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Chapter 12  
Investigating students’ ability to transfer mathematics 

Sandra Britton, Peter New, Andrew Roberts and Manjula Sharma 
Faculty of Science 

It is a fundamental, if implicit, assumption of the modern day education system that 
students possess the ability to transfer the skills and knowledge learnt in a particular 
context to a different context. However, there has been much debate amongst 
researchers regarding factors that affect the occurrence of transfer. The nature of 
transfer, and the type of transfer that occurs in different contexts, have been examined 
and debated for at least a century (see Barnett & Ceci, 2002; Rebello et al., 2004) for 
brief surveys). The importance of transfer cannot be overstated - if knowledge and 
learning cannot be applied outside the original learning context, they are very limited in 
usefulness. Transfer has even been described as the ‘ultimate goal of education’ by 
some researchers (McKeough, Lupart & Marini, 1995).  

The aim of this project was to quantitatively measure the ability of first year science 
students to use skills and knowledge learned in mathematics courses, in other contexts; 
specifically science. The ability to transfer mathematics skills into a chosen science 
discipline is of crucial importance in students’ development as scientists, and in their 
future careers. It is also likely that the findings of this study will contribute more 
generally to our understanding of transfer involving other areas of university study and, 
indeed, to the transfer of knowledge and skills gained in the university to new situations 
that graduates are likely to face. 

Transfer of mathematics knowledge and skills 
At the University of Sydney, as in many other universities, students of science and 
engineering are required to study mathematics as a subject in its own right. It is 
expected that they will be able to use the skills and knowledge acquired from their 
mathematics courses in other disciplines; that is, that they will be able to transfer their 
mathematics to other disciplines. Lecturers in these other disciplines typically complain 
that students either do not have sufficient mathematics or are unable to apply it in 
context. Such complaints are not new, nor are they restricted to the University of 
Sydney. In universities across the world there has been a proliferation of courses which 
teach mathematics ‘in context’, purportedly as a solution to the problem. Unfortunately, 
there is little evidence to suggest that such courses solve the problem at all. Gill (1999b) 
discusses precisely this situation at King’s College London, and argues that teaching 
mathematics in a particular context ties the mathematics to that context and does not 
improve the situation. Zevenbergen (2001) points to research showing that embedding 
mathematics in contexts can serve as a distractor for some students, and warns of the 
difficulties caused by embedding mathematics in word problems.  

Clearly, there is no easy solution, and the studies reported in this chapter do not 
directly address the problem. Rather, they are an attempt to answer the questions: 

• To what extent are students able to transfer mathematical skills and 
knowledge?  

• Is there a way to measure transfer ability? 
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Another question that was investigated concerned the possible linkage between an 
understanding of graphs, defined as ‘graphicacy’, and success in solving other 
mathematical problems, noted by Gill (1999a). Gill concluded that there is 
mathematical understanding related to understanding graphs and slopes that may 
underpin higher order mathematical concepts. However, he was unable to say whether 
an integrated understanding of graphs is a result of, or a pre-requisite for, deep 
mathematical understanding. Answers to questions such as these may be useful in 
designing strategies to improve transfer. 

The research was begun by four academics, one from each of mathematics, physics, 
microbiology and computer science within the Faculty of Science at the University of 
Sydney, aided by a research assistant and a BSc(Honours) student, who interacted with 
students, helped with data handling and participated in generating and testing 
hypotheses. During the initial stages, an academic from the Institute for Teaching and 
Learning at the University of Sydney assisted with framing the project and focusing on 
the process of investigation. 

Theoretical background 
There have been many studies of ‘generic’ transfer - the type that enables the education 
of primary school children to be useful and that makes workplace and sporting training 
worthwhile. In one sense, the obviousness of transfer is such that it does not need to be 
stated, yet researchers have encountered many difficulties when it comes to describing 
transfer, either qualitatively or quantitatively. There has been a great deal of research 
conducted on transfer over the past century and recent work, such as that of Barnett and 
Ceci (2002), has narrowed the gap between different views of transfer. 

Measurements of transfer 
Most studies that have attempted to measure transfer have been quantitative only in the 
sense that the data sets generated were large enough to perform some kind of statistical 
analysis. But the only studies known to the authors that try to quantify transfer in some 
way are those that used a pre- and post-test methodology (Hake, 1998; Singley & 
Anderson, 1989). In these studies, the transfer was measured as a type of gain. 

