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Executive Summary 

EXECUTIVE SUMMARY 

The impact of the variability in timber properties has been a challenge for companies 

involved in drying timber, which have to handle these variations and at the same time 

meet the requirements stated in the Australian/New Zealand Standard for the assessment 

of dried timber quality (2001). The definition of quality considered in this study is to both 

minimize the dispersion of the final moisture contents in dried timber boards, and to 

reduce cracking/checking. Anecdotal evidence also suggests that the timber properties of 

plantation timber appear to be more variable compared with the properties of old growth 

or regrowth timber. Therefore, this thesis focuses on measuring the amount of variability 

of timber properties by conducting drying experiments using timber boards taken from 

different locations within a single tree and between trees, for regrowth and plantation 

blackbutt timber (Eucalyptus pilularis Sm.).  The quantified variabilities were then used 

to develop optimized timber drying schedules that are intended to dry regrowth and 

plantation blackbutt boards as quickly as possible (highest productivity) without cracking 

(quality loss) in the presence of large biological variability. Blackbutt (Eucalyptus 

pilularis Sm.) was the chosen species for this thesis because of its abundance in New 

South Wales. It is considered to be one of the most important eucalypts for planting in 

NSW. It has superior growth and high survival rates compared with other eucalyptus 

species, and the timber is marketable. Lastly, conventional kiln drying was considered in 

this thesis compared with other drying methods such as air drying and solar kilns due to 

(arguably) better control of the drying conditions and faster throughput in conventional 

drying. The higher costs of conventional kiln drying are compensated, relative to open—

air drying, by the reduction in stock level and faster turnaround of green to dried timber. 
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Executive Summary 

Firstly, an overview of previous work on the development and evaluation of different 

drying schedules was given.  Previous work either developed optimized drying schedules 

to minimize the dispersion of the final moisture contents, or reduced cracking/checking. 

No schedule has been developed to satisfy both aspects of quality. In addition, only one 

report has taken into consideration biological variability in the development of an 

optimized drying schedule, but this approach has not been tested experimentally. In 

addition, the information on the variability of biological parameters was very limited, was 

assumed to be normally distributed, and the parameters were assumed to be uncorrelated 

with one another. There is little information about the variability in timber properties with 

respect to drying, including how strongly they are correlated. This thesis has particularly 

addressed this aspect of the problem. 

 

Drying experiments using conventional kiln drying were conducted. The properties of 

two regrowth blackbutt logs (36 boards) and two plantation blackbutt logs (24 boards), 

have been measured and analysed for the within—tree variation of timber properties. In a 

separate set of experiments, two boards were taken from each log, from a total of 12 

regrowth logs and 10 plantation logs, to study the between—tree variability of the timber 

properties of blackbutt timber. The timber properties measured consisted of the basic 

density, the initial moisture content, the diffusion coefficient, the failure strain, the failure 

stress, the modulus of elasticity and the shrinkage.  

 

The amount of cracking or checking and the dispersion of final moisture contents were 

assessed. 90% of the regrowth timber and 90% of the plantation timber fell in the Class C 

quality for surface checking, regrowth timber fell in Class B for end checking, while the 
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end checks in the plantation timber fell in Class C for quality. Regrowth timber therefore 

appeared here to have slightly better quality than plantation material when dried with the 

same drying schedule, as here, in agreement with anecdotal suggestions that plantation 

material is more difficult to dry well. 95% of both the regrowth and the plantation timber 

fell in Class E quality for internal checking. Overall, along with the assessment that both 

regrowth and plantation timber was Class C quality for the variation of final moisture 

contents, these regrowth timber boards and the plantation timber boards fell in the lower 

quality classes for the criteria of checking and target moisture content for appearance 

products. Quality Classes A and B are higher quality categories, for appearance—grade 

products.   

 

The dispersion of the final moisture contents was greater with the plantation blackbutt 

timber (0.24 within; 0.36 between) than with the regrowth blackbutt timber (0.19 within; 

0.15 between) for both within—tree and between—trees variability, respectively. In 

general, the diffusion coefficients for the timber in this thesis ranged between 1.14×10—10 

and 6.77×10—10 m2s—1. There was a significant difference between the diffusion 

coefficients of the plantation and regrowth blackbutt timber for the within—tree test at a 

