to 

vascular disease might be related to its effects on the liver sinusoidal endothelium (Le 

Couteur et al, 2001). The liver sinusoidal endothelium is exquisitely sensitive to 

oxidative stress (Cogger et al, 2001; Cogger et al, 2004) and other toxic insults 

(McCuskey, 2006). Thus, it is plausible that the structure of the liver sinusoidal 

endothelium may be profoundly influenced by the quantity of the dietary load, with its 

concomitant oxidants and toxins delivered to it via the portal vein. The study 

described here assessed whether CR reduces age-related pseudocapillarization of the 

liver sinusoidal endothelium. 

 

Since age-related hepatic pseudocapillarization may contribute to the pathogenesis of 

dyslipidemia and since CR is a powerful model for the study of ageing as it extends 

lifespan; assessment of the effects of CR on the hepatic sinusoid was done to 

determine whether pseudocapillarization is preventable. This may unravel a possible 

novel target for the prevention of age-related dyslipidemia.  
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4.2.2. Materials and methods  

 

4.2.2.1. Animal protocols and specimen collection 

 

Young (6 months) and old (24 month) CR and AL Fisher F344 rats were obtained 

from the National Institute on Aging (Baltimore, Maryland) derived from stock from 

the National Institutes of Health and Harlan Sprague Dawley Inc. The rats were 

specific pathogen free. They were barrier maintained with a 12-hour light/dark cycle 

and fed sterilized NIH 31 rat chow. CR was started at weaning and increased at 10% 

per week. Forty percent CR was reached at 2.5 months. The CR rats were then 

maintained on a 40% CR diet. The research had the ethical approval of the Animal 

Care and Users Committee of the National Institute on Aging. 

 

The liver samples were obtained from these rats under anesthesia with pentobarbital 

(60 mg/kg, I.P.). Segments of the liver were perfused for 10 min with electron 

microscope fixative solution (3% glutaraldehyde, 2% paraformaldehyde, 2 mM 

calcium chloride, 1% sucrose in 0.1 M sodium cacodylate buffer). Following fixation, 

1 mm3 samples were taken, post-fixed, washed and then stored in 0.1M sodium 

cacodylate buffer at 4°C.  

 

4.2.2.2. Scanning electron microscopy 

 

Preparations of samples for scanning electron microscopy was performed as 

previously described (Cogger et al, 2003; Le Couteur et al, 2001; Warren et al, 2005). 

Fixed tissue was treated with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer 
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for two hours, dehydrated in an ethanol gradient and treated for 10 minutes in 

hexamethyldisilazane (Sigma, St Louis, MO). Six random samples from each liver 

were sputter-coated with gold. Samples were examined using a Joel JSM 6380 

Scanning electron microscope. Ten random sinusoids (magnification × 25000) were 

photographed from each liver. Analysis of porosity, fenestration diameter and 

fenestration frequency was made using the ImageJ image analysis program obtained 

from NIH (http://rsb.info.nih.gov/ij/). The total numbers of fenestrations counted in 

the scanning electron microscopic study were 2777 for young AL, 6291 young CR, 

6290 for old AL and 5114 for old CR rats.  

 

4.1.2.3. Statistics 

 

Results of the image analysis are presented as the mean of the values for each field 

analyzed ± standard error of the mean. The P values reported are those derived from 

the Student-Newman-Keuls method if one-way ANOVA showed a significant 

difference (P<0.05) between the observations in the four groups. Two-way ANOVA 

was used to analyse the interaction between age and response to caloric restriction. 

Statistical calculations were performed using Sigmastat version 2.03 (SPSS Inc, CA). 
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4.2.3. Results  

 

4.2.3.1. Animal particulars 

 

The liver and body weights are shown in Table. 4.3. Liver weight was significantly 

lower in the CR rats both at 6 and 24 months of age. Five out of eleven old AL rats 

and one out of five old CR rat were excluded from all analyses because of the 

presence of an extensive myeloproliferative infiltrate in the liver and spleen with 

substantial splenomegaly that has been reported to occur very frequently in old F344 

rats (Sass et al, 1975). 

 

Table 4.3. Liver and body weights for the young and old, CR and AL F344 rats 

 

 

 

 

 

 

 

 

 

Parameter Young AL 
(n=5) 

Young CR 
(n=5) 

Old AL 
(n=6) 

Old CR 
(n=4) 

Body weight (g) 368 ± 12 214 ± 4 396 ± 21 291 ± 11 
Liver weight (g) 10.9 ± 1.1 5.1 ± 0.4 13.1 ± 0.9 6.9 ± 0.6 
Liver weight 
(% of body weight) 

3.0 ± 0.2 2.4 ± 0.2 3.3 ± 0.1 2.4 ± 0.1 
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4.2.3.2. Scanning electron microscopy 

 

The results of the image analysis of the electron microscopy are shown in Table 4.4 

and representative micrographs are shown in Fig. 4.2. Old age was associated with 

reduced fenestration porosity in AL rats. CR rats had greater porosity than AL rats at 

both 6 and 24 months of age. Two-way ANOVA showed there was a significant 

difference between the four groups (P<0.001); both age and CR influenced porosity 

(P<0.001 for both); and age did not influence the response to CR (ns). The changes in 

fenestration porosity appeared to be mediated mostly by changes in the frequency of 

the fenestrations rather than their diameters (Table. 4.4).  

 

Table 4.4. Scanning electron micrograph analysis of the effects of ageing and CR on 

the liver sinusoidal endothelium 

 

 

Old AL was significantly less than young AL (P < 0.001) and old CR (P < 0.001). 

Young CR was significantly greater than young AL (P < 0.001). 

