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Abstract 

 

Biomedical materials are being extensively researched, and many 

different types such as metals, metal alloys, and polymers are being used.  

Currently used biomedical materials are not perfect in terms of corrosion 

resistance, biocompatibility, and surface properties.  It is not easy to 

fabricate from scratch new materials that can fulfill all requirements and an 

alternative approach is to modify the surface properties of current materials 

to cater to the requirements. 

 

Plasma immersion ion implantation (PIII) is an effective and 

economical surface treatment technique and that can be used to enhance the 

surface properties of biomaterials.  The unique advantage of plasma 

modification is that the surface properties and functionalities can be 

enhanced selectively while the favorable bulk attributes of the materials 

such as strength remain unchanged.  In addition, the non-line of sight 

feature of PIII is appropriate for biomedical devices with complex 

geometries such as orthopedic implants.  However, care must be exercised 

during the plasma treatment because low-temperature treatment is 

necessary for heat-sensitive materials such as polymers which typically 

have a low melting point and glass transition temperature. 

 

Two kinds of biomedical materials will be discussed in this thesis.  

One is nickel titanium (NiTi) alloy which is a promising orthopedic implant 

material due to its unique shape memory and superelastic properties.  

However, harmful ions may diffuse from the surface causing safety hazards.  
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In this study, we investigate the properties and performance of NiTi after 

nitrogen and oxygen PIII in terms of the chemical composition, corrosion 

resistance, and biocompatibility.  The XPS results show that barrier layers 

mainly containing TiN and TiOx are produced after nitrogen and oxygen 

PIII, respectively.  Based on the simulated in vitro and electrochemical 

corrosion tests, greatly reduced ion leaching and improved corrosion 

resistance are accomplished by PIII.  Porous NiTi is also studied because 

the porous structure possesses better bone ingrowth capability and 

compatible elastic modulus with human bones.  These advantages 

promote better recovery in patients.  However, higher risks of Ni leaching 

are expected due to the increased exposed surface area and rougher 

topography than dense and smooth finished NiTi.  We successfully apply 

PIII to porous NiTi and in vitro tests confirm good cytocompatibility of the 

materials. 

 

The other type of biomedical materials studied here is ultra-high 

molecular weight polyethylene (UHMWPE) which is a potential material 

for use in immunoassay plates and biosensors.  In these applications, 

active antibodies or enzymes attached to a surface to detect molecules of 

interests by means of specific interactions are required.  Moreover, the 

retention of enzyme activity is crucial in these applications.  Therefore, 

the aim of this study is to investigate the use of PIII to prepare UHMWPE 

surfaces for binding of active proteins in terms of the binding density and 

‘shelf life’ of the treated surfaces.  Argon and nitrogen PIII treatments are 

attempted to modify the surface of UHMWPE.  Horseradish peroxidase 

(HRP) is selected to conduct the protein binding test since it is a convenient 
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protein to assay.  Experimental results show that both PIII treated surfaces 

significantly improve the density of active HRP bound to the surface after 

incubation in buffer containing HRP.  Furthermore, the PIII treated 

surfaces are found to perform better than a commercially available protein 

binding surface and the shelf life of the PIII treated surfaces under ambient 

conditions is at least six months. 

 

In conclusion, a biocompatible barrier layer on NiTi and a protein 

binding surface on UHMWPE is synthesized by PIII.  The surface 

properties such as corrosion resistance and functionality on these two 

different types of substrates are improved by PIII. 
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Chapter 1 

Introduction 

 

1.1 Introduction 
 

Plasma surface modification techniques are applied to biomaterials is 

the theme of my thesis work.  Two kinds of biomaterials were examined.  

One was nickel titanium (NiTi) and another one was ultra high molecular 

weight polyethylene (UHMWPE).  In this thesis, the procedures, 

experimental setup and design together with results and discussions are 

described. 

 

First of all, in this Chapter, an overview of past research is presented 

followed by the motivation of the research.  The objectives of the research 

are stated at the end of this Chapter. 

