
Particle formation in RAFT-mediated

Emulsion Polymerization

Joost Sieger Kaspar Leswin

Thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

at the University of Sydney

July 2007

Declaration of Originality

I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, except where due acknowledgement is given. This thesis contains no material that has been presented for a degree or diploma at this or any other institute of higher education other than the author's submission at the Eindhoven University of Technology and the University of Sydney under the agreed cotutelle arrangement.

I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.

Copyright © 2007 Joost Leswin (except where otherwise indicated)

"Croyez ceux qui cherchent la vérité, doutez de ceux qui la trouvent." André Gide

Table of Contents

Summary

Glossary Acronyms Symbols			
Symo	015		V
Cha	nter 1 In	troduction	1
1.1		al stability of aqueous polymer dispersions	• 1
1.2		on Polymerization	2
1.3	Controlled radical polymerization		2
1.4		led radical polymerization in heterogeneous media	4
1.5	Amphipathic macro-RAFT agents in emulsion		5
1.6	Scope of	f this thesis	6
1.7	Referen	ces	7
Cha	nter 2 C	alorimetric study of particle formation	9
2.1	Introduction		10
2.1	2.1.1	Heat of polymerization	10
	2.1.2	Kinetics of Emulsion Polymerization	11
	2.1.3	Reaction calorimetry	11
	2.1.4	Objectives	13
2.2	Experimental		13
	2.2.1	Chemicals	13
	2.2.2	Synthesis of hydrophilic macro-RAFT agent	14
	2.2.3	Synthesis of amphipathic macro-RAFT agent	15
	2.2.4	Controlled feed RC-1 experiments	15
2.3	Results & Discussion		17
	2.3.1	Synthesis of macro-RAFT agents	17
	2.3.2	Calorimetric reactions	19
	2.3.3	Macro-RAFT agents compared	21
	2.3.4	Use of more hydrophobic macro-RAFT agents	23
	2.3.5	Sensitivity of RC-1e	24
2.4	Conclus		24
2.5	Referen	ces	25
Cha	pter 3 Pa	article formation mechanism	27
3.1	Introduc	ction	28
3.2 Convent		tional emulsion polymerization	28
3.3	Nucleation in amphipathic RAFT systems		31
	3.3.1	Derivation of a particle number expression from the mechanism	32
	3.3.2	Sample implementation	35 36
3.4	Conclusions		
3.5	Referen	ces	37

iii

4.1	pter 4 Characterization of macro-RAFT agents Introduction	39 40
4.2	Experimental	44
	4.2.1 Capillary Zone Electrophoresis	4.
	4.2.2 Liquid Chromatography	44
	4.2.3 Mass spectrometry	45
4.3	Results & Discussion	40
	4.3.1 Mass spectra of the initial macro-RAFT agents	40
	4.3.2 Quantification of the initial macro-RAFT agents	49
	4.3.3 Time evolution of the molecular weight distribution	53
	4.3.4 Determination of particle formation time	50
4.4 4.5	Conclusions References	58 59
	pter 5 Physical properties of the solution and latex	61
5.1	Introduction	62
	5.1.1 Surface tension	62
	5.1.2 Maron titration	63
5.0	5.1.3 Determination of particle size distribution	64
5.2	Experimental	67 67
	5.2.1 Characterization of colloidal particles5.2.2 Surface Tension measurements	68
	5.2.2 Surface relision measurements 5.2.3 Maron titrations	68
5.3	Results & Discussion	69
5.5	5.3.1 Concentration of surface active species	69
	5.3.2 Particle sizes	70
	5.3.3 Surface area per macro-RAFT agent	79
5.4	Conclusions	82
5.5	References	83
Cha	pter 6 Nucleation mechanism revisited	85
6.1	Introduction	86
	6.1.1 Mechanistic results	86
6.2	Comparison of modelling and experimental results	87
	6.2.1 Defining the operating window	89
	6.2.2 Surface covered by the macro-RAFT agents	90
	6.2.3 Monomer concentration in the latex particles	92
	6.2.4 Average number of radicals per particle	95
	6.2.5 Sensitivity analysis model parameters	97
	6.2.6 Number of RAFT agents per particle	99
6.3	Suggestions for future work	102
6.4	Conclusions	103
6.5	References	103
Арр	endices:	106
	ndix I: Supporting reaction curves	106
11	ndix II: Separation of BA macro-RAFT agents under critical conditions	108
	ndix III: TEM particle size distributions with ImageJ	110
Ackı	nowledgements / Dankwoord	113
Curr	riculum Vitae	115