 

Parameter Young AL Young CR Old AL Old CR 
Porosity (%) 3.4 ± 0.3 4.3 ± 0.2 2.4 ± 0.1 3.9 ± 0.3 
No. of Fenestrations/ µm2 8.0 ± 0.6 10.8 ± 0.8 6.3 ± 0.4 10.9 ± 0.6 
Fenestration Diameter (nm) 68 ± 1 67 ± 1 66 ± 2 62 ± 1 
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Figure 4.2. Scanning electron microscope images of sinusoids of young CR 

(YCR), young AL (YAL), old CR (OCR) and old AL (OAL) rats  

Scanning electron micrographs (25000×) of livers from young CR (YCR), young AL 

(YAL), old CR (OCR) and old AL (OAL) rats. Old age was associated with reduced 

fenestration porosity in AL rats. CR rats had greater porosity than AL rats at both 6 

and 24 months of age.  
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4.2.4. Discussion 

 
The major findings of this study are: (1) confirmation of the presence of significant 

liver sinusoidal changes in old age in rats; (2) CR delays such changes at least until 

the age of 24 months; and (3) the effects of CR on the liver sinusoidal endothelial cell 

are apparent early in life. 

 

Previous reports showing age-related changes ultrastructural changes in liver 

sinusoidal endothelium in rats (Le Couteur et al, 2001), non-human primates (Cogger 

et al, 2003), mice (Ito et al, 2005; Warren et al, 2005) and humans (McLean et al, 

2003) were confirmed in this study. This study revealed that CR rats had a higher 

porosity at 24 months of age (3.9 ± 0.1%) compared to AL rats (2.4 ± 0.1%, P<0.01) 

implying that CR had a dramatic preserving effect on the morphological 

characteristics of young liver sinusoidal endothelium in terms of endothelial porosity. 

This provides a crucial mechanism for the effects of CR on lipids and vascular 

disease. One of the most important functions of fenestrations appears to be related to 

the transfer of chylomicrons remnants across the endothelium for subsequent hepatic 

metabolism (Fraser et al, 1986). This transfer of lipoproteins is very impaired in old 

age (Hilmer et al, 2005). The preservation of fenestrations by CR will presumptively 

be associated with improved hepatic clearance of chylomicron remnants and hence, 

less risk of developing systemic vascular disease. 

 

The effects of CR on fenestration porosity were seen relatively early in the lifespan. 

At six months of age, fenestration porosity was significantly increased in the CR rats 

(4.3 ± 1.4%) compared to the AL rats (3.4 ± 1.5%, P<0.01).  
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In conclusion, ageing is associated with significant ultramicroscopic morphological 

changes in liver and CR prevents the age-related decreases in fenestration porosity 

indicating that these changes are intrinsically part of the ageing process. Intriguingly, 

CR resulted in a higher porosity than AL fed animals apparent even at 6 months, 

which suggests that the liver sinusoidal endothelium may contribute to the beneficial 

effects of CR in later life. Furthermore, the prevention of age-related 

pseudocapillarization by CR shows that it is a plausible therapeutic target for the 

amelioration or prevention of age-related dyslipidemia. 
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Chapter 5 

 

Conclusions 
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5. Conclusions 

 

The studies presented in this thesis underscore the pivotal role of the liver sinusoidal 

endothelium and fenestrations in the pathophysiology of bacterial toxin-induced 

injury as well as septicaemia-related, ageing-related and post-prandial 

hyperlipidemias. In addition the results suggest novel therapeutic strategies for these 

conditions. 

 

In chapter 2, it was shown that pyocyanin treatment over a wide range of 

concentrations is associated with a substantial loss of LSEC porosity. Pyocyanin also 

induces significant acute changes in the in vivo liver sinusoidal endothelium without 

any morphological hepatocellular alterations including mitochondrial morphology and 

frequency or any other signs of hepatocyte injury or oxidative stress. These LSEC 

changes were not accompanied by evidence of structural, biochemical hepatocellular 

changes or changes in the fenestration constituent protein, caveolin-1. In addition, a 

decrease in endothelial thickness with pyocyanin was noted, a change that has not 

been reported with any other toxic injury to the LSEC. These findings indicate that 

the LSEC is initial site of injury induced by pyocyanin, and indeed may even have a 

role in protecting hepatocytes from endo- and xenobiotics. Damage to the liver 

sinusoids and LSECs induced by pyocyanin could impact graft outcome and 

prognosis following pseudomonal sepsis. The results also support the concept that 

hyperlipidemia associated with sepsis might in part be a result of LSEC 

defenestration. 
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In chapter 3, the hypothesis that age-related pseudocapillarization of the liver 

sinusoidal endothelium might impair oxygen diffusion from the blood to the 

hepatocytes was examined to account for the decreased phase 1 metabolism, decrease 

in ATP levels and increased expression of hypoxia-responsive genes in aged human 

and animal livers. Using pimonidazole immunohistochemistry for in vivo detection of 

tissue hypoxia, it was shown that age-related liver sinusoidal pseudocapillarization 

does not pose any significant barrier to oxygen uptake and that the age-related decline 

in ATP in the liver is most likely secondary to impaired mitochondrial function. In 

this study, the zonal gradation seen in VEGF expression was consistent with the zonal 

gradation of hepatic hypoxia. However, there was an increase in the sinusoidal 

expression of VEGFR2 in the old livers and almost no expression in the livers of 

young animals. It is possible that the increase in VEGFR2 is a compensatory 

response, perhaps attempting to increase fenestrations in response to 

pseudocapillarization. 