The present study is thought to be unique in the attempt to quantify the degree of 
transfer of assumed knowledge. Accordingly, a transfer index had to be devised, tested 
and revised. This process is explained, followed by a description of the analyses that 
were carried out.  

Models of student thinking 
There is a large and diverse body of literature in the field of transfer, from both 
cognitive psychologists and educational scientists, but it is only with the adoption of 
accepted frameworks for transfer and educational science that helpful debate and 
comparison of research can be undertaken. Such frameworks, by Barnett and Ceci 
(2002), Redish (2003), Tuminaro (2004) and Rebello et al. (2004) were applied in this 
project to interpret our results. 

While there are several different models of memory, the framework of dividing 
memory into working (short-term) memory and long-term memory was considered 
useful. Working memory can only handle a small number of data blocks but long-term 
memory contains vast amounts of information. Transfer of information from working to  
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long-term memory may be difficult and time consuming and requires repetition and 
time (up to weeks).  

Taxonomy for transfer 
Due to the diversity of transfer research, it was important to situate this study within a 
common reference or framework to enable comparisons with different studies and to 
discuss results. Although acknowledged by its authors as lacking ‘sharp edges’ (in 
regard to generating quantitative predictions), Barnett and Ceci’s (2002) taxonomy is 
useful for positioning this project in regard to other work, and in seeing the way 
forward for future research by those concerned with transfer. 

The taxonomy has the following dimensions of context (see Figure 12.1): Knowledge 
domain; Physical context; Temporal context; Functional context; Social context and 
Modality. According to these dimensions, the project described in this paper only deals 
with non-near transfer in the Knowledge Domain, since all the other contexts were the 
same for the students involved. 

 

Figure 12.1. Barnett and Ceci’s (2002) taxonomy for far transfer 

A Content: What transferred 

Learned skill Procedure  Representation  Principle or 
heuristic 

Performance 
change 

Speed  Accuracy  Approach 

Memory 
demands Execute only  Recognise and 

execute  Recall, 
recognise and 
execute 

B Context: When and where transferred from and to 

 Near    Far 

Knowledge 
domain 

Mouse vs. 
rat 

Biology vs. 
botany

Biology vs. 
economics

Science vs. 
history

Science vs. art 

Physical  
context 

Same room 
at school 

Different room 
at school

School vs. 
research lab

School vs. 
home

School vs. 
beach 

Temporal 
context 

Same 
session 

Next day Weeks later Months later Years later 

Functional 
context 

Both clearly 
academic 

Both academic 
but one non-
evaluative 

Academic  
vs. filling  
in forms 

Academic vs. 
informal 
questionnaire 

Academic vs. 
at play 

Social context Both 
individual 

Individual vs. 
pair 

Individual vs. 
small group 

Individual vs. 
large group 

Individual vs. 
society 

Modality 
Both 
written, 
same format 

Both written, 
multiple 
choice vs. 
essay 

Book learning 
vs. oral exam 

Lecture vs. 
wine tasting 

Lecture vs. 
wood carving 
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Measuring ability to transfer mathematics skills and knowledge 
The ability to transfer mathematics was quantified by comparing marks obtained for 
mathematics questions with those obtained for numerical questions that depended on 
use of the same mathematics knowledge and skills but were set in a scientific context. 
The marks were analysed to generate a Transfer Rating (Britton, New, Sharma & 
Yardley, 2005) that expressed the ability of each student to transfer the mathematics 
knowledge to the scientific questions. Further consideration of the results suggested 
some improvements to the test instrument and to the method of calculating the  
transfer ability – leading to production of a Transfer Index that could be used  
to study correlations between variables affecting performance in science and 
mathematics subjects. 

The first instrument 
In order to test the ability of students to transfer mathematical skills and knowledge to 
other disciplines, we designed an instrument consisting of mathematical questions set in 
the context of particular scientific disciplines. We wanted each question to contain 
enough discipline-specific information that it could be answered using mathematical 
knowledge only, without any previous knowledge of the particular discipline. 

The first task was to select a topic or set of concepts taught in first year mathematics 
that would be used by the different science disciplines after it was taught by the 
mathematicians. However, due to the diversity in mathematics requirements of 
introductory science courses it was decided to focus on content taught in senior high 
school. The topic chosen was exponentials and logarithms, which is covered in the final 
two years of high school in the Mathematics Higher School Certificate in the state of 
New South Wales course (NSW Board of Studies, 1997), is assumed knowledge for 
first year university science and is briefly revised in first year mathematics. 

