Performance Analysis of Maximal-Ratio Combining and

Space-Time Block Codes with Transmit Antenna

Selection over Nakagami-*m* **Fading Channels**

Zhanjiang Chi

A thesis submitted in fulfilment of requirements for the degree of Master of Engineering (Research)

School of Electrical & Information Engineering The University of Sydney

September 2007

©Zhanjiang Chi, 2007.

A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering (Research) in the School of Electrical and Information Engineering, Faculty of Engineering, The University of Sydney, Australia.

Supervisors:

- Professor Branka Vucetic, The University of Sydney.
- Dr Zhuo Chen, The Commonwealth Scientific and Industrial Research Organisation.

Manuscript submitted March 2007.

Accepted with emendations September 2007 after examination by:

- Dr Yonghui Li, The University of Sydney.
- Dr Johnson Agbinya, University of Technology, Sydney.

Abstract

The latest wireless communication techniques such as high speed wireless internet application demand higher data rates and better quality of service (QoS). However, transmission reliability is still degraded by harsh propagation channels. Multiple-input multiple-output (MIMO) systems can increase the system capacity and improve transmission reliability. By transmitting multiple copies of data, a MIMO system can effectively combat the effects of fading. Due to the high hardware cost of a MIMO system, antenna selection techniques have been applied in MIMO system design to reduce the system complexity and cost. The Nakagami-m distribution has been considered for MIMO channel modeling since a wide range of fading channels, from severe to moderate, can be modeled by using Nakagami-m distribution. The Rayleigh distribution is a special case of the Nakagami-*m* distribution. In this thesis, we analyze the error performance of two MIMO schemes: maximal-ratio combining with transmit antenna selection (the TAS/MRC scheme) and space-time block codes with transmit antenna selection (the TAS/STBC scheme) over Nakagamim fading channels. In the TAS/MRC scheme, one of multiple transmit antennas, which maximizes the total received signal-to-noise ratio (SNR), is selected for uncoded data transmission. First we use a moment generating function based (MGF-based) approach to derive the bit error rate (BER) expressions for binary phase shift keying (BPSK), the symbol error rate (SER) expressions for M-ray phase shift keying (MPSK) and M-ray quadrature amplitude modulation (MQAM) of the TAS/MRC scheme over Nakagami-m fading channels with arbitrary and integer fading parameters m. The asymptotic performance is also investigated. It is revealed that the asymptotic diversity order is equal to the product of the Nakagami fading parameter m, the number of transmit antenna L_t and the number of receive antenna L_r as if all transmit antenna were used. Then a Gaussian Q-functions approach is used to investigate the error performance of the TAS/STBC scheme over Nakagami-*m* fading channels. In the TAS/STBC scheme, two transmit antennas, which maximize the output SNR, are selected for transmission. The exact and asymptotic BER expressions for BPSK are obtained for the TAS/STBC schemes with three and four transmit antennas. It is shown that the TAS/STBC scheme can provide a full diversity order of mL_tL_r .

Acknowledgements

Finally, I'm writing the last part of this thesis to express my gratitude to the wonderful people who gave their kindly help to me during the past two years of my stay in Sydney.

First of all, I would like to acknowledge my supervisor Professor Branka Vucetic for her guidance, supervision, advice and encouragement through the whole of my two years research study in the Telecommunication Laboratory. I am very grateful to Professor Branka Vucetic for giving me a chance to work with many exceptional students at the best Australian university, The University of Sydney. As the director of the Telecommunication Laboratory, Professor Branka Vucetic is so busy with our school's daily affairs. However, she is always available for the regular seminar and meeting every Monday. Thanks to Branka for always being very nice and helping me, not only with academic but also administrative issues and maintaining the Telecommunication Laboratory as a very excellent research place for all the students.

I am deeply indebted to Dr Zhuo Chen for his invaluable suggestions and supervision. Dr Zhuo Chen provided the direction of my research and gave generous support to me during the past two years. His previous work and bright ideas shaped the direction of this research. I also would like to thank Dr Zhuo Chen for using his precious time to answer my unintelligent questions in the early stages of this research and giving excellent comments after reviewing my thesis. It was extraordinarily fortunate for me to be able to work with Dr Zhuo Chen during the past two years.

In the Telecommunication Laboratory, I was surrounded by knowledgeable and friendly people who helped me every day. My special thanks go to Lixiang Xiong, Huabing Liu

and Xiaoyuan Ta for their useful advice to me on various topics such as Australian culture and immigration issues as well as my research career. And I also want to thank Dr Yonghui Li, Dr Zhendong Zhou, Kun Zhou, Kun Pang, Rui Li, Kingsley Allen and other students in the laboratory. They make the Telecommunication Laboratory a very friendly and interesting place.