 

In chapter 4, using a baboon model it was demonsrated that type 1 diabetes mellitus 

was associated with liver sinusoidal defenestration and therefore of significance for 

liver function, particularly the hepatic clearance of lipoproteins. Since delayed 

lipoprotein clearance and subsequent postprandial hypertriglyceridemia are features of 

type I diabetes, it is possible that the sinusoidal defenestration in diabetes mellitus 

may be an important mechanism. Such changes are likely to have a significant effect 

on liver function, blood lipoprotein clearance and the pathogenesis of systemic 

macrovascular disease in type 1 diabetes mellitus. 

 



 144 

In chapter 4, using a CR rat model, it was shown CR prevents age-related decreases in 

fenestration porosity. CR also resulted in a higher porosity than AL fed animals very 

early on, which suggests that the liver sinusoidal endothelium may contribute to the 

beneficial effects of CR in later life. The prevention of age-related 

pseudocapillarization by CR shows that CR could be a plausible therapeutic target for 

the prevention or amelioration of dyslipidemia associated with ageing. 

 

These studies examine the crucial role of the liver sinusoids and LSECs in 

pathogenesis of disease in bacterial infections and ageing. Future studies should aspire 

to evaluate LSEC fenestration biology and pathophysiological mechanisms for 

changes in fenestrations in disease and ageing. The ensuing data may permit 

development of potential therapeutic targets and agents that may prevent or alter 

LSEC fenestration morphology and pathology in various disease states, including 

sepsis, transplantation, diabetes mellitus and ageing. 
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6. Protocols and criteria-sheets involving my innovations 

and modifications  

 

6.1. Chemical synthesis of pyocyanin 

 

1. 100 ml of 10 mM TRIS HCl prepared 

a. MW of TRIS HCl= 158 

b. 1 M TRIS HCl= 158 g/1000ml= 0.158 g/ml 

c. 10 mM TRIS HCl= 0.00158 g/ml= 0.158 g/100ml 

2. 100 mg PMS added to 100 ml of 10 mM TRIS HCl in a 100 ml capacity thin 

stemmed round bottomed glass flask 

3. PH to 7.4 

4. The reaction mixture kept adjacent to a daylight fluorescent tube light for 2.5 

hours. The following specific brand details of the tube light was preferred 

a. Phillips TLD 18 W/54 

b. Thailand  

c. TIS.958-2533 

d. TIS.236-2533 

5. Chloroform added to the reaction mixture in a separation funnel kept in a fume 

hood (adjusting the ratios or number of sequences) 

6. The lower chloroform (organic) phase with pyocyanin transferred to a pear-shaped 

flask 

7. Nitrogen bubbled through the contents of the pear-shaped flask till a blue 

pyocyanin sludge remains after all the chloroform has been evaporated 
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8. Blue pyocyanin sludge resuspended in 50 ml chloroform 

9. 0.1 M (that is, 0.1 N) HCl prepared 

a. 6.25 ml of 16 M stock HCl solution mixed with 93.75 ml of Millipore 

water to give a 1 M HCl solution 

b. 0.1 M HCl solution prepared by adding 10 ml of 1 M HCl solution to 90 

ml of Millipore water 

10. Pyocyanin chloroform solution acidified with 50 ml of 0.1 M HCl 

11. 50 ml of chloroform added 

12. 0.5 M (that is 0.5 N) NaOH prepared 

a. 1 M NaOH consists of 40 g in 1000 ml of water 

b. 20 ml of 0.5 M NaOH prepared by adding 0.4 g of NaOH (2 NaOH 

pellets) to 20 ml of Millipore water 

13. Few drops of 500 mM NaOH added 

14. Chloroform extraction done twice with 50 ml chloroform 

15. Pyocyanin chloroform solution kept at –20°C freezer overnight  

16. Chloroform evaporated  

17. Pyocyanin resuspended in small amounts of more chloroform 

18. Pyocyanin chloroform (concentrated) solution transferred to a vertical Pyrex glass 

tube 

19. Chloroform evaporated 

20. Hexane wash done by adding hexane (pyocyanin is insoluble in hexane), swirling 

the tube, and aspirating the hexane out 

21. Chloroform (SMALL volume) added to pyocyanin 

22. Hexane (large volume) added SLOWLY, DROP by DROP to the pyocyanin 

chloroform solution 
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23. 10 minutes waiting period mandated 

24. Pyocyanin crystallized automatically 

25. Pyocyanin in hexane and chloroform is centrifuged at 5000 rpm in 50 ml 

polypropylene tubes  

26. Supernatant pipetted out from the 50 ml tubes and discarded 

27. Lower phase with the pyocyanin crystals transferred to a polypropylene syringe 

(without a piston) with its tip compactly fitted into a the top nozzle of a filter 

apparatus containing a type EH 0.5 µ filter 

28. Pyocyanin crystals trapped by filter 

29. Methanol elution into a screw-capped glass bottle done 

30. Methanol evaporated by nitrogen bubbling 

31. Small amount of methanol used to dissolve the pyocyanin 

32. Pyocyanin methanol solution kept at –20°C freezer overnight 

33. Methanol evaporated by nitrogen bubbling 

34. Pyocyanin reconstituted in a small amount of chloroform 

35. Silica glass TLC plate activated  

a. TLC plates from Merck (HPTLC Pre-coated Silica Gel 60 Plates) used 

b. Excess silica from 3 edges scraped out 

c. TLC plate kept vertically in 10 ml methanol in a glass cage without paper 

lining. The most jagged/ damaged edge placed inferior and in contact with 

methanol in the glass cage. Glass plate used to cover the glass cage 

d. TLC plate is taken out of the methanol (and the glass cage) as soon as the 

solvent (methanol) front reaches 2 cm from the top edge (of the TLC plate) 

