
The development of a syndromic surveillance system for the extensive beef cattle producing regions of Australia

by

Richard William Shephard

A thesis presented to the University of Sydney in fulfilment of the requirement for the degree of Doctor of Philosophy

> 15 November 2006 Faculty of Veterinary Science University of Sydney Australia

Declaration

Apart from the assistance stated in the acknowledgements and where reference is made in the text, this thesis represents original work of the author. I certify that the work presented in this thesis has not been submitted for any other degree or qualification at any other university.

Richard William Shephard BVSc (Hons 1) MVS (Epidemiology) MACVSc 15 November 2006

Acknowledgements

I would like to thank my supervisors, Dr Angus Cameron of AusVet Animal Health Services, Dr Jenny-Ann Toribio and Dr Peter Thomson both from the Faculty of Veterinary Science of the University of Sydney for their contributions. Their keen interest and willingness to help made it a delight to work with them.

I am especially indebted to Dr Chris Baldock. Chris motivated me to undertake a PhD. He mapped a pathway that allowed me to attempt further study while providing for a young family and he continued to inspire and guide me over the course of the project until his untimely death in July 2005.

I am grateful to Meat & Livestock Australia for support provided in the form of a Junior Research Fellowship and to the Australian Biosecurity Cooperative Research Centre for Emerging Infectious Disease for recognising the merit of the project and for project funding.

I wish to thank all the beef producers who helped with this work. The Northern Pastoral Group provided advice, support and sites for the pilot study. The individual cattle-grazing property managers contributed to my learning. Their suggestions and interpretations were considered and valuable. Similarly, the animal health staff of the Queensland Department of Primary Industries and Fisheries helped with all field studies and with collection of background data on the beef industry of northern Australia.

Finally, this thesis is dedicated to my family: to Terri and our children Lucy, James and Scott. They all gave me the love, understanding, support and drive that I needed to complete this work.

List of Publications

Dato, VM, Shephard, RW & Wagner, MM 2006, 'Outbreaks and investigations' in *Handbook of Biosurveillance*, eds MM Wagner, AW Moore and RM Aryel, Elsevier Academic Press, Oxford, 13–26.

Shephard, RW, Aryel, RM & Shaffer, L 2006, 'Animal health' in *Handbook of Biosurveillance*, eds MM Wagner, AW Moore and RM Aryel, Elsevier Academic Press, Oxford, 111–127.

Shephard, RW, Cameron, AR, Toribio, JA & Thomson, P 2006a, Can syndromic surveillance play a role within a modern national veterinary surveillance system? Paper presented to New Zealand Veterinary Association Conference, Auckland, New Zealand, pp. 35–40.

Shephard, RW, Cameron, AR, Toribio, JA & Thomson, P 2006b, Development of the Bovine Syndromic Surveillance System (BOSSS), paper presented to The 11th International Symposium on Veterinary Epidemiology and Economics, Cairns, Australia, ed. J McKenzie, ISVEE.

Shephard, RW, Cameron, AR, Toribio, JA & Thomson, P 2006c, Incorporating the Bovine Syndromic Surveillance System (BOSSS) within an animal health surveillance network, paper presented to The 11th International Symposium on Veterinary Epidemiology and Economics, Cairns, Australia, ed. J McKenzie, ISVEE.

Shephard, RW, Cameron, AR, Toribio, JA & Thomson, P 2006d, Simulation testing of the disease detection performance of the Bovine Syndromic Surveillance System (BOSSS), paper presented to The 11th International Symposium on Veterinary Epidemiology and Economics, Cairns, Australia, ed. J McKenzie, ISVEE.

Shephard, RW, Martin, PAJ, Cameron, AR, Toribio, JA & Thomson, P 2006e, Using syndromic surveillance data for estimating confidence in disease freedom with scenario trees, paper presented to New Zealand Veterinary Association Conference, Auckland, New Zealand, pp. 233–238.