In addition to the people in Sydney, I was very lucky to have the support of many good friends. I gratefully thank my flatmates Xiaolin Sun, Zhujia Wu, Lingfeng Hu and Wenlong Xu. Thanks to the couple Xiaolin Sun and Zhujia Wu for taking me to numerous wonderful places and restaurants in Sydney and treating me warmly like their brother. I am indebted to them more than they know. I really appreciate the help from Lingfeng Hu and Wenlong Xu when my wife came to Sydney. I am also very grateful to Mrs. Inge Rogers for proof reading this thesis and correcting my English grammar and vocabulary mistakes.

Finally, I would like to thank those people closest to me. I am grateful to my cousin Ting Zheng who is the only family member I have in Australia for her encouragement. Words cannot express the magnitude of my gratitude to my wife Yang Liu for her endless love, patience and understanding. I appreciate everything she has done and continues to do. She is always and forever my pillar, my joy and my guiding light. I would not be here without her.

My parents Guizhen Zhu and Hanmin Chi deserve special mention for their dedication, love and persistent confidence in me. Since I was born my parents have raised me with their caring and gentle love. When I was a child they tried their best to provide me with the best education. After I graduated from university, they paid a very high tuition fee for my postgraduate study in Australia. My parents sacrificed so much for me. They have been a constant source of emotional, moral and financial support to me. I am forever indebted to my parents.

Zhanjiang Chi Sydney, Australia March 2007

Statement of Originality

The research work in this thesis was conducted by myself under the supervision of Professor Branka Vucetic and Dr Zhuo Chen at the School of Electrical and Information Engineering, The University of Sydney, Australia.

The material in this thesis has not been submitted previously for a degree in any university, and to the best of my knowledge contains no material previously published or written by another person except where appropriate acknowledgement is made in the thesis.

Zhanjiang Chi Telecommunication Laboratory School of Electrical and Information Engineering The University of Sydney New South Wales, Australia March 2007

Contents

Al	bstrac	t		iii
Ac	cknow	ledgem	nents	iv
St	ateme	ent of O	riginality	vi
TA	ABLE	OF CC	ONTENTS	vi
LI	IST O	F FIGU	JRES	x
LI	IST O	F TABI	LES	xii
Li	st of A	Acronyı	ns	xiii
1	Intr	oductio	n	1
	1.1	Backg	round	1
	1.2	Resear	ch Methodology	4
	1.3	Thesis	Organization	6
	1.4	Public	ations	7
2	Bacl	kgroune	d	9
	2.1	Digita	Communication Systems	9
	2.2	Digita	l Modulation Schemes	11
		2.2.1	Introduction	11
		2.2.2	M-ray Phase Shift Keying	11
		2.2.3	M-ray Quadrature Amplitude Modulation	12

	2.3	Multip	le-Input Multiple-Output System Model	13
	2.4	Antenn	a Selection Techniques	17
		2.4.1	introduction	17
		2.4.2	Transmit Antenna Selection	18
		2.4.3	Receive Antenna Selection	19
		2.4.4	Joint Transmit and Receive Antenna Selection	21
	2.5	Fading	Channels	22
		2.5.1	Multipath Fading	22
			2.5.1.1 Slow Fading and Fast Fading	23
			2.5.1.2 Flat Fading and Frequency Selective Fading	24
		2.5.2	Statistical Models for Fading Channels	24
			2.5.2.1 Rayleigh Fading	24
			2.5.2.2 Nakagami- <i>m</i> Fading	25
	2.6	Divers	ty Combining Techniques	26
		2.6.1	Introduction	26
		2.6.2	Selection Combining	27
		2.6.3	Maximal-Ratio Combining	27
		2.6.4	Equal Gain Combining	28
	2.7	Coding	Gain and Diversity Gain	29
	2.8	.8 Space-Time Block Codes		31
		2.8.1	Alamouti Scheme	31
		2.8.2	Extension to Multiple Transmit Antennas	36
3	Perf	ormanc	e of the TAS/MRC Scheme over Nakagami- m Fading Channels	39
	3.1	Introduction		
	3.2 System and Channel Model		and Channel Model	40
	3.3	3.3 Error Performance Analysis of the TAS/MRC Scheme		45
		3.3.1	Exact BER of BPSK of the TAS/MRC Scheme	45
		3.3.2	Exact SER of MPSK of the TAS/MRC Scheme	48
		3.3.3	Exact SER of MOAM of the TAS/MRC Scheme	51
3.4 Asymptotic Performance Analysis of the TAS/MRC Scheme			totic Performance Analysis of the TAS/MRC Scheme	57
		3.4.1	Introduction	57
				~ '

		3.4.2	System a	and Analytical Tools	57
		3.4.3	Asympto	otic Error Performance Expressions	58
			3.4.3.1	Asymptotic BER Expression for BPSK	58
			3.4.3.2	Asymptotic SER Expression for MPSK	61
			3.4.3.3	Asymptotic SER Expression for MQAM	62
	3.5	Simula	tion Resu	lts	64
	3.6	Conclu	ision		70
4	Perf	ormanc	e of the T	AS/STBC Scheme over Nakagami- <i>m</i> Fading Channels	71
	4.1	Introdu	action		71
	4.2	System	n and Chai	nnel Model	72
	4.3	Error F	Performan	ce Analysis of the TAS/STBC Scheme	74
	4.4	Simula	tion Resu	lts	79
	4.5	Conclu	ision		83
5	Con	clusion			84
	5.1	Summa	ary		84
	5.2	Future	Work		86