At the outset, two alternatives were considered for the structure of the instrument. 
The discipline-specific questions could depend on identical mathematical concepts in 
the same sequence for the different disciplines, or the discipline-specific questions 
could be taken from the same narrow area of mathematics with no constraints about a 
one-to-one matching of concepts or sequence. Since the students were initially expected 
to attempt questions in several different science disciplines, questions written according 
to the first alternative could be answered using pattern recognition. Hence it was 
decided to follow the second alternative. 

Each researcher wrote several questions that were taken from the same narrow area of 
mathematics with no constraints about a one-to-one matching of concepts or sequence. 
The questions were read by others on the team and modified to give maximum 
comprehensibility and ease of reading and interpretation. The issue of comprehending 
questions from unfamiliar discipline areas was critical (New, Britton, Sharma & Brew, 
2001). Initially, the questions included explanations which were not entirely 
comprehensible to those who had not written them. It is clearly difficult for academics 
to correctly gauge the general understanding of their specialist areas when writing 
background information. The questions went through several cycles of modifications. 

As the iterations of the discipline-specific questions converged, the mathematician in 
the group used the concepts that appeared in the discipline-specific questions to design 
a series of mathematics questions, which were read by all researchers and modified. 
The first draft of the instrument contained two questions from each of microbiology and 
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physics, three from computer science and one from mathematics, each question 
containing several parts. Following a trial of the instrument with higher year students 
(third year and above) from the participating disciplines, the questions were modified 
and some sections completely eliminated to give a test that could be realistically 
expected to be completed within one hour. 

The final version of the instrument used with first year students consisted of a physics 
component based on exponential decay of the number of photons in a photon beam, a 
microbiology component based on killing bacteria, a computer science component 
based on Big-Oh notation and a mathematics component which consisted of four 
straightforward questions. Where possible, the components had a similar structure, so 
that the application of a particular skill in different contexts could be tested.  

The following extracts from the instrument illustrate some parallel components 
(Figure 12.2). 

Figure 12.2. Parallel questions in Instrument 1 

Administering the instrument. There were several versions of the instrument, with the 
discipline-specific components in different orders, but with the mathematics 
components last in every case. Thus a selection of students would start with each 
discipline-specific component, to ensure a sufficient number of responses to each 
discipline, and to stop students simply choosing their favourite discipline. This 
procedure was also designed to lessen the effect of pattern recognition in answering 
later components based on earlier ones. 

Physics 
Consider a beam of photons with identical energies all travelling in the same direction, head-
on into a particular medium. The number of photons which survive as the beam passes 
through the medium decreases exponentially. The distance over which the number of 
photons is halved is called the half-thickness of the medium. Let N be the number of photons 
which have survived at a distance x into the medium, and let g be the half-thickness. 
a.  If N(x) = N0 x 2-kx, where N0 is the initial number of photons, and k is a positive 

constant, express k in terms of g. 
b.  Suppose a medium is 10mm thick, with a half-thickness of 0.5 mm, and that 1010

photons enter the medium head-on. 
 Draw a graph of log N against x, with a scale marked on the axes. 

Microbiology 
The bacterium Staphylococcus aureus (‘golden staph’) found in poultry stuffing is killed by 
heat. After a quantity of poultry stuffing has been heated to 62oC, the cell concentration of 
the golden staph bacteria decreases exponentially. The Decimal Reduction Time at 62oC, 
D62, is the length of time required for the cell concentration to decrease to 1/10th of its 
original value. Let N be the cell concentration of the bacteria at time t minutes after the 
stuffing has been heated to 62oC. 
a. If N(t) = N0 x 10-kt, where N0 is the initial cell concentration and k is a positive 

constant, express k in terms of D62. 
b. For golden staph, the decimal reduction time at 62oC, D62, is 8 minutes. 
 Draw a graph of log N against t if the initial concentration is 105 cells/g. 

Mathematics 
a. If P = 5ekt and P = 10 when t = 3, find k. 
b. If y = 4e-0.1x, draw a graph of ln y against x, for 0 ≤ x ≤ 10. 
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The students were told that there were components from the different disciplines and 
that they should be attempted in the order in which they appeared on the instrument. 
After answering other components for 50 minutes, all students were asked to do the 
mathematics component. Student identification numbers were requested so that further 
analysis could be done, and all students signed Human Ethics Clearance Forms so their 
student records could be accessed.  