Tsui, FC, Wagner, MM, Espino, J & Shephard, RW 2006, 'Case detection algorithms' in *Handbook of Biosurveillance*, eds MM Wagner, AW Moore and RM Aryel, Elsevier Academic Press, Oxford, 199–216.

Wagner, MM, Shaffer, L & Shephard, RW 2006, 'Functional requirements for biosurveillance' in *Handbook of Biosurveillance*, eds MM Wagner, AW Moore and RM Aryel, Elsevier Academic Press, Oxford, 51–64.

Zhang, J, Calvo, RA, Shephard, RW & Jin, C 2006, A Framework for Mobile Disease Report and Investigation. International Conference on Mobile Technology Applications and Systems, paper presented to 3rd International Conference on Mobile Technology Applications and Systems, Bangkok, Thailand, Institute of Electrical Engineers.

Abstract

All surveillance systems are based on an effective general surveillance system because this is the system that detects emerging diseases and the re-introduction of disease to a previously disease free area. General surveillance requires comprehensive coverage of the population through an extensive network of relationships between animal producers and observers and surveillance system officers. This system is under increasing threat in Australia (and many other countries) due to the increased biomass, animal movements, rate of disease emergence, and the decline in resource allocation for surveillance activities.

The Australian surveillance system is state-based and has a complex management structure that includes State and Commonwealth government representatives, industry stakeholders (such as producer bodies) and private organisations. A developing problem is the decline in the effectiveness of the general surveillance system in the extensive (remote) cattle producing regions of northern Australia. The complex organisational structure of surveillance in Australia contributes to this, and is complicated by the incomplete capture of data (as demonstrated by slow uptake of electronic individual animal identification systems), poorly developed and integrated national animal health information systems, and declining funding streams for field and laboratory personnel and infrastructure. Of major concern is the reduction in contact between animal observers and surveillance personnel arising from the decline in resource allocation for surveillance. Fewer veterinarians are working in remote areas, fewer producers use veterinarians, and, as a result, fewer sick animals are being investigated by the general surveillance system.

A syndrome is a collection of signs that occur in a sick individual. Syndromic surveillance is an emerging approach to monitoring populations for change in disease levels and is based on statistical monitoring of the distribution of signs, syndromes and associations between health variables in a population. Often, diseases will have syndromes that are characteristic and the monitoring of these syndromes may provide for early detection of outbreaks. Because the process uses general signs, this method may support the existing (struggling) general surveillance system for the extensive cattle producing regions of northern Australia. Syndromic surveillance systems offer many potential advantages. First, the signs that are monitored can be general and include any health-related variable. This generality provides potential as a detector of emerging diseases. Second, many of the data types used occur early in a disease process and therefore efficient syndromic surveillance systems can detect disease events in a timely manner. There are many hurdles to the successful deployment of a syndromic surveillance system and most relate to data. An effective system will ideally obtain data from multiple sources, all data will conform to a standard (therefore each data source can be validly combined), data coverage will be extensive (across the population) and data capture will be in real time (allowing early detection). This picture is one of a functional electronic data world and unfortunately this is not the norm for either human or animal heath. Less than optimal data, lack of data standards, incomplete coverage of the population and delayed data transmission result in a loss of sensitivity, specificity and timeliness of detection.

In human syndromic surveillance, most focus has been placed on earlier detection of mass bioterrorism events and this has concentrated research on the problems of electronic data. Given the current state of animal health data, the development of efficient detection algorithms represents the least of the hurdles. However, the world is moving towards increased automation and therefore the problems with current data can be expected to be resolved in the next decade. Despite the lack of large scale deployment of these systems, the question is becoming when, not whether these system will contribute.

The observations of a stock worker are always the start of the surveillance pathway in animal health. Traditionally this required the worker to contact a veterinarian who would investigate unusual cases with the pathway ending in laboratory samples and specific diagnostic tests. The process is inefficient as only a fraction of cases observed by stock workers end in diagnostic samples. These observations themselves are most likely to be amenable to capture and monitoring using syndromic surveillance techniques.