List of Figures

2.1	Block diagram of a typical digital communication system.	10
2.2	Constellations for MPSK modulation, M=2,4,8	12
2.3	Constellations for MQAM modulation, M=8, 16	14
2.4	A diagram of a MIMO system	15
2.5	A diagram of single transmit antenna selection	18
2.6	A diagram of multiple transmit antenna selection	19
2.7	A diagram of single receive antenna selection	20
2.8	A diagram of multiple receive antenna selection	21
2.9	A diagram of joint transmit and receive selection	22
2.10	A diagram of a transmission system with fading and noise	23
2.11	Selection Combining Model	28
2.12	Maximal-Ratio Combining Model	29
2.13	Illustration of diversity order and coding gain	31
2.14	A block diagram of the Alamouti scheme encoder	32
2.15	The Alamouti scheme with two transmit antennas and one receive antenna	33
2.16	The Alamouti scheme with two transmit antennas and two receive antenna	35
2.17	A system block diagram of the space-time block codes	37
3.1	An $(L_t, 1; L_r)$ TAS/MRC diversity scheme	41
3.2	The exact, approximation and simulation BER for the $(2,1;1)$ and $(2,1;2)$	
	TAS/MRC schemes, BPSK	64
3.3	The exact, approximation and simulation BER for the $(3,1;1)$ and $(3,1;2)$	
	TAS/MRC schemes, BPSK	65

3.4	The exact, approximation and simulation SER for the $(2,1;1)$ and $(2,1;2)$	
	TAS/MRC schemes, QPSK	66
3.5	The exact, approximation and simulation SER for the $(2,1;1)$ and $(2,1;2)$	
	TAS/MRC schemes, 16QAM	67
3.6	The exact, approximation and simulation SER for the (2,1;1), (2,1;2),	
	(2,1;3) and (2,1;4) TAS/MRC schemes, m=0.5, 8PSK	68
3.7	The exact, approximation and simulation SER for the $(2,1;1)$, $(3,1;1)$ and	
	(4,1;1) TAS/MRC schemes, m=0.5, 16QAM	69
4.1	An $(L_t, 2; L_r)$ TAS/STBC diversity scheme	72
4.2	The exact, approximation and simulation BER for the $(3,2;1)$ and $(3,2;2)$	
	TAS/STBC schemes, BPSK.	79
4.3	The exact, approximation and simulation BER for the $(4,2;1)$ and $(4,2;2)$	
	TAS/STBC schemes, BPSK	80
4.4	The performance comparison of the (3,2;1) TAS/MRC scheme and the	
	(3,2;1) TAS/STBC scheme, BPSK	81
4.5	The performance comparison of the (3,2;2) TAS/MRC scheme and the	
	(3,2;2) TAS/STBC scheme, BPSK	82

List of Tables

2.1	The notation of fading coefficient for the Alamouti scheme	34
2.2	The notation of received signals for the Alamouti scheme	34

List of Acronyms

3 G	Third Generation
AM	Amplitude Modulation
AWGN	Additive White Gaussian Noise
BER	Bit Error Rate
BPSK	Binary Phase-Shift Keying
cdf	cumulative distribution function
CDMA	Code-Division Multiple-Access
CSI	Channel State Information
EGC	Equal Gain Combining
FM	Frequency Modulation
HS/MRC	Hybrid Selection/Maximal-Ratio Combining
i.i.d.	independent identically distributed
MGF	Moment Generating Function
MIMO	Multiple-Input Multiple-Output
MLD	Maximum Likelihood Decoding
MLSE	maximum likelihood sequence estimation
MPSK	M-ray Phase-Shift Keying
MQAM	M-ray Quadrature Amplitude Modulation
MMSE	Minimum Mean Square Error
MRC	Maximal-Ratio Combining
MRRC	Maximal-Ratio Receiver Combining
pdf	probability density function
PM	Phase Modulation
PSK	Phase-Shift Keying

QAM	Quadrature Amplitude Modulation
QoS	Quality of Service
RF	Radio-Frequency
SC	Selection Combining
SEP	Symbol Error Probability
SER	Symbol Error Rate
SNR	Signal-to-Noise Ratio
STBC	Space-Time Block Code
STTC	Space-Time Trellis Code
TAS/MRC	Transmit Antenna Selection/Maximal-Ratio Combining
TAS/STBC	Transmit Antenna Selection/Space-Time Block Code
WCDMA	Wideband Code-Division Multiple-Access
WIMAX	Worldwide Interoperability for Microwave Access