

175

Chapter 16
Informing eLearning software development processes with the student experience
of learning

Rafael Calvoa, Robert Ellisb, Nicholas Carrolla and Lina Markauskaitec
aFaculty of Engineering, bInstitute for Teaching and Learning, cFaculty of Education
and Social Work

The opportunities provided by eLearning technologies to enhance the student
experience are encouraging universities to systematically invest into new eLearning
projects. The implications of this trend for ensuring the quality of the student learning
experience are serious and complex. One important aspect is how educational software
being developed and used is related to the quality and effectiveness of the students’
learning, and for software engineers, how the software can be developed to produce the
most productive experiences.

Software engineering is a comparatively young discipline in universities, but it has
already had a significant influence on modern experiences of education. As with other
engineering specialisations, the maturity of software engineering is recognised only
when it has established recognisable methodologies supported by solid evidence.
Software engineering, outside the educational domain, employs numerous, well
supported and recognisable methodologies (Pressman, 2005). For the purposes of
education, however, this evidence is not sufficiently illuminative as it does not concern
itself with the needs of students in relation to learning outcomes, the way they approach
the use of the technologies to support their learning or their conceptions of how
learning is supported by technologies.

There are significant challenges for software engineering research focusing on
learning technologies. While the success of a business software system can be
measured in ways such as a reduction of costs, or time, or increase of business
efficiency, in education such quantitative assessments are less useful. The benefits from
education are often ephemeral, realised in the medium or long-term and hard to capture.
To address these challenges, current software development methodologies for learning
technologies try to break down the development problem into smaller parts, each with
its own quantitative measure. This often does not work as the smaller parts do not
necessarily cohere to create a meaningful whole. Consequently, there is considerable
room for learning software development processes to be improved, especially if the
processes can be shaped by the nature of educational experiences they are designed to
support. Unfortunately, this is no easy matter as it requires the collaboration of teams of
people from different disciplines, most notably software engineers and educational
researchers. This chapter addresses the question of how software engineers and
educational researchers can productively collaborate to improve software development
processes for learning technologies so that the technologies are more likely to help
students learn effectively.

Studies into associations amongst learners and their use of technology influencing its
design is an important research focus in the field of learning. One area of research
related to this focus is computer supported collaborative learning (CSCL). A particular
focus of research into CSCL has investigated associations amongst software tools and
learners (Lehtinen, Hakkarainen, Lipponen, Rahikainen & Muukkonen, 2002). Some
studies have investigated students’ use of mathematical software programs
for collaborative learning (Derry, 1990; Reusser, 1996). Some have investigated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41230951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

176

students’ use of collaborative software aiding experimental research methodology
and statistical inferences (Lehtinen, Hämäläinen & Mälkönen, 1998). Others have
investigated probability inquiry and use graphical representations to encourage
collaboration amongst learners. (Enyedy, Vahey & Gifford, 1997). The emphasis in
these studies is more about how the technologies support the interaction, rather than
how the student experience influences the design of the technologies.

The research discussed in this chapter distinguishes itself from CSCL research in its
focus. Rather than investigating mainly how software technologies may support
collaborative learning, it investigates how students experience technologies that are
developed to support different learning experiences, and then uses that experience to
inform the subsequent software development processes to improve their design and
underlying intentions related to improving learning. This focus of the research is
essential if we are to help educationalists and educational software engineers who are
innovating with learning technologies to improve student experiences of learning.

To clarify how educational concerns can be practically and sustainably integrated into
software development processes, we look at software engineering projects at the
University of Sydney where we developed eLearning applications using evidence of the
relationship they have to our students’ learning experience. We use the outcomes of our
own previous research studies (Carroll & Markauskaite, 2006; Ellis & Calvo, 2006;
Ellis, Calvo, Levy & Tan, 2004; Turani, Calvo & Goodyear, 2005) to produce a variant
of the spiral methodologies that is informed by the student experience. The model we
use to describe students’ experience of learning is next described. Then the spiral-Ed
methodology we propose is described. This is followed by a description of the projects
for which we have been using it. Finally, the teaching context and results are described.

