

On Bosets and Fundamental Semigroups

Brad Roberts

School of Mathematics and Statistics University of Sydney August 2007

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Contents

List of Figures	iv
Acknowledgements	vi
Chapter 1. Introduction	1
Overview of Thesis	5
Chapter 2. Semigroups	7
2.1. Preliminaries	7
2.2. Green's Relations	12
2.3. Transformation Semigroups	16
2.4. Fundamental Semigroups	20
2.5. The Munn Semigroup	26
Chapter 3. Bosets	32
3.1. A Vector Space Example	32
3.2. A Group Example	37
3.3. The Boset of a Semigroup	49
3.4. Abstract Bosets	52
3.5. Sawtooth Bosets	56
3.6. Subbosets and Homomorphisms	59
3.7. Bosets are Skeletons of Idempotents	63
3.8. Regular Bosets	64
Chapter 4. A General Construction	67
4.1. The Fundamental Representation	67
4.2. The Construction of T_E	77
4.3. An Important Class of Principal Ideal Isomorphisms	80
4.4. Products in T_E	82
4.5. Idempotents in T_E	89
4.6. T_E for Regular Bosets	92
4.7. T_E for Posets	95
4.8. T_E for Semilattices	105

CONTENTS	iii
Chapter 5. T_E and Regular-Generated Semigroups	106
5.1. Arbitrary Regular-Generated Semigroups	106
5.2. The Contrast between the Semigroups $\langle E \rangle$ and $S_E = \langle E \phi \rangle$	107
5.3. Reconstructing Fundamental Regular Generated Semigroups	110
5.4. Regular-Generated Subsemigroups of T_E with Boset of Idempotents $E\phi$	111
5.5. T_E is Fundamental	113
5.6. Embeddings of T_E	116
Chapter 6. T_E for Sawtooth Bosets	118
6.1. Preliminaries	118
6.2. T_E for Cyclic Sawtooth Bosets	120
6.3. Regularity of T_E and S_E for some Sawtooth Bosets	133
Bibliography	142

List of Figures

1.1	A semigroup with a regular boset of idempotents	4
1.2	A semigroup with a nonregular boset of idempotents	5
2.1	Egg-box diagram of \mathcal{PT}_2	19
2.2	The middle layer of idempotents in \mathcal{PT}_2	19
2.3	Egg-box diagram of \mathcal{I}_3	21
2.4	The semilattice $E(\mathcal{I}_3)$	22
2.5	The relationship between \mathcal{PT}_X , \mathcal{T}_X , \mathcal{I}_X and \mathcal{S}_X	22
2.6	Egg-box diagram of $G \sqcup \overline{G}$	24
2.7	Partial egg-box diagram of \mathcal{T}_X	26
2.8	Partial egg-box diagram of \mathcal{I}_X	27
3.1	The lattice of subspaces of $V = \mathbb{Z}_2 \oplus \mathbb{Z}_2$	33
3.2	Example rook matrix in $\operatorname{Rook}_5(\mathbb{Z}_3)$	36
3.3	Sublattice of the lattice of subgroups when $G = A \rtimes B$	40
3.4	Lattice of subgroups of $G = C_2 \times C_2$	40
3.5	Arrow diagram of $\mathcal{E}(C_2 \times C_2)$	41
3.6	Lattice of subgroups of $G = \mathcal{S}_3$	41
3.7	Arrow diagram of $\mathcal{E}(\mathcal{S}_3)$	42
3.8	Lattice of subgroups of $G = D_8$	42
3.9	Arrow diagram of $\mathcal{E}(D_8)$	43
3.10	Arrow diagram of $E(\operatorname{End}(D_8))$	44
3.11	Egg-box diagram of $\operatorname{End}(D_8)$	45
3.12	Arrow diagram of a typical fragment of a sawtooth boset	57
3.13	Arrow diagram of an example sawtooth boset	58
3.14	Possible nontrivial products for the arrow diagram in Figure 3.13	58
3.15	Boset diagram in which the boset in Figure 3.14 (iv) minimally embeds	65
4.1	Nontrivial \mathscr{L} -classes and \mathscr{R} -classes of $E(\operatorname{End}(D_8))$	77
	iv	

LIST OF FIGURES

v

4.2	Elements of $(\operatorname{End}(D_8))\phi$	78
4.3	Egg-box diagram of $(\text{End}(D_8))\phi$	79
4.4	Egg-box diagram of $Mat_2(\mathbb{Z}_2)$	94
4.5	Boset diagram of $E(\operatorname{Mat}_2(\mathbb{Z}_2))$	95
4.6	Egg-box diagram of $T_{E(\text{Mat}_2(\mathbb{Z}_2))}$	96
4.7	Boset diagram of E_1	96
4.8	Egg-box diagram of S_{E_1}	97
4.9	Egg-box diagram of T_{E_1}	97
4.10	Boset diagram of E_2	97
4.11	Egg-box diagram of S_{E_2}	98
4.12	Egg-box diagram of T_{E_2}	98
4.13	Boset diagram of E_3	99
4.14	Egg-box diagram of S_{E_3}	99
4.15	Egg-box diagram of T_{E_3}	100
4.16	Hasse diagram of the poset E	102
4.17	Hasse diagram of the semilattice $F = E(T_E)$ for E of Figure 4.16	102
4.18	Egg-box diagram of T_E for E of Figure 4.16	103
4.19	Egg-box diagram of T_F for F of Figure 4.17	104
5.1	Rectangular boset diagram	107
5.2	Egg-box diagram of F_E for E of Figure 5.1	108
5.3	Egg-box diagram of S_E for E of Figure 5.1	108
5.4	Egg-box diagram of F_{E_2}	109
5.5	Boset diagram of $E = E(G \sqcup \overline{G})$	110
5.6	Egg-box diagram of $T_{E(G \sqcup \overline{G})} \equiv S_G \sqcup \overline{G}$	110
6.1	Boset diagram of E_4	120
6.2	Egg-box diagram of S_{E_4}	122
6.3	Egg-box diagram of T_{E_4}	123
6.4	Avoidable subdiagram for cyclic sawtooth bosets	127
6.5	Arrow diagram of E_5	132
6.6	Boset diagram of E_6	136
6.7	Boset diagram of E_7	140

Acknowledgements

First and foremost I would like to thank my supervisor David Easdown. Thank you for your guidance, for all the time you have given me, and for all the effort you have put in to helping me make this thesis the best it can be. I have really enjoyed working with you over the last few years.

I would also like to thank my friends from the University of Sydney for sharing this experience with me. Thank you to Timothy Schaerf and James East, with whom it has been a pleasure to share an office for many years, and also to James Parkinson, Jono Kusilek, Shona Yu, Hai Ho and Roslyn East. My time at uni was made much more enjoyable because of you.

Finally, I would like to thank my family, especially my mother, my brother Michael, and my sister Melinda, for all their encouragement and support over the years. Thank you for everything that you have done for me.

This thesis contains no material which has been accepted for the award of any other degree. To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgement has been made.