ii

Summary

Particle formation in RAFT-mediated emulsion polymerization has been studied using reaction calorimetry. By measuring the heat flow during controlled feed *ab-initio* emulsion polymerization in the presence of amphipathic RAFT agents, particle formation by self-assembly of these species could be observed. Two different monomer systems, i.e. styrene and n-butyl acrylate, and various degrees of hydrophobicity of the initial macro-RAFT agents have been studied and compared.

The different macro-RAFT agents were synthesized by first forming a hydrophilic block of poly(acrylic acid) that would later on act as the electrosteric stabilizing group for the particles. Subsequently, different lengths of hydrophobic blocks were grown at the reactive end of the poly(acrylic acid) hydrophilic block via the RAFT-mediated controlled radical polymerization, either comprised of n-butyl acrylate or styrene.

Two processes govern particle formation: adsorption of macro-RAFT agents onto growing particles and formation of new particles by initiation of micellar aggregates or by homogeneous nucleation. Competition between these processes could be observed when monomers with a relatively high (n-butyl acrylate) or low (styrene) propagation rate coefficient were used.

A model describing particle formation has been developed and the results of model calculations are compared with experimental observations. Preliminary modeling results based on a set of reasonable physico-chemical parameters already showed good agreement with the experimental results. Most parameters used have been verified experimentally.

The development of the molecular weight distribution of the macro-RAFT agents has been analyzed by different techniques. Quantification of the particle formation process by analytical techniques was difficult, but qualitative insights into the fundamental steps governing the nucleation process have been obtained. The amount of macro-RAFT agents initially involved in particle formation could be determined from the increase of molecular weight. The particle size distribution has been measured by capillary hydrodynamic fractionation, transmission electron microscopy and dynamic light scattering. From the data obtained from these particle-sizing techniques, the number of particles during the reaction could be monitored, leading to an accurate estimate for the particle formation time.

Upon implementation of the experimental data obtained for the surface active macro-RAFT systems, the model demonstrated to be very sensitive towards the "headgroup" area of the macro-RAFT species. Three nucleation cases based on the initial surface activity of the macro-RAFT species in the aqueous phase are proposed to explain the deviations from the assumptions of the nucleation model. Even though the macro-RAFT species have a narrow molecular weight distribution, they are nevertheless made up of a distribution of block lengths of polystyrene upon a distribution of block lengths of poly(acrylic acid). The resulting differences in initial surface activity are the most probable reason for the observed differences between model calculations and experimental results for the nucleation time and particle size distribution of the final latex product.

With the procedure described above, latexes have been synthesized without using conventional surfactants and the mechanisms involved in the particle formation for these systems have been elucidated. The results of this work enable production of latex systems with well defined molecular mass distributions and narrow particle size distributions. Furthermore, the technique based on the application of amphipathic RAFT agents is promising for the production of complex polymeric materials in emulsion polymerization on a technical scale.