Prior research
The research reported on in this chapter draws together ideas from the current literature
in software engineering, particularly on the spiral model development methodologies
(Boehm, 1988; Pressman, 2005) and on research into student learning in higher
education (Biggs, 2003; Entwistle & Ramsden, 1983; Laurillard, 2002; Prosser &
Trigwell, 1999).

In software engineering, several methodologies have been developed over the last
three decades. Amongst these, the spiral models, studied since the 1980’s, have two
common features: an iterative approach for incrementally growing a system’s degree of
definition and implementation and a set of milestones for ensuring stakeholder
commitment to feasible and mutually satisfactory system solutions (Boehm, 1988). The
advantage of the spiral model for software engineering is its principle of committing
resources incrementally to researching and defining the problem, and then developing
the software, instead of a large commitment of resources before its prospects for
success are understood.

Normally engineers decide what to build after analysing the requirements through
‘understanding what the customer wants, analysing need, assessing feasibility,
negotiating a reasonable solution, specifying the solution unambiguously, validating the
specification, and managing the requirements as they are transformed into an
operational system’ (Pressman, 2005, p. 144; Thayer & Dorfman, 1997). The
challenges of doing this analysis are well known, particularly on industrial and business
systems. When eLearning systems are developed the analysis becomes more
complicated. On one level, engineers look at what students and teachers will do with

177

the system, but at a second level, educational research has shown that the picture is
much more complex, and a complete analysis must include other aspects of the learning
experience and students’ perceptions.

Principles of design informed by the student experience of learning
One of the challenges of developing software systems for learning is that software
engineers do not yet have efficient ways of including the student experience of the
technologies into their design. What we are proposing are a few simple questions
which, if systematically used by software engineers, will go some way to providing
input directly from students, into design processes.

In several research projects (Ellis et al., 2004; Ellis & Calvo, 2006) we have used a
phenomenographic model of learning to investigate the quality of learning through the
use of specific software. This model investigates the student learning experience by
dividing it into key aspects: the how or its structural aspect, and the what, its referential
aspect. The what is often referred to as the direct object of learning. The how aspect can
be subdivided into two further parts: the act of learning and the indirect object of
learning. Related to these key aspects of learning, we have also investigated student
perceptions of aspects of their learning context (Ramsden, 2003).

In our studies, we have found that the quality of what students’ think they are
learning has been logically and positively related to the quality of their approach to
using the technologies in their experiences of learning. This research has found that
students, who tend to adopt more meaningful approaches to the use of learning
technologies, often perform relatively better than other students who adopt poorer
approaches to the use of learning technologies. Significantly, the quality of student
experiences of learning using technologies has also been logically related to their
perceptions. Higher quality experiences tend to be associated with positive perceptions
of the learning context.

From these studies, we have adapted the key research questions more generally to
apply to software development processes. We seek to identify associations amongst the
learners’ conceptions and perceptions of, and approaches to using the software, to the
way the functionalities of the software are developed. In software engineering, these are
unusual questions as student conceptions, perceptions and approaches are variables not
normally included in the engineering processes simply because they are not applicable
to non-educational systems.

A methodology for eLearning software development
Software development processes, influenced by the student learning experience, have
been adopted by the Web Engineering Group at the University of Sydney. The group
has developed a number of eLearning applications and activities which have been
shaped by feedback from students using them for coursework. What we have learned
from these projects is offered here as the spiral-Ed methodology which can be used by
other developers. The purpose of this methodology is to allow those involved in
developing software, (software engineers, instructional designers, interface designers
and teachers), to be informed as to the particular student-related needs and goals of
learning technology. The methodology proposed suggests that a software development
team needs to incorporate these educationally orientated roles.

For example, let us consider a project in which a discussion tool is being developed.
The engineer will come to the project with a number of skills and a tradition of

178

evaluating software systems that include a requirement analysis process. If the
development team were evaluating the discussion tool, they would inquire as to the
functional and non-functional requirements. These requirements describe what the
students do with the system (for example, post or read a text document), and how the
tool behaves (for example, how much time it takes the system to respond). For business
software applications, it is often self-evident why people use the software the way they
do, because their use is often motivated by a pragmatic goal, such as accessing some
particular information or automating a task. In contrast, for learning technologies, the
reason students do things, and how they do them, can often be more important than the
actual completion of the task using the software. Table 1 shows examples of the
‘metafunctional’ dimension, or characteristics of the software which should improve
the learnability of the student user experience.

