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Abstract
Fabio Tozeto Ramos Doctor of Philosophy

The University of Sydney February 2007

Recognising, Representing and Mapping Natural Features in

Unstructured Environments

This thesis addresses the problem of building statistical models for multi-sensor percep-

tion in unstructured outdoor environments. The perception problem is divided into three

distinct tasks: recognition, representation and association. Recognition is cast as a statisti-

cal classification problem where inputs are images or a combination of images and ranging

information. Given the complexity and variability of natural environments, this thesis inves-

tigates the use of Bayesian statistics and supervised dimensionality reduction to incorporate

prior information and fuse sensory data. A compact probabilistic representation of natural

objects is essential for many problems in field robotics. This thesis presents techniques for

combining non-linear dimensionality reduction with parametric learning through Expecta-

tion Maximisation to build general representations of natural features. Once created these

models need to be rapidly processed to account for incoming information. To this end, tech-

niques for efficient probabilistic inference are proposed. The robustness of localisation and

mapping algorithms is directly related to reliable data association. Conventional algorithms

employ only geometric information which can become inconsistent for large trajectories. A

new data association algorithm incorporating visual and geometric information is proposed

to improve the reliability of this task. The method uses a compact probabilistic representa-

tion of objects to fuse visual and geometric information for the association decision.

The main contributions of this thesis are: 1) a stochastic representation of objects

through non-linear dimensionality reduction; 2) a landmark recognition system using a vi-

sual and ranging sensors; 3) a data association algorithm combining appearance and position

properties; 4) a real-time algorithm for detection and segmentation of natural objects from

few training images and 5) a real-time place recognition system combining dimensionality

reduction and Bayesian learning.

The theoretical contributions of this thesis are demonstrated with a series of experiments

in unstructured environments. In particular, the combination of recognition, representation

and association algorithms is applied to the Simultaneous Localisation and Mapping problem

(SLAM) to close large loops in outdoor trajectories, proving the benefits of the proposed

methodology.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with the problem of building stochastic models of unstructured

environments from sensory information. These models are used to address the main percep-

tual tasks such as recognition, representation and mapping. The methods and algorithms

described are applied to specific robotics problems in aerial, terrestrial and underwater do-

mains. The combination of detection, representation and association results in more reliable

robots that can operate robustly in complex natural environments. This chapter motivates

the thesis and presents the main problems robots face when operating in unstructured do-

mains.

Over the past ten years mobile robotics research has primarily focused on problems

related to navigation such as localisation and map building. The first step in building an

autonomous robot is to provide the ability to navigate safely in an unknown environment

while keeping an internal estimate of its position with respect to the surrounding world.

This must be achieved despite noisy measurements, irregular terrain, dynamic environments,

different weather conditions and many other complexities.

When a robot estimates its position with respect to incrementally mapped environmental

features, the problem is known as simultaneous localisation and mapping (SLAM). Conven-

tional stochastic solutions to SLAM involve the computation of covariance matrices which are

in general of complexity O(n2) in the number of features (or landmarks) in the map. Much

effort has been made to reduce the complexity of SLAM algorithms. The best SLAM algo-

rithms can now deal with many thousands of landmarks (Guivant and Nebot 2001b; Thrun

et al. 2002; Paskin 2003; Bosse et al. 2004). However, in many cases, position information

alone is not enough to navigate robustly. Association of map features becomes difficult as

errors in position estimates increase. Furthermore, extraneous objects might exist in the
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environment and their inclusion in the map can have disastrous consequences. For these

reasons, reliable detection and association of landmarks plays a major role in autonomous

localisation and mapping. When multiple sensors are combined to detect, associate and

represent objects and landmarks, this becomes part of the wider perception problem.

Humans can detect and create internal representations of thousands of objects that

enable them to classify observed objects as belonging to a particular class, despite variations

in shape, colour or size. Such knowledge is acquired over many years of learning involving

interpretation of sensory information and creation of models that are robust to complexity.

Endowing robots with such capability would considerably enhance autonomy and reliability.

In mapping and localisation, for example, a robot would be able to map only specific objects

in the environment that are known to be reliable landmarks, and identify dynamic objects

commonly found in real applications such as humans and cars.

