On Monoids Related to Braid Groups and Transformation Semigroups

James East

School of Mathematics and Statistics
University of Sydney
September 2005

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Contents

List of Figures iv
Acknowledgements vii
Chapter 1. Introduction 1
Overview of Thesis 7
General notation 8
Chapter 2. Preliminaries 9
2.1. Semigroups and Groups 9
2.2. Transformation Semigroups 11
2.3. Presentations 13
2.4. The Braid Group 19
Chapter 3. Factorisable Inverse Monoids 27
3.1. Factorisable Inverse Monoids 27
3.2. Coset Monoids and Embeddings 31
3.3. The Structure of Factorisable Inverse Monoids 35
3.4. Presentations of Factorisable Inverse Monoids 37
Chapter 4. Factorisable Inverse Braid Monoids 41
4.1. The Inverse Braid Monoid 43
4.2. The Factorisable Braid Monoid 49
4.3. The Permeable Braid Monoid 54
4.4. Visualising the Elements of $\mathfrak{F} \mathcal{B}_{n}$ and $\mathfrak{P B} \mathcal{B}_{n}$ 58
Chapter 5. Presentations of Factorisable Inverse Braid Monoids 60
5.1. The Inverse Braid Monoid 61
5.2. The Factorisable Braid Monoid 75
5.3. The Permeable Braid Monoid 93
Chapter 6. Pure Factorisable Inverse Braid Monoids 99
6.1. The Pure Inverse Braid Monoid 102
6.2. The Pure Factorisable Braid Monoid 106
6.3. The Pure Permeable Braid Monoid 111
Chapter 7. Presentations of Pure Factorisable Inverse Braid Monoids 120
7.1. The Pure Inverse Braid Monoid 121
7.2. The Pure Factorisable Braid Monoid 123
7.3. The Pure Permeable Braid Monoid 130
Chapter 8. Applications of Order-Preserving Partial Permutations 131
8.1. The Monoid of Order-Preserving Partial Permutations 132
8.2. The Inverse Braid Monoid 141
8.3. The Monoid of Order-Preserving Partial Braids 151
8.4. The Singular Part of the Inverse Braid Monoid 157
8.5. The Dual Symmetric Inverse Semigroup 160
8.6. The Factorisable and Permeable Braid Monoids 162
Appendix A. Catalogue of Presentations 163
A.1. Braid Monoids 163
A.2. Transformation Semigroups 165
A.3. Pure Braid Monoids 168
Bibliography 170
Index of Notation 173
Index 176

List of Figures

1.1

Representing the trefoil knot (left) as a closed braid (right).
Un-knotting the trefoil.
Representing the singular trefoil knot (left) as a closed singular braid (right).
Two resolutions $\beta_{1} \in \mathcal{B}_{2}$ (left) and $\beta_{2} \in \mathcal{B}_{2}$ (right) of the singular braid $\beta \in \mathcal{S B}_{2}$ (centre).
The braid $\beta_{2} \in \mathcal{B}_{2}$ closes to give the unknot.

A partial braid in $\mathcal{I B}_{3}$.
The braid $\beta \in \mathcal{B}_{4}$. 4
The trivial braid $1 \in \mathcal{B}_{4}$.
The modified braids β^{\prime} (left) and 1^{\prime} (right) after removing the second and third strings.5
Projections of β^{\prime} (left) and 1^{\prime} (right) onto a horizontal plane. 5
The braid $\gamma \in \mathcal{B}_{4}$. 5
Representing γ as a commutator. 6
A merge-and-part homotopy from γ to 1 6
The element $\alpha \in \mathcal{P} \mathcal{T}_{8}$ defined by $1 \alpha=3,3 \alpha=4,6 \alpha=8,7 \alpha=3$. 12
The product (composite) of two elements $\alpha, \beta \in \mathcal{P} \mathcal{T}_{4}$. 13
The elements of the semigroup $S=\{a, b, c, d, e\} \subseteq \mathcal{I}_{2}$. 13
The generator $\mathcal{E}_{i j} \in \mathfrak{E q}_{n}$. 19
Relation (E3): $\mathcal{E}_{i j} \vee \mathcal{E}_{j k}=\mathcal{E}_{j k} \vee \mathcal{E}_{i k}=\mathcal{E}_{i k} \vee \mathcal{E}_{i j}$ if $i<j<k$. 19
A braid on $\{1,2,3,4\}$.20
The product of two braids $\beta, \gamma \in \mathbf{B}_{3}$. 21
A braid equivalent to $\alpha \beta$ from Figure 2.7. 21
The identity braid $1 \in \mathbf{B}_{5}$. 22
The inverse of a braid: $\beta \beta^{-1} \sim \beta^{-1} \beta \sim 1$. 22
The braids ς_{i} (left) and ς_{i}^{-1} (right) in \mathcal{B}_{n}. 23
$2.12 \quad$ The braids $\varsigma_{i j}$ (left) and $\varsigma_{i j}^{-1}$ (right) in \mathcal{B}_{n}. 23
2.13
3.1
5.1 The partial braid $1_{\{i\}^{c}} \in \mathcal{I} \mathcal{B}_{n}$.

