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1.1 Summary 
 

Little is known about the role that tachykinins, such as substance P and its receptor, the 

neurokinin-1 receptor, play in the generation of sympathetic nerve activity and the 

integration within the ventrolateral medulla (VLM) of many vital autonomic reflexes such 

as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral 

blood flow. 

The studies described in this thesis investigate these autonomic functions and the role of 

tachykinins through physiological (response to hypercapnoea, chapter 3), anatomical 

(neurokinin-1 receptor immunohistochemistry, chapter 4) and microinjection (neurokinin-

1 receptor activation and blockade, chapters 5 and 6) experiments. 

In the first series of experiments (chapter 3) the effects of chemoreceptor activation with 

hyperoxic hypercapnoea (5%, 10% or 15% CO2 in O2) on splanchnic sympathetic nerve 

activity and sympathetic reflexes such as the baroreflex and somato-sympathetic reflex 

were examined in anaesthetized rats. Hypercapnoea resulted in sympatho-excitation in all 

groups and a small increase in arterial blood pressure in the 10 % CO2 group. Phrenic 

nerve amplitude and phrenic frequency were also increased, with the frequency adapting 

back to baseline during the CO2 exposure. Hypercapnoea selectively attenuated (5% CO2) 

or abolished (10% and 15% CO2) the somato-sympathetic reflex while leaving the 

baroreflex unaffected. This selective inhibition of the somato-sympathetic reflex while 

leaving the baroreflex unaffected was also seen following neurokinin-1 receptor activation 

in the rostral ventrolateral medulla (RVLM) (see below). 
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Microinjection of substance P analogues into the RVLM results in a pressor response, 

however the anatomical basis for this response is unknown. In the second series of 

experiments (chapter 4), the distribution of the neurokinin-1 receptor in the RVLM was 

investigated in relation to catecholaminergic (putative sympatho-excitatory “C1”) and 

bulbospinal neurons. The neurokinin-1 receptor was demonstrated on a small percentage 

(5.3%) of C1 neurons, and a small percentage (4.7%) of RVLM C1 neurons also receive 

close appositions from neurokinin-1 receptor immunoreactive terminals. This provides a 

mechanism for the pressor response seen with RVLM microinjection of substance P 

analogues. Neurokinin-1 receptor immunoreactivity was also seen a region overlapping 

the preBötzinger complex (the putative respiratory rhythm generation region), however at 

this level a large percentage of these neurons are bulbospinal, contradicting previous work 

suggesting that the neurokinin-1 receptor is an exclusive anatomical marker for the 

propriobulbar rhythm generating neurons of the preBötzinger complex. 

The third series of experiments (chapter 5) investigated the effects of neurokinin-1 

receptor activation and blockade in the RVLM on splanchnic sympathetic nerve activity, 

arterial blood pressure, and autonomic reflexes such as the baroreflex, somato-sympathetic 

reflex, and sympathetic chemoreflex. Activation of RVLM neurokinin-1 receptors resulted 

in sympatho-excitation, a pressor response, and abolition of phrenic nerve activity, all of 

which were blocked by RVLM pre-treatment with a neurokinin-1 receptor antagonist. As 

seen with hypercapnoea, RVLM neurokinin-1 receptor activation significantly attenuated 

the somato-sympathetic reflex but did not affect the sympathetic baroreflex. Further, 
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blockade of RVLM neurokinin-1 receptors significantly attenuated the sympathetic 

chemoreflex, suggesting a role for RVLM substance P release in this pathway. 

The fourth series of experiments (chapter 6) investigated the role of neurokinin-1 

receptors in the RVLM, caudal ventrolateral medulla (CVLM), and nucleus tractus 

solitarius (NTS) on regional cerebral blood flow (rCBF) and tail blood flow (TBF). 

Activation of RVLM neurokinin-1 receptors increased rCBF associated with a decrease in 

cerebral vascular resistance (CVR). Activation of CVLM neurokinin-1 receptors 

decreased rCBF, however no change in CVR was seen. In the NTS, activation of 

neurokinin-1 receptors resulted in a biphasic response in both arterial blood pressure and 

rCBF, but no significant change in CVR. These findings suggest that in the RVLM 

substance P and the neurokinin-1 receptor play a role in the regulation of cerebral blood 

flow, and that changes in rCBF evoked in the CVLM and NTS are most likely secondary 

to changes in arterial blood pressure. Substance P and neurokinin-1 receptors in the 

RVLM, CVLM and NTS do not appear to play a role in the brainstem regulation of tail 

blood flow. 

In the final chapter (chapter 7), a model is proposed for the role of tachykinins in the 

brainstem integration of the sympathetic baroreflex, sympathetic chemoreflex, cerebral 

vascular tone, and the sympatho-excitation seen following hypercapnoea. A further model 

for the somato-sympathetic reflex is proposed, providing a mechanism for the selective 

inhibition of this reflex seen with hypercapnoea (chapter 3) and RVLM neurokinin-1 

receptor activation (chapter 5). 
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In summary, the ventral medulla is essential for the generation of basal sympathetic tone 

and the integration of many vital autonomic reflexes such as the baroreflex, chemoreflex, 

somato-sympathetic reflex, and the regulation of cerebral blood flow. The tachykinin 

substance P, and its receptor, the neurokinin-1 receptor, have a role to play in many of 

these vital autonomic functions. This role is predominantly neuromodulatory. 
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