The benefits of reliable perception in unstructured environments are analysed in two

problems. In navigation, the robot has to detected and represent landmarks to create

consistent maps. With a large number of detected landmarks the problem is how to associate

them correctly despite position uncertainty. Furthermore, many tasks require descriptive

maps that possess more information than just feature positions. For these tasks compact

probabilistic representations can provide higher level models for decision making. These

problems are detailed with illustrative examples below.

1.2 Navigation in Complex Environments

The robust identification of landmarks for localisation and mapping requires the classifi-

cation of an object as static or dynamic and the selection of landmarks that are easier to

identify and associate. Appearance properties such as shape, colour and texture can extract

interesting features that are not apparent in purely geometric models. A major issue is the

creation of accurate models that can account for the variability of appearance expected in

unstructured environments. Appearance models can be divided into two classes: models

for recognition encode a general description of the landmark class and must account for all

variability within the class in both shape, colour and texture; models for association encode

the information necessary to distinguish one particular landmark from others. Models can

be generated as the robot navigates by creating unsupervised representations or learnt from

training data. As it is difficult to provide extensive datasets that capture the variability

of natural environments, this thesis concentrates on the unsupervised approach to building

representations which is addressed in Chapter 4.

Most current outdoor robotics is based on sensors that provide geometric (range and

bearing) information. Although these sensors are accurate, they only provide geometric
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profiles of objects which are, in general, insufficient for recognition. Conversely, imaging

sensors provide richer information such as shape, texture and colour. They are passive, do

not consume much power and, in most cases, are less expensive than ranging sensors. The

main problem stopping their applicability to outdoor robotics is the difficulty in interpreting

the complex information provided.

As opposed to indoor robotics where large patterns such as walls and doors are easily

identified with range sensors, outdoor applications are characterised by the lack of geometric

structure. Moreover, the existence of far-field objects introduces another problem as land-

marks may lie beyond the maximum range of the sensor. This can be seen in Figure 1.1

where a laser scan is plotted in a typical outdoor image. Because most objects are outside

the maximum range of the sensor, only 10 (3%) out of 361 readings obtained from the laser

scan are valied and useful measurements. These points are separated into three clusters with

very similar spatial configuration. While two of these clusters are caused by reflections from

trees, the third cluster results from a person. It can be seen that the identification of the

person is difficult from only the range graph, but is possible from the associated image. This

gives an idea of the importance of imagery in interpreting the world in outdoor robotics.

The main issue in the use of appearance information in unstructured environments is

the difficulty in computing models able to encode the complexity of the data. The creation

of appearance models for recognition involves learning generative or discriminative models

from training data. The lack of structure in the environment imposes many difficulties,

of which the need for extensive datasets is the most challenging. To address this issue,

Bayesian inference is used in this thesis to show how few training examples can be used to

create generative models for recognition and segmentation of natural features.

Although visual information can provide most of the necessary features for recognition,

the task can be computed more efficiently when the search for the object is constrained to

specific areas in the image. Range readings can be used to reduce the image area where

objects are more likely to be found. An algorithm using this idea is presented in Chapter 3.

This algorithm extracts shape information from laser readings and fuses it with appearance

features to recognise landmarks in a discriminative fashion.

The ability to interpret complex environments is a key challenge for robots. Throughout

this thesis algorithms are presented to address this problem combining multiple sensors and

creating stochastic representations from training data.

1.2.1 Compact Probabilistic Representations

In many applications, a map with only the position of landmarks does not contain enough

information for higher-level decision making. Sometimes it is desirable to have additional

visual information that includes properties such as colour, shape and texture that can be
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Figure 1.1: Typical image and laser scan from an outdoor environment. As most objects
are further than the maximum range of the sensor, only 10 distances were obtained. They
are insufficient for correct characterisation of the objects as shown in the image.

used to identify objects of interest for particular applications. Examples include rescue,

inspection missions and underwater exploration.
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Figure 1.2: Metric map augmented with landmark pictures. The additional visual informa-
tion allows better perception and decision making.

Conventional SLAM algorithms create maps of point features representing the centre of

landmarks. Those features are in general detected with range sensors and the centroid is

extracted from the profile of the range measurements obtained. Whilst this type of map

helps localisation, it does not contain the necessary information to, for example, classify

trees according to their specie or to distinguish objects.