The braids $\alpha_{i j}$ (left) and $\alpha_{i j}^{-1}$ (right) in \mathcal{B}_{n}.
An element of $\mathcal{I}_{X} \backslash \mathfrak{F}_{X}$ where $X=\{1,2,3, \ldots\}$.
A picture of a block bijection $\theta \in \mathcal{I}_{8}^{*}$.

Two pictures of a uniform block bijection in \mathfrak{F}_{8}^{*}.

The braids $\delta_{i j}$ (left) and $\gamma_{i j}$ (right) in \mathcal{B}_{n}.
Some partial braids on $\{1,2,3,4\}$.
The product of two partial braids. $k=i \bar{\beta}<l=(i+1) \bar{\beta}$.
The strings \mathfrak{s} (left) and \mathfrak{t} (right).
The strings merging.

The homotopies H_{3}, H_{4}, and H_{5}.

A picture of an element of $\mathfrak{E q}_{6} \rtimes \mathcal{B}_{6}$.

The partial braid $\theta_{i}=\left(\varsigma_{i}\right)_{\{i\}^{c}}$ in $\mathcal{I B}_{n}$.
Relation (IB1)": $\theta_{i} \varsigma_{i} \theta_{i}=\theta_{i}$ for all i.
Relation (1B1) : $\theta_{i} \varsigma_{i} \theta_{i}=\theta_{i}$ for all i.
Relation (IB2)": $\varsigma_{i} \theta_{i}=\theta_{i+1} \varsigma_{i+1}$ for all $i \leq n-2$. 24 28 30
The product of two block bijections $\theta_{1}, \theta_{2} \in \mathcal{I}_{4}^{*}$. 30 31
The product of two uniform block bijections $\theta_{1}, \theta_{2} \in \mathfrak{F}_{4}^{*}$. 31
The equivalences \mathcal{E}_{1} (top), \mathcal{E}_{2} (middle), and $\mathcal{E}_{1} \vee \mathcal{E}_{2}$ (bottom) in ${\mathfrak{E} \mathfrak{q}_{X} .} \quad 34$ 43 44
The inverse of a partial braid: $\beta \beta^{-1} \beta \sim \beta$ and $\beta^{-1} \beta \beta^{-1} \sim \beta^{-1}$.
The partial braids $1,1_{A} \in \mathbf{I B}_{6}$ where $A=\{2,3,5\} \subseteq\{1,2,3,4,5,6\}$.
The braids $\beta^{-1} \varsigma_{i} \beta$ (left) and $\beta^{-1} \varsigma_{i}^{2} \beta$ (right) for the case in which 49
Possible configurations before and after merge-and-part. 49 52
Possible configurations before and after permeating. 55

The action of a braid $\beta \in \mathcal{B}_{6}$ on an equivalence $\mathcal{E} \in \mathcal{E q}_{6}$.
The product of two elements $\left(\mathcal{E}_{1}, \beta\right),\left(\mathcal{E}_{2}, \gamma\right) \in \mathfrak{E q}_{4} \rtimes \mathcal{B}_{4}$.

Relation (IB3): $\tau \varsigma_{1} \tau \varsigma_{1}=\varsigma_{1} \tau \varsigma_{1} \tau=\tau \varsigma_{1} \tau$, where $\tau=1_{\{1\}^{c}}$.
The partial braids $\left(\varsigma_{1}\right)_{\{1\}^{c}}$ (left) and $\left(\varsigma_{1}\right)_{\{2\}^{c}}$ (right) in $\mathcal{I B}_{n}$. 63 69 69