Calculating transfer. The student responses to each part of a question were marked 
using a simple marking scheme - 2 marks for a correct answer; 1 mark for a partially 
correct answer; 0 marks if the question part had been reached and considered by the 
student and was either incorrectly answered or not attempted. If the student appeared to 
have had insufficient time to attempt the question, evidenced by failure to attempt any 
subsequent questions, a blank was recorded instead of zero. (The distinction between a 
blank and zero was important for various calculations.) The scores for each component 
were then converted to scores out of 10. 

Most of the 45 students who had made a serious attempt had run out of time and not 
completed all three discipline-specific components. Hence, the means and standard 
deviations for each of these disciplines were calculated using only the scores achieved 
by students who had attempted that particular discipline-specific component first, 
whereas scores for all 45 students were included in the statistics for the mathematics 
component (Table 12.1). 

 

Table 12.1. Means and Standard Deviations for Scores on each Component 

 Mathematics Physics Microbiology Computer 
Science 

mean 6.6 4.0 3.6 5.5 

s. d. 2.3 2.9 2.8 2.8 

N 45 13 16 16 
 
Using the means and standard deviations given in Table 12.1, each student was 

assigned a ‘transfer rating’: 

Transfer rating = z-score for first attempted component – z-score for mathematics 

The formula compares the relative performance of a student in his or her first non-
mathematical subject with performance in mathematics. Using this formula, a transfer 
rating of zero is assigned to a student who has performed at the mean in both 
mathematics and the other science discipline attempted. Such a student would be 
considered an average transferrer. A positive transfer rating indicates that the student 
has performed better (relative to the sample) in the scientific discipline attempted than 
in mathematics (relative to the sample). Such a student is considered to be a (relatively) 
good transferrer. The histogram of numbers of students in the sample with particular 
transfer ratings is bell-shaped, with the majority of students in the sample identified as 
average transferrers. 

Unfortunately, there were some limitations in the use of the formula, particularly in 
the case of students who perform very poorly in both the mathematics component and 
the other discipline. The problem is obvious when the following example is considered. 
A score of zero in both mathematics and, say, the microbiology component would give 
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a transfer rating of -1.29 - (-2.90) = +1.61, which is a very good transfer score relative 
to the sample. Yet it would obviously be wrong to describe this performance as 
indicative of good transfer abilities. In fact, it is simply not possible to test the transfer 
ability of a student when the marks scored in both components become too low, 
because any attempt to measure transfer ability presupposes that the student actually 
has some knowledge of mathematics to transfer in the first place! 

Secondly, the formula will never assign a particularly high transfer rating to a student 
who performs extremely well on the mathematics component. For example, a student 
scoring 10 on both the mathematics component and the microbiology component may 
well be an excellent transferrer, but will be assigned a transfer rating of only 0.89. 
However, it is always difficult to effectively gauge the ability of someone who gets 
everything correct. 

The graph of transfer rating against mathematics scores (Figure 12.3) highlights these 
problems. It shows a highly negative correlation between mathematics scores and 
transfer ratings (r2 = 0.301, p<0.01). 
 

 
Figure 12.3. Transfer ratings vs. mathematics scores (note that 3 data points lie so close 

to other points as to be indistinguishable) 

Assuming that the ability to transfer depends on the prior possession of some 
knowledge, it makes sense to consider the transfer ratings only for those students with a 
mathematics score close to the mean, or higher. If those students with a mathematics 
score lower than one standard deviation below the mean are disregarded, the remaining 
points on the graph (mathematics scores of 5 and above in figure 12.3) show no 
significant relationship between the mathematics scores and the transfer rating (r2 = 
0.033, not significant). This is satisfying, since the transfer rating is a measure relative 
to the mathematical ability of the student in question. However, in view of the major 
restrictions on the use of transfer rating, an alternative approach was developed 
building on the experience of the first experiment. 



 

134 

The second instrument 
A new instrument was developed, consisting of a pure mathematics section (section A) 
that would be attempted first, with questions about logarithms and exponentials, and a 
discipline-specific second part (Section B), containing only a single multi-part 
microbiology question about bacterial concentration (Roberts, Sharma, Britton & New, 
2007). It is significant that microbiology is not taught until second year at the 
University of Sydney, so no student was necessarily advantaged by being intimately 
familiar with the physical context chosen for Section B. The two sections of the test 
bear a similar relationship to one another as that between the mathematics and science 
sections in the first instrument. 