To illustrate this problem, Figure 1.2 depicts a metric map with pictures of identified

landmarks. Map and pictures were generated by solving the SLAM problem in an urban

environment. The inclusion of visual information allows better recognition and association

of landmarks. Additionally, it provides information for higher level decision making, for

tasks that go beyond navigation. From this example, it can be concluded that the combina-

tion of range sensors and imaging sensors for building maps improves the value of SLAM.

Accurate range measurements and richer appearance information from cameras are thus

complementary.

This thesis proposes a methodology to build compact probabilistic models to encode

visual features. The framework is developed with non-linear dimensionality reduction tech-

niques associated with statistical learning. The information from cameras can thus be incor-

porated into a SLAM framework to yield maps that have at the same time accurate position

estimates and higher level feature information, such as landmark images obtained at differ-

ent viewpoints. The probabilistic visual representation for natural features is described in
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Figure 1.3: Gating procedure for data association. The robot with position x̂v and uncer-
tainty represented by the ellipse has to associate an observation z to landmarks previously
observed denoted by x̂l,1, x̂l,2, x̂l,3, x̂l,4, x̂l,5. The gate defined by the dashed ellipse eliminates
landmarks x̂l,3, x̂l,4 and x̂l,5.

Chapter 4 of this thesis.

1.2.2 Robust Data Association

A major problem when performing localisation and mapping in large outdoor environments

is reliable data association. As the uncertainty over the position of landmarks and vehicle

grows, correct association can be very difficult. If for some circumstance an incorrect data

association hypothesis is accepted and introduced in the estimation process, the filter may

become inconsistent compromising the whole map. The traditional approach for data as-

sociation is to use a technique known as gating (Blackman and Popoli 1999), explained in

detail in Chapter 2.

Gating computes a hypothesis test to eliminate associations that are unlikely to be true

considering the uncertainty in robot and landmark positions. This is illustrated in Figure

1.3. The uncertainty on robot pose is represented by the ellipse around its expected position

denoted by x̂v. At a particular instant, the robot makes a new observation z. The problem

is then to associate z to some of the landmarks previously detected (x̂l,1, x̂l,2, x̂l,3, x̂l,4, x̂l,5)

or classifying it as a new landmark. The dashed ellipse represent landmarks that are within

the gate, and are possible associations for observation z. This eliminates landmarks x̂l,3, x̂l,4
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and x̂l,5 from consideration. Among the remaining landmarks, the decision is to a associate

z to either x̂l,1 or x̂l,2, or to a new landmark. Strategies to address this problem consider

the nearest neighbour (NN) as the most likely. When the distance to the nearest neighbour

is further than a defined distance, the measurement is considered as coming from a new

landmark. Although this methodology is computationally efficient and provides accurate

results for small trajectories it clearly fails when position uncertainties are large. Gating

and NN become unreliable and not suitable for large scale SLAM problems.

The detection of loop closure in SLAM is a significant issue when a robot follows an

extensive path. Observed landmarks are initialised in the map and have to be recognised

and correctly associated when the robot re-observes them in a trajectory with loops. When

navigating without closing the loop, the uncertainty of the robot location grows making

further associations more difficult. Furthermore, the number of landmarks used in large-

scale SLAM can be significant, increasing the complexity of the problem. This is illustrated

in Figure 1.4 where SLAM is performed with hundreds of features. The uncertainty of the

vehicle and feature positions grow making data association difficult.

This thesis address the problem of loop closure and data association in large-scale en-

vironments by integrating high-level appearance models into the data association process.

A demonstration of these ideas in an extensive unstructured environment is provided in

Chapter 6.

1.3 Contributions

The main contributions of this thesis are:

1. Stochastic representation of objects through non-linear dimensionality re-

duction. A non-linear statistical model encoding a neighbourhood-preserving dimen-

sionality reduction is proposed as a representation for features in natural environments.

This representation is able to distinguish similar objects such as trees and bushes. Ef-

ficient inference in this model is formulated and tested with inputs of thousands of

dimensions. Inference operations result in mixture of Gaussians that can be integrated

in a non-linear filtering scheme.