Glossary

Acronyms

AA	Acrylic acid
BA	Butyl acrylate
C(Z)E	Capillary (Zone) Electrophoresis
CHDF	Capillary Hydrodynamic Fractionation
CMC	Critical micelle concentration
DLS	Dynamic light scattering
DLVO	Theory of stability of lyophobic dispersions as developed by
	Derjaguin and Landau and independently by Verwey and
	Overbeek
DP	Degree of polymerization
DRI	Differential refractive index
Dx	Dioxane
EOF	Electro-osmotic flow
ESI-MS	Electrospray ionization mass-spectrometry
HDC	Hydrodynamic chromatography
HPLC	High performance liquid chromatography
HQ	Hydroquinone
HUFT	Homogeneous nucleation model described by Hansen and
	Ugelstadt as well as by Fitch and Tsai
LAC	Liquid adsorption chromatography
MALDI-ToF MS	Matrix-assisted laser desorption ionization time-of-flight mass-
	spectrometry
MeHQ	Hydroquinone monomethyl ether
MWD	Molecular weight distribution
PDI	Polydispersity index
PFG	Column material for use with fluorinated solvents
PG	Propylene glycol
PLP-SEC	Pulsed laser polymerization in combination with SEC
PMMA	Poly(methyl methacrylate)
PSD	Particle size distribution
PVA	Poly(vinyl alcohol)
RAFT	Reversible addition-fragmentation chain transfer
SANS	Small angle neutron scattering
SDS	Sodium dodecyl sulfate
SEC	Size exclusion chromatography
STY	Styrene
(cryo-)TEM	(cryogenic) Transmission electron microscopy
THF	Tetrahydrofuran
UV	Ultra-violet
V-501	4,4'-Azobis(4-cyanopentanoicacid) also known as
	4,4'-Azobis(4-cyanovalericacid)

Symbols

symbol	definition	Typical units
Γ	Interfacial tension at the latex particle water surface	10^{-3} N s^{-1}
ρ	Average number of radicals entering a particle	s ⁻¹
$\rho_{\rm L}$	Density of the latex particles	g L ⁻¹
ρ_{M}	Density of monomer	kg m ⁻³
ρ_{P}	Density of polymer	kg m ⁻³

symbol	definition	Typical units
ϕ_p	Volume fraction of polymer in the polymer solution constituting	
	the latex particles	
χ	Flory-Huggins interaction parameter	2
А	Heat exchange area	m^2
A_E	Specific surface area of surfactant	m^2
A_S	Area of a particle	m^2
A _{SDS}	Total surface covered by SDS	$m^2 g^{-1}$
С	Total concentration of added surfactant	$mol L^{-1}$
d _n	Number average diameter	10^{-9} m
d _{vv}	Volume weighted average diameter	10^{-9} m
d _z	Intensity weighted average diameter	10^{-9} m
[I]	Initiator concentration	$mol L^{-1}$
k	Exit rate of radicals from a particle	s ⁻¹ s ⁻¹
K _d	Initiator dissociation rate coefficient	
K _p	Propagation rate coefficient	L mol ⁻¹ s ⁻¹ L mol ⁻¹ s ⁻¹
K _{p,W}	Propagation rate coefficient in the water phase Termination rate coefficient	$L \text{ mol}^{-1} \text{ s}^{-1}$
K _t	Termination rate coefficient in the water phase	$L \text{ mol}^{-1} \text{ s}^{-1}$
K _{t,W} m	Concentration of polymer	$g L^{-1}$
M_0	Molecular weight of monomer	kg mol ⁻¹
m_{M^0}	Mass of monomer per total volume	g L ⁻¹
[M] _p	[Monomer] in the particles	mol L ⁻¹
$[M]_W$	[Monomer] in the water phase	mol L ⁻¹
$\frac{1}{n}$	Time <number> of free radicals per particle</number>	
N _A	Avogadro's number	mol ⁻¹
N _c	Number concentration of particles	L-1
n _{cap}	Number of RAFT capped chains per particle	
n_{M^0}	Moles of monomer per unit volume of water	mol L ⁻¹
n _{macro-RAFT}	Number of macro-RAFT molecules	
N _p	Number of particles	
Qc	Calibration heat	W
r _u	Average radius of the unswollen particles	$10^{-9} \mathrm{m}$
Sa	Titrated soap adsorbed on the latex particles	mol g ⁻¹
T _a	Corrected jacket temperature	°C
T _g	Glass transition temperature	°C
T _j	Temperature of the surrounding jacket oil	°C
T _r	Temperature of the reaction mixture	°C W m ⁻² K ⁻¹
U	Overall heat transfer coefficient	
V _s	Monomer swollen volume Partial molar volume of monomer	m^3 m^3
V _{sM} V _W	Volume of water	m L
	Critical degree of polymerization	L
$rac{\mathbf{X}_{\mathrm{crit}}}{\overline{X}_n}$	Number-average degree of polymerization of chains	
	Degree of polymerization necessary for a initiator derived radical	
Z	to become surface active enough to enter a particle	

vi