Table 16.1: Example of functional and metafunctional requirements of discussion tools

Functional/Usability
Requirements

Metafunctional/Learnability Characteristics

Time for posting
Time for assessing the postings
Number of postings
Organisation of fora
Search functions within fora

What have you learned through the discussions?
How do you approach using the discussion tool?
Why do you use the discussion tool in the way you do?
What aspects of your experience of using the discussion
tool prevented you from learning?

Traditional software development approaches would normally only consider the

requirements listed in the first column in Table 16.1. In the approach argued for here,
the questions in the second column are considered of equal importance. Figure 16.1
below illustrates a methodology with four additional phases that would take into
account these and other requirements of educational software.

179

Figure 16.1: The spiral-Ed eLearning software development methodology

Figure 16.1 visually represents the proposed spiral-Ed software development

methodology. It can be read as a spiral of activity traversing four stages, each of which
has two parts. Each iteration of the spiral may take a year or more since some of its
milestones have long user cycles, particularly in formal education environments where
courses are only taught once a year. Our methodology provides guidelines for the
project team to follow throughout the software development life cycle of the eLearning
application. It can be integrated into software development methodologies for large
projects, especially where there are greater resources at hand, or it can be used on its
own for smaller projects. The fact that it is based on extensions to the industry-standard
spiral methodologies, means it can be incorporated more smoothly and easily by
engineers into the development process.

Figure 16.1 presents an overview of the methodology. The spiral conveys that it is an
iterative process, made up of engineering and educationally driven stages. The
engineering stages are: planning, developing a prototype, implementation and
evaluation. Mirroring each of these stages, are the proposed educational stages:
assessing the pedagogical requirements, trialling, course delivery and post-course
evaluation and reflection.

The four stages in the methodology each have two parts, the first of which is standard
to traditional spiral models and the second of which is specific to spiral-Ed:

Planning. During this phase, planning for the project commences, software
requirements are gathered, and a design for the system is produced.

Pedagogical requirements: Pedagogical requirements must also be gathered.
These are obtained from the teacher and include the nature of the learning
activity, the underlying pedagogy, how the activity will be assessed and any
previous feedback from students about the learning activity which might help
inform the software developers. The project team must clarify with the teacher
what the students are expected to learn, and how. At this stage, the post-course
evaluation of the student experience must also be planned.

Pedagogical
Requirements

Trialling

Course
Delivery

Post-Course
Evaluation

& Reflection

Prototype

Implementation

Evaluation

Planning

180

Developing a prototype. This is a mandatory step in any engineering project. A
prototype is normally built and used for testing and is accompanied by a risk analysis of
the project meeting its outcomes.

Trialling: The outcome of this stage is to test the prototype with a focus group
of students. Trialling can include both teaching staff and students. Students’
perceptions of the software and their approaches to the learning activity should
be evaluated. The prototype must provide the core functionality that is required
to facilitate a learning activity.

Implementation. The system design is fully implemented to produce a functional
system. The software is also tested for quality assurance.

Course delivery: At the end of the implementation and testing phase, the
software is used within a course, where students are expected to use the
software to achieve specific learning outcomes on which they will be assessed.
During this phase, information about how students approach their use of the
software should be obtained, where possible.

Evaluation. This phase evaluates the software application outcomes of the project to
date before the project continues to the next iteration.

Post-course evaluation and reflection: Our methodology requires a post-cycle
evaluation and reflection to be included. During this phase the data collected
for the student’s experience is analysed, and recommendations from the results
are reported.

The inclusion of a course delivery testing phase in the model has proven particularly

useful for the projects in which it was included. Evaluating the software within a real
course allows for the project team to understand the students’ perceptions and
experience of the software, and how it is actually being used to shape their attitudes
towards learning. The main advantage for testing the software within a course is that
learning generally takes time, and several weeks are required to test whether or not the
software has had a positive impact on student learning. For example, pedagogy such as
reflective learning strategies, requires the learner to first understand the knowledge
content, and then spend time reflecting on what they have learned. It is unrealistic
to believe that this can be achieved in a short time frame, or in an inauthentic lab
testing environment.