A pilot study of stock workers in the extensive cattle producing Lower Gulf region of Queensland demonstrated that experienced non-veterinary observers of cattle can describe the signs that they see in sick cattle in an effective manner. Lay observers do not posses a veterinary vocabulary, but the provision of a system to facilitate effective description of signs resulted in effective and standardised description of disease. However, most producers did not see personal benefit from providing this information and worried that they might be exposing themselves to regulatory impost if they described suspicious signs. Therefore the pilot study encouraged the development of a syndromic surveillance system that provides a vocabulary (a template) for lay observers to describe disease and a reason for them to contribute their data.

The most important disease related drivers for producers relate to what impact the disease may have in their herd. For this reason, the Bovine Syndromic Surveillance System (BOSSS) was developed incorporating the Bayesian cattle disease diagnostic program BOVID. This allowed the observer to receive immediate information from interpretation of their observation providing a differential list of diseases, a list of questions that may help further differentiate cause, access to information and other expertise, and opportunity to benchmark disease performance. BOSSS was developed as a web-based reporting system and used a novel graphical user interface that interlinked with an interrogation module to enable lay observers to accurately and fully describe disease. BOSSS used a hierarchical reporting system that linked individual users with other users along natural reporting pathways and this encouraged the seamless and rapid transmission of information between users while respecting confidentiality. The system was made available for testing at the state level in early 2006, and recruitment of producers is proceeding.

There is a dearth of performance data from operational syndromic surveillance systems. This is due, in part, to the short period that these systems have been operational and the lack of major human health outbreaks in areas with operational systems. The likely performance of a syndromic surveillance system is difficult to theorise. Outbreaks vary in size and distribution, and quality of outbreak data capture is not constant. The combined effect of a lack of track record and the many permutations of outbreak and data characteristics make computer simulation the most suitable method to evaluate likely performance.

A stochastic simulation model of disease spread and disease reporting by lay observers throughout a grid of farms was modelled. The reporting characteristics of lay observers were extrapolated from the pilot study and theoretical disease was modelled (as a representation of newly emergent disease). All diseases were described by their baseline prevalence and by conditional sign probabilities (obtained from BOVID and from a survey of veterinarians in Queensland). The theoretical disease conditional sign probabilities were defined by the user. Their spread through the grid of farms followed Susceptible-Infected-Removed (SIR) principles (in herd) and by mass action between herds. Reporting of disease events and signs in events was modelled as a probabilistic event using sampling from distributions. A nondescript disease characterised by gastrointestinal signs and a visually spectacular disease characterised by neurological signs were modelled, each over three outbreak scenarios (least, moderately and most contagious).

Reports were examined using two algorithms. These were the cumulative sum (CuSum) technique of adding excess of cases (above a maximum limit) for individual signs and the generic detector What's Strange About Recent Events (WSARE) that identifies change to variable counts or variable combination counts between time periods. Both algorithms detected disease for all disease and outbreak characteristics combinations. WSARE was the most efficient algorithm, detecting disease on average earlier than CuSum. Both algorithms had high sensitivity and excellent specificity. The timeliness of detection was satisfactory for the insidious gastrointestinal disease (approximately 24 months after introduction), but not sufficient for the visually spectacular neurological disease (approximately 20 months) as the traditional surveillance system can be expected to detect visually spectacular diseases in reasonable time.

Detection efficiency was not influenced greatly by the proportion of producers that report or by the proportion of cases or the number of signs per case that are reported. The modelling process demonstrated that a syndromic surveillance system in this remote region is likely to be a useful addition to the existing system. Improvements that are planned include development of a hand-held computer version and enhanced disease and syndrome mapping capability. The increased use of electronic recording systems, including livestock identification, will facilitate the deployment of BOSSS.