2. Landmark recognition system using a laser and camera. A new algorithm

that combines laser and camera information for object detection in outdoor environ-

ments is presented. The algorithm is based on a combination of unsupervised and

supervised dimensionality reduction methods that fuses information from these two

sensors to discover the most discriminative dimensions. Having points mapped to a

lower-dimensional space, logistic regression is applied for the final classification. The
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Figure 1.4: SLAM over an extensive trajectory. The uncertainty of the vehicle and feature
positions increases making data association difficult before closing the loop.

algorithm can process about 5 frames per second and is able to detect objects up to

30 metres from the robot. As opposed to most computer vision algorithms for object

recognition that have to search for objects across the whole image, this new approach

uses laser to identified regions of interest, and only information in these regions are

processed. The resulting real-time algorithm works with high-resolution images to

incorporate texture information.

3. Data association algorithm combining appearance and position properties.

With a probabilistic representation both position and appearance can be used to asso-

ciate measurements with landmarks using the normal gating technique. The result is

a more robust data association algorithm that combines complementary clues. When

data association using only position is statistically sufficient, appearance information

is not required. When position information is not sufficient, the augmentation of

landmark models with appearance information significantly helps in selecting the best

hypothesis.
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4. Real-time detection and segmentation of natural objects from few training

images. A fully Bayesian learning methodology using variational calculus is derived

for multivariate mixtures. Generative models for object and non-object image patches

are learnt from less than 10 images. The algorithm can be used both to segment and

classify natural objects and is tested in aerial, underwater and terrestrial domains.

Results demonstrate that the algorithm is more stable and accurate than conventional

maximum likelihood techniques.

5. Large-scale deployment of the algorithms for a challenging outdoor simul-

taneous localisation and mapping problem. The combination of detection, rep-

resentation and data association significantly improve results over conventional SLAM

algorithms while additionally providing statistical models of landmarks and images

acquired at different distances and view points. The framework is tested in an un-

structured environment where conventional approaches fail.

6. Real-time place recognition system tested in indoor and outdoor environ-

ments. The combination of dimensionality reduction and statistical modelling can

be applied to the problem of place recognition from images. Generative models from

places are learnt from a reduced dataset of images and labels. Images are divided into

smaller patches and a classification scheme is proposed where instead of classifying

patches individually, uses the whole set of patches in the image to draw its decision.

Results are demonstrated in indoor and outdoor experiments.

1.4 Thesis Outline

This thesis is organised as follows:

Autonomous Recognition and Mapping

In Chapter 2, the basic concepts of object recognition, dimensionality reduction and simul-

taneous localisation and mapping are presented. A review of previous work in these areas

is provided and current linear and nonlinear dimensionality reduction techniques detailed.

Algorithms for localisation and mapping are explained and recent research on combining

vision and range sensors for simultaneous localisation and mapping emphasised.

Recognition of Natural Features

Algorithms for detection and segmentation of natural features are presented in Chapter 3.

The chapter starts by describing a Bayesian framework for learning generative models for
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object recognition from images. These models can be trained from few images and addi-

tionally used for segmentation. When more training samples or other sensors are available

the combination of dimensionality reduction and discriminative learning can provide a faster

solution for object detection. Using these ideas, a method for classification from laser and

visual information is proposed and tested for recognition of trees in an urban park.

Stochastic Representation

The problem of representing natural features with probabilistic models is presented in Chap-

ter 4. The probabilistic model described represents a regression function from raw sensor

data to a low-dimensional space where essential properties are preserved. The representation

has a form of a mixture of linear models with uncertainty encoded by a set of Gaussians. Ex-

periments demonstrate the potential of the approach for intelligent information compression

and abstraction.

Place Recognition

The problem of place recognition from images is explored in Chapter 5. Given a set of

images from particular places, the robot has to recognise its location. The problem can be

seen as a multi-class classification task. However, rather than learning a single classifier,

the approach creates generative models for each place. This has the advantage of being

incremental, i.e. if classification is required for additional places, models already learnt can

still be used and new data is incorporated to other models.

Integrating Perception with Mapping

Perceptual models described in previous chapters are combined and applied to the problem

of simultaneous localisation and mapping in Chapter 6. Reliable landmark recognition

eliminates the problem of navigating in an environment with dynamic objects while landmark

appearance representation can significantly improve data association. The combination of

position and appearance information for data association is discussed in the chapter, with

further outdoor experiments reporting the benefits of the new approach.

Conclusions and Future Work

Chapter 7 concludes the thesis by analysing the experimental results obtained with the

methodology proposed in Chapters 3, 4, 5 and 6. Directions for future work and open issues

regarding representation from multi-sensory information and their application to robotics

are then discussed.




