

A Novel Quartet-Based Method for Inferring Evolutionary Trees from Molecular Data

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Information Technology Faculty of Engineering and Information Technology

> Monther Tarawneh March 2008

Science is nothing but perception Plato (Ancient Greek Philosopher 428-348 BC) To my mother

To my father

أهداء الى امي وابي

Acknowledgment

First and foremost, I would like to thank my supervisor Dr. Bing Bing Zhou. Without him this thesis would not have been possible. I am grateful to his kind supports, excellent advice, intensive collaboration throughout the whole time we were working together, for intensively reading this thesis, and the financial support he had gave me during my PhD research. Furthermore, I thank my associate supervisor Prof. Ablert Zomaya for his support and opportunity to work in the environment of advanced network research. Also, for his encouragement and help during my PhD.

Thanks to Chen, Daniel, Penghao, and every one attended our very intensive enjoyable collaboration during the last 3 years, every meeting result in new idea, some key definition and deep sight. I am especially grateful to Daniel Chu who contributed by implementing the distributed version of QB algorithm.

I appreciate very much the unfinished work with Abdur Sikder and Gowrie, it dose open my eyes into many future direction, hope we can finish.

I would like to thank every one in the ANRG group at the school of IT especially, Michael Charleston. Besides, Friday meeting is a good experience for every research student.

Thanks to David London, Greg and the workshop people for their technical support during my time in the school of information technology/University of Sydney.

I wish to thank several colleagues for their continuous support in any way, and creating such friendly environment especially Abdur, Gowrie, Shwen, Penghao, Khalid, Mohammad, Tanveer, and all members in the school of IT at Sydney University.

Finally, I would like to thanks my parent for their ever lasting support of my work and study.

Declaration

I, Monther Tarawneh, do hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, nor material which to a substantial extent has been excepted for the award of any degree or diploma of a university or other institute of higher learning, except where due acknowledgments were made in the text.

.....

Monther A Tarawneh

Abstract

Molecular Evolution is the key to explain the divergence of species and the origin of life on earth. The main task in the study of molecular evolution is the reconstruction of evolutionary trees from sequences data of the current species.

This thesis introduces a novel algorithm for inferring evolutionary trees from genetic data using quartet-based approach. The new method recursively merges subtrees based on a global statistical provided by the global quartet weight matrix. The quarte weights can be computed using several methods. Since the quartet weights computation is the most expensive procedure in this approach, the new method enables the parallel inference of large evolutionary trees.

Several techniques developed to deal with quartets inaccuracies. In addition, the new method we developed is flexible in such a way that can combine morphological and molecular phylogenetic analyses to yield more accurate trees. Also, we introduce the concept of critical point where more than one possible merges are possible for the same sub-tree. The critical point concept can provide information about the relationships between species in more details and show how close they are. This enables us to detect other reasonable trees.

We evaluated the algorithm on both synthetic and real data sets. Experimental results showed that the new method achieved significantly better accuracy in comparison with existing methods.

List of Figures

Figure 1.1 Growth of public database GenBank	.2
Figure 1.2 Rooted phylogenetic tree, colored according to the	
three-domain system	.3
Figure 2.1 Rooted and unrooted phylogenetic trees	13
Figure 2.2 Basic steps in phylogenetic analysis	15
Figure 2.3 Equal substitution rates in JC69 model	20
Figure 2.4 Representations of GTR Parameters	23
Figure 2.5 Computation of a Parsimony score resulting in two	
possible assignments	32
Figure 2.6 Computation of a likelihood value	35
Figure 2.7 Step-wise addition showing all the possible places	
for the fifth specie	42
Figure 2.8 Sub-tree Pruning and Regrafting (SPR)	43
Figure 2.9 A possible bisection and reconnection (TBR)	14
Figure 2.10 A possible Nearest Neighbour Interchange (NNI)	
exchanges	45
Figure 3.1 The seven topologies for each quartet	51
Figure 3.2 The three possible fully resolved trees for a quartet	
{a, b, c, d}5	54
Figure 3.3 A simple example of the Global Weight Matrix	55
Figure 3.4 Calculating the number of quartet trees using the	
bi-partitioning technique5	57
Figure 3. 5 Unrooted tree separated into three sub-trees by removing	
the internal node that connects them	59
Figure 3.6 A simple example of tree reconstruction from a global	
quartet weight matrix	55
Figure 4.1 An example of tree reconstruction from an inaccurate	
global quartet weight matrix	74
Figure 4.2 An example of a common critical point	77
Figure 4.3 QBNJ workflow graph	79
Figure 4.4 Threshold α as a function of confidence value <i>c</i>	31