Long term sustainability will require that producers receive sufficient reward from BOSSS to continue to provide reports over time. This question can only be answered by field deployment and this work is currently proceeding.

Table of Contents

Acknowledgements	ii
List of Publications	iii
Abstract	iv
Table of Contents	viii
List of Figures	xiii
List of Tables	xvi
List of Abbreviations	xviii
Introduction	1
Chapter 1 Review of syndrome surveillance and syndromic surveillance systems	6
1.1 Introduction	7
1.2 Objectives of a veterinary surveillance system	8
1.2.1 Veterinary surveillance drivers	11
1.3 Classification of veterinary surveillance activities	11
1.3.1 The 'alert veterinary clinician' network in Australia	12
1.4 Syndromes and syndromic surveillance	13
1.5 Principles of syndromic surveillance	14
1.5.1 Syndromic surveillance methodology: statistical process control	15
1.5.2 Development of SPC-based syndromic surveillance applications for surveillance	nce
systems	15
1.6 Drivers for development of syndromic surveillance systems	17
1.6.1 Earlier outbreak detection capacity	18
1.6.2 Emerging disease detection ability: detecting the unknown	19
1.7 Veterinary surveillance drivers in Australia	19
1.8 Effective integration of syndromic surveillance components into the surveillance	system
	21
1.9 Features of an effective syndromic surveillance systems	22
1.9.1 Data types: identifying variables to monitor	23
1.9.2 Systems for capturing data	29
1.9.3 Systems for managing data	30

1.9.4 Systems for analysing data: signal detection	31
1.9.5 Procedures for dealing with triggers: event detection	47
1.9.6 Methods for reporting of results	47
1.9.7 Self assessment ability: maintaining and improving the system	48
1.10 Factors influencing the likelihood of detection of disease events by syndromic	
surveillance systems	49
1.11 Evaluating syndromic surveillance systems	50
1.11.1 Integrating a syndromic surveillance component into an surveillance system	51
1.11.2 Assessing the surveillance value of a syndromic surveillance component	52
1.11.3 Key performance parameters	53
1.11.4 Simulation modelling of syndromic surveillance systems	55
1.12 Review of operating syndromic surveillance systems	56
1.12.1 Rapid Syndrome Validation Project (RSVP)	56
1.12.2 Real-time Outbreak Detection System (RODS)	56
1.12.3 Electronic Surveillance System for the Early Notification of Community-Base	d
Epidemics (ESSENCE)	58
1.12.4 Early Aberration Reporting System (EARS)	58
1.12.5 Animal disease syndromic surveillance systems	59
1.13 The potential role of syndromic surveillance in the animal health surveillance syste	em
	59
1.13.1 Demonstrating freedom from disease	60
1.14 Discussion	61
Chapter 2 A pilot study to determine if livestock workers can effectively describe disease	
events in cattle to a syndromic surveillance system	64
2.1 Prelude	65
2.1.1 The extensive beef production system of northern Australia	65
2.1.2 Description of the sector	65
2.1.3 Trends in the extensive cattle industry	66
2.1.4 Surveillance in the extensive beef sector	67
2.1.5 Potential surveillance data sources in the extensive cattle industry	68
2.1.6 The potential role of lay-observer based surveillance in the extensive cattle	
production system of northern Australia	70

