A COMPARATIVE STUDY OF AMERICAN OPTION VALUATION AND COMPUTATION

Karl Rodolfo

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Mathematics and Statistics The University of Sydney

November 17, 2007

Abstract

For many practitioners and market participants, the valuation of financial derivatives is considered of very high importance as its uses range from a risk management tool, to a speculative investment strategy or capital enhancement. A developing market requires efficient but accurate methods for valuing financial derivatives such as American options.

A closed form analytical solution for American options has been very difficult to obtain due to the different boundary conditions imposed on the valuation problem. Following the method of solving the American option as a free boundary problem in the spirit of the "no-arbitrage" pricing framework of Black-Scholes, the option price and hedging parameters can be represented as an integral equation consisting of the European option value and an early exercise value dependent upon the optimal free boundary.

Such methods exist in the literature and along with risk-neutral pricing methods have been implemented in practice. Yet existing methods are accurate but inefficient, or accuracy has been compensated for computational speed. A new numerical approach to the valuation of American options by cubic splines is proposed which is proven to be accurate and efficient when compared to existing option pricing methods. Further comparison is made to the behaviour of the American option's early exercise boundary with other pricing models.

Acknowledgements

This thesis will not have been possible without the guidance of my supervisor, Dr Peter Buchen. With Peter's tireless efforts and astuteness to all things related to my PhD, I always knew that I will never be left in the dark. Equally important he is always a good friend to have a chat about golf and cooks a fantastic barbecue. I am truly thankful Peter.
Secondly many thanks to the lecturers and support staff at School of Mathematics and Statistics who throughout the years I spent there, provided me with the resources, knowledge and encouragement to excel.

To my professional colleagues and directors at Opes Prime Stockbroking, I thank you for your support and allowing me to concentrate time towards my studies.

Lastly but by no means least my beautiful wife Tracey who has supported me tremendously in her own unique and colourful way. Thank you my love. To my parents Bing and Tess, my siblings Katrina and Albin and to all my friends, thank you for your endless support.

Karl Rodolfo
School of Mathematics and Statistics
The University of Sydney
September 2007

Contents

Abstract i
Acknowledgments ii
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 History and Development of Options 1
1.2 Modern Theory of Options Pricing 3
1.3 American Option Pricing Models 4
1.4 American Option Valuation Methods 7
1.5 Cubic Spline Method 9
1.6 Numerical Comparisons 12
1.7 Early Exercise Boundary 12
1.8 Recent Advances in Literature 13
1.9 Scope of Work 13
2 Arbitrage Boundaries 17
2.1 The Concept of Arbitrage 17
2.2 Notation and Preliminaries 18
2.3 Call Option Boundaries 19
2.4 Put Option Boundaries 22
2.5 Put-Call Parity Relations 25
3 Derivation of the European Option Equation and Formulae 27
3.1 Assumptions of the Black-Scholes Model 27
3.2 Derivation of the Black-Scholes Partial Differential Equation 30
3.3 Boundary and Initial Conditions for European Options 31
3.4 The Black-Scholes Option Pricing Formula 33
3.5 Extensions of the Formula 34
3.6 Put-Call Symmetry 36
3.7 Alternative Derivation Under a Risk Neutral Measure 37
4 American Options 39
4.1 American Option Characteristics 39
4.2 High Contact Conditions for American Calls and Puts 41
4.3 The American Option Partial Differential Equation 44
4.4 Optimal Exercise Boundary and Symmetry 45
4.5 Asymptotic Behaviour of the Critical Exercise Price Near Expiry 50
5 Valuation Methods 52
5.1 The American Option Partial Differential Equation Solution 52
5.2 Binomial Methods 65
5.3 Linear Complementarity Formulation 70
5.4 Quadratic Approximation 72
5.5 Analytical Method of Lines 75
5.6 Method of Interpolation between Bounds 79
5.7 Randomization Techniques 83
5.8 Monte Carlo Methods 88
5.9 Critical Appraisal 91
6 Numerical Methods 93
6.1 Lattice Methods 93
6.2 Simulation Methods 102
6.3 Approximation Methods 105
6.4 Semi-Analytical Methods 108
6.5 Gaussian Quadrature 110
7 A New Algorithm 116
7.1 Method of Cubic Splines in the Kolodner-McKean Framework 117
7.2 Application to a Toy Problem 124
7.3 The Cubic Spline Method in the Jamshidian Framework 126
7.4 Comparison between the Kolodner-McKean and Jamshidian Cubic Spline Valuation 127
7.5 Comparative Statics 130
8 A Comparison of Valuation Methods 133
8.1 Comparison of Efficiency 133
8.2 Calculating the Early Exercise Boundary 141
9 Conclusion 148
A Proofs 151
A. 1 Feynman-Kac Formula 151
A. 2 Equivalence of the PDE and Layer Potential Methods 152
A. 3 Derivation of the American Perpetual Option Solution 155
B Notation 158
C Computer Code 160

List of Figures

2.1 Minimum and maximum bounds for an American call 19
2.2 Minimum and maximum bounds for an American put 23
4.1 The American call option's contact condition. 41
4.2 The American put option's contact condition. 42
5.1 The domain defined by $\mathbb{D}_{c}^{ \pm}$. 53
5.2 The discrete nature of the exercise boundary evaluated under the binomial method. 69
5.3 The stock price paths of the continuous state model. 89
6.1 Comparison between two critical exercise boundaries for vary- ing step sizes. 99
6.2 The partitioned stock price paths. 102
7.1 Comparison of exact (stars) and numerical (solid) solutions.
Spline knots are denoted in circles; start solution by triangles . 124
7.2 Early exercise boundary for an American put option for $r=$ $8 \%, q=0 \%, \sigma=40 \%, K=\$ 100$ and $T=1$ year 128
7.3 Early exercise boundary for an American call option for $r=$ $8 \%, q=15 \%, \sigma=40 \%, K=\$ 100$ and $T=1$ year 129
8.1 Formation of the early exercise boundary for an American put option 141
8.2 Comparison of the early exercise boundaries for an American put option for the case when $r>q$. 143
8.3 Comparison of the early exercise boundaries for an American put option for the case when $r<q$. 144
8.4 The Early-exercise boundaries for an American put for various choices of spline knots. 145
8.5 A close up of the spline knots compared with the true solution. 146
8.6 The root mean squared errors for the early exercise boundary of an American put for various choices of spline knots. 147

List of Tables

7.1 Comparison of American put option values using the Kolodner- McKean and Jamshidian methods for varying asset price S. 128
8.1 Comparison of American put and call option values using the Binomial, Finite difference, Quadratic Approximation, Method of Lines, Recursive Integration, Monte Carlo and the two new methods: Jamshidian and Kolodner-McKean methods. $S=80,90,100,120, r=8 \%, q=12 \%, \sigma=20 \%, K=100$ and $T=0.25$ years 137
8.2 Comparison of American put and call option values using the Binomial, Finite difference, Quadratic Approximation, Method of Lines, Recursive Integration, Monte Carlo and the two new methods: Jamshidian and Kolodner-McKean methods. $S=80,90,100,120, r=12 \%, q=8 \%, \sigma=20 \%, K=100$ and $T=0.25$ years 138
8.3 Root Mean Squared Errors of the the Binomial, Finite differ- ence, Quadratic Approximation, Method of Lines, Recursive Integration, Monte Carlo and the two new methods: Jamshid- ian and Kolodner-McKean methods relative to the benchmark Binomial method using $N=50,000$ time steps. 140
8.4 Choice of knot sizes for various maturity dates. 145