 

The background knowledge of plasma immersion ion implantation (PIII) 

system and biomaterials related applications is presented in Chapter 2.  In 

Chapter 3, the equipment including the PIII systems used in the research 

and basic concept of the biomedical tests are introduced.  The theoretic 

study of ion-matter interactions is discussed in Chapter 4.  Experimental 

details and results and discussion of surface modification of nickel titanium 

(NiTi) and ultra high molecular weight polyethylene (UHMWPE) are 

presented in Chapter 5 and 6 respectively.  Lastly, conclusion and future 
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work are covered in Chapter 7. 

 

1.2 Overview of surface modification of 

biomaterials 
 

Biomedical materials are being extensively researched, and many 

different types such as metals, metal alloys, and polymers are being used or 

have high potentials as implants in humans.  Examples of such implants 

are artificial heart valves1, joints2, bones3, spine4 and stents5.  Besides 

those implanted inside humans, biomedical materials have many external 

applications such as single use articles e.g. syringes, blood pouches, 

catheters 6  and enzyme-linked immunosobent assay (ELISA) plates 7 .  

Unfortunately, current biomaterials are not perfect in terms of mechanical 

properties, bioactivity, biocompatibility, as well as functionality.  

Therefore, there is an urgent need to find more suitable biomaterials.  It is 

not easy to discover new biomaterials that can fulfill all requirements, and 

so an alternative approach to modify the surface properties of current 

materials to improve their mechanical characteristics and biocompatibility 

is adopted. 

 

In biomedical perspective, “good biocompatibility8” is referred to the 

biomaterial being non-toxic, exhibiting no induced deleterious reactions 

such as chronic inflammatory response and unusual tissue formation, and 

performing the designed functions properly for a reasonable lifetime.  

Furthermore, biointegration 9  is the ultimate goal in for example, 
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orthopedic implants that bones establish a mechanically solid interface with 

complete fusion between the artificial implanted materials and bone tissues 

under good biocompatibility conditions.  The properties of the uppermost 

few molecular layers are of critical importance in biomaterials surface 

science10.  Since the surface layers are in physicochemical contact with 

the biological environment, the uppermost layer properties including 

surface chemistry and morphology determine the biocompatibility of the 

biomaterials.  Moreover, some of the biomaterials have good 

biocompatibility but poor mechanical or physical properties such as wear 

resistance, anti-corrosion, wettability or lubricity.  In this case, surface 

modification is utilized to deposit a layer of coating or mixing with 

substrate to form a composite layer.  As a result the rationale for surface 

modification is straightforward. 

 

There are a number of surface modification techniques such as plasma 

spraying, ion implantation, ion beam, laser treatment, radiation including 

X-ray, γ-ray and UV irradiation and grafting including chemical, radiation 

and photografting.  Some of them are particularly used for certain 

functions or kinds of materials.  One of the advantages of plasma 

immersion ion implantation (PIII) is that most materials can be treated.  A 

more detailed discussion of the different method of surface modification is 

presented in Chapter 2.  

 

PIII is an effective and economical surface treatment technique and can 

be used to enhance the surface properties of biomaterials6,8,11,12,13,14. The 

unique advantage of plasma modification is that the surface properties and 
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biocompatibility can be enhanced selectively while the favorable bulk 

attributes of the materials such as strength remain unchanged.  PIII is an 

effective method to modify medical implants with complex shape. By 

altering the surface functionalities using plasma modification, the optimal 

surface, chemical and physical properties can be obtained. 

 

PIII is a low-temperature processing make the techniques suitable for 

low melting point materials such as polymers.  PIII is widely accepted to 

improve adhesion between pinhole free layers and substrates.  Also, due 

to the non-line-of-sight advantage, it is relatively easy to process an object 

with a complex shape and is therefore a very attractive technique in the 

industry. 

 

Enhancement of properties of biomaterials such as biocompatibility, 

corrosion resistance and functionality by PIII is the subject of extensively 

research, such as the fabrication of different types of biomedical thin films 

and implanted them with various different biologically important elements 

such as nitrogen15, phosphorus16, calcium17,18and sodium19.  Different 

kinds of thin films such as titanium oxide 20 , titanium nitride 21  and 

diamond-like carbon22,23 have been treated and the preliminary results 

indicate that the processed materials exhibit better biocompatibility 

compared to some current ones used in biomedical implants.  In order to 

evaluate the biocompatibility of the fabricated thin films, various in vitro 

biological experiments have been conducted. 
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1.3 Motivation of the research 
 

Materials for medical applications are in huge demand especially those 

with better functionality, durability and biocompatibility.  As mentioned in 

the previous section, surface modification is a promising way in order to 

satisfy the needs.  The focus of this research is to demonstrate the 

possibility of utilizing PIII technique to modify the surface of biomaterials 

for different medical application. 