e. TLC plate kept outside the glass cage, inside the hood, for 10 minutes 
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f. TLC plate kept on a folded A4 size paper and heated with silica side up in 

a microwave at power setting 2 for 5 minutes 

g. TLC plate heated in the microwave at power setting 3 for 10 more minutes 

h. TLC plate kept in the dark or inside a desiccator till use 

36. Sample applicator (Camag Nanomat) fitted with a applicator syringe fitted with a 

1 µl (preferably) or a 5 µl glass tip, utilized to apply pyocyanin chloroform 

solution to the silica part of the silica glass TLC plate 

37. TLC plate with loaded pyocyanin kept in chloroform methanol mixture (12.5 ml: 

12.5ml) inside a glass cage with a paper lining 

38. TLC plate removed from the glass cage when the solvent front reaches 2 cm from 

the top edge 

39. TLC plate computer-scanned and image saved 

40. Silica layer with the pyocyanin carefully scraped from the glass part of the TLC 

plate 

41. Scraped silica with pyocyanin dissolved in 2 cm methanol in a screw capped glass 

bottle 

42. Silica pyocyanin methanol solution transferred to small glass tubes (compatible in 

the slots of the centrifuge to be described soon) 

43. Glass tubes centrifuged twice in the centrifuge available inside the walk-in 

refrigerator (the sealing lid is not shut, only the topmost trap lid is shut) 

44. Shimadzu Spectrophotometer Precautions 

a. Remember that only the proximal slot is for the test sample(s) and the 

distal slot is for the blank 
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b. While calibrating and taking absorption measurements Blanking (or 

Baselining) should be done with blanks at both the proximal slot and the 

distal slot prior to taking the test sample(s) reading 

c. A Deuterium Lamp emits UV light with wavelength ranging from 200-350 

nm. A Halogen Lamp emits visible range light with wavelength ranging 

from 350-800 nm. Adjustments of the wavelengths should be made such 

that no absorbance peak occurs at the junction of the UV light spectra and 

the visible range light spectra 

d. Only quartz cuvettes are to be used. The Normal (1 ml) cuvette is preferred 

to the Small or Semimicro cuvettes 

45. Shimadzu Spectrophotometer Preparations 

a. Check the spectrophotometer slots to see if they are empty first 

b. Switch the spectrophotometer on (Switch on the left flank) 

c. Click F4 on the spectrophotometer (This connects it to the computer) 

46. Computer Manipulation of Spectrophotometer Functioning 

a. Programs 

b. Shimadzu 

c. UV120 IPC 

d. Acquire Mode 

e. Spectrum: The calibrations should be as follows: 

i. Measuring Mode:   Abs 

ii. Recording Range:   Low 0.0 to High 0.5 

iii. Wavelength Range (nm):  800 to 200 nm 

iv. Scan Speed:    Fast 

v. Sampling Interval nm:   1 
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47. Spectrophotometric Estimation of Pyocyanin Concentration 

a. Only quartz cuvettes are to be used. The Normal (1 ml) cuvette is preferred 

to the Small or Semimicro cuvettes  

b. Use 2 cuvettes filled with methanol in each to blank (baseline). Place 

cuvette 1 in the proximal slot and cuvette 2 in the distal slot of the 

spectrophotometer 

c. Blanking (baselining) is done by clicking Baseline 

d. To check whether the blanking was done properly, click Start. The 

absorbance value should be 0 

e. Dilute pyocyanin in methanol to 1: 100 dilution (10µl: 990µl) in cuvette 1 

(from proximal slot in the spectrophotometer). This is the sample cuvette. 

Place the sample cuvette in the proximal slot in the spectrophotometer 

f. Click Start 

g. Pyocyanin typically peaks at 718 nm, 318 nm and 239 nm. The absorption 

values at these spectra are noted 

48. Calculation of Molar Concentration using Spectrophotometer Absorption Data  

a. Adjust the concentration of pyocyanin (by drying the methanol using 

nitrogen surface insufflation in a Fume Hood and/ or by adding more 

methanol) till a 1 mM concentration is obtained. The millimolar 

concentration of pyocyanin solution in methanol can be determined as 

follows 

b. Please note that extinction coefficients depend on the solvent used and the 

specific wavelength of absorption spectra 

i. Different solvents have different Extinction Coefficients 
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ii. Different Absorption wavelengths have different Extinction 

Coefficients 

c. Absorbance = Molar Concentration × Light path × Extinction Coefficient  

d. A = E × L × C = E × 1 Cm × C = EC  

e. Therefore the Molar Concentration C = A / E × Dilution Factor = A / E × 

100 

f. The absorption values obtained were as follows: 

 

Wavelength (nm) Absorption 

718  

318  

239  

 

g. The typically used absorption wavelength of pyocyanin for calculation of 

Molar concentration is at 318 nm, because that is where the highest peak is 

seen 

h. The Extinction Coefficient E of pyocyanin in methanol at 318 nm is 

30199.5 

i. Therefore the millimolar concentration of pyocyanin is 1 mM 
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Absorption Spectrum of Purified Pyocyanin

0

0.2

0.4

200 300 400 500 600 700 800

Wavelength (nm)

A
bs

or
ba

nc
e

 

 

 
 
 

Blue pyocyanin band on TLC Plate 



 193 

6.2. Image analysis using ImageJ 

 

METHOD FOR IMAGE ANALYSIS- PRELIMINARY STEPS 
 

1. Open image J program 

2. Open a Tiff Image first 

3. To set scale click on ANALYZE then SET SCALE 

a. Set scale depending on magnification picture was taken at  

 

Magnification SEM Scale 

6,000 0.6 pixels/nm 

15,000 0.15 pixels/nm 

25,000  0.25 pixels/nm 

 

Magnification TEM Scale 

4,600 0.069 pixels/nm 

19,000 0.269 pixels/nm 

 

b. Select global on the set scale page 

4. On image J select the “love heart shape” 

a. On the image, pick the area that is SINUSOIDAL ENDOTHELIUM 

WITHOUT ANY RIPS 

b. Hold the left button on the mouse down while you encircle the appropriate 

area on the image 

c. When finished lift the button on the mouse up. 

