

Functional Neuroanatomy of Tachykinins in Brainstem Autonomic Regulation

John M. Makeham

A thesis submitted to the University of Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy

August, 2006

To Meredith,

Charles and Georgina

Declaration

This thesis is submitted to the University of Sydney in fulfillment of the requirements for the degree of Doctor of Philosophy. The work presented in this thesis is, to the best of my knowledge and belief, original and has not been published or written by another person, except where due reference is made in the text of the thesis. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. Parts of this thesis have been published in abstract form or as full papers and they are listed on page X.

John M. Makeham August 2006

Acknowledgements

I would like to thank my supervisor, Professor Paul Pilowsky, for his help, support, patience and friendship during my candidature.

Special thanks also to Dr Ann Goodchild, for all the advice, teaching and help over my time at the laboratory. In particular, thank you for the invaluable guidance in the immunohistochemistry and microscopy experiments described in chapter 4.

Thank you to Professor Michael Morgan, for the guidance and encouragement provided over the years

To everyone at the Hypertension and Stroke research Laboratories, thank you for making my time there so enjoyable.

I would also like to thank the Andrew Olle Memorial Trust and the Doug White AVM Foundation for their support during my research.

And finally, I would like to thank my wonderful wife, Meredith, for the unending support and patience that have made this thesis possible.

1.1 Summary

Little is known about the role that tachykinins, such as substance P and its receptor, the neurokinin-1 receptor, play in the generation of sympathetic nerve activity and the integration within the ventrolateral medulla (VLM) of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow.

The studies described in this thesis investigate these autonomic functions and the role of tachykinins through physiological (response to hypercapnoea, chapter 3), anatomical (neurokinin-1 receptor immunohistochemistry, chapter 4) and microinjection (neurokinin-1 receptor activation and blockade, chapters 5 and 6) experiments.

In the first series of experiments (chapter 3) the effects of chemoreceptor activation with hyperoxic hypercapnoea (5%, 10% or 15% CO_2 in O_2) on splanchnic sympathetic nerve activity and sympathetic reflexes such as the baroreflex and somato-sympathetic reflex were examined in anaesthetized rats. Hypercapnoea resulted in sympatho-excitation in all groups and a small increase in arterial blood pressure in the 10 % CO_2 group. Phrenic nerve amplitude and phrenic frequency were also increased, with the frequency adapting back to baseline during the CO_2 exposure. Hypercapnoea selectively attenuated (5% CO_2) or abolished (10% and 15% CO_2) the somato-sympathetic reflex while leaving the baroreflex unaffected. This selective inhibition of the somato-sympathetic reflex while leaving the baroreflex unaffected was also seen following neurokinin-1 receptor activation in the rostral ventrolateral medulla (RVLM) (see below).

Microinjection of substance P analogues into the RVLM results in a pressor response, however the anatomical basis for this response is unknown. In the second series of experiments (chapter 4), the distribution of the neurokinin-1 receptor in the RVLM was investigated in relation to catecholaminergic (putative sympatho-excitatory "C1") and bulbospinal neurons. The neurokinin-1 receptor was demonstrated on a small percentage (5.3%) of C1 neurons, and a small percentage (4.7%) of RVLM C1 neurons also receive close appositions from neurokinin-1 receptor immunoreactive terminals. This provides a mechanism for the pressor response seen with RVLM microinjection of substance P analogues. Neurokinin-1 receptor immunoreactivity was also seen a region overlapping the preBötzinger complex (the putative respiratory rhythm generation region), however at this level a large percentage of these neurons are bulbospinal, contradicting previous work suggesting that the neurokinin-1 receptor is an exclusive anatomical marker for the propriobulbar rhythm generating neurons of the preBötzinger complex.