The relation $\sigma_{i} f_{i}=f_{i} \sigma_{i}$ is not in $\left(R_{I B}^{\prime \prime}\right)^{\sharp}$ for any i. 71
The relation $f_{i} f_{j}=f_{j} f_{i}$ is in $\left(R_{I B}^{\prime \prime}\right)^{\sharp}$ whenever $|i-j|>1$.
$5.9 \quad$ The partial braid $\left(\varsigma_{i}\right)_{\{i+1\}^{c}}$ in $\mathcal{I B}_{n}$. 71
$5.10 \quad$ Relation (FB3): $x y x y=y x y x$ where $x=\left(\mathcal{E}_{12}, 1\right)$ and $y=\left(1, \varsigma_{2}\right) . \quad 81$
5.11 Relation (FB4): $x y x y=y x y x$ where $x=\left(\mathcal{E}_{12}, 1\right)$ and $y=\left(1, \varsigma_{2} \varsigma_{3} \varsigma_{1} \varsigma_{2}\right) . \quad 8$
$5.12 \quad$ The singular braid $\tau_{i} \in \mathbf{S B}_{n}$. 86
5.13 Possible configurations before and after move (ii). 87
$5.14 \quad$ Possible configurations before and after move (iii). 87
5.15 An intermediate triple singular point created during move (iii). 87
$5.16 \quad$ The relation $\varsigma_{i}^{2} \tau_{i+1} \asymp \tau_{i+1} \varsigma_{i}^{2}$ does not appear to hold in $\mathfrak{F} \mathcal{S B}_{n}$. 89
An $(\mathcal{E}, 2)$-homotopy from ς_{2}^{2} to $\varsigma_{1} \varsigma_{2} \varsigma_{2} \varsigma_{1}$. 95
$5.18 \quad$ Relation $(\mathrm{PB} 6)^{\prime}: x y z=z y x$ where $x=\llbracket 1 \rrbracket_{\mathcal{E}_{i, i+1}}, y=\varsigma_{j}$, and $z=\llbracket 1 \rrbracket_{\mathcal{E}_{j, j+1}}$ in the case $j=i+1$.

The braid $\beta_{i_{1} i_{2} i_{3}} \in B$.
An example calculation: $\varsigma_{1}^{-1} \alpha_{13} \alpha_{23}^{-1} \varsigma_{1}=\alpha_{12}^{-1} \alpha_{13}^{-1} \alpha_{23} \alpha_{12}=$ $\alpha_{12}^{-1} \alpha_{13}^{-1}\left(\alpha_{23} \alpha_{13}^{-1}\right) \alpha_{13} \alpha_{12}$.

The maps $\check{\lambda}_{A}, \check{\rho}_{A} \in \mathcal{P O} \mathcal{I}_{8}$ where $A=\{2,3,5,8\}$.
The maps $\check{\lambda}_{4} \in \mathcal{L}_{8}$ and $\check{\rho}_{4} \in \mathcal{R}_{8}$.
Relation (L1): $\check{\lambda}_{i} \check{\lambda}_{j}=\check{\lambda}_{j+1} \check{\lambda}_{i}$ if $1 \leq i \leq j \leq n-1$. 134
8.5

Relation (L2): $\check{\lambda}_{i} \check{\lambda}_{n}=\check{\lambda}_{i}$ if $1 \leq i \leq n$. 134
8.6

Relation (BL2): $\varsigma_{i} \check{\lambda}_{j}=\check{\lambda}_{j-1}$ if $1 \leq i=j-1 \leq n-1$. 143
Relation (BL4): $\varsigma_{i} \check{\lambda}_{j}=\check{\lambda}_{j} \varsigma_{i-1}$ if $1 \leq j<i \leq n-1$. 143
Relation (PL3): $\alpha_{i j} \check{\lambda}_{k}=\check{\lambda}_{k} \alpha_{i-1, j-1}$ if $1 \leq k<i<j \leq n$. 153
A planar block bijection in \mathcal{I}_{8}^{*}. 160

$$
8.9
$$

A picture of $\alpha \in \mathcal{P O}_{8}$ (grey) and $\theta_{\alpha} \in \mathcal{P O} \mathcal{I}_{9}^{*}$ (black). 161
8.10The images $\check{\lambda}_{i} f$ (left) and $\check{\rho}_{i} f$ (right) of the generators of $\mathcal{P O} \mathcal{I}_{n-1}$.161

Acknowledgements

First and foremost I wish to thank my supervisor David Easdown and express my gratitude for his guidance and support. David was always willing to give freely of his time and experience, and was enormously helpful in the shaping and developing of this thesis.

I also benefited greatly from discussions with Des FitzGerald, Bob Howlett, Andrew Mathas, James Parkinson, and Jono Kusilek.

My time at Sydney University was made all the more enjoyable by my friends and colleagues, especially Tim and Brad who I had the pleasure of sharing an office with.

Thanks go to my family for their encouragement over the years, and in particular to my wife Roslyn for her constant support and understanding.

Finally, I would like to thank God for the ability and opportunity to have pursued my interest in mathematics.

This thesis contains no material which has been accepted for the award of any other degree. To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made.