5. Select EDIT then CLEAR IMAGE 
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6. Select ANALYSIS and MEASURE to measure area. 

7. Cut the AREA measurement out and paste it into EXCEL. 

 

MEASURING THE FENESTRATIONS (Best done in quadrants) 

 

8. Enlarge the image to 100% by selecting the magnifying glass on the tool bar and 

then left clicking twice on the image.  At the top of the image you will not see any 

magnification size on the image (you can alter the image size and increase it by 

left clicks on the mouse and decrease it by right clicks). 

9. Use the scroll icon and move one quadrant into the screen only. 

10. Select the line icon.  AFTER YOU DO THIS YOU NEED TO CLICK ON A 

LINE OUTSIDE THE AREA OF THE IMAGE 

11. Scroll down each fenestrations along its maximum diameter.  After each diameter 

has a line down it, push the “M” key to measure it. 

12. Careful to measure each fenestrations once and only once 

13. When you have completed a quadrant, move to the next quadrant and measure the 

fenestrations.  To move to the next quadrant select the scroll icon then left click on 

the image and move it.   When the next quadrant is in view select the line icon and 

scroll down the length of each fenestrations then click “M” 
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COLLATING DATA 
 

 
14. When all the fenestrations have been measured go to RESULTS page; then click 

EDIT; and then click SELECT ALL.  Cut all the results out and paste them into 

EXCEL.  Remember the first number on each line is the number of fenestrations 

and the last number is the diameter. 

15. To Convert diameter to area apply the formula: 

a. Eg to convert a diameter in e2 and give the result in f2 then in f2 put =(0.5 

× e2 × 0.5 × e2 × 3.14 × 0.5) 

b. Copy this for all the diameters 

 

STATISTICS: CALCULATING AVERAGES 
 

1. Calculate average fenestration diameter (in nm) 

2. Calculate porosity of the endothelium (in %).  To do this: 

a. Calculate the TOTAL AREAS of all fenestrations 

b. Porosity is AREA OF ALL FENESTRATIONS/ AREA OF 

ENDOTHELIUM × 100 

3. Calculate the number of fenestrations per square micrometer.   

a. This is number of fenestrations / area of sinusoid (in nm) × 1,000,000 

b. Note this is conventionally expressed fenestration s/ µm2, not fenestrations 

/ nm2 so the results needs to be multiplied by 1,000,000.  
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6.3. Preparation of isolated rat LSECs  

 

LSEC PREPARATION- MATERIALS 

 
1. Sterile Bag 1: 2 Straight Forceps 

2. Sterile Bag 2: 5 Mosquito Artery Forceps, 1 Broad-end Scissors, 1 Sharp-end 

Scissors, 2 Forceps 

3. HBSS for initial rat liver perfusion 

• HBSS Should NOT have Ca2+ 

4. Collagenase solution (A) – make up 100 ml of 0.05 % collagenase (50 mg) in 

HBSS (with Ca2+), neutralize the non-specific proteases with 5% FCS 

• Should be prepared just before experiment 

• HBSS SHOULD have Ca2+ 

5. Collagenase solution (B) – Make up 50 ml of 0.05% collagenase (25 mg) and 

0.001% DN'ase [DN’ase added as a ”pinch” just before use] and 2.7 ml FCS in 

HBSS (with Ca2+) 

• Should be prepared just before experiment 

• HBSS SHOULD have Ca2+ 

6. Stock Percoll – Prepare stock Percoll solution (SPS) by mixing 10 ml of 10-fold 

concentrated (10 X) Dulbecco’s PBS (no Ca2+) with 90 ml Percoll 

• Can be prepared 1 day before experiment 

• 10 X Dulbecco’s PBS should NOT have Ca2+ 

• Prepare 30 ml of SPS (3 ml 10X Dulbecco’s PBS 3 ml + 27 ml Percoll) 

7. Percoll gradient prepared just before experiment – Do duplicates 

• Dulbecco’s PBS should NOT have Ca2+ 
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• EACH Percoll gradient consists of: 

i. Upper layer 20 ml 25% Percoll: Obtained by mixing 5 ml SPS and 

15 ml PBS 

ii. Lower layer 15 ml 50% Percoll: Obtained by mixing 7.5 ml SPS 

and 7.5 ml PBS 

• Therefore, prepare a total (for duplicates) of: 

i. 40 ml of 25% Percoll: Obtained by mixing 10 ml SPS and 30 ml 

PBS 

ii. 30 ml of 50% Percoll: Obtained by mixing 15 ml SPS and 15 ml 

PBS 

8. Complete RPMI-1640 with Glutamine (0.02 g/100ml), 2% FCS (heat-inactivated), 

antibiotics (1 ml/ 100 ml) (100 U/ml penicillin, 100 µg/ml streptomycin) 

9. Collagen solution for wells and coverslips. Use Collagen-S solution as substrate 

for the culture of LSECs by equally distributing it on the plastic surface of the 

wells or coverslips. After 18 hours at 4°C, rinse the coverslips with RPMI-1640 

leaving behind a thin film of collagen. 