0.05 significance level. The variation in the diffusion coefficients within a single 

plantation blackbutt log was higher than the variation in the diffusion coefficients within 

a regrowth blackbutt log. In addition, there was also a significant difference between the 

diffusion coefficients of regrowth and plantation blackbutt timber at a 0.05 significance 

level for between—trees variability.  
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The initial moisture contents, the diffusion coefficient, and shrinkage decreased from pith 

to bark and the basic density and the modulus of elasticity (MOE) increased in the same 

direction, within a tree, for both regrowth and plantation blackbutt. The results of the 

analysis of variance (ANOVA) showed that radial and circumferential effects were 

significant sources of the within—tree variations for the diffusion coefficient, the initial 

moisture content, the basic density, the failure strain, the failure stress, the modulus of 

elasticity and shrinkage. A similar result was found for the ANOVA between trees. The 

ANOVA results also indicated that the smaller—sized samples used for the analysis (i.e. 

sub—samples of eight boards for the within—tree test of regrowth blackbutt, sub—

samples of four boards for the between—trees test of regrowth blackbutt, sub—samples 

of six boards for the within—tree test of plantation blackbutt, and sub—samples of six 

boards for the between—trees test of plantation timber) were sufficient to measure the 

key effects adequately for the variabilities of the physical, transport, and mechanical 

properties, provided that all combinations of sub—samples were considered. There was 

no significant difference between the ANOVA results for these smaller sized samples 

(less than 1% change), considering all combinations, and the ANOVA results for the 

‘full’ board cases. Though the sample sizes were unusually small to represent population 

statistics by most standards, all combinations of the sub-sets were assessed and an 

averaged picture of the situation with smaller sample sizes was given. 

 

Moreover, MOEs (both green and kiln—dried states) of plantation blackbutt were lower 

compared with the MOE of regrowth blackbutt. It is possible that the MOE was 

correlated with the basic density, and the basic density of regrowth blackbutt was higher 

than the basic density of plantation blackbutt. The shrinkage in the tangential direction 
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was approximately twice the amount of radial shrinkage. The ranges of the measured 

radial shrinkage values were 0.024 – 0.094 mm mm-1
 for regrowth blackbutt and 0.037 – 

0.125 mm mm-1 for plantation blackbutt. The higher shrinkage values for plantation 

blackbutt timber show that plantation material is less stable dimensionally, and this 

situation is possibly due to the high juvenile wood content and low basic density. These 

differential (tangential:radial) shrinkage values ranged from 1.12 – 2.93 for regrowth 

blackbutt and 1.09 – 2.92 for plantation blackbutt. 

 

Tests were conducted to determine the degree of statistical normality for the distribution 

of each property (physical, transport, and mechanical). The results of the normality tests 

showed that most timber properties for regrowth and plantation blackbutt timber were 

distributed normally on a linear scale based on the W test, both within and between—

trees. On the other hand, some timber properties showed a better fit with the three—

parameter lognormal distribution, such as the diffusion coefficient and the green failure 

strain for within—tree variability of regrowth timber. 

 

The means and standard deviations of these distributions were further analysed by 

applying significance tests at a 0.05 level. For regrowth blackbutt, the data for the initial 

moisture content, the basic density, the diffusion coefficient, and shrinkage showed no 

significant differences, comparing the cases within and between—trees. The mechanical 

behaviour, however, was significantly different between each group and suggested that 

the two regrowth trees used for the within—tree test were stiffer than the 12 trees used 

for the between—trees test. It was possible that the mechanical properties were 

dependent on the geographic location where the tree was felled, and the heartwood 
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content of each log. On the other hand, since all the plantation logs used for the within 

and between—trees tests were taken from one location, the mechanical properties were 

not significantly different within the plantation sample. The silviculture and the age of all 

the plantation trees were the same, which might have contributed to the small variation of 

the timber properties between the within—tree and between—trees cases for plantation 

material. Lastly, a significance test was conducted to compare the properties of regrowth 

and plantation blackbutt timber. Most timber properties (except for the initial moisture 

content) were significantly different between regrowth and plantation blackbutt. 

Plantation blackbutt timber had a lower basic density, higher diffusion coefficient and 

shrinkage, and the modulus of elasticity (both in its green and dried states) was lower 

compared with regrowth blackbutt timber. In addition to geographic location, 

heartwood/juvenile content, maturity (age), and differences in microfibril angle may have 

affected these timber properties in plantation blackbutt timber. 

 

For all the experiments, the possibility that there is a correlation between high initial 

moisture contents, higher diffusion coefficients, low basic densities, and low green 

modulus of elasticity’s (MOE) was assessed using principal components analysis (PCA). 

