
A COMPARATIVE STUDY
OF AMERICAN OPTION VALUATION

AND COMPUTATION

Karl Rodolfo

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Mathematics and Statistics

The University of Sydney

S
ID

ERE·ME
N

S·EADE

M
·MUTAT

O

November 17, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41230878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

For many practitioners and market participants, the valuation of financial

derivatives is considered of very high importance as its uses range from a

risk management tool, to a speculative investment strategy or capital en-

hancement. A developing market requires efficient but accurate methods for

valuing financial derivatives such as American options.

A closed form analytical solution for American options has been very difficult

to obtain due to the different boundary conditions imposed on the valuation

problem. Following the method of solving the American option as a free

boundary problem in the spirit of the “no-arbitrage” pricing framework of

Black-Scholes, the option price and hedging parameters can be represented

as an integral equation consisting of the European option value and an early

exercise value dependent upon the optimal free boundary.

Such methods exist in the literature and along with risk-neutral pricing meth-

ods have been implemented in practice. Yet existing methods are accurate

but inefficient, or accuracy has been compensated for computational speed.

A new numerical approach to the valuation of American options by cubic

splines is proposed which is proven to be accurate and efficient when com-

pared to existing option pricing methods. Further comparison is made to

the behaviour of the American option’s early exercise boundary with other

pricing models.
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