Figure 5.1	The average RF values for the trees generated using	
	QB4-ML and Phyml, where MD=0.3	93
Figure 5.2	The average RF values for the trees generated using	
	QB4-ML and Phyml, where MD=0.3	94
Figure 5.3	The average RF values for the trees generated using	
	QB4-ML and Phyml, where MD=0.3	94
Figure 5.4	The average RF values for the trees generated using	
	QB4-ML and Phyml, where MD=0.3	95
Figure 5.5	Likelihood values for 1037 trees	98
Figure 6.1 S	Some of the excavates taxa and their relatives	104
Figure 6.2	Three possible merge patterns at a critical point	108
Figure 6.3	Three possible combinations for Malawimonas	109
Figure 6.4	Γree with multi-scenarios for Excavate taxa	111
Figure 7.1	Master workflow graph	117
Figure 7.2	Workers workflow graph	118
Figure 7.3	Speedup vs 32 CPUs for different numbers of Sequences (or taxa).	121
Figure 7.4 I	Percentage of Computation Time	122
Figure 7.5 S	Speedup of program with 256 CPUs	123

List of Tables

Table 1.1 Amino Acids	6
Table 1.2 Number of possible trees for n sequences	7
Table 5.1 Experimental results for sequence length 300	
Table 5.2 Experimental results for sequence length 600	97
Table 5.3 Comparison of variable and fixed α in QB for DNA	
sequence lengths of 300	
Table 5.4 Results using QB4 with ML for sequence data set	
lengths of 300	92
Table 5.5 Comparative results for a 24-sequences data set.	95
Table 5.6 Comparative results using QBNJ and ML criterion for the	
24 sequences	96
Table 5.7 Average RF values for the 24 sequences trees	97
Table 6.1 The 24 species included in the experiment	103

Table of Contents

Acknowledgments	iv
Declaration	v
Abstract	
List of Figures	vii
List of Tables	ix

Chap	oter 1	1
	view	
	Introduction	
1.2	Genetic Sequences	5
	Problem Complexity	
1.4	Contribution	8
1.5	Thesis Structure	9

Chap	ter 2	12
Recor	nstructing Evolutionary Trees	12
	Introduction	
2.2	Basic Concepts	14
2.3	Sequence Alignment	
2.4	Models and Assumptions in phylogenetic	18
2.4.1	Choosing the Appropriate Model	24
2.5	Tree-Building	25
2.5.1	Distance-Based Methods	26
2.5.1.1	Least Square Methods	26
2.5.1.2	Minimum Evolution Methods	27
2.5.1.3	Clustering Methods	29
2.5.1.4	Limitations of Distance-Based Methods	30
2.5.2	Character-Based Methods	30
2.5.2.1	Parsimony Criterion	31
2.5.2.2	Maximum Likelihood Criterion	33
2.5.2.3	Bayesian Inference	38
2.6	Heuristic Search Methods	40
2.6.1	Stepwise Addition	41
2.6.2	Tree Rearrangement	42
2.7	Measure of Confidence	46
2.8	Testing and Comparing Programs	47
2.9	Summary	48

Chap	oter 3	49
	al Quartet Weight Matrix	
3.1	Introduction	
3.2	Quartet Trees	
3.3	Quartet Puzzling Algorithm	
3.4	Global Quartet Weight Matrix	54
3.5	Reconstructing QWM from A given Tree	
3.5.1	Efficient Algorithm	
3.6	Tree Reconstruction from QWM	62
3.7	Summary	67

68
68
68
70
71
73
75
76
80
81

Chap	oter 5	83
Perfo	rmance Evaluation	83
5.1	Introduction	83
5.2	Data set	84
5.3	Methods and Parameters	85
5.4	Result	85
5.5	Invariable Threshold α	89
5.6	QB with Maximum Likelihood (QB+ML)	90
5.6.1	Experiment on 12 sequences	91
5.6.2	Experiment on 24 Sequences	95
5.7	Multiple Maximum Likelihood Points	97
5.8	Summery	

Chap	oter 6	100
_	ng the Relationships among Excavate Taxa	
	Introduction	
6.2	Material and Methods	
6.2.1	Data Source	
6.2.2	Phylogenetic analysis	105
	Experimental Result	

6.3.1	Trimastix	106
6.3.2	Parabasalids, Diplomonads, and Carpediemonas	107
6.3.3	Malawimonas	107
6.3.4	Jakobids	
6.3.5	Euglenozoa and Heterolobozea	
6.4	Summery	

Chap	ter 7	114
	lel Implementation	
7.1	Introduction	
7.2	The Parallel Algorithm	
	Experimental results	
	Summary	

Chapter 8	
Discussion and future work	
8.1 Conclusion	
8.2 Future work	

References