 

LSEC PREPARATION- METHODS 

 
1. Anaesthetize a rat (Male Sprague- Dawley, 250-350 g) intraperitoneally with 0 .5 

ml [1 ml/ kg weight of rat] out of a total of 1ml in an insulin syringe that consists 

of: 

a. 40mg (0.6ml on 100mg/ml) Ketamine 

b. 4mg (0.06ml of 100mg/ml) Xylazil 

c. 0.34 ml saline 
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2. Administer heparin (150 U-a pinch with 0.3 ml normal saline) into inferior 

mesenteric vein 

3. After laparotomy, insert and secure a 18G catheter into the portal vein  

4. Cut the inferior vena cava beneath the liver immediately cut and start perfusion 

with 39°C HBSS (no Ca2+) 

5. Flush 200 ml HBSS (no Ca2+) through the liver at a flow rate of 10 ml/min. - 200 

ml can also be 150, 100 ml, or even 75 ml; from the moment the liver is 

completely discolored (from red/purple to brown/ochre) 

6. Perfuse liver with HBSS (with Ca2+, 100 ml) collagenase solution at a flow rate of 

5 ml/min 

7. Remove liver after 20-25 minutes 

8. Discard Glisson's capsule along with the vessels with the aid of forceps 

9. Disrupt the paste-like liver substance further disrupted by mincing it between 

forceps 

10. Shake the forceps-minced paste-like liver substance (gently) in 10 ml of fresh 

Collagenase B solution [HBSS (with Ca2+) containing 0.05% collagenase, 0.001% 

DN'ase (added as a “pinch” just before use), and FCS] for approximately 10 min 

at 39°C. Repeat 4 times, each time filtering using the following step (9): 

a. Each time, the cell suspension is filtered through nylon gauze (mesh 100) 

to remove undigested tissue 

b. Don’t exceed a total incubation time of 30 minutes, including RT AND 

Incubator steps 

11. Centrifuge cell suspension at 100 g for 5 min at 20° (break low) to remove most 

hepatocytes 

12. Centrifuge supernatant (enriched in sinusoidal cells) for 10 min. at 350 g 
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13. Resuspend cell pellet in 50 ml PBS and centrifuge again for 10 min at 350 g 

14. Resuspend the resulting cell pellet in 20 ml PBS 

15. Layer 10 ml of the cell suspension on top of each of the two-step Percoll gradient 

16. Centrifuge gradients immediately at 900 g for 20 min (break off) 

17. Discard top layer (45 ml to 25 ml) FIRST, and use a sterile Pasteur pipette to 

collect the intermediate zone (25 ml to 10 ml layer; between the two density 

layers; especially around the 15 cm mark), which is enriched in LSECs 

18. Dilute these enriched LSECs with an equal volume of PBS & centrifuge at 900 g 

for 10 min 

19. Resuspend the resulting cell pellet in 10 ml culture medium. Pipette the resulting 

cell suspension into FOUR 5 cm diameter tissue grade petridishes without any 

coating 

20. Incubate the petridishes for 7-8 min ONLY (NOT MORE than 10 min) at 37°C in 

a humidified incubator under 5% CO2 in air, to allow the selective attachment of 

the Kupffer cells 

21. Collect LSECs by REALLY firmly (NOT too firmly!) washing the wells; 

otherwise ↓ yield;  

22. LSEC count calculation: 

a. 50 µl cell suspension + 450 µl Trypan blue (Dilution is *10) and mix well 

b. Add sufficient quantity (less than 50 µl) to Improved Neubauer chamber 

with cover slip already in place. Before loading, add a drop of water to 

each side groove of Neubauer Chamber to enhance cover-slip grip (to the 

Neubauer chamber) 

c. Count the LSECs in all the 4 corners of the grid (n) 

d. Total Cell Count= n/4* 10 * 104 per ml 
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e. 1 ml (STRICTLY:- no more volume, no less volume!) at 0.80x106 

LSECs/ml (semi-confluent) or 1.60x106 LSEC/ml (confluent) is seeded on 

collagen-coated cover slips  

f. If cell-suspension is to be concentrated to bring to the appropriate cell 

density for seeding the wells with cover-slips, centrifuge at 250 g for 10 

minutes, and resuspend cell pellet in apt volume of media 

23. Do a media change 2-4 hours after plating to wash the culture (gently) and further 

changes occurred at 24-hour intervals subsequently 

24. Cells are preferably used ASAP (6-12 hours post inoculation) 
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6.4. Processing of LSECs for scanning electron microscopy  

 

1. Fix cells with 4% EM grade Glutaraldehyde in 0.2 M Na-Cacodylate buffer with 

0.1M sucrose (IMPORTANT!) 

a. 1 ml for each cover slip 

b. 5 ml for 5 coverslips 

c. 5 ml contains 0.8 ml 25% glutaraldehyde, 2.5 ml 0.2 M  Na-Cacodylate 

buffer, 1.7 ml of Millipore water, and 0.17 g sucrose 

i. Stock glutaraldehyde= 25% 

ii. 1% glutaraldehyde= 4 ml in 100 ml 

iii. 4% glutaraldehyde= 16 ml in 100 ml 

iv. 4% glutaraldehyde= 16/20 in 5 ml= 0.8 ml in 5 ml 

2. Allow to fix for about 4hours in the fridge or 1hr at room temperature 

3. [Carry on with the following steps if time is available. If not, keep cells in 0.1M 

Na-Cacodylate buffer in fridge ovenight and on the next day, do 2 washes in 0.1M 

Na-Cacodylate buffer, not 3, as in the case of the regular protocol] 