2.1.7 The observational potential of stock handling personnel
2.1.8 The Northern Pastoral Group72
2.2 Introduction to the pilot study
2.3 Material and methods74
2.3.1 Development of a syndrome reporting tool for the pilot study
2.3.2 Syndrome reporting training and report form evaluation
2.3.3 Reporting of actual disease observations
2.4 Results
2.5 Discussion
2.6 Conclusion
Chapter 3 Development and field testing of the Bovine Syndromic Surveillance System
(BOSSS)
3.1 Introduction
3.2 BOVID
3.2.1 BOVID artificial intelligence system
3.2.2 Construction of the BOVID Bayesian classifier
3.2.3 BOVID interrogation module
3.3 The Bovine Syndromic Surveillance System (BOSSS)
3.3.1 BOSSS location
3.3.2 BOSSS development-necessary BOVID modifications
3.3.3 BOSSS client-server database structure
3.3.4 Construction of the client-server system—using MySQL and PHP 121
3.3.5 Sign hierarchy 129
3.3.6 Baseline disease prevalences
3.3.7 Data entry—graphical user interface
3.3.8 Obtaining surveillance data
3.3.9 Presenting disease lists
3.3.10 Interrogation Module140
3.3.11 Lexicon: Disease and sign description
3.3.12 Experts: List server
3.3.13 Reports
3.3.14 Sources of information

3.3.15 Manual and training	147
3.4 Discussion	147
3.4.1 Evaluation of the effectiveness of the BOSSS system	147
3.4.2 Proposed improvements to BOSSS	148
3.4.3 BOSSS as a training tool	150
3.4.4 Hand-held computing version of BOSSS	151
3.4.5 Overcoming reporting bias in a voluntary reporting system using BOSSS	152
3.4.6 Summary	157
Chapter 4 Computer simulation modelling for evaluation of a syndromic surveillance s	•
4.1 Introduction	
4.2 Assessing effectiveness of a surveillance system	159
4.3 Construction of the syndromic surveillance model	
4.3.1 Basic research question	160
4.4 Modelling disease spread through cattle herds	161
4.4.1 Susceptible-Infected-Removed (SIR) models of disease spread	161
4.4.2 Description of the BOSSS reporting process	162
4.4.3 Assessment of the modelling potential of the process	162
4.4.4 Abstraction of the system	163
4.5 Model Construction	168
4.5.1 Sources of data	168
4.5.2 Defining the system and subsystems	168
4.5.3 Relationship between farms	168
4.5.4 Assigning a herd to a cell	169
4.5.5 Setting the simulation duration	170
4.5.6 Assigning the index herd	171
4.5.7 Modelling infection transmission in a herd: SIR modelling	
4.5.8 Modelling transmission between herds	174
4.6 Model Outputs	179
4.6.1 Producing disease reports	
4.6.2 Mapping disease spread	
4.7 Testing the model	185
xi	

4.7.1 Model verification	. 185
4.7.2 Model validation	. 185
4.7.3 Model credibility	. 187
4.8 Scenarios modelled	. 187
4.8.1 Summary of detection algorithms	. 189
4.9 Results: effectiveness of detection algorithms	. 191
4.9.1 Epidemic type 1 (least contagious)	. 192
4.9.2 Epidemic 2 (moderately contagious)	. 198
4.9.3 Epidemic type 3 (most contagious)	. 206
4.9.4 Key variables	. 214
4.10 Discussion	. 216
4.10.2 Syndromic surveillance application	. 219
4.10.3 Field testing	. 220
Chapter 5 Discussion and conclusions	. 221
5.1 Introduction	. 222
5.2 Current status of the Australian surveillance system	. 222
5.3 Status of and opportunities for syndromic surveillance in veterinary surveillance	. 224
5.4 Assessment of experienced stock worker ability to describe disease in cattle	. 226
5.5 A system to facilitate reporting: BOSSS	. 228
5.6 Determining the surveillance value of lay-observer syndrome reports	. 230
5.7 Simulation testing of a BOSSS-based lay-observer syndromic surveillance system.	. 231
5.8 Conclusions	. 234
Appendix Thesis CD-ROM Contents	. 239
Bibliography	. 240