 

Plasma modification is used to improve orthopedic implant 

materials3,24,25 and has attracted much interest from the biomedical industry.  

In particular, we have been working on the use of NiTi shape memory 

alloys in spinal implants.  NiTi is a promising orthopedic implant material 

due to its unique shape memory and super-elastic properties.  However, 

harmful ions may diffuse from the surface causing safety hazards. In this 

study, PIII is utilized to create a barrier layer in order to reduce harmful Ni 

ions leaking from the metal.  Furthermore, we investigate the properties 

and performance of NiTi after nitrogen and oxygen PIII in terms of the 

chemical composition, corrosion resistance, and biocompatibility.  Further 

application of PIII to porous structured NiTi is studied.  The porous 

structure possesses better bone ingrowth capability and compatible elastic 

modulus with human bones.  It is believed that the closer properties of 

porous NiTi with human bone better enhances patients’ recovery. 

  

The other type of biomedical materials studied here is ultra-high 

molecular weight polyethylene (UHMWPE) which is a well known 
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biomaterial in artificial prostheses components such as hip and knee joint 

replacements.  PIII has been widely investigated to enhance the 

mechanical properties such as hardness, elastic modulus, wear resistance 

and reduce wear debris together with good biocompatibility26.  Besides 

implant applications, it is a potential material in immunoassay plate and 

biosensors.  In these applications, active antibodies or enzymes attached to 

a surface to detect molecules of interests by means of specific interactions 

are required.  Advantages of polmer for these applications include their 

low cost, ease of forming and etching for patterning structure such as 

microfluidic channels.  Moreover, the retention of enzyme activity is 

crucial in these applications.  However, the surface functionality in 

immobilization of proteins on PIII treated UHMWPE surface has been 

unexplored.  There are some commercial products (e.g. NUNC) of protein 

attachment plate in the market.  However, the costs are relatively high.  

In other words, PIII treated UHMWPE may benefit the public.  Therefore, 

the improvement of protein attachment by PIII on polymer is a useful and 

worthwhile functionality to develop.  
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1.4 Objectives of the research 
 

This research focuses on the feasibility of utilizing PIII to enhance surface 

properties of two kinds of biomaterials, namely NiTi and UHMWPE, in terms 

of mechanical, cyto-compatibility and functionality.  The studies on NiTi and 

UHMWPE were conducted in both the City University of Hong Kong and the 

University of Sydney.  The objectives are 

 

NiTi 

(1) To create barrier layers to impede the out-diffusion of Ni ions by implanting 

nitrogen or oxygen ion by PIII. 

(2) To enhance the anti-corrosion ability of the PIII treated NiTi in human body 

environment. 

(3) To investigate the performance of modified layer formed by using different 

PIII parameters in order to obtain optimal surface properties. 

(4) To assess the cyto-compatibility by using in vitro cell culture tests on the 

newly formed layer. 

(5) To examine the further application of the PIII technique on porous structure 

NiTi to reduce outdiffusion of Ni ions from enlarged surface. 

 

UHMWPE 

(6) To investigate the use of plasma surface modification (PSM) to prepare 

UHMWPE surfaces for binding active proteins such as Horseradish 

peroxidase (HRP). 

(7) To assess the shelf life and aging effect of the treated surfaces in terms of 

the retention of HRP binding performance and the activity of the bound 
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HRP over time while subjected to repeated washing steps.  

(8) To determine the optimal PIII treatment parameters to yield the best 

possible HRP attachment. 

(9) To correlate the improvements in active protein binding characteristics with 

physicochemical change occurring on the polymer surface. 

(10) To benchmark the PIII treated surfaces with a popular commercial protein 

binding polymer. 
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