The third series of experiments (chapter 5) investigated the effects of neurokinin-1 receptor activation and blockade in the RVLM on splanchnic sympathetic nerve activity, arterial blood pressure, and autonomic reflexes such as the baroreflex, somato-sympathetic reflex, and sympathetic chemoreflex. Activation of RVLM neurokinin-1 receptors resulted in sympatho-excitation, a pressor response, and abolition of phrenic nerve activity, all of which were blocked by RVLM pre-treatment with a neurokinin-1 receptor antagonist. As seen with hypercapnoea, RVLM neurokinin-1 receptor activation significantly attenuated the somato-sympathetic reflex but did not affect the sympathetic baroreflex. Further,

blockade of RVLM neurokinin-1 receptors significantly attenuated the sympathetic chemoreflex, suggesting a role for RVLM substance P release in this pathway.

The fourth series of experiments (chapter 6) investigated the role of neurokinin-1 receptors in the RVLM, caudal ventrolateral medulla (CVLM), and nucleus tractus solitarius (NTS) on regional cerebral blood flow (rCBF) and tail blood flow (TBF). Activation of RVLM neurokinin-1 receptors increased rCBF associated with a decrease in cerebral vascular resistance (CVR). Activation of CVLM neurokinin-1 receptors decreased rCBF, however no change in CVR was seen. In the NTS, activation of neurokinin-1 receptors resulted in a biphasic response in both arterial blood pressure and rCBF, but no significant change in CVR. These findings suggest that in the RVLM substance P and the neurokinin-1 receptor play a role in the regulation of cerebral blood flow, and that changes in rCBF evoked in the CVLM and NTS are most likely secondary to changes in arterial blood pressure. Substance P and neurokinin-1 receptors in the RVLM, CVLM and NTS do not appear to play a role in the brainstem regulation of tail blood flow.

In the final chapter (chapter 7), a model is proposed for the role of tachykinins in the brainstem integration of the sympathetic baroreflex, sympathetic chemoreflex, cerebral vascular tone, and the sympatho-excitation seen following hypercapnoea. A further model for the somato-sympathetic reflex is proposed, providing a mechanism for the selective inhibition of this reflex seen with hypercapnoea (chapter 3) and RVLM neurokinin-1 receptor activation (chapter 5).

In summary, the ventral medulla is essential for the generation of basal sympathetic tone and the integration of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The tachykinin substance P, and its receptor, the neurokinin-1 receptor, have a role to play in many of these vital autonomic functions. This role is predominantly neuromodulatory.

Contents

Publications	and communications	X
List of Figure	es	xii
List of Table	S	xiv
List of abbre	viations	XV
Chapter 1.	Literature Review	1
Chapter 2.	Materials and Methods	93
Chapter 3.	Effects of hypercapnoea on brainstem autonomic reflexes	119
Chapter 4.	Neurokinin-1 receptor anatomy and the ventral medulla: Bulbospinal and catecholaminergic neurons	146
Chapter 5.	Effects of RVLM neurokinin-1 receptor activation and blockade	169
Chapter 6.	Brainstem neurokinin-1 receptor activation and regional blood flow in cerebral and tail microcirculations	197
Chapter 7.	Conclusion	227
References		239
Appendix		285

Publications (see appendix)

Pilowsky P.M. and **Makeham J.** 2001. Juxtacellular labelling of identified neurons: Kiss the cells and make them dye. Journal of Comparative Neurology 433:1-3.

Makeham JM, Goodchild AK, and Pilowsky PM. 2001. NK1 receptor and the ventral medulla of the rat: bulbospinal and catecholaminergic neurons. Neuroreport 12:3663-3667. (cover illustration).

Makeham JM, Goodchild AK, Costin NS, and Pilowsky PM. 2004. Hypercapnia selectively attenuates the somato-sympathetic reflex. Respiratory Physiology and Neurobiology 140:133-143.

Makeham JM, Goodchild AK, and Pilowsky PM. 2005. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex. American Journal of Physiology 288:R1707-R1715.

Communications

Makeham JM, Miyawaki T, Goodchild AK, and Pilowsky PM. 2001.Stimulation of substance P receptors in the Rostral Ventrolateral medulla. 34th Congress of the International Union of Physiological Sciences, Sydney. Poster presentation.

Makeham JM, Goodchild AK, and Pilowsky PM. 2001. NK1R immunoreactive varicosities closely appose RVLM C1 neurons. 21st Annual Meeting of the Australian Neuroscience Society, Brisbane. Poster presentation.