Administering the test. First year science students at the University of Sydney 
volunteered to sit the test, in response to lecture visits and email requests. The test was 
administered to two separate groups of students, less than two weeks apart. Sample 
sizes were N=30 and N=19, respectively, for the two groups. The students gave 
permission for their university records to be accessed, yielding their first semester 
university results and high school results (if applicable). High school results included 
the Entry Ranking (UAI, standing for the University Admissions Index - a ranking out 
of 100 used for entry into universities in New South Wales) and marks for individual 
subjects. The university records also provided age and gender, which are considered 
important in any attempt to explain learning phenomena. It is important to note that the 
students who volunteered for participation in the study were self-selecting - they were 
not randomly selected and, as such, non-representative of first year science students. 
They were generally high-achieving students, as shown by the mean UAI of 94, and of 
the 49, only 7 were female.  

Calculating transfer. Each question in Section A was matched to a question in Section 
B that required the use of the same mathematics, generating seven pairs of matched 
questions (Table 12.2). 

Table 12.2. Matching of Section A questions to Section B 
 

Section A Matching part in Section B 

1(a) 1 

1(b) 2(d)(i) 

1(c) 3 

1(d) - 

1(e) 3 

1(f) - 

2(a) 2(d)(ii); 3 

2(b) 1; 2(d)(ii); 3 

2(c) 2(d)(ii); 3 
 
 

A student who gave the correct answer (score of 1) in corresponding question parts in 
both sections was awarded 2 marks for transfer for that part, while an incorrect answer 
(score of 0) in both sections resulted in a mark of zero (Table 12.3). If Section A was 
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answered correctly but the corresponding question in Section B was incorrect, the mark 
was also zero, as this indicates that transfer has not occurred. Lastly, if Section A was 
answered incorrectly but Section B was correct, the student was awarded 1 mark. This 
reflects the view that transfer has occurred, but to a lesser degree than when answering 
correctly on both sections. There may be a subconscious process at work when 
answering Section A that prepares students for Section B, which provides an interesting 
question for further studies to address.  

Only four out of seven parts in Section B are involved in the matching, and hence in 
the generation of the Transfer Index. This is a by-product of the natural setting of this 
project. The research team endeavoured to examine transfer in a real educational 
setting, rather than contriving a test with a one-to-one matching between all questions 
on both sections. There are difficulties associated with this approach, involving a trade-
off between having a natural, non-contrived setting, and being able to use a greater 
proportion of the test answers in the calculation of the Transfer Index. 

 

Table 12.3. Allocation of transfer score to matched questions 

Section A score 1 0 1 0 

Section B score 1 1 0 0 

Transfer score 2 1 0 0 
 
It should be noted that there is a distinct difference between the situations represented 

by the two right-most columns in Table 12.3. If a student displays knowledge in Section 
A and not in Section B, he or she has clearly not transferred that knowledge. Yet if a 
student scores zero in both sections, little can be adequately said about transfer - how 
can someone transfer something that he does not appear to possess? The Transfer Score 
does not attempt to discriminate between the two situations.  

The overall Transfer Index given to a student was the normalised sum of the 
individual transfer scores on the seven pairs of mapped questions. 
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Correlations 
Information on students’ performances in selected high school and University subjects 
was compared with test results and Transfer Indices obtained using the Second 
Instrument, to see whether useful correlations could be found. 

High school variables 
The Entry Ranking (UAI) and marks for individual high school subjects were obtained 
for 36 students, all of whom had attempted at least one mathematics subject and at least 
one of physics, chemistry or biology. The average mark for the High School science 
subjects (HSAvScience) was calculated to provide an overall measure of a student’s 
competence in science. High School physics (HSPhysics) was also considered 
separately as it is the science subject expected to be most sensitive to varying degrees 
of graphicacy. The mathematics that is regarded as a prerequisite for first year science 
at the University of Sydney can be taken at three levels but the lowest level was not 
considered in the analysis, since it was taken by very few of the cohort who did the test. 
This left Mathematics Extension 1 (HSMathsE1) and the more difficult Mathematics 
Extension 2 (HSMathsE2). The High School variables therefore were UAI, HSPhysics, 
HSAvScience, HSMathsE1 and HSMathsE2. 