A principal components analysis was performed on the four parameters: the basic 

density, the initial moisture content, the diffusion coefficient, and the green MOE. The 

results of the PCA showed that the principal component for the within—tree and 

between—trees test accounted for 93% and 94% (for regrowth), and 92% and 90% (for 

plantation), respectively, of the total amount of variation within these parameters, giving 

some support for the mentioned correlation between the parameters. 
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The strong correlation between the diffusion coefficient and the basic density, ρD; the 

diffusion coefficient and the initial moisture content, Xi; and the diffusion coefficient, D, 

and the modulus of elasticity, EG were represented by empirical equations. The F 

significance test was conducted to determine if the equations from the within—tree and 

between—trees tests, and the regrowth blackbutt and plantation blackbutt tests, were 

significantly different. The difference between the equations for the within—tree and 

between—trees variability of plantation blackbutt timber (Factual= 1.35 < Fexpected= 2.13) 

was the only result that showed no significant difference. A possible reason for this 

finding is that the boards from the within—tree and between—tree variability tests, hence 

the trees, were all felled from one location. On the other hand, the other tests compared 

boards that were taken from trees felled from different locations, including the regrowth 

blackbutt within trees, compared with between trees. The results of the significance tests 

imply that boards taken from one location, whether they are within—tree and between—

tree samples, have probably come from the same overall population. Hence using any of 

the correlations (within—tree or between—trees for plantation blackbutt) would be 

suitable to estimate the diffusion coefficient of other plantation blackbutt samples at the 

same location. Overall, these empirical equations can be used to estimate important 

drying properties of other regrowth and plantation blackbutt samples, such as the 

diffusion coefficient, using easily measured properties, like the initial moisture content or 

the basic density, as long as the boards are taken from the same age group (i.e. regrowth 

or plantation) and the same location. Thereafter, the blackbutt timber boards may be 

segregated based on the range of diffusion coefficients as estimated from the densities or 

the initial moisture contents. Hence a suitable drying schedule should be chosen for each 

segregated group. Collapse was not significant for blackbutt samples studied in this 
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thesis, and possibly this timber species in general, but it may be significant for other 

eucalyptus species such as collapse—prone Eucalyptus regnans F. Muell (mountain ash) 

This potential limitation means that care is needed in applying the relationships found in 

this thesis to collapse—prone species. 

 

The same drying model was used to assess the effects of different drying schedules (i.e. 

increasing and decreasing the dry—bulb and wet—bulb temperatures of the original 

drying schedule by 5oC and 10oC) and of the potential correlations between the diffusion 

coefficient, the green MOE, the shrinkage coefficient (calculated from the tangential 

shrinkage), and the initial moisture content on the variability of final moisture contents, 

when the average moisture content within a stack of timber reached 15%. In addition, the 

maximum strain attained by the timber boards was also predicted. The results show that 

for regrowth blackbutt timber and accounting for within—tree variability, there was no 

relationship between the length of the drying schedule and the dispersion of final 

moisture contents. As the temperatures increased, the dispersion of the final moisture 

contents showed no consistent trend. The absence of a clear trend may be due to the 

different locations where the logs used for the within—tree test of regrowth variability 

were taken. On the other hand, the between—tree variability sensitivity tests for both 

regrowth and plantation blackbutt timber and the within—tree variability sensitivity test 

for plantation blackbutt timber show a relationship between the length of the drying 

schedule and the dispersion of final moisture contents. The dispersion of the final 

moisture contents decreased as temperatures increased.  Generally, the ‘+10oC’ drying 

schedule gave the shortest time for the stack of timber to reach the target average 

moisture content, and its conditions produced the smallest dispersion of final moisture 
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contents. It was also observed, however, for all sensitivity tests, that as the temperature of 

the drying schedule increased, the average predicted values decreased for the maximum 

strains reached. This is a very unusual result, because normally the strains and stresses 

would be expected to increase with increasing temperature. A possible reason for this is 

that within a piece of timber, as the temperatures increase, the diffusion coefficient will 

increase because the internal average temperature increases, so the internal resistance to 

mass transfer decreases, which leads to the moisture content gradient decreasing, even 

though the drying rate may slightly increase. This decreases both the drying time and the 

maximum strain reached as the temperature increases. There are limitations, however, 

associated when using high temperatures in kiln drying such as collapse and timber 

discolouration. 

 

The optimization technique created by Pordage (2006) was improved by using a large 

number of measurements to quantify the variability in the properties of blackbutt timber. 