Makeham JM, Goodchild AK, and Pilowsky PM. 2002. NK1 receptor stimulation in the Rostral Ventrolateral Medulla. 22nd Annual Meeting of Australian Neuroscience Society, Sydney. Poster presentation.

Reja V., **Makeham JM**, Goodchild AK, and Pilowsky PM. 2003. AT1 Receptors in the RVLM do not play a significant role in maintaining high blood pressures observed in renovascular hypertensive rats. Journal of Hypertension 24 (suppl. 4):S196.

Reja, V, **Makeham JM**, Goodchild AK, and Pilowsky PM. 2003. AT1 receptors in the RVLM do not play a significant role in maintaining high blood pressures observed in renovascular hypertensive rats. 13th European Meeting on Hypertension, Milan. Poster Presentation.

Makeham JM, Goodchild AK. Costin NS, and Pilowsky PM. 2003. Hypercapnia selectively attenuates the somato-sympathetic reflex. 23rd Annual Meeting of Australian Neuroscience Society, Adelaide. Poster presentation.

Figures

Chapter 1:

Figure 1.1	Parasagittal section through ventral medulla	11
Figure 1.2	Schematic diagram of the baroreflex pathway	21
Figure 1.3	Somato-sympathetic 'A' reflex	33
Figure 1.4	Biosynthesis of mammalian tachykinins	51
Figure 1.5	Biosynthesis, axonal transport and release	53
	of substance P	
Figure 1.6	Model of neurokinin-1 receptor	58
Figure 1.7	Intracellular effectors for neurokinin-1 receptor	66

Chapter 2:

Figure 2.1	Sympathetic baroreflex and somato-sympathetic reflex	105
Figure 2.2	Phrenic waveform	107
Figure 2.3	Colloidal gold microinjection sites	111

Chapter 3:

Figure 3.1	ABP, HR, and sSNA	129
Figure 3.2	Phrenic nerve activity	132
Figure 3.3	Sympathetic baroreflex	134
Figure 3.4	Somato-sympathetic reflex	137

Chapter 4:

Figure 4.1	Neurokinin-1 receptor immunoreactivity in ventrolateral medulla	155
Figure 4.2	Rostro-caudal distribution of neurokinin-1	156
	receptor	
Figure 4.3	Neurokinin-1 receptor close appositions	158
Figure 4.4	Neurokinin-1 receptor close appositions	159
Figure 4.5	Bulbospinal neurokinin-1 receptor	161
	immunoreactive neurons	
Figure 4.6	Percentage of neurokinin-1 receptor	162
	immunoreactive neurons that are bulbospinal	

Chapter 5:		page
Figure 5.1	RVLM microinjection sites	177
Figure 5.2	Activation of neurokinin-1 receptors in the RVLM	179
Figure 5.3	WIN 51708 in RVLM	180
Figure 5.4	Group data for ABP and HR	182
Figure 5.5	Group data for sSNA and phrenic frequency	183
Figure 5.6	Somato-sympathetic reflex	185
Figure 5.7	Baroreflex	187
Figure 5.8	Sympathetic chemoreflex	188

Chapter 6:

Figure 6.1	Brainstem microinjection sites	206
Figure 6.2	RVLM glutamate and regional blood flow	207
Figure 6.3	RVLM neurokinin-1 receptors and regional	208
	blood flow	
Figure 6.4	CVLM glutamate and regional blood flow	211
Figure 6.5	CVLM neurokinin-1 receptors and regional	212
0	blood flow	
Figure 6.6	NTS glutamate and regional blood flow	215
Figure 6.7	NTS neurokinin-1 receptors and regional	216
-	blood flow	

Chapter 7:

Figure 7.1	Proposed model for sympathetic baroreflex,	231
	chemoreflex, and cerebral vascular tone	
Figure 7.2	Proposed model for somato-sympathetic reflex	235

Tables

Chapter 1:

Table 1.1	Amino acid sequence of mammalian tachykinins	49
Table 1.2	Binding affinities for tachykinin receptors	60
Table 1.3	Distribution of tachykinins and tachykinin receptors	72