List of Figures

Figure 1.1: Schematic representation of the sensitivity and specificity of outbreak detection
over time during an epidemic16
Figure 1.2: Temporal sequence for diagnosing an outbreak using syndrome data as the
screening detector test
Figure 1.3: Example CuSum chart (proportion plot)
Figure 1.4: Example of a P-chart
Figure 1.5: Example of a Bayesian Network for a hypothetical disease diagnostic artificial
intelligence system
Figure 2.1: Typical data capture pathway of the general surveillance system—modified from
Doherr and Audige (2001)
Figure 2.2: Location of syndromic surveillance pilot study75
Figure 2.3: Syndrome sign reporting options for pilot study
Figure 2.4: Observer report general page77
Figure 2.5: Example observation report form for surveillance pilot study78
Figure 2.6: Distribution of number of individual participant reports per month
Figure 2.7: Distribution of total reports made per participant over the study duration
Figure 2.8: Distribution of number of event reports per month (excluding <i>found dead</i>) 82
Figure 2.9: Distribution of number of signs reported per disease event
Figure 2.10: Distribution of number of days from event date to month end (report date) 90
Figure 3.1: BOVID main screen
Figure 3.2: BOVID sign hierarchy
Figure 3.3: BOVID interrogation module with differential disease list
Figure 3.4: Simple Bayesian networks for diagnosis of foot-and-mouth Disease and for bovine
spongiform encephalopathy
Figure 3.5: Schematic representation of the BOSSS MySQL database tables and relationships
(reduced)
Figure 3.6: Main access screen from BOSSS website (www.ausvet.com.au/bosss)123
Figure 3.7: Graphical presentation example of the BOSSS user reporting hierarchy for state
departments of agriculture

Figure 3.8: The main menu of BOSSS for selected user types (position types)128
Figure 3.9: BOSSS graphical user interface for sign selection
Figure 3.10: BOSSS Disease Observation Report form
Figure 3.11: BOSSS mapping feature—a system for locating events in space
Figure 3.12: BOSSS possible disease list
Figure 3.13: BOSSS interrogation module
Figure 3.14: BOSSS list server case report form
Figure 3.15: BOSSS fixed report examples
Figure 3.16: BOSSS post mortem guide for ruminants
Figure 4.1: Representation of an SIR model of contagious disease spread over time
Figure 4.2: Flow chart of infection transmission pathways within and between farms 167
Figure 4.3: Example distribution of herd sizes used in simulation model170
Figure 4.4: SIR model parameters and plot of within herd composition for varying herd sizes
and disease infectivity
Figure 4.5: Distribution of movement distances used for modelling movement transfer 175
Figure 4.6: Distribution of proportion of the herd moved during a movement transfer event
(truncated at zero)
Figure 4.7: Weighted local infection risk for farms surrounding a single infected farm (black).
Darker (hotter) colours indicate greater risk
Figure 4.8: Weighted contact infection risk at various prevalences for uninfected farms from
infected farms (black). Darker (hotter) colours indicate increasing risk of infection178
Figure 4.9: Distribution of number of reports per farm per time period
Figure 4.10: Distribution of mean number of signs reported per observation
Figure 4.11: Example simulation outputs of disease spread between farms versus time for
least, moderately and most contagious diseases
Figure 4.12: WSARE ROC for least contagious neuromuscular disease at varying reporting
proportions
Figure 4.13: WSARE sensitivity, herd and animal prevalence versus time since index case for
least contagious neuromuscular disease at varying reporting proportions
Figure 4.14: WSARE ROC for least contagious gastrointestinal disease at varying proportions
of farms that provide reports