The first simulation accounted for the between—tree variability of the biological 

parameters in regrowth blackbutt, and the second simulation accounted for both the 

within and between—tree variability of the timber properties in plantation blackbutt. 

Since location was observed as a main source of variability, the timber properties used 

for each simulation were taken from the logs that were felled from the same location. The 

mean and the standard deviations of the initial moisture content, the reference diffusion 

coefficient, and the shrinkage coefficient of regrowth and plantation blackbutt timber 

boards measured in the actual drying experiments, along with the covariance between 

these properties represented by a covariance matrix, were used for each simulation. The 

total drying time of the optimized drying schedule of plantation blackbutt timber was 
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longer (an additional 168 hours, i.e. 472 hours) compared with the total drying time of the 

optimized drying schedule of regrowth blackbutt timber (304 hours). Due to the greater 

variability present in plantation blackbutt, slower drying is required. Moreover, the total 

drying times from the ‘regrowth blackbutt’ optimization and the ‘plantation blackbutt’ 

optimization (which both accounted for variability) were shorter compared with the total 

drying time of the original drying schedule for 28 mm—thick mixed—sawn blackbutt 

boards, i.e. 504 hours. On the other hand, the total drying times of the optimized drying 

schedules of regrowth and plantation blackbutt timber were greater than the total drying 

time (152 hours) predicted by Pordage’s (2006) optimized drying schedule accounting for 

the variability of Eucalyptus paniculata (grey ironbark). He had limited information on 

the variability of the parameters of grey ironbark and thus used an estimate from another 

eucalyptus species, Eucalyptus obliqua (messmate), whereas in this thesis, the 

variabilities for regrowth and plantation blackbutt used for the optimization technique 

were measured and part of the scope for this study. Overall, this is a typical application of 

the data obtained in this thesis to the optimization of drying schedules. 
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GLOSSARY 
 

(a) Activation energy – Heat of evaporation for free water. Diffusion will occur when 
the water molecule gains a certain ‘activation energy’ in order to overcome the 
forces acting on it. 

 
(b) Bound Water – moisture that is bound to cell walls within the timber. 

 
(c) Conditioning – A treatment to equilibrate the timber’s moisture content to a 

specific value. 
 

(d) Convection – This moisture transport occurs when there is bulk movement of 
water (in timber), and the timber is permeable. Convection occurs under the 
influence of a pressure gradient. 

 
(e) Copice – Regrowth trees that grow from dormant bunds located under the bark of 

tree stumps after the tree has been felled. 
 

(f) Diffusion – molecular flow of water (in timber) from a region high concentration 
to that of low concentration. This is achieved under the influence of a 
concentration gradient.  

 
(g) Distortion - A drying defect, otherwise known as warping, caused by the 

differential shrinkage along the three axes of a piece of wood. Distortion may 
either take the form of cup, bow, twist, spring or diamonding.  

 
(h) Equilibrium moisture content (EMC) - the moisture content at which the timber 

neither gains nor loses moisture from the surrounding atmosphere. 
 

(i) Fibre saturation point (FSP) – A theoretical point (usually 0.3 kg water/ kg dry 
material) where there is no free moisture within the cells, but only bound water 
remains in the cell walls. At this point, apparent shrinkage of the timber is 
expected to take place. 

 
(j) Free water – moisture that is present within the cell cavities of timber. 

 
(k) Heartwood – The section of the tree where the pits aspirate as the tree gets older. 

This used to be sapwood. Only diffusion is expected to occur in this region (when 
cells become blocked). This region also stored the tree’s nutrients for winter, and 
increases the resistance of the tree towards insect attacks and decay. 

 
(l) Initial centre moisture content – Moisture content at the centre of the timber 

before drying. 
 

(m) Lignotuber growth - Swollen underground root structure (develop by most 
eucalypts). This root structure is capable of sprouting new shoots if the tree is 
damaged.  
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(n) Reference diffusion coefficient – Also known as the preactivation factor, the 
coefficient in front of the exponential factor expressing the temeperature 
dependence of the average diffusion coefficient. 

 
(o) Sapwood - The region of cells that allows sap to flow between cells. Therefore, 

both convection and diffusion can occur in this part of the tree. 
 

 
(p) Spiral grain – Fibres that take a spiral course about the timber trunk instead of the 

normal vertical course. The spiral may extend in a right handed or left-handed 
direction around the trunk. 

 
(q) Strain coefficient – Parameter used to predict the strain during drying. 
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