Chapter 2:

Table 2.1	Drugs for microinjection	109
Table 2.2	Primary antibodies	115
Table 2.3	Secondary antibodies	116
Table 2.4	Fluorescence microscope filter sets	117

Chapter 3:

Table 3.1	Hypercapnoea and physiological variables	130
Table 3.2	Baroreflex and somato-sympathetic reflex	136
	in hypercapnoea	

Chapter 6:

Table 6.1	Regional blood flow experiment results	218
-----------	--	-----

Abbreviations

ABP	Arterial blood pressure
AMPA	Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
CART	Cocaine and amphetamine related transcript
rCBF	Regional cerebral blood flow
CGRP	Calcitonin-gene-related peptide
CPA	Caudal pressor area
CNQX	6-cyano-7-nitroquinoxaline-2, 3-dione
CVLM	Caudal ventrolateral medulla
CVR	Cerebral vascular resistance
cVRG	Caudal ventral respiratory group
DAG	Diacylglycerol
DAMGO	[D-Ala ² , <i>N</i> -Me-Phe ⁴ ,Gly-ol ⁵]-enkaphalin
DLH	DL-homocysteic acid
DNQX	6,7-dinitroquinoxaline-2,3-dione
DPDPE	[D-Pen ^{2,5}]-enkaphalin
DRG	Dorsal respiratory group
DRN	Dorsal raphe neuron
EAA	Excitatory amino acid
E-AUG	Augmenting expiratory neurons
EC	Excitatory concentrations
E-DEC	Decrementing expiratory neurons
EPSP	Excitatory post synaptic potentials
GABA	Gamma aminobutyric acid
GDP	Guanosine diphosphate
GIRK	G-protein coupled inward rectifier K ⁺
GTP	Guanosine triphosphate
HK-1	Haemokinin-1
I-AUG	Augmenting inspiratory neurons
IC	Inhibitory concentration
I _{CAN}	Voltage insensitive cation current
I-CON	Constant inspiratory neurons
I-DEC	Decrementing inspiratory neurons
IML	Intermediolateral
I _{NaP}	Persistent sodium current
IP ₃	Inositol–1,4,5-triphosphate
I-peak	Inspiratory peak
IPSP	Inhibitory post synaptic potentials
MAP	Mean arterial pressure
MCVA	Medullary cerebral vasodilator area
NK	Neurokinin
NMDA	N-methyl-D-aspartate

NTS	Nucleus tractus solitarius
pFRG	Parafacial respiratory group
PIP ₂	Phosphatidyl inositol biphosphate
PI-peak	Post-inspiratory peak
PKC	Protein kinase C
PLC	Phospholipase C
PNA	Phrenic nerve activity
PPT-A	Pre-protachykinin-A
PPT-B	Pre-protachykinin-B
PPT-C	Pre-protachykinin-C
preBötC	Pre-Bötzinger Complex
PVN	Paraventricular nucleus
rCBF	Regional cerebral blood flow
RTN	Retrotrapezoid nucleus
RVLM	Rostral ventrolateral medulla
RVMM	Rostral ventromedial medulla
rVRG	Rostral ventral respiratory group
SAH	Subarachnoid haemorrhage
SIDS	Sudden Infant Death Syndrome
SP	Substance P
SPNs	Sympathetic preganglionic neurons
SNA	Sympathetic nerve activity
sSNA	Splanchnic sympathetic nerve activity
SVA	Subthalamic cerebrovasodilator area
TBF	Tail blood flow
TH	Tyrosine Hydroxylase
TM I-VII	7 hydrophobic transmembrane domains
TTX	Tetrodotoxin
TVR	Tail vascular resistance
UCINs	Upper cervical inspiratory neurons
VGLUT	Vesicular glutamate transporter
VLM	Ventrolateral medulla
VRG	Ventral respiratory group
5-HT	5- Hydroxy Tryptamine, serotonin
8-OH-DPAT	8-hydroxy-di- <i>n</i> -propylamino tetralin