Furthermore, testing the software within a course for the duration of a semester will
uncover social phenomena over time. For example, in Project 2 discussed below, it was
discovered that a few isolated students used a collaborative feature of an eLearning
system to submit plagiarised work. The act of plagiarism would rarely occur in a focus
group environment, as test subjects would be aware that their responses and actions
would be closely monitored. Therefore, our methodology includes a trial period of the
eLearning software within a real-time course environment to ensure the project team
can observe how students use the software, (and sometimes may abuse the software) in
ways that can only unravel within an authentic space.

Application and evaluation
The methodology described here has been used for two educational software
development projects: Beehive, a system which allows teachers to use educational
design patterns to build on-line activities for groups of students; and dotFolio, an

181

electronic portfolio used to develop students’ reflective and writing skills. The
emphasis in this section is to demonstrate the spiral-Ed methodology as it might be used
by describing how each phase was carried out and how resulting information about the
student experience influenced the development process. The software applications are
currently in different stages of development.

Project 1 – Beehive: Enabling teachers to design on-line group work activities
Beehive is an educational software application that enables teachers to design and build
collaborative learning activities on-line (Turani & Calvo, 2006; Turani et al., 2005).
Teachers are able to use the eLearning tools provided by Beehive to design
synchronous collaborative learning activities. For example, if we take the topic
‘Making your backyard pool more sustainable’, a teacher could:

• identify the purpose of the task and its desired outcome;
• identify a sequence of learning activities leading to the outcome;
• choose eLearning tools in Beehive to support these activities;
• develop the sequence of activities using the tools and help students

understand the topic through them.
In the example of ‘Sustainability’, the eLearning tools chosen could include an
instruction tool to explain the purpose of the task, a brainstorming tool which requires
groups of 4-5 students to share their ideas about sustainability on-line, a voting tool,
which requires the students to rank their shared ideas in terms of their effectiveness for
the topic of sustainability, a discursive tool which requires the best two or three ideas to
be more fully described by the students and a plenary tool which enables students and
the teacher to provide conclusions and closure to the activity. Each of these tools
has the potential to include audio and video resources to increase the richness of
the experience.

During the development of Beehive, the following four educationally-focused phases
were used to inform the software development process, as described below.

Pedagogical requirements. The goal of Beehive is to provide teachers with a tool that
helps them to design collaborative learning experiences, and support them in the design
task with research-based scaffolding in the form of educational ‘patterns’. The
functional requirements were based on other pattern-based systems (McAndrew,
Goodyear & Dalziel, in press).

Trialling. A prototype of the application was developed using a combination of
technologies, including the dotLRN Learning Management System and Flash
Communication Server. The prototype was trialled with a group of seven users (tutors
and postgraduate students). The participants were explained the purpose of Beehive,
given a mock activity, organised into three groups, and allocated to different computers
in separate rooms. After the mock activity, all participants were asked about how they
had used the tool, what advantages and difficulties they found, and how they would use
it in tutoring situations. The results revealed certain usability problems that were
addressed at this stage.
Course delivery. The Beehive software program was used by a group of postgraduate
students enrolled in the teacher training course ‘EDPC5021, Introduction to the
Learning Sciences’, part of an Education Masters program.

Post-course evaluation. To evaluate their experience of using the software, the trainee
teachers were asked what they thought the purpose of Beehive was, how they went

182

about using it to design student learning activities and why they approached using
Beehive in the way they did. This phase in the development process proved essential as
it revealed that the software was falling short of meeting some of its educational goals.
For example, when asked what they thought the purpose of Beehive was, some trainee
teachers responded like this:

Beehive is for developing the skills of students in the group, and allowing
teachers to capture reusable learning objects.

To provide patterns for on-line teaching in an accessible way and to
automate processes of student group work.

Model and structure face to face learning activities in an on-line way and
provide a tool to manage on-line classes.

When asked the same question, other trainee teachers in the same class said:
To enable students to work collaboratively over the internet. To share ideas
and come up with group decisions.

To facilitate on-line collaborative learning sessions to promote student
understanding.