Figure 4.15: WSARE sensitivity, herd and animal prevalence versus time since index case for
least contagious gastrointestinal disease at varying reporting proportions
Figure 4.16: WSARE ROC for moderately contagious neuromuscular disease at varying
proportions of farms that provide reports
Figure 4.17: WSARE sensitivity, herd and animal prevalence versus time since index case for
moderately contagious neuromuscular disease at varying reporting proportions
Figure 4.18: Whole body CuSum sensitivity, herd and animal prevalence versus time since
index case for moderately contagious neuromuscular disease at various proportions of farms
that report
Figure 4.19: WSARE ROC for moderately contagious gastrointestinal disease at varying
proportions of farms that report
Figure 4.20: WSARE sensitivity, herd and animal prevalence versus time since index case for
hypothetical moderately contagious gastrointestinal disease at varying reporting proportions.
Figure 4.21: Gastrointestinal CuSum sensitivity, herd and animal prevalence versus time since
index case for moderately contagious gastrointestinal disease at various proportions of farms
that report
Figure 4.22 WSARE ROC for most contagious neuromuscular disease at varying proportions
of farms that report
Figure 4.23: WSARE sensitivity, herd and animal prevalence versus time since index case for
most contagious neuromuscular disease at varying reporting proportions
Figure 4.24: Whole body CuSum sensitivity, herd and animal prevalence versus time since
index case for most contagious neurological disease at various proportions of farms that
report
Figure 4.25: WSARE ROC for most contagious gastrointestinal disease at varying proportions
of farms that report
Figure 4.26: WSARE sensitivity, herd and animal prevalence versus time since index case for
most contagious gastrointestinal disease at varying reporting proportions
Figure 4.27: Gastrointestinal CuSum sensitivity, herd and animal prevalence versus time since
index case for most contagious gastrointestinal disease at various proportions of farms that
report

List of Tables

Table 1.1: Veterinary surveillance methodologies as adapted from Scudamore (2002) 9
Table 1.2: Surveillance activities categorised by disease focus and the method of data
collection
Table 2.1: Number of commercial livestock enterprises by state and production sector in
Australia in 2002 (Australian Bureau of Agricultural and Resource Economics 2002)71
Table 2.2: A sample of reported signs and free text descriptions for individual events
Table 2.3: Number of individual sign events reported 87
Table 2.4: Sign combinations reported in individual events 88
Table 2.5: Assessment of motivators for cattle producers to voluntarily provide their
observations of disease in the cattle in their herd using the method described by Vroom (1964)
Table 2.6: Description of examples of commercial farm management computer software
programs used by beef producers in Australia
Table 3.1: BOVID level 1 sign hierarchy 112
Table 3.2: Conditional probabilities for the presence of drooling of saliva and the presence of
more than one affected animal for the diseases FMD and BSE respectively114
Table 3.3: Likelihood ratios for a positive test (LR) for drooling of saliva and the presence of
more than one affected animal as tests for FMD and BSE114
Table 3.4: Posterior probability estimates and calculations for FMD and BSE naïve Bayesian
classifier example
Table 3.5: BOSSS position types 125
Table 3.6: Example of BOSSS reporting position relationships 126
Table 3.7: Example BOSSS position reporting hierarchy for a department of agriculture 126
Table 3.8: BOSSS level 1 sign hierarchy
Table 3.9 : Distribution of median baseline disease prevalence for beef cattle diseases in
Queensland during the wet and dry seasons obtained from expert opinion
Table 3.10: Distribution of order of magnitude difference (power = 10) between maximum
and minimum baseline prevalence estimates of endemic cattle diseases for Queensland during
the wet and dry seasons obtained from expert opinion