4. Wash 3 x 5 minutes in 0.1M Na-Cacodylate buffer 

5. Post fix in 1% tannic acid in 0.15 M Na-Cacodylate buffer (PH= 7.4) for 1 hour 

a. Adequate volume of tannic acid must be paper filtered before use 

6. Wash 3 x 2 minutes in 0.1M Na-Cacodylate buffer 

7. Post fix in 1 % OsO4 in 0.1M Na Cacodylate buffer for 1 hour 

b. Done in pathology lab (S35?) 

c. See that the fume hood has boost air-flow switched on 

d. Handle osmium very carefully 

e. Small skull and crossbones metallic container contains unused osmium, 
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and big skull and crossbones metallic container is for osmium discard 

f. Keep plastic pipette which made contact with fresh osmium in the sink to 

use again for osmium waste aspiration, and discard it after thorough 

rinsing 

8. Wash 3 x 2 minutes in 0.1M Na-Cacodylate buffer 

9. Dehydrate: 

a. 50 % Ethanol 4 times, each 2 mins 

b. 70 % Ethanol 4 times, each 2 mins 

c. 95 % Ethanol 4 times, each 2 mins 

d. 100 % Ethanol 2 times, each 5 mins   

e. 100 % Molecular sieve ethanol 2 times, each 5 mins   

10. Drying in Hexamethyldisilazane 3 mins 

a. After 100% molecular sieve ethanol treatment, leave the molecular sieve 

ethanol in the respective wells 

b. Bring the Hexamethyldisilazane can from the fridge into the fume hood 

c. Remove the Hexamethyldisilazane bottle from its can and remove the 

parafilm around the neck and cap 

d. Transfer 1 ml of Hexamethyldisilazane per well into dry wells 

corresponding with wells with cell-coated cover-slips and immediately 

transfer into a desiccator and close the lid 

e. Wrap parafilm over the neck and cap of Hexamethyldisilazane bottle, 

place the bottle in its can, and take it back into the fridge 

f. Transfer cover-slips from the wells with molecular sieve ethanol to the 

corresponding wells with 1 ml Hexamethyldisilazane and keep for 3 

minutes; all steps done inside the desiccator kept inside the fume hood 
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g. After 3 minutes, transfer the coverslips from the wells with 1 ml 

Hexamethyldisilazane into corresponding dry wells 

h. Aspirate all molecular sieve ethanol and Hexamethyldisilazane from all 

wells and discard into plastic container and let evaporate inside the fume 

hood 

i. Keep the tray with (coverslips in dry wells) without closing the tray lid 

inside the desiccator and move desiccator outside the fume hood onto the 

work table 

11. Place in desiccator overnight 

12. Mount 

a. Marinate “Grooved SEM Type Slug Mounts” in 100% ethanol for 10 

minutes 

b. Always lift slug mounts with dull-tipped forceps  

c. Always handle coverslips and sticky carbon strips with sharp-tipped 

forceps 

d. Air dry slug mounts on absorbent paper on table with the side with 

concentric circles facing upwards 

e. Label plain side of the slug mounts with appropriate name for permanent 

records 

f. Stick a (double sharp sided shaving blade cut) 2-sided sticky carbon strip 

from a roll of the same on the side with the concentric circles 

g. Lift coverslips from the tray in the desiccator to visualize the cell-layered 

side of the coverslip 

h. Paste coverslips on the sticky carbon strip with the cell-layer side facing 

upwards (away from the sticky carbon adhesive strip) 
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i. Press firmly on the middle of the coverslip with the tip of the sharp-tipped 

forceps to ensure proper adhesion to the sticky carbon strip placed on the 

slug mounts 

j. Using a tip of a toothpick coated with carbon-graphite paint (placed in a 

plastic bottle with a tapering nozzle), paint the non-cellular side of the 

coverslips especially at the junction of the slug mount and the coverslip 

circumferentially 

k. Place a rolled 2-sided adhesive tape on the 24-well-plate cover 

l. Stick the plain side of the slug mounts on the rolled adhesive tape so that 

they will face the wells of the 24-well plate when the 24- well plate is 

placed on the 24-well plate cover 

m. Invert 24-well plate over the firmly stuck slug mounts and place the whole 

set-up in the desiccator with the 24-well plate cover at the bottom and the 

24-well plate bottom facing the top 

13. Coat with gold film 

14. LOOK 
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6.5. Processing of rat liver specimens for scanning electron microscopy 

 

Liver Fixative for SEM/ TEM 

 (Paraformaldehyde & Glutaraldehyde EM Fixative) 

 

1. Composition: 

a. 25 % EM Grade Glutaraldehyde 12 ml 

b. Paraformaldehyde   2 g 

c. 1 M CaCl2    2 ml 

d. Sucrose    2 g 

e. 0.2 M Na Cacodylate Buffer 50 ml 

f. Distilled water   10 ml (or enough to make up to 100 ml 

totally) 

g. Strong NaOH and HCl for pH adjustment  

h. Total Osmolality: 440 milliosmoles 

2. Final Concentrations of Constituents: 

a. 25 % EM Grade Glutaraldehyde 3 % 

b. Paraformaldehyde   2-2.5 % 

c. 1 M CaCl2    2 mmol/ liter 

d. Sucrose    2 % 

e. 0.2 M Na Cacodylate Buffer 0.1 mol/ liter 

f. Distilled water   100 ml 

g. Strong NaOH and HCl for pH adjustment  

3. Preparation Method: 

a. Always prepare fresh (within 24 hours of use) 
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b. Mixture 1 (Glutaraldehyde, Na- Cacodylate, Sucrose) 

i. Add 12 ml Glutaraldehyde, 50 ml of 0.2 M Na Cacodylate buffer, 

and 2 g of sucrose  

c. Mixture 1 (8-10 % Paraformaldehyde)  

i. Weigh out paraformaldehyde wearing gloves in a fume hood and 

avoid inhalation of powder 

ii. Add 2 g of Paraformaldehyde powder to 25 ml of distilled water in 

a beaker 

iii. Heat to 60°C stirring constantly using magnetic stirring bar 

iv. Solution will turn milky 

v. Allow to heat for 2 min 

vi. Cool to 40°C 

vii. Add 1 M NaOH drop-wise, until clear 

viii. Cool to RT 

d. Final mixture (Mixture 1 + Mixture 2) 

i. Add Mixture 1 (Glutaraldehyde, Na- Cacodylate, Sucrose) to 

Mixture 2 (8-10 % Paraformaldehyde, when cool) 

ii. Add 2 ml of 1 M CaCl2 

 