While the first group of quotations are not necessarily inaccurate (although the
concept of trying to transfer a face-to-face activity to the on-line context suggests an
undeveloped understanding about the way on-line learning can help student learning),
they all share a focus that is on something other than students. The designers of Beehive
first and foremost wanted a tool to improve the effectiveness of student learning.
Additional benefits such as reusable objects, ease of design and managing the on-line
environment are secondary. In contrast, the second group of quotations showed an
awareness that the main purpose of Beehive was to enable students to share ideas, and
to ‘promote student understanding’.

When asked how they approached using Beehive, the same first group of trainee
teachers responded:

As a trainee teacher, I sit, watch, and do what I am told with the tools
in Beehive.

I just pick the tasks I’ll need, set the scenario and information and slides
and sequence the rest of the tasks.

The second group of trainee teachers said things like:
I prefer to do some preparation about student needs before I use the
program. I like to have the script written before I go to Beehive.

I like to design learning activities in relation to student learning outcomes,
especially when selecting the pedagogical techniques and selecting
the tasks.

The software developers noticed a consistent theme in the comments made by the
trainee teachers in relation to their approach to using Beehive. Comments such as those
in the first group tended to focus more on the software itself, ‘the tools in Beehive’ or
‘set the scenario and information and slides’. They did not tend to display any

183

awareness of the learning context in which the on-line tools would be used. In contrast,
the second group of comments about teacher approaches to using Beehive foregrounded
the educational context. In the first comment, emphasising ‘student needs’ and in the
second quotation, ‘student learning outcomes’.

We were then able to take the trainee teachers experience into account for the next
development cycle. New ways to engage them in the development process as a flexible,
student-centred activity were added. The changes included adding the possibility of
students and teachers being able to co-design the activities, and a multimedia animation
that demonstrates how Beehive affects students’ learning, to help the users better realise
potential student-centred benefits of the tool. The co-design feature allows students to
engage better in the activity, and increase awareness of their own learning process as
they understand better how the activity structure affects them. Including the
educationally driven phases into our development process, was essential in truly
understanding whether the software was not just usable or technically stable, but
whether it was meeting its learning goals.

Project 2 – DotFolio: Enabling students to reflect on their learning
Portfolios of student work have often been used to indicate the quality of what students
have learnt to interested parties and to facilitate student learning through reflection.
When portfolios are enabled electronically, the effectiveness of retrieval and
presentation of student work encourages a broader usage of e-portfolios as a part of
students’ everyday learning experience (Roberts, Newble & O'Rourke, 2002). Within
higher education a growing body of research is identifying the value of e-portfolios for
developing students’ reflective learning practice (Roberts et al., 2002).

The goal of the dotFolio project is to investigate how students can use electronic
portfolios for the purpose of learning, particularly through reflection (Carroll &
Markauskaite, 2006). To facilitate this research goal, an open-source e-portfolio
application - called ‘dotFolio’- has been developed, based in part on investigation into
the student experience of the software.

Undergraduate engineering students have been using dotFolio to reflect on current
issues of engineering interest. For example, on the topic of Occupational Health and
Safety, students would:

• select a news story from a source such as the Sydney Morning Herald;
• link it or upload it in dotFolio;
• summarise their understanding of the significance of the issue and its

importance to the engineering profession and write their reflections in the
online log (‘blog’).

The four education-centred phases used to inform the development process included:

Planning. The system was first used by engineering students enrolled in the first-year
unit of study Professional Engineering. The first development iteration of the dotFolio
project was based on the basic requirement of replacing a paper-based report writing
activity with an online version, with the intention that this would improve the benefits
of the activity for students. The students were to develop their reflective practice skills
(as in the similar paper-based activity) as well as other generic graduate attributes.

Trialling. A prototype was built and then shown to a group of tutors and students.
Based on the test results of the first prototype, the team decided to limit the
functionalities available, so they would be more clear to users. In this way, the tool

184

became more transparent and simple to both academics and students. Other usability
issues became evident in this phase, as did issues around how to reinforce the idea to
students that no copyrighted materials should be uploaded. Tutors who were going to
grade assignments submitted through the system required a grouping functionality that
would allow them to mark more efficiently.

Course delivery. About 260 first-year engineering students used dotFolio during one
semester (16% female, 84% male).