Test variables 
The variables specific to the test include Section A and Section B, which are the 
normalised marks from the two sections of the test. Transfer is the Transfer Index as 
described above while Graph refers to the normalised mark of a student on the 
graphing-related questions of Section B: Q.2(a), (b) & (d). The first two parts of these 
graphing questions require comprehension and graph reading skills, while part 2(d) 
requires comparison between graphs, interpretation and calculations, showing higher 
order cognitive thinking according to Bloom’s taxonomy (Bloom, 1956).  

University and generic variables 
The University variables are averages of the first semester university marks in all 
mathematics (UniMaths) and science (UniScience) subjects. All but two of the students 
completed two mathematics subjects (mostly calculus and linear algebra courses), while 
all but six completed at least one subject in biology, chemistry, physics or earth 
sciences. The Generic variables were obtained from individual student records, with 
Age calculated to the nearest month at the time of the test. All of the variables are 
summarised in Table 12.4. 

Table 12.4. Categorisation of project variables 

High School Test University Generic 

UAI Section A UniMaths Age
HSPhysics Section B UniScience Gender 
HSAvScience Transfer
HSMathsE1 Graph
HSMathsE2 
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Statistical correlations were performed in seeking to answer the following questions: 
• Which, if any, of the Test variables best predict UniMaths and UniScience? 
• Do any of the High School variables predict Transfer, or other Test 

variables?  
A One-Sample Kolmogorov-Smirnov test (K-S test) showed that only one of the four 
Test variables (Transfer) was drawn from a normal population, so all correlations were 
performed using a non-parametric test, Spearman’s rho (ρs). 

 

Table 12.5. Correlation of Test Variables with University Variables 

 Uni Maths Uni Science  Uni Maths Uni Science 
Section A ρs=0.56 

N=47 

p<0.01 

ρs=0.59 

N=43 

p<0.01 

Transfer ρs=0.62 

N=47 

p<0.01 

ρs=0.61 

N=43 

p<0.01 
Section B ρs=0.66 

N=47 

p<0.01 

ρs=0.63 

N=43 

p<0.01 

Graph ρs=0.58 

N=47 

p<0.01 

ρs=0.64 

N=43 

p<0.01 

 

Table 12.6. Correlation of Test Variables with High School Variables 

 UAI HSAv 
Science 

HSPhysics HSMaths E1 HSMaths E2 

Section A ρs=0.45 

N=36 

p<0.01 

ρs=0.44 

N=36 

p<0.01 

ρs=0.48 

N=26 

p<0.05 

ρs=0.56 

N=11 

n.s. 

ρs=0.61 

N=20 

p<0.01 
Section B ρs=0.57 

N=36 

p<0.01 

ρs=0.36 

N=36 

p<0.05 

ρs=0.25 

N=26 

n.s. 

ρs=0.92 

N=11 

p<0.01 

ρs=0.57 

N=20 

p<0.01 
Transfer ρs=0.58 

N=36 

p<0.01 

ρs=0.39 

N=36 

p<0.05 

ρs=0.22 

N=26 

n.s. 

ρs=0.57 

N=11 

n.s. 

ρs=0.57 

N=20 

p<0.01 
Graph ρs=0.51 

N=36 

p<0.01 

ρs=0.38 

N=36 

p<0.05 

ρs=0.31 

N=26 

n.s. 

ρs=0.79 

N=11 

p<0.01 

ρs=0.58 

N=20 

p<0.01 
(for Tables 5 and 6, n.s. = correlation not significant ; N = sample size ) 

Highly significant correlations were found between all University and Test variables, 
while the relationships between Test and High School variables are less uniform: some 
combinations show no correlation and others show very significant correlation (e.g., 



 

138 

HSMathsE1 with Section B or Graph). In addition to the associations between the Test 
and other project variables, a very interesting association was found between Transfer 
and Graph (ρs = 0.72, N = 49; p < 0.01). This was the strongest correlation besides the 
extremely high ones involving HSMathsE1, and it supports the findings of Gill (1999a) 
that ‘mathematical understanding related to the understanding of graphs and their 
slopes... may underly [sic] the ability to understand a number of higher order concepts’.  