Table 3.11: Examples of BOSSS veterinary and non-veterinary (lay) sign descriptions 142
Table 3.12: Example of sign prevalence estimate drop down list
Table 3.13: Relative frequency estimator for clinical signs in herds 154
Table 4.1: BOSSS level 1 signs used to simulate reports 180
Table 4.2: Simulated hypothetical diseases and sign conditional probabilities—P(SID) 188
Table 4.3: BOSSS level 1 sign CuSum parameters 191
Table 4.4: CuSum specificities for various proportions of farms reporting
Table 4.5: Whole body and cardiovascular signs CuSum sensitivity and mean time to
detection for least contagious neuromuscular disease at various reporting percentages 195
Table 4.6: Aggregate sensitivity and time to detection for all ten CuSums combined
(operating as tests in parallel) for least contagious neuromuscular disease at various reporting
percentages
Table 4.7: Gastrointestinal CuSum sensitivity and mean time to detection for least contagious
gastrointestinal disease at various reporting percentages
Table 4.8: Aggregate sensitivity and time to detection for all ten CuSums combined
(operating as tests in parallel) for least contagious gastrointestinal disease at various reporting
percentages
Table 4.9: CuSum sensitivity and mean time to detection of the most efficient CuSums for
moderately contagious neurological disease at various reporting percentages
Table 4.10: Aggregate sensitivity and time to detection for all ten CuSums combined
(operating as tests in parallel) for moderately contagious neurological disease at various
reporting percentages
Table 4.11: CuSum sensitivity and mean time to detection for modelled moderately
contagious gastrointestinal disease at various reporting percentages
Table 4.12: Aggregate sensitivity and time to detection for all ten CuSums combined
(operating as tests in parallel) for moderately contagious gastrointestinal disease at various
reporting percentages
Table 4.13: Comparison of sensitivity and mean time to detection for the most efficient
detection algorithms over different clinical disease and epidemic scenarios
Table 5.1: Evaluation framework for assessing operational syndromic surveillance
components (modified from Sosin (2003a))

List of Abbreviations

AHA	Animal Health Australia
AHC	Animal Health Committee
ARIMA	Autoregressive Integrated Moving Average
ARL	Average Run Length
BOSSS	Bovine Syndromic Surveillance System
BSE	Bovine spongiform encephalopathy
CDC	Centers for Disease Control and Prevention
CoCo	Complaint Coder
CSV	Comma-separated Values
CVO	Chief Veterinary Officer
DAFF	Department of Agriculture, Fisheries and Forestry Australia
DEFRA	Department of Environment, Food and Rural Affairs
DOS	Disk Operating System
DVO	Divisional Veterinary Officer
EARS	Early Aberration Reporting System
ED	Emergency Department
EMF	Enhanced Metafile Format
ESSENCE	Electronic Surveillance System for the Early Notification of Community-
	Based Epidemics
EWMA	Exponentially Weighted Moving Average
FDR	False Discovery Rate
FMD	Foot-and-mouth disease
FTP	File Transfer Protocol

FWER	Family Wise Error Rate
GIS	Geographical Information System
GLMM	Generalised Linear Mixed Model
GPS	Global Positioning System
GTIN	Global Trade Item Number
GUI	Graphical User Interface
HL7	Health Level 7
HMM	Hidden Markov Model
HTTP	Hypertext Transfer Protocol
Ι	Infected
ICD	International Classification of Diseases
LOINC	Logical Observation Identifiers Names and Codes
MLA	Meat & Livestock Australia
NAHIS	National Animal Health Information System
NAMP	National Arbovirus Monitoring Program
NAQS	Northern Australian Quarantine Strategy
NLIS	National Livestock Identification Scheme
NPG	Northern Pastoral Group
NRDM	National Retail Data Monitor
OIE	Office International des Épizooties (World Organization for Animal Health)
OTC	Over the Counter
PANDA	Population-wide Anomaly Detection and Assessment
QDPIF	Queensland Department of Primary Industry and Fisheries
R	Removed
RADAR	Rapid Analysis and Detection of Animal Risks xix

RODS	Real-time Outbreak Detection System
RSVP	Rapid Syndrome Validation Project
RSVP-A	Rapid Syndrome Validation Project - Animal
RVO	Regional Veterinary Officer
S	Susceptible
Se	Sensitivity
SI	Stock Inspector
SIR	Susceptible-Infected-Removed model of infectious disease
SMTP	Simple Mail Transfer Protocol
SNOMED	Systematized Nomenclature of Medicine
Sp	Specificity
Sp SPC	
-	Specificity
SPC	Specificity Statistical process control
SPC SQL	Specificity Statistical process control Structured Query Language