Procedure for Fixing Liver Specimens for SEM/ TEM 
 

1. Perfuse liver with pre-perfusion buffer (Normal Saline) using insulin syringe 

under low pressure: 2 Min 

2. Perfuse liver (In Fume Hood) with Paraformaldehyde & Glutaraldehyde EM 

Fixative using insulin syringe under low pressure UNTIL liver is hard: 

APPROXIMATELY 5 Min 
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3. Cut liver into an appropriate number of 1 mm3 bits 

4. Post-fix in Paraformaldehyde & Glutaraldehyde EM Fixative: 4-24 hours 

(overnight) 

5. Rinse 3 times with 0.1 M Na-Cacodylate, holding liver bits with forceps 

6. Store in 0.1 M Na-Cacodylate till used 

7. Transfer liver bits into appropriately labeled plastic mesh rack layers (WHERE IT 

STAYS FOR THE REST OF THE STEPS) in the specimen holder and place it in 

a polypropylene tube (0.1 M Na-Cacodylate) with a tight cap 

8. THE LIVER BITS STAY IN THIS APPARATUS FOR THE REST OF THE 

STEPS 

9. Post fix in 1 % OsO4 (pathology lab) in 0.1M Na Cacodylate buffer for 2 hours 

10. Wash 2 x 5 minutes in 0.1M Na-Cacodylate buffer 

11. Dehydrate: 

a. 50 % Ethanol 2 times, each 5 mins 

b. 70 % Ethanol 2 times, each 5 mins 

c. 95 % Ethanol 3 times, each 5 mins 

d. 100 % Ethanol 2 times, each 10 mins   

e. 100 % Molecular sieve ethanol 2 times, each 10 mins   

12. Dry with Hexamethyldisilazane in desiccator for 10 mins 

13. Place frame in desiccator overnight 

14. Mount 

a. Marinate “Grooved SEM Type Slug Mounts” in 100% ethanol for 10 

minutes 

b. Always lift slug mounts with dull-tipped forceps  

c. Always handle coverslips and sticky carbon strips with sharp-tipped 
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forceps 

d. Air dry slug mounts on absorbent paper on table with the side with 

concentric circles facing upwards 

e. Label plain side of the slug mounts with appropriate name for permanent 

records 

f. Stick a (double sharp sided shaving blade cut) 2-sided sticky carbon strip 

from a roll of the same on the side with the concentric circles 

g. Place 6 small liver bits (with the even surface facing upwards) on the 

sticky carbon strip of each slog mount 

h. Using a tip of a toothpick coated with carbon-graphite paint, paint bands 

extending from each live bit to the edge of the circular surface of the slug 

mount 

i. Place a rolled 2-sided adhesive tape on a 24-well-plate cover 

j. Stick the plain side of the slug mounts on the rolled adhesive tape so that 

they will face the wells of the 24-well plate when the 24- well plate is 

placed on the 24-well plate cover 

k. Invert 24-well plate over the firmly stuck slug mounts and place the whole 

set-up in the desiccator with the 24-well plate cover at the bottom and the 

24-well plate bottom facing the top 

15. Coat with gold film 

16. Look with SEM: SEM fields should preferably include at least 10 fields/ rat 

encompassing: 

a. At least 2 representative fields/ liver block 

b. At least 5 liver blocks/ rat 
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6.6. Preparation of 4% phosphate buffered paraformaldehyde 

(paraformaldehyde buffered saline) for immunohistochemistry 

 

4% Phosphate-buffered Paraformaldehyde 

 

1. Composition: 

i.Paraformaldehyde 8g 

ii.Distilled water  200 ml 

iii.NaH2PO4.2H2O 0.41 g 

iv.Na2HPO4  2.47 g 

v.NaCl   1 g 

vi.1 N NaOH  “Small Amount” 

2. Preparation: 

i.Weigh out paraformaldehyde wearing gloves in a fume hood and avoid 

inhalation of powder 

ii.In fume cupboard, combine paraformaldehyde and distilled water and 

heat to 60°C 

iii.Add a few drops of 1 N NaOH until solution clears 

iv.Cool the mixture 

v.Add the 3 remaining ingredients and stir until dissolved 

vi.Filter and check pH 

3. Fixation time: 

i.Fixation time prior to immunohistochemistry should be for the shortest 

possible time to achieve good morphology but prevent antigen 

masking due to excessive cross-linking of proteins 
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ii.For blocks of tissue 2 cm square by 3-4 mm thick, 6-24 hours fixation 

is recommended 

iii.For smaller blocks, adequate fixation will be achieved in several hours 
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6.7. Criteria for assessment of pictures obtained for immunohistochemistry for 

pimonidazole and VEGF  

 

Pimonidazole and VEGF IHC Rating Criteria 

 

Rat ID: _______       
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6.8. Criteria for assessment of pictures obtained for immunohistochemistry for 

VEGFR2 

 

VEGFR2 IHC Intensity (0,1,2,3) Rating Criteria 

 

Rat ID: _______       
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