Models for predicting transfer 
The chronological order of the variables in the project is High School → Test → 
University, while Age is measured at the time of the Test, and Gender is independent of 
time. This places a limit on the predictive powers of variables (e.g., UniMaths cannot 
predict HSMathsE1). Only models that included Test variables were considered, after 
eliminating all relationships without significant correlation (e.g., HSMathsE1 with 
Transfer, Table 12.6). Ignoring the possible dependence of Graph on High School 
variables, two sets of regressions models were studied: 

• those predicting Transfer from Age, Gender and the High School variables 
UAI, HSAvScience, and HSMathsE2 

• those predicting University variables from Age, Gender and the Test 
variables Transfer and Graph. 

In all of the models, Age and Gender were included, as these are often significant 
factors in education research. 

Results of multiple regression. For each of the models, the relationships between the 
independent variables and the dependent variable were determined, and variables with a 
non-significant impact (based upon the significance of the standardised Beta 
coefficients, β) were progressively removed in a series of iterations, until the remaining 
variable(s) had satisfactory levels of significance. 

Analysis of the first model resulted in exclusion of the variables Gender, Age and 
HSAvScience (Gender due to there being no females amongst the students selected by 
the model). The R2 value for the resulting model (Figure 12.4) was 0.38 (N=20, 
p<0.05). HSMathsE2 (β = 0.50, p<0.05) was a much more significant predictor of 
Transfer in this model than UAI (β = 0.21, p<0.05). 
 

 

UAI 

HSMathsE2 

Transfer 

β = 0.21

β = 0.50

 
Figure 12.4. Final model for predicting Transfer 
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Transfer 

Graph 

UniScience 

β = 0.37

β = 0.38

 
Figure 12.5. Final model for predicting UniScience 

The second category of model moved from prediction of Test variables to using Test 
variables as the independent variables, with dependent University variables. For 
UniMaths as the dependent variable, the variables Gender, Graph and Age were 
excluded, leaving Transfer as the only significant independent variable ( R2 = 0.38, 
N=47, p<0.01). Graph and Transfer were the only independent variables with 
predictive value for UniScience (R2 = 0.48, N=43, p<0.01) and standardised 
coefficients (β) of 0.38 (p<0.05) and 0.37 (p<0.05), respectively (Figure 12.5). 

Our analyses show that, of the High School variables examined, only University 
Entry Ranking (UAI) and the marks for the most difficult mathematics subject 
(HSMaths E2) have any value in predicting mathematics transfer ability, with HSMaths 
E2 being the most reliable predictor. Based on the Second Instrument, the results of the 
questions relating to graphicacy as well as the calculated Transfer Index were both 
useful in predicting university science results. 

Application of the research to improving teaching and learning 
To date most of our emphasis has been on development of tests to measure transfer and 
meaningful ways to analyse the data generated. It has been seen that the ability to 
transfer mathematics is a good predictor of performance in first year University 
mathematics and science, and is itself correlated with the Entry Ranking and the mark 
in high school Mathematics Extension 2. At this time it is not known to what extent the 
ability to transfer mathematics can be increased by training, or if a low level of 
numeracy in scientific disciplines due to poor transfer ability can be augmented by 
remedial teaching in a few key areas of mathematics. 

So while there have been few conclusions that would suggest changes in teaching 
practice to improve transfer, work on the project has taught us two important  
lessons that have clear implications for teaching and learning. Firstly, communication 
between mathematicians and academics in other scientific disciplines is essential. We 
discovered that our use of mathematics is often different, in ways which are unlikely to 
be helpful to students. The second lesson arises from the difficulties that we all 
encountered in understanding questions written by our colleagues, set in the context of  
disciplines other than our own. We must take extreme care in our teaching to ensure 
that we do not assume more knowledge on the part of students than they possess. 
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One interesting finding has been that transfer ability is positively correlated with 
graphicacy, although we do not know whether superior ability to interpret graphical 
representations of mathematical data is a cause or consequence of superior ability to 
transfer mathematical learning. However the strength of the correlation has encouraged 
some of us to change our emphases in teaching. We now devote more time to 
explaining the interpretation of graphs in the context of our own scientific disciplines. 
Further work is needed to confirm that this approach improves mathematics transfer 
and numeracy. 

So far our investigations have only analysed data concerning transfer of mathematics 
knowledge and skills related to one area, that of exponentials and logarithms, but they 
could be applied to other mathematics contexts and to other cohorts of students. In so 
doing, our approaches will allow identification of other useful questions, the answers to 
which will inform our teaching practices and build a community of practice across the 
various disciplines that rely on mathematics transfer. 
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