Post-course evaluation. To investigate the students’ experience of dotFolio and of
reflective learning, an evaluation questionnaire was developed and a two-phase survey
was conducted (Carroll & Markauskaite, 2006). The questionnaire was administered at
the beginning and end of the semester. The first group of items interrogates student
perceptions of the technology in their learning experience. The second group of items
interrogates their approaches to using the technology. The last item investigates student
conceptions of reflection. Data was collected twice in order to see how attitudes
changed. Then, the significance of changes in students’ attitudes were analysed using
the paired-samples t-test (and marginal homogeneity tests).

The study showed how, by the end of the semester, students had a more positive view
of the technology, but more negative view of collaboration with peers. No significant
changes were observed in students’ attitudes towards reflective learning in engineering.

Students strongly disagreed with some closed-ended questionnaire items they were
asked to complete about the value of collaboration, ‘My classmates feedback on my
entries in the logbook will help/helped me to achieve the learning outcomes ’ and
‘Reading and commenting on my classmates’ entries in their logbooks will
improve/improved my understanding of current professional engineering issues’. In
addition, the open-ended responses of some students indicated that they felt inherent
conflict between collaboration with peers and the privacy of their reflection. This aspect
of the students’ experience revealed in this stage of the development process, prompted
changes in the software, such as the addition of a functionality allowing students to
make their postings private (not visible to anyone else except the tutors).

In addition, when students were asked in an open-ended question to write their
concerns about the dotFolio tool, 12.7% at the beginning of the semester and 25.3% at
the end of the semester indicated that plagiarism was an important one. This result
provided insight into reasons for the students’ dissatisfaction with collaboration. The
plagiarism issue was also addressed by changes in the software. A plagiarism detection
system that allows teachers to do a ‘collusion’ analysis and checks for submission
similarities was implemented in dotFolio (Garcia Adeva, Carroll & Calvo, 2006).

By the end of the course, students were the most positive about the functional
features of dotFolio. Some student comments indicated that they appreciated practical
benefits: ‘the ability to store files in a central site. This also helps with the transfer of
data from home to university, as well as sharing of files between group members in
group work’; ‘much potential, system that I believe would reduce workload and
streamline some assignments.’ Other students described the benefits as being closer to
their learning experiences: ‘get to be exposed to real engineering projects’; ‘it's
different. I'll learn new aspects of computing…’

However, the students’ answers to the items about reflective learning in engineering,
and the lack of significant changes in their attitudes during the semester indicated that
students did not relate the work they had done in dotFolio to their engineering practice.

185

As a way of addressing this issue with the software, a new feature integrating the e-
portfolio system with the faculty unit of study database, was added to dotFolio (Calvo,
Ellis & Carroll, 2006). This function now allows students to link the description of the
graduate attributes being developed, with their entries in dotFolio. The results of these
changes may be tested during another iteration of the spiral.

Conclusions
In this chapter, we have sought to present a software engineering methodology that is
informed by the learning experiences of students in higher education. The methodology
is an adaptation of recognisable engineering methodologies referred to as spiral
approaches to development, but extended for educational software to include stages for
obtaining an understanding of how students think about, perceive and approach using
the software for learning.

The spiral-Ed methodology proposed has been discussed in the context of two
learning software development projects: Beehive, a synchronous learning design tool
and dotFolio, an electronic portfolio tool. These projects have provided a way of
discussing how the students’ experience of learning using these technologies can be fed
back into the software development process to improve the quality of knowledge upon
which the software systems are developed.

It is clear from the experience of the authors, that supporting students’ learning
experiences effectively with learning technologies is a complex goal. To do so in an
informed and principled way, specialist knowledge from different disciplines is
required and significant effort is necessary if the knowledge is to be synthesised and
applied in a useful manner. Although the methodology described here is in its early
days of development and application, our experience so far has been very positive, and
has been valuable from the perspective of both the software engineers and the
educational researchers. We argue that truly effective and supportive learning software
can only be developed if some understanding of the experience of learning supported
by the software itself is included in the development process. We anticipate that if
software development teams increasingly employ a development methodology (such as
the one proposed here) that is informed by the essential educational aspects of the
software being produced, that the effectiveness of eLearning technologies overall will
be significantly improved.

